WO2021238308A1 - 检验模具、振动检验装置及沥青混合料流动度检测方法 - Google Patents

检验模具、振动检验装置及沥青混合料流动度检测方法 Download PDF

Info

Publication number
WO2021238308A1
WO2021238308A1 PCT/CN2021/077237 CN2021077237W WO2021238308A1 WO 2021238308 A1 WO2021238308 A1 WO 2021238308A1 CN 2021077237 W CN2021077237 W CN 2021077237W WO 2021238308 A1 WO2021238308 A1 WO 2021238308A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
inspection
vibration
ladder
sample
Prior art date
Application number
PCT/CN2021/077237
Other languages
English (en)
French (fr)
Inventor
周艳东
晓夏
张文
张思杰
Original Assignee
中交一公局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交一公局集团有限公司 filed Critical 中交一公局集团有限公司
Publication of WO2021238308A1 publication Critical patent/WO2021238308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/06Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by timing the outflow of a known quantity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the invention relates to the technical field of civil engineering, in particular to an inspection mold, a vibration inspection device and an asphalt mixture fluidity detection method.
  • the hot-mix asphalt mixture is composed of aggregates with different coarse and fine particle sizes, mineral powder, and asphalt in a certain proportion.
  • Asphalt mixture is a semi-finished product that forms asphalt concrete. Changes in the working performance of the asphalt mixture will directly affect the quality and performance of the formed asphalt concrete. At a certain temperature, the change in the gradation composition of the hot-mix asphalt mixture will cause changes in the performance of the asphalt mixture in transportation and paving, and the rheological performance of the asphalt mixture under certain temperature conditions, density conditions and external forces. , Is closely related to the change of the gradation composition of the asphalt mixture.
  • the purpose of the present invention is to provide an inspection mold, a vibration inspection device and an asphalt mixture fluidity inspection method, so as to solve the problem that the asphalt mixture gradation state inspection method in the prior art is time-consuming and causes the asphalt mixture to have hidden quality problems. technical problem.
  • An inspection mold provided by the present invention includes:
  • a forming cylinder includes a cylinder and a ladder cylinder; the top and bottom ends of the cylinder are both open, the top of the ladder cylinder is open, and the diameter of the ladder cylinder is from the top to the bottom of the cylinder slowing shrieking;
  • the diameter of the bottom end of the cylinder is equal to the diameter of the top end of the ladder tube, and the bottom end of the cylinder and the top end of the ladder tube are connected by the assembly mechanism;
  • An opening mechanism installed at the bottom end of the ladder tube for opening or closing the bottom opening of the ladder tube
  • a bracket, the ladder tube is arranged on the bracket.
  • the assembly mechanism includes:
  • At least one card joint is installed at the bottom of the cylinder;
  • the clamping piece is provided with a clamping hole that matches with the clamping joint, one end of the clamping piece is hinged to the top of the ladder tube, and the other end of the clamping piece is suspended in the air .
  • the assembly mechanism includes:
  • the bottom end surface of the cylinder is provided with at least one positioning protrusion
  • the top end surface of the ladder tube is provided with at least one positioning groove that matches with the positioning protrusion
  • the positioning protrusion and the positioning groove are inserted and assembled.
  • it further includes a locking groove, and the locking groove is in communication with the positioning groove;
  • the positioning protrusion, the locking groove and the positioning groove all have a curvature consistent with the surface of the cylinder, and the cross-sections of the locking groove and the positioning protrusion are all trapezoidal.
  • the fixing member is a collar, the inner diameter of the collar is smaller than the diameter of the top end of the ladder tube, and the outer diameter of the collar is greater than the diameter of the fixing hole; the ladder tube is sleeved In the collar, the collar is placed on the top surface of the bracket and corresponds to the fixing hole.
  • the support includes:
  • the inner frame is located on the inner ring of the outer frame, the inner frame and the outer frame are connected to each other by at least one connecting body, and the support body is provided on the bottom surface of the outer frame;
  • the frame inner ring of the inner frame body constitutes the fixing hole.
  • the outer frame body is square
  • the support body is a strip plate
  • the four strip plates are vertically installed at four corners of the outer frame body.
  • the present invention also provides a vibration inspection device, including the inspection mold; the vibration inspection device further includes:
  • a positioning mechanism where the inspection mold is positioned and assembled on the table surface of the vibrating table through the positioning mechanism.
  • the invention also provides a method for detecting the fluidity of an asphalt mixture, according to the vibration inspection device; the method includes the following steps:
  • the cylindrical part of the sample after being tapped can produce a collapsed flow under the dual action of vibration force and gravity.
  • the viscosity of the mixture will change, and the flow speed of the mixture will change. Therefore, using the characteristics of the change in the flow speed caused by the change of viscosity, it can be effectively judged whether the gradation fluctuation of the mixture exceeds the allowable deviation range of the standard formula. Therefore, the inspection mold can effectively monitor whether the gradation fluctuation of the asphalt mixture is stable within a certain range, and provide an intuitive basis for controlling the quality fluctuation of the asphalt concrete construction process.
  • Fig. 1 is a perspective view of a molding cylinder provided by an embodiment of the present invention
  • Figure 2 is an exploded view of the forming cylinder shown in Figure 1;
  • Figure 3 is a plan view of the forming cylinder shown in Figure 1;
  • Figure 4 is a structural diagram of a forming cylinder provided by another embodiment of the present invention.
  • Figure 5 is a partial enlarged view of the forming cylinder shown in Figure 4.
  • Figure 6 is a structural view of the bottom end surface of a cylinder provided by an embodiment of the present invention.
  • Figure 7 is a structural view of the top surface of a ladder tube provided by an embodiment of the present invention.
  • Figure 8 is a structural view of the bottom end of a cylinder provided by another embodiment of the present invention.
  • Figure 9 is a structural view of the top surface of a ladder tube provided by another embodiment of the present invention.
  • Figure 10 is a cross-sectional view of a positioning protrusion provided by an embodiment of the present invention.
  • Figure 11 is a cross-sectional view of a locking groove provided by an embodiment of the present invention.
  • Figure 12 is an exploded view of a molding cylinder and a bracket provided by an embodiment of the present invention.
  • Figure 13 is a structural diagram of a fixing member provided by an embodiment of the present invention.
  • Figure 14 is an assembly diagram of a molding cylinder and a bracket provided by an embodiment of the present invention.
  • Figure 15 is a cross-sectional view of a bracket provided by an embodiment of the present invention.
  • Fig. 16 is a structural diagram of a vibration table provided by an embodiment of the present invention.
  • an inspection mold provided in this embodiment includes:
  • the forming cylinder 1 includes a cylinder 11 and a ladder cylinder 12; the top and bottom ends of the cylinder 11 are both open, the top of the ladder cylinder 12 is open, and the diameter of the ladder cylinder 12 The direction from the top to the bottom gradually decreases;
  • the diameter of the bottom end of the cylinder 11 is equal to the diameter of the top end of the ladder tube 12, and the bottom end of the cylinder 11 and the top end of the ladder tube 12 are connected by the assembly mechanism 2;
  • An opening mechanism installed at the bottom end of the ladder tube for opening or closing the bottom opening of the ladder tube
  • the bracket 3, the ladder tube 12 is arranged on the bracket 3.
  • the viscosity of the hot-mix asphalt mixture is closely related to the coating thickness of the oil film on the surface of the aggregate in the asphalt mixture. If the gradation composition of the asphalt mixture becomes thicker or thinner, the aggregate surface will be coated. The thickness of the covered bitumen film varies. In the production process of asphalt mixture, the gradation fluctuation of the asphalt mixture will affect the viscosity change of the asphalt mixture. Therefore, the viscosity of the asphalt mixture at a certain temperature can be used to be closely related to the gradation composition. The characteristics of fast monitoring of asphalt mixture gradation changes.
  • a sample of asphalt concrete can be filled in the inner cavity of the forming cylinder 1, wherein the forming cylinder 1 can also be pre-heated before filling the sample, and the asphalt concrete sample can also be prepared in advance and placed in the specified Keep the temperature in the oven for later use.
  • the sample can be filled more when filling, for example, the sample can be filled to 2-3 cm higher than the top of the forming cylinder 1, and then the sample higher than the forming cylinder 1 is scraped to ensure the accuracy of the inspection.
  • non-contact infrared thermometers and other instruments can also be used to measure the temperature of the sample to facilitate later data comparison.
  • the opening mechanism may be a shielding plate (not shown) installed at the bottom end of the ladder tube by means of snap-fit assembly, so as to open or close the bottom end opening of the ladder tube by installation or removal.
  • the shielding plate can also be assembled and driven by a rotating shaft assembly method, so that the shielding plate can be rotated to open or close the bottom end opening of the ladder tube.
  • the shielding plate When the shielding plate is assembled by means of a rotating shaft, it can also be driven electrically by a motor, so that the shielding plate can more conveniently open or close the bottom end opening of the ladder platform barrel.
  • the molding cylinder 1 is installed on the surface of the vibrating table 5 through the bracket 3, and the vibrating table 5 is activated to vibrate the sample.
  • the vibration frequency is adjustable from 0 to 100 Hz, and the amplitude is 0 to 5 mm.
  • Adjustable, the vibration time is adjustable from 0-40S, for example, work at a frequency of 50 Hz for 5 seconds to vibrate the sample, then open the bottom end of the ladder tube, and measure the height H1 of the sample at this time.
  • the vibrating table 5 is started again, and the cylindrical part of the sample (that is, the part where the cylinder 11 forms the sample) can be vibrated by this vibration.
  • the vibration frequency is adjustable from 0-100Hz
  • the amplitude is adjustable from 0-5mm
  • the vibration time is adjustable from 0-40S, for example, working at 30Hz for 5 seconds.
  • the gradation of the sample can be changed and the above steps can be repeated to perform 3-5 parallel tests under the condition of ensuring a certain temperature of the sample.
  • the cylindrical part of the sample after being tapped can produce a collapsed flow under the dual action of vibration force and gravity.
  • the viscosity of the mixture will change, and the flow speed of the mixture will change. Therefore, using the characteristics of the change in the flow speed caused by the change of viscosity, it can be effectively judged whether the gradation fluctuation of the mixture exceeds the allowable deviation range of the standard formula. Therefore, the inspection mold can effectively monitor whether the gradation fluctuation of the asphalt mixture is stable within a certain range, and provide an intuitive basis for controlling the quality fluctuation of the asphalt concrete construction process.
  • the assembling mechanism 2 includes: at least one clamping joint 21, the clamping joint 21 is installed at the bottom of the cylinder 11; at least one clamping piece 22, the clamping piece 22 The upper part is provided with a clamping hole 23 matched with the clamping joint 21, one end of the clamping piece 22 is hinged to the top of the ladder platform barrel 12, and the other end of the clamping piece 22 is suspended.
  • the clamping joint 21 and the clamping piece 22 are also in one-to-one correspondence with each other.
  • the clamping piece 22 can be controlled to rotate along the hinged part,
  • the clamping hole 23 on the clamping piece 22 is relatively buckled with the clamping joint 21, so that the clamping joint 21 is locked by the clamping hole 23 on the clamping piece 22, so that the cylinder 11 and the ladder tube 12 are relatively connected together ,
  • the clip 22 can be made of a thin metal sheet, or can be made of rubber or plastic.
  • the assembly mechanism 2 includes: at least one positioning protrusion 24 is provided on the bottom end surface of the cylinder 11, and at least one positioning protrusion 24 is provided on the top end surface of the ladder tube 12
  • the positioning groove 25 is matched with the protrusion 24; the positioning protrusion 24 and the positioning groove 25 are inserted and assembled.
  • the cylinder 11 and the landing tube 12 can also be connected by the insertion and assembly method of the positioning groove 25 and the positioning protrusion 24.
  • the positioning groove 25 and the positioning protrusion 24 can correspond to each other one by one, and the corresponding positioning protrusions 24 are inserted into the positioning grooves. 25, so that the cylinder 11 and the ladder cylinder 12 are relatively connected together to form a forming cylinder for testing. When not in use, the two can be stored or transported separately.
  • the assembling mechanism 2 may only adopt the clamping and fixing method of the clamping joint 21 and the clamping piece 22 alone, or only the insertion and fixing manner of the positioning groove 25 and the positioning protrusion 24 alone. Or, it is also possible to simultaneously adopt the clamping and fixing mode of the clamping joint 21 and the clamping piece 22, and the plug-in fixing mode of the positioning groove 25 and the positioning protrusion 24, so as to realize the connection between the cylinder 11 and the ladder tube 12 through double splicing. A stable connection between.
  • it also includes a locking groove 26, which is in communication with the positioning groove 25; the positioning protrusion 24, the locking groove 26, and the positioning groove All of them have a curvature consistent with the surface of the cylinder 11, and the cross section of the locking groove 26 and the cross section of the positioning protrusion 24 are both trapezoidal.
  • the cylinder 11 and the ladder tube 12 can continue to be connected in the circumferential direction.
  • the rotation causes the positioning protrusion 24 to rotate along the positioning groove 25 into the locking groove 26 communicating with each other. Since the cross section of the locking groove 26 and the cross section of the positioning protrusion 24 are both trapezoidal, the positioning protrusion 24 can be locked in the locking groove 26 through the structure of the matching trapezoidal cross section.
  • the cylinder 11 and the ladder tube 12 can be rotated relative to each other, so that the positioning protrusion 24 returns from the locking groove 26 to the positioning groove 25, and then the cylinder is realized. 11 and the separation of the ladder tube 12.
  • the fixing member 4 is a collar, the inner diameter of the collar is smaller than the diameter of the top end of the ladder tube 12, and the outer diameter of the collar is greater than the diameter of the fixing hole 31; the ladder tube 12 is sleeved in the collar, and the collar is placed on the top surface of the bracket 3 and corresponds to the fixing hole 31.
  • the collar Since the inner diameter of the collar is smaller than the diameter of the top of the ladder tube 12, the collar can be sleeved on the ladder tube 12 and cannot be removed from the top of the ladder tube 12. At the same time, since the outer diameter of the collar is larger than the diameter of the fixing hole 31, the collar is placed on the top surface of the bracket 3 and corresponds to the fixing hole 31, and the collar will not escape from the fixing hole 31. 31 slipped off. Therefore, through the diameter ratio of the collar, the top end of the ladder tube 12 and the fixing hole 31, the forming tube 1 can be fixed in the fixing hole 31 of the bracket 3 by layer by layer, and this method is convenient for installation And disassembly.
  • the bracket 3 includes: an outer frame 32, an inner frame 33 and at least one support 34; the inner frame 33 is located on the inner ring of the outer frame 32, and the inner frame
  • the body 33 and the outer frame body 32 are connected to each other by at least one connecting body 35, the support body 34 is provided on the bottom surface of the outer frame body 32; the inner frame of the inner frame body 33 constitutes the fixing hole 31 .
  • the outer frame body 32 is square
  • the support body 34 is a strip-shaped plate
  • the four strip-shaped plates are vertically installed at the four corners of the outer frame body 32.
  • the present invention also provides a vibration inspection device, including the inspection mold; the vibration inspection device further includes: a vibration table 5; a positioning mechanism, the inspection mold is positioned and assembled on the vibration table 5 by the positioning mechanism mesa. Since the specific structure, functional principle and technical effect of the inspection mold have been described in detail in the foregoing, it will not be repeated here. Any technical content about the inspection mold can refer to the preceding text.
  • an electric remote control switch installed on the ladder tube 12 of the inspection mold; the electric remote control switch is wirelessly connected to the opening mechanism, for example, the electric remote control switch can be connected to the control opening mechanism
  • the electric motor carries out electric wireless drive.
  • the opening mechanism can be activated by means of wireless remote control, and the electric remote control switch of the wireless remote control can be installed on the ladder tube 12 to facilitate the control of the opening and closing of the opening mechanism.
  • the present invention also provides a method for detecting the fluidity of asphalt mixture.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种检验模具、振动检验装置及沥青混合料流动度检测方法,振动检验装置包括检验模具,检验模具包括:成型筒(1),成型筒(1)包括圆筒(11)和梯台筒(12);圆筒(11)的顶端和底端均开放,梯台筒(12)的顶端开放且梯台筒(12)的直径自其顶端至底端的方向逐渐减小;组装机构(2),圆筒(11)的底端与梯台筒(12)的顶端通过组装机构(2)连接;开启机构,开启机构安装在梯台筒(12)的底端,支架(3),梯台筒(12)设置在支架(3)上;支架(3)设置在振动台(5)上;沥青混合料流动度检测方法包括向检验模具的内腔填充试样,启动振动台(5)振实,测量此时试样的高度H1,开启梯台筒(12)底端开口,再次启动振动台(5),使试样流动,测量此时试样高度H2和振动时间T,计算沥青混合料的流动度V=(H1-H2)/T,可有效配合监控沥青混合料的级配波动是否稳定在一定范围。

Description

检验模具、振动检验装置及沥青混合料流动度检测方法 技术领域
本发明涉及土木工程技术领域,尤其是涉及一种检验模具、振动检验装置及沥青混合料流动度检测方法。
背景技术
热拌沥青混合料由粒径粗、细不同的集料、矿粉、沥青按一定比例组成。沥青混合料是形成沥青混凝土的半成品,沥青混合料工作性能的变化,会直接影响成型沥青混凝土的质量性能。在一定的温度下,热拌沥青混合料级配组成变化,会导致沥青混合料在运输、摊铺工作性能的变化,沥青混合料在一定温度状态、密度条件以及外力作用下的流变工作性能,与沥青混合料的级配组成变化密切相关。
因此,在目前的施工生产实践当中,需要对沥青混合料的级配状态进行监控,根据监控数据进行纠偏。但是,现有技术中的常规检验方法时间较长,质量纠偏活动的滞后时间过长,导致沥青混合料仍旧存在质量隐患。
发明内容
本发明的目的在于提供一种检验模具、振动检验装置及沥青混合料流动度检测方法,以解决现有技术中沥青混合料级配状态的检验方法耗时长,导致沥青混合料容易存在质量隐患的技术问题。
本发明提供的一种检验模具,包括:
成型筒,所述成型筒包括圆筒和梯台筒;所述圆筒的顶端和底端均开放,所述梯台筒的顶端开放且所述梯台筒的直径自其顶端至底端的方向逐渐减小;
组装机构,所述圆筒底端的直径与所述梯台筒顶端的直径相等,所述圆筒的底端与所述梯台筒的顶端通过所述组装机构连接;
开启机构,所述开启机构安装在所述梯台筒的底端,用于开启或关闭所述梯台筒的底端开口;
支架,所述梯台筒设置在所述支架上。
进一步的,所述组装机构包括:
至少一个卡接头,所述卡接头安装在所述圆筒的底部;
至少一个卡接片,所述卡接片上开设有与所述卡接头配合的卡接孔,所述卡接片的一端与所述梯台筒的顶部铰接,所述卡接片的另一端悬空。
进一步的,所述组装机构包括:
所述圆筒的底端面设置有至少一个定位凸起,所述梯台筒的顶端面设置有至少一个与所述定位凸起配合的定位凹槽;
所述定位凸起和所述定位凹槽插接装配。
进一步的,还包括锁止槽,所述锁止槽与所述定位凹槽连通;
所述定位凸起、所述锁止槽和所述定位凹槽均具有与所述圆筒表面一致的弧度,且所述锁止槽的截面和所述定位凸起的截面均为梯形。
进一步的,还包括:
固定件,所述支架的中部开设有固定孔,所述梯台筒通过所述固定件装配在所述固定孔内。
进一步的,所述固定件为套环,所述套环的内径小于所述梯台筒顶端的直径,且所述套环的外径大于所述固定孔的直径;所述梯台筒套接在所述套环内,所述套环放置在所述支架的顶面且与所述固定孔对应。
进一步的,所述支架包括:
外框体、内框体和至少一个支撑体;
所述内框体位于所述外框体的框内圈,所述内框体和所述外框体通过至少一个连接体相互连接,所述支撑体设置在所述外框体的底面;
所述内框体的框内圈构成所述固定孔。
进一步的,所述外框体为方形,所述支撑体为条状板,4个所述条状板垂直安装在所述外框体的四角处。
本发明还提供了一种振动检验装置,包括所述检验模具;所述振动检验装置还包括:
振动台;
定位机构,所述检验模具通过所述定位机构定位装配在所述振动台的台面。
本发明还提供了一种沥青混合料流动度检测方法,根据所述振动检验装置;包括如下步骤:
将所述检验模具放置在所述振动台的台面;
向所述检验模具的内腔填充制备好的试样,启动所述振动台以将所述试样振实,测量此时该试样的高度H1;
开启所述梯台筒的底端开口,再次启动所述振动台,使所述试样在振动作用下流动,测量此时该试样的高度H2和振动时间T;
计算沥青混合料流动度V,其中V=(H1-H2)/T。
在上述技术方案中,利用该检验模具进行检验时,试样被振实后的圆柱部分可以在振动力和重力的双重作用下产生坍塌流动。其中,由于混合料内部粘滞度因级配组成的变化,会导致混合料的粘滞度发生变化,进而导致混合料的流动速度发生变化。因此,利用粘滞度变化导致流动速度发生变化的特性,便可以有效的判断混合料的级配波动是否超出了标准配方的容许偏差范围。因此,该检验模具可以有效配合监控沥青混合料的级配波动是否稳定在一定范围,为控制沥青混凝土施工过程的质量波动提供直观的判断依据。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例提供的成型筒的立体图;
图2为图1所示的成型筒的爆炸图;
图3为图1所示的成型筒的平面图;
图4为本发明另一实施例提供的成型筒的结构图;
图5为本图4所示的成型筒的局部放大图;
图6为本发明一个实施例提供的圆筒的底端面结构图;
图7为本发明一个实施例提供的梯台筒的顶端面结构图;
图8为本发明另一个实施例提供的圆筒的底端面结构图;
图9为本发明另一个实施例提供的梯台筒的顶端面结构图;
图10为本发明一个实施例提供的定位凸起的截面图;
图11为本发明一个实施例提供的锁止槽的截面图;
图12为本发明一个实施例提供的成型筒与支架的爆炸图;
图13为本发明一个实施例提供的固定件的结构图;
图14为本发明一个实施例提供的成型筒与支架的装配图;
图15为本发明一个实施例提供的支架的截面图;
图16为本发明一个实施例提供的振动台的结构图。
附图标记:
1、成型筒;2、组装机构;3、支架;4、固定件;5、振动台;
11、圆筒;12、梯台筒;
21、卡接头;22、卡接片;23、卡接孔;
24、定位凸起;25、定位凹槽;26、锁止槽;
31、固定孔;32、外框体;33、内框体;34、支撑体;35、连接体。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1-3所示,本实施例提供的一种检验模具,包括:
成型筒1,所述成型筒1包括圆筒11和梯台筒12;所述圆筒11的顶端和底端均开放,所述梯台筒12的顶端开放且所述梯台筒12的直径自其顶端至底端的方向逐渐减小;
组装机构2,所述圆筒11底端的直径与所述梯台筒12顶端的直径相等,所述圆筒 11的底端与所述梯台筒12的顶端通过所述组装机构2连接;
开启机构,所述开启机构安装在所述梯台筒的底端,用于开启或关闭所述梯台筒的底端开口;
支架3,所述梯台筒12设置在所述支架3上。
需要说明的是,热拌沥青混合料的粘滞度与沥青混合料中集料表面的油膜裹覆厚度密切相关,如果沥青混合料的级配组成变粗或者变细,将导致集料表面裹覆的沥青膜厚度变化。在沥青混合料的生产过程中,沥青混合料的级配波动,会影响沥青混合料的粘滞度变化,因此,可以利用沥青混合料在一定温度下的粘滞度大小与级配组成密切相关的特性,快速监控沥青混合料级配变化。
使用时,可以将沥青混凝土的试样填充在成型筒1的内腔中,其中,该成型筒1在填充试样之前还可以进行预热处理,沥青混凝土试样也可以预先制备好放入规定温度的烘箱中保温备用。另外,试样在填充时还可以多填充一些,例如,试样可以填充至高于成型筒1的顶部2-3cm,然后将高于成型筒1的试样刮平,以保证检验的准确性。在检验过程中还可以利用非接触式红外测温仪等仪器对试样进行测温,以方便后期进行数据对比。
其中,所述开启机构可以是通过卡接装配方式安装在所述梯台筒底端的遮挡板(未示出),从而通过安装或移除的方式开启或关闭所述梯台筒的底端开口。除此之外,该遮挡板还可以通过转轴装配的方式进行装配并驱动,使遮挡板通过转动而开启或关闭所述梯台筒的底端开口。当该遮挡板通过转轴方式进行装配时,还可以通过电机来电动驱动,使遮挡板能够更加便捷的开启或关闭所述梯台筒的底端开口。
另外,10mm粒径混合料配合使用的成型筒1规格为下口D2=4cm,上口D1=8cm,圆柱体部分高20cm,倒梯形部分高H=4cm;14mm粒径混合料用规格为下口D2=5.6cm,上口D1=11.2cm,圆柱体部分高20cm,倒梯形部分高H=5.6cm;20mm粒径混合料用规格为下口D2=7cm,上口D1=14cm,圆柱体部分高20cm,倒梯形部分高H=7cm。
填充好试样后,将成型筒1通过支架3安装在振动台5的台面,启动所述振动台5以将所述试样振实,振动频率为0-100Hz可调,振幅为0-5mm可调,振动时间为0-40S可调,例如,在50Hz频率下工作5秒以振实试样,然后开启所述梯台筒的底端开口,测量此时该试样的高度H1。
所述梯台筒的底端开启后,再次启动所述振动台5,通过该次振动便可以使所述试样的圆柱部分(也即圆筒11对试样进行成型的部分)在振动作用下流动、扩散,振动 频率为0-100Hz可调,振幅为0-5mm可调,振动时间为0-40S可调,例如,在30Hz频率下工作5秒。振动过后,可以测量此时该试样的高度H2和振动时间T,利用高度H2和振动时间T计算沥青混合料流动度V,其中V=(H1-H2)/T。根据上述操作步骤,可以更改所述试样的级配并重复上述步骤,在保证试样一定温度的条件下进行3-5次平行试验。
所以,利用该检验模具进行检验时,试样被振实后的圆柱部分可以在振动力和重力的双重作用下产生坍塌流动。其中,由于混合料内部粘滞度因级配组成的变化,会导致混合料的粘滞度发生变化,进而导致混合料的流动速度发生变化。因此,利用粘滞度变化导致流动速度发生变化的特性,便可以有效的判断混合料的级配波动是否超出了标准配方的容许偏差范围。因此,该检验模具可以有效配合监控沥青混合料的级配波动是否稳定在一定范围,为控制沥青混凝土施工过程的质量波动提供直观的判断依据。
如图4和图5所示,所述组装机构2包括:至少一个卡接头21,所述卡接头21安装在所述圆筒11的底部;至少一个卡接片22,所述卡接片22上开设有与所述卡接头21配合的卡接孔23,所述卡接片22的一端与所述梯台筒12的顶部铰接,所述卡接片22的另一端悬空。
因此,当圆筒11的底端与梯台筒12的顶端对接完毕以后,此时卡接头21与卡接片22也相互一一对应,此时可以控制卡接片22沿着铰接部位转动,使卡接片22上的卡接孔23与卡接头21相对扣合,使卡接头21被卡接片22上的卡接孔23锁定,从而使圆筒11和梯台筒12相对连接在一起,构成成型筒而进行试验,不使用时,可以将二者分开保存或运输。其中,该卡接片22可以采用薄金属片,也可以采用橡胶或塑料的材质制作。
如图6和图7所示,所述组装机构2包括:所述圆筒11的底端面设置有至少一个定位凸起24,所述梯台筒12的顶端面设置有至少一个与所述定位凸起24配合的定位凹槽25;所述定位凸起24和所述定位凹槽25插接装配。
所以,除了卡接头21和卡接片22的卡接固定方式之外,还可以通过定位凹槽25和定位凸起24的插接装配方式连接圆筒11和梯台筒12。此时,当圆筒11的底端与梯台筒12的顶端对接完毕以后,定位凹槽25和定位凸起24便可以相互一一对应,定位凸起24对应的插接装配在定位凹槽25内,从而使圆筒11和梯台筒12相对连接在一起,构成成型筒而进行试验,不使用时,可以将二者分开保存或运输。
其中,需要说明的是,组装机构2可以仅单独采用卡接头21和卡接片22的卡接固 定方式,也可以仅单独采用定位凹槽25和定位凸起24的插接固定方式。或者,还可以同时采用卡接头21和卡接片22的卡接固定方式,以及定位凹槽25和定位凸起24的插接固定方式,以通过双重拼接实现圆筒11和梯台筒12之间的稳定连接。
如图8至图11所示,还包括锁止槽26,所述锁止槽26与所述定位凹槽25连通;所述定位凸起24、所述锁止槽26和所述定位凹槽25均具有与所述圆筒11表面一致的弧度,且所述锁止槽26的截面和所述定位凸起24的截面均为梯形。
因此,当圆筒11的底端与梯台筒12的顶端通过定位凹槽25和定位凸起24的插接结构相对拼接完毕后,还可以继续将圆筒11和梯台筒12相对周向转动,使定位凸起24沿着定位凹槽25转动进入到相互连通的锁止槽26内。由于锁止槽26的截面和所述定位凸起24的截面均为梯形,所以,通过这种配合的梯形截面的结构,可以使定位凸起24被锁定在锁止槽26内。
当需要分离圆筒11和梯台筒12的时候,可以反向相对转动圆筒11和梯台筒12,使定位凸起24从锁止槽26回到定位凹槽25内,然后实现圆筒11和梯台筒12的分离。
如图12和图16所示,还包括:固定件4,所述支架3的中部开设有固定孔31,所述梯台筒12通过所述固定件4装配在所述固定孔31内。其中,所述固定件4为套环,所述套环的内径小于所述梯台筒12顶端的直径,且所述套环的外径大于所述固定孔31的直径;所述梯台筒12套接在所述套环内,所述套环放置在所述支架3的顶面且与所述固定孔31对应。
由于所述套环的内径小于所述梯台筒12顶端的直径,所以套环可以套接在梯台筒12上并无法从梯台筒12的顶端移除。同时,由于所述套环的外径大于所述固定孔31的直径,所以将套环放置在所述支架3的顶面且与所述固定孔31对应,该套环也不会从固定孔31滑落。因此,通过套环、梯台筒12的顶端以及固定孔31的直径配比,便可以通过层层套接的方式将成型筒1固定在支架3的固定孔31内,且这种方式方便安装和拆卸。
如图15所示,所述支架3包括:外框体32、内框体33和至少一个支撑体34;所述内框体33位于所述外框体32的框内圈,所述内框体33和所述外框体32通过至少一个连接体35相互连接,所述支撑体34设置在所述外框体32的底面;所述内框体33的框内圈构成所述固定孔31。
其中,连接体35可以设置4个,并在内框体33的四个方向与外框体32固定。另外,10mm粒径混合料配合使用的支架3规格为,固定孔31直径D1=8cm,高度H=8cm; 2)14mm粒径混合料配合使用的支架3规格,固定孔31直径D1=11.2cm,高度H=11.2cm;20mm粒径混合料配合使用的支架3规格,固定孔31直径D1=14cm,高度H=15cm。优选的,所述外框体32为方形,所述支撑体34为条状板,4个所述条状板垂直安装在所述外框体32的四角处。
本发明还提供了一种振动检验装置,包括所述检验模具;所述振动检验装置还包括:振动台5;定位机构,所述检验模具通过所述定位机构定位装配在所述振动台5的台面。由于前文已经对检验模具的具体结构、功能原理以及技术效果进行详述,在此便不再赘述。任何有关于所述检验模具的技术内容均可参考前文。
其中,还包括:电动遥控开关,所述电动遥控开关安装在所述检验模具的梯台筒12上;所述电动遥控开关与所述开启机构无线控制连接,例如电动遥控开关可以与控制开启机构的电机进行电动无线驱动。
因此,该开启机构可以采用无线遥控的方式启动,无线遥控的电动遥控开关可以安装在梯台筒12上,以方便对开启机构的开启和关闭进行控制。
本发明还提供了一种沥青混合料流动度检测方法,根据所述振动检验装置;包括如下步骤:将所述检验模具放置在所述振动台5的台面;向所述检验模具的内腔填充制备好的试样,启动所述振动台5以将所述试样振实,测量此时该试样的高度H1;开启所述梯台筒的底端开口,再次启动所述振动台5,使所述试样在振动作用下流动,测量此时该试样的高度H2和振动时间T;计算沥青混合料流动度V,其中V=(H1-H2)/T。由于前文已经对检验模具的具体结构、功能原理以及技术效果进行详述,并且也对使用该检验模具的检验方法进行了说明,所以在此便不再赘述。任何有关于所述检验模具的技术内容均可参考前文。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种检验模具,其特征在于,包括:
    成型筒,所述成型筒包括圆筒和梯台筒;所述圆筒的顶端和底端均开放,所述梯台筒的顶端开放且所述梯台筒的直径自其顶端至底端的方向逐渐减小;
    组装机构,所述圆筒底端的直径与所述梯台筒顶端的直径相等,所述圆筒的底端与所述梯台筒的顶端通过所述组装机构连接;
    开启机构,所述开启机构安装在所述梯台筒的底端,用于开启或关闭所述梯台筒的底端开口;
    支架,所述梯台筒设置在所述支架上。
  2. 根据权利要求1所述的检验模具,其特征在于,所述组装机构包括:
    至少一个卡接头,所述卡接头安装在所述圆筒的底部;
    至少一个卡接片,所述卡接片上开设有与所述卡接头配合的卡接孔,所述卡接片的一端与所述梯台筒的顶部铰接,所述卡接片的另一端悬空。
  3. 根据权利要求1所述的检验模具,其特征在于,所述组装机构包括:
    所述圆筒的底端面设置有至少一个定位凸起,所述梯台筒的顶端面设置有至少一个与所述定位凸起配合的定位凹槽;
    所述定位凸起和所述定位凹槽插接装配。
  4. 根据权利要求3所述的检验模具,其特征在于,还包括锁止槽,所述锁止槽与所述定位凹槽连通;
    所述定位凸起、所述锁止槽和所述定位凹槽均具有与所述圆筒表面一致的弧度,且所述锁止槽的截面和所述定位凸起的截面均为梯形。
  5. 根据权利要求1-4中任一项所述的检验模具,其特征在于,还包括:
    固定件,所述支架的中部开设有固定孔,所述梯台筒通过所述固定件装配在所述固定孔内。
  6. 根据权利要求5所述的检验模具,其特征在于,所述固定件为套环,所述套环的内径小于所述梯台筒顶端的直径,且所述套环的外径大于所述固定孔的直径;所述梯台筒套接在所述套环内,所述套环放置在所述支架的顶面且与所述固定孔对应。
  7. 根据权利要求6所述的检验模具,其特征在于,所述支架包括:
    外框体、内框体和至少一个支撑体;
    所述内框体位于所述外框体的框内圈,所述内框体和所述外框体通过至少一个连接体相互连接,所述支撑体设置在所述外框体的底面;
    所述内框体的框内圈构成所述固定孔。
  8. 根据权利要求7所述的检验模具,其特征在于,所述外框体为方形,所述支撑体为条状板,4个所述条状板垂直安装在所述外框体的四角处。
  9. 一种振动检验装置,其特征在于,包括如权利要求1-8中任一项所述的检验模具;所述振动检验装置还包括:
    振动台;
    定位机构,所述检验模具通过所述定位机构定位装配在所述振动台的台面。
  10. 一种沥青混合料流动度检测方法,其特征在于,根据权利要求9所述的振动检验装置;包括如下步骤:
    将所述检验模具放置在所述振动台的台面;
    向所述检验模具的内腔填充制备好的试样,启动所述振动台以将所述试样振实,测量此时该试样的高度H1;
    开启所述梯台筒的底端开口,再次启动所述振动台,使所述试样在振动作用下流动,测量此时该试样的高度H2和振动时间T;
    计算沥青混合料流动度V,其中V=(H1-H2)/T。
PCT/CN2021/077237 2020-05-28 2021-02-22 检验模具、振动检验装置及沥青混合料流动度检测方法 WO2021238308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010470871.5A CN111595728B (zh) 2020-05-28 2020-05-28 检验模具、振动检验装置及沥青混合料流动度检测方法
CN202010470871.5 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238308A1 true WO2021238308A1 (zh) 2021-12-02

Family

ID=72189531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077237 WO2021238308A1 (zh) 2020-05-28 2021-02-22 检验模具、振动检验装置及沥青混合料流动度检测方法

Country Status (2)

Country Link
CN (1) CN111595728B (zh)
WO (1) WO2021238308A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595728B (zh) * 2020-05-28 2021-10-08 中交一公局集团有限公司 检验模具、振动检验装置及沥青混合料流动度检测方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625050A (en) * 1968-07-20 1971-12-07 Basf Ag Equipment for determining the melt viscosity of thermoplastics
JP2001215185A (ja) * 2000-02-01 2001-08-10 Kao Corp モルタルの流下時間測定装置
JP2011058885A (ja) * 2009-09-08 2011-03-24 Japan Atomic Energy Agency 流動性測定装置及び流動性測定方法
CN203178160U (zh) * 2013-03-18 2013-09-04 合肥市石川工程机械有限公司 一种预应力孔道压浆浆体流动度试验仪
CN203191278U (zh) * 2013-04-17 2013-09-11 重庆国际复合材料有限公司 一种玻璃纤维短切纱流动性检测装置
RU2494371C1 (ru) * 2012-03-12 2013-09-27 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Устройство для контроля насыпной плотности и текучести сыпучих материалов
CN204027965U (zh) * 2014-07-09 2014-12-17 曾令长 粉体流动性和密度测量装置
CN104297035A (zh) * 2014-10-21 2015-01-21 中山市拓维电子科技有限公司 一种沥青击实技术
CN204314179U (zh) * 2015-01-06 2015-05-06 上海力阳道路加固科技股份有限公司 一种流动度检测仪
CN206223596U (zh) * 2016-11-02 2017-06-06 华南理工大学 一种测试水泥砂浆的塑性粘度和屈服应力的装置
CN207020040U (zh) * 2017-05-25 2018-02-16 北京城建亚泰金砼混凝土有限公司 一种能调平的水泥浆稠度测定仪
CN207248682U (zh) * 2017-07-10 2018-04-17 中国建材检验认证集团贵州有限公司 一种倒置塌落度筒排空试验装置
CN108279186A (zh) * 2018-02-10 2018-07-13 中铁局集团有限公司 用于评价低流动性和高粘度混凝土粘度的测量装置及方法
CN207894779U (zh) * 2018-02-10 2018-09-21 中铁一局集团有限公司 用于评价低流动性和高粘度混凝土粘度的测量装置
CN209979424U (zh) * 2019-05-31 2020-01-21 江苏省路润工程技术有限责任公司 一种调节式细集料流动时间测定仪
CN210572313U (zh) * 2019-07-11 2020-05-19 中铁一局集团天津建设工程有限公司 一种盾构管片混凝土拌合物性能测试装置
CN210604272U (zh) * 2019-08-13 2020-05-22 中铁十二局集团第三工程有限公司 一种具有调平功能的流动度测试仪
CN211318095U (zh) * 2019-10-14 2020-08-21 中铁十七局集团第三工程有限公司 水泥净浆流动度检测装置
CN111595728A (zh) * 2020-05-28 2020-08-28 中交一公局集团有限公司海外分公司 检验模具、振动检验装置及沥青混合料流动度检测方法
CN212586185U (zh) * 2020-05-28 2021-02-23 中交一公局集团有限公司海外分公司 检验模具以及振动检验装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065959A (en) * 1976-12-08 1978-01-03 Richmore Company Portable viscometer apparatus
US6484565B2 (en) * 1999-11-12 2002-11-26 Drexel University Single riser/single capillary viscometer using mass detection or column height detection
US7461542B2 (en) * 2006-03-28 2008-12-09 Weisinger Michael S Funnel viscosimeter
CN105092416A (zh) * 2015-08-29 2015-11-25 华南理工大学 一种测量硅灰浆流动性的装置及其使用方法
EP3447490A1 (en) * 2017-08-25 2019-02-27 Koninklijke Philips N.V. Analyser for fluid sample analysis
CN108279168B (zh) * 2018-02-01 2024-04-23 上海交通大学 一种拉力缓冲油缸模型试验模拟装置
CN208872640U (zh) * 2018-08-17 2019-05-17 中交一公局集团有限公司 一种bbme沥青混凝土性能检测装置
CN208805438U (zh) * 2018-09-26 2019-04-30 宜昌领兴建筑工程有限公司 一种预应力孔道压浆浆体流动度检测装置
CN109061119A (zh) * 2018-09-29 2018-12-21 佛山科学技术学院 一种测量水泥浆扩展度仪器

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625050A (en) * 1968-07-20 1971-12-07 Basf Ag Equipment for determining the melt viscosity of thermoplastics
JP2001215185A (ja) * 2000-02-01 2001-08-10 Kao Corp モルタルの流下時間測定装置
JP2011058885A (ja) * 2009-09-08 2011-03-24 Japan Atomic Energy Agency 流動性測定装置及び流動性測定方法
RU2494371C1 (ru) * 2012-03-12 2013-09-27 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Устройство для контроля насыпной плотности и текучести сыпучих материалов
CN203178160U (zh) * 2013-03-18 2013-09-04 合肥市石川工程机械有限公司 一种预应力孔道压浆浆体流动度试验仪
CN203191278U (zh) * 2013-04-17 2013-09-11 重庆国际复合材料有限公司 一种玻璃纤维短切纱流动性检测装置
CN204027965U (zh) * 2014-07-09 2014-12-17 曾令长 粉体流动性和密度测量装置
CN104297035A (zh) * 2014-10-21 2015-01-21 中山市拓维电子科技有限公司 一种沥青击实技术
CN204314179U (zh) * 2015-01-06 2015-05-06 上海力阳道路加固科技股份有限公司 一种流动度检测仪
CN206223596U (zh) * 2016-11-02 2017-06-06 华南理工大学 一种测试水泥砂浆的塑性粘度和屈服应力的装置
CN207020040U (zh) * 2017-05-25 2018-02-16 北京城建亚泰金砼混凝土有限公司 一种能调平的水泥浆稠度测定仪
CN207248682U (zh) * 2017-07-10 2018-04-17 中国建材检验认证集团贵州有限公司 一种倒置塌落度筒排空试验装置
CN108279186A (zh) * 2018-02-10 2018-07-13 中铁局集团有限公司 用于评价低流动性和高粘度混凝土粘度的测量装置及方法
CN207894779U (zh) * 2018-02-10 2018-09-21 中铁一局集团有限公司 用于评价低流动性和高粘度混凝土粘度的测量装置
CN209979424U (zh) * 2019-05-31 2020-01-21 江苏省路润工程技术有限责任公司 一种调节式细集料流动时间测定仪
CN210572313U (zh) * 2019-07-11 2020-05-19 中铁一局集团天津建设工程有限公司 一种盾构管片混凝土拌合物性能测试装置
CN210604272U (zh) * 2019-08-13 2020-05-22 中铁十二局集团第三工程有限公司 一种具有调平功能的流动度测试仪
CN211318095U (zh) * 2019-10-14 2020-08-21 中铁十七局集团第三工程有限公司 水泥净浆流动度检测装置
CN111595728A (zh) * 2020-05-28 2020-08-28 中交一公局集团有限公司海外分公司 检验模具、振动检验装置及沥青混合料流动度检测方法
CN212586185U (zh) * 2020-05-28 2021-02-23 中交一公局集团有限公司海外分公司 检验模具以及振动检验装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO ZHONG-MING,GUO JUN-PING,XI JIN-SONG: "Comparation between Marsh Cone and Cement Paste Fluidity to Test Adaptability of Cement and Water Retarder", CEMENT, no. 8, 10 August 2006 (2006-08-10), pages 1 - 4, XP055872631, ISSN: 1002-9877, DOI: 10.13739/j.cnki.cn11-1899/tq.2006.08.001 *
ZHU BAO-LIN, HUANG XIN, MA BAO-GUO, ZHU HONG-BO: "Method to Evaluate Rheological Behavior of Cement Paste with High Fluidity", JOURNAL OF BUILDING MATERIALS, vol. 8, no. 6, 30 December 2005 (2005-12-30), pages 691 - 694, XP055872640, ISSN: 1007-9629 *

Also Published As

Publication number Publication date
CN111595728B (zh) 2021-10-08
CN111595728A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021238308A1 (zh) 检验模具、振动检验装置及沥青混合料流动度检测方法
NL2025629B1 (en) Method for detecting compaction status of asphalt pavement during construction compaction
Wortel et al. Rheology of weakly vibrated granular media
TWI657235B (zh) 自動鉸鏈扭力測試裝置
EP3721194B1 (en) Intertial torque device for viscometer calibration and rheology measurements
CN110146352A (zh) 一种模拟错动带岩体的制样模具及制备方法
CN212586185U (zh) 检验模具以及振动检验装置
US7380442B2 (en) On-line rotational/oscillatory rheometrical device
CN109238308B (zh) 一种金属筒形谐振陀螺的高精度模态测试系统及测试方法
WO2021232869A1 (zh) 成型器、振动检验装置以及沥青用量判断快速检验方法
JP6571954B2 (ja) 液状硬化性樹脂の硬化挙動測定方法及び硬化挙動測定装置
CN212133897U (zh) 一种建筑安全用混凝土测温仪
CN110132903B (zh) 一种全自动凝点测试装置及方法
CN114895006B (zh) 一种测试3d打印混凝土可建造性的测试方法
JP2016057178A (ja) ゲル化時間測定装置
CN108801857B (zh) 外加剂二次补偿试验装置及其控制方法
CN111366496A (zh) 建筑3d打印材料的流变性能测试方法
EP2999953B1 (en) Orthogonal superposition rheometer
CN204679386U (zh) 一种3d接触角的测试装置
CN106290079B (zh) 一种粗集料棱角性的测试方法及测试装置
JP7154660B2 (ja) 粘度計及び粘度測定方法
CN110006731A (zh) 外绝缘防污闪涂料的电气性能试验的制样模具及制样方法
CN112033856B (zh) 热拌沥青混合料胶结料最低用量检验装置及方法
CN113189303B (zh) 智能液限仪及液限测量方法
KR20190024310A (ko) 미소 부피 액체용 점성 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21814646

Country of ref document: EP

Kind code of ref document: A1