WO2021238138A1 - 传感器、显示面板及显示装置 - Google Patents

传感器、显示面板及显示装置 Download PDF

Info

Publication number
WO2021238138A1
WO2021238138A1 PCT/CN2020/133981 CN2020133981W WO2021238138A1 WO 2021238138 A1 WO2021238138 A1 WO 2021238138A1 CN 2020133981 W CN2020133981 W CN 2020133981W WO 2021238138 A1 WO2021238138 A1 WO 2021238138A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photosensitive
substrate
metal electrode
sensor
Prior art date
Application number
PCT/CN2020/133981
Other languages
English (en)
French (fr)
Inventor
徐健
王锐拓
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021238138A1 publication Critical patent/WO2021238138A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a sensor, a display panel and a display device.
  • touch and pattern recognition functions are gradually becoming the standard configuration of display devices.
  • optical sensors are usually used to realize touch and pattern (for example, fingerprint) recognition functions.
  • a sensor which includes a substrate, at least one photosensitive device, and at least one protective layer.
  • Each photosensitive device includes a metal electrode, a photosensitive layer, and a transparent electrode stacked on the substrate in a thickness direction of the substrate.
  • the transparent electrode is located on the light incident side of the photosensitive device.
  • Each protective layer covers the side surface of the photosensitive layer in a corresponding photosensitive device.
  • the refractive index of the protective layer is smaller than the refractive index of the photosensitive layer covered by the protective layer.
  • the photosensitive layer has a pyramid shape.
  • the area of the surface of the photosensitive layer facing the transparent electrode is smaller than the area of the surface of the photosensitive layer facing the metal electrode.
  • the photosensitive layer includes a P-type semiconductor layer, an intrinsic semiconductor layer, and an N-type semiconductor layer stacked in a thickness direction of the substrate.
  • the P-type semiconductor layer is in contact with the transparent electrode
  • the N-type semiconductor layer is in contact with the metal electrode.
  • the longitudinal cross section of each of the P-type semiconductor layer, the intrinsic semiconductor layer, and the N-type semiconductor layer is trapezoidal, and the P-type semiconductor layer, the intrinsic semiconductor layer
  • the semiconductor layer and the N-type semiconductor layer together form a prism-like structure.
  • the angle between the surface of the photosensitive layer facing the metal electrode and the side surface of the photosensitive layer is greater than or equal to 70° and less than or equal to 85°.
  • the senor further includes at least one thin film transistor.
  • the drain of each thin film transistor is electrically connected to the metal electrode in a corresponding photosensitive device.
  • the drain of the thin film transistor is in direct contact with the metal electrode in a corresponding photosensitive device, and the drain of the thin film transistor is located on a plane perpendicular to the thickness direction of the substrate.
  • the orthographic projection partially overlaps with the orthographic projection of the metal electrode in the photosensitive device on the plane.
  • the slope angle of the metal electrode is smaller than the slope angle of the drain electrode in contact with the metal electrode.
  • the sum of the slope angle of the metal electrode in the photosensitive device and the slope angle of the drain electrode in contact with the metal electrode is smaller than the slope angle of the photosensitive layer in the photosensitive device.
  • the senor further includes at least one gate line and at least one data line.
  • the gate of the thin film transistor is electrically connected to a gate line.
  • the source of the thin film transistor is electrically connected to a data line.
  • the thickness of the photosensitive layer is an integer multiple of 1/4 wavelength of light with a wavelength in the range of 500-600 nm.
  • the thickness of the photosensitive layer is an integer multiple of 1/4 wavelength of green light.
  • the ratio of the minimum thickness value of the protective layer to the maximum thickness value of the protective layer is greater than or equal to 0.9.
  • the thickness of the protective layer is in the range of 0.3-0.7 ⁇ m.
  • the senor further includes at least one voltage supply line.
  • the transparent electrode is electrically connected with a corresponding voltage supply line.
  • a display panel including the sensor as described above.
  • the display panel has a display area, and the display area includes a non-sub-pixel area.
  • the sensor is arranged in the non-sub-pixel area.
  • the display panel is a liquid crystal display panel.
  • the display panel includes an array substrate and a counter substrate.
  • the sensor is arranged in the opposite substrate.
  • the counter substrate includes the substrate and a color filter layer disposed on a side of the substrate facing the array substrate.
  • the color filter layer includes a plurality of filter parts arranged in an array.
  • the photosensitive device is arranged in an area between two adjacent rows of filter parts.
  • a display device including the display panel as described above.
  • the display device further includes an integrated circuit.
  • the integrated circuit is electrically connected with the sensor, and is configured to recognize the pattern or the touch position according to the signal from the sensor.
  • FIG. 1 is a schematic top view of a display panel provided by some embodiments of the present disclosure
  • FIG. 2A is a schematic cross-sectional view of a sensor taken along the line I-I' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 2B is a schematic cross-sectional view of another sensor taken along the line I-I' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 2C is a schematic cross-sectional view of a sensor taken along the line J-J' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a sensor provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a photosensitive device provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another photosensitive device provided by some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of the structure in which the metal electrode and the drain electrode in the sensor provided by some embodiments of the present disclosure are in direct contact;
  • FIG. 7A is a schematic partial top view of another display panel provided by some embodiments of the present disclosure.
  • Fig. 7B is a schematic cross-sectional view of a sensor taken along the line A-A' in Fig. 7A according to some embodiments of the present disclosure
  • FIG. 8 is a schematic structural diagram of another sensor provided by some embodiments of the present disclosure.
  • FIG. 9 is a manufacturing process diagram of a sensor provided by some embodiments of the disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • the expressions "connected” and “electrically connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “electrically connected” may be used when describing some embodiments to indicate that two or more components are in electrical contact.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity.
  • Exemplary embodiments should not be interpreted as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the device, and are not intended to limit the scope of the exemplary embodiments.
  • Some embodiments of the present disclosure provide a sensor, which can be disposed in a display panel of a display device.
  • the sensor and the integrated circuit connected to it are configured to recognize patterns and/or to recognize touch positions, but the embodiments of the present disclosure do not limit the use of the sensor.
  • the display panel has a display area 101, and the display area 101 includes a sub-pixel area and a non-sub-pixel area 1012.
  • the sub-pixel region includes a plurality of sub-regions 1011, and any two adjacent ones of the plurality of sub-regions 1011 are separated by a non-sub-pixel region 1012.
  • the sensor is located in the non-sub-pixel area 1012.
  • the portion of the display panel located in the sub-pixel area is configured to perform image display.
  • the sensor includes a substrate 20, at least one photosensitive device 21 and at least one protective layer 23 disposed on the substrate 20.
  • Each photosensitive device 21 includes a metal electrode 211, a photosensitive layer 212, and a transparent electrode 213 stacked on the substrate 20 in the thickness direction of the substrate 20.
  • the transparent electrode 213 is located on the light incident side of the photosensitive device 21.
  • Each protective layer 23 covers the side surface of the photosensitive layer 212 in a corresponding photosensitive device 21.
  • the refractive index of the protective layer 23 is smaller than the refractive index of the photosensitive layer 212 covered by the protective layer 23.
  • the transparent electrode 213 when the light reflected by the object to be detected (such as a finger) enters the transparent electrode 213, a part of the light is absorbed by the photosensitive layer 212, and at least part of the light not absorbed by the photosensitive layer 212 enters To the side surface of the photosensitive layer 212 and the metal electrode 211. Since the protective layer 23 covers the side of the photosensitive layer 212, and the refractive index of the protective layer 23 is less than that of the photosensitive layer 212, at least part of the light incident on the side of the photosensitive layer 212 will contact the protective layer 23 on the side of the photosensitive layer 212 Reflection on the interface.
  • the metal electrode 211 can also reflect light, light can be reflected back and forth between the metal electrode 211 and the interface where the side surface of the photosensitive layer 212 is in contact with the protective layer 23. In this way, part of the light that is not absorbed by the photosensitive layer 212 can be emitted from the transparent electrode 213, irradiated on the object to be detected, and then reflected back to the sensor again. In this way, when the sensor is in an environment with insufficient light, the setting of the protective layer 23 can enhance the reflection of light, so that the sensor can make full use of the limited light for detection and improve the sensitivity of the sensor.
  • the senor further includes at least one voltage supply line 22, and the transparent electrode 213 is electrically connected to a corresponding one of the voltage supply lines 22.
  • the senor further includes an insulating layer 25 disposed between the voltage supply line 22 and the transparent electrode 213, and the transparent electrode 213 passes through the first insulating layer 25 disposed in the insulating layer 25.
  • the via 701 is electrically connected to the voltage supply line 22.
  • the voltage supply line 22 is provided between the substrate 20 and the transparent electrode 213.
  • a part of the transparent electrode 213 is located in the first via hole 701, and the part of the transparent electrode 213 located in the first via hole 701 is in contact with the voltage supply line 22.
  • a conductive connection structure is provided in the first via 701, and the conductive connection structure is in contact with the voltage supply line 22 and the transparent electrode 213, respectively.
  • the voltage supply line 22 is provided on the side of the transparent electrode 213 away from the substrate 20.
  • a part of the voltage supply line 22 is located in the first via 701, and a part of the voltage supply line 22 located in the first via 701 is in contact with the transparent electrode 213.
  • the transparent electrode 213 is closer to the substrate 20 than the metal electrode 211 is.
  • the method of manufacturing the photosensitive device 21 includes: forming a transparent electrode 213, a photosensitive layer 212, and a metal electrode 211 on the substrate 20 in sequence.
  • the metal electrode 211 is closer to the substrate 20 than the transparent electrode 213.
  • the method of manufacturing the photosensitive device 21 includes: sequentially forming a metal electrode 211, a photosensitive layer 212, and a transparent electrode 213 on the substrate 20.
  • the substrate 20 is a glass substrate.
  • the substrate 20 may also be a substrate of other materials (for example, acrylic).
  • the substrate 20 may also be a flexible substrate.
  • the photosensitive device 21 is directly disposed on the substrate 20, that is, no other film layer is disposed between the photosensitive device 21 and the substrate 20. In other embodiments, another film layer is provided between the photosensitive device 21 and the substrate 20, and the photosensitive device 21 is provided on the surface of the other film layer away from the substrate 20.
  • the aforementioned substrate 20 can be a substrate included in the display panel itself or a supporting structure included in other structures. set up.
  • the photosensitive device 21 is a photosensor or a photosensitive sensor to convert light signals into electrical signals.
  • the photosensitive device 21 as a photosensitive sensor as an example.
  • the photosensitive layer 212 has a pyramid shape.
  • the area of the surface of the photosensitive layer 212 facing the transparent electrode 213 is smaller than the area of the surface of the photosensitive layer 212 facing the metal electrode 211.
  • the photosensitive layer 212 includes a P-type semiconductor layer 2121, an intrinsic semiconductor layer 2122, and an N-type semiconductor layer 2123 stacked in a thickness direction of the substrate 20.
  • the P-type semiconductor layer 2121 is in contact with the transparent electrode 213, and the N-type semiconductor layer 2123 is in contact with the metal electrode 211.
  • the longitudinal section of each of the P-type semiconductor layer 2121, the intrinsic semiconductor layer 2122, and the N-type semiconductor layer 2123 is trapezoidal.
  • the P-type semiconductor layer 2121, the intrinsic semiconductor layer 2122, and the N-type semiconductor The layers 2123 together form a prism-like structure.
  • the orthographic projection of the transparent electrode 213 on a plane perpendicular to the thickness direction of the substrate 20 is located within the orthographic projection range of the P-type semiconductor layer 2121 on the plane.
  • the ratio of the area of the orthographic projection of the transparent electrode 213 on the above-mentioned plane to the area of the orthographic projection of the P-type semiconductor layer 2121 on the plane is greater than or equal to 0.85 and less than 1. In this way, it can be ensured that the effective photosensitive area of the photosensitive device 21 is sufficiently large, thereby ensuring that the photosensitive device 21 can normally realize the detection function.
  • each side surface of the transparent electrode 213 is inwardly retracted by a first distance S relative to the side surface of the P-type semiconductor layer 2121 on the same side as the side surface of the sensor. That is, each side of the orthographic projection of the transparent electrode 213 on the above-mentioned plane is equal to the side corresponding to the side (that is, the side is located on the same side as the sensor) of the orthographic projection of the P-type semiconductor layer 2121 on the plane.
  • the orthographic projection of the P-type semiconductor layer 2121 on the plane is within the orthographic projection range of the metal electrode 211 on the plane, and any along the transparent electrode 213 Relative to the distance direction X of the two side surfaces, the first distance S corresponding to each of the two side surfaces (that is, the side surface is inwardly retracted relative to the side surface of the P-type semiconductor layer 2121 on the same side as the side surface of the sensor).
  • the ratio of a gap S) to the width of the metal electrode 211 along the distance direction X is in the range of 0.5-2%.
  • the first distance S corresponding to each of the two side surfaces is K1
  • the width of the metal electrode 211 in the distance direction is K2
  • K1: K2 The value of is in the range of 0.5 to 2%.
  • FIGS. 4 and 5 only illustrate the transparent electrode 213, the P-type semiconductor layer 2121, the intrinsic semiconductor layer 2122, the N-type semiconductor layer 2123, and the metal electrode 211, and do not illustrate other structures.
  • the corner area of the photosensitive layer 212 may be concave or uneven, resulting in that the protective layer 23 cannot be covered properly.
  • the side of the photosensitive layer 212 when the angle between the surface of the photosensitive layer 212 facing the metal electrode 211 and the side surface thereof is large, the thickness of the protective layer 23 is likely to be uneven.
  • the angle ⁇ between the surface of the photosensitive layer 212 facing the metal electrode 211 and the side surface of the photosensitive layer 212 is greater than or equal to 70° and less than or equal to 85°. .
  • the thickness of the photosensitive layer 212 is an integer multiple of 1/4 wavelength of light with a wavelength in the range of 500-600 nm.
  • light with a wavelength in the range of 500 to 600 nm is usually green light and yellow light. Setting the thickness of the photosensitive layer 212 to be an integer multiple of 1/4 wavelength of light with a wavelength in the range of 500-600 nm can improve photoelectric conversion efficiency and light utilization, thereby improving the accuracy of pattern and/or touch position recognition.
  • the thickness of the photosensitive layer 212 is an integer multiple of 1/4 wavelength of the green light.
  • the thickness of the photosensitive layer 212 is an integer multiple of 1/4 wavelength of light with a wavelength of 550 nm, that is, the thickness of the photosensitive layer 212 is an integer multiple of 137.5 nm.
  • the photoelectric conversion efficiency of the photosensitive layer 212 for light of 550 nm can reach a peak, while the photoelectric conversion efficiency for light of other wavelengths is relatively small.
  • the embodiment of the present disclosure does not limit the material of the transparent electrode 213, as long as the transparent electrode 213 can conduct electricity and transmit light.
  • the material of the transparent electrode 213 is indium tin oxide (ITO for short).
  • the embodiment of the present disclosure does not limit the material of the metal electrode 211, and the material of the metal electrode 211 may be a simple metal, a metal alloy, or the like.
  • the embodiment of the present disclosure does not limit the material of the protective layer 23, as long as the refractive index of the protective layer 23 is smaller than the refractive index of the photosensitive layer 212.
  • the material of the protective layer 23 is resin.
  • the surface of the protective layer 23 in contact with the photosensitive layer 212 and the surface of the protective layer 23 away from the photosensitive layer 212 may have protrusions or depressions. Therefore, in order to ensure that the protective layer 23 can enhance light reflection, the protective layer 23 should maintain a good flatness.
  • the ratio of the minimum thickness value of the protective layer 23 to the maximum thickness value of the protective layer 23 is greater than or equal to 0.9.
  • the embodiment of the present disclosure does not limit the thickness of the protective layer 23.
  • the thickness of the protective layer 23 is in the range of 0.3 to 0.7 ⁇ m.
  • the sensor further includes at least one thin film transistor 31, at least one gate line 301, and at least one data line 201.
  • Each thin film transistor 31 includes a gate 312, a drain 311, a source 314, an active layer 313, and a portion of the gate insulating layer 315 where the thin film transistor 31 is located.
  • the drain electrode 311 of the thin film transistor 31 is electrically connected to the metal electrode 211 in a corresponding photosensitive device 21.
  • the source 314 of the thin film transistor 31 is electrically connected to a data line 201.
  • the gate 312 of the thin film transistor 31 is electrically connected to a gate line 301.
  • one of the other two electrodes of the thin film transistor 31 except for the gate 312 is called a source 314, and the other is called a drain 311.
  • the photosensitive layer 212 acts as a photoelectric conversion layer to receive light and generate current.
  • the thin film transistor 31 is turned on according to a certain timing. After the thin film transistor 31 is turned on, the current passes through the drain electrode 311 and the source electrode 314 of the thin film transistor 31 and is transmitted to the data line 201.
  • the data line 201 draws current to the integrated circuit.
  • the integrated circuit is provided on a flexible circuit board. In another example, the integrated circuit is provided on a thin film.
  • the magnitude of the current transmitted to the integrated circuit through the data line 201 is different, so that the integrated circuit obtains the pattern according to the signal transmitted by the data line 201 image.
  • the integrated circuit compares the pattern image with the pre-stored image, if they are consistent, the pattern recognition is successful; otherwise, the pattern recognition fails.
  • the photosensitive layer 212 is always in a state of being illuminated by light, so that a voltage exists between the metal electrode 211 and the gate 312.
  • the photoelectric effect changes, causing the voltage to change.
  • the voltage value read from the data line 201 changes. According to the intersection of the data line 201 and the gate line 301, the detection Go to the specific touch location.
  • the gate 312 of the thin film transistor 31 is used as a part of the gate line 301 connected to the thin film transistor 31 to simplify the process.
  • the source 314 of the thin film transistor 31 is used as a part of the data line 201 connected to the thin film transistor 31 to simplify the process.
  • the drain electrode 311 of the thin film transistor 31 is used as a part of the metal electrode 211 connected to the thin film transistor 31 to simplify the process.
  • a second insulating layer 29 is provided between the drain electrode 311 of the thin film transistor 31 and the metal electrode 211, and the drain electrode 311 of the thin film transistor 31 passes through the second insulating layer.
  • the second via 702 in 29 is electrically connected to the metal electrode 211.
  • the drain electrode 311 of the thin film transistor 31 is in direct contact with the metal electrode 211 in the corresponding photosensitive device 21, and the orthographic projection of the drain electrode 311 of the thin film transistor 31 on the above-mentioned plane is It partially overlaps with the orthographic projection of the metal electrode 211 in the photosensitive device 21 on the plane.
  • the slope angle 2 of the metal electrode 211 is smaller than the slope angle 1 of the drain 311 in contact with the metal electrode 211.
  • the sum of the slope angle 2 of the metal electrode 211 in the photosensitive device 21 and the slope angle 1 of the drain electrode 311 in contact with the metal electrode 211 is smaller than the slope angle 3 of the photosensitive layer 212 in the photosensitive device 21.
  • the slope angle refers to the angle between the inclined surface of the film layer and the part of the bottom surface parallel to the surface of the substrate 20 on which the photosensitive device 21 is arranged, and the angle is the film layer. Inner corner.
  • the bottom surface of the metal electrode 211 is the surface of the metal electrode 211 in contact with the drain 311
  • the bottom surface of the drain 311 is the surface of the drain 311 opposite to the surface in contact with the metal electrode 211
  • the bottom surface of the photosensitive layer 212 is the surface in contact with the metal electrode 211.
  • the drain electrode 311 of the thin film transistor 31 has a slope angle of 1.
  • the metal electrode 211 is in direct contact with the drain electrode 311 of the thin film transistor 31 and covers the side surface of the drain electrode 311 forming the slope angle 1, the metal electrode 211 has a portion that overlaps the drain electrode 311.
  • the slope angle 2 can be made smaller than the slope angle 1.
  • the side surface of the photosensitive layer 212 close to the drain electrode 311 is closer to the overlapping area of the metal electrode 211 and the drain electrode 311.
  • the side surface of the protective layer 23 overlaps with the overlapping area of the metal electrode 211 and the drain electrode 311, a stack will be formed on the side surface of the protective layer 23.
  • the metal electrode 211 will be broken at the position where it overlaps the drain 311 (ie, the side surface of the drain 311), resulting in poor electrical properties. Therefore, the sum of the slope angle 1 of the drain electrode 311 and the slope angle 2 of the metal electrode 211 can be made smaller than the slope angle 3 of the photosensitive layer 212.
  • the photosensitive layer 212 can also be directly fabricated on the drain 311 (that is, a part of the drain 311 serves as the metal electrode 211, and the photosensitive layer 212 is formed on the part of the drain 311 serving as the metal electrode 211) to reduce The purpose of the size of the photosensitive device 21.
  • the side surface of the photosensitive layer 212 close to the gate 312 will be closer to the overlapped area of the gate 312 and the drain 311.
  • the side surface of the protective layer 23 overlaps the overlapped area of the gate 312 and the drain 311 , It will cause a stack to form on the side of the protective layer 23.
  • the sum of the slope angle 4 of the gate 312 and the slope angle 1 of the drain 311 can be made smaller than the slope angle 3 of the photosensitive layer 212.
  • the bottom surface of the gate 312 is the surface of the gate 312 opposite to the surface facing the drain 311.
  • the voltage supply line 22 is arranged in parallel with the data line 201, and the voltage supply line 22 is arranged across the gate line 301.
  • the extension direction of the metal electrode 211 is the same as the extension direction of the gate line 301, and the orthographic projection of the metal electrode 211 on the above-mentioned plane, and the gate line 301 connected to the thin film transistor 31 corresponding to the metal electrode 211 is on the plane.
  • the orthographic projections overlap.
  • the thin film transistor 31 corresponding to the metal electrode 211 that is, the thin film transistor 31 connected to the metal electrode 211.
  • the orthographic projection of the metal electrode 211 on the plane is within the orthographic projection range of the gate line connected to the thin film transistor 31 corresponding to the metal electrode 211 on the plane.
  • the sensor further includes at least one light-shielding pattern 24 and at least one connection pattern 241.
  • the orthographic projection of the gap between at least the source electrode 314 and the drain electrode 311 of the thin film transistor 31 on the above-mentioned plane is located within the orthographic projection range of a corresponding light shielding pattern 24 on the plane.
  • Each connection pattern 241 is electrically connected to a light-shielding pattern 24 and a voltage supply line 22.
  • the connected connection pattern 241, the light-shielding pattern 24 and the voltage supply line 22 form an integral structure, and the material is a light-shielding material.
  • connection pattern 241 is connected to the light shielding pattern 24 and the other end is connected to the voltage supply line 22.
  • the voltage supply line 22 includes a first portion 221 and a second portion 222, and the transparent electrode 213 is electrically connected to the first portion 221 through the first via 701.
  • the line width of the first portion 221 is greater than the line width of the second portion 222. In this way, the voltage supply line 22 and the transparent electrode 213 can be sufficiently electrically connected, thereby preventing excessive resistance.
  • connection pattern 241 may be connected to the first part 221 of the voltage supply line 22.
  • a hollow area 242 is formed between the connection pattern 241 and the first insulating layer 25 to prevent the formation of a capacitance effect between the connection pattern 241 and the lower photosensitive device 21, which affects the detection accuracy.
  • the display panel further has, for example, a peripheral area 102, and the peripheral area 102 may be located on at least one side of the display area 101.
  • FIG. 1 illustrates that the peripheral area 102 is located on the four sides of the display area 101 as an example.
  • the display panel is a borderless display panel, that is, the display panel does not have the peripheral area 102.
  • the display panel is a liquid crystal display panel, an Organic Light-Emitting Diode (OLED) display panel, or the like.
  • OLED Organic Light-Emitting Diode
  • the display panel is a liquid crystal display panel
  • the display panel includes an array substrate and a counter substrate.
  • the sensor can be provided in the array substrate or in the opposite substrate.
  • the display panel is a liquid crystal display panel and the sensor is provided in the counter substrate as an example for description.
  • the opposite substrate includes a substrate 20, a color filter layer 28 disposed on the substrate 20, and the aforementioned sensor.
  • the color filter layer 28 includes a plurality of light filters 281.
  • Each filter part 281 is located in a corresponding sub-region 1011.
  • the plurality of filter portions 281 includes a plurality of first color filter portions, a plurality of second color filter portions, and a plurality of third color filter portions, and the first color, the second color, and the third color are three primary colors.
  • the photosensitive device 21 is disposed in a region between two adjacent rows of filter parts 281.
  • the metal electrode 211 completely covers the area between the filter portions 281 in two adjacent rows.
  • the metal electrode 211 only covers a part of the area between the filter portions 281 in two adjacent rows.
  • the photosensitive device 21 may be located in a non-sub-pixel region 1012 above or below one or more sub-regions 1011.
  • the voltage supply line 22 is provided in a region between two adjacent columns of filter parts 281.
  • the voltage supply line 22 completely covers the area between the filter portions 281 in two adjacent columns.
  • the voltage supply line 22 only covers a part of the area between the filter portions 281 in two adjacent columns.
  • the senor and the color filter layer 28 are disposed on the same side of the substrate 20. In other examples, as shown in FIG. 8, the sensor and the color filter layer 28 are arranged on different sides of the substrate 20.
  • the method for preparing the counter substrate includes:
  • a voltage supply line 22 is formed on the substrate 20, and a first flat layer 26 of the same layer as the voltage supply line 22 is formed.
  • the surface of the voltage supply line 22 away from the substrate 20 It is flush with the surface of the first flat layer 26 away from the substrate 20.
  • a first insulating layer 25 is formed on the first flat layer 26 and the voltage supply line 22, and the first insulating layer 25 includes a first via 701.
  • a transparent electrode 213 is formed on the first insulating layer 25, and the transparent electrode 213 is electrically connected to the voltage supply line 22 through the first via 701 in the first insulating layer 25.
  • a photosensitive layer 212 is formed on the transparent electrode 213, and then a protective layer 23 is formed on the side of the photosensitive layer 212, and a second flat layer 27 is formed.
  • the photosensitive layer 212 is far away from the substrate 20
  • the surface of the second flat layer 27 is flush with the surface of the second flat layer 27 away from the substrate 20.
  • a metal electrode 211 is formed on the photosensitive layer 212, and then a color filter layer 28 of the same layer as the metal electrode 211 is formed.
  • the color filter layer 28 includes a plurality of filter portions 281;
  • the filter portion 281 includes a plurality of first color filter portions, a plurality of second color filter portions, and a plurality of third color filter portions.
  • a second insulating layer 29 is formed on the color filter layer 28 and the metal electrode 211.
  • the second insulating layer 29 includes a second via 702 and is formed on the second insulating layer 29
  • the thin film transistor 31 and the drain electrode 311 of the thin film transistor 31 are electrically connected to the metal electrode 211 through the second via 702.
  • the same layer of A and B means that B fills the blank area around A to make the entire surface formed by A and B flat.
  • step S14 the metal electrode 211 and the color filter layer 28 are formed successively, that is, the metal electrode 211 and the color filter layer 28 are not formed in the same patterning process, and the thickness of the metal electrode 211 is equal to that of the color filter layer 28. The thickness is different.
  • the materials of the first flat layer 26, the first insulating layer 25, and the second flat layer 27 are the same.
  • the materials of the first flat layer 26, the first insulating layer 25, and the second flat layer 27 are organic materials.
  • the materials of the first flat layer 26, the first insulating layer 25, the second flat layer 27, and the second insulating layer 29 are the same.
  • the purpose of forming the first flat layer 26 is: since the voltage supply line 22 has a certain thickness, by providing the first flat layer 26, the transparent electrode 213 can be secured.
  • the flatness of the photosensitive layer 212 in turn ensures the flatness of the photosensitive layer 212, so that the photoelectric effect at each position of the photosensitive layer 212 is more uniform.
  • the metal electrode 211 is an opaque metal
  • the voltage supply line 22 may also be an opaque metal material
  • the sensor is located in the non-sub-pixel area 1012.
  • the metal electrode 211 and the voltage supply line 22 can play a role in shielding light, that is, preventing light incident from the array substrate side from being emitted from the sensor, affecting the display effect, and also preventing ambient light from entering the liquid crystal display panel from the opposite substrate side. Affect the display brightness. Therefore, the sensor provided by the embodiment of the present disclosure can also be used to replace the black matrix (BM).
  • BM black matrix
  • a BM may also be provided on the side of the metal electrode 211 close to the array substrate.
  • the present disclosure can reduce the thickness of the display device by arranging the sensor in the display panel.
  • arranging the sensor in the display area of the display panel can increase the screen-to-body ratio of the display device.
  • the metal electrode 211 is an opaque metal
  • the voltage supply line 22 can also be an opaque metal material
  • the sensor is located in the non-sub-pixel area 1012, so that the metal electrode 211 and the voltage supply line 22 can be It has a light-shielding function, that is, preventing light incident from the array substrate side from exiting from the sensor and affecting the display effect, and also preventing ambient light from entering the liquid crystal display panel from the opposite substrate side and affecting the display brightness.
  • Some embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • the display device may be applied to electronic products with display functions such as mobile phones, computers, cameras, watches, etc., which is not limited in the embodiments of the present disclosure.
  • the display device also includes an integrated circuit.
  • the integrated circuit is electrically connected to at least the data line 201.
  • the integrated circuit is configured to perform pattern (for example, fingerprint) recognition based on the signal from the data line 201, or perform touch position recognition based on the signal on the gate line 301 and the signal from the data line 201.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种传感器,包括衬底、至少一个感光器件和至少一个保护层。每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极。所述透明电极位于所述感光器件的入光侧。每个保护层覆盖对应的一个感光器件中的所述光敏层的侧面。所述保护层的折射率小于该保护层覆盖的所述光敏层的折射率。

Description

传感器、显示面板及显示装置
本申请要求于2020年5月29日提交的、申请号为202010477614.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种传感器、显示面板及显示装置。
背景技术
随着显示技术的发展,触控和纹路(例如指纹)识别功能正逐渐成为显示装置的标配。目前,通常采用光学式传感器来实现触控和纹路(例如指纹)识别功能。
发明内容
一方面,提供一种传感器,包括衬底、至少一个感光器件和至少一个保护层。每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极。所述透明电极位于所述感光器件的入光侧。每个保护层覆盖对应的一个感光器件中的所述光敏层的侧面。所述保护层的折射率小于该保护层覆盖的所述光敏层的折射率。
在一些实施例中,所述光敏层呈棱台状。所述光敏层朝向所述透明电极的表面的面积,小于所述光敏层朝向所述金属电极的表面的面积。
在一些实施例中,所述光敏层包括沿所述衬底的厚度方向层叠设置的P型半导体层、本征半导体层、N型半导体层。所述P型半导体层与所述透明电极接触,所述N型半导体层与所述金属电极接触。沿所述衬底的厚度方向,所述P型半导体层、所述本征半导体层和所述N型半导体层中的每个的纵截面呈梯形,所述P型半导体层、所述本征半导体层和所述N型半导体层一起形成棱台状结构。
在一些实施例中,所述光敏层朝向所述金属电极的表面与所述光敏层的侧面之间的夹角大于或等于70°、且小于或等于85°。
在一些实施例中,所述传感器还包括至少一个薄膜晶体管。每个薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极电连接。
在一些实施例中,所述薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极直接接触,且所述薄膜晶体管的漏极在与所述衬底的厚度方向垂直的平面上的正投影与该感光器件中的所述金属电极在该平面上的正投影部分重叠。所述金属电极的坡度角小于与该金属电极接触的所述漏极的坡度角。所述感光器件中的所述金属电极的坡度角和与该金属电极接触的所述漏极的 坡度角之和,小于该感光器件中的所述光敏层的坡度角。
在一些实施例中,所述传感器还包括至少一条栅线和至少一条数据线。所述薄膜晶体管的栅极与一条栅线电连接。所述薄膜晶体管的源极与一条数据线电连接。
在一些实施例中,所述光敏层的厚度为波长在500~600nm范围内的光的1/4波长的整数倍。
在一些实施例中,所述光敏层的厚度为绿光的1/4波长的整数倍。
在一些实施例中,所述保护层的最小厚度值与所述保护层的最大厚度值的比大于或等于0.9。
在一些实施例中,所述保护层的厚度在0.3~0.7μm的范围内。
在一些实施例中,所述传感器还包括至少一条电压供给线。所述透明电极与对应的一条电压供给线电连接。
另一方面,提供一种显示面板,包括如上所述的传感器。所述显示面板具有显示区,所述显示区包括非子像素区域。所述传感器设置于所述非子像素区域。
在一些实施例中,所述显示面板为液晶显示面板。
在一些实施例中,所述显示面板包括阵列基板和对置基板。所述传感器设置于所述对置基板中。
在一些实施例中,所述对置基板包括所述衬底、设置在所述衬底朝向所述阵列基板一侧的彩膜层。所述彩膜层包括阵列排布的多个滤光部。所述感光器件设置在相邻两行滤光部之间的区域。
又一方面,提供一种显示装置,包括如上所述的显示面板。
在一些实施例中,所述显示装置还包括集成电路。所述集成电路与所述传感器电连接,并且被配置为根据来自所述传感器的信号,对纹路识别或对触控位置识别。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对本公开一些实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸等的限制。
图1为本公开一些实施例提供的一种显示面板的俯视示意图;
图2A为本公开一些实施例提供的沿着图1中的线I-I’截取的一种传感器的截面示意图;
图2B为本公开一些实施例提供的沿着图1中的线I-I’截取的另一种传感器的截面示意图;
图2C为本公开一些实施例提供的沿着图1中的线J-J’截取的一种传感器的截面示意图;
图3为本公开一些实施例提供的一种传感器的结构示意图;
图4为本公开一些实施例提供的一种感光器件的结构示意图;
图5为本公开一些实施例提供的另一种感光器件的结构示意图;
图6为本公开一些实施例提供的传感器中金属电极与漏极直接接触的结构示意图;
图7A为本公开一些实施例提供的另一种显示面板的局部俯视示意图;
图7B为本公开一些实施例提供的沿着图7A中的线A-A’截取的一种传感器的截面示意图;
图8为本公开一些实施例提供的又一种传感器的结构示意图;
图9为本公开一些实施例提供的一种传感器的制备过程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在 本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”和“电连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件有电接触。术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“若”任选地被解释为意思是“当……时”或“在……时”。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开一些实施例提供一种传感器,该传感器可设置于显示装置的显示面板中。在一些实施例中,该传感器和与其连接的集成电路一起被配置为对纹路识别和/或对触控位置识别,但本公开实施例对该传感器的用途不作限定。
如图1所示,显示面板具有显示区101,显示区101包括子像素区域和非子像素区域1012。该子像素区域包括多个子区域1011,该多个子区域1011中的任意相邻两个被非子像素区域1012间隔开。传感器位于非子像素区域1012。显示面板位于子像素区域的部分被配置为进行图像显示。
如图1-图3所示,传感器包括衬底20、设置于衬底20上的至少一个感光器件21和至少一个保护层23。每个感光器件21包括沿衬底20的厚度方向层叠设置在衬底20上的金属电极211、光敏层212、以及透明电极213。透明电极213位于感光器件21的入光侧。每个保护层23覆盖对应的一个感光器件21中的光敏层212的侧面。保护层23的折射率小于该保护层23覆盖的光敏层212的折射率。
本公开一些实施例提供的传感器中,当经待检测物体(例如手指)反射的光线入射至透明电极213后,其中一部分光线被光敏层212吸收, 未被光敏层212吸收的至少部分光线会入射至光敏层212的侧面和金属电极211上。由于保护层23覆盖光敏层212的侧面,且保护层23的折射率小于光敏层212的折射率,因此,入射至光敏层212侧面的至少部分光线,会在光敏层212侧面与保护层23接触的界面上反射。在此基础上,由于金属电极211也可以反射光,因此,光线可在金属电极211和光敏层212侧面与保护层23接触的界面之间来回反射。由此,可使未被光敏层212吸收的部分光线从透明电极213出射,并照射到待检测物体上,然后再次反射回传感器。这样,当传感器在光线不足的环境中时,保护层23的设置可以加强光的反射,使得传感器可以充分利用有限的光线进行检测,提高传感器的灵敏度。
在一些实施例中,如图2A-2B和图3所示,传感器还包括至少一条电压供给线22,透明电极213与对应的一条电压供给线22电连接。
在一些实施例中,如图2A-2B和图3所示,传感器还包括设置于电压供给线22与透明电极213之间的绝缘层25,透明电极213通过设置于绝缘层25中的第一过孔701与电压供给线22电连接。
在一些示例中,如图2A和2B所示,电压供给线22设置在衬底20与透明电极213之间。示例的,如图2A所示,透明电极213的一部分位于第一过孔701中,且透明电极213位于第一过孔701中的部分与电压供给线22接触。又示例的,如图2B所示,第一过孔701中设置导电连接结构,该导电连接结构分别与电压供给线22和透明电极213接触。
在另一些示例中,如图3所示,电压供给线22设置于透明电极213远离衬底20的一侧。示例的,如图3所示,电压供给线22的一部分位于第一过孔701中,且电压供给线22位于第一过孔701中的部分与透明电极213接触。
在一些实施例中,如图2A-2C所示,透明电极213相对金属电极211更靠近衬底20。在此情况下,制备感光器件21的方法包括:依次在衬底20上形成透明电极213、光敏层212、以及金属电极211。
在另一些实施例中,如图3所示,金属电极211相对透明电极213更靠近衬底20。在此情况下,制备感光器件21的方法包括:依次在衬底20上形成金属电极211、光敏层212、以及透明电极213。
在一些实施例中,衬底20是玻璃基板。衬底20也可以是其他材质(例如亚克力)衬底。此外,衬底20也可以是柔性衬底。
在一些实施例中,该感光器件21直接设置在衬底20上,即该感光器件21与衬底20之间未设置其他膜层。在另一些实施例中,感光器件21与衬底 20之间设置其他膜层,感光器件21设置在该其他膜层远离衬底20的表面上。
需要说明的是,在该感光器件21设置在显示面板或其他结构中的情况下,上述衬底20可采用显示面板自身包括的衬底或其他结构中包括的起承载作用的结构充当,无需额外设置。
在一些实施例中,感光器件21是光电传感器或光敏传感器,以将光信号转换为电信号。
下面以感光器件21为光敏传感器为例进行说明。
在一些实施例中,如图4所示,光敏层212呈棱台状。光敏层212朝向透明电极213的表面的面积,小于光敏层212朝向金属电极211的表面的面积。
在一些示例中,如图5所示,光敏层212包括沿衬底20的厚度方向层叠设置的P型半导体层2121、本征半导体层2122、N型半导体层2123。P型半导体层2121与透明电极213接触,N型半导体层2123与金属电极211接触。沿衬底20的厚度方向,P型半导体层2121、本征半导体层2122和N型半导体层2123中的每个的纵截面呈梯形,P型半导体层2121、本征半导体层2122和N型半导体层2123一起形成棱台状结构。
在一些实施例中,如图5所示,透明电极213在与衬底20的厚度方向垂直的平面上的正投影位于P型半导体层2121在该平面上的正投影范围内。
在此基础上,在一些示例中,透明电极213在上述平面上的正投影的面积与P型半导体层2121在该平面上的正投影的面积之比大于或等于0.85、且小于1。这样,可确保感光器件21的有效感光区域足够大,进而确保感光器件21可正常实现检测功能。
在一些示例中,如图5所示,透明电极213的每一侧面相对于P型半导体层2121的与该侧面位于传感器同一侧的侧面均向内缩进第一间距S。即,透明电极213在上述平面上的正投影的每边相对于P型半导体层2121在该平面上的正投影的与该边对应(即,与该边位于传感器同一侧)的边之间均具有第一间距S。
在这种情况下,在一些示例中,如图5所示,P型半导体层2121在该平面上的正投影位于金属电极211在该平面上的正投影范围内,并且沿透明电极213的任意相对两个侧面的距离方向X,与该两个侧面中每个侧面对应的第一间距S(即该侧面相对于P型半导体层2121的与该侧面位于传感器同一侧的侧面向内缩进第一间距S)与金属电极211的沿该距离方向X的宽度之比在0.5~2%范围内。示例的,沿透明电极213的左右两个侧面的距离方向, 与该两个侧面中每个侧面对应的第一间距S为K1,金属电极211的沿该距离方向的宽度为K2,K1:K2的值在0.5~2%范围内。
这样,可在保证金属电极211与光敏层212的接触面积的前提下,避免产生漏电流,从而确保光敏层212的边沿处的光电效应。
需要说明的是,图4和图5仅示意出了透明电极213、P型半导体层2121、本征半导体层2122、N型半导体层2123和金属电极211,并未对其他结构进行示意。
在本公开一些实施例的感光器件21中,由于工艺的波动,以及形成光敏层212时角部的过蚀刻,光敏层212的角部区域会形成凹陷或不平整,导致保护层23无法完好覆盖光敏层212的侧面。此外,在光敏层212朝向金属电极211的表面与其侧面之间的夹角较大的情况下,容易造成保护层23的厚度不均匀。为解决上述问题,如图4所示,在一些实施例中,光敏层212朝向金属电极211的表面与光敏层212的侧面之间的夹角θ大于或等于70°、且小于或等于85°。
在一些实施例中,光敏层212的厚度为波长在500~600nm范围内的光的1/4波长的整数倍。此处,波长在500~600nm范围内的光通常为绿光和黄光。将光敏层212的厚度设置为波长在500~600nm范围内的光的1/4波长的整数倍,可以提高光电转换效率以及光线利用率,从而提高纹路和/或触控位置识别精确度。
在一些示例中,光敏层212的厚度为绿光的1/4波长的整数倍。
示例的,光敏层212的厚度为波长是550nm的光的1/4波长的整数倍,即光敏层212的厚度为137.5nm的整数倍。这样,光敏层212对550nm的光的光电转换效率可达到峰值,而对其他波长的光的光电转换效率较小。
本公开实施例不对透明电极213的材料进行限定,只要透明电极213可以导电、透光即可。在一些示例中,透明电极213的材料是氧化铟锡(Indium tin oxide,简称ITO)。
此外,本公开实施例不对金属电极211的材料进行限定,金属电极211的材料可以是金属单质、金属合金等。
本公开实施例不对保护层23的材料进行限定,只要保护层23的折射率小于光敏层212的折射率即可。
在一些示例中,保护层23的材料是树脂。
在形成保护层23的工艺中,由于工艺波动(例如混入杂物),保护 层23与光敏层212接触的面以及保护层23远离光敏层212的面会产生突起或形成凹陷。因此,为确保保护层23能够加强光的反射,保护层23应保持较好的平坦度。在一些示例中,保护层23的最小厚度值与保护层23的最大厚度值的比大于或等于0.9。
本公开实施例不对保护层23的厚度进行限定。在一些示例中,保护层23的厚度在0.3~0.7μm的范围内。
在一些实施例中,如图1-图3所示,传感器还包括至少一个薄膜晶体管31、至少一条栅线301和至少一条数据线201。每个薄膜晶体管31包括栅极312、漏极311、源极314、有源层313以及栅绝缘层315位于该薄膜晶体管31所在区域的部分。薄膜晶体管31的漏极311与对应的一个感光器件21中的金属电极211电连接。薄膜晶体管31的源极314与一条数据线201电连接。薄膜晶体管31的栅极312与一条栅线301电连接。
本公开实施例中,将薄膜晶体管31中除栅极312外的另外两极中的一极称为源极314,另一极称为漏极311。
当光线照射到光敏层212所在的区域时,光敏层212作为光电转换层接收光照,并产生电流。薄膜晶体管31按照一定的时序开启,在薄膜晶体管31开启后,电流通过薄膜晶体管31的漏极311和源极314,传输至数据线201。在该数据线201与集成电路连接的情况下,数据线201将电流导出至集成电路。示例的,该集成电路设置在柔性线路板上。在另一示例中,该集成电路设置在薄膜上。
以传感器实现纹路识别功能为例,由于手指的谷、脊反射的光强的不同,因而,通过数据线201传输至集成电路的电流大小不同,从而使得集成电路根据数据线201传输的信号得到纹路图像。集成电路将该纹路图像与预存的图像进行比对,若一致,则纹路识别成功;否则,纹路识别失败。
以传感器实现触控位置识别功能为例,由于光敏层212始终处于被光照明的状态,因此,光敏层212会一直存在光电效应和电流流动,使得金属电极211与栅极312之间存在电压。当手指遮蔽光敏层212时,光电效应变化,使得该电压发生变化。这样,在薄膜晶体管31在与该薄膜晶体管31电连接的栅线301的控制下开启后,从数据线201读出的电压值发生变化,根据数据线201和栅线301的交叉点位,检测到具体触控位置。
在一些实施例中,如图2A~2C所示,薄膜晶体管31的栅极312由与该薄膜晶体管31连接的栅线301的一部分充当,以简化工艺。
在一些实施例中,如图2A~2C所示,薄膜晶体管31的源极314由与该薄膜晶体管31连接的数据线201的一部分充当,以简化工艺。
在一些实施例中,如图2B所示,薄膜晶体管31的漏极311由该薄膜晶体管31连接的金属电极211的一部分充当,以简化工艺。
在另一些实施例中,如图2A和图2C所示,薄膜晶体管31的漏极311和金属电极211之间设置第二绝缘层29,薄膜晶体管31的漏极311通过在该第二绝缘层29中的第二过孔702与金属电极211电连接。
在另一些实施例中,如图6所示,薄膜晶体管31的漏极311与对应的一个感光器件21中的金属电极211直接接触,且薄膜晶体管31的漏极311在上述平面上的正投影与该感光器件21中的金属电极211在该平面上的正投影部分重叠。
在此情况下,在一些示例中,金属电极211的坡度角2小于与该金属电极211接触的漏极311的坡度角1。感光器件21中的金属电极211的坡度角2和与该金属电极211接触的漏极311的坡度角1之和,小于该感光器件21中的光敏层212的坡度角3。
此处,本领域的技术人员应该知道,坡度角是指膜层的倾斜表面与其底面的与衬底20的设置感光器件21的表面平行的部分之间的夹角,该夹角为该膜层的内角。在本公开的实施例中,金属电极211的底面为该金属电极211的与漏极311接触的表面,漏极311的底面为该漏极311的和与金属电极211接触的表面相对的表面,光敏层212的底面为其与金属电极211接触的表面。
如图6所示,薄膜晶体管31的漏极311具有一坡度角1。当金属电极211与薄膜晶体管31的漏极311直接接触且覆盖漏极311的形成坡度角1的侧面时,金属电极211具有与漏极311搭接的部分。为了避免金属电极211从漏极311上脱离,可以使坡度角2小于坡度角1。
随着电子设备越来越小型化,电子设备中感光器件21与薄膜晶体管31之间的安装越来越紧凑。为此,光敏层212的靠近漏极311的侧面距离金属电极211和漏极311的交叠区域较近。这样,若保护层23的侧面与金属电极211和漏极311的交叠区域叠加,则会造成保护层23的侧面处形成堆叠。并且,在刻蚀光敏层212时,如工艺因素导致过蚀刻,则会使金属电极211在与漏极311搭接的位置(即漏极311的侧面)处断裂,从而导致电性不良。因此,可以使漏极311的坡度角1与金属电极211的坡度角2之和小于光敏层212的坡度角3。
此外,还可以将光敏层212直接制作在漏极311上(即,漏极311的一部分充当金属电极211,并在漏极311充当金属电极211的部分上形成光敏层212),以实现减小感光器件21的尺寸的目的。这样,会导致光敏层212的靠近栅极312的侧面距离栅极312与漏极311的交叠区域较近,这样,若保护层23的侧面与栅极312和漏极311的交叠区域叠加,则会造成保护层23的侧面处形成堆叠。因此,可以使栅极312的坡度角4与漏极311的坡度角1之和小于光敏层212的坡度角3。栅极312的底面为该栅极312的与其朝向漏极311的表面相对的表面。
在一些实施例中,如图2A~图3所示,感光器件21在上述平面上的正投影与源极314和漏极311之间的间隙在该平面上的正投影无交叠。这样,可避免薄膜晶体管31的电场与感光器件21之间相互影响,从而提高传感器的检测准确性。
在一些实施例中,如图1所示,电压供给线22与数据线201平行设置,电压供给线22与栅线301交叉设置。
在一些实施例中,金属电极211的延伸方向与栅线301的延伸方向相同,且金属电极211在上述平面上的正投影、与金属电极211对应的薄膜晶体管31连接的栅线301在该平面上的正投影重叠。这里,与金属电极211对应的薄膜晶体管31,即,与金属电极211连接的薄膜晶体管31。在一些示例中,金属电极211在该平面上的正投影位于与金属电极211对应的薄膜晶体管31连接的栅线在该平面上的正投影范围内。
在一些实施例中,如图7A和7B所示,传感器还包括至少一个遮光图案24和至少一个连接图案241。薄膜晶体管31的至少源极314和漏极311之间的间隙在上述平面上的正投影,位于对应的一个遮光图案24在该平面上的正投影范围内。每个连接图案241与一个遮光图案24和一条电压供给线22电连接,连接在一起的连接图案241、遮光图案24与电压供给线22为一体结构,且材料为遮光材料。这样,通过遮光图案24覆盖薄膜晶体管31的源极314和漏极311之间的间隙,可防止光线照射到有源层313位于源极314和漏极311之间的部分而影响薄膜晶体管31的阈值电压。
在一些示例中,连接图案241的一端与遮光图案24连接,另一端与电压供给线22连接。
在一些实施例中,如图7A所示,电压供给线22包括第一部分221和第二部分222,透明电极213通过第一过孔701与第一部分221电连接。沿垂直电压供给线22的延伸方向的方向,第一部分221的线宽大于第二部分222的 线宽。这样,可使电压供给线22与透明电极213充分电连接,从而防止电阻过大。
在电压供给线22包括第一部分221和第二部分222的情况下,上述连接图案241的另一端可与电压供给线22的第一部分221连接。
在一些实施例中,如图7B所示,连接图案241与第一绝缘层25之间形成镂空区242,以防止连接图案241与下方感光器件21之间形成电容效应,影响检测精度。
在一些实施例中,显示面板例如还具有周边区102,周边区102可以位于显示区101的至少一侧。图1以周边区102位于显示区101的四侧为例示意。在另一些实施例中,显示面板是无边框显示面板,即显示面板不具有周边区102。
在一些实施例中,显示面板是液晶显示面板、有机电致发光二极管(OrganicLight-Emitting Diode,简称OLED)显示面板等。
在显示面板是液晶显示面板的情况下,显示面板包括阵列基板和对置基板。传感器可以设置在阵列基板中,也可以设置在对置基板中。
以下,以显示面板为液晶显示面板,且传感器设置在对置基板中为例进行说明。
如图2C所示,对置基板包括衬底20、设置在衬底20上的彩膜层28以及上述的传感器。彩膜层28包括多个滤光部281。每个滤光部281位于对应的一个子区域1011中。多个滤光部281包括多个第一颜色滤光部、多个第二颜色滤光部和多个第三颜色滤光部,第一颜色、第二颜色和第三颜色为三基色。
在一些示例中,感光器件21设置在相邻两行滤光部281之间的区域中。示例的,金属电极211完全覆盖相邻两行滤光部281之间的区域。又示例的,金属电极211仅覆盖相邻两行滤光部281之间的区域中的部分。例如,沿电压供给线22的延伸方向,感光器件21可以位于一个或多个子区域1011的上方或下方的非子像素区域1012。在一些示例中,电压供给线22设置在相邻两列滤光部281之间的区域中。示例的,电压供给线22完全覆盖相邻两列滤光部281之间的区域。又示例的,电压供给线22仅覆盖相邻两列滤光部281之间的区域中的部分。
在一些示例中,如图2C所示,传感器与彩膜层28设置在衬底20的同一侧。在另一些示例中,如图8所示,传感器与彩膜层28设置在衬底20的不同侧。
在一些示例中,对置基板的制备方法,包括:
S10、如图9中(a)所示,在衬底20上形成电压供给线22,并形成与电压供给线22同层的第一平坦层26,电压供给线22的远离衬底20的表面与第一平坦层26的远离衬底20的表面齐平。
S11、如图9中(b)所示,在第一平坦层26和电压供给线22上形成第一绝缘层25,第一绝缘层25包括第一过孔701。
S12、如图9中(c)所示,在第一绝缘层25上形成透明电极213,使透明电极213通过第一绝缘层25中的第一过孔701与电压供给线22电连接。
S13、如图9中(d)所示,在透明电极213上形成光敏层212,然后在光敏层212的侧面形成保护层23,并形成第二平坦层27,光敏层212的远离衬底20的表面与第二平坦层27的远离衬底20的表面齐平。
S14、如图9中(e)所示,在光敏层212上形成金属电极211,然后形成与金属电极211同层的彩膜层28,彩膜层28包括多个滤光部281;多个滤光部281包括多个第一颜色滤光部、多个第二颜色滤光部和多个第三颜色滤光部。
S15、如图9中(f)所示,在彩膜层28和金属电极211上形成第二绝缘层29,第二绝缘层29包括第二过孔702,并在第二绝缘层29上形成薄膜晶体管31,薄膜晶体管31的漏极311通过第二过孔702与金属电极211电连接。
这里,A和B同层是指,B填充在A周围的空白区域,使A和B形成的整体的表面平坦。
需要说明的是,在步骤S14中,金属电极211和彩膜层28先后形成,即金属电极211和彩膜层28不在同一次构图工艺中形成,并且金属电极211的厚度与彩膜层28的厚度不同。
在一些示例中,第一平坦层26、第一绝缘层25和第二平坦层27的材料相同。示例的,第一平坦层26、第一绝缘层25和第二平坦层27的材料为有机材料。
在另一些示例中,第一平坦层26、第一绝缘层25、第二平坦层27和第二绝缘层29的材料相同。
此处,在形成电压供给线22之后、形成透明电极213之前,形成第一平坦层26的目的是:由于电压供给线22具有一定的厚度,通过设置第一平坦层26,可以确保透明电极213的平坦度,进而确保光敏层212的平坦度,以使得光敏层212各个位置处的光电效应更加均一。
本公开实施例中的金属电极211是不透光的金属,电压供给线22也 可以是不透光的金属材料,且传感器位于非子像素区域1012。这样,金属电极211和电压供给线22可以起到遮光作用,即防止从阵列基板侧入射的光从传感器射出,影响显示效果,也可以防止环境光从对置基板侧射入液晶显示面板内,对显示亮度造成影响。因此,本公开实施例提供的传感器还可以用来替代黑矩阵(BM)。当然,为了提高液晶显示面板的显示效果,还可以在金属电极211靠向阵列基板一侧设置BM。
当本公开实施例提供的显示面板应用于显示装置时,相较于相关技术中将传感器外挂于显示面板上,本公开通过将传感器设置在显示面板内,可减小显示装置的厚度。此外,将传感器设置在显示面板的显示区内,可提高显示装置的屏占比。在此基础上,由于金属电极211是不透光的金属,电压供给线22也可以是不透光的金属材料,且传感器位于非子像素区域1012,这样,金属电极211和电压供给线22可以起到遮光作用,即防止从阵列基板侧入射的光从传感器射出,影响显示效果,也可以防止环境光从对置基板侧射入液晶显示面板内,对显示亮度造成影响。
本公开一些实施例还提供一种显示装置,包括如上所述的显示面板。
此处,显示装置可以应用于手机、电脑、照相机、手表等具有显示功能的电子产品中,本公开实施例对此不作限定。
显示装置还包括集成电路。集成电路至少与数据线201电连接。集成电路被配置为根据来自数据线201的信号进行纹路(例如指纹)识别,或者根据栅线301上的信号以及来自数据线201的信号进行触控位置识别。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种传感器,包括:
    衬底;
    至少一个感光器件,每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极;所述透明电极位于所述感光器件的入光侧;
    至少一个保护层,每个保护层覆盖对应的一个感光器件中的所述光敏层的侧面;所述保护层的折射率小于该保护层覆盖的所述光敏层的折射率。
  2. 根据权利要求1所述的传感器,其中,所述光敏层呈棱台状;
    所述光敏层朝向所述透明电极的表面的面积,小于所述光敏层朝向所述金属电极的表面的面积。
  3. 根据权利要求2所述的传感器,其中,所述光敏层包括沿所述衬底的厚度方向层叠设置的P型半导体层、本征半导体层、N型半导体层;
    所述P型半导体层与所述透明电极接触,所述N型半导体层与所述金属电极接触;
    沿所述衬底的厚度方向,所述P型半导体层、所述本征半导体层和所述N型半导体层中的每个的纵截面呈梯形,所述P型半导体层、所述本征半导体层和所述N型半导体层一起形成棱台状结构。
  4. 根据权利要求2或3所述的传感器,其中,所述光敏层朝向所述金属电极的表面与所述光敏层的侧面之间的夹角大于或等于70°、且小于或等于85°。
  5. 根据权利要求1-4任一项所述的传感器,还包括:
    至少一个薄膜晶体管,每个薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极电连接。
  6. 根据权利要求5所述的传感器,其中,所述薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极直接接触,且所述薄膜晶体管的漏极在与所述衬底的厚度方向垂直的平面上的正投影与该感光器件中的所述金属电极在该平面上的正投影部分重叠;
    所述金属电极的坡度角小于与该金属电极接触的所述漏极的坡度角;
    所述感光器件中的所述金属电极的坡度角和与该金属电极接触的所述漏极的坡度角之和,小于该感光器件中的所述光敏层的坡度角。
  7. 根据权利要求5所述的传感器,还包括:
    至少一条栅线,所述薄膜晶体管的栅极与一条栅线电连接;
    至少一条数据线,所述薄膜晶体管的源极与一条数据线电连接。
  8. 根据权利要求1-7任一项所述的传感器,其中,所述光敏层的厚度为波长在500~600nm范围内的光的1/4波长的整数倍。
  9. 根据权利要求8所述的传感器,其中,所述光敏层的厚度为绿光的1/4波长的整数倍。
  10. 根据权利要求1-9任一项所述的传感器,其中,所述保护层的最小厚度值与所述保护层的最大厚度值的比大于或等于0.9。
  11. 根据权利要求1-10任一项所述的传感器,其中,所述保护层的厚度在0.3~0.7μm的范围内。
  12. 根据权利要求1-11任一项所述的传感器,还包括:
    至少一条电压供给线,所述透明电极与对应的一条电压供给线电连接。
  13. 一种显示面板,包括如权利要求1-12任一项所述的传感器;
    所述显示面板具有显示区,所述显示区包括非子像素区域;
    所述传感器设置于所述非子像素区域。
  14. 根据权利要求13所述的显示面板,其中,所述显示面板为液晶显示面板。
  15. 根据权利要求14所述的显示面板,其中,所述显示面板包括阵列基板和对置基板;
    所述传感器设置于所述对置基板中。
  16. 根据权利要求15所述的显示面板,其中,所述对置基板包括所述衬底、设置在所述衬底朝向所述阵列基板一侧的彩膜层;所述彩膜层包括阵列排布的多个滤光部;
    所述感光器件设置在相邻两行滤光部之间的区域。
  17. 一种显示装置,包括如权利要求13-16任一项所述的显示面板。
  18. 根据权利要求17所述的显示装置,还包括:
    集成电路,与所述传感器电连接,被配置为根据来自所述传感器的信号,对纹路识别或对触控位置识别。
PCT/CN2020/133981 2020-05-29 2020-12-04 传感器、显示面板及显示装置 WO2021238138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010477614.4 2020-05-29
CN202010477614.4A CN113743162A (zh) 2020-05-29 2020-05-29 一种传感器、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2021238138A1 true WO2021238138A1 (zh) 2021-12-02

Family

ID=78724833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133981 WO2021238138A1 (zh) 2020-05-29 2020-12-04 传感器、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN113743162A (zh)
WO (1) WO2021238138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883365A (zh) * 2022-04-28 2022-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325181A (zh) * 2008-08-05 2008-12-17 友达光电股份有限公司 薄膜晶体管阵列基板及其制作方法
US20090009675A1 (en) * 2007-01-25 2009-01-08 Au Optronics Corporation Photovoltaic Cells of Si-Nanocrystals with Multi-Band Gap and Applications in a Low Temperature Polycrystalline Silicon Thin Film Transistor Panel
US20090280606A1 (en) * 2008-05-09 2009-11-12 Ching-Chieh Shih Method for fabricating photo sensor
CN102707843A (zh) * 2012-04-16 2012-10-03 友达光电股份有限公司 触控面板及触控面板的制造方法
CN104636738A (zh) * 2015-01-21 2015-05-20 友达光电股份有限公司 感测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009675A1 (en) * 2007-01-25 2009-01-08 Au Optronics Corporation Photovoltaic Cells of Si-Nanocrystals with Multi-Band Gap and Applications in a Low Temperature Polycrystalline Silicon Thin Film Transistor Panel
US20090280606A1 (en) * 2008-05-09 2009-11-12 Ching-Chieh Shih Method for fabricating photo sensor
CN101325181A (zh) * 2008-08-05 2008-12-17 友达光电股份有限公司 薄膜晶体管阵列基板及其制作方法
CN102707843A (zh) * 2012-04-16 2012-10-03 友达光电股份有限公司 触控面板及触控面板的制造方法
CN104636738A (zh) * 2015-01-21 2015-05-20 友达光电股份有限公司 感测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883365A (zh) * 2022-04-28 2022-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114883365B (zh) * 2022-04-28 2024-01-19 武汉华星光电半导体显示技术有限公司 一种显示面板

Also Published As

Publication number Publication date
CN113743162A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US11508176B2 (en) Display substrate and method for manufacturing the same, display apparatus
KR102655476B1 (ko) 유기발광 표시장치
US10332929B2 (en) Integrated sensing module and integrated sensing assembly using the same
TWI672621B (zh) 顯示裝置以及感測元件基板
WO2018145461A1 (zh) 显示装置
WO2018028303A1 (zh) 一种指纹识别模组、其制作方法及显示装置
WO2018099176A1 (zh) 显示基板及其制作方法、指纹识别装置和显示装置
TWI675245B (zh) 顯示面板
US10691916B1 (en) Pattern recognition device, array substrate and display apparatus
CN110308583B (zh) 显示面板及指纹识别显示装置
US11538871B2 (en) Array substrate and fabricating method thereof, and display apparatus
CN111430439A (zh) 一种显示面板及显示装置
WO2020220302A1 (zh) 纹路识别装置以及纹路识别装置的驱动方法
US11410452B2 (en) Texture recognition device and manufacturing method thereof, color filter substrate and manufacturing method thereof
WO2022156299A1 (zh) 显示面板和显示装置
US20220367582A1 (en) Display substrate and display apparatus
US20230215211A1 (en) Display Panel and Display Device
WO2021139760A1 (zh) 具有指纹识别功能的显示装置
CN114625264A (zh) 显示装置
TW201608442A (zh) 光電感測陣列、製作光電感測陣列之方法及顯示裝置
WO2021238138A1 (zh) 传感器、显示面板及显示装置
CN111652196B (zh) 一种显示面板及显示装置
KR20220053075A (ko) 지문 센서, 지문 센서의 제조 방법, 및 지문 센서를 포함한 표시 장치
WO2021238139A1 (zh) 传感器、显示面板及显示装置
WO2021159379A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938283

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20938283

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)