WO2021241610A1 - 焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法 - Google Patents

焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法 Download PDF

Info

Publication number
WO2021241610A1
WO2021241610A1 PCT/JP2021/019910 JP2021019910W WO2021241610A1 WO 2021241610 A1 WO2021241610 A1 WO 2021241610A1 JP 2021019910 W JP2021019910 W JP 2021019910W WO 2021241610 A1 WO2021241610 A1 WO 2021241610A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
combustion chamber
amount
incinerator
supply amount
Prior art date
Application number
PCT/JP2021/019910
Other languages
English (en)
French (fr)
Inventor
信治 岩下
裕二 太田
稔彦 瀬戸口
卓一郎 大丸
立享 西宮
潤司 今田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202180035089.3A priority Critical patent/CN115552174A/zh
Publication of WO2021241610A1 publication Critical patent/WO2021241610A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Definitions

  • This disclosure relates to an incinerator supply amount detection system, an incinerator operation control system, an incinerator supply amount detection method, and an incinerator operation control method.
  • the incinerator includes, for example, as disclosed in Patent Documents 1 to 3, a combustion chamber capable of combusting solid fuel (for example, waste or biomass) and a fuel supply device for supplying solid fuel to the combustion chamber. Be prepared.
  • the fuel supply device is configured to adjust the amount of solid fuel supplied to the combustion chamber and the supply timing.
  • the properties of solid fuels are often inhomogeneous, and solid fuels may be entangled with each other or adhere to each other to form nodules.
  • the agglomerated solid fuel may not fall into the combustion chamber and may be in a state of protruding into the combustion chamber. Then, the agglomerated solid fuel collapses at an unintended timing, and a phenomenon occurs in which a large amount of solid fuel is supplied to the combustion chamber at one time (hereinafter referred to as excessive supply).
  • excessive supply When an excessive supply occurs, the combustion state of the solid fuel in the combustion chamber becomes unstable, so it is necessary to swiftly perform an operation for stabilizing the combustion state. Therefore, it is desirable to be able to quickly detect the occurrence of oversupply.
  • the present disclosure has been made in view of the above-mentioned problems, and is an incinerator supply amount detection system capable of promptly detecting that a solid fuel is excessively supplied to the combustion chamber, and incinerator provided with this supply amount detection system. It is an object of the present invention to provide a furnace operation control system, an incinerator supply amount detection method, and an incinerator operation control method including the supply amount detection method.
  • the incinerator supply amount detection system is an incinerator supply amount detection system that detects the amount of solid fuel supplied to the combustion chamber of the incinerator, and is the incinerator. Based on an image pickup device configured to capture an image of the solid fuel before the solid fuel deposited in the feeder portion of the combustion chamber falls into the combustion chamber, and the image captured by the image pickup device. A detection device for detecting the amount of the solid fuel supplied to the combustion chamber is provided.
  • the supply amount detection system of the present disclosure it is possible to quickly detect that the solid fuel is excessively supplied to the combustion chamber.
  • FIG. 1 is a schematic view showing the configuration of an incinerator 100 to which the supply amount detection system 1 according to the first embodiment of the present disclosure is applied.
  • the incinerator 100 is a stoker-type waste incinerator that uses municipal waste, industrial waste, biomass, or the like as solid fuel Fg.
  • the incinerator 100 is not limited to the stoker-type waste incinerator.
  • the incinerator 100 includes a hopper 102, a feeder unit 104, a combustion chamber 108, an extrusion device 110 (dust supply device), an air supply device 112, a heat recovery boiler 114, and a temperature reduction. It includes a tower 116, a dust collector 118, and a chimney 120.
  • the feeder portion 104 is a passage extending toward the combustion chamber 108.
  • the feeder unit 104 is configured to deposit the solid fuel Fg charged into the hopper 102. Assuming that the direction in which the solid fuel Fg moves in the incinerator 100 is the moving direction W1, the downstream end 121 (the end of the feeder 104 on the combustion chamber 108 side) on the downstream side of the moving direction W1 of the feeder section 104 burns. It is connected to the entrance 122 of the chamber 108.
  • the extrusion device 110 has an extrusion arm 124 for extruding the solid fuel Fg deposited on the feeder portion 104 into the combustion chamber 108 via the receiving port 122.
  • the extrusion arm 124 is configured to be movable in the feeder portion 104 from the upstream side to the downstream side and from the downstream side to the upstream side in the moving direction W1. That is, the extrusion arm 124 reciprocates in the feeder portion 104 along the extending direction (horizontal direction) of the feeder portion 104.
  • the combustion chamber 108 includes a grate 126 (stoker) into which the solid fuel Fg extruded into the combustion chamber 108 through the receiving port 122 falls.
  • the grate 126 corresponds to the floor of the combustion chamber 108.
  • the grate 126 is configured to move the solid fuel Fg on the grate 126 in a direction away from the receiving port 122 (from the upstream side to the downstream side in the moving direction W1).
  • the combustion chamber 108 includes a dry region 128, a combustion region 130, and a post-combustion region 132, which are arranged in order from the upstream side to the downstream side in the moving direction W1.
  • the drying region 128 dries the solid fuel Fg by the heat in the combustion chamber 108.
  • the combustion region 130 raises the flame 131 to burn the solid fuel Fg.
  • the post-combustion region 132 completely burns the burnout that did not burn out in the combustion region 130.
  • the solid fuel Fg that has been dried, burned, and then burned in the combustion chamber 108 becomes ash 135 and is discharged to the outside of the incinerator 100.
  • the air supply device 112 uses the primary air used for burning the solid fuel Fg and the secondary air used for reducing the concentration of unburned gas such as carbon monoxide generated by the combustion of the solid fuel Fg in the combustion chamber 108. Is configured to supply to.
  • the air supply device 112 includes an air supply pipe 136 and a blower 138 provided on the air supply pipe 136. Part of the air flowing through the air supply pipe 136 is supplied as primary air from the grate 126 to the lower part of the combustion chamber 108 via the first flow control valve 140, and the remaining part is as secondary air. It is supplied to the upper part of the combustion chamber 108 from the side wall of the combustion chamber 108 via the second flow control valve 142.
  • the air supply device 112 functions as a secondary air supply device that supplies secondary air to the upper part of the combustion chamber 108.
  • primary air is supplied to each of the dry region 128, the combustion region 130, and the post-combustion region 132 of the combustion chamber 108.
  • Each of the heat recovery steam generator 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120 is provided in the flue 144 of the incinerator 100 through which the exhaust gas 143 generated by burning the solid fuel Fg is circulated.
  • the exhaust gas 143 is distributed in the order of the heat recovery boiler 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120.
  • the heat recovery boiler 114 generates steam from the thermal energy of the exhaust gas 143.
  • the temperature reducing tower 116 lowers the temperature of the exhaust gas 143 that has passed through the heat recovery boiler 114.
  • the dust collector 118 collects fly ash contained in the exhaust gas 143 that has passed through the temperature reducing tower 116.
  • the chimney 120 exhausts the exhaust gas 143 that has passed through the dust collector 118 to the outside of the incinerator 100.
  • the steam generated by the heat recovery boiler 114 may be configured to be supplied to a steam turbine (not shown).
  • the supply amount detection system 1 applied to the incinerator 100 described above detects the amount of solid fuel Fg supplied to the combustion chamber 108.
  • the supply amount detection system 1 includes an image pickup device 2 and a detection device 4.
  • the image pickup device 2 is configured to capture a thermal image of the solid fuel Fg before the solid fuel Fg deposited in the feeder portion 104 of the incinerator 100 falls into the combustion chamber 108.
  • the thermal image of the solid fuel Fg captured by the image pickup device 2 is sent to the detection device 4 in real time.
  • the image pickup apparatus 2 captures a thermal image of the front Fr facing the combustion chamber 108 on the surface of the solid fuel Fg before falling into the combustion chamber 108. It is provided in the furnace butt 145 of the combustion chamber 108 located on the downstream side in the moving direction W1 from the rear combustion region 132.
  • the image pickup device 2 can capture a thermal image of the front surface Fr of the solid fuel Fg protruding from the receiving port 122 of the combustion chamber 108. If the thermal image of the front surface Fr of the solid fuel Fg can be imaged, the image pickup device 2 may be provided in a place other than the furnace butt 145 of the combustion chamber 108.
  • the image pickup device 2 is, for example, an infrared camera, and detects infrared rays in a predetermined wavelength range in which radiation from the flame 131 is small.
  • the range of the predetermined wavelength range is, for example, 2 ⁇ m or more and 5 ⁇ m or less.
  • the range of the predetermined wavelength range is 3.8 ⁇ m or more and 4.2 ⁇ m or less.
  • the target wavelength range to be imaged as a thermal image is 0.8 ⁇ m to 1000 ⁇ m. By passing a bandpass filter or the like in this wavelength range, it is possible to operate using only a part of the wavelengths as needed.
  • the image pickup device 2 is not limited to an infrared camera as long as it can capture a thermal image of the front Fr of the solid fuel Fg beyond the flame 131.
  • the image pickup device 2 includes a visible light camera 6 and a filter device 8 that limits the transmitted wavelength incident on the visible light camera 6 to a predetermined wavelength range.
  • the detection device 4 detects the amount of solid fuel Fg supplied to the combustion chamber 108 based on the time transition of the luminance information of the thermal image captured by the image pickup device 2. More specifically, the detection device 4 detects the amount of solid fuel Fg supplied to the combustion chamber 108 based on the amount of change in the luminance information over time of the luminance information of the thermal image captured by the imaging apparatus 2. do.
  • FIG. 3 is a schematic functional block diagram of the detection device 4 according to the first embodiment of the present disclosure.
  • the detection device 4 includes a thermal image acquisition unit 10, a luminance information output unit 12, a storage unit 14, and a determination unit 16.
  • the detection device 4 is a computer such as an electronic control device, and includes a processor such as a CPU or GPU (not shown), a memory such as ROM or RAM, and an I / O interface.
  • the detection device 4 realizes each of the above-mentioned functional units included in the detection device 4 by the processor operating (calculation or the like) according to the instruction of the program loaded in the memory.
  • the thermal image acquisition unit 10 receives the thermal image of the front surface Fr of the solid fuel Fg imaged by the image pickup device 2.
  • the thermal image acquisition unit 10 sends the received thermal image to the luminance information output unit 12.
  • FIG. 4 is a diagram showing an example of a thermal image of the front Fr of the solid fuel Fg immediately after the solid fuel is oversupplied to the combustion chamber (immediately after the occurrence of the oversupply).
  • FIG. 5 is a diagram showing an example of a thermal image of the front Fr of the solid fuel Fg immediately before the solid fuel is oversupplied to the combustion chamber (immediately before the occurrence of the oversupply). In the thermal images shown in FIGS. 4 and 5, the darker the color, the lower the brightness (darker), and the lighter the color, the higher the brightness (brighter).
  • the luminance information output unit 12 receives a thermal image from the thermal image acquisition unit 10 and outputs the luminance information of the thermal image including the luminance.
  • the luminance information output unit 12 sends the luminance information of the output thermal image to each of the storage unit 14 and the determination unit 16.
  • the storage unit 14 stores the luminance information of the thermal image received from the luminance information output unit 12.
  • the determination unit 16 compares the brightness information of the thermal image received from the brightness information output unit 12 with the brightness information of the thermal image stored in the storage unit 14, and determines the amount of solid fuel Fg supplied to the combustion chamber 108. Detect. That is, the determination unit 16 compares the luminance information of the thermal image output in real time with the luminance information of the thermal image output earlier than the luminance information of the thermal image output in real time, and supplies it to the combustion chamber 108. The amount of solid fuel Fg produced is detected. Then, when the value of the difference ⁇ Y between the luminance acquired in real time and the luminance output before the luminance output in real time exceeds a preset threshold value, the determination unit 16 is supplied to the combustion chamber 108.
  • a notification device such as a display or an alarm may be used to notify the worker of the occurrence of the oversupply.
  • the determination unit 16 has a first luminance, which is the luminance of the thermal image at the first timing, and a second luminance, which is the luminance of the thermal image at the second timing later than the first timing, and is lower than the first luminance.
  • the presence or absence of oversupply may be determined based on the difference between the above.
  • the first luminance is the luminance included in the luminance information of the thermal image stored in the storage unit 14.
  • the second luminance is the luminance included in the luminance information of the thermal image received in real time from the luminance information output unit 12.
  • the time difference between the first timing and the second timing may be predetermined, for example, based on the rapid progress of drying of the front Fr of the solid fuel Fg, and the second timing is later than the first timing.
  • the timing is not particularly limited.
  • the second timing (real aim) may be, for example, a timing one second after the first timing, or a timing 0.1 seconds after the first timing.
  • FIG. 6 is a graph showing the luminance of the thermal image of the front surface Fr of the solid fuel Fg before falling into the combustion chamber 108, where the vertical axis shows the luminance and the horizontal axis shows the time. t1 and t2 are the times when the oversupply actually occurred. According to the diligent studies by the present inventors, as shown in FIG. 6, when the oversupply actually occurs at t1 and t2, the brightness of the thermal image of the front Fr of the solid fuel Fg is significantly reduced.
  • the occurrence of excess supply can be quickly detected by monitoring the brightness of the thermal image of the front Fr of the solid fuel Fg.
  • the brightness of the thermal image of the front Fr of the solid fuel Fg before falling into the combustion chamber 108 immediately after the occurrence of the oversupply is the brightness of the combustion chamber immediately before the occurrence of the oversupply.
  • the brightness of the thermal image of the front Fr of the solid fuel Fg (that is, the solid fuel Fg protruding from the inlet 122) before falling to 108 (see FIG. 5) is low.
  • the supply amount detection system 1 of the incinerator 100 captures a thermal image of the solid fuel Fg deposited in the feeder portion 104 of the incinerator 100 before it falls into the combustion chamber 108.
  • An image pickup device 2 configured to take an image, and a detection device 4 for detecting the amount of solid fuel Fg supplied to the combustion chamber 108 based on the time transition of the brightness information of the thermal image captured by the image pickup device 2. , Equipped with. Therefore, the supply amount detection system 1 of the incinerator 100 can quickly detect the occurrence of excess supply.
  • the image pickup apparatus 2 captures a thermal image of the front surface Fr of the solid fuel Fg before falling into the combustion chamber 108, so that the occurrence of excess supply can be quickly detected.
  • the incinerator 100 is provided with a sensor for measuring plant data indicating the state of the incinerator 100, and the determination unit 16 of the detection device 4 determines whether or not an excess supply has occurred in consideration of the plant data. May be good.
  • the incinerator 100 has a pressure sensor for measuring the pressure in the combustion chamber 108, a temperature sensor for measuring the temperature of the exhaust gas 143 flowing through the flue 144, and an oxygen concentration in the combustion chamber 108. Equipped with an oxygen concentration sensor. Then, the determination unit 16 of the detection device 4 determines whether or not an excessive supply has occurred in consideration of the pressure in the combustion chamber 108, the temperature of the exhaust gas 143, and the oxygen concentration in the combustion chamber 108. Further, in another embodiment, the determination unit 16 may determine whether or not an excess supply has occurred based on the plant data instead of the time transition of the luminance information of the thermal image.
  • the supply amount detection system 1 according to the second embodiment of the present disclosure will be described.
  • the second embodiment is different from the first embodiment in that the detection device 4 is further provided with the section portion 18, the counting unit 20, and the extrusion direction acquisition unit 22, but the other configurations are the first embodiment. It is the same as the configuration explained in.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 7 is a schematic functional block diagram of the detection device 4 according to the second embodiment of the present disclosure. As shown in FIG. 7, the detection device 4 further includes a partition unit 18 and a counting unit 20.
  • the partition portion 18 receives a thermal image in which the front surface Fr of the solid fuel Fg is captured from the thermal image acquisition unit 10, and partitions the thermal image into a plurality of compartment images 19.
  • the section 18 has a region P in which the receiving port 122 is located on the thermal image in the first direction W2 (vertical direction) and the second direction W3 (horizontal direction) orthogonal to the first direction.
  • a plurality of compartment images 19 arranged in a grid pattern along the vertical direction and the horizontal direction are formed.
  • the luminance information output unit 12 receives a thermal image from the thermal image acquisition unit 10 via the compartment 18 and outputs the luminance for each compartment image 19.
  • the luminance information output unit 12 sends the luminance of each output section image 19 to each of the storage unit 14 and the determination unit 16.
  • the storage unit 14 stores the luminance of each section image 19 received from the luminance information output unit 12.
  • the counting unit 20 compares the brightness of each section image 19 stored in the storage unit 14 at the first timing with the brightness of each section image 19 at the second timing received from the luminance information output unit 12. Then, the counting unit 20 is a value of the difference between the luminance (first luminance) in each of the plurality of compartment images 19 at the first timing and the luminance (second luminance) in each of the plurality of compartment images 19 at the second timing. Counts the number of compartment images 19 that exceed a preset threshold. When the number of counts counted by the counting unit 20 exceeds a preset number, the determination unit 16 determines that an excessive supply has occurred. In some embodiments, the number counted in the count may be different for each section image 19.
  • the upper section image 19A (19) is counted as a larger number than the lower section image 19B (19) located below the upper section image 19A (one of the first directions W2).
  • the count number increases by one, whereas the difference between the first luminance and the second luminance in the upper section image 19A exceeds the threshold value. And the count number increases by two.
  • the detection device 4 partitions the thermal image of the front Fr of the solid fuel Fg into a plurality of compartment images 19, and the value of the difference (decrease in brightness) between the first luminance and the second luminance is set.
  • the number (count number) of the section images 19 exceeding the threshold value exceeds the set number, it is determined that an excessive supply has occurred. Therefore, it is possible to accurately determine whether or not an excess supply has occurred.
  • the detection device 4 may further include an extrusion direction acquisition unit 22.
  • the extrusion direction acquisition unit 22 acquires the direction in which the extrusion arm 124 of the extrusion device 110 moves.
  • the determination unit 16 receives the moving direction of the extrusion arm 124 acquired by the extrusion direction acquisition unit 22, and determines whether or not an excessive supply has occurred only while the extrusion arm 124 is regressing in the direction away from the combustion chamber 108. judge. That is, the determination unit 16 determines that excess supply has occurred when the extrusion arm 124 is moving in the feeder unit 104 from the downstream side to the upstream side in the moving direction W1. On the other hand, the determination unit 16 does not determine the occurrence of excess supply when the extrusion arm 124 is moving in the feeder unit 104 from the upstream side to the downstream side in the moving direction W1.
  • the extrusion arm 124 While the extrusion arm 124 is traveling in the feeder section 104 from the upstream side to the downstream side in the moving direction W1, the solid fuel Fg deposited in the feeder section 104 is pushed out to supply the solid fuel Fg to the combustion chamber 108. It is in a state of being. On the other hand, while the extrusion arm 124 is retreating in the feeder portion 104 from the downstream side to the upstream side in the moving direction W1, the solid fuel Fg deposited on the feeder portion 104 is not intended to be extruded and is burned. The solid fuel Fg is not supplied to the chamber 108. It may be sufficient if the detection of the occurrence of excess supply is performed when the solid fuel Fg is not supplied to the combustion chamber 108.
  • the determination unit 16 determines whether or not an excessive supply has occurred only while the extrusion arm 124 is regressing in the direction away from the combustion chamber 108. Therefore, the detection device 4 can quickly detect the occurrence of excess supply when the solid fuel Fg is not supplied to the combustion chamber 108.
  • the occurrence of excess supply is detected when the extrusion arm 124 is regressed, but the present disclosure is not limited to this embodiment, and the extrusion arm 124 advances. The occurrence of excess supply may be detected while the device is running.
  • the supply amount detection system 1 according to the third embodiment of the present disclosure will be described.
  • the third embodiment is different from the first embodiment in that the flame position detection device 24, the supply amount determination device 26, the protrusion length detection device 40, and the height detection device 42 are further provided.
  • the configuration is the same as the configuration described in the first embodiment.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the third embodiment may be a further limitation of the supply amount detection system 1 described in the second embodiment.
  • FIG. 9 is a configuration diagram schematically showing the configuration of the supply amount detection system 1 according to the third embodiment of the present disclosure. As shown in FIG. 9, the supply amount detection system 1 further includes a flame position detection device 24 and a supply amount determination device 26.
  • the flame position detecting device 24 detects the flame position X of the solid fuel Fg burned in the combustion chamber 108.
  • FIG. 10 is a configuration diagram schematically showing the configuration of the flame position detecting device 24 according to the third embodiment of the present disclosure.
  • the flame position detecting device 24 uses the first camera 28 and the flame position X of the solid fuel Fg burned in the combustion chamber 108 based on the images captured by the first camera 28.
  • the flame position determining device 30 for determining the above is included.
  • the first camera 28 captures the flame 131 from above so that the captured image includes the boundary 133 between the combustion region 130 and the post-combustion region 132. If the flame 131 can be imaged from above, the above-mentioned image pickup device 2 may be provided as the first camera 28.
  • the flame position determining device 30 includes a first image acquisition unit 32 and a flame position determining unit 34.
  • the first image acquisition unit 32 receives the image captured by the first camera 28 and sends the image to the flame position determination unit 34.
  • the flame position determining unit 34 uses the image sent from the first image acquisition unit 32 as a portion having a specific brightness or higher (first portion 36) and a portion having a brightness lower than the specific brightness (second portion 38). ) And replace it with.
  • the flame position determining unit 34 binarizes the image captured by the first camera 28. Then, the flame position determining unit 34 determines the downstream end of the first portion 36 as the flame position X of the solid fuel Fg in the moving direction W1. Further, the flame position determining unit 34 calculates the distance D between the flame position X corresponding to the end of the flame and the boundary 133. In this way, the flame position detecting device 24 detects the flame position X of the solid fuel Fg. The flame position determination unit 34 calculates the distance D when the flame position X is located on the downstream side (post-combustion region 132 side) of the moving direction W1 from the boundary 133 as a positive value, and the flame position X is the boundary 133. The distance D when located on the upstream side (combustion region 130 side) of the moving direction W1 is calculated as a negative value.
  • the supply amount determination device 26 stores (accumulates) the flame position X and the distance D of the solid fuel Fg detected by the flame position detection device 24. Then, when the detection device 4 detects the occurrence of the excess supply, the supply amount determination device 26 has the flame position X of the solid fuel Fg at the first timing immediately before the occurrence of the excess supply and the flame position X immediately after the occurrence of the excess supply.
  • the degree of oversupply is determined based on ⁇ D (difference in change in flame position X), which is the difference in the moving direction W1 of the solid fuel Fg from the flame position X in the second timing.
  • the supply amount determination device 26 classifies the degree of oversupply into a plurality of levels, for example, "large”, “medium”, and "small”.
  • the degree of oversupply becomes small, the change in the flame position X of the solid fuel Fg also becomes small, and when the degree of oversupply becomes large, the change in the flame position X of the solid fuel Fg also becomes large.
  • the degree of the excess supply is automatically determined based on ⁇ D. Therefore, the degree of oversupply can be known promptly.
  • FIG. 12 is a graph showing the difference in flame position when the detection device 4 detects the occurrence of excess supply.
  • t3 to t9 is a time when the detection device 4 detects the occurrence of excess supply.
  • the detection device 4 detects the occurrence of excess supply based on the time transition of the luminance information of the thermal image, which is two-dimensional information. Therefore, as shown in FIG. 12, even if the detection device 4 detects the occurrence of oversupply at t5, t6, and t9, the degree of oversupply is small, or it is solid in the combustion chamber 108 to the extent that it is “oversupply”.
  • the fuel Fg is not excessively supplied, and it is not necessary to perform an operation for stabilizing the combustion state of the solid fuel Fg in the combustion chamber 108.
  • the degree of the excess supply is automatically determined by the supply amount determination device 26, so that the operation for stabilizing the combustion state is not possible. It can suppress what is needed.
  • the supply amount detection system 1 may further include a protrusion length detection device 40.
  • the protrusion length detecting device 40 detects the protrusion length L of the solid fuel Fg protruding from the receiving port 122 of the combustion chamber 108 toward the combustion chamber 108.
  • the protrusion length detecting device 40 is located between the receiving port 122 of the combustion chamber 108 and the most downstream portion Fr1 of the front Fr of the solid fuel Fg in the moving direction W1. The size is detected as the protruding length L.
  • the supply amount determination device 26 stores (accumulates) the protrusion length L detected by the protrusion length detection device 40.
  • the protrusion length L of the solid fuel Fg at the first timing immediately before the occurrence of the excess supply and the solid fuel Fg at the second timing immediately after the occurrence of the oversupply occur.
  • the degree of oversupply is determined in consideration of ⁇ L, which is the difference from the overhang length L.
  • the degree of oversupply tends to increase. Therefore, by determining the degree of excess supply in consideration of ⁇ L, the determination accuracy of the supply amount determination device 26 can be improved.
  • the supply amount detection system 1 may further include a height detection device 42.
  • the height detecting device 42 detects the height H of the solid fuel Fg deposited on the grate 126 (floor surface) of the combustion chamber 108.
  • the height detection device 42 detects the height H of the solid fuel Fg deposited at the predetermined position 127 near the inlet 122 on the grate 126 included in the dry region 128. ing.
  • the supply amount determination device 26 stores (accumulates) the height H detected by the height detection device 42.
  • the height H of the solid fuel Fg at the first timing immediately before the occurrence of the excess supply and the solid fuel Fg at the second timing immediately after the occurrence of the oversupply occur.
  • the degree of oversupply is determined in consideration of ⁇ H, which is the difference from the height H of.
  • the degree of oversupply increases, the change in the height of the solid fuel Fg deposited on the grate 126 tends to increase. Therefore, by determining the degree of excess supply in consideration of ⁇ H, the determination accuracy of the supply amount determination device 26 can be improved.
  • the operation control system 50 of the incinerator 100 according to the fourth embodiment of the present disclosure will be described.
  • the operation control system 50 includes a supply amount detection system 1 according to the first embodiment and an operation control device 52.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the operation control system 50 may include the supply amount detection system 1 according to the second embodiment or the supply amount detection system 1 according to the third embodiment instead of the supply amount detection system according to the first embodiment. ..
  • FIG. 14 is a configuration diagram schematically showing the configuration of the operation control system 50 according to the fourth embodiment of the present disclosure.
  • the operation control system 50 includes a supply amount detection system 1 and an operation control device 52.
  • the operation control system 50 and the supply amount detection system 1 may be provided as separate devices from each other, or may be provided in the same device.
  • FIG. 15 is a schematic functional block diagram of the operation control device 52 according to the fourth embodiment of the present disclosure.
  • the operation control device 52 includes a stop instruction unit 54.
  • the stop instruction unit 54 instructs the extrusion device 110 to stop the operation of the extrusion arm 124.
  • the extrusion device 110 stops the operation of the extrusion arm 124 when it receives an instruction from the stop instruction unit 54.
  • the operation control device 52 increases the amount of secondary air supplied from the air supply device 112 (secondary air supply device) to the combustion chamber 108 when the detection device 4 detects an excessive supply.
  • the operation control device 52 includes a flow rate adjusting unit 56.
  • the flow rate adjusting unit 56 instructs the air supply device 112 to increase the amount of secondary air supplied to the combustion chamber 108.
  • the air supply device 112 increases the opening degree of the second flow rate adjusting valve 142.
  • the combustion state of the solid fuel Fg in the combustion chamber 108 becomes unstable, and unburned gas such as carbon monoxide is generated.
  • an operation of stopping the supply of the solid fuel Fg to the combustion chamber 108 or an operation of supplying secondary air to the upper part of the combustion chamber 108 may be performed.
  • FIG. 16 is a diagram showing an example of an operation map.
  • the operation control device 52 stores a preset operation map M1.
  • the operation map M1 contains input information including the degree of excess supply, whether or not to stop the operation of the extrusion arm 124 (whether or not to turn on the dust supply stop operation), and the opening degree of the second flow rate control valve 142. It is a map which shows the relationship with the output information including (secondary combustion air opening degree).
  • the stop instruction unit 54 determines whether or not to stop the operation of the extrusion arm 124 with reference to the operation map M1.
  • the flow rate adjusting unit 56 determines the opening degree of the second flow rate adjusting valve 142 instructed to the air supply device 112 with reference to the operation map M1.
  • FIG. 17 is a diagram showing an example of an additional operation map.
  • the operation control device 52 stores a preset additional operation map M2.
  • the additional operation map M2 is a differential value of the operating state (dust supply state) of the extrusion arm 124, the opening degree of the second flow control valve 142 (secondary combustion air opening degree), and the temperature of the exhaust gas 143 flowing through the flue 144.
  • Input information including deviation (gas temperature differential value / deviation) and oxygen concentration / differential value in the combustion chamber 108, and whether to start the operation of the extrusion arm 124 (whether to turn off the dust supply stop operation).
  • a map showing the relationship with the output information including the opening degree (secondary combustion air opening degree) of the second flow control valve 142.
  • the stop instruction unit 54 determines whether or not to stop the operation of the extrusion arm 124 with reference to the additional operation map M2, and instructs the extrusion device 110.
  • the flow rate adjusting unit 56 determines the opening degree of the second flow rate adjusting valve 142 instructed to the air supply device 112 with reference to the additional operation map M2.
  • the amount of secondary air supplied to the combustion chamber 108 by the second flow rate control valve 142 is adjusted, but the present disclosure is not limited to this fourth embodiment.
  • the amount of secondary air supplied to the combustion chamber 108 may be adjusted by a method other than the second flow rate control valve 142.
  • the supply amount detection method of the incinerator 100 is a method of detecting the amount of solid fuel Fg supplied to the combustion chamber 108 of the incinerator 100.
  • FIG. 18 is a flowchart of a supply amount detection method for the incinerator 100 according to the embodiment of the present disclosure. As shown in FIG. 18, the supply amount detection method of the incinerator 100 captures a thermal image of the solid fuel Fg before the solid fuel Fg deposited in the feeder portion 104 of the incinerator 100 falls into the combustion chamber 108.
  • the image pickup step S1 and the detection step S2 for detecting the amount of the solid fuel Fg supplied to the combustion chamber 108 based on the time transition of the brightness information of the thermal image captured by the image pickup step S1 are provided.
  • the flame position detection step S3 for detecting the flame position X of the solid fuel Fg burned in the combustion chamber 108 and the oversupply by the detection step S2 are performed.
  • a determination step S4 for determining the degree of excess supply based on the flame position X of the solid fuel Fg detected in the flame position detection step S3 is further provided.
  • the flame position detection step S3 is located between the imaging step S1 and the detection step S2, but the present disclosure is not limited to this embodiment.
  • FIG. 19 is a flowchart showing the flow of the determination step S4 according to the embodiment of the present disclosure.
  • the process proceeds to step S41. If the amount of solid fuel Fg supplied to the combustion chamber 108 detected in the detection step S2 is excessive (step S41: Yes), the process proceeds to step S42. If the amount of solid fuel Fg supplied to the combustion chamber 108 detected in the detection step S2 is not excessive (step S41: No), the determination step S4 ends.
  • step S42 if ⁇ D is 0.5 m or more (step S42: Yes), the process proceeds to step S43. If ⁇ D is less than 0.5 m (step S42: No), the degree of oversupply is determined to be “small”, and the determination step S4 ends.
  • step S43 if ⁇ D is 0.7 m or more (step S43: Yes), the degree of oversupply is determined to be “large”, and the determination step S4 ends. If ⁇ D is less than 0.7 m (step S43: No), the degree of oversupply is determined to be “medium”, and the determination step S4 ends.
  • FIG. 20 is a flowchart of an operation control method of the incinerator 100 according to the embodiment of the present disclosure.
  • the operation control method of the incinerator 100 according to the embodiment of the present disclosure is a method including the above-mentioned supply amount detection method and the stop step S5.
  • the stop step S5 stops the supply of the solid fuel Fg to the combustion chamber 108 when the excessive supply is detected in the detection step S2.
  • the operation control method of the incinerator 100 when the supply of the solid fuel Fg to the combustion chamber 108 is stopped in the stop step S5, the supply of the solid fuel Fg to the combustion chamber 108 is stopped, depending on the degree of the excess supply determined in the determination step S4.
  • a flow rate adjusting step S6 for adjusting the opening degree (secondary combustion air opening degree) of the second flow rate control valve 142 may be further provided. If the supply of the solid fuel Fg to the combustion chamber 108 is not stopped in the stop step S5, that is, if the occurrence of excessive supply is not detected, the flow rate adjustment step S6 is not executed. ing.
  • FIG. 21 is a flowchart showing the flow of the flow rate adjusting step S6 according to the embodiment of the present disclosure.
  • the process proceeds to step S61. If the degree of excess supply is determined to be "large” or “medium” in the determination step S4 (step S61: Yes), the secondary combustion air opening degree is adjusted to 100%, and the process proceeds to step S62. If the degree of oversupply is not determined to be "large” or “medium” in the determination step S4, that is, if the degree of oversupply is determined to be "small” (step S61: No), the process proceeds to step S62. ..
  • step S62 the supply of the solid fuel Fg to the combustion chamber 108 is stopped, and the gas temperature differential value ⁇ 0 is continued for 10 seconds, or the gas temperature deviation ⁇ 5 ° C. is continued for 10 seconds. That is, when the combustion state of the solid fuel Fg becomes stable (step S62: Yes), the supply of the solid fuel Fg to the combustion chamber 108 is started, and the process proceeds to step S63. On the other hand, if the above conditions are not satisfied, that is, if the combustion state of the solid fuel Fg remains unstable due to the occurrence of excess supply (step S62: No), the process returns to step S62.
  • step S63 when the secondary combustion air opening degree is 100% (step S63: Yes), the secondary combustion air opening degree is adjusted to 40%, and the flow rate adjustment step S6 ends. If the secondary combustion air opening degree is not 100% (step S63: No), the process proceeds to step S64. In step S64, if the secondary combustion air opening degree is 40%, the process proceeds to step S65. If the secondary combustion air opening degree is not 40% (step S64: No), the flow rate adjusting step S6 ends.
  • step S65 when the oxygen concentration differential value> 0 is continued for 10 seconds or the oxygen concentration> 3% is continued for 10 seconds (step S65: Yes), the secondary combustion air opening degree is set to 10%. After adjusting, the flow rate adjusting step S6 ends. On the other hand, if the above conditions are not satisfied (step S65: No), the flow rate adjustment step S6 ends.
  • the secondary combustion air opening degree described in the operation control method of the incinerator 100 is merely an example, and may be arbitrarily set.
  • the incinerator supply amount detection system (1) detects the amount of solid fuel (Fg) supplied to the combustion chamber (108) of the incinerator (100).
  • An image pickup device (2) configured to capture an image of the solid fuel before the solid fuel deposited in the feeder portion (104) of the incinerator falls into the combustion chamber in the system.
  • the combustion chamber can be used.
  • the brightness of the image of the solid fuel immediately after the solid fuel is excessively supplied to the combustion chamber and before it falls into the combustion chamber is in the combustion chamber immediately before the solid fuel is excessively supplied to the combustion chamber.
  • the supply amount detection system of the incinerator captures an image of the solid fuel before the solid fuel deposited in the feeder portion of the incinerator falls into the combustion chamber. It includes a configured image pickup device and a detection device that detects the amount of solid fuel supplied to the combustion chamber based on the brightness information of the image captured by the image pickup device. Therefore, the supply amount detection system of the incinerator can quickly detect that the solid fuel is excessively supplied to the combustion chamber (occurrence of excessive supply).
  • the image pickup apparatus is a front surface (Fr) of the surface of the solid fuel before falling into the combustion chamber facing the combustion chamber. It was configured to capture the image of.
  • the image pickup apparatus captures an image of the front surface of the solid fuel before it falls into the combustion chamber, so that the amount of solid fuel supplied to the combustion chamber is excessive. It can be detected quickly.
  • the image has a first luminance, which is the luminance of the image at the first timing, and a second luminance later than the first timing.
  • a second luminance which is the luminance of the image and is lower than the first luminance, is included, and the detection device supplies the combustion chamber based on the value of the difference between the first luminance and the second luminance. It was configured to detect the amount of solid fuel produced.
  • the detection device has a first luminance in the first timing and a second luminance in the second timing later than the first timing, and the second luminance is lower than the first luminance.
  • the amount of solid fuel supplied to the combustion chamber is detected based on the value of the difference from the brightness. Therefore, the occurrence of excess supply can be quickly detected.
  • the detection device partitions the image of the front surface of the solid fuel into a plurality of compartment images (19). (18) and a counting unit (20) for counting the number of the compartmentalized images in which the value of the difference between the first luminance and the second luminance in each of the plurality of compartmentalized images exceeds a preset threshold value.
  • the detection device is to detect that the amount of the solid fuel supplied to the combustion chamber is excessive when the count number counted by the counting unit exceeds a preset set number. It was configured in.
  • the detection device has a section portion that divides the image of the front surface of the solid fuel before falling into the combustion chamber into a plurality of section images, and each of the plurality of section images. Includes a counting unit that counts the number of section images in which the value of the difference between the first luminance and the second luminance exceeds a preset threshold value. Then, when the count number counted by the counting unit exceeds a preset number, the detection device detects the occurrence of excess supply. Therefore, it is possible to accurately determine whether or not an excessive supply has occurred.
  • an extrusion device (110) having an extrusion arm (124) that reciprocates in the feeder portion is further provided.
  • the detection device is configured to detect the amount of the solid fuel supplied to the combustion chamber based on the moving direction of the extrusion arm.
  • the occurrence of excess supply can be quickly detected in consideration of the moving direction of the extrusion arm.
  • the image pickup apparatus includes an infrared camera.
  • the image pickup apparatus is a visible light camera (6) and a transmission incident on the visible light camera. Includes a filter device (8) that limits the wavelength to a predetermined wavelength range.
  • the solid fuel deposited in the feeder portion of the incinerator can be easily charged to the solid fuel before it falls into the combustion chamber. Images can be captured.
  • a flame position detecting device for detecting the flame position of the solid fuel burned in the combustion chamber (8). 24) When the detection device detects that the amount of the solid fuel supplied to the combustion chamber is excessive, the combustion is based on the flame position of the solid fuel detected by the flame position detection device. Further, a supply amount determining device (26) for determining the degree of excess of the amount of the solid fuel supplied to the chamber is provided.
  • the supply amount determination device determines the amount of solid fuel based on the change in the flame position of the solid fuel. The degree of excess is automatically determined. Therefore, it is possible to quickly know the degree of excess of the amount of solid fuel.
  • a protrusion length detecting device for detecting the protrusion length of the solid fuel protruding from the inlet (122) of the combustion chamber toward the combustion chamber. (40) is further provided, and the supply amount determination device considers the protrusion length of the solid fuel detected by the protrusion length detecting device, and the degree of excess of the amount of the solid fuel supplied to the combustion chamber. Is determined.
  • the supply amount determination device determines the degree of excess of the amount of solid fuel in consideration of the protrusion length of the solid fuel. Therefore, the determination accuracy of the supply amount determination device can be improved.
  • a height detecting device (42) that detects the height of the solid fuel deposited on the floor surface of the combustion chamber.
  • the supply amount determination device considers the change in the height of the solid fuel detected by the height detection device, and the degree of excess of the amount of the solid fuel supplied to the combustion chamber. Is determined.
  • the supply amount determination device determines the degree of excess of the amount of solid fuel in consideration of the change in the height of the solid fuel. Therefore, the determination accuracy of the supply amount determination device can be improved.
  • the incinerator operation control system (50) according to the present disclosure is detected by the incinerator supply amount detection system according to any one of (1) to (10) above and the detection device.
  • An operation control device (52) configured to stop the supply of the solid fuel to the combustion chamber when the amount of the solid fuel supplied to the combustion chamber is excessive is provided.
  • the operation control device is further provided with a secondary air supply device (112) for supplying secondary air to the upper part of the combustion chamber. Increases the amount of the secondary air supplied from the secondary air supply device to the combustion chamber when the amount of the solid fuel supplied to the combustion chamber detected by the detection device is excessive. It was configured to let you.
  • the method for detecting the supply amount of the incinerator according to the present disclosure is a method for detecting the supply amount of the incinerator that detects whether the amount of solid fuel supplied to the combustion chamber of the incinerator is excessive, and is the above-mentioned incineration.
  • a detection step (S2) for detecting the amount of the solid fuel supplied to the combustion chamber is provided.
  • the imaging step captures an image of the solid fuel before the solid fuel deposited in the feeder portion of the incinerator falls into the combustion chamber.
  • the detection step detects the amount of solid fuel supplied to the combustion chamber based on the luminance information of the image captured by the imaging step. Therefore, it is possible to quickly detect that the solid fuel is excessively supplied to the combustion chamber.
  • the flame position detection step (S3) for detecting the flame position of the solid fuel burned in the combustion chamber and the detection step for detecting the flame position are detected.
  • the amount of the solid fuel supplied to the combustion chamber is excessive, the solid fuel supplied to the combustion chamber is based on the flame position of the solid fuel detected in the flame position detection step.
  • a determination step (S4) for determining the degree of excess of the amount is further provided.
  • the determination step is based on the change in the flame position of the solid fuel detected in the flame position detection step.
  • the degree of excess of the amount of solid fuel is automatically determined. Therefore, it is possible to quickly know the degree of excess of the amount of solid fuel.
  • the incinerator operation control method includes the incinerator supply amount detecting method according to (13) or (14) above, and the incinerator supplied to the combustion chamber detected by the detection step.
  • a stop step (S5) for stopping the supply of the solid fuel to the combustion chamber when the amount of the solid fuel is excessive is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

焼却炉の燃焼室に供給される固体燃料の量を検知する焼却炉の供給量検知システムは、焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像を撮像するように構成された撮像装置と、撮像装置によって撮像された画像に基づいて、燃焼室に供給された固体燃料の量を検知する検知装置と、を備える。

Description

焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法
 本開示は、焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法に関する。
 焼却炉は、例えば、特許文献1~3に開示されているように、固体燃料(例えば、ごみやバイオマス)を燃焼可能な燃焼室と、燃焼室に固体燃料を供給する燃料供給装置と、を備える。
特開2019-132485号公報 特開2017-116252号公報 特開2003-161422号公報
 燃焼室内における固体燃料の燃焼状態を安定させるため、例えば、燃料供給装置は、燃焼室に供給する固体燃料の量や供給タイミングを調整するように構成されている。しかし、固体燃料は性状が不均質であることが多く、固体燃料同士で互いに絡みあったり付着しあったりして団塊化する場合がある。この団塊化した固体燃料は、燃料供給装置が作動しても、燃焼室内を落下せず、燃焼室内にせり出した状態となることがある。そして、この団塊化した固体燃料が意図しないタイミングで崩落して、一度に多くの固体燃料が燃焼室に供給される現象(以下、過剰供給とする)が発生する。過剰供給が発生すると、燃焼室内における固体燃料の燃焼状態が不安定になるので、燃焼状態を安定させるための操作を迅速に行う必要がある。このため、過剰供給の発生を速やかに検知できることが望ましい。
 本開示は、上述の課題に鑑みてなされたものであって、燃焼室に固体燃料が過剰供給されたことを速やかに検知可能な焼却炉の供給量検知システム、この供給量検知システムを備える焼却炉の運転制御システム、焼却炉の供給量検知方法、及びこの供給量検知方法を備える焼却炉の運転制御方法を提供することを目的とする。
 上記目的を達成するため、本開示に係る焼却炉の供給量検知システムは、焼却炉の燃焼室に供給される固体燃料の量を検知する焼却炉の供給量検知システムであって、前記焼却炉のフィーダ部に堆積している前記固体燃料が前記燃焼室に落下する前の前記固体燃料の画像を撮像するように構成された撮像装置と、前記撮像装置によって撮像された前記画像に基づいて、前記燃焼室に供給された前記固体燃料の量を検知する検知装置と、を備える。
 本開示の供給量検知システムによれば、燃焼室に固体燃料が過剰供給されたことを速やかに検知可能である。
本開示の第1実施形態に係る供給量検知システムが適用される焼却炉の構成を示す概略図である。 本開示の別の実施形態に係る撮像画像の構成を示す概略図である。 本開示の第1実施形態に係る検知装置の概略的な機能ブロック図である。 過剰供給の発生直後における固体燃料の前面の熱画像の一例を示す図である。 過剰供給の発生直前における固体燃料の前面の熱画像の一例を示す図である。 燃焼室に落下する前の固体燃料の前面の熱画像の輝度を示すグラフである。 本開示の第2実施形態に係る検知装置の概略的な機能ブロック図である。 本開示の第2実施形態に係る区画部の機能を説明するための図である。 本開示の第3実施形態に係る供給量検知システムの構成を概略的に示す構成図である。 本開示の第3実施形態に係る火炎位置検知装置の構成を概略的に示す構成図である。 燃焼室内で発生する火炎の画像を2値化した一例を示す図である。 過剰供給が発生した時の火炎位置の差分を示すグラフである。 本開示の第3実施形態に係るせり出し長検知装置及び高さ検知装置の動作を説明するための図である。 本開示の第4実施形態に係る運転制御システムの構成を概略的に示す構成図である。 本開示の第4実施形態に係る運転制御装置の概略的な機能ブロック図である。 操作マップの一例を示す図である。 追加操作マップの一例を示す図である。 本開示の一実施形態に係る焼却炉の供給量検知方法のフローチャートである。 本開示の一実施形態に係る判定ステップのフローを示すフローチャートである。 本開示の一実施形態に係る焼却炉の運転制御方法のフローチャートである。 本開示の一実施形態に係る流量調整ステップのフローを示すフローチャートである。
 以下、本開示の実施の形態による焼却炉の供給量検知システム、この供給量検知システムを備える焼却炉の運転制御システム、焼却炉の供給量検知方法、及びこの供給量検知方法を備える焼却炉の運転制御方法について、図面に基づいて説明する。かかる実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
 <第1実施形態>
 (焼却炉の構成)
 図1は、本開示の第1実施形態に係る供給量検知システム1が適用される焼却炉100の構成を示す概略図である。図1に示す例示的な形態では、焼却炉100は、都市ごみ、産業廃棄物、又はバイオマスなどを固体燃料Fgとするストーカ式のごみ焼却炉である。尚、焼却炉100は、ストーカ式のごみ焼却炉に限定されない。
 図1に示すように、焼却炉100は、ホッパー102と、フィーダ部104と、燃焼室108と、押出装置110(給じん装置)と、空気供給装置112と、熱回収ボイラ114と、減温塔116と、集じん装置118と、煙突120と、を含む。
 フィーダ部104は、燃焼室108に向かって延びる通路である。フィーダ部104は、ホッパー102に投入された固体燃料Fgが堆積するように構成されている。焼却炉100内を固体燃料Fgが移動する方向を移動方向W1とすると、フィーダ部104の移動方向W1の下流側の下流側端部121(フィーダ部104の燃焼室108側の端部)は燃焼室108の受入口122と接続している。
 押出装置110は、フィーダ部104に堆積した固体燃料Fgを、受入口122を介して燃焼室108に押し出すための押出アーム124を有する。押出アーム124は、フィーダ部104内を移動方向W1の上流側から下流側、及び下流側から上流側に向かって移動可能であるように構成されている。つまり、押出アーム124は、フィーダ部104内をフィーダ部104の延在方向(水平方向)に沿って往復運動する。
 燃焼室108は、受入口122を介して燃焼室108に押し出された固体燃料Fgが落下する火格子126(ストーカ)を含む。この火格子126は、燃焼室108の床部に相当する。火格子126は、火格子126上の固体燃料Fgを受入口122から離れていく方向(移動方向W1の上流側から下流側)に移動させるように構成されている。また、燃焼室108は、移動方向W1の上流側から下流側に向かって順番に並ぶ乾燥領域128、燃焼領域130、及び後燃焼領域132、を含む。乾燥領域128は、燃焼室108内の熱によって固体燃料Fgを乾燥させる。燃焼領域130は、火炎131を上げて固体燃料Fgを燃焼させる。後燃焼領域132は、燃焼領域130で燃え切らなかった燃え切りを完全燃焼させる。燃焼室108で乾燥、燃焼、後燃焼された固体燃料Fgは灰135となり、焼却炉100外に排出される。
 空気供給装置112は、固体燃料Fgの燃焼に用いられる1次空気、及び、固体燃料Fgの燃焼によって発生した一酸化炭素のような未燃ガスの濃度低減に用いられる2次空気を燃焼室108に供給するように構成される。図1に示す例示的な形態では、空気供給装置112は、空気供給管136と、空気供給管136に設けられたブロワ138と、を含む。空気供給管136を流通する空気は、一部が1次空気として第1流量調節弁140を介して火格子126から燃焼室108の下部に供給されるとともに、残りの一部が2次空気として第2流量調節弁142を介して燃焼室108の側壁から燃焼室108の上部に供給されるようになっている。空気供給装置112は、燃焼室108の上部に2次空気を供給する2次空気供給装置として機能する。尚、図1に示す例示的な形態では、燃焼室108の乾燥領域128、燃焼領域130、及び後燃焼領域132のそれぞれに1次空気が供給されるように構成されている。
 熱回収ボイラ114、減温塔116、集じん装置118、及び煙突120のそれぞれは、固体燃料Fgが燃焼して生成される排ガス143が流通する焼却炉100の煙道144に設けられる。排ガス143は、熱回収ボイラ114、減温塔116、集じん装置118、煙突120の順に流通する。熱回収ボイラ114は、排ガス143の熱エネルギから蒸気を生成する。減温塔116は、熱回収ボイラ114を通過した排ガス143の温度を下げる。集じん装置118は、減温塔116を通過した排ガス143に含まれる飛灰を捕集する。煙突120は、集じん装置118を通過した排ガス143を焼却炉100の外部に排気する。尚、熱回収ボイラ114で生成した蒸気は、不図示の蒸気タービンに供給されるように構成されてもよい。
 (供給量検知システムの構成)
 上述した焼却炉100に適用される供給量検知システム1は、燃焼室108に供給される固体燃料Fgの量を検知する。図1に示すように、供給量検知システム1は、撮像装置2と、検知装置4と、を備える。
 撮像装置2は、焼却炉100のフィーダ部104に堆積している固体燃料Fgが燃焼室108に落下する前の固体燃料Fgの熱画像を撮像するように構成されている。撮像装置2によって撮像された固体燃料Fgの熱画像は、リアルタイムで検知装置4に送られるようになっている。図1に示す例示的な形態では、撮像装置2は、燃焼室108に落下する前の固体燃料Fgの表面のうち燃焼室108に対向する前面Frの熱画像を撮像するように、燃焼室108の後燃焼領域132より移動方向W1の下流側に位置する燃焼室108の炉尻145に設けられている。この撮像装置2は、燃焼室108の受入口122からせり出した固体燃料Fgの前面Frの熱画像を撮像可能となっている。尚、固体燃料Fgの前面Frの熱画像を撮像可能であるならば、撮像装置2は燃焼室108の炉尻145以外に設けられてもよい。
 撮像装置2は、例えば、赤外カメラであって、火炎131からの放射が少ない所定の波長域の赤外線を検出する。この場合、所定の波長域の範囲は、例えば、2μm以上5μm以下である。より火炎131の影響を抑制して固体燃料Fgの前面Frの熱画像を撮像するためには、所定の波長域の範囲は3.8μm以上4.2μm以下である。尚、熱画像として撮像する対象波長域は、0.8μm~1000μmである。この波長域にバンドパスフィルタ等をとおす事で、必要に応じて、一部の波長のみを使う運用も可能である。
 撮像装置2は、火炎131超しに固体燃料Fgの前面Frの熱画像を撮像可能であるならば赤外カメラに限定されない。幾つかの実施形態では、図2に示すように、撮像装置2は、可視光カメラ6と、可視光カメラ6に入射する透過波長を所定の波長域に制限するフィルタ装置8と、を含む。
 検知装置4は、撮像装置2によって撮像された熱画像の輝度情報の時間推移に基づいて、燃焼室108に供給された固体燃料Fgの量を検知する。より具体的には、検知装置4は、撮像装置2によって撮像された熱画像の輝度情報の時間推移における輝度情報の変化量に基づいて、燃焼室108に供給された固体燃料Fgの量を検知する。図3は、本開示の第1実施形態に係る検知装置4の概略的な機能ブロック図である。
 図3に示すように、検知装置4は、熱画像取得部10と、輝度情報出力部12と、記憶部14と、判定部16と、を含む。検知装置4は、電子制御装置などのコンピュータであって、図示しないCPUやGPUといったプロセッサ、ROMやRAMといったメモリ、及びI/Oインターフェイスなどを備える。検知装置4は、メモリにロードされたプログラムの命令に従ってプロセッサが動作(演算等)することで、検知装置4が備える上記の各機能部を実現する。
 熱画像取得部10は、撮像装置2によって撮像された固体燃料Fgの前面Frの熱画像を受け取る。熱画像取得部10は、受け取った熱画像を輝度情報出力部12に送る。図4は、燃焼室に固体燃料が過剰供給された直後(過剰供給の発生直後)における固体燃料Fgの前面Frの熱画像の一例を示す図である。図5は、燃焼室に固体燃料が過剰供給される直前(過剰供給の発生直前)における固体燃料Fgの前面Frの熱画像の一例を示す図である。図4及び図5に示す熱画像において、色が濃くなるほど輝度が低くなり(暗くなり)、色が薄くなるほど輝度が高く(明るく)なっている。
 輝度情報出力部12は、熱画像取得部10から熱画像を受け取り、輝度を含む熱画像の輝度情報を出力する。輝度情報出力部12は、出力した熱画像の輝度情報を記憶部14と判定部16とのそれぞれに送る。
 記憶部14は、輝度情報出力部12から受け取った熱画像の輝度情報を記憶する。
 判定部16は、輝度情報出力部12から受け取った熱画像の輝度情報と記憶部14に記憶されている熱画像の輝度情報とを比較し、燃焼室108に供給された固体燃料Fgの量を検知する。つまり、判定部16は、リアルタイムで出力された熱画像の輝度情報と、リアルタイムで出力された熱画像の輝度情報より以前に出力された熱画像の輝度情報とを比較し、燃焼室108に供給された固体燃料Fgの量を検知する。そして、判定部16は、リアルタイムで取得された輝度と、リアルタイムで出力された輝度より以前に出力された輝度との差分ΔYの値が予め設定された閾値を超えると、燃焼室108に供給された固体燃料Fgの量が過剰である(過剰供給の発生有り)と判定する。尚、不図示ではあるが、過剰供給の発生有りと判定されると、ディスプレイやアラームのような通知装置によって、作業員に過剰供給の発生を通知するようになっていてもよい。
 また、判定部16は、第1タイミングにおける熱画像の輝度である第1輝度と、第1タイミングよりも遅い第2タイミングにおける熱画像の輝度であって、第1輝度よりも低い第2輝度との差分に基づいて、過剰供給の発生有無を判定してもよい。図1に示す例示的な形態では、第1輝度は、記憶部14に記憶されている熱画像の輝度情報に含まれる輝度である。第2輝度は、輝度情報出力部12からリアルタイムで受け取った熱画像の輝度情報に含まれる輝度である。尚、第1タイミングと第2タイミングとの間の時間差は、例えば、固体燃料Fgの前面Frの乾燥の進行の早さに基づいて予め決められてもよく、第2タイミングが第1タイミングより遅いタイミングであるならば特に限定されない。第2タイミング(リアルアイム)は、例えば、第1タイミングから1秒後のタイミングであってもよいし、第1タイミングから0.1秒後のタイミングであってもよい。
 (供給量検知システムの作用・効果)
 本開示の第1実施形態に係る供給量検知システム1の作用・効果について説明する。図6は、燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像の輝度を示したグラフであって、縦軸が輝度を、横軸が時間を示す。t1及びt2は、過剰供給が実際に発生した時間である。本発明者らの鋭意検討によれば、図6に示すように、過剰供給が実際に発生したt1及びt2のときには、固体燃料Fgの前面Frの熱画像の輝度の減少が著しい。このため、固体燃料Fgの前面Frの熱画像の輝度を監視することで、過剰供給の発生を速やかに検知可能であることを見出した。図4及び図5に示すように、過剰供給の発生直後における燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像の輝度(図4参照)は、過剰供給の発生直前における燃焼室108に落下する前の固体燃料Fg(つまりは、受入口122からせり出ている固体燃料Fg)の前面Frの熱画像の輝度(図5参照)と比較して低い。これは、固体燃料Fgの前面Frは燃焼室108内の熱によって乾燥されるのに対して、固体燃料Fgの内部は固体燃料Fgの前面Frほど乾燥されないためである。つまり、過剰供給の発生によって固体燃料Fgの内部が露出されることで、燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像の輝度が低くなる。
 第1実施形態によれば、焼却炉100の供給量検知システム1は、焼却炉100のフィーダ部104に堆積している固体燃料Fgが燃焼室108に落下する前の固体燃料Fgの熱画像を撮像するように構成された撮像装置2と、撮像装置2によって撮像された熱画像の輝度情報の時間推移に基づいて、燃焼室108に供給された固体燃料Fgの量を検知する検知装置4と、を備える。このため、焼却炉100の供給量検知システム1は、過剰供給の発生を速やかに検知できる。
 また、本発明者らの鋭意検討によれば、燃焼室108に落下する前の固体燃料Fgの前面Frは、燃焼室108に対向しているので、燃焼室108の熱による乾燥の進行が、固体燃料Fgの前面Fr以外の表面と比較して早い。つまり、燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像を監視できれば、過剰供給の発生を速やかに検知可能であることを見出した。第1実施形態によれば、撮像装置2は、燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像を撮像するので、過剰供給の発生を速やかに検知することができる。
 尚、焼却炉100は、焼却炉100の状態を示すプラントデータを計測するためのセンサを備え、検知装置4の判定部16は、プラントデータを考慮して、過剰供給の発生有無を判定してもよい。例えば、焼却炉100は、燃焼室108内の圧力を計測するための圧力センサ、煙道144を流通する排ガス143の温度を計測するための温度センサ、燃焼室108内の酸素濃度を計測するための酸素濃度センサを備える。そして、検知装置4の判定部16は、燃焼室108内の圧力、排ガス143の温度、燃焼室108内の酸素濃度を考慮して、過剰供給の発生有無を判定する。また、他の実施形態では、判定部16は、熱画像の輝度情報の時間推移に代わり、プラントデータに基づいて、過剰供給の発生有無を判定してもよい。
 <第2実施形態>
 本開示の第2実施形態に係る供給量検知システム1について説明する。第2実施形態は、検知装置4に区画部18、カウント部20及び、押出方向取得部22がさらに設けられている点で第1実施形態とは異なるが、それ以外の構成は第1実施形態で説明した構成と同じである。第2実施形態において、第1実施形態の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図7は、本開示の第2実施形態に係る検知装置4の概略的な機能ブロック図である。図7に示すように、検知装置4は、区画部18と、カウント部20と、をさらに含む。
 区画部18は、熱画像取得部10から固体燃料Fgの前面Frが撮像された熱画像を受け取り、該熱画像を複数の区画画像19に区画する。例えば、図8に示すように、区画部18は、熱画像上で受入口122が位置する領域Pを第1方向W2(鉛直方向)と第1方向と直交する第2方向W3(水平方向)とに区画し、鉛直方向及び水平方向に沿って格子状に配列された複数の区画画像19を形成する。
 輝度情報出力部12は、区画部18を介して、熱画像取得部10から熱画像を受け取り、区画画像19ごとに輝度を出力する。輝度情報出力部12は、出力した区画画像19ごとの輝度を記憶部14と判定部16とのそれぞれに送る。記憶部14は、輝度情報出力部12から受け取った区画画像19ごとの輝度を記憶する。
 カウント部20は、記憶部14に記憶されている第1タイミングにおける区画画像19ごとの輝度と輝度情報出力部12から受け取った第2タイミングにおける区画画像19ごとの輝度とを比較する。そして、カウント部20は、第1タイミングにおける複数の区画画像19の各々における輝度(第1輝度)と、第2タイミングにおける複数の区画画像19の各々における輝度(第2輝度)との差分の値が予め設定された閾値を超えた区画画像19の数をカウントする。判定部16は、カウント部20によってカウントされたカウント数が予め設定された設定数を超えると、過剰供給の発生有りと判定する。尚、幾つかの実施形態では、区画画像19ごとにカウント数にカウントされる数が異なっていてもよい。例えば、上方区画画像19A(19)は、上方区画画像19Aより下方(第1方向W2の一方)に位置する下方区画画像19B(19)と比較して、カウント数にカウントされる数が大きい。下方区画画像19Bにおける第1輝度と第2輝度との差分が閾値を超えると、カウント数が1つ増えるのに対し、上方区画画像19Aにおける第1輝度と第2輝度との差分が閾値を超えると、カウント数が2つ増える。
 燃焼室108に落下する前の固体燃料Fgの前面Frの熱画像のごく一部の輝度が低くなっただけでは、過剰供給が発生していない可能性がある。第2実施形態によれば、検知装置4は、固体燃料Fgの前面Frの熱画像を複数の区画画像19に区画し、第1輝度と第2輝度との差分(輝度の減少)の値が閾値を超えた区画画像19の数(カウント数)が設定数を超えると、過剰供給が発生したと判定する。このため、過剰供給の発生有無を高精度に切り分けることができる。
 また、図7に示すように、検知装置4は、押出方向取得部22をさらに含んでもよい。押出方向取得部22は、押出装置110の押出アーム124が移動する方向を取得する。そして、判定部16は、押出方向取得部22が取得した押出アーム124の移動方向を受け取り、押出アーム124が燃焼室108から離れる方向に退行している間に限って、過剰供給の発生有無を判定する。つまり、判定部16は、押出アーム124がフィーダ部104内を移動方向W1の下流側から上流側に向かって移動していると、過剰供給発生の判定を行う。他方で、判定部16は、押出アーム124がフィーダ部104内を移動方向W1の上流側から下流側に向かって移動していると、過剰供給発生の判定を行わない。
 押出アーム124がフィーダ部104内を移動方向W1の上流側から下流側に向かって進行している間は、フィーダ部104に堆積した固体燃料Fgを押し出して、燃焼室108に固体燃料Fgを供給している状態である。他方で、押出アーム124がフィーダ部104内を移動方向W1の下流側から上流側に向かって退行している間は、フィーダ部104に堆積した固体燃料Fgの押し出しを意図しておらず、燃焼室108に固体燃料Fgが供給されない状態である。過剰供給発生の検知は、燃焼室108に固体燃料Fgが供給されない状態のときに行われれば十分な場合がある。第2実施形態によれば、押出アーム124が燃焼室108から離れる方向に退行している間に限って、判定部16によって過剰供給の発生有無が判定される。このため、検知装置4は、燃焼室108に固体燃料Fgが供給されない状態のときに、過剰供給の発生を速やかに検知することができる。尚、第2実施形態では、押出アーム124が退行している際に、過剰供給発生の検知が行われることを例示したが、本開示はこの実施形態に限定されず、押出アーム124が進行している際に過剰供給発生の検知が行われてもよい。
 <第3実施形態>
 本開示の第3実施形態に係る供給量検知システム1について説明する。第3実施形態は、火炎位置検知装置24と、供給量判定装置26と、せり出し長検知装置40と、高さ検知装置42と、がさらに設けられている点で第1実施形態とは異なるが、それ以外の構成は第1実施形態で説明した構成と同じである。第3実施形態において、第1実施形態の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。尚、第3実施形態は、第2実施形態で説明した供給量検知システム1をさらに限定したものであってもよい。
 図9は、本開示の第3実施形態に係る供給量検知システム1の構成を概略的に示す構成図である。図9に示すように、供給量検知システム1は、火炎位置検知装置24と、供給量判定装置26と、をさらに備える。
 火炎位置検知装置24は、燃焼室108で燃焼される固体燃料Fgの火炎位置Xを検知する。図10は、本開示の第3実施形態に係る火炎位置検知装置24の構成を概略的に示す構成図である。図10に示す例示的な形態では、火炎位置検知装置24は、第1カメラ28と、第1カメラ28で撮像された画像に基づいて、燃焼室108で燃焼される固体燃料Fgの火炎位置Xを決定する火炎位置決定装置30と、を含む。
 第1カメラ28は、撮像した画像に燃焼領域130と後燃焼領域132との境界133が含まれるように、火炎131を上方から撮像する。尚、火炎131を上方から撮像可能であるならば、上述した撮像装置2を第1カメラ28として設けてもよい。火炎位置決定装置30は、第1画像取得部32と、火炎位置決定部34と、を含む。第1画像取得部32は、第1カメラ28で撮像された画像を受け取り、該画像を火炎位置決定部34に送る。火炎位置決定部34は、図11に示すように、第1画像取得部32から送られた画像を特定の輝度以上の部分(第1部分36)と特定の輝度未満の部分(第2部分38)とに置き換える。つまり、火炎位置決定部34は、第1カメラ28によって撮像された画像を2値化する。そして、火炎位置決定部34は、移動方向W1において、第1部分36の下流端を固体燃料Fgの火炎位置Xとして決定する。また、火炎位置決定部34は、火炎終端に相当する火炎位置Xと境界133との間の距離Dを算出する。このようにして、火炎位置検知装置24は、固体燃料Fgの火炎位置Xを検知する。尚、火炎位置決定部34は、火炎位置Xが境界133より移動方向W1の下流側(後燃焼領域132側)に位置するときの距離Dを正の値として算出し、火炎位置Xが境界133より移動方向W1の上流側(燃焼領域130側)に位置するときの距離Dを負の値として算出する。
 供給量判定装置26は、火炎位置検知装置24によって検知された固体燃料Fgの火炎位置X及び距離Dを記憶(蓄積)する。そして、供給量判定装置26は、検知装置4によって過剰供給の発生が検知されると、過剰供給が発生する直前の第1タイミングにおける固体燃料Fgの火炎位置Xと、過剰供給が発生した直後の第2タイミングにおける固体燃料Fgの火炎位置Xとの移動方向W1における差分であるΔD(火炎位置Xの変化の差分)に基づいて、過剰供給の程度を判定する。供給量判定装置26は過剰供給の程度を、例えば、「大」、「中」、「小」というように複数のレベルに分類する。
 過剰供給の程度が小さくなると、固体燃料Fgの火炎位置Xの変化も小さくなり、過剰供給の程度が大きくなると、固体燃料Fgの火炎位置Xの変化も大きくなる。第3実施形態によれば、検知装置4によって過剰供給の発生が検知されると、ΔDに基づいて、過剰供給の程度を自動で判定する。このため、過剰供給の程度を速やかに知ることができる。
 図12は、検知装置4が過剰供給の発生を検知した時の火炎位置の差分を示すグラフである。t3~t9のそれぞれは、検知装置4が過剰供給の発生を検知した時間である。検知装置4は、上述したように、2次元の情報である熱画像の輝度情報の時間推移に基づいて、過剰供給の発生を検知している。このため、図12に示すように、t5、t6及びt9で検知装置4が過剰供給の発生を検知したとしても、過剰供給の程度が小さい、又は、「過剰供給」というほど燃焼室108に固体燃料Fgが過剰供給されておらず、燃焼室108内における固体燃料Fgの燃焼状態を安定させるための操作を行わなくて済む場合がある。第3実施形態によれば、検知装置4によって過剰供給の発生が検知されると、供給量判定装置26によって過剰供給の程度が自動で判定されるので、燃焼状態を安定させるための操作が不必要に行われることを抑制できる。
 また、図9に示すように、供給量検知システム1は、せり出し長検知装置40をさらに備えてもよい。せり出し長検知装置40は、図13に示すように、燃焼室108の受入口122から燃焼室108に向かってせり出す固体燃料Fgのせり出し長Lを検知する。図13に示す例示的な形態では、せり出し長検知装置40は、移動方向W1において、燃焼室108の受入口122と固体燃料Fgの前面Frのうち最も下流側に位置する部分Fr1との間の大きさをせり出し長Lとして検知している。供給量判定装置26は、せり出し長検知装置40によって検知されたせり出し長Lを記憶(蓄積)する。そして、検知装置4によって過剰供給の発生が検知されると、過剰供給が発生する直前の第1タイミングにおける固体燃料Fgのせり出し長Lと、過剰供給が発生した直後の第2タイミングにおける固体燃料Fgのせり出し長Lとの差分であるΔLを考慮して、過剰供給の程度を判定する。
 固体燃料Fgのせり出し長Lが大きくなると、過剰供給の程度が大きくなりやすい。このため、ΔLを考慮して過剰供給の程度を判定することで、供給量判定装置26の判定精度を高めることができる。
 また、図9に示すように、供給量検知システム1は、高さ検知装置42をさらに備えてもよい。高さ検知装置42は、図13に示すように、燃焼室108の火格子126(床面)上に堆積された固体燃料Fgの高さHを検知する。図13に示す例示的な形態では、高さ検知装置42は、乾燥領域128に含まれる火格子126上の受入口122に近接した所定位置127に堆積する固体燃料Fgの高さHを検知している。供給量判定装置26は、高さ検知装置42によって検知された高さHを記憶(蓄積)する。そして、検知装置4によって過剰供給の発生が検知されると、過剰供給が発生する直前の第1タイミングにおける固体燃料Fgの高さHと、過剰供給が発生した直後の第2タイミングにおける固体燃料Fgの高さHとの差分であるΔHを考慮して、過剰供給の程度を判定する。
 過剰供給の程度が大きくなると、火格子126上に堆積された固体燃料Fgの高さの変化が大きくなりやすい。このため、ΔHを考慮して過剰供給の程度を判定することで、供給量判定装置26の判定精度を高めることができる。
 <第4実施形態>
 本開示の第4実施形態に係る焼却炉100の運転制御システム50について説明する。運転制御システム50は、第1実施形態に係る供給量検知システム1と、運転制御装置52と、を備える。第4実施形態において、第1実施形態の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。尚、運転制御システム50は、第1実施形態に係る供給量検知システムに代わり、第2実施形態に係る供給量検知システム1、又は第3実施形態に係る供給量検知システム1を備えてもよい。
 図14は、本開示の第4実施形態に係る運転制御システム50の構成を概略的に示す構成図である。図14に示すように、運転制御システム50は、供給量検知システム1と、運転制御装置52と、を備える。尚、運転制御システム50及び供給量検知システム1は、互いに別々の装置として設けられてもよいし、同じ1つの装置内に設けられてもよい。
 運転制御装置52は、検知装置4によって過剰供給の発生が検知されると、燃焼室108への固体燃料Fgの供給を停止する。図15は、本開示の第4実施形態に係る運転制御装置52の概略的な機能ブロック図である。図15に示す例示的な形態では、運転制御装置52は、停止指示部54を備える。停止指示部54は、検知装置4によって過剰供給の発生が検知されると、押出装置110に押出アーム124の動作を停止するように指示する。押出装置110は、停止指示部54の指示を受けると、押出アーム124の動作を停止する。
 また、運転制御装置52は、検知装置4によって過剰供給が検知された場合に、空気供給装置112(2次空気供給装置)から燃焼室108に供給される2次空気の量を増加させる。図15に示す例示的な形態では、運転制御装置52は、流量調整部56を備える。流量調整部56は、検知装置4によって過剰供給が検知されると、空気供給装置112に燃焼室108に供給される2次空気の量を増加するように指示する。空気供給装置112は、流量調整部56の指示を受けると、第2流量調節弁142の開度を大きくする。
 過剰供給が発生すると、燃焼室108内における固体燃料Fgの燃焼状態が不安定になり、一酸化炭素のような未燃ガスが発生する。この未燃ガスの濃度を低減するため、燃焼室108への固体燃料Fgの供給を停止する操作や燃焼室108の上部に2次空気を供給する操作が行われることがある。第4実施形態によれば、過剰供給の発生を検知した場合における操作のうち燃焼室108への固体燃料Fgの供給を停止する操作を自動化することができる。また、過剰供給の発生を検知した場合における操作のうち燃焼室108に供給される2次空気の量を増加させる操作を自動化することができる。
 尚、運転制御システム50が第3実施形態に係る供給量検知システム1を備える場合、過剰供給の程度に応じた操作が自動的に行われるように構成されてもよい。図16は、操作マップの一例を示す図である。例えば、図16に示す例示的な形態では、運転制御装置52は、予め設定された操作マップM1を記憶している。操作マップM1は、過剰供給の程度を含む入力情報と、押出アーム124の動作を停止するか否か(給じん停止操作をONにするか否か)、及び第2流量調節弁142の開度(二次燃焼空気開度)を含む出力情報との関係を示すマップである。そして、停止指示部54は、この操作マップM1を参照して、押出アーム124の動作を停止するか否かを決定する。流量調整部56は、この操作マップM1を参照して、空気供給装置112に指示する第2流量調節弁142の開度を決定する。
 また、運転制御装置52は、操作マップM1に基づく操作が行われた後に、プラントデータに応じて追加操作が自動的に行われるように構成されてもよい。図17は、追加操作マップの一例を示す図である。例えば、図17に示す例示的な形態では、運転制御装置52は、予め設定された追加操作マップM2を記憶している。追加操作マップM2は、押出アーム124の運転状態(給じん状態)、第2流量調節弁142の開度(二次燃焼空気開度)、煙道144を流通する排ガス143の温度の微分値・偏差(ガス温度微分値・偏差)、及び燃焼室108内の酸素濃度・微分値を含む入力情報と、押出アーム124の動作を開始するか否か(給じん停止操作をOFFにするか否か)、及び第2流量調節弁142の開度(二次燃焼空気開度)を含む出力情報との関係を示すマップである。そして、停止指示部54は、この追加操作マップM2を参照して、押出アーム124の動作を停止するか否かを決定して、押出装置110に指示する。流量調整部56は、この追加操作マップM2を参照して、空気供給装置112に指示する第2流量調節弁142の開度を決定する。尚、第4実施形態では、第2流量調節弁142によって燃焼室108に供給される2次空気の量を調整していたが、本開示はこの第4実施形態に限定されない。第2流量調節弁142以外の方法で、燃焼室108に供給される2次空気の量を調整してもよい。
 (供給量検知方法)
 焼却炉100の供給量検知方法は、焼却炉100の燃焼室108に供給される固体燃料Fgの量を検知する方法である。図18は、本開示の一実施形態に係る焼却炉100の供給量検知方法のフローチャートである。図18に示すように、焼却炉100の供給量検知方法は、焼却炉100のフィーダ部104に堆積している固体燃料Fgが燃焼室108に落下する前の固体燃料Fgの熱画像を撮像する撮像ステップS1と、撮像ステップS1によって撮像された熱画像の輝度情報の時間推移に基づいて、燃焼室108に供給された固体燃料Fgの量を検知する検知ステップS2と、を備える。
 また、図18に示すように、焼却炉100の供給量検知方法は、燃焼室108で燃焼される固体燃料Fgの火炎位置Xを検知する火炎位置検知ステップS3と、検知ステップS2によって過剰供給の発生が検知されると、火炎位置検知ステップS3において検知された固体燃料Fgの火炎位置Xに基づいて、過剰供給の程度を判定する判定ステップS4と、をさらに備える。尚、図18に示す例示的な形態によれば、火炎位置検知ステップS3は、撮像ステップS1と検知ステップS2との間に位置しているが、本開示はこの実施形態に限定されない。
 図19は、本開示の一実施形態に係る判定ステップS4のフローを示すフローチャートである。図19に示すように、判定ステップS4が開始すると、ステップS41に進む。検知ステップS2で検知された燃焼室108に供給された固体燃料Fgの量が過剰であると(ステップS41:Yes)、ステップS42に進む。検知ステップS2で検知された燃焼室108に供給された固体燃料Fgの量が過剰でないと(ステップS41:No)、判定ステップS4は終了する。
 ステップS42では、ΔDが0.5m以上であると(ステップS42:Yes)、ステップS43に進む。ΔDが0.5m未満であると(ステップS42:No)、過剰供給の程度を「小」と判定して、判定ステップS4は終了する。
 ステップS43では、ΔDが0.7m以上であると(ステップS43:Yes)、過剰供給の程度を「大」と判定して、判定ステップS4は終了する。ΔDが0.7m未満であると(ステップS43:No)、過剰供給の程度を「中」と判定して、判定ステップS4は終了する。
 (運転制御方法)
 図20は、本開示の一実施形態に係る焼却炉100の運転制御方法のフローチャートである。図20に示すように、本開示の一実施形態に係る焼却炉100の運転制御方法は、上述した供給量検知方法と、停止ステップS5と、を備える方法である。停止ステップS5は、検知ステップS2で過剰供給が検知された場合に、燃焼室108への固体燃料Fgの供給を停止する。
 また、図20に示すように、焼却炉100の運転制御方法は、停止ステップS5で燃焼室108への固体燃料Fgの供給を停止すると、判定ステップS4で判定した過剰供給の程度に応じて、第2流量調節弁142の開度(二次燃焼空気開度)を調節する流量調整ステップS6をさらに備えてもよい。尚、停止ステップS5で燃焼室108への固体燃料Fgの供給を停止していない場合には、つまりは過剰供給の発生が検知されていない場合には、流量調整ステップS6は実施されないようになっている。
 図21は、本開示の一実施形態に係る流量調整ステップS6のフローを示すフローチャートである。図21に示すように、流量調整ステップS6が開始すると、ステップS61に進む。判定ステップS4で過剰供給の程度を「大」又は「中」と判定していると(ステップS61:Yes)、二次燃焼空気開度を100%に調節して、ステップS62に進む。判定ステップS4で過剰供給の程度を「大」又は「中」と判定していないと、つまりは過剰供給の程度を「小」と判定していると(ステップS61:No)、ステップS62に進む。
 ステップS62では、燃焼室108への固体燃料Fgの供給が停止中であり、且つ、ガス温度微分値<0を10秒継続している、又は、ガス温度偏差<5℃を10秒継続していると、つまりは固体燃料Fgの燃焼状態が安定してくると(ステップS62:Yes)、燃焼室108への固体燃料Fgの供給を開始して、ステップS63に進む。他方で、上記の条件を満たさない場合、つまりは固体燃料Fgの燃焼状態が過剰供給の発生によって不安定のままであると(ステップS62:No)、ステップS62に戻る。
 ステップS63では、二次燃焼空気開度が100%であると(ステップS63:Yes)、二次燃焼空気開度を40%に調節して、流量調整ステップS6は終了する。二次燃焼空気開度が100%ではないと(ステップS63:No)、ステップS64に進む。ステップS64では、二次燃焼空気開度が40%であると、ステップS65に進む。二次燃焼空気開度が40%ではないと(ステップS64:No)、流量調整ステップS6は終了する。
 ステップS65では、酸素濃度微分値>0を10秒継続している、又は、酸素濃度>3%を10秒継続していると(ステップS65:Yes)、二次燃焼空気開度を10%に調節して、流量調整ステップS6は終了する。他方で、上記の条件を満たさない場合(ステップS65:No)、流量調整ステップS6は終了する。尚、焼却炉100の運転制御方法で説明した二次燃焼空気開度は例示に過ぎず、任意に設定されてもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)本開示に係る焼却炉の供給量検知システム(1)は、焼却炉(100)の燃焼室(108)に供給される固体燃料(Fg)の量を検知する焼却炉の供給量検知システムであって、前記焼却炉のフィーダ部(104)に堆積している前記固体燃料が前記燃焼室に落下する前の前記固体燃料の画像を撮像するように構成された撮像装置(2)と、前記撮像装置によって撮像された前記画像に基づいて、前記燃焼室に供給された前記固体燃料の量を検知する検知装置(4)と、を備える。
 本発明者らの鋭意検討によれば、焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像(画像の輝度情報)を監視することで、燃焼室に固体燃料が過剰供給されたことを速やかに検知可能であることを見出した。具体的に説明すると、燃焼室に固体燃料が過剰に供給された直後における燃焼室に落下する前の固体燃料の画像の輝度は、燃焼室に固体燃料が過剰に供給される直前における燃焼室に落下する前の固体燃料の画像の輝度と比較して低い。これは、固体燃料の表面は燃焼室内の熱によって乾燥されているのに対して、固体燃料の内部は固体燃料の前面ほど乾燥されていないためである。つまり、過剰供給の発生によって固体燃料の内部が露出されることで、燃焼室に落下する前の固体燃料の熱画像の輝度が小さくなる。
 上記(1)に記載の構成によれば、焼却炉の供給量検知システムは、焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像を撮像するように構成された撮像装置と、撮像装置によって撮像された画像の輝度情報に基づいて、燃焼室に供給された固体燃料の量を検知する検知装置と、を備える。このため、焼却炉の供給量検知システムは、燃焼室に固体燃料が過剰供給されたこと(過剰供給の発生)を速やかに検知できる。
 (2)幾つかの実施形態では、上記(1)に記載の構成において、前記撮像装置は、前記燃焼室に落下する前の前記固体燃料の表面のうち前記燃焼室に対向する前面(Fr)の画像を撮像するように構成された。
 本発明者らの鋭意検討によれば、燃焼室に落下する前の固体燃料の表面のうち燃焼室に対向する前面の画像を監視できれば、過剰供給の発生を速やかに検知可能であることを見出した。上記(2)に記載の構成によれば、撮像装置は、燃焼室に落下する前の固体燃料の前面の画像を撮像するので、燃焼室に供給された固体燃料の量が過剰であることを速やかに検知することができる。
 (3)幾つかの実施形態では、上記(2)に記載の構成において、前記画像は、第1タイミングにおける前記画像の輝度である第1輝度と、前記第1タイミングよりも遅い第2タイミングにおける前記画像の輝度であって前記第1輝度よりも低い第2輝度と、を含み、前記検知装置は、前記第1輝度と前記第2輝度との差分の値に基づいて、前記燃焼室に供給された前記固体燃料の量を検知するように構成された。
 上記(3)に記載の構成によれば、検知装置は、第1タイミングにおける第1輝度と、第1タイミングよりも遅い第2タイミングにおける第2輝度であって、第1輝度よりも低い第2輝度との差分の値に基づいて、燃焼室に供給された固体燃料の量を検知する。このため、過剰供給の発生を速やかに検知することができる。
 (4)幾つかの実施形態では、上記(3)に記載の構成において、前記検知装置は、前記固体燃料の前記前面が撮像された前記画像を複数の区画画像(19)に区画する区画部(18)と、前記複数の区画画像の各々における前記第1輝度と前記第2輝度との差分の値が予め設定された閾値を超えた前記区画画像の数をカウントするカウント部(20)と、を含み、前記検知装置は、前記カウント部によってカウントされたカウント数が予め設定された設定数を超えると、前記燃焼室に供給された前記固体燃料の量が過剰であることを検知するように構成された。
 燃焼室に落下する前の固体燃料の前面の画像のごく一部の輝度が小さくなっただけでは、燃焼室に供給された固体燃料の量が過剰ではない可能性がある。上記(4)に記載の構成によれば、検知装置は、燃焼室に落下する前の固体燃料の前面が撮像された画像を複数の区画画像に区画する区画部と、複数の区画画像の各々における第1輝度と第2輝度との差分の値が予め設定された閾値を超えた区画画像の数をカウントするカウント部と、を含む。そして、検知装置は、カウント部によってカウントされたカウント数が予め設定された設定数を超えると、過剰供給の発生を検知する。このため、過剰供給の発生の有無を高精度に切り分けることができる。
 (5)幾つかの実施形態では、上記(2)~(4)の何れか1つに記載の構成において、前記フィーダ部内を往復運動する押出アーム(124)を有する押出装置(110)をさらに備え、前記検知装置は、前記押出アームの移動方向に基づいて、前記燃焼室に供給された前記固体燃料の量を検知するように構成された。
 上記(5)に記載の構成によれば、押出アームの移動方向を考慮して、過剰供給の発生を速やかに検知することができる。
 (6)幾つかの実施形態では、上記(2)~(5)の何れか1つに記載の構成において、前記撮像装置は、赤外カメラを含む。
 上記(6)に記載の構成によれば、赤外カメラを採用することで、容易に焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像を撮像することができる。
 (7)幾つかの実施形態では、上記(2)~(5)の何れか1つに記載の構成において、前記撮像装置は、可視光カメラ(6)と、前記可視光カメラに入射する透過波長を所定の波長域に制限するフィルタ装置(8)と、を含む。
 上記(7)に記載の構成によれば、可視光カメラとフィルタ装置とを準備することで、容易に焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像を撮像することができる。
 (8)幾つかの実施形態では、上記(1)~(7)の何れか1つに記載の構成において、前記燃焼室で燃焼される前記固体燃料の火炎位置を検知する火炎位置検知装置(24)と、前記検知装置によって前記燃焼室に供給された前記固体燃料の量が過剰であると検知されると、前記火炎位置検知装置が検知した前記固体燃料の火炎位置に基づいて、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する供給量判定装置(26)と、をさらに備える。
 固体燃料の過剰供給の量の程度が小さくなると固体燃料の火炎位置の変化も小さくなり、固体燃料の過剰供給の量の程度が大きくなると固体燃料の火炎位置の変化も大きくなる。上記(8)に記載の構成によれば、検知装置によって固体燃料の量が過剰であると検知されると、供給量判定装置が固体燃料の火炎位置の変化に基づいて、固体燃料の量の過剰の程度を自動で判定する。このため、固体燃料の量の過剰の程度を速やかに知ることができる。
 (9)幾つかの実施形態では、上記(8)に記載の構成において、前記燃焼室の受入口(122)から前記燃焼室に向かってせり出す前記固体燃料のせり出し長を検知するせり出し長検知装置(40)をさらに備え、前記供給量判定装置は、前記せり出し長検知装置によって検知された前記固体燃料のせり出し長を考慮して、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する。
 固体燃料のせり出し長が大きくなると、燃焼室に固体燃料が過剰供給されたときの固体燃料の量の過剰の程度が大きくなりやすい。上記(9)に記載の構成によれば、供給量判定装置は、固体燃料のせり出し長を考慮して固体燃料の量の過剰の程度を判定する。このため、供給量判定装置の判定精度を高めることができる。
 (10)幾つかの実施形態では、上記(8)又は(9)に記載の構成において、前記燃焼室の床面上に堆積された前記固体燃料の高さを検知する高さ検知装置(42)をさらに備え、前記供給量判定装置は、前記高さ検知装置によって検知された前記固体燃料の高さの変化を考慮して、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する。
 燃焼室に固体燃料が過剰供給されたときの固体燃料の量の過剰の程度が大きくなると、燃焼室の床面上に堆積された固体燃料の高さの変化が大きくなりやすい。上記(10)に記載の構成によれば、供給量判定装置は、固体燃料の高さの変化を考慮して固体燃料の量の過剰の程度を判定する。このため、供給量判定装置の判定精度を高めることができる。
 (11)本開示に係る焼却炉の運転制御システム(50)は、上記(1)~(10)の何れか1つに記載の焼却炉の供給量検知システムと、前記検知装置によって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記燃焼室への前記固体燃料の供給を停止するように構成された運転制御装置(52)と、を備える。
 燃焼室に固体燃料が過剰供給されると、燃焼室内における固体燃料の燃焼状態が不安定になり、一酸化炭素のような未燃ガスが発生する。この未燃ガスの濃度を低減するため、燃焼室への固体燃料の供給を停止する操作が行われることがある。上記(11)に記載の構成によれば、燃焼室に固体燃料が過剰供給された場合における操作のうち燃焼室への固体燃料の供給を停止する操作を自動化することができる。
 (12)幾つかの実施形態では、上記(11)に記載の構成において、前記燃焼室の上部に2次空気を供給するための2次空気供給装置(112)をさらに備え、前記運転制御装置は、前記検知装置によって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記2次空気供給装置から前記燃焼室に供給される前記2次空気の量を増加させるように構成された。
 燃焼室に固体燃料が過剰供給されると、燃焼室内における固体燃料の燃焼状態が不安定になり、一酸化炭素のような未燃ガスが発生する。この未燃ガスの濃度を低減するため、燃焼室の上部に2次空気を供給する操作が行われることがある。上記(12)に記載の構成によれば、燃焼室に固体燃料が過剰供給された場合における操作のうち燃焼室に供給される2次空気の量を増加させる操作を自動化することができる。
 (13)本開示に係る焼却炉の供給量検知方法は、焼却炉の燃焼室に供給される固体燃料の量が過剰であるかを検知する焼却炉の供給量検知方法であって、前記焼却炉のフィーダ部に堆積している前記固体燃料が前記燃焼室に落下する前の前記固体燃料の画像を撮像する撮像ステップ(S1)と、前記撮像ステップによって撮像された前記画像に基づいて、前記燃焼室に供給された前記固体燃料の量を検知する検知ステップ(S2)と、を備える。
 上述したように、本発明者らの鋭意検討によれば、焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像(画像の輝度情報)を監視することで、燃焼室に固体燃料が過剰供給されたことを速やかに検知可能であることを見出した。上記(13)に記載の方法によれば、撮像ステップは、焼却炉のフィーダ部に堆積している固体燃料が燃焼室に落下する前の固体燃料の画像を撮像する。検知ステップは、撮像ステップによって撮像された画像の輝度情報に基づいて、燃焼室に供給された固体燃料の量を検知する。このため、燃焼室に固体燃料が過剰供給されたことを速やかに検知できる。
 (14)幾つかの実施形態では、上記(13)に記載の方法において、前記燃焼室で燃焼される前記固体燃料の火炎位置を検知する火炎位置検知ステップ(S3)と、前記検知ステップによって検知された前記燃焼室に供給された前記固体燃料の量が過剰であると、前記火炎位置検知ステップにおいて検知された前記固体燃料の火炎位置に基づいて、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する判定ステップ(S4)と、をさらに備える。
 上述したように、固体燃料の過剰供給の量の程度が小さくなると固体燃料の火炎位置の変化も小さくなり、固体燃料の過剰供給の量の程度が大きくなると固体燃料の火炎位置の変化も大きくなる。上記(14)に記載の方法によれば、検知ステップによって検知された固体燃料の量が過剰であると、判定ステップが火炎位置検知ステップにおいて検知された固体燃料の火炎位置の変化に基づいて、固体燃料の量の過剰の程度を自動で判定する。このため、固体燃料の量の過剰の程度を速やかに知ることができる。
 (15)本開示に係る焼却炉の運転制御方法は、上記(13)又は(14)に記載の焼却炉の供給量検知方法と、前記検知ステップによって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記燃焼室への前記固体燃料の供給を停止する停止ステップ(S5)と、を備える。
 上記(15)に記載の方法によれば、燃焼室に固体燃料が過剰供給された場合における操作のうち燃焼室への固体燃料の供給を停止する操作を自動化することができる。
1   供給量検知システム
2   撮像装置
4   検知装置
6   可視光カメラ
8   フィルタ装置
18  区画部
19  区画画像
20  カウント部
22  押出方向取得部
24  火炎位置検知装置
26  供給量判定装置
40  せり出し長検知装置
42  高さ検知装置
50  運転制御システム
52  運転制御装置
100 焼却炉
104 フィーダ部
108 燃焼室
110 押出装置
112 空気供給装置(2次空気供給装置)
122 受入口
124 押出アーム
 
S1  撮像ステップ
S2  検知ステップ
S3  火炎位置検知ステップ
S4  判定ステップ
S5  停止ステップ
 
Fg  固体燃料
Fr  固体燃料の前面

Claims (15)

  1.  焼却炉の燃焼室に供給される固体燃料の量を検知する焼却炉の供給量検知システムであって、
     前記焼却炉のフィーダ部に堆積している前記固体燃料が前記燃焼室に落下する前の前記固体燃料の画像を撮像するように構成された撮像装置と、
     前記撮像装置によって撮像された前記画像に基づいて、前記燃焼室に供給された前記固体燃料の量を検知する検知装置と、を備える、
    焼却炉の供給量検知システム。
  2.  前記撮像装置は、前記燃焼室に落下する前の前記固体燃料の表面のうち前記燃焼室に対向する前面の画像を撮像するように構成された、
     請求項1に記載の焼却炉の供給量検知システム。
  3.  前記画像は、第1タイミングにおける前記画像の輝度である第1輝度と、前記第1タイミングよりも遅い第2タイミングにおける前記画像の輝度であって前記第1輝度よりも低い第2輝度と、を含み、
     前記検知装置は、前記第1輝度と前記第2輝度との差分の値に基づいて、前記燃焼室に供給された前記固体燃料の量を検知するように構成された、
     請求項2に記載の焼却炉の供給量検知システム。
  4.  前記検知装置は、
     前記固体燃料の前記前面が撮像された前記画像を複数の区画画像に区画する区画部と、
     前記複数の区画画像の各々における前記第1輝度と前記第2輝度との差分の値が予め設定された閾値を超えた前記区画画像の数をカウントするカウント部と、を含み、
     前記検知装置は、前記カウント部によってカウントされたカウント数が予め設定された設定数を超えると、前記燃焼室に供給された前記固体燃料の量が過剰であることを検知するように構成された、
     請求項3に記載の焼却炉の供給量検知システム。
  5.  前記フィーダ部内を往復運動する押出アームを有する押出装置をさらに備え、
     前記検知装置は、前記押出アームの移動方向に基づいて、前記燃焼室に供給された前記固体燃料の量を検知するように構成された、
     請求項2乃至4の何れか1項に記載の焼却炉の供給量検知システム。
  6.  前記撮像装置は、赤外カメラを含む、
     請求項2乃至5の何れか1項に記載の焼却炉の供給量検知システム。
  7.  前記撮像装置は、可視光カメラと、前記可視光カメラに入射する透過波長を所定の波長域に制限するフィルタ装置と、を含む、
     請求項2乃至5の何れか1項に記載の焼却炉の供給量検知システム。
  8.  前記燃焼室で燃焼される前記固体燃料の火炎位置を検知する火炎位置検知装置と、
     前記検知装置によって検知された前記燃焼室に供給された前記固体燃料の量が過剰であると、前記火炎位置検知装置が検知した前記固体燃料の火炎位置の変化に基づいて、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する供給量判定装置と、をさらに備える、
     請求項1から7の何れか一項に記載の焼却炉の供給量検知システム。
  9.  前記燃焼室の受入口から前記燃焼室に向かってせり出す前記固体燃料のせり出し長を検知するせり出し長検知装置をさらに備え、
     前記供給量判定装置は、前記せり出し長検知装置によって検知された前記固体燃料のせり出し長の変化を考慮して、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する、
     請求項8に記載の焼却炉の供給量検知システム。
  10.  前記燃焼室の床面上に堆積された前記固体燃料の高さを検知する高さ検知装置をさらに備え、
     前記供給量判定装置は、前記高さ検知装置によって検知された前記固体燃料の高さの変化を考慮して、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する、
     請求項8又は9に記載の焼却炉の供給量検知システム。
  11.  請求項1乃至10の何れか1項に記載の焼却炉の供給量検知システムと、
     前記検知装置によって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記燃焼室への前記固体燃料の供給を停止するように構成された運転制御装置と、を備える、
     焼却炉の運転制御システム。
  12.  前記燃焼室の上部に2次空気を供給するための2次空気供給装置をさらに備え、
     前記運転制御装置は、前記検知装置によって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記2次空気供給装置から前記燃焼室に供給される前記2次空気の量を増加させるように構成された、
     請求項11に記載の焼却炉の運転制御システム。
  13.  焼却炉の燃焼室に供給される固体燃料の量を検知する焼却炉の供給量検知方法であって、
     前記焼却炉のフィーダ部に堆積している前記固体燃料が前記燃焼室に落下する前の前記固体燃料の画像を撮像する撮像ステップと、
     前記撮像ステップによって撮像された前記画像に基づいて、前記燃焼室に供給された前記固体燃料の量を検知する検知ステップと、を備える、
    焼却炉の供給量検知方法。
  14.  前記燃焼室で燃焼される前記固体燃料の火炎位置を検知する火炎位置検知ステップと、
     前記検知ステップによって検知された前記燃焼室に供給された前記固体燃料の量が過剰であると、前記火炎位置検知ステップにおいて検知された前記固体燃料の火炎位置の変化に基づいて、前記燃焼室に供給された前記固体燃料の量の過剰の程度を判定する判定ステップと、をさらに備える、
     請求項13に記載の焼却炉の供給量検知方法。
  15.  請求項13又は14に記載の焼却炉の供給量検知方法と、
     前記検知ステップによって検知された前記燃焼室に供給された前記固体燃料の量が過剰である場合に、前記燃焼室への前記固体燃料の供給を停止する停止ステップと、を備える、
     焼却炉の運転制御方法。
PCT/JP2021/019910 2020-05-29 2021-05-26 焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法 WO2021241610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180035089.3A CN115552174A (zh) 2020-05-29 2021-05-26 焚烧炉的供给量检测系统、焚烧炉的运转控制系统、焚烧炉的供给量检测方法及焚烧炉的运转控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094186 2020-05-29
JP2020094186A JP6979482B2 (ja) 2020-05-29 2020-05-29 焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法

Publications (1)

Publication Number Publication Date
WO2021241610A1 true WO2021241610A1 (ja) 2021-12-02

Family

ID=78744533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019910 WO2021241610A1 (ja) 2020-05-29 2021-05-26 焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法

Country Status (3)

Country Link
JP (1) JP6979482B2 (ja)
CN (1) CN115552174A (ja)
WO (1) WO2021241610A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106008A1 (ja) * 2022-11-17 2024-05-23 三菱重工業株式会社 崩落検知システム、および崩落検知方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960842A (ja) * 1995-08-22 1997-03-04 Ebara Corp ごみの落下量算出手段を有する流動床式焼却装置
JP2019196845A (ja) * 2018-05-07 2019-11-14 一般財団法人電力中央研究所 燃焼場の観察方法、観察装置、及び観察プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960842A (ja) * 1995-08-22 1997-03-04 Ebara Corp ごみの落下量算出手段を有する流動床式焼却装置
JP2019196845A (ja) * 2018-05-07 2019-11-14 一般財団法人電力中央研究所 燃焼場の観察方法、観察装置、及び観察プログラム

Also Published As

Publication number Publication date
JP2021188823A (ja) 2021-12-13
JP6979482B2 (ja) 2021-12-15
CN115552174A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
JP6671326B2 (ja) 燃焼制御方法及び廃棄物焼却炉
JP6596121B1 (ja) 炉内状況判定方法、及び、燃焼制御方法
JP6927127B2 (ja) 廃棄物焼却方法
WO2021241610A1 (ja) 焼却炉の供給量検知システム、焼却炉の運転制御システム、焼却炉の供給量検知方法、及び焼却炉の運転制御方法
JP2008064361A (ja) ストーカ式焼却炉及びその燃焼制御方法
JP2003161420A (ja) ストーカ焼却炉の燃焼制御方法及び燃焼制御装置
JP6465351B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
WO2021075484A1 (ja) 燃焼状況評価方法及び燃焼制御方法
JP7384078B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP7213117B2 (ja) ストーカ式焼却炉を備えた焼却システム
JP6146671B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP2021103063A (ja) ごみ焼却炉のごみ層厚評価方法及びごみ焼却炉の燃焼制御方法
WO2023276423A1 (ja) 焼却炉設備の制御装置
JP3825148B2 (ja) ごみ焼却炉における燃焼制御方法とその装置
JP3356946B2 (ja) ゴミ質判定方法、装置、及び、ゴミ焼却炉の燃焼制御装置
JP6880143B2 (ja) 燃焼状況評価方法及び燃焼制御方法
JP2769620B2 (ja) 画像処理による焼却炉の燃え切り点検出方法
JP2013178008A (ja) 焼却設備及び焼却設備の制御方法
JP2769618B2 (ja) 画像処理による焼却炉の燃え切り点検出方法
JP2023091983A (ja) ごみ焼却炉の燃焼制御装置及びごみ焼却炉の燃焼制御方法
JP6880142B2 (ja) 燃焼状況評価方法及び燃焼制御方法
JP2673355B2 (ja) 画像処理による焼却炉の燃え切り点検出方法
JP2022071891A (ja) 炉内画像作成方法、炉内状況判定方法、及び燃焼状況評価方法
JP2019211137A (ja) 廃棄物焼却炉の水銀多量投入事態検出方法
JP6146672B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812408

Country of ref document: EP

Kind code of ref document: A1