WO2021243702A1 - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
WO2021243702A1
WO2021243702A1 PCT/CN2020/094654 CN2020094654W WO2021243702A1 WO 2021243702 A1 WO2021243702 A1 WO 2021243702A1 CN 2020094654 W CN2020094654 W CN 2020094654W WO 2021243702 A1 WO2021243702 A1 WO 2021243702A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
mixture layer
electrochemical device
electrode mixture
Prior art date
Application number
PCT/CN2020/094654
Other languages
English (en)
French (fr)
Inventor
王可飞
师亮
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202310574962.7A priority Critical patent/CN116404263A/zh
Priority to JP2022516723A priority patent/JP7434533B2/ja
Priority to PCT/CN2020/094654 priority patent/WO2021243702A1/zh
Priority to CN202310574961.2A priority patent/CN116404262A/zh
Priority to EP20939167.1A priority patent/EP4148852A4/en
Priority to KR1020227008806A priority patent/KR20220042235A/ko
Priority to CN202080049688.6A priority patent/CN114072949B/zh
Publication of WO2021243702A1 publication Critical patent/WO2021243702A1/zh
Priority to US18/074,801 priority patent/US20230096730A1/en
Priority to JP2024017001A priority patent/JP2024059672A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage, in particular to an electrochemical device and an electronic device, especially a lithium ion battery.
  • lithium-ion batteries mainly depends on the characteristics of the electrode, electrolyte and separator.
  • lithium-ion batteries will experience a decrease in charge/discharge capacity during cycling.
  • One of the reasons for this problem is the deterioration of interface stability.
  • developers tend to develop new battery chemical systems or introduce other substances into existing battery technology.
  • problems such as difficulty in compounding caused by poor matching of raw materials are usually encountered, which will adversely affect the performance of lithium-ion batteries.
  • the embodiments of the present application provide an electrochemical device and an electronic device to at least to some extent solve at least one problem existing in the related field.
  • the present application provides an electrochemical device, which includes: a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
  • the electrolyte contains lithium difluorophosphate. Based on the total weight of the electrolyte, the content of the lithium difluorophosphate is 0.001% to 2% by weight; the positive electrode mixture layer is immersed in diethyl carbonate at 85°C for 120%. After hours, it has a thickness change rate of less than 10%.
  • the electrolyte includes a carbonate
  • the carbonate includes a cyclic carbonate and a chain carbonate.
  • the electrolyte includes a carbonate and a carboxylate, and the carbonate includes at least one of a cyclic carbonate or a chain carbonate.
  • the positive electrode mixture layer includes an auxiliary agent having a hydrophilic group and a lipophilic group.
  • the adjuvant has at least one of the following characteristics:
  • the oxidation potential is not less than 4.5V, and the reduction potential is not more than 0.5V;
  • the content of the auxiliary agent is not more than 3000 ppm.
  • the auxiliary agent includes 2-dodecyl acrylate, polyethylene glycol monomethyl ether acrylate, polyethylene glycol dimethacrylate, (2-ethylhexyl) acrylate , Acrylate non-ionic fluorocarbon surfactant, at least one of dodecyl methacrylate, acrylate copolymer, maleic acid acrylic copolymer or ethylene acrylic acid copolymer.
  • the content X mg of the lithium difluorophosphate in the electrolyte and the reaction area Y m 2 of the positive electrode mixture layer satisfy the following relationship: 10 ⁇ X/Y ⁇ 100.
  • the electrolyte solution further includes at least one of a dinitrile compound, a trinitrile compound, sultone, fluorocarbonate or unsaturated ethylene carbonate.
  • the positive electrode mixture layer includes a positive electrode active material, and the positive electrode active material includes lithium-containing transition metal oxides having different median particle diameters.
  • the lithium-containing transition metal oxide includes a compound represented by the general formula (1):
  • M1 is selected from at least one of Co, Ni or Mn;
  • M2 is selected from at least one of Mg, Ti, Zr, Ge, Nb, Al or Sn;
  • M3 is an element other than Li, M1 and M2;
  • the lithium-containing transition metal oxide includes Mg and at least one metal element selected from Ti, Zr, Ge, Nb, Al, and Sn.
  • the present application provides an electronic device including the electrochemical device according to the present application.
  • a list of items connected by the term "at least one of” can mean any combination of the listed items. For example, if items A and B are listed, then the phrase "at least one of A and B" means only A; only B; or A and B. In another example, if items A, B, and C are listed, then the phrase "at least one of A, B, and C" means only A; or only B; only C; A and B (excluding C); A and C (exclude B); B and C (exclude A); or all of A, B, and C.
  • Project A can contain a single element or multiple elements. Project B can contain a single element or multiple elements. Project C can contain a single element or multiple elements.
  • the term "at least one of" has the same meaning as the term "at least one of”.
  • the electrode (positive or negative electrode) of an electrochemical device (for example, a lithium ion battery) is usually prepared by the following method: mixing the active material, conductive agent, thickener, binder, and solvent, and then coating the mixed slurry On the current collector.
  • the matching between the solvent and the binder or the solvent and the active material is usually poor, making compounding difficult.
  • the theoretical capacity of the electrochemical device may vary with the type of active material.
  • electrochemical devices As the cycle progresses, electrochemical devices usually experience a decrease in charge/discharge capacity. This is because the electrode interface changes during the charging and/or discharging of the electrochemical device.
  • the interface includes the interface between the electrode and the electrolyte, the interface between the current collector and the electrode, the interface between the electrode active material and the additive, and the like. Decreased interface stability will cause the electrode active material to fail to perform its function.
  • This application uses a specific positive electrode mixture layer and electrolyte to ensure the interface stability of the electrochemical device during the cycle, thereby improving the intermittent cycle performance and floating charge performance of the electrochemical device.
  • the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, and an electrolyte as described below.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer provided on one or both surfaces of the positive electrode current collector.
  • the positive electrode mixture layer includes a positive electrode active material layer, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode mixture layer may be one layer or multiple layers, and each layer of the multilayer positive electrode active material may contain the same or different positive electrode active materials.
  • the positive electrode mixture layer has a thickness change rate of less than 10% after being immersed in diethyl carbonate at 85° C. for 120 hours. In some embodiments, the positive electrode mixture layer has a thickness change rate of less than 8% after being immersed in diethyl carbonate at 85° C. for 120 hours. In some embodiments, the positive electrode mixture layer has a thickness change rate of less than 6% after being immersed in diethyl carbonate at 85° C. for 120 hours. In some embodiments, the positive electrode mixture layer has a thickness change rate of less than 5% after being immersed in diethyl carbonate at 85° C. for 120 hours. In some embodiments, the positive electrode mixture layer has a thickness change rate of less than 4% after being immersed in diethyl carbonate at 85° C. for 120 hours.
  • the "thickness change rate" of the positive electrode mixture layer refers to the degree of thickness change of the positive electrode mixture layer after immersing the positive electrode mixture layer in diethyl carbonate at 85°C for 120 hours compared to before the immersion.
  • the thickness change rate of the positive electrode mixture layer can be measured by punching the positive electrode with the positive electrode mixture layer on both sides of the positive electrode current collector into a disc shape with a diameter of 14 ⁇ 0.2 mm, and using it as a test piece.
  • the thickness (t0) of the center portion of the test piece is measured.
  • the test piece was immersed horizontally in diethyl carbonate, and allowed to stand at a temperature of 85 ⁇ 1°C for 120 ⁇ 0.3 hours. After the immersion, the test piece was taken out and left to stand horizontally at room temperature for 30 minutes, and then the thickness of the center portion of the test piece (t1) was measured.
  • the thickness change rate of the positive electrode mixture layer is calculated by the following formula:
  • Thickness change rate (t1-t0)/t0 ⁇ 100%.
  • the thickness change rate of the positive electrode mixture layer can be controlled by adding an auxiliary agent to the positive electrode slurry or providing an auxiliary agent coating on the surface of the positive electrode active material layer.
  • the type of the positive electrode active material and the size of the positive electrode active material particles have little effect on the thickness change rate of the positive electrode mixture layer.
  • the thickness change rate of the positive electrode mixture layer is within the above range, the intermittent cycle performance and floating charge performance of the electrochemical device can be significantly improved.
  • the positive electrode mixture layer includes an auxiliary agent.
  • the auxiliary agent has a hydrophilic group and a lipophilic group.
  • the oxidation potential of the additive is not less than 4.5V, and the reduction potential is not greater than 0.5V. In some embodiments, the oxidation potential of the additive is not less than 5V, and the reduction potential is not greater than 0.3V.
  • the electrochemical performance of the auxiliary agent with the above oxidation/reduction potential is stable, which helps to improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • the surface tension of the auxiliary agent is not more than 40 mN/m. In some embodiments, the surface tension of the auxiliary agent is not more than 30 mN/m. In some embodiments, the surface tension of the adjuvant is not greater than 25 mN/m. In some embodiments, the surface tension of the auxiliary agent is not more than 20 mN/m. In some embodiments, the surface tension of the auxiliary agent is not more than 15 mN/m. In some embodiments, the surface tension of the auxiliary agent is not greater than 10 mN/m.
  • the surface tension of the additive is measured under the condition of a NMP solution of the additive with a solid content of 1%. The auxiliary agent having the above-mentioned surface tension can make the positive electrode mixture layer have a good interface, and help to improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • the surface tension of the additives can be determined by the following method: use the JC2000D3E contact angle measuring instrument to test the NMP solution of the additives with a solid content of 1%, test each sample at least 3 times, select at least 3 data, and take the average value. Get the surface tension of the additive.
  • the adjuvant includes an unsaturated carboxylic acid group.
  • the unsaturated carboxylic acid group includes vinyl ester, vinyl chloride, acrylate, vinyl ether acrylate, crotonate, propiolate, butynoate or contains propylene At least one of amide, acrylonitrile, and vinyl ether group-modified carboxylic acid ester.
  • the adjuvant includes at least one of the following: 2-dodecyl acrylate, polyethylene glycol monomethyl ether acrylate, polyethylene glycol dimethacrylate, acrylic acid (2 -Ethylhexyl) ester, acrylate nonionic fluorocarbon surfactant, dodecyl methacrylate, dodecyl methacrylate, maleic acid acrylic acid copolymer or ethylene acrylic acid copolymer.
  • the content of the auxiliary agent is not more than 3000 ppm. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the auxiliary agent is not more than 2500 ppm. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the auxiliary agent is not more than 2000 ppm. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the auxiliary agent is not more than 1500 ppm. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the auxiliary agent is not more than 1000 ppm.
  • the content of the auxiliary agent is not more than 500 ppm. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the auxiliary agent is not more than 200 ppm. When the content of the auxiliary agent is within the above range, it helps to improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • the type of the positive electrode active material is not particularly limited, as long as it can electrochemically occlude and release metal ions (for example, lithium ions).
  • the positive active material is a substance containing lithium and at least one transition metal.
  • positive electrode active materials may include, but are not limited to, lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.
  • the positive active material includes lithium-containing transition metal oxides with different median particle diameters. In some embodiments, the lithium-containing transition metal oxides with different median particle diameters have the same or different chemical compositions.
  • the lithium-containing transition metal oxide includes a compound represented by general formula (1),
  • M1 is selected from at least one of Co, Ni or Mn;
  • M2 is selected from at least one of Mg, Ti, Zr, Ge, Nb, Al or Sn;
  • M3 is an element other than Li, M1 and M2;
  • M1 includes at least one of Co or Ni.
  • the content of at least one of Co or Ni in the lithium-containing transition metal oxide is not less than 50 mol%; in some embodiments, it is not less than 60 mol% ; In some embodiments, not less than 70 mol%; in some embodiments, not less than 80 mol%; or in some embodiments, not less than 90 mol%.
  • M1 includes Co. In some embodiments, M1 is Co.
  • M1 includes Co
  • the content of Co in the lithium-containing transition metal oxide is not less than 30 mol%; in some embodiments, not less than 50 mol%; in some embodiments, not less than 65 mol%; In some embodiments, it is not less than 80 mol%; in some embodiments, it is not less than 90 mol%; or in some embodiments, it is not less than 95 mol%.
  • the lithium-containing transition metal oxide contains Co, it helps to increase the density of the positive electrode mixture layer.
  • the content of Co in the lithium-containing transition metal oxide is within the above range, the density of the positive electrode mixture layer can be further improved.
  • M2 includes Mg.
  • the content of Mg is not less than 0.01 mol%. In some embodiments, relative to the content of M1, the content of Mg is not less than 0.05 mol%. In some embodiments, relative to the content of M1, the content of Mg is not less than 0.07 mol%. In some embodiments, relative to the content of M1, the content of Mg is not more than 0.5 mol%. In some embodiments, relative to the content of M1, the content of Mg is not more than 0.2 mol%. In some embodiments, relative to the content of M1, the content of Mg is not more than 0.1 mol%.
  • the content of Mg is within a range composed of any two endpoints described above.
  • the Mg element can effectively play a role to improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • M2 further includes at least one of Ti, Zr, Ge, Nb, Al, and Sn.
  • M2 further includes at least one of Ti, Zr, Ge, or Nb.
  • the content of at least one of Ti, Zr, Ge, or Nb is not less than 0.005 mol%. In some embodiments, relative to the content of M1, the content of at least one of Ti, Zr, Ge, or Nb is not less than 0.008 mol%. In some embodiments, relative to the content of M1, the content of at least one of Ti, Zr, Ge, or Nb is not less than 0.01 mol%. In some embodiments, relative to the content of M1, the content of at least one of Ti, Zr, Ge, or Nb is not more than 0.3 mol%.
  • the content of at least one of Ti, Zr, Ge, or Nb is not more than 0.1 mol%. In some embodiments, relative to the content of M1, the content of at least one of Ti, Zr, Ge, or Nb is not more than 0.05 mol%. In some embodiments, relative to the content of M1, the content of at least one of Ti, Zr, Ge, or Nb is within a range composed of any two endpoints described above. When the content of at least one of Ti, Zr, Ge, or Nb in the lithium-containing transition metal oxide is within the above range, it helps to further improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • M2 further includes at least one of Al or Sn.
  • the content of at least one of Al or Sn is not less than 0.01 mol% relative to the content of M1.
  • the content of at least one of Al or Sn is not less than 0.05 mol%.
  • the content of at least one of Al or Sn is not less than 0.07 mol%.
  • the content of at least one of Al or Sn is not more than 0.5 mol%.
  • relative to the content of M1, the content of at least one of Al or Sn is not more than 0.2 mol%.
  • the content of at least one of Al or Sn is not more than 0.1 mol%. In some embodiments, relative to the content of M1, the content of at least one of Al or Sn is within a range composed of any two endpoints described above. When the content of at least one of Al or Sn in the lithium-containing transition metal oxide is within the above range, it helps to further improve the intermittent cycle performance and floating charge performance of the electrochemical device.
  • c is within the above range, the intermittent cycle performance and floating charge performance of the lithium ion battery can be further improved.
  • the lithium-containing transition metal oxide may contain M2 in various ways, and it is not particularly limited.
  • M2 is present on lithium-containing transition metal oxide particles.
  • M2 is uniformly solid dispersed in the lithium-containing transition metal oxide.
  • the M2 lithium-containing transition metal oxide has a concentration distribution within the segregation.
  • M2 forms a compound layer on the surface of the lithium-containing transition metal oxide.
  • M3 includes at least one of the following elements: alkali metal elements other than Li, alkaline earth metal elements other than Mg, group IIIa metal elements, group IVb metal elements other than Ti and Zr, and Nb Other Vb group metal elements, VIb group metal elements, group VIIb metal elements other than Mn, group VIII metal elements other than Co and Ni, group Ib metal elements, Zn, group IIIa metal elements other than Al, and Sn And Group IVa metal elements other than Pb, P or Bi.
  • M3 includes at least one of the following elements: Na, K, Rb, Be, Ca, Sr, Ba, Sc, Y, La, Hf, V, Ta, Cr, Mo, W, Tc, Re, Fe, Ru, Rh, Cu, Ag, Au, Zn, B, Ca, In, Si, P, or Bi.
  • the lithium-containing transition metal oxide includes LiNi 0.81 Co 0.16 Al 0.03 O 2 , LiNi 0.81 Co 0.16 Mg 0.03 O 2 , LiNi 0.81 Co 0.16 Si 0.03 O 2 , LiNi 0.81 Co 0.16 Ti 0.03 O 2 , LiCo 0.96 Ti 0.04 O 2 , LiCo 0.998 Mg 0.0008 Ti 0.0004 Al 0.0008 O 2 , LiCo 0.994 Mg 0.0024 Ti 0.0012 Al 0.0024 O 2 , LiCo 0.9988 Mg 0.0008 Ti 0.0004 O 2 , LiCo 0.9964 Mg 0.0024 Ti 0.0012 O 2 or LiCo 0.334 At least one of Ni 0.33 Mn 0.33 Mg 0.0024 Ti 0.0012 Al 0.0024 O 2.
  • the content of each element in the lithium-containing transition metal oxide can be obtained by inductively coupled plasma (ICP) analysis. Specifically, approximately 5g of lithium-containing transition metal oxides were accurately weighed, added to a 200ml beaker, and then 100ml of aqua regia was added, heated and concentrated to a liquid volume of 20-25ml, cooled, and quantitative filter paper No. 5B manufactured by Advantec was used. "Separate the solids, add the filtrate and lotion to a 100ml volumetric flask and dilute to a constant volume, then use the sequential ICP-type analyzer "IPIS1000" manufactured by Japan Nippon Jarrell-Ash Co., Ltd. to determine the element content.
  • ICP inductively coupled plasma
  • the content of the lithium-containing transition metal oxide is not more than 99 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not more than 97.5% by weight. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not more than 97 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not more than 98 wt%.
  • the content of the lithium-containing transition metal oxide is not more than 95 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not less than 85% by weight. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not more than 90 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the lithium-containing transition metal oxide is not more than 92 wt%.
  • the content of the lithium-containing transition metal oxide is within a range composed of any two endpoints described above.
  • the positive electrode mixture layer has high capacity and low resistance, and contributes to the formation of the positive electrode.
  • the lithium-containing transition metal oxide includes first particles and second particles, the first particles have a first median diameter, and the second particles have a second median diameter.
  • the first median particle size is smaller than the second median particle size.
  • the median particle diameter D50 can be measured with a known laser diffraction/scattering particle size analyzer.
  • the first median particle size is 0.5 ⁇ m to 10 ⁇ m. In some embodiments, the first median particle size is 1 ⁇ m to 8 ⁇ m. In some embodiments, the first median particle size is 2 ⁇ m to 6 ⁇ m. In some embodiments, the second median particle size is 11 ⁇ m to 30 ⁇ m. In some embodiments, the second median particle size is 12 ⁇ m to 25 ⁇ m. In some embodiments, the second median particle size is 13 ⁇ m to 20 ⁇ m.
  • the median diameter of the lithium-containing transition metal oxide can be adjusted by the following method: NaOH is added dropwise to the acidic aqueous solution of the transition metal element M1, and the hydroxide of M1 is obtained by precipitation. The hydroxide of M1 is fired to obtain the oxide of M1.
  • the median diameter of the lithium-containing transition metal oxide can be controlled by controlling the precipitation time, the precipitation particle size, and the particle size of the fired M1 oxide.
  • the discharge capacity of the positive electrode active material is less than the chargeable capacity of the negative electrode active material, which can prevent the lithium ion battery from unintentionally precipitating on the negative electrode during charging.
  • the density of the positive electrode mixture layer is not less than 3.5 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is not less than 3.6 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is not less than 3.8 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is not greater than 4.6 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is not greater than 4.4 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is not greater than 4.2 g/cm 3 . In some embodiments, the density of the positive electrode mixture layer is within a range composed of any two endpoints described above. When the density of the positive electrode mixture layer is within the above range, the positive electrode mixture layer has good wettability, which helps to improve the performance of the electrochemical device.
  • the density of the positive electrode mixture layer can be measured by the following method: cut the positive electrode in a certain area, measure its weight W1 with an electronic balance with a minimum scale of 1 mg, and measure the thickness T1 of the positive electrode with a micrometer with a minimum scale of 1 ⁇ m.
  • the positive electrode current collector is peeled off, its weight W2 is measured using an electronic balance, and the thickness T2 of the positive electrode current collector is measured with a micrometer.
  • W1-W2 is recorded as the weight of the positive electrode mixture layer
  • T1-T2 is recorded as the thickness of the positive electrode mixture layer.
  • the volume of the positive electrode total layer is calculated based on the thickness and area of the positive electrode mixture layer, and then the density of the positive electrode mixture layer is calculated based on the weight and volume of the positive electrode mixture layer.
  • the thickness of the positive electrode mixture layer is 30 ⁇ m to 300 ⁇ m. In some embodiments, the thickness of the positive electrode mixture layer is 50 ⁇ m to 280 ⁇ m. In some embodiments, the thickness of the positive electrode mixture layer is 80 ⁇ m to 250 ⁇ m. In some embodiments, the thickness of the positive electrode mixture layer is 100 ⁇ m to 200 ⁇ m. In some embodiments, the thickness of the positive electrode mixture layer is 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m, 200 ⁇ m, or within a range composed of any two of the foregoing values.
  • the thickness of the positive electrode mixture layer can be measured by the following method: cut out the positive electrode, and measure the thickness T1 of the positive electrode using a micrometer with a minimum graduation of 1 ⁇ m.
  • the positive electrode current collector is peeled off, and the thickness T2 of the positive electrode current collector is measured with a micrometer. T1-T2 is recorded as the thickness of the positive electrode mixture layer.
  • the positive electrode mixture layer may further include a conductive layer, and the conductive layer includes a conductive agent.
  • the conductive layer does not contain a positive active material. Examples of conductive agents include, but are not limited to, graphite, carbon black, or acetylene black.
  • the content of the conductive agent is not less than 1 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the conductive agent is not less than 1.1 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the conductive agent is not less than 1.2 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the conductive agent is not more than 3 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the conductive agent is not more than 2 wt%.
  • the content of the conductive agent is not more than 1.5 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the conductive agent is within a range composed of any two of the foregoing values. When the content of the conductive agent in the positive electrode mixture layer is within the above range, it helps to improve the density and capacity of the positive electrode mixture layer, thereby improving the cycle performance of the electrochemical device and reducing its load characteristics.
  • the positive electrode mixture layer includes a binder.
  • the binder include, but are not limited to, polyvinylidene fluoride or polytetrafluoroethylene.
  • the content of the binder is not less than 1 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the binder is not less than 1.3 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the binder is not less than 1.5 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the binder is not more than 4 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the binder is not more than 3 wt%.
  • the content of the binder is not more than 2 wt%. In some embodiments, based on the total weight of the positive electrode mixture layer, the content of the binder is within a range composed of any two of the foregoing values. When the content of the binder in the positive electrode mixture layer is within the above range, the positive electrode mixture layer and the positive electrode current collector have good adhesion, avoiding the possibility of the positive electrode being powdered and falling off, thereby helping to improve the stability of the positive electrode .
  • the type of the positive electrode current collector is not particularly limited, and it can be any material known to be suitable for use as a positive electrode current collector.
  • Examples of the positive electrode current collector may include, but are not limited to, at least one of aluminum, aluminum alloy, nickel-plated aluminum, stainless steel, titanium, or tantalum; carbon materials such as carbon cloth and carbon paper.
  • the positive electrode current collector is a metal material.
  • the positive current collector is aluminum.
  • the form of the positive electrode current collector is not particularly limited.
  • the form of the positive electrode current collector may include, but is not limited to, metal foil, metal cylinder, metal coil, metal plate, metal film, metal plate mesh, stamped metal, foamed metal, and the like.
  • the positive electrode current collector is a carbon material
  • the form of the positive electrode current collector may include, but is not limited to, a carbon plate, a carbon film, a carbon cylinder, and the like.
  • the positive electrode current collector is a metal thin film.
  • the metal film is mesh-shaped.
  • the thickness of the positive electrode current collector is 8 ⁇ m to 20 ⁇ m. In some embodiments, the thickness of the positive electrode current collector is 10 ⁇ m to 18 ⁇ m. In some embodiments, the thickness of the positive electrode current collector is 12 ⁇ m to 15 ⁇ m. In some embodiments, the thickness of the positive electrode current collector is within a range composed of any two values mentioned above.
  • the surface of the positive electrode current collector may include a conductive agent.
  • the conductive agent may include, but are not limited to, carbon and noble metals such as gold, platinum, and silver.
  • the preparation method of the positive electrode of the present application is not limited.
  • the positive electrode can be manufactured by the following method: mixing two or more lithium-containing transition metal oxides with different median particle diameters in a certain weight ratio, adding a conductive agent and a binder, and adding a solvent as needed to obtain a positive electrode mixture slurry .
  • the obtained positive electrode mixture slurry is coated on a positive electrode current collector (for example, aluminum foil) and dried to form a positive electrode mixture layer.
  • the positive electrode mixture layer is applied to one or both surfaces of the positive electrode current collector, and a rolling step is performed as needed to obtain a positive electrode.
  • the electrolyte contains lithium difluorophosphate, and the content of the lithium difluorophosphate is 0.001 wt% to 2 wt% based on the total weight of the electrolyte. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate is 0.01 wt% to 1 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate is 0.05 wt% to 0.5 wt%.
  • the content of the lithium difluorophosphate is 0.1 wt% to 0.3 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the lithium difluorophosphate is 0.001wt%, 0.005wt%, 0.01wt%, 0.05wt%, 0.1wt%, 0.3wt%, 0.5wt% %, 0.8% by weight, 1% by weight, 1.2% by weight, 1.5% by weight, 1.8% by weight, 2% by weight, or within a range composed of any two of the foregoing values. When the content of lithium difluorophosphate in the electrolyte is within the above range, it helps to further improve the intermittent cycle performance and floating charge performance of the lithium ion battery.
  • the content X mg of the lithium difluorophosphate in the electrolyte and the reaction area Y m 2 of the positive electrode mixture layer satisfy the following relationship: 10 ⁇ X/Y ⁇ 100. In some embodiments, X and Y satisfy the following relationship: 20 ⁇ X/Y ⁇ 70. In some embodiments, X and Y satisfy the following relationship: 30 ⁇ X/Y ⁇ 50. When X and Y conform to the above relationship, it helps to further improve the intermittent cycle performance and floating charge performance of the lithium-ion battery.
  • the reaction area of the positive electrode mixture layer can be measured by the following method: using a surface area meter (a fully automatic surface area measuring device manufactured by Okura Riken), pre-drying the sample at 350°C for 15 minutes under nitrogen flow, and then using nitrogen relative to atmospheric pressure The relative pressure value of the nitrogen and helium mixed gas accurately adjusted to 0.3 is measured by the nitrogen adsorption BET single-point method using the gas flow method. According to this method, the specific surface area of the positive electrode mixture layer (m 2 /g) is measured.
  • the specific surface area of the positive electrode mixture layer refers to the positive electrode mixture layer containing the positive electrode active material and additives (binder, conductive agent, thickener, filler, etc.) The specific surface area of the whole.
  • the weight of the positive electrode mixture layer is measured, that is, the total weight of the entire positive electrode mixture layer containing the positive electrode active material and additives (binder, conductive agent, thickener, filler, etc.).
  • the reaction area of the positive electrode mixture layer is calculated by the following formula:
  • the reaction area the specific surface area of the positive electrode mixture layer x the weight of the positive electrode mixture layer.
  • the electrolyte includes carbonate. In some embodiments, the electrolyte includes carbonate and carboxylate. In some embodiments, the carbonate includes at least one of cyclic carbonate or chain carbonate. Carbonate or its combination with carboxylate helps to form a passivation film on the surface of the electrode, thereby improving the intermittent cycle performance and floating performance of the electrochemical device.
  • the content of the carbonate is 10 wt% to 90 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the carbonate is 15 wt% to 85 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the carbonate is 20 wt% to 75 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the carbonate is 25 wt% to 65 wt%.
  • the content of the carbonate is 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, 50wt%, 60wt% %, 70% by weight, 80% by weight, 90% by weight, or within a range composed of any two of the above values.
  • the carbonate content in the electrolyte is within the above range, it helps to further improve the intermittent cycle performance and floating performance of the electrochemical device.
  • examples of the cyclic carbonate may include, but are not limited to, one or more of the following: ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate.
  • the cyclic carbonate has 3-6 carbon atoms.
  • examples of the chain carbonate may include, but are not limited to, one or more of the following: dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate (DEC), methyl carbonate Chain carbonates such as n-propyl carbonate, ethyl n-propyl carbonate, and di-n-propyl carbonate.
  • dimethyl carbonate ethyl methyl carbonate
  • DEC diethyl carbonate
  • Chain carbonates such as n-propyl carbonate, ethyl n-propyl carbonate, and di-n-propyl carbonate.
  • chain carbonates substituted by fluorine may include, but are not limited to, one or more of the following: bis(fluoromethyl) carbonate, bis(difluoromethyl) carbonate, bis(trifluoromethyl) Base) carbonate, bis(2-fluoroethyl) carbonate, bis(2,2-difluoroethyl) carbonate, bis(2,2,2-trifluoroethyl) carbonate, 2-fluoroethyl Methyl carbonate, 2,2-difluoroethyl methyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, etc.
  • the carboxylic acid ester includes at least one of a chain carboxylic acid ester or a cyclic carboxylic acid ester.
  • examples of the cyclic carboxylic acid ester may include, but are not limited to, one or more of the following: one or more of ⁇ -butyrolactone and ⁇ -valerolactone.
  • part of the hydrogen atoms of the cyclic carboxylic acid ester may be substituted by fluorine.
  • examples of the chain carboxylic acid ester may include, but are not limited to, one or more of the following: methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate Ester, sec-butyl acetate, isobutyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate, butyrate Propyl ester, methyl isobutyrate, ethyl isobutyrate, methyl valerate, ethyl valerate, methyl pivalate and ethyl pivalate, etc.
  • part of the hydrogen atoms of the chain carboxylic acid ester may be replaced by fluorine.
  • examples of fluorine-substituted chain carboxylic acid esters may include, but are not limited to, methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, butyl trifluoroacetate, and trifluoroacetic acid 2,2,2-Trifluoroethyl and so on.
  • the electrolyte further includes at least one of a dinitrile compound, a trinitrile compound, sultone, fluorocarbonate, or unsaturated ethylene carbonate.
  • examples of the dinitrile compound may include, but are not limited to, one or more of the following: succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, tetramethylsuccinonitrile, 2-methylglutaronitrile, 2,4-dimethylglutaronitrile, 2,2,4,4-tetramethylglutaronitrile , 1,4-dicyanopentane, 1,4-dicyanopentane, 1,2-dicyanobenzene, 1,3-dicyanobenzene, 1,4-dicyanobenzene, ethylene Alcohol bis(propionitrile) ether, 3,5-dioxa-pimelonitrile, 1,4-bis(cyanoethoxy)butane, diethylene glycol bis(2-cyanoethyl) ether, Triethylene glycol bis(2-cyanoethyl) ether, tetraethylene glycol
  • examples of the trinitrile compound may include, but are not limited to, one or more of the following: 1,3,5-pentatricarbonitrile, 1,2,3-propanetricarbonitrile, 1, 3,6-hexamethylenetricarbonitrile, 1,2,6-hexamethylenetricarbonitrile, 1,2,3-tris(2-cyanoethoxy)propane, 1,2,4-tris(2-cyanoethoxy) Yl)butane, 1,1,1-tris(cyanoethoxymethylene)ethane, 1,1,1-tris(cyanoethoxymethylene)propane, 3-methyl-1 ,3,5-Tris(cyanoethoxy)pentane, 1,2,7-tris(cyanoethoxy)heptane, 1,2,6-tris(cyanoethoxy)hexane and 1,2,5-Tris(cyanoethoxy)pentane.
  • examples of the sultone may include, but are not limited to, one or more of the following: 1,3-propane sultone, 1-fluoro-1,3-propanesulfonic acid Lactone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-methyl-1,3-propane sultone, 2-methyl -1,3-propane sultone, 3-methyl-1,3-propane sultone, 1-propene-1,3-sultone, 2-propene-1,3-sultone Ester, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sulfonic acid Lactone, 1-fluoro-2-propene-1,3-sultone, 2-fluoro-2-propene-1,3-sultone, 3-fluoro-2-propene
  • examples of the fluorocarbonate may include, but are not limited to, one or more of the following: fluoroethylene carbonate, cis-4,4-difluoroethylene carbonate, trans-4 ,4-Difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4-fluoro-5-methylethylene carbonate, trifluoromethyl methyl carbonate , Trifluoroethyl methyl carbonate and ethyl trifluoroethyl carbonate, etc.
  • examples of the unsaturated ethylene carbonate may include, but are not limited to, one or more of the following: vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, carbonic acid -1,2-Dimethyl vinylene, -1,2-diethyl vinylene carbonate, fluorovinylidene carbonate, trifluoromethyl vinylene carbonate; vinyl ethylene carbonate, carbonic acid -1 -Methyl-2-vinyl ethylene, 1-ethyl-2-vinyl ethylene carbonate, 1-n-propyl-2-vinyl ethylene carbonate, 1-methyl-2 carbonate -Vinyl ethylene, 1,1-divinyl ethylene carbonate, 1,2-divinyl ethylene carbonate, 1,1-dimethyl-2-methylene ethylene carbonate Ester and carbonic acid-1,1-diethyl-2-methylene ethylene and so on.
  • the unsaturated ethylene carbonate includes vinylene carbonate, methyl vinylene
  • the electrolyte further includes a cyclic ether.
  • examples of the cyclic ether may include, but are not limited to, one or more of the following: tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 2-methyl -1,3-dioxolane, 4-methyl 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane and dimethoxypropane.
  • the electrolyte further includes chain ether.
  • examples of the chain ether may include, but are not limited to, one or more of the following: dimethoxymethane, 1,1-dimethoxyethane, 1,2- Dimethoxyethane, diethoxymethane, 1,1-diethoxyethane, 1,2-diethoxyethane, ethoxymethoxymethane, 1,1-ethoxy Methoxyethane and 1,2-ethoxymethoxyethane, etc.
  • the electrolyte further includes a phosphorus-containing organic solvent.
  • examples of the phosphorus-containing organic solvent may include, but are not limited to, one or more of the following: trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl phosphate Diethyl, Ethylene Methyl Phosphate, Ethylene Ethyl Phosphate, Triphenyl Phosphate, Trimethyl Phosphite, Triethyl Phosphite, Triphenyl Phosphite, Tris(2,2,2- Trifluoroethyl) ester and tris(2,2,3,3,3-pentafluoropropyl) phosphate, etc.
  • the electrolyte further includes a sulfur-containing organic solvent.
  • examples of the sulfur-containing organic solvent may include, but are not limited to, one or more of the following: sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, two Ethyl sulfone, ethyl methyl sulfone, methyl propyl sulfone, dimethyl sulfoxide, methyl methanesulfonate, ethyl methanesulfonate, methyl ethanesulfonate, ethyl ethanesulfonate, dimethyl sulfate , Diethyl sulfate and Dibutyl sulfate.
  • part of the hydrogen atoms of the sulfur-containing organic solvent may be replaced by fluorine.
  • the electrolyte further includes a fluorine-containing solvent.
  • the aromatic fluorine-containing solvent includes, but is not limited to, one or more of the following: fluorobenzene, difluorobenzene, trifluorobenzene, tetrafluorobenzene, pentafluorobenzene, hexafluorobenzene And trifluoromethylbenzene.
  • the electrolyte contains one or more compounds containing sulfur and oxygen double bonds.
  • examples of the sulfur-oxygen double bond-containing compound may include, but are not limited to, one or more of the following: cyclic sulfate, chain sulfate, chain sulfonate, cyclic Sulfonate, chain sulfite and cyclic sulfite, etc.
  • examples of the cyclic sulfate may include, but are not limited to, one or more of the following: 1,2-ethylene glycol sulfate, 1,2-propylene glycol sulfate, 1,3 -Propylene glycol sulfate, 1,2-butanediol sulfate, 1,3-butanediol sulfate, 1,4-butanediol sulfate, 1,2-pentanediol sulfate, 1,3-pentane Glycol sulfate, 1,4-pentanediol sulfate, 1,5-pentanediol sulfate, etc.
  • examples of the chain sulfate may include, but are not limited to, one or more of the following: dimethyl sulfate, ethyl methyl sulfate, diethyl sulfate, and the like.
  • examples of the chain sulfonate may include, but are not limited to, one or more of the following: fluorosulfonate such as methyl fluorosulfonate and ethyl fluorosulfonate, methanesulfonic acid Methyl ester, ethyl methanesulfonate, butyl dimethanesulfonate, methyl 2-(methanesulfonyloxy)propionate and ethyl 2-(methanesulfonyloxy)propionate, etc.
  • fluorosulfonate such as methyl fluorosulfonate and ethyl fluorosulfonate
  • methanesulfonic acid Methyl ester ethyl methanesulfonate
  • butyl dimethanesulfonate methyl 2-(methanesulfonyloxy)propionate and ethyl 2-(methanesulfonyl
  • examples of the chain sulfite may include, but are not limited to, one or more of the following: dimethyl sulfite, methyl ethyl sulfite, diethyl sulfite, and the like.
  • examples of the cyclic sulfite may include, but are not limited to, one or more of the following: 1,2-ethylene glycol sulfite, 1,2-propylene glycol sulfite, 1,3-propanediol sulfite, 1,2-butanediol sulfite, 1,3-butanediol sulfite, 1,4-butanediol sulfite, 1,2-pentanediol sulfite Sulfate, 1,3-pentanediol sulfite, 1,4-pentanediol sulfite, 1,5-pentanediol sulfite, etc.
  • the electrolyte further includes one or more acid anhydrides.
  • examples of the acid anhydride may include, but are not limited to, one or more of cyclic phosphoric anhydride, carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • examples of the cyclic phosphoric anhydride may include, but are not limited to, one or more of trimethylphosphoric acid cyclic anhydride, triethylphosphoric acid cyclic anhydride, and tripropylphosphoric acid cyclic anhydride.
  • examples of the carboxylic acid anhydride may include, but are not limited to, one or more of succinic anhydride, glutaric anhydride, and maleic anhydride.
  • examples of the disulfonic acid anhydride may include, but are not limited to, one or more of ethane disulfonic acid anhydride and propane disulfonic acid anhydride.
  • examples of the carboxylic acid sulfonic anhydride may include, but are not limited to, one or more of sulfobenzoic anhydride, sulfopropionic anhydride, and sulfobutyric anhydride.
  • the electrolyte is not particularly limited, and any known substance as an electrolyte can be used arbitrarily.
  • a lithium salt is generally used.
  • electrolytes may include, but are not limited to, LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 and other inorganic lithium salts; LiWOF 5 and other lithium tungstates; HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li and other carboxylic acid lithium salts; FSO 3 Li, CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li ,
  • the electrolyte is selected from LiPF 6 , LiSbF 6 , LiTaF 6 , FSO 3 Li, CF 3 SO 3 Li, LiN(FSO 2 ) 2 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , cyclic 1,2-perfluoroethane bissulfonimide lithium, cyclic 1,3-perfluoropropane bissulfonimide lithium, LiC(FSO 2 ) 3 , LiC(CF 3 SO 2 ) 3 , LiC(C 2 F 5 SO 2 ) 3 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 ( C 2 F 5 ) 3 , lithium difluorooxalate borate, lithium bis(oxalate) borate or lithium difluorobis(oxalate) phosphate
  • the content of the electrolyte is not particularly limited, as long as the effect of the application is not impaired.
  • the total molar concentration of lithium in the electrolyte is greater than 0.3 mol/L, greater than 0.4 mol/L, or greater than 0.5 mol/L.
  • the total molar concentration of lithium in the electrolyte is less than 3 mol/L, less than 2.5 mol/L, or less than 2.0 mol/L.
  • the total molar concentration of lithium in the electrolyte is within a range composed of any two of the foregoing values. When the electrolyte concentration is within the above range, lithium as the charged particles will not be too small, and the viscosity can be in an appropriate range, so it is easy to ensure good electrical conductivity.
  • the electrolyte includes at least one salt selected from the group consisting of monofluorophosphate, borate, oxalate, and fluorosulfonate.
  • the electrolyte includes a salt selected from the group consisting of monofluorophosphate, oxalate, and fluorosulfonate.
  • the electrolyte includes a lithium salt.
  • the content of the salt selected from the group consisting of monofluorophosphate, borate, oxalate, and fluorosulfonate is greater than 0.01 wt% or greater than 0.1 wt% based on the total weight of the electrolyte.
  • the content of the salt selected from the group consisting of monofluorophosphate, borate, oxalate, and fluorosulfonate is less than 20% by weight or less than 10% by weight based on the total weight of the electrolyte. In some embodiments, the content of the salt selected from the group consisting of monofluorophosphate, borate, oxalate, and fluorosulfonate is within the range consisting of any two of the foregoing values.
  • the electrolyte includes one or more substances selected from the group consisting of monofluorophosphate, borate, oxalate, and fluorosulfonate, and one or more other salts.
  • the lithium salts exemplified above can be cited, and in some embodiments are LiPF 6 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN( C 2 F 5 SO 2 ) 2 , cyclic 1,2-perfluoroethane bissulfonimide lithium, cyclic 1,3-perfluoropropane bissulfonimide lithium, LiC(FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 .
  • the other salts the lithium salts exempl
  • the content of other salts is greater than 0.01 wt% or greater than 0.1 wt%. In some embodiments, based on the total weight of the electrolyte, the content of other salts is less than 20 wt%, less than 15 wt%, or less than 10 wt%. In some embodiments, the content of other salts is within the range composed of any two values mentioned above. Salts other than those having the above content help balance the conductivity and viscosity of the electrolyte.
  • the electrolyte solution may contain additional additives such as a negative electrode film forming agent, a positive electrode protective agent, and an overcharge prevention agent as needed.
  • additives generally used in non-aqueous electrolyte secondary batteries can be used, and examples thereof can include, but are not limited to, vinylene carbonate, succinic anhydride, biphenyl, cyclohexylbenzene, 2,4-difluorobenzyl Ether, propane sultone, propene sultone, etc. These additives can be used alone or in any combination.
  • the content of these additives in the electrolytic solution is not particularly limited, and may be appropriately set according to the type of the additives and the like. In some embodiments, based on the total weight of the electrolyte, the content of the additive is less than 5 wt%, in the range of 0.01 wt% to 5 wt%, or in the range of 0.2 wt% to 5 wt%.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer provided on one or both surfaces of the negative electrode current collector.
  • the negative electrode mixture layer includes a negative electrode active material layer, and the negative electrode active material layer contains a negative electrode active material.
  • the anode active material layer may be one layer or multiple layers, and each layer in the multilayer anode active material may contain the same or different anode active materials.
  • the negative electrode active material is any material that can reversibly insert and extract metal ions such as lithium ions. In some embodiments, the chargeable capacity of the negative active material is greater than the discharge capacity of the positive active material to prevent unintentional precipitation of lithium metal on the negative electrode during charging.
  • the current collector holding the negative electrode active material As the current collector holding the negative electrode active material, known current collectors can be arbitrarily used. Examples of the negative electrode current collector include, but are not limited to, metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. In some embodiments, the negative electrode current collector is copper.
  • the negative electrode current collector may include, but is not limited to, metal foil, metal cylinder, metal coil, metal plate, metal film, metal plate mesh, stamped metal, foamed metal, etc.
  • the negative electrode current collector is a metal thin film.
  • the negative electrode current collector is copper foil.
  • the negative electrode current collector is a rolled copper foil based on a rolling method or an electrolytic copper foil based on an electrolytic method.
  • the thickness of the negative electrode current collector is greater than 1 ⁇ m or greater than 5 ⁇ m. In some embodiments, the thickness of the negative electrode current collector is less than 100 ⁇ m or less than 50 ⁇ m. In some embodiments, the thickness of the negative electrode current collector is within a range composed of any two values mentioned above.
  • the negative electrode active material is not particularly limited, as long as it can reversibly occlude and release lithium ions.
  • Examples of negative electrode active materials may include, but are not limited to, carbon materials such as natural graphite and artificial graphite; metals such as silicon (Si) and tin (Sn); or oxides of metal elements such as Si and Sn.
  • the negative electrode active material can be used alone or in combination.
  • the negative electrode mixture layer may further include a negative electrode binder.
  • the negative electrode binder can improve the bonding of the negative active material particles with each other and the bonding of the negative active material with the current collector.
  • the type of the negative electrode binder is not particularly limited, as long as it is a material that is stable to the electrolyte or the solvent used in the manufacture of the electrode.
  • the negative electrode binder includes a resin binder. Examples of resin binders include, but are not limited to, fluororesins, polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, and the like.
  • the negative electrode binder includes, but is not limited to, carboxymethyl cellulose (CMC) or its salt, styrene-butadiene rubber (SBR), polyacrylic acid (PAA) or Its salt, polyvinyl alcohol, etc.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • Its salt polyvinyl alcohol, etc.
  • the negative electrode can be prepared by the following method: coating a negative electrode mixture slurry containing a negative electrode active material, a resin binder, etc. on the negative electrode current collector, and after drying, it is calendered to form a negative electrode mixture layer on both sides of the negative electrode current collector. Obtain the negative electrode.
  • a separator is usually provided between the positive electrode and the negative electrode.
  • the electrolyte solution of the present application is usually used by infiltrating the separator.
  • the isolation film may be resin, glass fiber, inorganic substance, etc. formed of a material that is stable to the electrolyte of the present application.
  • the isolation membrane includes a porous sheet or a non-woven fabric-like material with excellent liquid retention properties.
  • the material of the resin or glass fiber isolation membrane may include, but are not limited to, polyolefin, aromatic polyamide, polytetrafluoroethylene, polyethersulfone, glass filter, and the like.
  • the material of the isolation membrane is a glass filter.
  • the polyolefin is polyethylene or polypropylene.
  • the polyolefin is polypropylene.
  • the isolation film may also be a material formed by laminating the above-mentioned materials, and examples thereof include, but are not limited to, a three-layer isolation film laminated in the order of polypropylene, polyethylene, and polypropylene.
  • inorganic materials may include, but are not limited to, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates (for example, barium sulfate, calcium sulfate, etc.).
  • the form of the inorganic substance may include, but is not limited to, granular or fibrous.
  • the form of the isolation membrane may be a thin film form, and examples thereof include, but are not limited to, non-woven fabrics, woven fabrics, microporous membranes, and the like.
  • the pore size of the isolation membrane is 0.01 ⁇ m to 1 ⁇ m, and the thickness is 5 ⁇ m to 50 ⁇ m.
  • the following separator can also be used: a separator formed by forming a composite porous layer containing the above-mentioned inorganic particles on the surface of the positive electrode and/or negative electrode using a resin-based binder,
  • the thickness of the isolation film is arbitrary. In some embodiments, the thickness of the isolation film is greater than 1 ⁇ m, greater than 5 ⁇ m, or greater than 8 ⁇ m. In some embodiments, the thickness of the isolation film is less than 50 ⁇ m, less than 40 ⁇ m, or less than 30 ⁇ m. In some embodiments, the thickness of the isolation film is within a range composed of any two values mentioned above. When the thickness of the isolation film is within the above range, insulation and mechanical strength can be ensured, and the rate characteristics and energy density of the electrochemical device can be ensured.
  • the porosity of the separator is arbitrary. In some embodiments, the porosity of the isolation membrane is greater than 20%, greater than 35%, or greater than 45%. In some embodiments, the porosity of the isolation membrane is less than 90%, less than 85%, or less than 75%. In some embodiments, the porosity of the isolation membrane is within a range composed of any two values mentioned above. When the porosity of the isolation membrane is within the above range, insulation and mechanical strength can be ensured, and membrane resistance can be suppressed, so that the electrochemical device has good rate characteristics.
  • the average pore diameter of the separation membrane is also arbitrary. In some embodiments, the average pore diameter of the isolation membrane is less than 0.5 ⁇ m or less than 0.2 ⁇ m. In some embodiments, the average pore diameter of the isolation membrane is greater than 0.05 ⁇ m. In some embodiments, the average pore size of the isolation membrane is within a range composed of any two of the foregoing values. If the average pore diameter of the isolation membrane exceeds the above-mentioned range, a short circuit is likely to occur. When the average pore diameter of the isolation membrane is within the above range, the membrane resistance can be suppressed while preventing short circuits, so that the electrochemical device has good rate characteristics.
  • the electrochemical device assembly includes an electrode group, a current collecting structure, an outer casing and a protection element.
  • the electrode group may have a layered structure in which the positive electrode and the negative electrode are laminated with the separator film interposed therebetween, and a structure in which the positive electrode and the negative electrode are wound in a spiral shape with the separator film interposed therebetween.
  • the proportion of the mass of the electrode group in the internal volume of the battery is greater than 40% or greater than 50%.
  • the electrode group occupancy rate is less than 90% or less than 80%.
  • the occupancy rate of the electrode group is within a range composed of any two of the foregoing values.
  • the capacity of the electrochemical device can be ensured, and at the same time, the reduction in characteristics such as repeated charge and discharge performance and high-temperature storage associated with the increase in internal pressure can be suppressed, and the operation of the gas release valve can be prevented.
  • the current collection structure is not particularly limited. In some embodiments, the current collection structure is a structure that reduces the resistance of the wiring part and the junction part.
  • the electrode group has the above-mentioned layered structure, it is suitable to use a structure in which the metal core portions of each electrode layer are bundled and welded to the terminal.
  • the electrode area increases, the internal resistance increases, so it is also suitable to provide two or more terminals in the electrode to reduce the resistance.
  • the electrode group has the above-mentioned wound structure, by arranging two or more lead structures on the positive electrode and the negative electrode, and bunching them on the terminals, the internal resistance can be reduced.
  • the material of the outer casing is not particularly limited, as long as it is stable to the electrolyte used.
  • the outer casing can be used, but is not limited to nickel-plated steel, stainless steel, aluminum or aluminum alloy, magnesium alloy and other metals, or a laminated film of resin and aluminum foil.
  • the outer casing is a metal or laminated film of aluminum or aluminum alloy.
  • Metallic outer casings include, but are not limited to, a packaged hermetic structure formed by welding metals together by laser welding, resistance welding, or ultrasonic welding; or a riveted structure formed by using the above-mentioned metals via a resin gasket.
  • the exterior case using the above-mentioned laminated film includes, but is not limited to, a sealing structure formed by thermally bonding resin layers to each other, and the like. In order to improve the sealability, a resin different from the resin used in the laminated film may be sandwiched between the above-mentioned resin layers.
  • the shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminated type, a button type, and a large size, for example.
  • the protection element can be used as a positive temperature coefficient (PTC), temperature fuse, thermistor, which increases resistance when abnormal heat is released or excessive current flows, and it is cut off by a sharp rise in the internal pressure or internal temperature of the battery when abnormal heat is released. Valves (current cutoff valves) for the current flowing in the circuit, etc.
  • the above-mentioned protection element can be selected as an element that does not work in the normal use of high current, and can also be designed in a form that does not cause abnormal heat release or thermal runaway even if there is no protection element.
  • the electrochemical device of the present application includes any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the application also provides an electronic device, which includes the electrochemical device according to the application.
  • the use of the electrochemical device of the present application is not particularly limited, and it can be used in any electronic device known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, and headsets.
  • Stereo headsets video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notebooks, calculators, memory cards, portable recorders, radios, backup power supplies, motors, automobiles, motorcycles, power assistance Bicycles, bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household storage batteries, lithium-ion capacitors, etc.
  • lithium ion battery is taken as an example and the preparation of a lithium ion battery is described in conjunction with specific examples. Those skilled in the art will understand that the preparation methods described in this application are only examples, and any other suitable preparation methods are described in this application. Within range.
  • the artificial graphite, styrene butadiene rubber and sodium carboxymethyl cellulose are mixed with deionized water in a mass ratio of 96%: 2%: 2%, and stirred uniformly to obtain a negative electrode slurry.
  • This negative electrode slurry was coated on a 12 ⁇ m copper foil. After drying, cold pressing, cutting pieces and welding tabs, a negative electrode is obtained.
  • the positive electrode active material conductive material (Super-P) and polyvinylidene fluoride (PVDF) with N-methylpyrrolidone (NMP) in a mass ratio of 95%:2%:3%, then add additives, and stir well , Get the positive electrode slurry.
  • the positive electrode slurry was coated on a 12 ⁇ m aluminum foil, dried, cold pressed, and then cut into pieces and welded tabs to obtain a positive electrode.
  • the positive electrode active materials used in the examples or comparative examples were obtained commercially, as shown in the following table:
  • auxiliary agents used in the examples or comparative examples are shown in the following table:
  • Polyethylene (PE) porous polymer film is used as the isolation membrane.
  • the obtained positive electrode, separator film and negative electrode are wound in order and placed in an outer packaging foil, leaving a liquid injection port.
  • the electrolyte is poured from the injection port, encapsulated, and then undergoes processes such as formation and capacity to prepare a lithium-ion battery.
  • the positive electrode was punched into a disc shape with a diameter of 14 ⁇ 0.2 mm and used as a test piece.
  • the thickness (t0) of the center portion of the test piece is measured.
  • the test piece was immersed horizontally in diethyl carbonate, and allowed to stand at a temperature of 85 ⁇ 1°C for 120 ⁇ 0.3 hours. After the immersion, the test piece was taken out and left to stand horizontally at room temperature for 30 minutes, and then the thickness of the center portion of the test piece (t1) was measured.
  • the thickness change rate of the positive electrode mixture layer is calculated by the following formula:
  • Thickness change rate (t1-t0)/t0 ⁇ 100%.
  • the specific surface area (m 2 /mg) of the positive electrode mixture layer was measured by the nitrogen adsorption BET single-point method using the gas flow method.
  • the reaction area (Y) of the positive electrode mixture layer is calculated by the following formula:
  • Y specific surface area of the positive electrode mixture layer ⁇ weight of the positive electrode mixture layer.
  • the lithium-ion battery was charged to 4.45V at a constant current of 0.5C, and allowed to stand for 20 hours at a cut-off current of 0.05C, and then discharged to 3.0V at a constant current of 0.5C. This was the first cycle.
  • the lithium ion battery was cycled 200 times under the above conditions. "1C” refers to the current value at which the capacity of the lithium ion battery is completely discharged within 1 hour. Calculate the intermittent cycle capacity retention rate of lithium-ion batteries by the following formula:
  • Intermittent cycle capacity retention ratio (discharge capacity after 200 cycles/discharge capacity at the first cycle) ⁇ 100%.
  • the lithium-ion battery was charged to 4.45V at a constant current of 0.5C, and then charged to 0.05C at a constant voltage at 4.45V. Then the lithium-ion battery was placed in an oven at 50° C., charged with a constant voltage of 4.45V (cut-off current is 20 mA), and the thickness of the lithium-ion battery was monitored. Taking the thickness of the lithium-ion battery at the initial 50% state of charge (SOC) as a reference, when the thickness of the lithium-ion battery increases by more than 20%, it is recorded as failure. Record the time from floating charge to failure of lithium-ion battery at 50°C.
  • SOC state of charge
  • Table 1 shows the influence of the thickness change rate of the positive electrode mixture layer in each example and comparative example on the performance of the lithium ion battery.
  • the positive electrode active material is material 1
  • the content of lithium difluorophosphate is 0.2 wt%.
  • the additives and their content can affect the thickness change rate of the positive electrode mixture layer.
  • the positive electrode mixture layer has a thickness change rate of less than 10% after being immersed in diethyl carbonate at 85°C for 120 hours
  • the intermittent cycle capacity retention rate (at least 20%) and the floating aging time of the lithium ion battery can be significantly improved ( Extend 5-10 times), that is, significantly improve the intermittent cycle performance and floating charge performance of lithium-ion batteries.
  • controlling the content of the auxiliary agent not more than 3000 ppm can further improve the intermittent cycle performance and floating charge of the lithium ion battery performance.
  • Table 2 shows the influence of the content of lithium difluorophosphate in the electrolyte on the performance of lithium-ion batteries. The difference between Comparative Examples 6-7 and Examples 8-12 and Example 3 is only the content listed in Table 2.
  • Table 3 shows the influence of the positive electrode active material on the performance of the lithium ion battery. Examples 13-17 are different from Example 3 only in the positive electrode active materials listed in Table 3.
  • the results show that when the positive electrode active material includes two lithium-containing transition metal oxides with different median particle diameters, the intermittent cycle performance and floating charge performance of the lithium ion battery can be further improved.
  • the lithium-containing transition metal oxide contains Mg and at least one metal element selected from Ti, Zr, Ge, Nb, Al, and Sn, the intermittent cycle performance and floating charge performance of the lithium ion battery are particularly improved.
  • Table 4 shows the influence of the relationship between the weight of lithium difluorophosphate and the reaction area of the positive electrode mixture layer on the performance of the lithium ion battery.
  • the difference between Examples 18-21 and Example 3 is only the parameters listed in Table 4.
  • Table 5 shows the effect of additives in the electrolyte on the performance of lithium-ion batteries. The difference between Examples 22-29 and Example 3 is only the parameters listed in Table 5.
  • the electrolyte further contains a dinitrile compound, a trinitrile compound, sultone and/or fluorocarbonate, it helps to further improve the intermittent cycle performance and floating charge performance of the lithium ion battery.
  • Table 6 shows the influence of the solvent in the electrolyte on the performance of the lithium-ion battery.
  • the difference between Examples 30-32 and Example 3 is that the electrolyte solvents listed in Table 6 are different.
  • the difference between Comparative Examples 8-10 and Comparative Example 1 is that the electrolyte solvents listed in Table 6 are different.
  • references to “embodiments”, “parts of embodiments”, “one embodiment”, “another example”, “examples”, “specific examples” or “partial examples” throughout the specification mean that At least one embodiment or example in this application includes the specific feature, structure, material, or characteristic described in the embodiment or example. Therefore, descriptions appearing in various places throughout the specification, such as: “in some embodiments”, “in embodiments”, “in one embodiment”, “in another example”, “in an example “In”, “in a specific example” or “exemplified”, which are not necessarily quoting the same embodiment or example in this application.
  • the specific features, structures, materials, or characteristics herein can be combined in one or more embodiments or examples in any suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本申请涉及一种电化学装置和电子装置。具体而言,本申请提供一种电化学装置,其包括:正极、负极和电解液,所述正极包括正极集流体和形成在所述正极集流体上的正极合剂层,其中所述电解液包含一定量的二氟磷酸锂并且所述正极合剂层具有较小的厚度变化率。本申请的电化学装置具有改进的间歇循环性能和浮充性能。

Description

电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种电化学装置和电子装置,特别是锂离子电池。
背景技术
随着技术的发展和对移动装置需求的增加,人们对电化学装置(例如,锂离子电池)的需求显著增加,由此对锂离子电池的性能提出了更高的要求,尤其是锂离子电池的间歇循环性能和浮充性能。
锂离子电池的性能主要取决于电极、电解液和隔离膜的特性。此外,锂离子电池在循环过程中会产生充电/放电容量降低的现象,导致这一问题的原因之一在于界面稳定性变差。为了改善界面稳定性,研发者倾向于开发新的电池化学体系或在现有电池技术上引入其他物质。然而,在锂离子电池的制备过程中通常会遇到原料匹配性不佳导致的配料困难等问题,其会对锂离子电池的性能带来不利影响。
有鉴于此,确有必要提供一种具有改进的性能的电化学装置和电子装置。
发明内容
本申请实施例通过提供一种电化学装置和电子装置以在至少某种程度上解决至少一种存在于相关领域中的问题。
在本申请的一方面,本申请提供了一种电化学装置,其包括:正极、负极和电解液,所述正极包括正极集流体和形成在所述正极集流体上的正极合剂层,其中所述电解液包含二氟磷酸锂,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.001wt%至2wt%;所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于10%的厚度变化率。
根据本申请的实施例,所述电解液包括碳酸酯,所述碳酸酯包括环状碳酸酯和链状碳酸酯。
根据本申请的实施例,所述电解液包括碳酸酯和羧酸酯,所述碳酸酯包括环 状碳酸酯或链状碳酸酯中的至少一种。
根据本申请的实施例,所述正极合剂层包括具有亲水基团和亲油基团的助剂。
根据本申请的实施例,所述助剂具有以下特征中的至少一者:
(a)氧化电位不小于4.5V,且还原电位不大于0.5V;
(b)表面张力不大于40mN/m;
(c)包括不饱和羧酸基团;
(d)基于所述正极合剂层的总重量,所述助剂的含量为不大于3000ppm。
根据本申请的实施例,所述助剂包括2-丙烯酸十二烷基酯、聚乙二醇单甲醚丙烯酸酯、聚乙二醇二甲基丙烯酸酯、丙烯酸(2-乙基己基)酯、丙烯酸酯非离子氟碳表面活性剂、甲基丙烯酸十二烷基酯、丙烯酸酯共聚物、马来酸丙烯酸共聚物或乙烯丙烯酸共聚物中的至少一种。
根据本申请的实施例,所述二氟磷酸锂在所述电解液中的含量X mg与所述正极合剂层的反应面积Y m 2满足如下关系:10≤X/Y≤100。
根据本申请的实施例,所述电解液进一步包括二腈化合物、三腈化合物、磺酸内酯、氟代碳酸酯或不饱和碳酸乙烯酯中的至少一种。
根据本申请的实施例,所述正极合剂层包括正极活性材料,所述正极活性材料包括具有不同中值粒径的含锂过渡金属氧化物。
根据本申请的实施例,所述含锂过渡金属氧化物包括通式(1)表示的化合物:
Li aM1 bM2 cM3 dO 2               (1)
其中:
M1选自Co、Ni或Mn中的至少一种;
M2选自Mg、Ti、Zr、Ge、Nb、Al或Sn中的至少一种;
M3是除Li、M1和M2以外的元素;
0.5≤a<1.1;
0.8≤b<1.2;
0.002≤c≤0.05;以及
0≤d≤0.05。
根据本申请的实施例,所述含锂过渡金属氧化物包括Mg和选自Ti、Zr、Ge、Nb、Al和Sn中的至少一种金属元素。
在本申请的另一方面,本申请提供一种电子装置,其包括根据本申请的电化学装置。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
除非另外明确指明,本文使用的下述术语具有下文指出的含义。
在具体实施方式及权利要求书中,由术语“中的至少一者”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。术语“中的至少一种”具有与术语“中的至少一者”相同的含义。
电化学装置(例如,锂离子电池)的电极(正极或负极)通常通过以下方法制备:将活性材料、导电剂、增稠剂、粘结剂和溶剂混合,然后将混合后的浆料涂布于集流体上。然而,溶剂与粘结剂或者溶剂与活性材料之间的匹配性通常不佳,使得配料困难。此外,电化学装置的理论容量可随着活性材料的种类而变化。随着循环的进行,电化学装置通常会产生充电/放电容量降低的现象。这是因为电化学装置在充电和/或放电过程中电极界面会发生变化。所述界面包括电极与电解液之间的界面、集流体与电极之间的界面和电极活性材料与添加剂之间的界面等。界面稳定性降低会导致电极活性材料不能发挥其功能。
本申请通过使用特定的正极合剂层和电解液保证了电化学装置在循环过程中的界面稳定性,从而提高了电化学装置的间歇循环性能和浮充性能。
本申请提供了一种电化学装置,其包括如下所述的正极、负极和电解液。
I、正极
正极包括正极集流体和设置在所述正极集流体的一个或两个表面上的正极合剂层。正极合剂层包含正极活性材料层,所述正极活性材料层包含正极活性材 料。正极合剂层可以是一层或多层,多层正极活性材料中的每层可以包含相同或不同的正极活性材料。
正极合剂层的厚度变化率
本申请的电化学装置的一个主要特征在于所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于10%的厚度变化率。在一些实施例中,所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于8%的厚度变化率。在一些实施例中,所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于6%的厚度变化率。在一些实施例中,所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于5%的厚度变化率。在一些实施例中,所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于4%的厚度变化率。
正极合剂层的“厚度变化率”指的是将正极合剂层在85℃的碳酸二乙酯中浸渍120小时后相比于浸渍之前的厚度变化程度。
正极合剂层的厚度变化率可通过以下方式测定:将在正极集流体的两侧具有正极合剂层的正极冲切成直径为14±0.2mm的圆盘状,将其作为试片。测定试片的圆心部分的厚度(t0)。将该试片水平浸渍在碳酸二乙酯中,在85±1℃的温度下静置120±0.3小时。浸渍结束后,取出试片,在室温下水平静置30分钟后,测定该试片的圆心部分厚度(t1)。通过下式计算正极合剂层的厚度变化率:
厚度变化率=(t1-t0)/t0×100%。
正极合剂层的厚度变化率可通过在正极浆料中添加助剂或在正极活性材料层表面设置助剂涂层来控制。正极活性材料的种类和正极活性材料颗粒的大小等对正极合剂层的厚度变化率影响不大。当正极合剂层的厚度变化率在上述范围内时,可显著改善电化学装置的间歇循环性能和浮充性能。
助剂
根据本申请的一些实施例,所述正极合剂层包括助剂。
在一些实施例中,所述助剂具有亲水基团和亲油基团。
在一些实施例中,所述助剂的氧化电位不小于4.5V,且还原电位不大于0.5V。在一些实施例中,所述助剂的氧化电位不小于5V,且还原电位不大于0.3V。具有上述氧化/还原电位的助剂电化学性能稳定,有助于改善电化学装置的间歇循环性能和浮充性能。
在一些实施例中,所述助剂的表面张力为不大于40mN/m。在一些实施例中, 所述助剂的表面张力为不大于30mN/m。在一些实施例中,所述助剂的表面张力为不大于25mN/m。在一些实施例中,所述助剂的表面张力为不大于20mN/m。在一些实施例中,所述助剂的表面张力为不大于15mN/m。在一些实施例中,所述助剂的表面张力为不大于10mN/m。助剂的表面张力是在固含量为1%的助剂NMP溶液条件下测定的。具有如上所述的表面张力的助剂可使正极合剂层具有良好的界面,有助于改善电化学装置的间歇循环性能和浮充性能。
助剂的表面张力可通过如下方法测定:使用JC2000D3E型接触角测量仪对固含量为1%的助剂NMP溶液进行测试,每个样品至少测试3次,选取至少3个数据,取平均值,得到助剂的表面张力。
在一些实施例中,所述助剂包括不饱和羧酸基团。在一些实施例中,所述不饱和羧酸基团包括乙烯酸酯、氯乙烯酸酯、丙烯酸酯、乙烯基醚丙烯酸酯、丁烯酸酯、丙炔酸酯、丁炔酸酯或含有丙烯酰胺、丙烯腈、乙烯基醚基团修饰的羧酸酯中的至少一种。
在一些实施例中,所述助剂包括以下中的至少一种:2-丙烯酸十二烷基酯、聚乙二醇单甲醚丙烯酸酯、聚乙二醇二甲基丙烯酸酯、丙烯酸(2-乙基己基)酯、丙烯酸酯非离子氟碳表面活性剂、甲基丙烯酸十二烷基酯、甲基丙烯酸十二烷基酯、马来酸丙烯酸共聚物或乙烯丙烯酸共聚物。
在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于3000ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于2500ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于2000ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于1500ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于1000ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于500ppm。在一些实施例中,基于所述正极合剂层的总重量,所述助剂的含量为不大于200ppm。当助剂的含量在上述范围内时,有助于改善电化学装置的间歇循环性能和浮充性能。
正极活性材料
正极活性材料的种类没有特别限制,只要是能够以电化学方式吸藏和释放金属离子(例如,锂离子)即可。在一些实施例中,正极活性材料为含有锂和至少一种过渡金属的物质。正极活性材料的实例可包括,但不限于,锂过渡金属复合 氧化物和含锂过渡金属磷酸化合物。
在一些实施例中,所述正极活性材料包括具有不同中值粒径的含锂过渡金属氧化物。在一些实施例中,具有不同中值粒径的含锂过渡金属氧化物具有相同或不同的化学组成。
在一些实施例中,所述含锂过渡金属氧化物包括通式(1)表示的化合物,
Li aM1 bM2 cM3 dO 2               (1)
其中:
M1选自Co、Ni或Mn中的至少一种;
M2选自Mg、Ti、Zr、Ge、Nb、Al或Sn中的至少一种;
M3是除Li、M1和M2以外的元素;
0.5≤a<1.1;
0.8≤b<1.2;
0.002≤c≤0.05;以及
0≤d≤0.05。
在一些实施例中,M1包括Co或Ni中的至少一种。当M1包括Co或Ni中的至少一种时,所述含锂过渡金属氧化物中Co或Ni中的至少一种的含量为不小于50摩尔%;在一些实施例中为不小于60摩尔%;在一些实施例中为不小于70摩尔%;在一些实施例中为不小于80摩尔%;或者在一些实施例中为不小于90摩尔%。
在一些实施例中,M1包括Co。在一些实施例中,M1为Co。当M1包括Co时,所述含锂过渡金属氧化物中Co的含量为不小于30摩尔%;在一些实施例中为不小于50摩尔%;在一些实施例中为不小于65摩尔%;在一些实施例中为不小于80摩尔%;在一些实施例中为不小于90摩尔%;或者在一些实施例中为不小于95摩尔%。当含锂过渡金属氧化物包含Co时,有助于提高正极合剂层的密度。当含锂过渡金属氧化物中Co的含量在上述范围内时,可进一步改善正极合剂层的密度。
在一些实施例中,M2包括Mg。在一些实施例中,相对于M1的含量,Mg的含量为不小于0.01摩尔%。在一些实施例中,相对于M1的含量,Mg的含量为不小于0.05摩尔%。在一些实施例中,相对于M1的含量,Mg的含量为不小于0.07摩尔%。在一些实施例中,相对于M1的含量,Mg的含量为不大于0.5 摩尔%。在一些实施例中,相对于M1的含量,Mg的含量为不大于0.2摩尔%。在一些实施例中,相对于M1的含量,Mg的含量为不大于0.1摩尔%。在一些实施例中,相对于M1的含量,Mg的含量在由上述任意两个端点所组成的范围内。当含锂过渡金属氧化物中Mg的含量在上述范围内时,Mg元素可有效地发挥作用,改善电化学装置的间歇循环性能和浮充性能。
在一些实施例中,M2进一步包括Ti、Zr、Ge、Nb、Al和Sn中的至少一种。
在一些实施例中,M2进一步包括Ti、Zr、Ge或Nb中的至少一种。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不小于0.005摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不小于0.008摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不小于0.01摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不大于0.3摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不大于0.1摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量为不大于0.05摩尔%。在一些实施例中,相对于M1的含量,Ti、Zr、Ge或Nb中的至少一种的含量在由上述任意两个端点所组成的范围内。当含锂过渡金属氧化物中Ti、Zr、Ge或Nb中的至少一种的含量在上述范围内时,有助于进一步改善电化学装置的间歇循环性能和浮充性能。
在一些实施例中,M2进一步包括Al或Sn中的至少一种。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不小于0.01摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不小于0.05摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不小于0.07摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不大于0.5摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不大于0.2摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量为不大于0.1摩尔%。在一些实施例中,相对于M1的含量,Al或Sn中的至少一种的含量在由上述任意两个端点所组成的范围内。当含锂过渡金属氧化物中Al或Sn中的至少一种的含量在上述范围内时,有助于进一步改善电化学装置的间歇循环性能和浮充性能。
在一些实施例中,0.004≤c≤0.02。在一些实施例中,0.006≤c≤0.01。当c 在上述范围内时,可进一步改善锂离子电池的间歇循环性能和浮充性能。
含锂过渡金属氧化物可以多种方式包含M2,其没有特别限制。在一些实施例中,M2存在于含锂过渡金属氧化物粒子上。在一些实施例中,M2均匀地固体分散在含锂过渡金属氧化物内。在一些实施例中,M2含锂过渡金属氧化物内具有浓度分布地偏聚。在一些实施例中,M2在含锂过渡金属氧化物表面上形成化合物层。
在一些实施例中,M3包括以下元素中的至少一种:除Li以外的碱金属元素、除Mg以外的碱土金属元素、IIIa族金属元素、除Ti和Zr以外的IVb族金属元素、除Nb以外的Vb族金属元素、VIb族金属元素、除Mn以外的VIIb族金属元素、除Co和Ni以外的VIII族金属元素、Ib族金属元素、Zn、除Al以外的IIIa族金属元素、除Sn和Pb以外的IVa族金属元素、P或Bi。
在一些实施例中,M3包括以下元素中的至少一种:Na、K、Rb、Be、Ca、Sr、Ba、Sc、Y、La、Hf、V、Ta、Cr、Mo、W、Tc、Re、Fe、Ru、Rh、Cu、Ag、Au、Zn、B、Ca、In、Si、P或Bi。
在一些实施例中,所述含锂过渡金属氧化物不含M3(即,d=0)。
在一些实施例中,所述含锂过渡金属氧化物包括LiNi 0.81Co 0.16Al 0.03O 2、LiNi 0.81Co 0.16Mg 0.03O 2、LiNi 0.81Co 0.16Si 0.03O 2、LiNi 0.81Co 0.16Ti 0.03O 2、LiCo 0.96Ti 0.04O 2、LiCo 0.998Mg 0.0008Ti 0.0004Al 0.0008O 2、LiCo 0.994Mg 0.0024Ti 0.0012Al 0.0024O 2、LiCo 0.9988Mg 0.0008Ti 0.0004O 2、LiCo 0.9964Mg 0.0024Ti 0.0012O 2或LiCo 0.334Ni 0.33Mn 0.33Mg 0.0024Ti 0.0012Al 0.0024O 2中的至少一种。
含锂过渡金属氧化物中的各元素含量可通过感应耦合等离子体(ICP)分析得到。具体地,精确秤量约5g含锂过渡金属氧化物,加入至200ml的烧杯中,然后加入100ml王水,加热浓缩到液量为20-25ml,冷却,用Advantec公司制造的定量滤纸“No.5B”分离固形物,将滤液和洗液加入100ml量瓶中定容稀释后,使用日本Nippon Jarrell-Ash有限公司制造的顺序型ICP型分析装置“IPIS1000”来测定元素含量。
在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于99wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于97.5wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于97wt%。在一些实施例中,基 于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于98wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于95wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不小于85wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于90wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量为不大于92wt%。在一些实施例中,基于正极合剂层的总重量,所述含锂过渡金属氧化物的含量在上述任意两个端点所组成的范围内。当正极合剂层中含锂过渡金属氧化物的含量在上述范围内时,正极合剂层具有高容量和低电阻,并有助于正极的形成。
在一些实施例中,所述含锂过渡金属氧化物包含第一颗粒和第二颗粒,所述第一颗粒具有第一中值粒径,所述第二颗粒具有第二中值粒径,所述第一中值粒径小于所述第二中值粒径。中值粒径D50可以利用公知的激光衍射/散射式粒度分析测定装置来测定。
一些实施例中,所述第一中值粒径为0.5μm至10μm。在一些实施例中,所述第一中值粒径为1μm至8μm。在一些实施例中,所述第一中值粒径为2μm至6μm。在一些实施例中,所述第二中值粒径为11μm至30μm。在一些实施例中,所述第二中值粒径为12μm至25μm。在一些实施例中,所述第二中值粒径为13μm至20μm。
含锂过渡金属氧化物的中值粒径可通过以下方法调节:向过渡金属元素M1的酸性水溶液中滴加NaOH,沉淀得到M1的氢氧化物。将M1的氢氧化物烧制得到M1的氧化物。通过控制沉淀时间、沉淀粒径和烧制的M1的氧化物的粒径可控制含锂过渡金属氧化物的中值粒径。
在一些实施例中,正极活性材料的放电容量小于负极活性材料的可充电容量,其可防止锂离子电池在充电期间锂金属无意地析出在负极上。
正极合剂层的密度
在一些实施例中,所述正极合剂层的密度为不小于3.5g/cm 3。在一些实施例中,所述正极合剂层的密度为不小于3.6g/cm 3。在一些实施例中,所述正极合剂层的密度为不小于3.8g/cm 3。在一些实施例中,所述正极合剂层的密度为不大于4.6g/cm 3。在一些实施例中,所述正极合剂层的密度为不大于4.4g/cm 3。在一些实施例中,所述正极合剂层的密度为不大于4.2g/cm 3。在一些实施例中,所述正 极合剂层的密度在由上述任意两个端点所组成的范围内。当正极合剂层的密度在上述范围内时,正极合剂层具有良好的可润湿性,有助于改善电化学装置的性能。
正极合剂层的密度可通过以下方法测定:以一定面积切取正极,使用最小刻度为1mg的电子天平测定其重量W1,用最小刻度为1μm的千分尺测定正极的厚度T1。剥离正极集流体,使用电子天平测定其重量W2,并用千分尺测定正极集流体的厚度T2。W1-W2记为正极合剂层的重量,T1-T2记为正极合剂层的厚度。根据正极合剂层的厚度和面积计算正极合计层的体积,然后根据正极合剂层的重量和体积计算正极合剂层的密度。
正极合剂层的厚度
在一些实施例中,所述正极合剂层的厚度为30μm至300μm。在一些实施例中,所述正极合剂层的厚度为50μm至280μm。在一些实施例中,所述正极合剂层的厚度为80μm至250μm。在一些实施例中,所述正极合剂层的厚度为100μm至200μm。在一些实施例中,所述正极合剂层的厚度为30μm、50μm、80μm、100μm、120μm、150μm、180μm、200μm或在由上述任意两个数值所组成的范围内。
正极合剂层的厚度可通过以下方法测定:切取正极,使用最小刻度为1μm的千分尺测定正极的厚度T1。剥离正极集流体,用千分尺测定正极集流体的厚度T2。T1-T2记为正极合剂层的厚度。
导电层
在一些实施例中,正极合剂层可进一步包括导电层,所述导电层包括导电剂。在一些实施例中,所述导电层不含正极活性材料。导电剂的实例包括,但不限于,石墨、碳黑或乙炔黑。
在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不小于1wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不小于1.1wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不小于1.2wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不大于3wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不大于2wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量为不大于1.5wt%。在一些实施例中,基于正极合剂层的总重量,所述导电剂的含量在由上述任意两个数值所组成的范围内。当正极合剂层中导电剂的含量 在上述范围内时,有助于改善正极合剂层的密度和容量,从而提升电化学装置的循环性能并降低其负荷特性。
粘合剂
在一些实施例中,所述正极合剂层包括粘合剂。粘合剂的实例包括,但不限于,聚偏氟乙烯或聚四氟乙烯。
在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不小于1wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不小于1.3wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不小于1.5wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不大于4wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不大于3wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量为不大于2wt%。在一些实施例中,基于正极合剂层的总重量,所述粘合剂的含量在由上述任意两个数值所组成的范围内。当正极合剂层中粘合剂的含量在上述范围内时,正极合剂层与正极集流体具有良好的粘合性,避免了正极粉化脱落的可能性,由此有助于改善正极的稳定性。
正极集流体
正极集流体的种类没有特别限制,其可为任何已知适于用作正极集流体的材质。正极集流体的实例可包括,但不限于,铝、铝合金、镀镍铝、不锈钢、钛或钽中的至少一种;碳布、碳纸等碳材料。在一些实施例中,正极集流体为金属材料。在一些实施例中,正极集流体为铝。
正极集流体的形式没有特别限制。当正极集流体为金属材料时,正极集流体的形式可包括,但不限于,金属箔、金属圆柱、金属带卷、金属板、金属薄膜、金属板网、冲压金属、发泡金属等。当正极集流体为碳材料时,正极集流体的形式可包括,但不限于,碳板、碳薄膜、碳圆柱等。在一些实施例中,正极集流体为金属薄膜。在一些实施例中,所述金属薄膜为网状。
在一些实施例中,所述正极集流体的厚度为8μm至20μm。在一些实施例中,所述正极集流体的厚度为10μm至18μm。在一些实施例中,所述正极集流体的厚度为12μm至15μm。在一些实施例中,所述正极集流体的厚度在由上述任意两个数值所组成的范围内。
为了降低正极集流体和正极活性材料层的电子接触电阻,正极集流体的表面 可包括导电剂。导电剂的实例可包括,但不限于,碳和金、铂、银等贵金属类。
本申请的正极的制备方法不受限制。例如,正极可通过以下方法制造:将两种以上具有不同中值粒径的含锂过渡金属氧化物以一定重量比混合,根据需要添加导电剂和粘合剂,加入溶剂,得到正极合剂浆料。在正极集流体(例如,铝箔)上涂布得到的正极合剂浆料,干燥,形成正极合剂层。将正极合剂层施加至正极集流体的一个或两个表面,根据需要进行压延步骤,制得正极。
II、电解液
本申请的电化学装置的另一个主要特征在于所述电解液包含二氟磷酸锂,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.001wt%至2wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.01wt%至1wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.05wt%至0.5wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.1wt%至0.3wt%。在一些实施例中,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.001wt%、0.005wt%、0.01wt%、0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.8wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%或在由上述任意两个数值所组成的范围内。当电解液中二氟磷酸锂的含量在上述范围内时,有助于进一步改善锂离子电池的间歇循环性能和浮充性能。
在一些实施例中,所述二氟磷酸锂在所述电解液中的含量X mg与所述正极合剂层的反应面积Y m 2满足如下关系:10≤X/Y≤100。在一些实施例中,X和Y满足如下关系:20≤X/Y≤70。在一些实施例中,X和Y满足如下关系:30≤X/Y≤50。当X和Y符合上述关系时,有助于进一步改善锂离子电池的间歇循环性能和浮充性能。
正极合剂层的反应面积可通过以下方法测定:使用表面积计(大仓理研制造的全自动表面积测定装置),在氮气流通下于350℃对试样进行15分钟预干燥,然后使用氮气相对于大气压的相对压力值准确调节为0.3的氮氦混合气体,通过采用气体流动法的氮吸附BET单点法进行测定。依此方法测试正极合剂层的比表面积(m 2/g),正极合剂层的比表面积是指含有正极活性材料和添加剂(粘结剂、导电剂、增稠剂和填料等)的正极合剂层全体的比表面积。测量正极合剂层的重量,即含有正极活性材料和添加剂(粘结剂、导电剂、增稠剂和填料等)的正极合剂层全体的总重量。通过下式计算正极合剂层的反应面积:
反应面积=正极合剂层的比表面积×正极合剂层的重量。
在一些实施例中,所述电解液包括碳酸酯。在一些实施例中,所述电解液包括碳酸酯和羧酸酯。在一些实施例中,所述碳酸酯包括环状碳酸酯或链状碳酸酯中的至少一种。碳酸酯或其与羧酸酯的组合有助于在电极表面形成钝化膜,从而可提高电化学装置的间歇循环性能和浮充性能。
在一些实施例中,基于所述电解液的总重量,所述碳酸酯的含量为10wt%至90wt%。在一些实施例中,基于所述电解液的总重量,所述碳酸酯的含量为15wt%至85wt%。在一些实施例中,基于所述电解液的总重量,所述碳酸酯的含量为20wt%至75wt%。在一些实施例中,基于所述电解液的总重量,所述碳酸酯的含量为25wt%至65wt%。在一些实施例中,基于所述电解液的总重量,所述碳酸酯的含量为10wt%、15wt%、20wt%、25wt%、30wt%、35wt%、40wt%、45wt%、50wt%、60wt%、70wt%、80wt%、90wt%或在由上述任意两个数值所组成的范围内。当电解液中碳酸酯的含量在上述范围内时,有助于进一步改善电化学装置的间歇循环性能和浮充性能。
在一些实施例中,所述环状碳酸酯的实例可包括,但不限于,以下中的一种或多种:碳酸亚乙酯(EC)、碳酸亚丙酯(PC)和碳酸亚丁酯。在一些实施例中,所述环状碳酸酯具有3-6个碳原子。
在一些实施例中,所述链状碳酸酯的实例可包括,但不限于,以下中的一种或多种:碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯(DEC)、碳酸甲基正丙基酯、碳酸乙基正丙基酯、碳酸二正丙酯等链状碳酸酯等。被氟取代的链状碳酸酯的实例可包括,但不限于,以下中的一种或多种:双(氟甲基)碳酸酯、双(二氟甲基)碳酸酯、双(三氟甲基)碳酸酯、双(2-氟乙基)碳酸酯、双(2,2-二氟乙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、2-氟乙基甲基碳酸酯、2,2-二氟乙基甲基碳酸酯和2,2,2-三氟乙基甲基碳酸酯等。
在一些实施例中,所述羧酸酯包括链状羧酸酯或环状羧酸酯中的至少一种。
在一些实施例中,所述环状羧酸酯的实例可包括,但不限于,以下中的一种或多种:γ-丁内酯和γ-戊内酯中的一种或多种。在一些实施例中,环状羧酸酯的部分氢原子可被氟取代。
在一些实施例中,所述链状羧酸酯的实例可包括,但不限于,以下中的一种或多种:乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸仲丁酯、 乙酸异丁酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸异丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、异丁酸甲酯、异丁酸乙酯、戊酸甲酯、戊酸乙酯、特戊酸甲酯和特戊酸乙酯等。在一些实施例中,链状羧酸酯的部分氢原子可被氟取代。在一些实施例中,氟取代的链状羧酸酯的实例可包括,但不限于,三氟乙酸甲酯、三氟乙酸乙酯、三氟乙酸丙酯、三氟乙酸丁酯和三氟乙酸2,2,2-三氟乙酯等。
在一些实施例中,所述电解液进一步包括二腈化合物、三腈化合物、磺酸内酯、氟代碳酸酯或不饱和碳酸乙烯酯中的至少一种。
在一些实施例中,所述二腈化合物的实例可包括,但不限于,以下的一种或多种:丁二腈、戊二腈、己二腈、1,5-二氰基戊烷、1,6-二氰基己烷、四甲基丁二腈、2-甲基戊二腈、2,4-二甲基戊二腈、2,2,4,4-四甲基戊二腈、1,4-二氰基戊烷、1,4-二氰基戊烷、1,2-二氰基苯、1,3-二氰基苯、1,4-二氰基苯、乙二醇双(丙腈)醚、3,5-二氧杂-庚二腈、1,4-二(氰基乙氧基)丁烷、二乙二醇二(2-氰基乙基)醚、三乙二醇二(2-氰基乙基)醚、四乙二醇二(2-氰基乙基)醚、1,3-二(2-氰基乙氧基)丙烷、1,4-二(2-氰基乙氧基)丁烷、1,5-二(2-氰基乙氧基)戊烷、乙二醇二(4-氰基丁基)醚、1,4-二氰基-2-丁烯、1,4-二氰基-2-甲基-2-丁烯、1,4-二氰基-2-乙基-2-丁烯、1,4-二氰基-2,3-二甲基-2-丁烯、1,4-二氰基-2,3-二乙基-2-丁烯、1,6-二氰基-3-己烯或1,6-二氰基-2-甲基-3-己烯。
在一些实施例中,所述三腈化合物的实例可包括,但不限于,以下的一种或多种:1,3,5-戊三甲腈、1,2,3-丙三甲腈、1,3,6-己三甲腈、1,2,6-己三甲腈、1,2,3-三(2-氰基乙氧基)丙烷、1,2,4-三(2-氰基乙氧基)丁烷、1,1,1-三(氰基乙氧基亚甲基)乙烷、1,1,1-三(氰基乙氧基亚甲基)丙烷、3-甲基-1,3,5-三(氰基乙氧基)戊烷、1,2,7-三(氰基乙氧基)庚烷、1,2,6-三(氰基乙氧基)己烷和1,2,5-三(氰基乙氧基)戊烷。
在一些实施例中,所述磺酸内酯的实例可包括,但不限于,以下的一种或多种:1,3-丙磺酸内酯、1-氟-1,3-丙磺酸内酯、2-氟-1,3-丙磺酸内酯、3-氟-1,3-丙磺酸内酯、1-甲基-1,3-丙磺酸内酯、2-甲基-1,3-丙磺酸内酯、3-甲基-1,3-丙磺酸内酯、1-丙烯-1,3-磺酸内酯、2-丙烯-1,3-磺酸内酯、1-氟-1-丙烯-1,3-磺酸内酯、2-氟-1-丙烯-1,3-磺酸内酯、3-氟-1-丙烯-1,3-磺酸内酯、1-氟-2-丙烯-1,3-磺酸内酯、2-氟-2-丙烯-1,3-磺酸内酯、3-氟-2-丙烯-1,3-磺酸内酯、1-甲基-1-丙烯-1,3-磺酸内酯、2-甲基-1-丙烯-1,3-磺酸内酯、3-甲基-1-丙烯-1,3-磺酸内酯、1-甲基-2-丙烯-1,3- 磺酸内酯、2-甲基-2-丙烯-1,3-磺酸内酯、3-甲基-2-丙烯-1,3-磺酸内酯、1,4-丁磺酸内酯、1,5-戊磺酸内酯、甲烷二磺酸亚甲酯和甲烷二磺酸亚乙酯等。
在一些实施例中,所述氟代碳酸酯具有式C=O(OR 1)(OR 2),其中R 1和R 2各自选自具有1-6个碳原子的烷基或卤代烷基,其中R 1和R 2中的至少一者选自具有1-6个碳原子的氟代烷基,且R 1和R 2任选地连同其所连接的原子形成5元至7元环。
在一些实施例中,所述氟代碳酸酯的实例可包括,但不限于,以下的一种或多种:氟代碳酸乙烯酯、顺式4,4-二氟碳酸乙烯酯、反式4,4-二氟碳酸乙烯酯、4,5-二氟碳酸乙烯酯、4-氟-4-甲基碳酸乙烯酯、4-氟-5-甲基碳酸乙烯酯、碳酸三氟甲基甲酯、碳酸三氟乙基甲酯和碳酸乙基三氟乙酯等。
在一些实施例中,所述不饱和碳酸乙烯酯的实例可包括,但不限于,以下的一种或多种:碳酸亚乙烯酯、碳酸甲基亚乙烯酯、碳酸乙基亚乙烯酯、碳酸-1,2-二甲基亚乙烯酯、碳酸-1,2-二乙基亚乙烯酯、碳酸氟亚乙烯酯、碳酸三氟甲基亚乙烯酯;碳酸乙烯基亚乙酯、碳酸-1-甲基-2-乙烯基亚乙酯、碳酸-1-乙基-2-乙烯基亚乙酯、碳酸-1-正丙基-2-乙烯基亚乙酯、碳酸1-甲基-2-乙烯基亚乙酯、碳酸-1,1-二乙烯基亚乙酯、碳酸-1,2-二乙烯基亚乙酯、碳酸-1,1-二甲基-2-亚甲基亚乙酯和碳酸-1,1-二乙基-2-亚甲基亚乙酯等。在一些实施例中,所述不饱和碳酸乙烯酯包括碳酸亚乙烯酯,其易于获得并可实现更为优异的效果。
在一些实施例中,所述电解液进一步包括环状醚。在一些实施例中,所述环状醚的实例可包括,但不限于,以下中的一种或多种:四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、2-甲基-1,3-二氧戊环、4-甲基1,3-二氧戊环、1,3-二氧六环、1,4-二氧六环和二甲氧基丙烷。
在一些实施例中,所述电解液进一步包括链状醚。在一些实施例中,所述链状醚的实例可包括,但不限于,以下中的一种或多种:二甲氧基甲烷、1,1-二甲氧基乙烷、1,2-二甲氧基乙烷、二乙氧基甲烷、1,1-二乙氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基甲烷、1,1-乙氧基甲氧基乙烷和1,2-乙氧基甲氧基乙烷等。
在一些实施例中,所述电解液进一步包括含磷有机溶剂。在一些实施例中,所述含磷有机溶剂的实例可包括,但不限于,以下中的一种或多种:磷酸三甲酯、磷酸三乙酯、磷酸二甲基乙酯、磷酸甲基二乙酯、磷酸亚乙基甲酯、磷酸亚乙基乙酯、磷酸三苯酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三苯酯、磷酸三(2,2,2- 三氟乙基)酯和磷酸三(2,2,3,3,3-五氟丙基)酯等。
在一些实施例中,所述电解液进一步包括含硫有机溶剂。在一些实施例中,所述含硫有机溶剂的实例可包括,但不限于,以下中的一种或多种:环丁砜、2-甲基环丁砜、3-甲基环丁砜、二甲基砜、二乙基砜、乙基甲基砜、甲基丙基砜、二甲基亚砜、甲磺酸甲酯、甲磺酸乙酯、乙磺酸甲酯、乙磺酸乙酯、硫酸二甲酯、硫酸二乙酯和硫酸二丁酯。在一些实施例中,含硫有机溶剂的部分氢原子可被氟取代。
在一些实施例中,所述电解液进一步包括含氟溶剂。在一些实施例中,所述芳香族含氟溶剂包括,但不限于,以下中的一种或多种:氟苯、二氟苯、三氟苯、四氟苯、五氟苯、六氟苯和三氟甲基苯。
在一些实施例中,所述电解液包含一种或多种含硫氧双键的化合物。在一些实施例中,所述含硫氧双键的化合物的实例可包括,但不限于,以下的一种或多种:环状硫酸酯、链状硫酸酯、链状磺酸酯、环状磺酸酯、链状亚硫酸酯和环状亚硫酸酯等。
在一些实施例中,所述环状硫酸酯的实例可包括,但不限于,以下的一种或多种:1,2-乙二醇硫酸酯、1,2-丙二醇硫酸酯、1,3-丙二醇硫酸酯、1,2-丁二醇硫酸酯、1,3-丁二醇硫酸酯、1,4-丁二醇硫酸酯、1,2-戊二醇硫酸酯、1,3-戊二醇硫酸酯、1,4-戊二醇硫酸酯和1,5-戊二醇硫酸酯等。
在一些实施例中,所述链状硫酸酯的实例可包括,但不限于,以下的一种或多种:硫酸二甲酯、硫酸甲乙酯和硫酸二乙酯等。
在一些实施例中,所述链状磺酸酯的实例可包括,但不限于,以下的一种或多种:氟磺酸甲酯和氟磺酸乙酯等氟磺酸酯、甲磺酸甲酯、甲磺酸乙酯、二甲磺酸丁酯、2-(甲磺酰氧基)丙酸甲酯和2-(甲磺酰氧基)丙酸乙酯等。
在一些实施例中,所述链状亚硫酸酯的实例可包括,但不限于,以下的一种或多种:亚硫酸二甲酯、亚硫酸甲乙酯和亚硫酸二乙酯等。
在一些实施例中,所述环状亚硫酸酯的实例可包括,但不限于,以下的一种或多种:1,2-乙二醇亚硫酸酯、1,2-丙二醇亚硫酸酯、1,3-丙二醇亚硫酸酯、1,2-丁二醇亚硫酸酯、1,3-丁二醇亚硫酸酯、1,4-丁二醇亚硫酸酯、1,2-戊二醇亚硫酸酯、1,3-戊二醇亚硫酸酯、1,4-戊二醇亚硫酸酯和1,5-戊二醇亚硫酸酯等。
在一些实施例中,所述电解液进一步包含一种或多种酸酐。在一些实施例中, 所述酸酐的实例可包括,但不限于,环状磷酸酐、羧酸酐、二磺酸酐和羧酸磺酸酐中的一种或多种。
在一些实施例中,所述环状磷酸酐的实例可包括,但不限于,三甲基磷酸环酐、三乙基磷酸环酐和三丙基磷酸环酐中的一种或多种。
在一些实施例中,所述羧酸酐的实例可包括,但不限于,琥珀酸酐、戊二酸酐和马来酸酐中的一种或多种。
在一些实施例中,所述二磺酸酐的实例可包括,但不限于,乙烷二磺酸酐和丙烷二磺酸酐中的一种或多种。
在一些实施例中,所述羧酸磺酸酐的实例可包括,但不限于,磺基苯甲酸酐、磺基丙酸酐和磺基丁酸酐中的一种或多种。
电解质没有特别限制,可以任意地使用作为电解质公知的物质。在锂二次电池的情况下,通常使用锂盐。电解质的实例可包括,但不限于,LiPF 6、LiBF 4、LiClO 4、LiAlF 4、LiSbF 6、LiTaF 6、LiWF 7等无机锂盐;LiWOF 5等钨酸锂类;HCO 2Li、CH 3CO 2Li、CH 2FCO 2Li、CHF 2CO 2Li、CF 3CO 2Li、CF 3CH 2CO 2Li、CF 3CF 2CO 2Li、CF 3CF 2CF 2CO 2Li、CF 3CF 2CF 2CF 2CO 2Li等羧酸锂盐类;FSO 3Li、CH 3SO 3Li、CH 2FSO 3Li、CHF 2SO 3Li、CF 3SO 3Li、CF 3CF 2SO 3Li、CF 3CF 2CF 2SO 3Li、CF 3CF 2CF 2CF 2SO 3Li等磺酸锂盐类;LiN(FCO) 2、LiN(FCO)(FSO 2)、LiN(FSO 2) 2、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)等酰亚胺锂盐类;LiC(FSO 2) 3、LiC(CF 3SO 2) 3、LiC(C 2F 5SO 2) 3等甲基化锂盐类;双(丙二酸根合)硼酸锂盐、二氟(丙二酸根合)硼酸锂盐等(丙二酸根合)硼酸锂盐类;三(丙二酸根合)磷酸锂、二氟双(丙二酸根合)磷酸锂、四氟(丙二酸根合)磷酸锂等(丙二酸根合)磷酸锂盐类;以及LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 3CF 3、LiBF 3C 2F 5、LiBF 3C 3F 7、LiBF 2(CF 3)2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2等含氟有机锂盐类;二氟草酸硼酸锂、双(草酸)硼酸锂等草酸硼酸锂盐类;四氟草酸根合磷酸锂、二氟双(草酸根合)磷酸锂、三(草酸根合)磷酸锂等草酸根合磷酸锂盐类等。
在一些实施例中,电解质选自LiPF 6、LiSbF 6、LiTaF 6、FSO 3Li、CF 3SO 3Li、LiN(FSO 2) 2、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiC(FSO 2) 3、LiC(CF 3SO 2) 3、 LiC(C 2F 5SO 2) 3、LiBF 3CF 3、LiBF 3C 2F 5、LiPF 3(CF 3) 3、LiPF 3(C 2F 5) 3、二氟草酸硼酸锂、双(草酸)硼酸锂或二氟双(草酸根合)磷酸锂,其有助于改善电化学装置的输出功率特性、高倍率充放电特性、高温保存特性和循环特性等。
电解质的含量没有特别限制,只要不损害本申请的效果即可。在一些实施例中,电解液中的锂的总摩尔浓度为大于0.3mol/L以上、大于0.4mol/L或大于0.5mol/L。在一些实施例中,电解液中的锂的总摩尔浓度为小于3mol/L、小于2.5mol/L或小于2.0mol/L以下。在一些实施例中,电解液中的锂的总摩尔浓度在由上述任意两个数值所组成的范围内。当电解质浓度在上述范围内时,作为带电粒子的锂不会过少,并且可以使粘度处于适当的范围,因而容易确保良好的电导率。
当使用两种以上的电解质的情况下,电解质包括至少一种为选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐。在一些实施例中,电解质包括选自由单氟磷酸盐、草酸盐和氟磺酸盐组成的组中的盐。在一些实施例中,电解质包括锂盐。在一些实施例中,基于电解质的总重量,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量为大于0.01wt%或大于0.1wt%。在一些实施例中,基于电解质的总重量,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量为小于20wt%或小于10wt%。在一些实施例中,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量在由上述任意两个数值所组成的范围内。
在一些实施例中,电解质包含选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的一种以上物质和除此以外的一种以上的盐。作为除此以外的盐,可以举出在上文中例示的锂盐,在一些实施例中为LiPF 6、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiC(FSO 2) 3、LiC(CF 3SO 2) 3、LiC(C 2F 5SO 2) 3、LiBF 3CF 3、LiBF 3C 2F 5、LiPF 3(CF 3) 3、LiPF 3(C 2F 5) 3。在一些实施例中,除此以外的盐为LiPF 6
在一些实施例中,基于电解质的总重量,除此以外的盐的含量为大于0.01wt%或大于0.1wt%。在一些实施例中,基于电解质的总重量,除此以外的盐的含量为小于20wt%、小于15wt%或小于10wt%。在一些实施例中,除此以外的盐的含量在由上述任意两个数值所组成的范围内。具有上述含量的除此以外的盐有助于平衡电解液的电导率和粘度。
在电解液中,除了含有上述溶剂、添加剂和电解质盐以外,可以根据需要含有负极被膜形成剂、正极保护剂、防过充电剂等额外添加剂。作为添加剂,可使用一般在非水电解质二次电池中使用的添加剂,其实例可包括,但不限于,碳酸亚乙烯酯、琥珀酸酐、联苯、环己基苯、2,4-二氟苯甲醚、丙烷磺内酯、丙烯磺内酯等。这些添加剂可以单独使用或任意组合使用。另外,电解液中的这些添加剂的含量没有特别限制,可以根据该添加剂的种类等适当地设定即可。在一些实施例中,基于电解液的总重量,添加剂的含量为小于5wt%、在0.01wt%至5wt%的范围内或在0.2wt%至5wt%的范围内。
III、负极
负极包括负极集流体和设置在所述负极集流体的一个或两个表面上的负极合剂层。负极合剂层包括负极活性材料层,负极活性材料层包含负极活性材料。负极活性材料层可以是一层或多层,多层负极活性材料中的每层可以包含相同或不同的负极活性材料。负极活性材料为任何能够可逆地嵌入和脱嵌锂离子等金属离子的物质。在一些实施例中,负极活性材料的可充电容量大于正极活性材料的放电容量,以防止在充电期间锂金属无意地析出在负极上。
作为保持负极活性材料的集流体,可以任意使用已知的集流体。负极集流体的实例包括,但不限于,铝、铜、镍、不锈钢、镀镍钢等金属材料。在一些实施例中,负极集流体为铜。
在负极集流体为金属材料的情况下,负极集流体形式可包括,但不限于,金属箔、金属圆柱、金属带卷、金属板、金属薄膜、金属板网、冲压金属、发泡金属等。在一些实施例中,负极集流体为金属薄膜。在一些实施例中,负极集流体为铜箔。在一些实施例中,负极集流体为基于压延法的压延铜箔或基于电解法的电解铜箔。
在一些实施例中,负极集流体的厚度为大于1μm或大于5μm。在一些实施例中,负极集流体的厚度为小于100μm或小于50μm。在一些实施例中,负极集流体的厚度在由上述任意两个数值所组成的范围内。
负极活性材料没有特别限制,只要能够可逆地吸藏、放出锂离子即可。负极活性材料的实例可包括,但不限于,天然石墨、人造石墨等碳材料;硅(Si)、锡(Sn)等金属;或Si、Sn等金属元素的氧化物等。负极活性材料可以单独使用或组合使用。
负极合剂层还可包括负极粘合剂。负极粘合剂可提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。负极粘合剂的种类没有特别限制,只要是对于电解液或电极制造时使用的溶剂稳定的材料即可。在一些实施例中,负极粘合剂包括树脂粘合剂。树脂粘合剂的实例包括,但不限于,氟树脂、聚丙烯腈(PAN)、聚酰亚胺树脂、丙烯酸系树脂、聚烯烃树脂等。当使用水系溶剂制备负极合剂浆料时,负极粘合剂包括,但不限于,羧甲基纤维素(CMC)或其盐、苯乙烯-丁二烯橡胶(SBR)、聚丙烯酸(PAA)或其盐、聚乙烯醇等。
负极可以通过以下方法制备:在负极集流体上涂布包含负极活性材料、树脂粘结剂等的负极合剂浆料,干燥后,进行压延而在负极集流体的两面形成负极合剂层,由此可以得到负极。
IV、隔离膜
为了防止短路,在正极与负极之间通常设置有隔离膜。这种情况下,本申请的电解液通常渗入该隔离膜而使用。
对隔离膜的材料及形状没有特别限制,只要不显著损害本申请的效果即可。所述隔离膜可为由对本申请的电解液稳定的材料所形成的树脂、玻璃纤维、无机物等。在一些实施例中,所述隔离膜包括保液性优异的多孔性片或无纺布状形态的物质等。树脂或玻璃纤维隔离膜的材料的实例可包括,但不限于,聚烯烃、芳香族聚酰胺、聚四氟乙烯、聚醚砜、玻璃过滤器等。在一些实施例中,所述隔离膜的材料为玻璃过滤器。在一些实施例中,所述聚烯烃为聚乙烯或聚丙烯。在一些实施例中,所述聚烯烃为聚丙烯。上述隔离膜的材料可以单独使用或任意组合使用。
所述隔离膜还可为上述材料层积而成的材料,其实例包括,但不限于,按照聚丙烯、聚乙烯、聚丙烯的顺序层积而成的三层隔离膜等。
无机物的材料的实例可包括,但不限于,氧化铝、二氧化硅等氧化物、氮化铝、氮化硅等氮化物、硫酸盐(例如,硫酸钡、硫酸钙等)。无机物的形式可包括,但不限于,颗粒状或纤维状。
所述隔离膜的形态可为薄膜形态,其实例包括,但不限于,无纺布、织布、微多孔性膜等。在薄膜形态中,所述隔离膜的孔径为0.01μm至1μm,厚度为5μm至50μm。除了上述独立的薄膜状隔离膜以外,还可以使用下述隔离膜:通过使用树脂类的粘合剂在正极和/或负极的表面形成含有上述无机物颗粒的复合 多孔层而形成的隔离膜,例如,将氟树脂作为粘合剂使90%粒径小于1μm的氧化铝颗粒在正极的两面形成多孔层而形成的隔离膜。
所述隔离膜的厚度是任意的。在一些实施例中,所述隔离膜的厚度为大于1μm、大于5μm或大于8μm。在一些实施例中,所述隔离膜的厚度为小于50μm、小于40μm或小于30μm。在一些实施例中,所述隔离膜的厚度在由上述任意两个数值所组成的范围内。当所述隔离膜的厚度在上述范围内时,则可以确保绝缘性和机械强度,并可以确保电化学装置的倍率特性和能量密度。
在使用多孔性片或无纺布等多孔质材料作为隔离膜时,隔离膜的孔隙率是任意的。在一些实施例中,所述隔离膜的孔隙率为大于20%、大于35%或大于45%。在一些实施例中,所述隔离膜的孔隙率为小于90%、小于85%或小于75%。在一些实施例中,所述隔离膜的孔隙率在由上述任意两个数值所组成的范围内。当所述隔离膜的孔隙率在上述范围内时,可以确保绝缘性和机械强度,并可以抑制膜电阻,使电化学装置具有良好的倍率特性。
所述隔离膜的平均孔径也是任意的。在一些实施例中,所述隔离膜的平均孔径为小于0.5μm或小于0.2μm。在一些实施例中,所述隔离膜的平均孔径为大于0.05μm。在一些实施例中,所述隔离膜的平均孔径在由上述任意两个数值所组成的范围内。若所述隔离膜的平均孔径超过上述范围,则容易发生短路。当隔离膜的平均孔径在上述范围内时,在防止短路的同时可抑制了膜电阻,使电化学装置具有良好的倍率特性。
V、电化学装置组件
电化学装置组件包括电极组、集电结构、外装壳体和保护元件。
电极组
电极组可以是由上述正极和负极隔着上述隔离膜层积而成的层积结构、以及上述正极和负极隔着上述隔离膜以漩涡状卷绕而成的结构中的任一种。在一些实施例中,电极组的质量在电池内容积中所占的比例(电极组占有率)为大于40%或大于50%。在一些实施例中,电极组占有率为小于90%或小于80%。在一些实施例中,电极组占有率在由上述任意两个数值所组成的范围内。当电极组占有率在上述范围内时,可以确保电化学装置的容量,同时可以抑制与内部压力上升相伴的反复充放电性能及高温保存等特性的降低,进而可以防止气体释放阀的工作。
集电结构
集电结构没有特别限制。在一些实施例中,集电结构为降低配线部分及接合部分的电阻的结构。当电极组为上述层积结构时,适合使用将各电极层的金属芯部分捆成束而焊接至端子上所形成的结构。电极面积增大时,内部电阻增大,因而在电极内设置2个以上的端子而降低电阻也是适合使用的。当电极组为上述卷绕结构时,通过在正极和负极分别设置2个以上的引线结构,并在端子上捆成束,从而可以降低内部电阻。
外装壳体
外装壳体的材质没有特别限制,只要是对于所使用的电解液稳定的物质即可。外装壳体可使用,但不限于,镀镍钢板、不锈钢、铝或铝合金、镁合金等金属类、或者树脂与铝箔的层积膜。在一些实施例中,外装壳体为铝或铝合金的金属或层积膜。
金属类的外装壳体包括,但不限于,通过激光焊接、电阻焊接、超声波焊接将金属彼此熔敷而形成的封装密闭结构;或者隔着树脂制垫片使用上述金属类形成的铆接结构。使用上述层积膜的外装壳体包括,但不限于,通过将树脂层彼此热粘而形成的封装密闭结构等。为了提高密封性,还可以在上述树脂层之间夹入与层积膜中所用的树脂不同的树脂。在通过集电端子将树脂层热粘而形成密闭结构时,由于金属与树脂的接合,可使用具有极性基团的树脂或导入了极性基团的改性树脂作为夹入的树脂。另外,外装体的形状也是任意的,例如可以为圆筒形、方形、层积型、纽扣型、大型等中的任一种。
保护元件
保护元件可以使用在异常放热或过大电流流过时电阻增大的正温度系数(PTC)、温度熔断器、热敏电阻、在异常放热时通过使电池内部压力或内部温度急剧上升而切断在电路中流过的电流的阀(电流切断阀)等。上述保护元件可选择在高电流的常规使用中不工作的条件的元件,亦可设计成即使不存在保护元件也不至于发生异常放热或热失控的形式。
VI、应用
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容器。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次 电池或锂离子聚合物二次电池。
本申请另提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子装置。在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
1、负极的制备
将人造石墨、丁苯橡胶和羧甲基纤维素钠按照96%:2%:2%的质量比例与去离子水混合,搅拌均匀,得到负极浆料。将该负极浆料涂布在12μm的铜箔上。干燥,冷压,再经过裁片、焊接极耳,得到负极。
2、正极的制备
将正极活性材料、导电材料(Super-P)和聚偏氟乙烯(PVDF)按照95%:2%:3%的质量比例与N-甲基吡咯烷酮(NMP)混合,再加入助剂,搅拌均匀,得到正极浆料。将该正极浆料涂布在12μm的铝箔上,干燥,冷压,再经过裁片、焊接极耳,得到正极。
实施例或对比例中使用的正极活性材料通过商购获得,具体如下表所示:
Figure PCTCN2020094654-appb-000001
Figure PCTCN2020094654-appb-000002
实施例或对比例中使用的助剂如下表所示:
助剂 名称(商品名) 氧化电位 还原电位 表面张力
1 丙烯酸(2-乙基己基)酯 4.75V 0.1V 38mN/m
2 丙烯酸酯非离子氟碳表面活性剂 4.8V 0.2V 35mN/m
3 甲基丙烯酸十二烷基酯 4.7V 0.2V 38mN/m
4 丙烯酸(酯)类共聚物 4.8V 0.2V 36mN/m
5 马来酸丙烯酸 4.7V 0.3V 37mN/m
6 聚乙烯吡咯烷酮(缩写PVP) 4.5V 0.1V 45mN/m
7 聚醚硅氧烷 4.7V 0.5V 45mN/m
8 平平加 4.6V 0.8V 47mN/m
9 十六烷基磺酸钠 4.7V 0.7V 46mN/m
3、电解液的制备
在干燥氩气环境下,将EC、PC、PP和DEC(重量比1:1:1:1)混合,加入LiPF 6和二氟磷酸锂混合均匀,形成基础电解液,其中LiPF 6的浓度为1.15mol/L。在基础电解液中加入不同含量的添加剂得到不同实施例和对比例的电解液。
实施例中使用的电解液组分如下表所示:
材料名称 缩写 材料名称 缩写
碳酸乙烯酯 EC 碳酸丙烯酯 PC
碳酸二乙酯 DEC 丙酸乙酯 EP
丙酸丙酯 PP γ-丁内酯 GBL
丁二腈 SN 己二腈 ADN
乙二醇二(2-氰基乙基)醚 EDN 1,3,6-己烷三腈 HTCN
1,2,3-三(2-氰基乙氧基)丙烷 TCEP 二氟磷酸锂 LiPO 2F 2
1,3-丙磺酸内酯 PS 氟代碳酸乙烯酯 FEC
4、隔离膜的制备
以聚乙烯(PE)多孔聚合物薄膜作为隔离膜。
5、锂离子电池的制备
将得到的正极、隔离膜和负极按次序卷绕,置于外包装箔中,留下注液口。从注液口灌注电解液,封装,再经过化成、容量等工序制得锂离子电池。
二、测试方法
1、正极合剂层的厚度变化率的测试方法
将在正极冲切成直径为14±0.2mm的圆盘状,将其作为试片。测定试片的圆心部分的厚度(t0)。将该试片水平浸渍在碳酸二乙酯中,在85±1℃的温度下静置120±0.3小时。浸渍结束后,取出试片,在室温下水平静置30分钟后,测定该试片的圆心部分厚度(t1)。通过下式计算正极合剂层的厚度变化率:
厚度变化率=(t1-t0)/t0×100%。
2、正极合剂层的反应面积(Y)的测试方法
使用表面积计(大仓理研制造的全自动表面积测定装置),在氮气流通下于350℃对样品进行15分钟预干燥,然后使用氮气相对于大气压的相对压力值准确调节为0.3的氮氦混合气体,通过采用气体流动法的氮吸附BET单点法测定正极合剂层的比表面积(m 2/mg)。通过下式计算正极合剂层的反应面积(Y):
Y=正极合剂层的比表面积×正极合剂层的重量。
3、锂离子电池的间歇循环容量保持率的测试方法
在50℃下,将锂离子电池以0.5C恒流充电至4.45V,以恒流充电截至电流0.05C静置20小时,然后以0.5C恒流放电至3.0V,此为首次循环。按照上述条件对锂离子电池进行200次循环。“1C”是指在1小时内将锂离子电池容量完全放完的电流值。通过下式计算锂离子电池的间歇循环容量保持率:
间歇循环容量保持率=(循环200次后的放电容量/首次循环的放电容量)×100%。
4、锂离子电池的浮充性能的测试方法
在25℃下,将锂离子电池以0.5C恒流充电至4.45V,再在4.45V下恒压充电至0.05C。然后将锂离子电池置于50℃烘箱中,以4.45V持续恒压充电(截至电流为20mA),监控锂离子电池的厚度的变化。以初始50%充电状态(SOC)时锂离子电池的厚度作为基准,当锂离子电池厚度增加超过20%时记为失效。记录锂离子电池在50℃下浮充至失效的时间。
三、测试结果
表1展示了各实施例和对比例中正极合剂层的厚度变化率对锂离子电池的性能的影响。在表1所示各实施例和对比例中,正极活性材料为材料1,二氟磷酸锂的含量为0.2wt%。
表1
Figure PCTCN2020094654-appb-000003
结果表明,助剂及其含量可影响正极合剂层的厚度变化率。当正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于10%的厚度变化率时,可显著提升锂离子电池的间歇循环容量保持率(至少20%)和浮充时效时间(延长5-10倍),即,显著提升锂离子电池的间歇循环性能和浮充性能。在正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于10%的厚度变化率的基础上,控制助剂的含量不大于3000ppm可进一步提升锂离子电池的间歇循环性能和浮充性能。
表2展示了电解液中二氟磷酸锂的含量对锂离子电池的性能的影响。对比例6-7和实施例8-12与实施例3的区别仅在于表2中所列的含量。
表2
Figure PCTCN2020094654-appb-000004
Figure PCTCN2020094654-appb-000005
结果表明,当二氟磷酸锂在电解液中的含量在0.001wt%至2wt%范围内时,锂离子电池具有显著改善的间歇循环性能和浮充性能。
表3展示了正极活性材料对锂离子电池的性能的影响。实施例13-17与实施例3的区别仅在于表3中所列的正极活性材料。
表3
Figure PCTCN2020094654-appb-000006
结果表明,当正极活性材料包括两种具有不同中值粒径的含锂过渡金属氧化物时,可进一步提升锂离子电池的间歇循环性能和浮充性能。当含锂过渡金属氧化物含有Mg和选自Ti、Zr、Ge、Nb、Al和Sn中的至少一种金属元素时,锂离子电池的间歇循环性能和浮充性能的改善尤为明显。
表4展示了二氟磷酸锂的重量与正极合剂层的反应面积的关系对锂离子电池的性能的影响。实施例18-21与实施例3的区别仅在于表4中所列的参数。
表4
Figure PCTCN2020094654-appb-000007
结果表明,当二氟磷酸锂在电解液中的含量X mg与正极合剂层的反应面积Y m 2满足10≤X/Y≤100时,有助于进一步提升锂离子电池的间歇循环性能和浮 充性能。
表5展示了电解液中添加剂对锂离子电池的性能的影响。实施例22-29与实施例3的区别仅在于表5中所列的参数。
表5
Figure PCTCN2020094654-appb-000008
结果表明,当电解液进一步包含二腈化合物、三腈化合物、磺酸内酯和/或氟代碳酸酯时,有助于进一步改善锂离子电池的间歇循环性能和浮充性能。
表6展示了电解液中溶剂对锂离子电池的性能的影响。实施例30-32与实施例3的区别在于表6中所列的电解液溶剂不同。对比例8-10与对比例1的区别在于表6中所列的电解液溶剂不同。
表6
Figure PCTCN2020094654-appb-000009
结果表明,当电解液溶剂包含环状碳酸酯和链状碳酸酯的组合或碳酸酯和羧酸酯的组合时,可进一步显著改善锂离子电池的间歇循环性能和浮充性能。
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、 “举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例”,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

  1. 一种电化学装置,其包括:正极、负极和电解液,所述正极包括正极集流体和形成在所述正极集流体上的正极合剂层,其中:
    所述电解液包含二氟磷酸锂,基于所述电解液的总重量,所述二氟磷酸锂的含量为0.001wt%至2wt%;
    所述正极合剂层在85℃的碳酸二乙酯中浸渍120小时后具有小于10%的厚度变化率。
  2. 根据权利要求1所述的电化学装置,其中所述电解液包括碳酸酯,所述碳酸酯包括环状碳酸酯和链状碳酸酯。
  3. 根据权利要求1所述的电化学装置,其中所述电解液包括碳酸酯和羧酸酯。
  4. 根据权利要求1所述的电化学装置,其中所述正极合剂层包括具有亲水基团和亲油基团的助剂。
  5. 根据权利要求4所述的电化学装置,其中所述助剂具有以下特征中的至少一者:
    (a)氧化电位不小于4.5V,且还原电位不大于0.5V;
    (b)表面张力不大于40mN/m;
    (c)包括不饱和羧酸基团;
    (d)基于所述正极合剂层的总重量,所述助剂的含量为不大于3000ppm。
  6. 根据权利要求4所述的电化学装置,其中所述助剂包括2-丙烯酸十二烷基酯、聚乙二醇单甲醚丙烯酸酯、聚乙二醇二甲基丙烯酸酯、丙烯酸(2-乙基己基)酯、丙烯酸酯非离子氟碳表面活性剂、甲基丙烯酸十二烷基酯、丙烯酸酯共聚物、马来酸丙烯酸共聚物或乙烯丙烯酸共聚物中的至少一种。
  7. 根据权利要求1所述的电化学装置,其中所述二氟磷酸锂在所述电解液中的含量X mg与所述正极合剂层的反应面积Y m 2满足如下关系:10≤X/Y≤100。
  8. 根据权利要求1所述的电化学装置,其中所述电解液进一步包括二腈化合物、三腈化合物、磺酸内酯、氟代碳酸酯或不饱和碳酸乙烯酯中的至少一种。
  9. 根据权利要求1所述的电化学装置,其中所述正极合剂层包括正极活性材料,所述正极活性材料包括具有不同中值粒径的含锂过渡金属氧化物。
  10. 根据权利要求9所述的电化学装置,其中所述含锂过渡金属氧化物包括通式(1)表示的化合物:
    Li aM1 bM2 cM3 dO 2  (1)
    其中:
    M1选自Co、Ni或Mn中的至少一种;
    M2选自Mg、Ti、Zr、Ge、Nb、Al或Sn中的至少一种;
    M3是除Li、M1和M2以外的元素;
    0.5≤a<1.1;
    0.8≤b<1.2;
    0.002≤c≤0.05;以及
    0≤d≤0.05。
  11. 根据权利要求9所述的电化学装置,其中所述含锂过渡金属氧化物包括Mg和选自Ti、Zr、Ge、Nb、Al和Sn中的至少一种金属元素。
  12. 一种电子装置,其包括根据权利要求1-11中任一项所述的电化学装置。
PCT/CN2020/094654 2020-06-05 2020-06-05 电化学装置和电子装置 WO2021243702A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202310574962.7A CN116404263A (zh) 2020-06-05 2020-06-05 电化学装置和电子装置
JP2022516723A JP7434533B2 (ja) 2020-06-05 2020-06-05 電気化学装置及び電子装置
PCT/CN2020/094654 WO2021243702A1 (zh) 2020-06-05 2020-06-05 电化学装置和电子装置
CN202310574961.2A CN116404262A (zh) 2020-06-05 2020-06-05 电化学装置和电子装置
EP20939167.1A EP4148852A4 (en) 2020-06-05 2020-06-05 ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICES
KR1020227008806A KR20220042235A (ko) 2020-06-05 2020-06-05 전기화학 디바이스 및 전자 디바이스
CN202080049688.6A CN114072949B (zh) 2020-06-05 2020-06-05 电化学装置和电子装置
US18/074,801 US20230096730A1 (en) 2020-06-05 2022-12-05 Electrochemical apparatus and electronic apparatus
JP2024017001A JP2024059672A (ja) 2020-06-05 2024-02-07 電気化学装置及び電子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094654 WO2021243702A1 (zh) 2020-06-05 2020-06-05 电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/074,801 Continuation US20230096730A1 (en) 2020-06-05 2022-12-05 Electrochemical apparatus and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2021243702A1 true WO2021243702A1 (zh) 2021-12-09

Family

ID=78830069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094654 WO2021243702A1 (zh) 2020-06-05 2020-06-05 电化学装置和电子装置

Country Status (6)

Country Link
US (1) US20230096730A1 (zh)
EP (1) EP4148852A4 (zh)
JP (2) JP7434533B2 (zh)
KR (1) KR20220042235A (zh)
CN (3) CN116404263A (zh)
WO (1) WO2021243702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417790B2 (ja) 2021-07-14 2024-01-18 ドンファエレクトロライト株式会社 新規な化合物、それを含む二次電池用電解液およびそれを含む二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332638B (zh) * 2022-10-14 2023-03-24 宁德新能源科技有限公司 一种电解液、电化学装置和电子装置
CN117335008A (zh) * 2023-11-28 2024-01-02 宁德时代新能源科技股份有限公司 电解液、锂二次电池和用电装置
CN117638082B (zh) * 2024-01-24 2024-04-09 宁德新能源科技有限公司 锂离子电池和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208647A (zh) * 2012-01-11 2013-07-17 三星Sdi株式会社 可再充电锂电池
CN104011920A (zh) * 2011-12-27 2014-08-27 日本瑞翁株式会社 二次电池用正极及其制造方法、浆液组合物以及二次电池
US20150288033A1 (en) * 2014-04-07 2015-10-08 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN110911753A (zh) * 2019-12-13 2020-03-24 东莞东阳光科研发有限公司 非水电解液及锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222090B2 (ja) * 2012-06-15 2017-11-01 三菱ケミカル株式会社 非水系電解液二次電池及びその使用方法
US20150270577A1 (en) * 2013-01-15 2015-09-24 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3849009B1 (en) * 2016-07-22 2022-07-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
JP6783717B2 (ja) * 2017-07-31 2020-11-11 トヨタ自動車株式会社 非水系二次電池
JP7127692B2 (ja) * 2018-10-05 2022-08-30 株式会社村田製作所 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
CN110660965B (zh) * 2019-08-29 2021-12-17 孚能科技(赣州)股份有限公司 负极片及其制备方法和锂离子电池及其制备方法和应用
CN111048840B (zh) * 2019-12-27 2021-06-18 苏州凌威新能源科技有限公司 锂离子电池电解液以及锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011920A (zh) * 2011-12-27 2014-08-27 日本瑞翁株式会社 二次电池用正极及其制造方法、浆液组合物以及二次电池
CN103208647A (zh) * 2012-01-11 2013-07-17 三星Sdi株式会社 可再充电锂电池
US20150288033A1 (en) * 2014-04-07 2015-10-08 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN110911753A (zh) * 2019-12-13 2020-03-24 东莞东阳光科研发有限公司 非水电解液及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148852A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417790B2 (ja) 2021-07-14 2024-01-18 ドンファエレクトロライト株式会社 新規な化合物、それを含む二次電池用電解液およびそれを含む二次電池

Also Published As

Publication number Publication date
EP4148852A1 (en) 2023-03-15
JP2022548140A (ja) 2022-11-16
CN114072949B (zh) 2023-07-07
US20230096730A1 (en) 2023-03-30
JP2024059672A (ja) 2024-05-01
KR20220042235A (ko) 2022-04-04
CN114072949A (zh) 2022-02-18
JP7434533B2 (ja) 2024-02-20
EP4148852A4 (en) 2023-12-06
CN116404262A (zh) 2023-07-07
CN116404263A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2021243702A1 (zh) 电化学装置和电子装置
US20230275323A1 (en) Electrode plate and electrochemical apparatus and electronic device containing same
CN112151751B (zh) 电化学装置和电子装置
CN112151855B (zh) 电化学装置和电子装置
CN112151752A (zh) 电化学装置和电子装置
WO2022116964A1 (zh) 一种电极组件及包含其的电化学装置、电子装置
WO2021128093A1 (zh) 电化学装置及包含其的电子装置
US20230106176A1 (en) Electrochemical apparatus and electronic apparatus
CN115380409A (zh) 电化学装置和电子装置
WO2021128092A1 (zh) 电化学装置及包含其的电子装置
WO2021128095A1 (zh) 电化学装置及包含其的电子装置
WO2023123027A1 (zh) 电化学装置和电子装置
WO2022077311A1 (zh) 电化学装置和电子装置
US20230317961A1 (en) Electrochemical apparatus and electronic apparatus
WO2023123028A1 (zh) 电化学装置和电子装置
WO2023123029A1 (zh) 电化学装置和电子装置
CN115380408A (zh) 电化学装置和电子装置
WO2023123026A1 (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516723

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227008806

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020939167

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE