WO2021238805A1 - 摄像头模组及移动终端 - Google Patents

摄像头模组及移动终端 Download PDF

Info

Publication number
WO2021238805A1
WO2021238805A1 PCT/CN2021/095245 CN2021095245W WO2021238805A1 WO 2021238805 A1 WO2021238805 A1 WO 2021238805A1 CN 2021095245 W CN2021095245 W CN 2021095245W WO 2021238805 A1 WO2021238805 A1 WO 2021238805A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
lens assembly
camera module
incident
Prior art date
Application number
PCT/CN2021/095245
Other languages
English (en)
French (fr)
Inventor
梁镓俊
韦怡
林墨洲
余爱翔
张百成
吴继炎
秦勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010456110.4A external-priority patent/CN111510614A/zh
Priority claimed from CN202020905913.9U external-priority patent/CN212381272U/zh
Priority claimed from CN202110261137.2A external-priority patent/CN113067970B/zh
Priority claimed from CN202110260231.6A external-priority patent/CN112965322B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021238805A1 publication Critical patent/WO2021238805A1/zh
Priority to US18/050,978 priority Critical patent/US20230075148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • This application relates to the field of optical imaging technology, and in particular to a camera module and a mobile terminal.
  • the mobile terminal uses a mobile phone as an example.
  • the mobile phone includes a camera and a flash to fill the camera with light.
  • a subject at close range such as macro or super macro shooting
  • the distance between the camera and the subject is very small, and the flash It is not possible to fill light to the shooting area in the macro or super macro shooting mode, and the illumination of the subject in the shooting area is obviously insufficient, and the subject cannot be clearly photographed.
  • the present application provides a camera module and a mobile terminal with sufficient and uniform illumination.
  • a camera module provided by an embodiment of the present application includes:
  • the light guide has a ring structure, and the light guide is sleeved on the outer peripheral side of the lens assembly;
  • Light source light emitted by the light source enters the light guide through the outer peripheral side of the light guide, and exits through the light exit surface of the light guide, the light exit surface facing the object side of the lens assembly .
  • a mobile terminal provided by an embodiment of the present application includes: the camera module; and a housing, the housing is formed with a light opening, the camera module is located in the housing, and the guide The light part is arranged at the light opening.
  • FIG. 1 is a three-dimensional schematic diagram of a camera module provided by Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of an exploded structure of the camera module shown in FIG. 1;
  • FIG. 3 is a schematic diagram of an exploded structure of a camera module shown in FIG. 1;
  • Figure 4 is a cross-sectional view along line A-A in Figure 3;
  • FIG. 5 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view along the line C-C in Figure 5;
  • FIG. 7 is a first structural diagram of a first light guide provided by an embodiment of the present application.
  • FIG. 8 is a second structural diagram of the first light guide shown in FIG. 7;
  • FIG. 9 is a first structural diagram of a second type of light guide provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a third light guide provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a cover provided by an embodiment of the present application.
  • FIG. 12 is a three-dimensional schematic diagram of another camera module provided by Embodiment 1 of the present application.
  • FIG. 13 is a top view of the camera module shown in FIG. 12;
  • Fig. 14 is a cross-sectional view of the camera module shown in Fig. 13 along the line B-B;
  • FIG. 15 is a schematic diagram of a partial structure of a camera module provided in FIG. 12;
  • FIG. 16 is a three-dimensional schematic diagram of a camera module provided by Embodiment 2 of the present application.
  • FIG. 17 is a cross-sectional view 1 of a camera module provided by Embodiment 3 of the present application.
  • FIG. 18 is a schematic diagram of a partial structure of a mobile terminal provided by an embodiment of the present application.
  • 19 is a second cross-sectional view of a camera module provided by the third embodiment of the present application.
  • FIG. 20 is a cross-sectional view of another camera module provided by Embodiment 3 of the present application.
  • FIG. 21 is a cross-sectional view of still another camera module provided by Embodiment 3 of the present application.
  • Fig. 22 is a second structural diagram of the third light guide provided in Fig. 9;
  • FIG. 23 is a partial enlarged schematic diagram of the third light guide provided in FIG. 22.
  • the camera module 100 includes a lens assembly 10, a light guide 20 and a light source 30.
  • the light source 30 may also be referred to as a supplemental light source.
  • the direction of the optical axis (optical axis refers to the line passing through the center of the lens) of the lens assembly 10 is defined as the thickness direction of the lens assembly 10, which is also the Z-axis direction.
  • the plane perpendicular to the optical axis direction of the lens assembly 10 is defined as the X-Y plane.
  • the lens holder of the lens assembly 10 is rectangular, the length direction of the lens holder of the lens assembly 10 is defined as the Y-axis direction, and the width direction of the lens holder of the lens assembly 10 is defined as the X-axis direction.
  • the length of the direction is greater than or equal to the length of the lens holder in the X-axis direction.
  • the light guide member 20 has a ring structure, and the light guide member 20 is sleeved on the outer peripheral side of the lens assembly 10.
  • the outer peripheral side of the lens assembly 10 refers to the side surface of the lens assembly 10 around the Z-axis direction.
  • the light guide 20 surrounds the side surface of the lens assembly 10 around the Z axis direction.
  • the light guide 20 has an entrance 20a, and the entrance 20a penetrates the light guide 20 along the Z-axis direction.
  • the object side end of the lens assembly 10 is provided at the entrance 20a.
  • the end of the lens assembly 10 facing the object to be photographed is the object-side end, and the direction of the Z-axis toward the object-side end is the positive Z-axis direction.
  • the light guide 20 is sleeved on the object side end of the lens assembly 10 so that the light transmitted by the light guide 20 irradiates the imaging area of the lens assembly 10.
  • the light emitted by the light source 30 enters the light guide 20 through the outer peripheral side of the light guide 20 and exits through the light exit surface 20 b of the light guide 20, and the light exit surface 20 b faces the object side of the lens assembly 10.
  • the light-emitting surface 20b includes, but is not limited to, a ring shape.
  • the outer peripheral side of the light guide 20 is a side surface of the light guide 20 around the Z-axis direction. It should be noted that the object side described in the present application is the side where the object photographed by the camera module 100 is in use, and the image side described in the present application is the side where the camera module 100 is imaging when the image is taken (that is, the side where the image sensor is located) .
  • the light source 30 is located on the outer peripheral side of the light guide 20.
  • the axial direction of the light guide 20 is collinear with the optical axis direction of the lens assembly 10, and the outer peripheral side of the light guide 20 is the outer surface of the light guide 20 around the Z axis direction.
  • the number of the light source 30 is at least one, and when the number of the light source 30 is multiple, the multiple light sources are arranged on the outer peripheral side of the light guide 20 around the Z-axis direction.
  • the light-emitting lamp is directed toward the bottom surface of the light guide (the surface facing away from the light emitting surface) to enter the light, and the supplementary light beam enters the light guide from the bottom surface of the light guide and exits from the top surface of the light guide.
  • the light guide usually has a certain light transmittance. After the light-emitting lamp is lit, the top surface of the light guide has a very high brightness at the place where the light-emitting lamp is located, and the top surface of the light guide is far away from the light-emitting lamp. Because of this, the appearance brightness uniformity of the top surface of the light guide is poor, and the uniformity of the supplementary light to the imaging area is also poor. Since the light guide has a certain degree of transparency, the user can also see the luminous lamp located on the bottom side of the light guide through the light guide, which leads to the problem of light explosion.
  • the light emitted by the light source 30 enters the light guide 20 from the outer peripheral side of the light guide 20 Inside, it is not directly emitted toward the light-emitting surface 20b, but the light is scattered and/or reflected and diffused multiple times in the light guide 20 to form a uniform and soft surface light, and then emitted from the light-emitting surface 20b to the lens assembly 10 In the imaging area, the light can illuminate the object in the imaging area, thereby increasing the brightness of the object and realizing supplementary light.
  • the superimposed thickness of the light source 30 and the light guide 20 in the Z-axis direction is the thickness of the light source 30, the thickness of the light guide 20, and the difference between the light source 30 and the light guide 20
  • the superimposed thickness of the light source 30 and the light guide 20 is relatively large, and the thickness of the camera module 10 in the Z-axis direction is relatively large.
  • the technical solution of the present application can reduce the stacking size of the light source 30 and the light guide 20 in the thickness direction (Z-axis direction) by locating the light source 30 on the outer peripheral side of the light guide 20, and then free up the light guide 20 for installation
  • the space of the circuit board or other electronic devices facilitates compact stacking and layout in the mobile terminal 1000, and also prevents users from seeing the light source 30 through the light guide 20. In this way, it is convenient to hide the light source 30 in other structures. Improve the fineness of the appearance, thereby enhancing the user experience.
  • the light source 30 includes, but is not limited to, a side-emitting lamp or a side-mounted top-emitting lamp.
  • the light source 30 refers to a light source that is positioned upright and whose side surface is the light-emitting surface 30 a or whose top surface is the light-emitting surface 30 a and is located on the side with respect to the lens assembly 10.
  • the side surface is the light-emitting surface 30a
  • the light-emitting surface 30a connects the bottom surface (surface facing the image side) of the light source 30 and the top surface (surface facing the object side) of the light source 30.
  • the electrical connection terminal of the light source 30 is located on the bottom surface thereof.
  • the light-emitting surface 30a does not directly face the light-emitting surface 20b.
  • the light emitted by the light source 30 is scattered and/or reflected and diffused multiple times in the light guide 20 to form uniform and soft surface light, thereby improving the appearance uniformity of the light-emitting surface 20a And fill light uniformity.
  • the mobile terminal 1000 includes the camera module 100 provided by any one of the embodiments of the present application and a housing 300, and the housing 300 is formed with a light-passing port 301.
  • the camera module 100 is located in the housing 300, and the light guide 20 is located at the light opening 301.
  • the light guide 20 is located at the light opening 301, the imaging light enters the lens assembly 10 through the light opening 301 and the incident opening 20a, and the light is emitted from the light opening 301 to the lens assembly 10 Within the camera area.
  • the housing 300 can protect the camera module 100.
  • the light source 30 can be hidden in the housing 300 to prevent the user from viewing the light source 30, thereby improving the aesthetics and fineness of the appearance of the mobile terminal 1000, and enhancing the user experience.
  • the mobile terminal 1000 provided by the embodiment of the present application includes, but is not limited to, a mobile phone, a tablet computer, a PDA (Personal Digital Assistant, personal digital assistant), a portable computer, and so on.
  • the lens assembly 10 in the embodiment of the present application includes but is not limited to a macro lens or a super macro lens, that is, the lens assembly 10 can be used for macro or super macro shooting. In this way, the user can hold the mobile terminal 1000 close to the subject to achieve macro or super macro photography.
  • Macro or super macro shooting means that the lens assembly 10 performs shooting at a high magnification when the object is close.
  • Macro generally means that the distance between the lens assembly 10 and the object is between 2.5 cm and 10 cm
  • the super macro generally means that the distance between the lens assembly 10 and the object is within 1 cm.
  • shooting is performed at a large magnification, for example, shooting with an image ratio of 1:4 or greater (also referred to as optical magnification), where, The image ratio refers to the ratio between the imaging height of the image sensor and the height of the subject.
  • the super macro camera can be a telephoto super macro lens or a wide-angle super macro lens.
  • the focal length f of the wide-angle super macro lens ranges from 1.3 mm to 2.2 mm, and the FOV is 70° to 78°.
  • the effective focal length f of the wide-angle super macro lens is 1.335 mm.
  • the high FOV is 77.6 degrees, the aperture value (f-number) is 2.8, and the working distance is 3mm, it can clearly image, which means that the lens 1231 can focus on the subject with a working distance of about 3mm.
  • the light exit surface 20b surrounds the outer periphery of the entrance port 20a, the light exit surface 20b is close to the entrance port 20a, and the distance between the lens assembly 10 and the object is The distance is shortened, and the distance between the light-emitting surface 20b of the light guide 20 and the object is simultaneously shortened.
  • the light guide 20 can guide the light to the imaging area of the lens assembly 10, so that the light can illuminate the object, thereby ensuring Shooting of the camera module 100.
  • the camera module 100 further includes a flexible circuit board 50 and an image sensor.
  • the image sensor is located on the image side of the lens assembly 10. During the shooting process, the imaging light of the subject enters the lens assembly 10 and then reaches the image sensor. The photons in the imaging light hit the image sensor to generate movable charges, which are internal photoelectrics. Effect, the collection of movable charges forms an electrical signal.
  • the flexible circuit board 50 is used to electrically connect the image sensor and the main board of the mobile terminal 1000.
  • An A/D converter analog-to-digital converter
  • DSP Digital Signal Processor
  • the A/D converter converts the electrical signal into a digital signal, and the digital signal is processed by the DSP.
  • the image is finally transmitted to the screen 17 (see FIG. 19) of the mobile terminal 1000 to display the image, that is, the photographing of the subject is realized.
  • the image sensor can be CMOS (Complementary Metal Oxide Semiconductor) or CCD (Charged Coupled Device), or other types of image sensors other than CMOS or CCD, such as CID Sensor (Charge Injection Device, charge injection device). It is understandable that for CMOS, DSP can be integrated in CMOS. CMOS has the advantages of high integration, low power consumption, and low cost, and is more suitable for mobile phones with limited installation space.
  • the flexible circuit board 50 may also be a rigid board or a rigid-flex board.
  • the lens assembly 10 includes a lens barrel and a lens group located in the lens barrel, and the lens group includes at least one lens. Taking the plane perpendicular to the optical axis of the lens assembly 10 as the projection surface, the projection outer contour of the end of the lens barrel close to the object side is circular.
  • the specific type of the light source 30 is not limited.
  • the light source 30 in the embodiment of the present application may be any of LED (Light Emitting Diode, light-emitting diode) lamps, metal halide lamps, fluorescent lamps, high pressure sodium, incandescent lamps, iodine tungsten lamps, and xenon lamps. kind.
  • the light source 30 is a light emitting diode (Light Emitting Diode, LED).
  • the LED lamp runs stably, with low heat generation, low energy consumption and long service life.
  • the color temperature of the light source 30 is between 5000K and 14000K.
  • the light is close to white light, which ensures the consistency of the appearance color of the light-emitting surface 20b, and prevents the color temperature of the light source 30 from exceeding 14000K when the light-emitting color is blue when viewed with the naked eye, thereby preventing the light from affecting the imaging effect of the lens assembly 10, and ensuring the color and imaging of the subject The color consistency of the picture, and to avoid the bluish color of the light when the light source exceeds 14000K.
  • the light source 30 is used as a breathing light.
  • the light source 30 can also be used as a reminder light in addition to being used for supplementary light.
  • the light source 30 presets multiple flicker frequencies to realize information prompts, thereby realizing the function of the breathing light.
  • the light source 30 can change the color of the light to realize information prompting, thereby realizing the function of the breathing light. In this way, the user can obtain the prompt information through the overall lighting frequency or color change of the light-emitting surface 20b.
  • the lens assembly 10 is located on the front side of the housing 300, that is, the camera module 100 is a front camera.
  • the lens assembly 10 is located on the rear side of the housing 300, that is, the camera module 100 is a rear camera.
  • the front side of the housing 300 refers to the side of the housing 300 facing the user when the screen 17 of the mobile terminal 1000 faces the user.
  • the rear side of the housing 300 refers to the side opposite to the front side thereof.
  • the specific shape of the light-emitting surface 20b is not limited.
  • the light-emitting surface 20b has a ring shape.
  • the light-emitting surface 20b is a bright ring that emits light uniformly, so as to evenly fill light in each area of the imaging area.
  • the light-emitting surface 20b may also have multiple arc shapes and so on.
  • the light-emitting surface 20b may also be spliced into a ring shape by a plurality of arcs.
  • the light-emitting surface 20b of the light guide 20 defines an entrance 20a.
  • the object side end of the lens assembly 10 is located at the entrance 20a.
  • the imaging light enters the lens assembly 10 through the entrance 20a. That is, the light guide 20 is formed with an entrance 20a, at least part of the top surface of the light guide 20 is formed with a light exit surface 20b surrounding the outer periphery of the entrance 20a, and the top surface of the light guide 20 faces the object of the lens assembly 10. side.
  • the light guide member 20 further has a light incident surface 22 a for the light emitted by the light source 30 to enter.
  • the angle between the light incident surface 22a and the optical axis direction of the lens assembly 10 is [0,90°).
  • the light incident surface 22a is parallel to or intersects with the optical axis direction of the lens assembly 10.
  • the light incident surface 22a is parallel to the Z axis direction or has a small included angle (less than 90°) with the Z axis direction, in other words, the light incident surface 22a is not perpendicular to the Z axis direction.
  • the specific structure of the light guide 20 is not limited.
  • the light guide 20 includes a light guide 21 and a light incident portion 22.
  • the light guide body 21 is sleeved on the outer peripheral side of the lens assembly 10.
  • the light incident portion 22 is provided on the outer peripheral side of the light guide 21 or on the image side of the light guide 21.
  • the light guide body 21 and the light incident portion 22 are integrally formed.
  • the light guide 21 has a first surface 201 (also referred to as the top surface of the light guide 21, which is also the surface of the light guide 21 facing the object side) and a second surface 202 (also referred to as the top surface of the light guide 21).
  • the bottom surface is also the surface of the light guide 21 facing the image side), and the first peripheral side surface 203 connected between the first surface 201 and the second surface 202 (the first peripheral side surface 203 is also referred to as the outer peripheral side surface of the light guide 21 ).
  • the entrance 20 a penetrates the first surface 201 to the second surface 202.
  • the light incident surface 22 a is provided on the light incident portion 22, and the light exit surface 20 b is provided on the light guide body 21.
  • a part or all of the first surface 201 forms a light-emitting surface 20b.
  • the structure of the light guide 20 provided in the present application will be specifically described below through several embodiments.
  • the light incident portion 22 is provided on the outer peripheral side of the light guide 21.
  • the light incident portion 22 is protrudingly provided on the first peripheral side surface 203.
  • the light incident portion 22 can be regarded as a part of the light guide body 21 that is formed to expand outward in the radial direction.
  • a part of the first peripheral side surface 203 expands radially outward to form a light incident surface 22a and a light incident peripheral side surface 22b surrounding the side surface of the light incident portion 22.
  • the present application does not limit the expansion of a part of the light guide body 21 outward in the radial direction to be uniform expansion or non-uniform expansion.
  • the surface of the light incident portion 22 facing the object side and the surface of the light guide body 21 facing the object side may be flush or have a gap.
  • the surface of the light incident portion 22 facing the image side and the surface of the light guide body 21 facing the image side may be flush or have a gap.
  • the light incident surface 22a connects the surface of the light incident portion 22 facing the object side and the surface of the light incident portion 22 facing the image side end.
  • the light incident surface 22a extends outward from the first peripheral side surface 203 (the outer peripheral side surface of the light guide body 21) in a direction gradually away from the optical axis of the lens assembly 10.
  • the extending direction of the light incident surface 22 a is parallel or intersecting with the radial direction of the lens assembly 10.
  • the light incident surface 22a extends from the outer peripheral side surface of the light guide body 21 outward along the radial direction of the lens assembly 10.
  • the angle between the projection line of the light incident surface 22a on the projection surface and the reference radial direction of the lens assembly 10 is 0° ⁇ 10 °.
  • the reference radial direction is the radial direction of the projection point formed on the projection surface by the side of the light incident surface away from the outer peripheral surface of the light guide 21.
  • the projection profile of the entrance 20a is circular
  • the line between the center of the projection of the entrance 20a and the radially outermost end point of the projection line of the light incident surface 22a is the reference line
  • the projection line of the light entrance surface 22a is equal to
  • the angle between the reference lines is between 0° and 10°.
  • the angle ⁇ between the projection line of the light incident surface 22a and the reference line B is 0°, 1°, 2°, 3°, 4°, 5°, 7°, 9° or 10°, etc. .
  • the included angle ⁇ between the projection line of the light incident surface 22a and the reference line B is too large.
  • the light incident surface 22a is inclined too large toward the radial inner side of the annular light guide ring 212, and the light is emitted from the light incident surface 22a.
  • This application does not specifically limit the positions of the light incident surface 22a and the light exit surface 20b in the X-Y plane.
  • a plane perpendicular to the optical axis of the lens assembly 10 is used as the projection surface, and the projection line of the light entrance surface 22a is connected to the projection outer contour edge line of the light exit surface 20b, so that the light guide 20 achieves its uniform illuminance. Can have a smaller volume.
  • the minimum distance D between the edge lines of the projected outer contour on the upper surface is 2.5mm ⁇ 4.0mm.
  • the minimum distance D between the center point of the projection line of the light incident surface 22a and the projection outer contour edge line of the light output surface 20b is 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, and so on.
  • Such a design prevents the center point of the projection line of the light incident surface 22a from being too close to the edge line of the projection outer contour of the light exit surface 20b, which may cause lamp bursts; on the other hand, it avoids the projection of the light incident surface 22a
  • the distance between the center point of the line and the edge line of the projection outer contour of the light-emitting surface 20b is too far, the optical path of the light is too long, and the light loss is too large.
  • the specific structure and shape of the light incident portion 22 is not limited.
  • the contour line of the outer peripheral side surface 22b of the light incident part is a convex convex arc line.
  • the light incident portion 22 further has a light incident peripheral side surface 22b.
  • One end of the light incident peripheral side surface 22b is connected to the light incident surface 22a.
  • the other end of the light-incident peripheral side surface 22b gradually moves away from the light-incident surface 22a and is connected to the first peripheral side surface 203.
  • the light incident peripheral side surface 22b is a convex convex arc surface, and the transition between the first peripheral side surface 203 and the light incident peripheral side surface 22b is smooth.
  • the light-incident peripheral side surface 22b as a convex arc surface, the light incident from the light-incident surface 22a is reflected by the light-incident peripheral side surface 22b with gradual curvature, and then reflected at a variety of different reflection angles, thereby making the light beam
  • the emitted range is large, and the light beam reflected by the light incident peripheral side 22b can be projected into a larger area on the annular light guide ring 212, and is repeatedly reflected back and forth on the outer peripheral side of the annular light guide ring 212 and the inner peripheral side of the light guide 211 ,
  • the smooth transition between the first peripheral side surface 203 and the light-incident peripheral side surface 22b not only avoids the formation of sharp corners on the light-incident portion 22, thereby reducing
  • the loss in the propagation process of the small light also makes the reflection process of the light on the light incident peripheral side 22
  • the light source 30 has a light-emitting surface 30a that emits light, and the light-emitting surface 30a faces the light-incident surface 22a, where the orientation refers to that the light-emitting surface 30a is parallel to the light-incident surface 22a and has a small distance; Or, there is a certain angle between the light-emitting surface 30a and the light-incident surface 22a.
  • the distance between the light-emitting surface 30a and the light-incident surface 22a gradually increases in the direction away from the optical axis of the lens assembly 10 (ie, the radially outward direction).
  • the angle ⁇ between the plane where the light-emitting surface 30a is located and the plane where the light-incident surface 22a is located is between 0° and 20°.
  • the angle ⁇ between the plane where the light-emitting surface 30a is located and the plane where the light-incident surface 22a is located is 0°, 1°, 2°, 5°, 8°, 10°, 15°, 19°, or 20°. °Wait. In this way, on the one hand, it is avoided that the angle ⁇ between the plane where the light-emitting surface 30a is located and the plane where the light-incident surface 22a is located is too large.
  • the light in the light part 22 has many exit directions and a large range of light.
  • the light entrance part 22 converts a small range of incident light on the light incident surface 22a into a larger range of light, so that the light can enter the light guide in all directions 21, and then dispersed in various positions of the light guide body 21, and then present uniform brightness in the light guide body 21.
  • the light After being reflected by the light incident portion 22, the light enters the light guide 21 roughly along the circumferential direction of the lens assembly 10, which can prevent the light from being concentrated and directly enter the light guide 21 along the radial direction of the lens assembly 10, thereby further avoiding the light exit surface 20b.
  • the brightness at the location of the light source 30 is too high, further reducing the degree of light burst.
  • the light guide 21 can disperse light and avoid concentrated light emission, so that the uniformity of the light emitted from the light-emitting surface 20b is better, and the problem of uneven light and dark on the light-emitting surface 20b is further avoided, and the uniformity of the appearance of the light-emitting surface 20b and the camera are further improved. Fill light uniformity of the area.
  • the number of light incident parts 22 is not limited, for example, please refer to FIG. 3, the number of light incident parts 22 is multiple, so that more light enters the light guide body 21, thereby improving the overall brightness.
  • the multiple light incident portions 22 are arranged at intervals along the circumferential direction of the lens assembly 10 (also the circumferential direction of the light guide 21 ), for example, evenly distributed, and the light sources 30 and the light incident portions 22 are arranged in one-to-one correspondence. In this way, the uniformity of fill light is improved.
  • the number of light incident portions 22 is two, and the two light incident portions 22 are evenly spaced along the circumferential direction of the lens assembly 10 (also the circumferential direction of the light guide 21).
  • the number of the light incident part 22 is one, and the number of the light source 30 is also one.
  • multiple in the embodiments of the present application refers to two or more in number.
  • the number of light incident parts 22 is between 2 and 20. In this way, it is possible to balance the uniformity of supplementary light and the intensity of supplementary light.
  • the light guide body 21 includes a light guide post 211 forming the entrance 20 a and an annular light guide ring 212 surrounding the outer periphery of the light guide post 211.
  • the top surface of the annular light guide ring 212 is lower than the top surface of the light guide post 211.
  • the first surface 201 includes a first sub-surface 204 located on the light guide post 211 and a second sub-surface 205 located on the annular light guide ring 212.
  • the first sub-surface 204 is the surface of the light guide post 211 facing the object side.
  • the second sub-surface 205 is a surface of the annular light guide ring 212 facing the object side.
  • At least part of the first sub-surface 204 forms a light-emitting surface 20 b, and the light-incident portion 22 is disposed on the outer peripheral side surface of the annular light guide ring 212.
  • both the first sub-surface 204 and the second sub-surface 205 are annular.
  • the first sub-surface 204 is close to the object side relative to the second sub-surface 202. That is, the first sub-surface 204 is far away from the second surface 202 relative to the second sub-surface 205, so that the connecting surface between the first sub-surface 204 and the second surface 205 and the second surface 205 form a stepped surface, which can make
  • the light guide post 211 extends out of the light opening 301, and the second surface 205 abuts against the inner surface of the housing 300, so that the light guide 20 is assembled on the housing 300.
  • the first sub-surface 204 and the second sub-surface 205 are flush.
  • At least part of the first sub-surface 204 forms a light-emitting surface 20b.
  • the first sub-surface 204 is the light-emitting surface 20b.
  • the annular light guide ring 212 is blocked by the housing 300 and the like.
  • the annular light guide ring 212 further disperses the light.
  • the uniformly distributed light in the annular light guide ring 212 enters the light guide column 211, so that the light emitted from the light exit surface 20b is uniform Even better, the problem of uneven brightness and darkness of the light-emitting surface 20b is further avoided, and the uniformity of the appearance of the light-emitting surface 20b and the uniformity of supplementary light to the imaging area are further improved.
  • the annular light guide ring 212 is closer to the light entrance portion 22, and the light in the annular light guide ring 212 may have a local brightness difference.
  • the annular light guide ring 212 is blocked by the housing 300 and will not appear on the appearance of the mobile terminal 1000, so it can be further Ground makes the emitted light uniform.
  • the annular light guide ring 212 is arranged at intervals between the light source 30 and the light guide post 211, it is difficult to see the light source 30 even from a side angle on the appearance surface of the mobile terminal 1000, thereby reducing the risk of light explosion.
  • the outer peripheral side surface of the annular light guide ring 212 is the first peripheral side surface 203. Therefore, the light incident portion 22 is arranged on the outer peripheral side of the annular light guide ring 212.
  • the specific structure and shape of the light guide post 211 is not limited. For options, please refer to FIG. 3, FIG. 7 and FIG. In other words, the light guide rod 211 is approximately cylindrical.
  • the portion of the annular light guide ring 212 gradually expands outward in the circumferential direction to form the light incident portion 22.
  • the end face that expands outward is the light-incident face 22a.
  • the area of the light-incident surface 22a is relatively large, so that the light enters the light-incident portion 22 from the light-incident surface 22a.
  • the annular light guide ring 212 surrounds the bottom of the light guide column 211, so that, in the height direction of the light guide 20, the distance between the light entrance surface 22a and the light exit surface 20b is relatively long , In order to further reduce the degree of explosion.
  • the second surface 202 further includes a third sub-surface 206 provided on the light guide post 211 and a fourth sub-surface 207 provided on the annular light guide ring 212.
  • the third sub-surface 206 is the surface of the light guide post 211 facing the image side.
  • the fourth sub-surface 207 is a surface of the annular light guide ring 212 facing the image side.
  • the fourth sub-surface 207 is located between the plane where the first sub-surface 201 is located and the plane where the third sub-surface 206 is located.
  • the third sub-surface 206 and the fourth sub-surface 207 have a drop in the Z-axis direction.
  • the difference between the third sub-surface 206 and the fourth sub-surface 207 in the Z-axis direction forms a stepped surface, thereby forming a retreat space to facilitate installation of other devices on the side of the annular light guide ring 212 away from the housing 300.
  • the fourth sub-surface 207 and the third sub-surface 206 are coplanar, so that the light guide post 211 and the surface of the annular light guide ring 212 facing away from the object side are connected as a whole large surface, which increases the supporting area. Further, the surface of the light incident portion 22 facing away from the object side end is also connected to the surface of the light guide post 211 and the annular light guide ring 212 facing away from the object side end as a whole large surface, so that the light guide 20 has a relatively flat surface for ease of assembly .
  • At least part of the surface of the light guide 20 facing the image side, a part of the outer peripheral side surface of the light guide 20, and a part of the light guide 20 facing the object side are provided with a reflective layer or a light shielding layer.
  • At least one of 205 is provided with a reflective layer or a light-shielding layer to prevent light from exiting through the aforementioned surface, thereby increasing the amount of light emitted from the light-emitting surface 20b, and improving the utilization of light.
  • the bottom surface of the annular light guide ring 212, the outer peripheral side surface of the annular light guide ring 212 and/or the top surface of the annular light guide ring 212 are provided with a reflective layer (not shown).
  • the reflective layer is used to make the light enter the light guide column 211 after being reflected in the circular light guide ring 212, so as to prevent the light from exiting the circular light guide ring 212.
  • the bottom surface of the annular light guide ring 212, the outer peripheral side surface of the annular light guide ring 212 and/or the top surface of the annular light guide ring 212 are provided with a light shielding layer (not shown).
  • the light shielding layer is used to prevent light from exiting the ring-shaped light guide ring 212, which improves the aesthetic appearance.
  • the light-shielding layer may be a dark ink layer.
  • black ink or gray ink and so on may be a dark ink layer.
  • FIGS. 3 and 7 taking a plane perpendicular to the optical axis of the lens assembly 10 as the projection plane, the circle where the projection outer contour line of the annular light guide ring 212 is located and the projection contour of the outer peripheral surface 22b of the light incident portion 22
  • the circle where the line is located is approximately inscribed, and the tangent point between the two is located at the end of the light incident portion 22 away from the light incident surface 22a. In this way, it is further convenient for the light incident part 22 to guide the light into the annular light guide ring 212.
  • the camera module 100 includes a cover plate 40 located on the object side of the lens assembly 10, the object side end of the lens assembly 10 is located in the entrance port 20 a, and the cover plate 40 closes the entrance port 20 a.
  • the cover plate 40 has a light-transmitting area. The external light enters the lens assembly 10 through the light-transmitting area of the cover 40 and the entrance 20a.
  • the object side end of the lens assembly 10 extends from the bottom side of the entrance 20a into the entrance 20a, and the cover plate 40 closes the top of the entrance 20a to protect the lens assembly 10 and avoid damage to the lens assembly.
  • the object side end of the lens assembly 10 is located in the entrance 20a, and the cover 40 closes the entrance 20a, so that the distance between the lens group and the cover 40 is small.
  • the cover 40 closes the entrance 20a, so that the distance between the lens group and the cover 40 is small.
  • the distance between the inner side of the cover plate 40 and the object surface of the lens closest to the cover plate 40 can increase the tolerance of the lens group to foreign objects such as white spot hairs and reduce the adverse effects of white spot hairs during the assembly process.
  • reducing the size of the camera module 100 in the height direction enables the mobile terminal 1000 to be thinner and lighter.
  • the top of the light guide column 211 and the cover plate 40 jointly seal the light passage 301.
  • the light-emitting surface 20b is located at the light-passing port 301, and the light-emitting surface 20b is close to the object to fill in light.
  • the annular light guide ring 212 can be hidden in the housing 300.
  • the cover plate 40 has a visible area 40a and an annular light shielding area 40b surrounding the outer periphery of the visible area 40a.
  • the light transmittance of the visible area 40a is greater than the light transmittance of the annular light shielding area 40b.
  • the projection of the lens of the lens assembly 10 is located within the projection of the visible area 40a.
  • the cover plate 40 closes the top of the entrance 20a to protect the lens assembly 10 and avoid damage to the lens.
  • the imaging light enters the lens through the visible area 40a, and the light transmittance of the visible area 40a is relatively large to reduce the influence of the visible area 40a on the imaging light, so that most of the imaging light can pass through the visible light.
  • the area 40a enters the lens assembly 10 to ensure the imaging quality.
  • the user views the cover 40 from the object side of the lens assembly 10 since the light transmittance of the annular light-shielding area 40b is small, the user can be prevented from clearly seeing the structure behind the annular light-shielding area 40b.
  • the appearance of the cover plate 40 is in the shape of a record with a circular area, which has a good visual aesthetics, and therefore, the aesthetics of the camera module 100 is improved.
  • the light transmittance of the annular light shielding region 40b may be equal to or greater than 0% and less than 100%.
  • the light transmittance of the ring-shaped light-shielding area 40b may be 0%, that is, the ring-shaped light-shielding area 40b is approximately a completely opaque structure.
  • the material of the cover plate 40 is not limited.
  • the cover plate 40 includes but is not limited to glass or plastic.
  • the light transmittance of the visible area 40a is greater than the light transmittance of the annular light-shielding area 40b is not limited.
  • the visible area 40a and the annular light-shielding area 40b are made of different materials.
  • the light transmittance of the visible area 40a is higher.
  • the circular shading area 40b is made of plastic with lower light transmittance.
  • the visible area 40a and the annular light-shielding area 40b are respectively plastics with different light transmittances.
  • the cover plate 40 may be formed by a two-color injection molding process.
  • the visible area 40a and the annular light-shielding area 40b are integrally formed, so that the integration is good.
  • the visible area 40a and the annular light-shielding area 40b are made of glass, which has high strength and scratch resistance.
  • the top or bottom surface of the ring-shaped light-shielding area 40b is provided with a light-blocking structure to reduce the light transmittance of the ring-shaped light-shielding area 40b.
  • the light-blocking structure is a dark ink layer, and the dark color includes but is not limited to black or gray.
  • the top or bottom surface of the cover plate 40 can also be frosted to form a light blocking structure.
  • a light-blocking layer is provided on the inner peripheral side wall of the entrance 20a.
  • the light blocking layer can block the light and prevent the light from being projected to the lens assembly 10 from the inner peripheral side wall of the entrance 20a, thereby avoiding the flare phenomenon.
  • the specific structure of the light-blocking layer is not limited.
  • the light-blocking layer includes, but is not limited to, dark ink, such as gray ink or black ink.
  • the inner peripheral wall surface of the entrance 20a is formed with a stepped surface 20a', and the cover plate 40 is supported on the stepped surface 20a'.
  • the distance between the cover plate 40 and the lens closest to the cover plate 40 can be further reduced.
  • the thickness of the camera module 100 is further reduced.
  • the annular light guide ring 212 surrounds the bottom of the light guide column 211.
  • the cover plate 40 and the light guide post 211 jointly seal the light opening 301.
  • the annular light guide ring 212 and the light incident portion 22 can be hidden in the housing 300.
  • the cover plate 40 closes the light opening 301 of the housing 300.
  • the cover plate 40 is arranged on the light guide post 211, and the light-transmitting area of the cover plate 40 corresponds to the entrance 20a. It can be understood that the cover plate 40 can be fixedly assembled with the housing 300.
  • the cover plate 40 can protect the light guide post 211 and prevent the top surface of the light guide post 211 from being worn and scratched, thereby improving the overall appearance fineness of the camera module 100 and the reliability of the light guide post 211, and can also reduce the design of the light guide post 211 Require.
  • the light guide 20 and the lens assembly 10 are both located in the housing 300, and the housing 300 is used to hide the annular light guide ring 212 and the light incident surface 22 to prevent the user from seeing the annular light guide ring 212 and the light incident surface 22 through the cover 40, thereby further improving the aesthetics .
  • the present application does not limit the material of the light guide 20.
  • the material of the light guide 20 includes, but is not limited to, plastic or silicone, etc.
  • the light guide 20 includes a polycarbonate substrate or polymethacrylate. Ester substrate. Polycarbonate (PC) and polymethyl methacrylate (PMMA) are both transparent plastics, both of which have high light transmittance and good optical properties.
  • the light guide member 20 includes a light guide substrate and light diffusion powder distributed in the light guide substrate.
  • the material of the light guide substrate includes polycarbonate (PC) and polymethyl methacrylate (PMMA).
  • Light diffusion powder refers to a material that increases light scattering and transmission functions.
  • the light diffusion powder is usually in the form of microbeads or spherical in microscopic form. Add light diffusion powder to polycarbonate substrate or polymethyl methacrylate substrate to further improve the uniformity of light distribution.
  • the mass percentage of the light diffusion powder is between 0% and 0.5%.
  • the light enters the light guide 20 from the light entrance surface 22a of the light entrance part 22, and the mass percentage of the light diffusion powder in the light guide 20 is 0%, 0.1%, 0.15%, 0.3% or 0.5%, etc., not only can Improve the uniformity of fill light, but also improve the uniformity of appearance and avoid unevenness of light and dark.
  • the mass percentage of the light diffusing powder it is avoided that its concentration in the light guide substrate is too high to reduce the light transmittance of the light guide 20, that is, while ensuring that the light guide 20 has a higher light transmittance, it also has Higher ability to scatter light.
  • the light guide 20 is an integrally formed structure, for example, the light guide 20 is an integrally molded structure.
  • the light guide member 20 is a center symmetric structure. In this way, not only the uniformity of fill light is improved, but also the visual uniformity of appearance is improved.
  • the light-emitting surface 20 b is inclined toward the optical axis of the lens assembly 10.
  • the light exit surface 20b is roughly flared.
  • the entrance port 20a has a constricted section, the radial size of the constricted section gradually shrinks from the object side to the image side, and the side wall of the constricted section is the light exit surface 20b of the light guide 21 . In this way, it is convenient for most of the light to be projected to the imaging area of the lens assembly 10, and the utilization rate of the light is improved.
  • the camera module 100 includes a light blocking layer or a reflective layer (not shown) disposed on the inner peripheral wall surface of the incident port 20a.
  • the light blocking layer can block light from being projected to the lens assembly 10 from the inner peripheral wall surface of the entrance port 20a, thereby avoiding the phenomenon of flare.
  • the reflective layer can reflect light, thereby increasing the uniformity and light extraction rate of the light in the light exit surface 20b.
  • the specific structure of the light-blocking layer is not limited.
  • the light-blocking layer includes, but is not limited to, dark ink, such as gray ink or black ink.
  • a light incident area 20c for light incident is formed on the outer peripheral side of the light guide member 20, and the light enters the light incident area 20c along the radial direction of the lens assembly 10.
  • a light incident area 20c for light incident is reserved on the outer peripheral side surface of the light guide 20, and the light emitting surface 30a faces the light incident area 20c.
  • the specific formation method of the light incident area 20c is not limited.
  • a reflection treatment is performed to form the reflection area 20d, and the reflection treatment includes, but is not limited to, coating a reflection layer and the like.
  • the reflective area 20d of the light guide 20 can reflect light back into the light guide 20, and only the light incident area 20c can enter the light.
  • the light guide member 20 includes a light guide platform 23 formed with an entrance 20 a and an annular skirt 24 surrounding the outer periphery of the light guide platform 23.
  • the top surface of the light guide platform 23 is higher than the top surface of the annular skirt 24, and the light exit surface 20b is formed on the top surface of the light guide platform 23, and the light enters
  • the area 20c is formed on the outer peripheral side of the annular skirt 24.
  • the annular skirt 24 surrounds the outer periphery of the light guide platform 23.
  • the annular skirt 24 can further scatter light, further avoid the problem of uneven brightness on the light exit surface 20b, and further improve the uniformity of the appearance of the light exit surface 20b and supplement light to the imaging area Uniformity.
  • the annular skirt 24 surrounds the bottom of the light guide platform 23.
  • the distance between the annular skirt 24 and the light-emitting surface 20b is larger, so as to further improve the uniformity of the appearance of the light-emitting surface 20b and the uniformity of the supplementary light to the imaging area.
  • the specific structure and shape of the light guide platform 23 is not limited. It is optional. Please refer to FIG. 16. Taking a plane perpendicular to the optical axis of the lens assembly 10 as the projection surface, the projection outer contour of the light guide platform 23 is circular, that is, The light guide platform 23 is substantially cylindrical.
  • the light guide table 23 can be substantially understood as the light guide post 211 in the light guide 20 provided in the first embodiment, and the annular skirt 24 can be substantially understood as the light guide 20 provided in the first embodiment.
  • the annular light guide ring 212 In the annular light guide ring 212.
  • the number of light incident regions 20c is not limited.
  • the multiple light incident areas 20c are evenly distributed along the circumferential direction of the light guide 20, and the light sources 30 and the light incident areas 20c are arranged in one-to-one correspondence. In this way, the uniformity of fill light is improved.
  • the number of light incident regions 20 c is two, and the two light incident regions 20 c are evenly spaced along the circumferential direction of the light guide 20.
  • the number of light incident regions 20c is one, and the number of light sources 30 is also one.
  • the light emitted by the light source 30 is softer, and the uniformity of the light is better, which is convenient to ensure the uniformity of the appearance of the light from the light-emitting surface 20b.
  • multiple in the embodiments of the present application refers to two or more in number.
  • the number of light incident parts 22 is between 2 and 20. In this way, the uniformity of supplementary light and the intensity of supplementary light can be balanced.
  • the structure and material of the light guide 20 provided in the second embodiment can refer to the light guide 20 provided in the first embodiment, and will not be repeated here.
  • this embodiment is substantially the same as the first light guide 20, and the main difference is that the light incident portion 22 is provided on the image side of the light guide 21.
  • Both the light incident portion 22 and the light guide body 21 have a ring shape.
  • the light incident portion 22 and the light guide body 21 are integrally formed.
  • the radial dimension of the outer contour line of the light incident portion 22 is smaller than the radial dimension of the outer contour line of the light guide body 21.
  • the orthographic projection of the light incident portion 22 in the optical axis direction is located within the orthographic projection of the light guide 21 in the optical axis direction.
  • the outer peripheral side surface of the light incident portion 22 and the surface of the light guide 21 facing the image side enclose a first installation space 121d.
  • the light source 30 is disposed in the first installation space 121d to reduce the space occupied by the entire camera module 100 in the radial direction. At least part of the outer peripheral side surface of the light incident portion 22 is a light incident surface 22a. The outer peripheral side surface of the light incident portion 22 is a side surface along the Z-axis direction. The number of the light sources 30 is plural, and the plural light sources 30 are arranged around the outer peripheral side of the light incident portion 22.
  • the light guide 20 has an entrance 20 a and a first installation space 121 d provided on the peripheral side of the entrance 20 a.
  • the first installation space 121d may have a ring shape.
  • the end of the lens assembly 10 close to the object side is inserted into the entrance 20 a, which is equivalent to that the light guide 20 is sleeved on the outer peripheral side of the lens assembly 10.
  • the first installation space 121d is provided on the peripheral side of the entrance 20a, the light source 30 is provided in the first installation space 121d, which is equivalent to that the light source 30 is hidden in the light guide 20, and the light from the light source 30 is guided to the lens assembly through the light guide 20 10 field of view.
  • the end of the lens assembly 10 close to the object side is inserted into the entrance 20a of the light guide 20, and the light source 30 is arranged in the first installation space 121d of the light guide 20 ,
  • the light from the light source 30 can be guided to the field of view of the lens assembly 10 from the periphery of the lens assembly 10, thereby providing sufficient illumination for the field of view of the lens assembly 10 in the close-range shooting mode, and furthermore, it can be clear
  • the subject 20 in the field of view is photographed.
  • arranging the light source 30 in the first installation space 121d of the light guide 20 not only facilitates light guide, but also makes the overall structure of the camera module 100 more compact.
  • the light guide 20 of the embodiment of the present application is a continuous ring structure. Specifically, the light guide 20 of the embodiment of the present application is a circular ring.
  • the embodiment of the present application is provided with multiple light sources 30, which are arranged at intervals along the circumference of the light guide 20, and the angle between two adjacent light sources 30 can be the same. , Can also be different.
  • the light guide member 20 in the present application is not limited to a circular ring shape.
  • the outer ring of the ring-shaped light guide member 20 may also be rectangular, triangular, elliptical, irregular, etc.
  • the ring can be round, rectangular, triangular, elliptical, special-shaped, etc., that is, the outer ring and inner ring of the ring-shaped light guide 20 can be the same shape or different shapes, which is not limited here. .
  • the light guide body 21 includes a first surface 201 and a second surface 202 disposed opposite to each other.
  • One end of the entrance port 20 a has a first opening on the first surface 201, and the other end of the entrance port 20 a has a second opening on the second surface 202.
  • the entrance 20a has at least a constricted section 121b, and the radial dimension of the constricted section 121b is from the end where the first opening is located (that is, the side where the first surface 201 is located, that is, the object side) toward the end where the second opening is located (that is, where the second surface 202 is)
  • the first installation space 121d is located on the side where the entrance 20a is close to the second surface 203.
  • the entrance 20a has a constricted section 121b and a straight section.
  • the straight section is connected to the end of the constricted section 121b away from the first opening.
  • the first opening of the entrance 20a corresponds to the opening of the constricted section 121b, and the second opening Corresponding to the opening of the straight section, the first installation space 121d is actually located on the peripheral side of the straight section.
  • the straight section may also be connected to the end of the contraction section 121b away from the second opening, or both ends of the contraction section 121b may be provided with straight sections.
  • the straight line segment may not be provided.
  • the side wall of the contraction section 121 b is the light-emitting surface 20 b of the light guide 20. That is to say, after the light from the light source 30 enters the light guide 20 from the light incident surface 22a of the light guide 20, it can exit from the side wall of the contraction section 121b and be guided to the field of view of the lens assembly 10, which is equivalent to the entrance 20a. It is not only the shooting hole of the lens assembly 10 but also the light exiting hole of the camera module 100, it can be ensured that the relative illuminance in the field of view can meet the shooting requirements when the lens assembly 10 is shooting, especially when shooting at close range.
  • the light emitted by the light source 30 of this embodiment is mainly transmitted along a straight path from the light entrance surface 22a of the light guide 20 to the light exit surface 20b of the light guide 20.
  • the light emitted by the light source 30 may also be from After the light incident surface 22 a of the light guide 20 enters the inside of the light guide 20, it undergoes multiple reflections in the light guide 20 and then is transmitted to the light exit surface 20 b of the light guide 20.
  • a light exit hole may be separately provided on the outer periphery of the entrance port 20a, and the light derived from the light guide 20 is guided from the light exit hole to the field of view of the lens assembly 10, that is, the entrance port 20a is only used as The imaging hole of the lens assembly 10 is used, and the light derived from the light guide 20 does not pass through the entrance port 20a.
  • the side wall of the contraction section 121b may not be a light-emitting surface.
  • the end surface (ie, the first surface 201) of the light guide 20 on the side provided with the first opening may be used as the light-emitting surface.
  • a part of the end surface with the second opening is recessed toward the end surface with the first opening (ie, the first surface 201) to form a first installation Space 121d.
  • a part of the side wall of the light guide 20 may be recessed toward the entrance 20a to form the first installation space 121d, and the first installation space 121d may also be provided in the light guide 20. internal. That is, the first installation space 121 d penetrates the second surface 202 and/or the first peripheral side surface 203.
  • the light incident surface 22a of the light guide 20 in the embodiment of the present application is located on the side of the first installation space 121d close to the entrance 20a.
  • the light-incident surface 22a of this embodiment is parallel to the optical axis A of the lens assembly 10, thus, it is convenient to arrange the light source 30 in the first installation space 121d, and it is also convenient to guide the light from the light source 30 from the light-incident surface 22a.
  • the side wall of the contraction section 121b is contracted, and the light is emitted from the side wall of the contraction section 121b.
  • the light incident surface 22 a may not be parallel to the optical axis A of the lens assembly 10.
  • the light incident surface 22a may have an included angle less than 90° with the optical axis A.
  • the end surface of the light guide 20 with the second opening can be set as a non-light-transmitting surface.
  • the second surface 202 is a non-transparent surface.
  • the end surface of the light guide 20 with the second opening can be atomized to achieve a frosting effect.
  • the mobile terminal 1000 of the embodiment of the present application includes a housing 300, a main board 13, and the camera module 100 provided in the foregoing embodiment.
  • the housing 300 includes a front housing 111 and a rear cover 112, and a receiving cavity is formed between the front housing 111 and the rear cover 112.
  • the main board 13 is arranged in the accommodating cavity, a second installation space 11a is formed between the main board 13 and the rear cover 112, and the surface of the main board 13 on the side close to the second installation space 11a is the third surface 13b.
  • the camera module 100 is arranged in the second installation space 11a, and the end of the lens assembly 10 close to the main board 13 is in contact with the third surface 13b; or, there is a space between the end of the lens assembly 10 close to the main board 13 and the third surface 13b. That is to say, the lens assembly 10 is only arranged on one side of the main board 13, and the main board 13 does not provide a corresponding escape structure for the lens assembly 10. Therefore, when the lens assembly 10 is installed, the original main board 13 will not be damaged. In turn, the structure of the motherboard 13 will not affect the layout of the wiring and related components of the motherboard 13.
  • the mobile terminal 1000 of the embodiment of the present application further includes a flexible circuit board 16.
  • the light source 30 is arranged on the flexible circuit board 16. Specifically, the light source 30 can be soldered on the flexible circuit board 16, and the flexible circuit board 16 is connected to the main board. 13 Electrical connection. Since there is a certain interval between the light source 30 and the main board 13, the flexible circuit board 16 is provided to facilitate the electrical connection between the light source 30 and the main board 13.
  • the flexible circuit board 16 may not be provided, and the light source 30 is directly electrically connected to the main board 13.
  • the mobile terminal 1000 further includes a cover plate 40 covering one end of the camera module 100 close to the object.
  • the cover plate 40 in this embodiment can refer to the cover plate in the first type of light guide 20.
  • the cover plate 40 mainly plays a role of protecting the camera module 100. After the light emitted from the light-emitting surface 20b of the light guide 20 passes through the cover plate 40, it is guided to the field of view of the lens assembly 10. Similarly, the object 20 is photographed. The light reflected from the upper surface also passes through the cover plate 40 and then enters the lens assembly 10, and finally realizes imaging.
  • the cover plate 40 covers the light opening 301.
  • the cover plate 40 can be directly arranged on the back cover 112, or a decorative cover can be arranged on the back cover 112, and the cover plate 40 can be arranged on the decorative cover.
  • the light guide member 20 can be A flange is formed on its outer surface, and the decorative cover is pressed against the flange to fix the decorative cover and the light guide 20.
  • the cover plate 40 and the light guide member 20 are two independent structures. Please refer to FIG. 20.
  • the cover plate 40 can also be integrally formed with the light guide member 20, namely A part of the structure of the light guide member 20 can be used as the cover plate 40, so that the thickness of the whole mobile phone can be further reduced.
  • the lens assembly 10 is a functional camera
  • the mobile terminal 1000 further includes a main camera 14 arranged in the second installation space 11a.
  • the main board 13 has an escape port 13a.
  • the main camera 14 is close to the main board 13 One end of it is inserted in the escape port 13a. That is to say, in this embodiment, the mobile terminal 1000 is provided with the main camera 14 and the functional camera at the same time.
  • the functional camera may be capable of imaging when the working distance is in the ultra-macro range.
  • the camera has a super macro range of 3mm-10mm, that is, the functional camera can be a super macro camera.
  • the functional camera can also be a macro camera, a wide-angle camera, a telephoto camera, and so on.
  • the outline size of the main camera 14 is generally larger than that of the functional camera.
  • the main camera 14 is provided with an escape port 13a on the main board 13 in this embodiment, and the main camera 14 is close to One end of the main board 13 is inserted in the escape opening 13a to reduce the space occupied by the main camera 14 in the thickness direction of the mobile phone.
  • the end of the functional camera close to the back cover 112 is inserted into the entrance 20a of the light guide 20, so that the thickness of the mobile terminal 1000 itself is not increased, and there is no need to set up the functional camera on the main board 13.
  • Corresponding avoidance structures such as avoidance holes can also ensure that the functional camera can provide sufficient illumination for the field of view of the functional camera in the close-range shooting mode.
  • the second surface 202 of the light guide 21 is provided with a scattering structure 32. After being scattered by the scattering structure 32, the light is emitted from the light-emitting surface 20 b to the imaging area of the lens assembly 10. Taking a plane perpendicular to the optical axis of the lens assembly 10 as the projection surface, the projection of the light-emitting surface 20 b is located within the projection of the scattering structure 32. The orthographic projection of the light emitting surface 20b in the optical axis direction is located in the area where the scattering structure 32 is located.
  • light is emitted from the light-emitting surface 20b to the imaging area of the lens assembly 10 after being scattered by the scattering structure 32, thereby increasing the illuminance of the object to be photographed and realizing supplementary light.
  • the imaging light reflected by the subject enters the lens assembly 10 through the entrance 20a, so that the lens assembly 10 completes shooting.
  • the projection of the light-emitting surface 20b is located within the projection range of the scattering structure 32 to ensure that the light emitted from the light-emitting surface 20b is scattered by the scattering structure 32. In this way, excessive concentration of light can be avoided, thereby avoiding uneven brightness on the light-emitting surface 20b. , Not only improves the uniformity of the appearance after the light-emitting surface 20b is lit, but also improves the uniformity of the supplementary light to the imaging area.
  • the uniformity of the appearance of the light-emitting surface 20b refers to the uniformity of the brightness of the light-emitting surface 20b after the guiding light member 20 is lit.
  • the scattering structure 32 includes a plurality of saw teeth 221 spaced apart in the circumferential direction of the lens assembly 10, and the saw teeth 221 extend along the radial direction of the lens assembly 10.
  • the saw teeth 221 change the propagation direction of the light, so that the light is scattered and distributed, so as to improve the uniformity of the light distribution.
  • the serrations 221 include the bottom surface of the light guide 21 (the surface of the light guide 21 facing the image side).
  • the first inclined surface 221a and the second inclined surface 221b, the first inclined surface 221a and the second inclined surface 221b are relatively inclined and connected, that is, two relatively inclined and connected inclined surfaces 221a and 221b jointly form a saw tooth 221.
  • the included angle between the first inclined surface 221a and the bottom surface of the light guide 21 (the second surface 202, which is also the surface of the light guide 21 facing the image side) is between 30° and 45°.
  • the included angle ⁇ between the first inclined surface 221a and the second surface 202 is 30°, 35°, 40°, 45°, and so on. In this way, the light is projected onto the first inclined surface 221a, and the propagation direction of the light is changed through the first inclined surface 221a.
  • the angle between the second inclined surface 221b and the second surface 202 is between 70° and 85°.
  • the included angle between the second inclined surface 221b and the second surface 202 is 70°, 75°, 80°, 85°, and so on. In this way, the light is projected onto the second inclined surface 221b, and the propagation direction of the light is changed through the second inclined surface 221b.
  • the serrations 221 are not provided on the second surface 202, the light is reflected back and forth between the first surface 201 and the second surface 202, and the light is transmitted forward around the entrance port 20a during the reflection process.
  • the saw teeth 221 By arranging the saw teeth 221 on the second surface 202, the light will be reflected back and forth between the first surface 201 and the saw teeth 221.
  • the first inclined surface 221a and the second inclined surface 221b of the saw teeth 221 make the direction of the light fold back and then reflect.
  • the light is continuously folded back in the light guide 21 under the action of the plurality of saw teeth 221, and the transmission direction is continuously disrupted, and is evenly distributed in the light guide 21 after several reflections.
  • the highest height of the saw tooth 221 is between 0.1 mm and 0.25 mm.
  • the size of the saw teeth 221 along the optical axis direction of the lens assembly 10 is between 0.1 mm and 0.25 mm.
  • the highest height H of the saw tooth 221 is 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, or the like.
  • this embodiment adopts The height design of the saw tooth 221 not only ensures that the saw tooth 221 can effectively scatter light, but also prevents the saw tooth 221 from being too high in the height direction and occupying too much space.
  • the maximum width of the saw tooth 221 is between 0.1 mm and 0.4 mm.
  • the size of the saw teeth 221 along the circumferential direction of the light guide 20 is between 0.1 mm and 0.4 mm.
  • the maximum width W of the saw tooth 221 is 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm, or the like. In this way, it can not only ensure that the saw teeth 221 can effectively scatter light, but also prevent the single saw teeth 221 from occupying too much area of the bottom surface of the light guide 20, and facilitate the adjustment of the number and distribution density of the saw teeth 221.
  • the specific shape of the light-emitting surface 20b is not limited. It is optional. Please refer to Figures 9 and 10. A plane perpendicular to the optical axis of the lens assembly 10 is used as the projection surface.
  • the projection profile of the light-emitting surface 20b is in a ring shape. The outline is also roughly circular.
  • the scattering structure 32 is disposed on the bottom surface (ie, the second surface 202) of the light guide post 211, and the light enters the annular light guide ring 212 from the light incident surface 22 a, and can be directly directed to the scattering structure 32.
  • the minimum distance between two adjacent serrations 221 close to the light incident surface 22a is greater than that of the adjacent two serrations far away from the light incident surface 22a
  • the minimum distance between 221, where the preset rotation direction and the direction in which the light exits the light-emitting surface 20b conform to the right-handed spiral rule. That is, the right hand holds the annular light guide ring 212, the thumb of the right hand points to the direction of the light exiting the light emitting surface 20b, the four fingers of the right hand start from the light incident surface 22a, and the bending direction of the four fingers of the right hand is the preset rotation direction.
  • the light-incident surface 22a Taking the light-incident surface 22a as the starting point, the light enters the light-incident surface 22a, that is, there are more light near the light-incident surface 22a. Therefore, along the preset rotation direction, the two adjacent ones close to the light-incident surface 22a
  • the minimum distance between the saw teeth 221 is relatively large, the distribution of the saw teeth 221 is sparse, and the density of the saw teeth 221 is small. This prevents the saw teeth 221 from scattering too much light to the light-emitting surface 20b, and facilitates the light to travel far away along the preset rotation direction.
  • the light at the position can be scattered by the serrations 221 and directed toward the light-emitting surface 20b, so that the brightness of the portion of the light-emitting surface 20b away from the light-incident surface 22 is increased, and the appearance uniformity of the light-emitting surface 20b after lighting is improved.
  • the arrangement density of the saw teeth 221 near the light incident surface 22a is smaller than the arrangement density of the saw teeth 221 far away from the light incident surface 22a.
  • the serrations 221 near the light incident surface 22 a are the serrations 221 corresponding to the light incident peripheral side surface 22 b of the light incident portion 22.
  • the spacing between two adjacent saw teeth 221 in this area can be equal, or the arrangement density can be gradually increased along the spiral direction of the light incident portion 22 gradually decreasing.
  • the serrations 221 far away from the light incident surface 22 a refer to the serrations 221 that are not corresponding to the light incident peripheral side surface 22 b of the light incident portion 22.
  • the spacing between two adjacent saw teeth 221 in this area can be equal, or the arrangement density can be gradually increased along the spiral direction of the light incident portion 22 gradually decreasing.
  • a wedge-shaped zigzag 221 structure is designed on the back of the light guide 21.
  • the wedge-shaped zigzag 221 structure has a relatively small arrangement density at the position of the lamp socket of the light source 40, and the arrangement density is gradually increased at a position far from the lamp socket, thereby making The brightness of the light guide away from the lamp port is increased, and the uniformity of the appearance after lighting is improved.
  • the minimum distance is between 0.05mm and 0.07mm.
  • the minimum distance between two adjacent saw teeth 221 near the light incident surface 22a is between 0.05 mm and 0.07 mm.
  • the minimum distance L between two adjacent saw teeth 221 close to the light incident surface 22a is 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, and so on.
  • the minimum distance between two adjacent saw teeth 221 far from the light incident surface 22a is between 0.01 mm and 0.03 mm.
  • the minimum distance between two adjacent serrations 221 away from the light incident surface 22a is between 0.01 mm and 0.03 mm.
  • the minimum distance L between two adjacent saw teeth 221 far from the light incident surface 22a is 0.01 mm, 0.015 mm, 0.02 mm, 0.025 mm, 0.03 mm, and so on.
  • the scattering structure 32 is provided on the light guide body 21.
  • the light guide 21 is further provided with at least one isolation groove 212 a between the scattering structure 32 and the light incident portion 22.
  • the light guide body 21 is designed with an isolation groove 212a at the position of the light incident part 22 to block the light, so as to further reduce the degree of light burst at the light incident part 22.
  • the bottom surface of the annular light guide ring 212 is formed with an isolation groove 212 a located where the light incident portion 22 is located, and the isolation groove 212 a is located on the radially outer side of the scattering structure 32. That is to say, taking the plane perpendicular to the optical axis of the lens assembly 10 as the projection plane, the projection of the isolation groove 212a is at least partly located between the projection of the light entrance portion 22 and the projection of the light exit surface 20b.
  • the brightness of the light guide ring 212 is higher, and the phenomenon of light explosion is prone to occur.
  • the isolation groove 212a can reduce the light directly entering the light guide column 211 where the light incident portion 22 is located, and play a role of blocking the light. The brightness is balanced, thereby improving the uniformity of the appearance of the light-emitting surface 20b and the uniformity of the supplementary light to the imaging area.
  • the bottom surface of the annular light guide ring 212 is recessed on the top side to form an isolation groove 212 a.
  • the shape of the isolation groove 212a should fit the shape of the light guide post 221. Specifically, the isolation groove 212a is located on the radially outer side of the scattering structure 32 and extends in an arc along the circumferential direction of the light guide 20 to ensure that the light is transmitted to the distal end. Unaffected, to ensure the brightness uniformity of the area far away from the lamp port and the area close to the lamp port.
  • the light guide 20 includes at least one positioning structure 23 provided on the outer peripheral side of the annular light guide ring 212.
  • the mobile terminal 1000 is provided with a limiting structure adapted to the shape of the positioning structure 23, and the positioning structure 23 is inserted into the limiting structure to position and assemble the camera module 100 to the mobile terminal 1000.
  • the positioning structure is spaced apart from the light incident part.
  • the positioning structure 23 is a protrusion, and the limiting structure is a groove adapted to the shape of the protrusion.
  • the positioning structure 23 is a groove, and the limiting structure is a protrusion adapted to the shape of the groove. The protrusion is inserted into the groove to position and assemble the camera module 100 on the mobile terminal 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stroboscope Apparatuses (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供的一种摄像头模组及移动终端,摄像头模组包括镜头组件、导光件以及光源,导光件为环形结构,且所述导光件套设于所述镜头组件的外周侧;所述光源发出的光线经所述导光件的外周侧射入所述导光件内,并经所述导光件的出光面射出,所述出光面朝向所述镜头组件的物侧。本申请提供了一种补光照度充足且均匀的摄像头模组及移动终端。

Description

摄像头模组及移动终端 技术领域
本申请涉及光学成像技术领域,具体涉及一种摄像头模组及移动终端。
背景技术
移动终端以手机为例,手机包括摄像头和用于给摄像头补光的闪光灯,当近距离拍摄被拍摄物,例如进行微距或超微距拍摄时,摄像头与被拍摄物的距离很小,闪光灯无法向微距或超微距拍摄模式下的摄像区域补光,摄像区域内被拍摄物照度明显不足,无法清楚拍摄被拍摄物。
发明内容
本申请提供了一种补光照度充足且均匀的摄像头模组及移动终端。
第一方面,本申请实施例提供的一种摄像头模组,包括:
镜头组件;
导光件,为环形结构,且所述导光件套设于所述镜头组件的外周侧;以及
光源,所述光源发出的光线经所述导光件的外周侧射入所述导光件内,并经所述导光件的出光面射出,所述出光面朝向所述镜头组件的物侧。
第二方面,本申请实施例提供的一种移动终端,包括:所述的摄像头模组;以及外壳,所述外壳形成有通光口,所述摄像头模组位于所述外壳内,所述导光件设置于所述通光口处。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的一种摄像头模组的立体示意图;
图2是图1所示的一种摄像头模组的分解结构示意图;
图3是图1所示的一种摄像头模组的分解结构示意图;
图4是图3中沿A-A线的剖面图;
图5是本申请实施例提供的移动终端的结构示意图;
图6是图5中沿C-C线的剖面图;
图7是本申请实施例提供的第一种导光件的结构示意图一;
图8是图7所示的第一种导光件的结构示意图二;
图9是本申请实施例提供的第二种导光件的结构示意图一;
图10是本申请实施例提供的第三种导光件的结构示意图;
图11是本申请实施例提供的盖板的结构示意图;
图12是本申请实施例一提供的另一种摄像头模组的立体示意图;
图13是图12所示的摄像头模组的俯视图;
图14是图13所示的摄像头模组的沿B-B线的剖面图;
图15是图12提供的一种摄像头模组的局部结构示意图;
图16是本申请实施例二提供的一种摄像头模组的立体示意图;
图17是本申请实施例三提供的一种摄像头模组的剖面图一;
图18是本申请实施例提供的移动终端的局部结构示意图;
图19是本申请实施例三提供的一种摄像头模组的剖面图二;
图20是本申请实施例三提供的另一种摄像头模组的剖面图;
图21是本申请实施例三提供的再一种摄像头模组的剖面图;
图22是图9提供的第三种导光件的结构示意图二;
图23是图22提供的第三种导光件中的局部放大示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,需要说明的是,本申请实施例中,“周向”是指图3中所示方向,“顶”、“底”以及“高度方向”是指图4中所示的方向,在本申请实施例的描述中方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,不应当视为对本申请实施例的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参见图1及图2,本申请实施例提供的一种摄像头模组100。摄像头模组100包括镜头组件10、导光件20以及光源30。光源30也可称为补光光源。
请参阅图2,为了便于描述,定义镜头组件10的光轴(光轴是指通过镜头中心的线)方向为镜头组 件10的厚度方向,也是Z轴方向。定义垂直于镜头组件10的光轴方向的面为X-Y平面。可选的,镜头组件10的镜座呈矩形,定义镜头组件10的镜座的长度方向为Y轴方向,定义镜头组件10的镜座的宽度方向为X轴方向,其中,镜座的Y轴方向的长度大于或等于镜座的X轴方向的长度。
请参阅图2、图3及图4,导光件20为环形结构,导光件20套设于镜头组件10的外周侧。具体的,镜头组件10的外周侧是指镜头组件10绕Z轴方向的侧面。换言之,导光件20绕Z轴方向环绕于镜头组件10的侧面。可选的,导光件20具有入射口20a,该入射口20a沿Z轴方向贯穿导光件20。镜头组件10的物侧端设于入射口20a。
其中,镜头组件10朝向所拍摄物体的端部为物侧端,其中Z轴朝向物侧端的方向为Z轴正向。导光件20套设于镜头组件10的物侧端,以便于导光件20所传导的光线照射于镜头组件10的摄像区域。
光源30发出的光线经导光件20的外周侧射入导光件20内,并经导光件20的出光面20b射出,出光面20b朝向镜头组件10的物侧。可选的,出光面20b包括但不限于为环形等。其中,导光件20的外周侧是指导光件20绕Z轴方向的侧面。需要说明的是,本申请所述的物侧为摄像头模组100在使用时所拍摄物体所在侧,本申请所述的像侧为摄像头模组100拍摄时成像所在侧(即图像传感器所在侧)。
可选的,光源30位于导光件20的外周侧。导光件20的轴向与镜头组件10的光轴方向共线,导光件20的外周侧为导光件20上绕Z轴方向的外侧面。
光源30的数量为至少一个,当光源30的数量为多个时,多个光源绕Z轴方向设于导光件20的外周侧。
在一般技术中,将发光灯朝向导光件底面(背离出光面的面)入射光线,补光光束从导光件的底面进入导光件内,从导光件的顶面射出。导光件通常具有一定的透光率,发光灯点亮后,在外观效果看来,导光件的顶面在发光灯所在处亮度非常高,导光件的顶面远离发光灯的部位亮度急剧降低,因此,导光件的顶面的外观亮度均匀性差,对摄像区域的补光均匀性也较差。由于导光件具有一定的透明度,用户还能够透过导光件看到位于导光件底侧的发光灯,导致爆灯问题。
本申请实施例提供的摄像头模组100,通过设置导光件20的入光方向与导光件30的出光方向相交,那么光源30发出的光线从导光件20的外周侧进入导光件20内,并没有直接朝向出光面20b射出,而是光线在导光件20内进行多次的散射和/或反射扩散后形成均匀且柔和的面光线后,再从出光面20b射出至镜头组件10的摄像区域,光线能够照亮摄像区域内的被拍摄物,从而提高被拍摄物的亮度,实现补光。这样能避免光线从出光面20b的局部集中射出,进一步使得出光面20b点亮后的外观均匀性较好,避免出光面20b点亮后出现明暗分布不均的问题,实现摄像头模组100在拍摄时补光照度充足且均匀。
对于将光源30设于导光件20下方的技术方案,光源30与导光件20在Z轴方向的叠加厚度为光源30的厚度、导光件20的厚度以及光源30与导光件20之间的间距,如此,导致光源30与导光件20的叠加厚度相对较大,进而导致摄像头模组10在Z轴方向所占据厚度相对较大。本申请技术方案通过将光源30位于导光件20外周侧,可减小光源30与导光件20在厚度方向(Z轴方向)上的堆叠尺寸,进而导光件20下方腾出用于设置电路板或其他电子器件的空间,便于在移动终端1000内形成紧凑性的堆叠和布局,还可以避免用户透过导光件20看到光源30,如此,便于将光源30隐藏至其他结构内,提高外观精细度,从而提升用户体验。
需要说明的是,光源30包括但不不限于为侧发光灯或侧放的顶发光灯等。换言之,光源30是指正置且其侧面为发光面30a的光源或者其顶面为发光面30a且相对于镜头组件10侧置的光源。当侧面为发光面30a时,发光面30a连接光源30的底面(朝向像侧的面)和光源30的顶面(朝向物侧的面)。光源30的接电端位于其底面上。发光面30a没有直接朝向出光面20b,光源30发射的光线在导光件20内进行多次的散射和/或反射扩散后形成均匀且柔和的面光线,以此提高出光面20a的外观均匀性和补光均匀性。
请参阅图5及图6,以摄像头模组100应用于移动终端1000为例,移动终端1000包括本申请任任意一种实施方式提供的摄像头模组100以及外壳300,外壳300形成有通光口301,摄像头模组100位于外壳300内,导光件20位于通光口301处。
本申请实施例提供的移动终端1000,导光件20位于通光口301处,成像光线通过通光口301和入射口20a进入镜头组件10内,光线从通光口301射出至镜头组件10的摄像区域内。外壳300能够保护摄像头模组100。光源30能够隐藏至外壳300内,避免用户查看到光源30,从而提高移动终端1000的美观性和外观精细度,提升用户体验。
本申请实施例提供的移动终端1000包括但不限于手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)和便携计算机等等。
本申请实施例中的镜头组件10包括不限于为微距镜头或超微距镜头,也就是说,镜头组件10可用于微距或超微距拍摄。如此,用户能够手持移动终端1000靠近被拍摄物以实现微距或超微距拍摄。
微距或超微距拍摄指的是镜头组件10在距离被拍摄物较近时以大倍率进行拍摄。微距通常是指镜头组件10与被拍摄物之间的距离在2.5cm~10cm之间,超微距通常是指镜头组件10与被拍摄物之间的距离在1cm以内。本申请实施例提供的镜头组件10用于微距或超微距拍摄时,以大倍率进行拍摄,例如进行1∶4或更大影像比(也可称为光学放大率)的拍摄,其中,影像比指的是图像传感器的成像高度与被拍摄物的高度之间的比值。
超微距摄像头可以是长焦超微距镜头,也可以是广角超微距镜头。示例性地,广角超微距镜头的焦 距f的取值范围为1.3mm~2.2mm,FOV为70°~78°,示例性地,广角超微距镜头的有效焦距f为1.335mm,最大像高处的FOV为77.6度,光圈值(f-number)为2.8,工作距离为3mm的情况下能够清晰成像,也就是说镜头1231能够对工作距离在3mm左右的被拍摄物体合焦。
本申请实施例中,镜头组件10用于微距或超微距拍摄时,由于出光面20b环绕于入射口20a的外周,出光面20b靠近入射口20a,镜头组件10与被拍摄物之间的距离拉近,导光件20的出光面20b与被拍摄物之间的距离同步拉近,导光件20能够将光线导向镜头组件10的摄像区域,使得光线能够照亮被拍摄物,从而保证摄像头模组100的拍摄。
可选的,请参见图1至图3,摄像头模组100还包括柔性电路板50和图像传感器。图像传感器位于镜头组件10的像侧,在拍摄过程中,被拍摄物的成像光线进入镜头组件10,然后到达图像传感器,成像光线中的光子打到图像传感器上产生可移动电荷,这是内光电效应,可移动电荷汇集形成电信号。利用柔性电路板50电连接图像传感器和移动终端1000的主板。主板上设置有A/D转换器(模数转换器)和DSP(Digital Signal Processor,数字信号处理器),A/D转换器将电信号转换成数字信号,数字信号经过DSP处理后。最终传输到移动终端1000的屏幕17(请参见图19)上显示图像,即实现了对被拍摄物的拍摄。
需要说明的是,图像传感器可以是CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)或CCD(Charged Coupled Device,电荷耦合器件),也可以是CMOS或CCD以外的其他类型的图像传感器,例如CID传感器(Charge Injection Device,电荷注入器件)。可以理解的是,对于CMOS,可以将DSP集成在CMOS内。CMOS具有集成度高、功耗低、成本低等优点,比较适合安装空间受限的手机。
柔性电路板50还可以为硬板或者软硬结合板。
可选的,镜头组件10包括镜筒和位于镜筒内镜片组,镜片组包括至少一个镜片。以垂直于镜头组件10的光轴的平面为投影面,镜筒靠近其物侧的一端的投影外轮廓呈圆形。
光源30的具体类型不限,本申请实施例的光源30可以是LED(Light Emitting Diode,发光二极管)灯、金卤灯、荧光灯、高压钠、白炽灯、碘钨灯、氙气灯中的任一种。示例性地,光源30为发光二极管(Light Emitting Diode,LED)。LED灯运行稳定,发热量低,低能耗,使用寿命长。
可选的,请参见图3,光源30的色温在5000K~14000K之间。如此,光线接近白光,保证出光面20b出光外观颜色的一致性,避免光源30的色温超过14000K后出光颜色裸眼观察偏蓝,从而避免光线影响镜头组件10的成像效果,保证被拍摄物色彩和成像图片色彩的一致性,及避免光源超过14000K后出光颜色裸眼观察偏蓝。
可选的,请参见图3,光源30用作呼吸灯。也就是说,光源30除了用于补光外,还可以作为提示灯。示例性的,光源30预设多种闪烁频率以实现信息提示,从而实现呼吸灯功能。另可选的,光源30能够改变光线颜色,以实现信息提示,从而实现呼吸灯功能。如此,用户能够通过出光面20b整体点亮频率或颜色变化以获取提示信息。
摄像头模组100的具体位置不限,可选的,镜头组件10位于外壳300的前侧,即摄像头模组100为前置摄像头。另可选的,镜头组件10位于外壳300的后侧,即摄像头模组100为后置摄像头。
需要说明的是,本申请实施例中,外壳300的前侧是指移动终端1000的屏幕17朝向用户时,外壳300朝向用户的一侧。外壳300的后侧是指与其前侧相对的一侧。
出光面20b的具体形状不限,示例性的,请参见图1至图3,出光面20b呈环形。如此,光源30点亮后,出光面20b呈均匀发光的亮环,以便给摄像区域的各个区块均匀补光。另可选的,出光面20b也可以为多个弧形等等。例如,出光面20b也可以由多个弧形拼接成环形。
导光件20的出光面20b开设入射口20a。镜头组件10的物侧端位于入射口20a处。成像光线通过入射口20a进入镜头组件10内。也就是说,导光件20形成有入射口20a,导光件20的顶面的至少部分形成有环绕于入射口20a外周的出光面20b,导光件20的顶面朝向镜头组件10的物侧。
请参阅图7及图8,导光件20还具有供光源30发射的光线入射的入光面22a。入光面22a与镜头组件10的光轴方向之间的夹角为[0,90°)。换言之,入光面22a与镜头组件10的光轴方向平行或相交。可选的,入光面22a与Z轴方向平行或与Z轴方向具有较小的夹角(小于90°),换言之,入光面22a与Z轴方向不垂直。
导光件20的具体结构不限,示例性的,请参见图7及图8,导光件20包括导光体21和入光部22。导光体21套设于镜头组件10的外周侧。入光部22设于导光体21的外周侧或设于导光体21的像侧。导光体21与入光部22一体成型。导光体21具有相背设置的第一表面201(也称为导光体21的顶面,也是导光体21朝向物侧的面)和第二表面202(也称为导光体21的底面,也是导光体21朝向像侧的面),以及连接于第一表面201和第二表面202之间的第一周侧面203(第一周侧面203也称为导光体21的外周侧面)。入射口20a贯穿第一表面201至第二表面202。入光面22a设于入光部22,出光面20b设于导光体21。第一表面201的部分区域或全部区域形成出光面20b。
以下通过几种实施方式对本申请提供的导光件20的结构进行具体的说明。
第一种导光件20的实施方式中,请参阅图7及图8,入光部22设于导光体21的外周侧。换言之,入光部22凸设于第一周侧面203。入光部22可看作为导光体21的一部分沿径向向外扩展形成。其中,一部分第一周侧面203沿径向向外扩展的形成包围于入光部22侧面的入光面22a和入光周侧面22b。本 申请不限定导光体21的一部分沿径向向外扩展为均匀扩展或非均匀扩展。入光部22朝向物侧的表面与导光体21朝向物侧的表面可齐平或有落差。入光部22朝向像侧的表面与导光体21朝向像侧的表面可齐平或有落差。入光面22a连接入光部22朝向物侧的表面和入光部22朝向像侧端的表面。
可选的,入光面22a从第一周侧面203(导光体21的外周侧面)沿逐渐远离镜头组件10的光轴的方向向外延伸。入光面22a的延伸方向与镜头组件10的径向方向平行或相交。可选的,入光面22a从导光体21的外周侧面沿镜头组件10的径向向外延伸。再可选的,入光面22a的延伸方向与镜头组件10的径向方向之间具有夹角。
请参阅图9,以垂直于镜头组件10的光轴的平面为投影面,入光面22a在投影面上的投影线与镜头组件10的参考径向方向之间的夹角为0°~10°。参考径向方向为经过入光面远离导光体21的外周侧面的边在投影面上形成的投影点的径向方向。换言之,入射口20a的投影轮廓呈圆形,入射口20a的投影的圆心与入光面22a的投影线径向最外侧的端点之间的连线为基准线,入光面22a的投影线与基准线之间的夹角在0°~10°之间。示例性的,入光面22a的投影线与基准线B之间的夹角β为0°、1°、2°、3°、4°、5°、7°、9°或10°等等。如此,避免入光面22a的投影线与基准线B之间的夹角β过大,一方面,避免入光面22a朝环形导光环212径向内侧倾斜角度过大,光线从入光面22a射入后从入光部的外周侧面22b射出,导致光线损耗过大;另一方面,避免入光面22a朝环形导光环212径向外侧倾斜角度过大,光线从入光面22a射入后直接沿环形导光环212的径向射入导光体21内,导致入光面22a所在处亮度过高,出现爆灯问题。
本申请对于入光面22a与出光面20b在X-Y平面内的位置不做具体的限定。可选的,以垂直于镜头组件10的光轴的平面为投影面,入光面22a的投影线连接出光面20b的投影外轮廓边缘线,以使导光件20在实现其均匀照度时还可以具有较小的体积。
再可选的,请参阅图10,以垂直于镜头组件10的光轴的平面为投影面,入光面22a在所述投影面上的投影线的中心点与出光面20b在所述投影面上的投影外轮廓边缘线之间的最小距离D为2.5mm~4.0mm。示例性的,入光面22a的投影线的中心点与出光面20b的投影外轮廓边缘线之间的最小距离D为2.5mm、3.0mm、3.5mm或4.0mm等等。如此设计,一方面,避免入光面22a的投影线的中心点与出光面20b的投影外轮廓边缘线之间的距离过近,出现爆灯问题;另一方面,避免入光面22a的投影线的中心点与出光面20b的投影外轮廓边缘线之间的距离过远,光线的光路过长,光线损耗过大。
入光部22的具体结构形状不限,示例性的,请参见图3、图5和图6,以垂直于镜头组件10的光轴的平面为投影面,入光部22大致呈鱼鳍状,入光部的外周侧面22b的轮廓线为外凸的凸弧线。
具体的,入光部22还具有入光周侧面22b。入光周侧面22b的一端连接入光面22a。入光周侧面22b的另一端逐渐远离入光面22a并连接至第一周侧面203。入光周侧面22b为外凸的凸弧面,且第一周侧面203与入光周侧面22b之间平滑过渡。一方面,通过设置入光周侧面22b为凸弧面,以使从入光面22a射入的光线经过曲率渐变的入光周侧面22b的反射后,以多种不同反射角度反射,进而使得光束射出的范围大,进而被入光周侧面22b反射后的光束能够投射至环形导光环212上较大的区域内,并在环形导光环212的外周侧面和导光柱211的内周侧面反复来回反射,进而在出光面20b所覆盖的区域内呈现均匀的亮度;另一方面,第一周侧面203与入光周侧面22b之间平滑过渡,不仅避免入光部22上形成尖锐的拐角,从而减小光线传播过程中的损耗,还使得光线在入光周侧面22b和第一周侧面20b上的反射过程连续且顺滑,进而射出的光线的角度也是渐变的,避免反射角度突变而导致某些区域未分布光线导致亮度不均;还使得导光件20的整体尺寸相对较小,便于安装于镜头组件10与外壳300之间的空间。
可选的,请参见图3,光源30具有发出光线的发光面30a,且发光面30a朝向入光面22a,其中,朝向是指发光面30a与入光面22a平行且具有较小的间距;或者,发光面30a与入光面22a之间具有一定的夹角。发光面30a与入光面22a之间的距离沿远离镜头组件10的光轴方向(即径向向外方向)逐渐增加。
发光面30a所在的平面与入光面22a所在的平面之间的夹角α在0°~20°之间。示例性的,发光面30a所在的平面与入光面22a所在的平面之间的夹角α为0°、1°、2°、5°、8°、10°、15°、19°或20°等等。如此,一方面,避免发光面30a所在的平面与入光面22a所在的平面之间的夹角α过大,光线从入光面22a射入后从入光部的外周侧面22b射出,导致光线损耗过大;另一方面,避免发光面30a向镜头组件10径向内侧过度倾斜,光线从入光面22a射入后未在入光部22内反射均匀后直接沿镜头组件10径向射入导光体21内,导致入光面22a所在处亮度过高,增强爆灯程度。换言之,通过合理设计发光面30a与入光面22a之间的角度,使得从入光面22a射入的光线在入光部22内进行充分的反射后,射入导光体21,如此,入光部22内的光线射出方向多,射出光线的范围大,入光部22将入光面22a小范围入射光线转换成较大范围射出的光线,以使光线能够沿各个方向射入导光体21,进而分散于导光体21的各个位置,进而在导光体21内呈现均匀的亮度。
光线在经过入光部22的反射后大致沿镜头组件10的周向进入导光体21内,能够避免光线集中直接沿镜头组件10的径向进入导光体21内,从而进一步避免出光面20b在光源30所在处的亮度过高,进一步减弱爆灯程度。导光体21能够分散光线,避免光线集中射出,使得从出光面20b射出的光线均匀性更好,进一步避免出光面20b出现明暗不均的问题,进一步提高出光面20b的外观均匀性和对摄像区域的补光均匀性。
入光部22的数量不限,示例性的,请参见图3,入光部22的数量为多个,这样便于更多的光线进 入导光体21内,从而提高整体亮度。多个入光部22沿镜头组件10的周向(也是导光体21的周向)间隔排布,例如均匀分布,光源30与入光部22一一对应设置。如此,提高补光均匀性。示例性的,入光部22的数量为两个,两个入光部22沿镜头组件10的周向(也是导光体21的周向)间隔均匀分布。另可选的,入光部22的数量为一个,光源30的数量也为一个。
需要说明的是,本申请实施例中的多个是指数量为两个以及两个以上。例如,入光部22的数量在2个~20个之间。如此,能够兼顾补光均匀性和补光强度。
以下结合附图对于导光体21的具体结构进行举例说明。
可选的,请参见图7及图8,导光体21包括形成入射口20a的导光柱211和环绕于导光柱211外周的环形导光环212。在导光件20的高度方向上,环形导光环212的顶面低于导光柱211的顶面。换言之,第一表面201包括位于导光柱211上的第一子表面204和位于环形导光环212上的第二子表面205。第一子表面204为导光柱211朝向物侧的面。第二子表面205为环形导光环212朝向物侧的面。第一子表面204的至少部分形成出光面20b,入光部22设置于环形导光环212的外周侧面。
可选的,第一子表面204和第二子表面205皆呈环形。可选的,第一子表面204相对于第二子表面202靠近物侧。即第一子表面204相对于第二子表面205远离第二表面202,以使第一子表面204与第二表面205之间的连接面、第二表面205形成台阶面,该台阶面可使得导光柱211伸出通光口301,而第二表面205抵接于外壳300的内表面,以实现导光件20装配于外壳300上。在其他实施方式中,第一子表面204与第二子表面205齐平。第一子表面204的至少部分形成出光面20b。可选的,第一子表面204为出光面20b。换言之,环形导光环212被外壳300等遮挡。
光线经过入光部22的扩散后,进入环形导光环212中,环形导光环212进一步分散光线,环形导光环212内均匀分布的光线进入导光柱211内,使得从出光面20b射出的光线均匀性更好,进一步避免出光面20b出现明暗不均的问题,进一步提高出光面20b的外观均匀性和对摄像区域的补光均匀性。环形导光环212更加靠近入光部22,光线在环形导光环212内存在局部的亮度差异的风险,而环形导光环212被外壳300遮挡,不会呈现在移动终端1000的外观面,故能够进一步地使得射出的光线均匀。此外,由于环形导光环212间隔设置在光源30与导光柱211之间,在移动终端1000的外观面即使从侧面角度也不易看到光源30,减少爆灯风险。
本实施方式中,环形导光环212的外周侧面为第一周侧面203。故入光部22设置在环形导光环212的外周侧面。
导光柱211的具体结构形状不限,可选的,请参见图3、图7和图8,以垂直于镜头组件10光轴的平面为投影面,导光柱211的投影外轮廓呈圆形,也就是说,导光柱211大致呈圆柱形。
可选的,请参见图3、图7和图8,环形导光环212的部分沿周向向外渐增扩展以形成入光部22。向外扩展的末端端面为入光面22a。如此,入光面22a的面积较大,以便光线从入光面22a进入入光部22内。
可选的,请参见图4和图7,环形导光环212环绕于导光柱211的底部,如此,在导光件20的高度方向上,入光面22a与出光面20b之间的距离较远,以便进一步减小爆灯程度。
换言之,第二表面202还包括设于导光柱211上的第三子表面206及设于环形导光环212上的第四子表面207。第三子表面206为导光柱211朝向像侧的表面。第四子表面207为环形导光环212朝向像侧的表面。
可选的,第四子表面207位于第一子表面201所在平面与第三子表面206所在平面之间。具体的,第三子表面206与第四子表面207在Z轴方向有落差。可选的,第三子表面206与第四子表面207在Z轴方向的落差形成台阶面,进而形成避让空间,以便于安装其他器件在环形导光环212背离外壳300的一侧。
可选的,第四子表面207与第三子表面206共面,以使导光柱211和环形导光环212背离物侧端的表面连接为一个整体大面,增加支撑面积。进一步地,入光部22背离物侧端的表面也与导光柱211、环形导光环212背离物侧端的表面连接为一个整体大面,以使导光件20具有一个相对平整的表面,以便于装配。
导光件20朝向像侧的面的至少部分、导光件20的外周侧面的一部分、导光件20朝向物侧的一部分设有反射层或遮光层。
可选的,导光柱211的第二子表面205、环形导光环212的第四子表面207、环形导光环212的外周侧面(即第一周侧面203)、环形导光环212的第二子表面205中的至少一者设有反射层或遮光层,以防止光线经上述的表面射出,进而提高光线从出光面20b的射出量,提高光线的利用率。
具体的,请参见图9、图10和图21,环形导光环212的底面、环形导光环212的外周侧面和/或环形导光环212的顶面设置有反射层(未图示)。利用反射层使得光线在环形导光环212内经反射后进入导光柱211内,避免光线射出环形导光环212。
具体的,请参见图9、图10和图21,环形导光环212的底面、环形导光环212的外周侧面和/或环形导光环212的顶面设置有遮光层(未图示)。利用遮光层避免光线射出环形导光环212,提高外观美观度。
可选的,遮光层可以为深色油墨层。例如黑色油墨或灰色油墨等等。
可选的,请参见图3和图7,以垂直于镜头组件10光轴的平面为投影面,环形导光环212的投影外 轮廓线所在的圆与入光部22的外周侧面22b的投影轮廓线所在的圆大致内切,上述两者之间的切点位于入光部22远离入光面22a的一端。如此,进一步便于入光部22将光线导入至环形导光环212内。
可选的,请参见图1至图4,摄像头模组100包括位于镜头组件10物侧的盖板40,镜头组件10的物侧端位于入射口20a内,盖板40封闭入射口20a。盖板40具有透光区域。外界光线经过盖板40的透光区域、入射口20a进入镜头组件10。
具体的,镜头组件10的物侧端从入射口20a的底侧伸入入射口20a内,盖板40封闭入射口20a的顶部,以保护镜头组件10,避免镜片组受损。镜头组件10的物侧端位于入射口20a内,且盖板40封闭入射口20a,使得镜片组与盖板40之间的距离较小,一方面,通过拉近镜片组和盖板40之间的距离,使盖板40内侧的异物能更加远离最靠近盖板40的镜片的物面,从而提高镜片组对白点毛丝等异物的容忍度,减少装配过程中白点毛丝产生的不良影响;另一方面,减小摄像头模组100在高度方向上的尺寸,使得移动终端1000能够更加轻薄化。
可选的,导光柱211的顶部和盖板40共同封闭通光口301。出光面20b位于通光口301处,出光面20b靠近被拍摄物,以便补光。环形导光环212能够隐藏至外壳300内,用户从镜头组件10的物侧查看摄像头模组100时,尽量减少用户看到的导光件20的部位,进一步提高美感。
请参阅图11,盖板40具有可视区40a和环绕于可视区40a外周的环形遮光区40b,可视区40a的透光率大于环形遮光区40b的透光率。以垂直于镜头组件10的光轴的平面为投影面,镜头组件10的镜片的投影位于可视区40a的投影内。
一方面,盖板40封闭入射口20a的顶部,以保护镜头组件10,避免镜片受损。另一方面,成像光线穿过可视区40a进入镜片内,可视区40a的透光率较大,以减小可视区40a对成像光线的影响,便于大部分的成像光线能够通过可视区40a进入镜头组件10,以保证成像质量。又一方面,用户从镜头组件10的物侧查看盖板40时,由于环形遮光区40b的透光率的较小,能够避免用户清晰地看到位于环形遮光区40b背后的结构。又一方面,用户看到盖板40时,盖板40的外观呈具有环形区域的唱片形,视觉美感好,因此,提高了摄像头模组100的美感。
示例性的,环形遮光区40b的透光率可以等于或大于0%,小于100%。例如,环形遮光区40b的透光率可以为0%,也就是说,环形遮光区40b近似于完全不透光的结构。
盖板40的材质不限,例如,盖板40包括但不限于玻璃或塑料等等。
可视区40a的透光率大于环形遮光区40b的透光率的方式不限,示例性的,可视区40a和环形遮光区40b采用不同材质,例如,可视区40a采用透光率较高的玻璃,环形遮光区40b采用透光率较低的塑料。另可选的,可视区40a和环形遮光区40b分别为透光率不同的塑料,例如,可以采用双色注塑工艺形成盖板40。又可选的,可视区40a和环形遮光区40b为一体成型结构,如此,一体性好,例如可视区40a和环形遮光区40b均为玻璃材质,玻璃材质强度较高且耐划伤,环形遮光区40b的顶面或底面设置挡光结构,以降低环形遮光区40b的透光率,例如,挡光结构为深色油墨层,深色包括但不限于黑色或灰色等等。也可以磨砂处理盖板40的顶面或底面以形成挡光结构。
为了进一避免串光现象,可选的,入射口20a的内周侧壁设置有挡光层。挡光层能够遮挡光线,避免光线从入射口20a的内周侧壁投向镜头组件10,从而避免flare现象。
挡光层的具体结构不限,示例性的,挡光层包括但不限于深色油墨,例如灰色油墨或黑色油墨等。
可选的,请参见图2及图4,入射口20a的内周壁面形成有台阶面20a’,盖板40支撑于台阶面20a’上。如此,能够进一步减小盖板40与最靠近盖板40的镜片之间的距离。进一步减小摄像头模组100的厚度。
可选的,环形导光环212环绕于导光柱211的底部。可选的,盖板40和导光柱211共同封闭通光口301。环形导光环212和入光部22能够隐藏至外壳300内,用户从镜头组件10的物侧端查看摄像头模组100时,尽量减少用户看到的导光件20的部位,进一步提高美感。
可选的,请参见图5、图6、图12至图15,盖板40封闭外壳300的通光口301。盖板40盖设于导光柱211上,盖板40的透光区域对应入射口20a。可以理解的,盖板40可与外壳300固定装配在一起。盖板40能够保护导光柱211,避免导光柱211的顶面磨损刮花,故而提升了摄像头模组100的整体的外观精细度以及导光柱211的可靠性,还能降低对导光柱211的设计要求。导光件20和镜头组件10均位于外壳300内,利用外壳300隐藏环形导光环212和入光面22,避免用户透过盖板40看到环形导光环212和入光面22,进一步提高美感。
本申请对于导光件20的材质不限,例如,导光件20的材质包括但不限于塑料或硅胶等等,示例性的,导光件20包括聚碳酸酯基材或聚甲基丙烯酸甲酯基材。聚碳酸酯(Polycarbonate,PC)和聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)均为透明塑料,两者均具有高透光率,且光学性能好。一些实施例中,导光件20包括导光基材及分布于导光基材内的光扩散粉。导光基材的材质包括聚碳酸酯(Polycarbonate,PC)和聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)。光扩散粉是指增加光线散射和透射功能的材料,光扩散粉通常呈微珠形态或呈微观形态呈球形。在聚碳酸酯基材或聚甲基丙烯酸甲酯基材中加入光扩散粉以进一步提高光线分布的均匀性。光扩散粉的质量百分比在0%~0.5%之间。光线从入光部22的入光面22a进入导光件20内,光扩散粉在导光件20内的质量百分比为0%、0.1%、0.15%、0.3%或0.5%等等,不仅能提高补光均匀性,还能提高外观均匀性,避免出现明暗不均现象。
通过设计光扩散粉的质量百分比,避免其在导光基材内的浓度过高而降低导光件20的透光率,即 在确保导光件20具有较高的透光率的同时还具有较高的散射光线的能力。
可选的,请参见图7和图8,导光件20为一体成型结构,例如,导光件20为一体注塑成型结构。
可选的,请参见图7和图8,导光件20为中心对称结构。这样,不仅提高了补光均匀性,还提高了外观视觉均匀性。
可选的,请参见图2、图4和图7,出光面20b朝镜头组件10的光轴倾斜。也就是说,出光面20b大致呈喇叭形,换言之,入射口20a具有收缩段,收缩段的径向尺寸从物侧朝像侧逐渐收缩,收缩段的侧壁为导光件21的出光面20b。如此,便于大部分光线投向镜头组件10的摄像区域,提高光线的利用率。
可选的,请参见图2和图7,摄像头模组100包括设置于入射口20a内周壁面上的挡光层或反射层(未图示)。挡光层能够阻挡光线从入射口20a的内周壁面投向镜头组件10,从而避免串光(flare)现象。反射层能反射光线,进而增加光线在出光面20b中的均匀性和出光率。
挡光层的具体结构不限,示例性的,挡光层包括但不限于深色油墨,例如灰色油墨或黑色油墨等。
在第二种导光件20的实施方式中,请参见图16,导光件20的外周侧面上形成有供光线入射的入光区20c,光线沿镜头组件10的径向从入光区20c射入导光件20内。也就是说,导光件20的外周侧面上预留有供光线入射的入光区20c,发光面30a朝向入光区20c。
入光区20c的具体形成方式不限,示例性的,请参见图16,导光件20的外周侧面的部分区域直接预留为入光区20c,导光件20的外周侧面的另部分区域做反射处理以形成反射区20d,反射处理包括但不限于涂覆反射层等等。如此,导光件20的反射区20d能够将光线反射回导光件20内,仅入光区20c能够射入光线。
一具体实施例中,请参见图16,导光件20包括形成有入射口20a的导光台23和环绕于导光台23外周的环形裙边24。在导光件20的高度方向上(即Z轴方向上),导光台23的顶面高于环形裙边24的顶面,出光面20b形成于导光台23的顶面上,入光区20c形成于环形裙边24的外周侧面上。环形裙边24环绕于导光台23的外周,环形裙边24能够进一步散射光线,进一步避免出光面20b出现明暗不均的问题,进一步提高出光面20b外观的均匀性和对摄像区域的补光均匀性。
可选的,请参见图16,环形裙边24环绕于导光台23的底部。环形裙边24与出光面20b之间的距离更大,以便进一提高出光面20b的外观均匀性和对摄像区域的补光均匀性。
导光台23的具体结构形状不限,可选的,请参见图16,以垂直于镜头组件10光轴的平面为投影面,导光台23的投影外轮廓呈圆形,也就是说,导光台23大致呈圆柱形。
可以理解的,导光台23实质上可以理解为第一种实施方式提供的导光件20中的导光柱211,环形裙边24实质上可以理解为第一种实施方式提供的导光件20中的环形导光环212。
入光区20c的数量不限,示例性的,请参见图16,入光区20c的数量为多个,这样便于更多的光线进入导光件20内,从而提高整体亮度。多个入光区20c沿导光件20的周向间隔均匀分布,光源30与入光区20c一一对应设置。如此,提高补光均匀性。示例性的,入光区20c的数量为两个,两个入光区20c沿导光件20的周向间隔均匀分布。另可选的,入光区20c的数量为一个,光源30的数量也为一个。光源30发出的光线更加柔和,出光均匀性更好,便于保证出光面20b出光外观效果的一致性。需要说明的是,本申请实施例中的多个是指数量为两个以及两个以上。例如,入光部22的数量在2个~20个之间。如此,能够兼顾补光均匀性和补光强度。
可以理解的,第二种实施方式提供的导光件20的结构、材质等可参考第一种实施方式提供的导光件20,在此不再赘述。
在第三种导光件20实施方式中,本实施方式与第一种导光件20大致相同,主要的不同在于,入光部22设于导光体21的像侧。入光部22和导光体21皆呈环形。入光部22和导光体21一体成型。入光部22的外轮廓线的径向尺寸小于导光体21的外轮廓线的径向尺寸。入光部22在光轴方向的正投影位于导光体21在光轴方向的正投影内。入光部22的外周侧面与导光体21朝向像侧的面包围形成第一安装空间121d。光源30设置在第一安装空间中121d,以减小摄像头模组100的整体在径向上所占据的空间。入光部22的外周侧面的至少部分为入光面22a。入光部22的外周侧面为沿Z轴方向的侧面。光源30的数量为多个,多个光源30围绕入光部22的外周侧面设置。
请参阅图17,导光件20具有入射口20a、以及设置在入射口20a周侧的第一安装空间121d。第一安装空间121d可呈环形。透镜组件10靠近物侧的一端穿设在入射口20a中,相当于导光件20套设于透镜组件10的外周侧。第一安装空间121d设于入射口20a的周侧,光源30设置在第一安装空间121d中,相当于光源30是隐藏在导光件20中,光源30的光线通过导光件20导向透镜组件10的视场。
本申请实施方式提供的移动终端1000,通过将透镜组件10靠近物侧的一端穿设在导光件20的入射口20a中,且将光源30设置在导光件20的第一安装空间121d中,可以使得光源30的光线能够从透镜组件10的四周导向透镜组件10的视场,由此,可以在近距离拍摄模式下,为透镜组件10的视场提供足够的光照,进而,可以清晰地拍摄视场内的被拍摄物20。
另外,将光源30设置在导光件20的第一安装空间121d中,不仅便于导光,还可以使得摄像头模组100的整体结构能够更加紧凑。
请参阅图18,本申请实施例的导光件20为一个连续的环状结构,具体地,本申请实施例的导光件20为圆环形。为提高补光的均匀性,本申请实施例设置了多个光源30,多个光源30沿导光件20的周向间隔 设置,相邻的两个的光源30之间的夹角大小可以相同,也可以不同。
可以理解的是,本申请中导光件20也并不限于是圆环形,在其它实施方式中,环状导光件20的外环还可以是矩形、三角形、椭圆形、异形等,内环可以是圆形、矩形、三角形、椭圆形、异形等任意一种,即环状导光件20的外环和内环可以是相同的形状,也可以是不同的形状,在此不做限制。
请参阅图17,导光体21包括相背设置的第一表面201和第二表面202。入射口20a的一端在第一表面201上具有第一开口,入射口20a的另一端在第二表面202上具有第二开口。入射口20a至少具有收缩段121b,收缩段121b的径向尺寸从第一开口所在的一端(即第一表面201所在侧,也即物侧)朝第二开口所在一端(即第二表面202所在侧,也即像侧)逐渐收缩,第一安装空间121d位于入射口20a靠近第二开口一端的周侧。也就是说,收缩段121b靠近第一开口的一侧的孔径大于收缩段121b远离第一开口的一侧孔径,由此,可以在透镜组件10进行拍摄时,便于被拍摄物20上所反射的光线射入到透镜组件10上,最终实现成像。
第一安装空间121d位于入射口20a靠近第二表面203所在侧。
在本实施例中,入射口20a具有收缩段121b和直线段,直线段与收缩段121b远离第一开口的一端连接,入射口20a的第一开口相当于收缩段121b的开口,而第二开口相当于直线段的开口,第一安装空间121d实际上是位于直线段的周侧。在其它实施方式中,直线段也可以与收缩段121b远离第二开口的一端连接,或者,收缩段121b的两端都可以设置直线段。在其它实施方式中,也可以不设置直线段。
请参阅图17,在本申请实施例中,收缩段121b的侧壁为导光件20的出光面20b。也就是说,光源30的光线从导光件20的入光面22a进入导光件20之后,能够从收缩段121b的侧壁处出射,并导向透镜组件10的视场,相当于入射口20a既是透镜组件10的拍摄孔,也是摄像头模组100的出光孔,由此,可以保证透镜组件10在进行拍摄,特别是近距离拍摄时,视场内的相对照度能够满足拍摄要求。
本实施例的光源30发出的光线主要是沿直线路径从导光件20的入光面22a传输至导光件20的出光面20b,在其它实施方式中,光源30发出的光线也可以是从导光件20的入光面22a进入导光件20的内部之后,在导光件20中经过多次反射,再传输至导光件20的出光面20b。
可以理解的是,在其它实施方式中,也可以在入射口20a的外周单独设置出光孔,通过导光件20导出的光线从出光孔导向透镜组件10的视场,即,入射口20a仅作为透镜组件10的拍摄孔使用,从导光件20导出的光线不经过入射口20a。
收缩段121b的侧壁也可以不是出光面,比如,在其它实施方式中,可以将导光件20设置有第一开口的一侧的端面(即第一表面201)作为出光面。
请参阅图17,在本申请实施例中,具有第二开口的端面(即第二表面202)的一部分朝具有第一开口的端面(即第一表面201)的方向凹陷,以形成第一安装空间121d。在其它实施方式中,也可以是导光件20的侧壁的一部分朝靠近入射口20a的方向凹陷,以形成第一安装空间121d,还可以将第一安装空间121d设置在导光件20的内部。即第一安装空间121d贯穿第二表面202和/或第一周侧面203。
进一步地,请参阅图17,本申请实施例的导光件20的入光面22a位于第一安装空间121d靠近入射口20a的一侧。具体地,本实施例的入光面22a与透镜组件10的光轴A平行,由此,既便于在第一安装空间121d中布置光源30,也便于将光源30的光线从入光面22a导向收缩段121b的侧壁,并从收缩段121b的侧壁处出射。
在其它实施方式中,入光面22a也可以不与透镜组件10的光轴A平行。比如,入光面22a可以与光轴A之间具有小于90°的夹角。
另外,由于导光件20是由透光材料制成,为了避免用户透过导光件20看见移动终端1000的内部结构,可以将导光件20具有第二开口的端面设置为非透光面,所述第二表面202为非透光面。比如,可以将导光件20具有第二开口的端面进行雾化处理,以达到磨砂效果。
本申请另一实施例还提供了一种移动终端1000,请参阅图19,本申请实施例的移动终端1000包括外壳300、主板13和上述实施例提供的摄像头模组100。外壳300包括前壳111和后盖112,前壳111和后盖112之间形成容纳腔。主板13设置在容纳腔中,主板13与后盖112之间形成第二安装空间11a,主板13靠近第二安装空间11a一侧的表面为第三表面13b。摄像头模组100设置在第二安装空间11a中,透镜组件10靠近主板13的一端与第三表面13b接触;或,透镜组件10靠近主板13的一端与第三表面13b之间具有间隔。也就是说,透镜组件10仅仅是设置在主板13的一侧,主板13上没有为透镜组件10开设相应的避让口等避让结构,由此,在设置透镜组件10时,不会破坏主板13原来的结构,进而,不会影响主板13走线及相关元器件的设置。
请参阅图19,本申请实施例的移动终端1000还包括柔性电路板16,光源30设置在柔性电路板16上,具体地,光源30可以焊接在柔性电路板16上,柔性电路板16与主板13电连接。由于光源30与主板13之间具有一定的间隔,所以,通过设置柔性电路板16,可以便于光源30与主板13电连接。
可以理解的是,在其它实施方式中,也可以不设置柔性电路板16,而将光源30直接与主板13电连接。
请参阅图19,可选的,移动终端1000还包括盖设在摄像头模组100靠近物侧的一端的盖板40。本实施方式中的盖板40可参考第一种导光件20中的盖板。盖板40主要起到对摄像头模组100进行保护的作用,从导光件20的出光面20b出射的光线穿过盖板40之后,导向透镜组件10的视场,同样地,被拍摄物20上所反射的光线也是穿过盖板40之后射入到透镜组件10上,最终实现成像。
盖板40盖合于通光口301。盖板40可以直接设置在后盖112上,也可以在后盖112上设置装饰盖,将盖板40设置在装饰盖上,当盖板40设置在装饰盖上时,可以在导光件20的外表面形成有凸缘,装饰盖压靠在凸缘上,以起到固定装饰盖和导光件20的作用。
在本申请实施例中,盖板40与导光件20是两个独立的结构,请参阅图20,在另一种实施例中,盖板40也可以是与导光件20一体成型,即,导光件20的一部分结构可以作为盖板40使用,由此,可以进一步减小手机的整机厚度。
请参阅图21,在一种实施例中,透镜组件10为功能摄像头,移动终端1000还包括设置在第二安装空间11a中的主摄像头14,主板13具有避让口13a,主摄像头14靠近主板13的一端穿设在避让口13a中。也就是说,在此种实施例中,移动终端1000上同时设置了主摄像头14和功能摄像头,在一种实施方式中,功能摄像头可以是能够在工作距离处于超微距范围的情况下成像的摄像头,超微距范围为3mm~10mm,即功能摄像头可以是超微距摄像头,在其它实施方式中,功能摄像头也可以是微距摄像头,广角摄像头、长焦摄像头等等。
具体地,主摄像头14的外形尺寸一般大于功能摄像头的外形尺寸,为了保证移动终端1000能够尽可能地轻薄化,本实施例在主板13上为主摄像头14设置了避让口13a,主摄像头14靠近主板13的一端穿设在避让口13a中,以减少主摄像头14在手机厚度方向上所占据的空间。同时,将功能摄像头靠近后盖112的一端穿设在导光件20的入射口20a中,由此,可以在不增加移动终端1000的自身厚度的同时,既不用在主板13上为功能摄像头开设对应的避让孔等避让结构,也可以保证功能摄像头在近距离拍摄模式下能够为功能摄像头的视场提供足够的光照。
请参阅图22,结合上述的任意一种实施方式提供的导光件20。导光体21的第二表面202上设有散射结构32。光线经散射结构32散射后从出光面20b射出至镜头组件10的摄像区域。以垂直于镜头组件10的光轴的平面为投影面,出光面20b的投影位于散射结构32的投影内。出光面20b在光轴方向上的正投影位于散射结构32所在区域内。
本申请实施例的摄像头模组100,光线经散射结构32散射后从出光面20b射出至镜头组件10的摄像区域,从而提高被拍摄物的照度,实现补光。被拍摄物反射的成像光线通过入射口20a进入镜头组件10内,以便镜头组件10完成拍摄。出光面20b的投影位于散射结构32的投影范围内,以保证出光面20b的射出的光线均经过散射结构32散射,如此,能够避免光线过于集中,从而避免出光面20b上出现明暗不均的现象,不仅提高了出光面20b点亮后的外观均匀性,还能提高对摄像区域的补光均匀性。
需要说明的是,出光面20b的外观均匀性是指导光件20被点亮后,出光面20b呈现的亮度一致性。
可选的,请参阅图22及图23,散射结构32包括多个沿镜头组件10周向间隔分布的锯齿221,锯齿221沿镜头组件10的径向延伸。锯齿221改变光线的传播方向,使得光线分散分布,以提高光线分布的均匀性。
为了进一步提高光线分布的均匀性,改善出光面20b的外观均匀性,可选的,请参见图23,锯齿221包括与导光体21的底面(导光件21朝向像侧的表面)连接的第一斜面221a及第二斜面221b,第一斜面221a及第二斜面221b相对倾斜且连接,也就是说,两个相对倾斜且连接的斜面221a、221b共同形成锯齿221。第一斜面221a与导光体21的底面(第二表面202,也是导光件21朝向像侧的表面)之间的夹角位于30°~45°之间。示例性的,第一斜面221a与第二表面202(导光件21朝向像侧的表面)之间的夹角α为30°、35°、40°或45°等等。如此,光线投射至第一斜面221a上,经第一斜面221a改变传播方向。第二斜面221b与第二表面202之间的夹角皆位于70°~85°之间。示例性的,第二斜面221b与第二表面202之间的夹角为70°、75°、80°或85°等等。如此,光线投射至第二斜面221b上,经第二斜面221b改变传播方向。
换言之,当第二表面202上未设置锯齿221时,光线在第一表面201与第二表面202之间来回反射,光线在反射的过程中绕入射口20a向前传导。通过在第二表面202上设置锯齿221后,光线会在第一表面201与锯齿221之间来回反射,锯齿221的第一斜面221a和第二斜面221b使得光线的方向发生折返后反射,如此,光线在多个锯齿221的作用下在导光体21内不断折返,传导方向被不断地打乱,在若干次反射后在导光体21内均匀分布。
可选的,请参见图23,锯齿221的最高高度在0.1mm~0.25mm之间。换言之,锯齿221沿镜头组件10的光轴方向的尺寸位于0.1mm~0.25mm之间。示例性的,锯齿221的最高高度H为0.1mm、0.15mm、0.2mm或0.25mm等等。当锯齿221的高度过小时,不便于成型,也不能很好的起到对光线的散射作用;当锯齿221的高度过高时,对于光线的散射效果相对较差;如此,本实施方式通过对锯齿221的高度设计,既能保证锯齿221能够有效散射光线,还能避免锯齿221在高度方向上过高,占据过多的空间。
可选的,请参见图23,锯齿221的最大宽度在0.1mm~0.4mm之间。换言之,锯齿221沿导光件20的周向方向的尺寸位于0.1mm~0.4mm之间。示例性的,锯齿221的最大宽度W为0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm或0.4mm等等。如此,既能保证锯齿221能够有效散射光线,还能避免单个锯齿221过多占据导光件20的底面的面积,便于调整锯齿221的数量和分布密度。
出光面20b的具体形状不限,可选的,请参见图9及图10,以垂直于镜头组件10的光轴的平面为投影面,出光面20b的投影轮廓呈环形,散射结构32的投影轮廓也大致呈环形。
请参阅图9,散射结构32设置于导光柱211的底面(即第二表面202)上,光线从入光面22a进入环形导光环212后,能够直接射向散射结构32。
请参见图9,以入光面22a为起点,沿预设旋向,靠近入光面22a的相邻的两个锯齿221之间的最小距离大于远离入光面22a的相邻的两个锯齿221之间的最小距离,其中,预设旋向与光线射出出光面20b的方向符合右手螺旋规则。即:右手握住环形导光环212,右手拇指指向光线射出出光面20b的方向,右手四指以入光面22a为起点,右手四指弯曲的方向为预设旋向。
以入光面22a为起点,光线射入入光面22a,也就是说,靠近入光面22a处的光线较多,因此,沿预设旋向,靠近入光面22a的相邻的两个锯齿221之间的最小距离较大,锯齿221之间分布较为稀疏,锯齿221的密度较小,避免锯齿221将过多的光线散射射向出光面20b,便于光线沿预设旋向传播至远离入光面22a的部位;远离入光面22a的相邻的两个锯齿221之间的最小距离较小,锯齿221之间分布较为密集,锯齿221的密度较大,便于远离入光面22a所在处的光线能够被锯齿221散射射向出光面20b,使出光面20b远离入光面22的部位亮度提升,改善点亮后出光面20b的外观均匀性。
换言之,沿导光件20的周向方向上,靠近入光面22a处的锯齿221的排布密度小于远离入光面22a处的锯齿221的排布密度。可选的,靠近入光面22a处的锯齿221为入光部22的入光周侧面22b所对应的锯齿221。此区域的相邻的两个锯齿221之间的间距可相等,也可沿着入光部22逐渐减小的旋向上排布密度逐渐增加。远离入光面22a处的锯齿221是指未被入光部22的入光周侧面22b所对应的锯齿221。此区域的相邻的两个锯齿221之间的间距可相等,也可沿着入光部22逐渐减小的旋向上排布密度逐渐增加。
本实施方式通过在导光体21背面设计楔形锯齿221结构,该楔形锯齿221结构在光源40灯口位置排布密度相对较小,而在远离灯口的位置排布密度逐渐加大,从而使远离灯口的位置导光亮度提升,改善点亮后外观均匀性问题。
为了进一步便于光线传播,可选的,请参见图9,在预设旋向上(沿所述导光件20的周向方向上),靠近入光面22a的相邻的两个锯齿221之间的最小距离在0.05mm~0.07mm之间。换言之,沿导光件20的周向方向上,靠近入光面22a处的相邻的两个锯齿221之间的最小距离(靠近入射口20a侧的距离)在0.05mm~0.07mm之间。示例性的,靠近入光面22a的相邻的两个锯齿221之间的最小距离L为0.05mm、0.055mm、0.06mm、0.065mm或0.07mm等等。
为了进一步便于远离入光面22a的部位的光线能够被锯齿221散射射向出光面20b,可选的,请参见图9,在预设旋向上(沿所述导光件20的周向方向上),远离入光面22a的相邻的两个锯齿221之间的最小距离在0.01mm~0.03mm之间。换言之,沿导光件20的周向方向上,远离入光面22a的相邻的两个锯齿221之间的最小距离(靠近入射口20a侧的距离)在0.01mm~0.03mm之间。示例性的,远离入光面22a的相邻的两个锯齿221之间的最小距离L为0.01mm、0.015mm、0.02mm、0.025mm或0.03mm等等。
散射结构32设于导光体21上。导光体21还设有位于散射结构32与入光部22之间的至少一个隔离槽212a。导光体21在入光部22位置设计隔离槽212a,起到拦光的作用,以进一步减弱入光部22所在处的爆灯程度。
可选的,请参见图9,环形导光环212的底面形成有位于入光部22所在处的隔离槽212a,隔离槽212a位于散射结构32的径向外侧。也就是说,以垂直于镜头组件10的光轴的平面为投影面,隔离槽212a的投影至少部分位于入光部22的投影和出光面20b的投影之间,由于入光部22所在处环形导光环212的亮度更高,容易出现爆灯现象。隔离槽212a能够减少入光部22所在处直接进入导光柱211内的光线,起到拦光作用,如此,出光面20b靠近入光部22部分的亮度与出光面20b远离入光部22部分的亮度平衡,从而提高出光面20b的外观均匀性和对摄像区域的补光均匀性。
一具体实施例中,请参见图9及图14,环形导光环212的底面向顶侧凹陷以形成隔离槽212a。
隔离槽212a的外形要贴合导光柱221的外形,具体的,隔离槽212a位于散射结构32的径向外侧并沿导光件20的周向呈弧形延伸,以确保光线向远端传导时不受影响,确保远离灯口位置的区域的亮度与靠近灯口位置的区域的亮度均匀性。
可选的,请参见图9、图10和图15,导光件20包括至少一个设置于环形导光环212的外周侧面上的定位结构23。移动终端1000上设置有与定位结构23形状适配的限位结构,定位结构23插入限位结构内,以将摄像头模组100定位装配至移动终端1000上。所述定位结构与所述入光部间隔设置。
定位结构23的具体结构不限,示例性的,定位结构23为凸起,限位结构为与凸起形状适配的凹槽。另可选的,定位结构23为凹槽,限位结构为与凹槽形状适配的凸起。凸起插入凹槽内,以将摄像头模组100定位装配至移动终端1000上。
为了提高导光件20的外观视觉对称性,可选的,请参见图9、图10和图15,定位结构23的数量为多个,多个定位结构23沿环形导光环212的周向间隔排布,例如,均匀分布。示例性的,定位结构23为两个,两个定位结构23沿环形导光环212的周向间隔均匀分布。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (31)

  1. 一种摄像头模组,其特征在于,包括:
    镜头组件;
    导光件,为环形结构,且所述导光件套设于所述镜头组件的外周侧;以及
    光源,所述光源发出的光线经所述导光件的外周侧射入所述导光件内,并经所述导光件的出光面射出,所述出光面朝向所述镜头组件的物侧。
  2. 根据权利要求1所述的摄像头模组,其特征在于,所述导光件包括导光体和入光部,所述导光体套设于所述镜头组件的外周侧,所述入光部设于所述导光体的外周侧或设于所述导光体的像侧,所述入光部还具有供所述光源发射的光线入射的入光面,所述出光面设于所述导光体。
  3. 根据权利要求2所述的摄像头模组,其特征在于,所述入光部设于所述导光体的外周侧,所述入光面从所述导光体的外周侧面沿逐渐远离所述镜头组件的光轴的方向向外延伸。
  4. 根据权利要求3所述的摄像头模组,其特征在于,以垂直于所述镜头组件的光轴的平面为投影面,所述入光面在所述投影面上的投影线与所述镜头组件的参考径向方向之间的夹角为0°~10°,所述参考径向方向为经过所述入光面远离所述导光体的外周侧面的边在所述投影面上形成的投影点的径向方向。
  5. 根据权利要求3所述的摄像头模组,其特征在于,以垂直于所述镜头组件的光轴的平面为投影面,所述入光面在所述投影面上的投影线连接所述出光面在所述投影面上的投影外轮廓边缘线;或者,
    以垂直于所述镜头组件的光轴的平面为投影面,所述入光面在所述投影面上的投影线的中心点与所述出光面在所述投影面上的投影外轮廓边缘线之间的距离为2.5mm~4.0mm。
  6. 根据权利要求3所述的摄像头模组,其特征在于,所述入光部还具有入光周侧面,所述入光周侧面的一端连接所述入光面,所述入光周侧面的另一端逐渐远离所述入光面并连接至所述导光体的外周侧面,所述入光周侧面为凸弧面,且所述入光周侧面与所述导光体的外周侧面之间平滑过渡。
  7. 根据权利要求3所述的摄像头模组,其特征在于,所述光源具有发出光线的发光面,所述发光面朝向所述入光面,所述发光面与所述入光面之间的距离沿远离所述镜头组件的光轴方向逐渐增加,所述发光面所在的平面与所述入光面所在的平面之间的夹角为0°~20°。
  8. 根据权利要求4所述的摄像头模组,其特征在于,所述导光体包括导光柱和环绕于所述导光柱外周的环形导光环,所述导光柱朝向所述物侧的面为第一子表面,所述环形导光环朝向所述物侧的面为第二子表面,所述第一子表面相对于所述第二子表面靠近所述物侧,所述第一子表面的至少部分形成所述出光面,所述入光部设置于所述环形导光环的外周侧面。
  9. 根据权利要求8所述的摄像头模组,其特征在于,所述导光柱朝向所述像侧的面为第三子表面,所述环形导光环朝向所述像侧的面为第四子表面,所述第四子表面位于所述第一子表面所在平面与所述第三子表面所在平面之间;或者,所述第四子表面与所述第三子表面共面。
  10. 根据权利要求2所述的摄像头模组,其特征在于,所述入光部设于所述导光体的像侧,所述入光部的外轮廓线的径向尺寸小于所述导光体的外轮廓线的径向尺寸,所述入光部的外周侧面与所述导光体朝向像侧的面包围形成第一安装空间,所述光源设置在所述第一安装空间中,所述入光部的外周侧面的至少部分为所述入光面。
  11. 根据权利要求10所述的摄像头模组,其特征在于,所述出光面在所述镜头组件的光轴方向上的正投影区域与所述第一安装空间的内壁在所述镜头组件的光轴方向上的正投影区域相间隔。
  12. 根据权利要求1所述的摄像头模组,其特征在于,所述导光件具有入射口,所述镜头组件的物侧端设于所述入射口内,所述入射口具有收缩段,所述收缩段的径向尺寸从所述物侧朝所述像侧逐渐收缩,所述收缩段的侧壁为所述导光件的出光面。
  13. 根据权利要求1所述的摄像头模组,其特征在于,所述导光件朝向所述像侧的面的至少部分、和/或所述导光件的外周侧面的一部分、和/或所述导光件朝向所述物侧的一部分设有反射层或遮光层。
  14. 根据权利要求2所述的摄像头模组,其特征在于,所述入光部的数量为多个,多个所述入光部沿所述导光体的周向间隔排列,所述光源与所述入光部一一对应设置。
  15. 根据权利要求2所述的摄像头模组,其特征在于,所述镜头组件的物侧端设于所述导光件的入射口内,所述摄像头模组还包括位于所述镜头组件的物侧的盖板,所述盖板封闭所述入射口,所述盖板具有可视区和环绕于所述可视区外周的环形遮光区,所述可视区的透光率大于所述环形遮光区的透光率;以垂直于所述镜头组件的光轴的平面为投影面,所述镜头组件的镜片的投影位于所述可视区的投影内。
  16. 根据权利要求15所述的摄像头模组,其特征在于,所述入射口的内周壁面形成有台阶面,所述盖板支撑于所述台阶面上;和/或,所述盖板与所述导光件一体成型;和/或,所述摄像头模组还包括设于所述入射口内周壁面上的挡光层或反射层。
  17. 根据权利要求2所述的摄像头模组,其特征在于,所述导光件还包括至少一个设置于所述导光体的外周侧面上的定位结构,所述定位结构与所述入光部间隔设置,当所述定位结构的数量为多个时,多个所述定位结构沿所述导光体的周向间隔分布。
  18. 根据权利要求2~17任意一项所述的摄像头模组,其特征在于,所述导光件朝向所述像侧的表面上设有散射结构,所述光源发射的光线经所述散射结构散射后从所述出光面射出至所述镜头组件的摄像区域,所述出光面在所述光轴方向的正投影位于所述散射结构所在区域内。
  19. 根据权利要求18所述的摄像头模组,其特征在于,所述散射结构包括多个沿所述镜头组件周向间隔分布的锯齿,所述锯齿沿所述镜头组件的径向延伸。
  20. 根据权利要求19所述的摄像头模组,其特征在于,所述锯齿包括与所述导光件朝向所述像侧的表面皆连接的第一斜面和第二斜面,所述第一斜面和所述第二斜面相对倾斜且连接,所述第一斜面与所述导光件朝向所述像侧的表面之间的夹角位于30°~45°之间,所述第二斜面与所述导光件朝向所述像侧的表面之间的夹角位于70°~85°之间;和/或,
    所述锯齿沿所述镜头组件的光轴方向的尺寸位于0.1mm~0.25mm之间;和/或,
    所述锯齿沿所述导光件的周向方向的尺寸位于0.1mm~0.4mm之间。
  21. 根据权利要求19所述的摄像头模组,其特征在于,沿所述导光件的周向方向上,靠近所述入光面处的所述锯齿的排布密度小于远离所述入光面处的所述锯齿的排布密度。
  22. 根据权利要求19所述的摄像头模组,其特征在于,沿所述导光件的周向方向上,靠近所述入光面处的相邻的两个所述锯齿之间的最小距离在0.05mm~0.07mm之间;和/或,
    沿所述导光件的周向方向上,远离所述入光面的相邻的两个所述锯齿之间的最小距离在0.01mm~0.03mm之间。
  23. 根据权利要求18所述的摄像头模组,其特征在于,当所述入光部设于所述导光体的外周侧时,所述散射结构设于所述导光体上;所述导光体还设有位于所述散射结构与所述入光部之间的至少一个隔离槽。
  24. 根据权利要求23所述的摄像头模组,其特征在于,所述隔离槽位于所述散射结构与所述入光部之间并沿所述导光件的周向呈弧形延伸。
  25. 根据权利要求1所述的摄像头模组,其特征在于,所述光源的色温在5000K~14000K之间;和/或,所述光源为发光二极管。
  26. 根据权利要求1所述的摄像头模组,其特征在于,所述导光件的材质包括导光基材及分布于所述导光基材内的光扩散粉,所述导光基材的材质包括聚碳酸酯基材或聚甲基丙烯酸甲酯基材,所述光扩散粉的质量百分比在0%~0.5%之间。
  27. 一种移动终端,其特征在于,包括:
    权利要求1~26任一项所述的摄像头模组;以及
    外壳,所述外壳形成有通光口,所述摄像头模组位于所述外壳内,所述导光件设置于所述通光口处。
  28. 根据权利要求27所述的移动终端,其特征在于,所述外壳包括前壳和后盖,所述前壳和所述后盖之间形成容纳腔;
    所述移动终端还包括主板,所述主板设置在所述容纳腔中,所述主板与所述后盖之间形成第二安装空间,所述主板靠近所述第二安装空间一侧的表面为第三表面;
    所述摄像头模组设置在所述第二安装空间中,所述镜头组件靠近所述主板的一端与所述第三表面接触;或,所述镜头组件靠近所述主板的一端与所述第三表面之间具有间隔。
  29. 根据权利要求28所述的移动终端,其特征在于,所述镜头组件为功能摄像头,所述移动终端还包括设置在所述第二安装空间中的主摄像头;所述主板具有避让口,所述主摄像头靠近所述主板的一端穿设在所述避让口中。
  30. 根据权利要求29所述的移动终端,其特征在于,所述功能摄像头能够在工作距离处于超微距范围的情况下成像,所述超微距范围为3mm~10mm。
  31. 根据权利要求28~30任意一项所述的移动终端,其特征在于,所述移动终端还包括柔性电路板,所述光源设置在所述柔性电路板上,所述柔性电路板与所述主板电连接。
PCT/CN2021/095245 2020-05-26 2021-05-21 摄像头模组及移动终端 WO2021238805A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/050,978 US20230075148A1 (en) 2020-05-26 2022-10-28 Camera module and mobile terminal

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010456110.4A CN111510614A (zh) 2020-05-26 2020-05-26 摄像头模组及移动终端
CN202020905913.9 2020-05-26
CN202020905913.9U CN212381272U (zh) 2020-05-26 2020-05-26 摄像头模组及移动终端
CN202010456110.4 2020-05-26
CN202110261137.2A CN113067970B (zh) 2021-03-10 2021-03-10 摄像头模组以及移动终端
CN202110260231.6A CN112965322B (zh) 2021-03-10 2021-03-10 摄像头模组以及移动终端
CN202110260231.6 2021-03-10
CN202110261137.2 2021-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/050,978 Continuation US20230075148A1 (en) 2020-05-26 2022-10-28 Camera module and mobile terminal

Publications (1)

Publication Number Publication Date
WO2021238805A1 true WO2021238805A1 (zh) 2021-12-02

Family

ID=78745555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095245 WO2021238805A1 (zh) 2020-05-26 2021-05-21 摄像头模组及移动终端

Country Status (2)

Country Link
US (1) US20230075148A1 (zh)
WO (1) WO2021238805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109529A1 (zh) * 2021-12-14 2023-06-22 华为技术有限公司 电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843845B2 (en) * 2022-01-06 2023-12-12 GM Global Technology Operations LLC Protective lens cover for a camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058471A (ja) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd 液晶表示装置
CN110769161A (zh) * 2019-11-27 2020-02-07 Oppo广东移动通信有限公司 移动终端
CN111083341A (zh) * 2020-01-14 2020-04-28 昆山丘钛微电子科技有限公司 摄像头模组
CN111510614A (zh) * 2020-05-26 2020-08-07 Oppo广东移动通信有限公司 摄像头模组及移动终端
CN212381272U (zh) * 2020-05-26 2021-01-19 Oppo广东移动通信有限公司 摄像头模组及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058471A (ja) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd 液晶表示装置
CN110769161A (zh) * 2019-11-27 2020-02-07 Oppo广东移动通信有限公司 移动终端
CN111083341A (zh) * 2020-01-14 2020-04-28 昆山丘钛微电子科技有限公司 摄像头模组
CN111510614A (zh) * 2020-05-26 2020-08-07 Oppo广东移动通信有限公司 摄像头模组及移动终端
CN212381272U (zh) * 2020-05-26 2021-01-19 Oppo广东移动通信有限公司 摄像头模组及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109529A1 (zh) * 2021-12-14 2023-06-22 华为技术有限公司 电子设备

Also Published As

Publication number Publication date
US20230075148A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US7422353B2 (en) Light-emitting device for image taking and image-taking apparatus having same
US20230075148A1 (en) Camera module and mobile terminal
US20110123184A1 (en) Camera flash, a camera, and a method of generating a flash
KR20040095299A (ko) 카메라 부착 휴대 전화 장치 및 카메라용 조명 장치
CN111447313A (zh) 移动终端
CN111510614A (zh) 摄像头模组及移动终端
CN110914746A (zh) 用于超薄直射式背光的光学透镜
CN111510610A (zh) 移动终端
CN114222045A (zh) 摄像头模组及电子设备
CN212381272U (zh) 摄像头模组及移动终端
CN112965322B (zh) 摄像头模组以及移动终端
CN211047010U (zh) 外挂镜头模组以及组合套件
CN113067970B (zh) 摄像头模组以及移动终端
KR20100068313A (ko) 발광체 플래시 렌즈
CN215120933U (zh) 摄像头模组以及移动终端
CN212343814U (zh) 移动终端
WO2021232911A1 (zh) 移动终端
CN212850689U (zh) 摄像头模组及终端设备
CN211786206U (zh) 导光元件、灯光组件和电子设备
CN212381271U (zh) 移动终端
TW587193B (en) Imaging apparatus
CN113067969B (zh) 摄像头装置以及电子设备
CN113542569A (zh) 摄像头模组及电子设备
WO2022188269A1 (zh) 摄像头模组以及移动终端
CN112711089A (zh) 一种杂散光遮蔽结构、包含其的超微距成像模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811961

Country of ref document: EP

Kind code of ref document: A1