WO2021238139A1 - 传感器、显示面板及显示装置 - Google Patents

传感器、显示面板及显示装置 Download PDF

Info

Publication number
WO2021238139A1
WO2021238139A1 PCT/CN2020/133989 CN2020133989W WO2021238139A1 WO 2021238139 A1 WO2021238139 A1 WO 2021238139A1 CN 2020133989 W CN2020133989 W CN 2020133989W WO 2021238139 A1 WO2021238139 A1 WO 2021238139A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor layer
sensor
thin film
voltage supply
Prior art date
Application number
PCT/CN2020/133989
Other languages
English (en)
French (fr)
Inventor
徐健
王锐拓
乔勇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021238139A1 publication Critical patent/WO2021238139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a sensor, a display panel and a display device.
  • touch and pattern (such as fingerprint) recognition functions are gradually becoming the standard configuration of display devices.
  • a sensor which includes a substrate, at least one photosensitive device, and at least one voltage supply line provided on the substrate.
  • Each photosensitive device includes a metal electrode, a photosensitive layer, and a transparent electrode stacked on the substrate in a thickness direction of the substrate.
  • the transparent electrode is located on the light incident side of the photosensitive device.
  • the transparent electrode is electrically connected with a voltage supply line.
  • the photosensitive layer includes a P-type semiconductor layer, an intrinsic semiconductor layer, and an N-type semiconductor layer stacked in a thickness direction of the substrate.
  • the P-type semiconductor layer is in contact with the transparent electrode
  • the N-type semiconductor layer is in contact with the metal electrode.
  • the area of the surface of the intrinsic semiconductor layer facing the P-type semiconductor layer is smaller than the area of the surface of the intrinsic semiconductor layer facing the N-type semiconductor layer.
  • the longitudinal section of the intrinsic semiconductor layer is trapezoidal.
  • the orthographic projection of the transparent electrode on a plane perpendicular to the thickness direction of the substrate is located within the orthographic projection range of the P-type semiconductor layer on the plane.
  • the ratio of the area of the orthographic projection of the transparent electrode on the plane to the area of the orthographic projection of the P-type semiconductor layer on the plane is greater than or equal to 0.85 and less than 1.
  • each side surface of the transparent electrode is inwardly retracted by a first distance with respect to a side surface of the P-type semiconductor layer on the same side as the side surface of the sensor.
  • the orthographic projection of the P-type semiconductor layer on the plane is within the orthographic projection range of the metal electrode on the plane.
  • the ratio of the first pitch corresponding to each of the two side surfaces to the width of the metal electrode in the distance direction is 0.5-2% Within range.
  • the orthographic projection of the intrinsic semiconductor layer on a plane perpendicular to the thickness direction of the substrate lies within the orthographic projection range of the P-type semiconductor layer on the plane.
  • the senor further includes at least one thin film transistor, at least one gate line, and at least one data readout line.
  • the drain of each thin film transistor is electrically connected to the metal electrode in a corresponding photosensitive device.
  • the gate of the thin film transistor is electrically connected to a gate line.
  • the source of the thin film transistor is electrically connected to a data readout line.
  • the orthographic projection of the photosensitive device on a plane perpendicular to the thickness direction of the substrate has no intersection with the orthographic projection of the gap between the source and drain on the plane. Stacked.
  • the drain of the thin film transistor is served by a part of the metal electrode connected to the thin film transistor.
  • the source of the thin film transistor is served by a part of the data readout line connected to the thin film transistor.
  • the gate of the thin film transistor is served by a part of the gate line connected to the thin film transistor.
  • the voltage supply line is arranged in parallel with the data readout line, and the voltage supply line is arranged across the gate line.
  • the extension direction of the metal electrode is the same as the extension direction of the gate line, and the orthographic projection of the metal electrode on a plane perpendicular to the thickness direction of the substrate is similar to that of the metal electrode.
  • the corresponding orthographic projections of the gate lines connected to the thin film transistors overlap on the plane.
  • the senor further includes at least one light shielding pattern and at least one connection pattern.
  • the orthographic projection of the gap between at least the source electrode and the drain electrode of the thin film transistor on a plane perpendicular to the thickness direction of the substrate, and the orthographic projection of a corresponding light-shielding pattern on the plane Within range.
  • Each connection pattern is electrically connected to a shading pattern and a voltage supply line, and the connection pattern, the shading pattern and the voltage supply line connected together form an integral structure, and the material is a shading material.
  • the senor further includes a first insulating layer disposed between the voltage supply line and the transparent electrode.
  • the transparent electrode is electrically connected to the voltage supply line through a via hole provided in the first insulating layer.
  • the voltage supply line includes a first part and a second part, and the transparent electrode is electrically connected to the first part through the via hole.
  • the line width of the first part is greater than the line width of the second part.
  • a display panel including the sensor as described above.
  • the display panel has a display area, and the display area includes a non-sub-pixel area.
  • the sensor is located in the non-sub-pixel area.
  • the display panel is a liquid crystal display panel.
  • the display panel includes an array substrate and a counter substrate.
  • the sensor is arranged in the opposite substrate.
  • the counter substrate further includes a color filter layer disposed on the substrate.
  • the color filter layer includes a plurality of filter parts arranged in an array.
  • the photosensitive device is arranged in an area between two adjacent rows of filter parts, and the voltage supply line is arranged in an area between two adjacent rows of filter parts.
  • a display device including the display panel as described above.
  • the display device further includes a sensor integrated circuit.
  • the sensor integrated circuit is electrically connected to the sensor, and is configured to recognize the pattern or the touch position at least according to a signal from the sensor.
  • FIG. 1 is a schematic top view of a display panel provided by some embodiments of the present disclosure
  • FIG. 2A is a schematic cross-sectional view of a sensor taken along the line I-I' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 2B is a schematic cross-sectional view of another sensor taken along the line I-I' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 2C is a schematic cross-sectional view of a sensor taken along the line J-J' in FIG. 1 according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a sensor provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a photosensitive device provided by some embodiments of the present disclosure.
  • 5A is a schematic partial top view of another display panel provided by some embodiments of the present disclosure.
  • 5B is a schematic cross-sectional view of a sensor taken along the line A-A' in FIG. 5A according to some embodiments of the present disclosure
  • FIG. 6 is a schematic structural diagram of another sensor provided by some embodiments of the present disclosure.
  • FIG. 7 is a manufacturing process diagram of a sensor provided by some embodiments of the disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • the expressions "connected” and “electrically connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “electrically connected” may be used when describing some embodiments to indicate that two or more components are in electrical contact.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity.
  • the exemplary embodiments should not be interpreted as being limited to the shapes of the layers and regions shown herein, but include shape deviations due to, for example, manufacturing. Therefore, the layers and regions shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the touch function can be implemented based on capacitive sensors.
  • the capacitive sensor can be arranged on the outside of the display panel. This method is complicated in process and increases the thickness of the display device.
  • the capacitive sensor can also be integrated inside the display panel. In this way, the electrode of the capacitive sensor is usually multiplexed with the common electrode in the display panel, which may easily cause signal interference and affect the normal display of the display panel.
  • the pattern for example, fingerprint
  • Some embodiments of the present disclosure provide a sensor, which can be disposed in a display panel of a display device.
  • the sensor and the sensor IC (Integrated Circuit, integrated circuit) connected to the sensor are configured to recognize patterns and/or touch positions, but the embodiments of the present disclosure do not limit the use of the sensor.
  • the display panel has a display area 101, and the display area 101 includes a sub-pixel area and a non-sub-pixel area 1012.
  • the sub-pixel region includes a plurality of sub-regions 1011, and any two adjacent ones of the plurality of sub-regions 1011 are separated by a non-sub-pixel region 1012.
  • the sensor is located in the non-sub-pixel area 1012.
  • the portion of the display panel located in the sub-pixel area is configured to perform image display.
  • the sensor includes a substrate 20, at least one photosensitive device 21 disposed on the substrate 20, and at least one voltage supply line 22.
  • Each photosensitive device 21 includes a metal electrode 211, a photosensitive layer 212, and a transparent electrode 213 stacked on the substrate 20 in the thickness direction of the substrate 20.
  • the transparent electrode 213 is located on the light incident side of the photosensitive device 21.
  • the transparent electrode 213 is electrically connected to a voltage supply line 22.
  • the senor further includes a first insulating layer 25 disposed between the voltage supply line 22 and the transparent electrode 213, and the transparent electrode 213 is disposed on the first insulating layer 25.
  • the first via 701 in is electrically connected to the voltage supply line 22.
  • the voltage supply line 22 is provided between the substrate 20 and the transparent electrode 213.
  • a part of the transparent electrode 213 is located in the first via hole 701, and the part of the transparent electrode 213 located in the first via hole 701 is in contact with the voltage supply line 22.
  • a conductive connection structure is provided in the first via 701, and the conductive connection structure is in contact with the voltage supply line 22 and the transparent electrode 213, respectively.
  • the voltage supply line 22 is provided on the side of the transparent electrode 213 away from the substrate 20.
  • a part of the voltage supply line 22 is located in the first via 701, and a part of the voltage supply line 22 located in the first via 701 is in contact with the transparent electrode 213.
  • the transparent electrode 213 is closer to the substrate 20 than the metal electrode 211 is.
  • the method of manufacturing the photosensitive device 21 includes: forming a transparent electrode 213, a photosensitive layer 212, and a metal electrode 211 on the substrate 20 in sequence.
  • the metal electrode 211 is closer to the substrate 20 than the transparent electrode 213.
  • the method of manufacturing the photosensitive device 21 includes: sequentially forming a metal electrode 211, a photosensitive layer 212, and a transparent electrode 213 on the substrate 20.
  • the substrate 20 is a glass substrate.
  • the substrate 20 may also be a substrate of other materials (for example, acrylic).
  • the substrate 20 may also be a flexible substrate.
  • the photosensitive device 21 is directly disposed on the substrate 20, that is, no other film layer is disposed between the photosensitive device 21 and the substrate 20. In other embodiments, another film layer is provided between the photosensitive device 21 and the substrate 20, and the photosensitive device 21 is provided on the surface of the other film layer away from the substrate 20.
  • the aforementioned substrate 20 can be a substrate included in the display panel itself or a supporting structure included in other structures. set up.
  • the photosensitive device 21 is a photosensor or a photosensitive sensor to convert light signals into electrical signals.
  • the photosensitive device 21 as a photosensitive sensor as an example.
  • the photosensitive layer 212 includes a P-type semiconductor layer 2121, an intrinsic semiconductor layer 2122, and an N-type semiconductor layer 2123 stacked along the thickness direction of the substrate 20.
  • the P-type semiconductor layer 2121 is in contact with the transparent electrode 213, and the N-type semiconductor layer 2123 is in contact with the metal electrode 211.
  • the area of the surface of the intrinsic semiconductor layer 2122 facing the P-type semiconductor layer 2121 is smaller than the area of the surface of the intrinsic semiconductor layer 2122 facing the N-type semiconductor layer 2123, and along the thickness direction of the substrate 20, the longitudinal section of the intrinsic semiconductor layer 2122 It is trapezoidal.
  • the orthographic projection of the transparent electrode 213 on a plane perpendicular to the thickness direction of the substrate 20 is located within the orthographic projection range of the P-type semiconductor layer 2121 on the plane.
  • the ratio of the area of the orthographic projection of the transparent electrode 213 on the plane to the area of the orthographic projection of the P-type semiconductor layer 2121 on the plane is greater than or equal to 0.85 and less than 1. In this way, it can be ensured that the effective photosensitive area of the photosensitive device 21 is sufficiently large, thereby ensuring that the photosensitive device 21 can normally realize the detection function.
  • each side surface of the transparent electrode 213 is inwardly retracted by the first distance S relative to the side surface of the P-type semiconductor layer 2121 on the same side as the side surface of the sensor. That is, each side of the orthographic projection of the transparent electrode 213 on the above-mentioned plane and the corresponding side of the orthographic projection of the P-type semiconductor layer 2121 on the plane have a first interval S. It can be seen that the transparent electrode 213 and the P-type semiconductor layer 2121 have similar shapes.
  • the orthographic projection of the P-type semiconductor layer 2121 on the plane lies within the orthographic projection range of the metal electrode 211 on the plane, and any along the transparent electrode 213 Relative to the distance direction X of the two side surfaces, the first distance S corresponding to each of the two side surfaces (that is, the side surface is inwardly retracted relative to the side surface of the P-type semiconductor layer 2121 on the same side as the side surface of the sensor).
  • the ratio of a gap S) to the width of the metal electrode 211 along the distance is in the range of 0.5-2%.
  • the first distance S corresponding to each of the two side surfaces is K1
  • the width of the metal electrode 211 along the distance direction is K2
  • K1: K2 The value of is in the range of 0.5 to 2%.
  • the orthographic projection of the N-type semiconductor layer 2123 on the plane is within the orthographic projection range of the metal electrode 211 on the plane.
  • FIG. 4 only illustrates the transparent electrode 213, the P-type semiconductor layer 2121, the intrinsic semiconductor layer 2122, the N-type semiconductor layer 2123, and the metal electrode 211, and does not illustrate other structures.
  • the orthographic projection of the intrinsic semiconductor layer 2122 on the above-mentioned plane is within the orthographic projection range of the P-type semiconductor layer 2121 on the plane.
  • the orthographic projection of the transparent electrode 213 on the plane is within the orthographic projection range of the intrinsic semiconductor layer 2122 on the plane.
  • the embodiment of the present disclosure does not limit the material of the transparent electrode 213, as long as the transparent electrode 213 can conduct electricity and transmit light.
  • the material of the transparent electrode 213 is indium tin oxide (ITO for short).
  • the material of the metal electrode 211 is not limited, and the material of the metal electrode 211 may be a simple metal, a metal alloy, or the like.
  • the sensor further includes at least one thin film transistor 31, at least one gate line 301, and at least one data readout line 201.
  • Each thin film transistor 31 includes a gate 312, a drain 311, a source 314, an active layer 313, and a portion of the gate insulating layer 315 where the thin film transistor 31 is located.
  • the drain electrode 311 of the thin film transistor 31 is electrically connected to the metal electrode 211 in a corresponding photosensitive device 21.
  • the source 314 of the thin film transistor 31 is electrically connected to a data read line 201.
  • the gate 312 of the thin film transistor 31 is electrically connected to a gate line 301.
  • one of the other two electrodes of the thin film transistor 31 except for the gate 312 is called a source 314, and the other is called a drain 311.
  • the gate 312 of the thin film transistor 31 is used as a part of the gate line 301 connected to the thin film transistor 31 to simplify the process.
  • the source 314 of the thin film transistor 31 is used as a part of the data readout line 201 connected to the thin film transistor 31 to simplify the process.
  • the drain electrode 311 of the thin film transistor 31 is used as a part of the metal electrode 211 connected to the thin film transistor 31 to simplify the process.
  • a second insulating layer 29 is provided between the drain electrode 311 of the thin film transistor 31 and the metal electrode 211, and the drain electrode 311 of the thin film transistor 31 passes through the second insulating layer.
  • the second via 702 in 29 is electrically connected to the metal electrode 211.
  • the photosensitive layer 212 acts as a photoelectric conversion layer to receive light and generate current.
  • the thin film transistor 31 is turned on according to a certain timing. After the thin film transistor 31 is turned on, the current passes through the drain electrode 311 and the source electrode 314 of the thin film transistor 31 and is transmitted to the data readout line 201.
  • the data readout line 201 is electrically connected to the sensor IC, the data readout line 201 draws current to the sensor IC.
  • the sensor IC is arranged on a flexible circuit board. In another example, the sensor IC is provided on the film.
  • the magnitude of the current transmitted to the sensor IC through the data readout line 201 is different, so that the sensor IC is based on the data readout line 201.
  • the transmitted signal gets the texture image.
  • the sensor IC compares the pattern image with the pre-stored image, and if they are consistent, the pattern recognition is successful; otherwise, the pattern recognition fails.
  • the photosensitive layer 212 is always in a state of being illuminated by light, so that a voltage exists between the metal electrode 211 and the gate 312.
  • the photoelectric effect changes, causing the voltage to change.
  • the voltage value read from the data read line 201 changes according to the intersection of the data read line 201 and the gate line 301. Point, detect the specific touch position.
  • the voltage supply line 22 and the data readout line 201 are arranged in parallel, and the voltage supply line 22 and the gate line 301 are arranged across.
  • the extension direction of the metal electrode 211 is the same as the extension direction of the gate line 301, and the orthographic projection of the metal electrode 211 on the above-mentioned plane, and the gate line 301 connected to the thin film transistor 31 corresponding to the metal electrode 211 is on the plane.
  • the orthographic projections overlap.
  • the thin film transistor 31 corresponding to the metal electrode 211 that is, the thin film transistor 31 connected to the metal electrode 211.
  • the orthographic projection of the metal electrode 211 on the plane is within the orthographic projection range of the gate line connected to the thin film transistor 31 corresponding to the metal electrode 211 on the plane.
  • the sensor further includes at least one light shielding pattern 23 and at least one connection pattern 24.
  • the orthographic projection of the gap between at least the source electrode 314 and the drain electrode 311 of the thin film transistor 31 on the above-mentioned plane is located within the orthographic projection range of a corresponding light shielding pattern 23 on the plane.
  • Each connection pattern 24 is electrically connected to a light-shielding pattern 23 and a voltage supply line 22.
  • the connected connection pattern 24, the light-shielding pattern 23, and the voltage supply line 22 form an integral structure, and the material is a light-shielding material.
  • connection pattern 24 is connected to the light shielding pattern 23 and the other end is connected to the voltage supply line 22.
  • the voltage supply line 22 includes a first part 221 and a second part 222, and the transparent electrode 213 is electrically connected to the first part 221 through the first via 701.
  • the line width of the first portion 221 is greater than the line width of the second portion 222. In this way, the voltage supply line 22 and the transparent electrode 213 can be sufficiently electrically connected, thereby preventing excessive resistance.
  • the other end of the above-mentioned connection pattern 24 may be connected to the first part 221 of the voltage supply line 22.
  • a hollow area 241 is formed between the connection pattern 24 and the first insulating layer 25 to prevent the formation of a capacitance effect between the connection pattern 24 and the lower photosensitive device 21, which affects the detection accuracy.
  • the display panel further has, for example, a peripheral area 102, and the peripheral area 102 may be located on at least one side of the display area 101.
  • FIG. 1 illustrates that the peripheral area 102 is located on the four sides of the display area 101 as an example.
  • the display panel is a borderless display panel, that is, the display panel does not have the peripheral area 102.
  • the display panel is a liquid crystal display panel, an Organic Light-Emitting Diode (OLED) display panel, or the like.
  • OLED Organic Light-Emitting Diode
  • the display panel is a liquid crystal display panel
  • the display panel includes an array substrate and a counter substrate.
  • the sensor can be provided in the array substrate or in the opposite substrate.
  • the display panel is a liquid crystal display panel and the sensor is provided in the counter substrate as an example for description.
  • the opposite substrate includes a substrate 20, a color filter layer 28 disposed on the substrate 20, and the aforementioned sensor.
  • the color filter layer 28 includes a plurality of light filters 281.
  • Each filter part 281 is located in a corresponding sub-region 1011.
  • the plurality of filter portions 281 includes a plurality of first color filter portions, a plurality of second color filter portions, and a plurality of third color filter portions, and the first color, the second color, and the third color are three primary colors.
  • the photosensitive device 21 is disposed in a region between two adjacent rows of filter parts 281.
  • the metal electrode 211 completely covers the area between the filter portions 281 in two adjacent rows.
  • the metal electrode 211 only covers a part of the area between the filter portions 281 in two adjacent rows.
  • the photosensitive device 21 may be located in a non-sub-pixel region 1012 above or below one or more sub-regions 1011.
  • the voltage supply line 22 is provided in a region between two adjacent columns of filter parts 281.
  • the voltage supply line 22 completely covers the area between the filter portions 281 in two adjacent columns.
  • the voltage supply line 22 only covers a part of the area between the filter portions 281 in two adjacent columns.
  • the senor and the color filter layer 28 are disposed on the same side of the substrate 20. In other examples, as shown in FIG. 6, the sensor and the color filter layer 28 are arranged on different sides of the substrate 20.
  • the method for preparing the counter substrate includes:
  • a voltage supply line 22 is formed on the substrate 20, and a first flat layer 26 of the same layer as the voltage supply line 22 is formed.
  • the surface of the voltage supply line 22 away from the substrate 20 It is flush with the surface of the first flat layer 26 away from the substrate 20.
  • a first insulating layer 25 is formed on the first flat layer 26 and the voltage supply line 22, and the first insulating layer 25 includes a first via 701.
  • a transparent electrode 213 is formed on the first insulating layer 25, and the transparent electrode 213 is electrically connected to the voltage supply line 22 through the first via 701 in the first insulating layer 25.
  • a photosensitive layer 212 is formed on the transparent electrode 213, and a second flat layer 27 is formed.
  • the surface of the photosensitive layer 212 away from the substrate 20 and the surface of the second flat layer 27 away from the substrate The surface of 20 is flush.
  • a metal electrode 211 is formed on the photosensitive layer 212, and then a color filter layer 28 of the same layer as the metal electrode 211 is formed.
  • the color filter layer 28 includes a plurality of filter portions 281;
  • the filter portion 281 includes a plurality of first color filter portions, a plurality of second color filter portions, and a plurality of third color filter portions.
  • a second insulating layer 29 is formed on the color filter layer 28 and the metal electrode 211.
  • the second insulating layer 29 includes a second via 702 and is formed on the second insulating layer 29
  • the thin film transistor 31 and the drain electrode 311 of the thin film transistor 31 are electrically connected to the metal electrode 211 through the second via 702.
  • the same layer of A and B means that B fills the blank area around A to make the entire surface formed by A and B flat.
  • step S14 the metal electrode 211 and the color filter layer 28 are formed successively, that is, the metal electrode 211 and the color filter layer 28 are not formed in the same patterning process, and the thickness of the metal electrode 211 is equal to that of the color filter layer 28. The thickness is different.
  • the materials of the first flat layer 26, the first insulating layer 25, and the second flat layer 27 are the same.
  • the materials of the first flat layer 26, the first insulating layer 25, and the second flat layer 27 are organic materials.
  • the materials of the first flat layer 26, the first insulating layer 25, the second flat layer 27, and the second insulating layer 29 are the same.
  • the purpose of forming the first flat layer 26 is: since the voltage supply line 22 has a certain thickness, by providing the first flat layer 26, the transparent electrode 213 can be secured.
  • the flatness of the photosensitive layer 212 in turn ensures the flatness of the photosensitive layer 212, so that the photoelectric effect at each position of the photosensitive layer 212 is more uniform.
  • the metal electrode 211 in the embodiment of the present disclosure is an opaque metal
  • the voltage supply line 22 may also be an opaque metal material
  • the sensor is located in the non-sub-pixel area 1012.
  • the metal electrode 211 and the voltage supply line 22 can play a role in shielding light, that is, preventing light incident from the array substrate side from being emitted from the sensor, affecting the display effect, and also preventing ambient light from entering the liquid crystal display panel from the opposite substrate side. Affect the display brightness. Therefore, the sensor provided by the embodiment of the present disclosure can also be used to replace the black matrix (BM).
  • BM black matrix
  • a BM may also be provided on the side of the metal electrode 211 close to the array substrate.
  • the present disclosure can reduce the thickness of the display device by arranging the sensor in the display panel.
  • arranging the sensor in the display area of the display panel can increase the screen-to-body ratio of the display device.
  • the metal electrode 211 is an opaque metal
  • the voltage supply line 22 can also be an opaque metal material
  • the sensor is located in the non-sub-pixel area 1012, so that the metal electrode 211 and the voltage supply line 22 can be It has a light-shielding function, that is, preventing light incident from the array substrate side from exiting from the sensor and affecting the display effect, and also preventing ambient light from entering the liquid crystal display panel from the opposite substrate side and affecting the display brightness.
  • Some embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • the display device may be applied to electronic products with display functions such as mobile phones, computers, cameras, watches, etc., which is not limited in the embodiments of the present disclosure.
  • the display device also includes a sensor IC.
  • the sensor IC is electrically connected to at least the data readout line 201.
  • the sensor IC is configured to perform pattern (such as fingerprint) recognition based on the signal from the data readout line 201, or to recognize the touch position based on the signal on the gate line 301 and the signal from the data readout line 201.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种传感器,包括衬底、至少一个感光器件以及设置于所述衬底上的至少一条电压供给线。每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极。所述透明电极位于所述感光器件的入光侧。所述透明电极与一条电压供给线电连接。

Description

传感器、显示面板及显示装置
本申请要求于2020年5月29日提交的、申请号为202010475133.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种传感器、显示面板及显示装置。
背景技术
随着显示技术的发展,触控和纹路(例如指纹)识别功能正逐渐成为显示装置的标配。
发明内容
一方面,提供一种传感器,包括衬底、至少一个感光器件以及设置于所述衬底上的至少一条电压供给线。每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极。所述透明电极位于所述感光器件的入光侧。所述透明电极与一条电压供给线电连接。
在一些实施例中,所述光敏层包括沿所述衬底的厚度方向层叠设置的P型半导体层、本征半导体层、N型半导体层。所述P型半导体层与所述透明电极接触,所述N型半导体层与所述金属电极接触。所述本征半导体层朝向所述P型半导体层的表面的面积,小于所述本征半导体层朝向所述N型半导体层的表面的面积。沿所述衬底的厚度方向,所述本征半导体层的纵截面呈梯形。
在一些实施例中,所述透明电极在与所述衬底的厚度方向垂直的平面上的正投影位于所述P型半导体层在所述平面上的正投影范围内。所述透明电极在所述平面上的正投影的面积与所述P型半导体层在所述平面上的正投影的面积之比大于或等于0.85、且小于1。
在一些实施例中,所述透明电极的每一侧面相对于所述P型半导体层的与该侧面位于所述传感器同一侧的侧面均向内缩进第一间距。
在一些实施例中,所述P型半导体层在所述平面上的正投影位于所述金属电极在所述平面上的正投影范围内。沿所述透明电极的任意相对两个侧面的距离方向,与该两个侧面中每个侧面对应的所述第一间距与所述金属电极的沿该距离方向的宽度之比在0.5~2%范围内。
在一些实施例中,所述本征半导体层在与所述衬底的厚度方向垂直的平面上的正投影位于所述P型半导体层在所述平面上的正投影范围内。
在一些实施例中,所述传感器还包括至少一个薄膜晶体管、至少一条栅 线以及至少一条数据读出线。每个薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极电连接。所述薄膜晶体管的栅极与一条栅线电连接。所述薄膜晶体管的源极与一条数据读出线电连接。
在一些实施例中,所述感光器件在与所述衬底的厚度方向垂直的平面上的正投影与所述源极和所述漏极之间的间隙在所述平面上的正投影无交叠。
在一些实施例中,所述薄膜晶体管的漏极由该薄膜晶体管连接的所述金属电极的一部分充当。
在一些实施例中,所述薄膜晶体管的源极由与该薄膜晶体管连接的所述数据读出线的一部分充当。
在一些实施例中,所述薄膜晶体管的栅极由与该薄膜晶体管连接的所述栅线的一部分充当。
在一些实施例中,所述电压供给线与所述数据读出线平行设置,所述电压供给线与所述栅线交叉设置。
在一些实施例中,所述金属电极的延伸方向与所述栅线的延伸方向相同,且所述金属电极在与所述衬底的厚度方向垂直的平面上的正投影、与所述金属电极对应的所述薄膜晶体管连接的所述栅线在所述平面上的正投影重叠。
在一些实施例中,所述传感器还包括至少一个遮光图案和至少一个连接图案。所述薄膜晶体管的至少所述源极和所述漏极之间的间隙在与所述衬底的厚度方向垂直的平面上的正投影,位于对应的一个遮光图案在所述平面上的正投影范围内。每个连接图案与一个遮光图案和一条电压供给线电连接,连接在一起的所述连接图案、所述遮光图案与所述电压供给线为一体结构,且材料为遮光材料。
在一些实施例中,所述传感器还包括设置于所述电压供给线与所述透明电极之间的第一绝缘层。所述透明电极通过设置于所述第一绝缘层中的过孔与所述电压供给线电连接。所述电压供给线包括第一部分和第二部分,所述透明电极通过所述过孔与所述第一部分电连接。沿垂直所述电压供给线的延伸方向的方向,所述第一部分的线宽大于所述第二部分的线宽。
另一方面,提供一种显示面板,包括如上所述的传感器。所述显示面板具有显示区,所述显示区包括非子像素区域。所述传感器位于所述非子像素区域。
在一些实施例中,所述显示面板为液晶显示面板。
在一些实施例中,所述显示面板包括阵列基板和对置基板。所述传感器设置于所述对置基板中。
在一些实施例中,所述对置基板还包括设置在所述衬底上的彩膜层。所述彩膜层包括阵列排布的多个滤光部。所述感光器件设置在相邻两行滤光部之间的区域中,所述电压供给线设置在相邻两列滤光部之间的区域中。
又一方面,提供一种显示装置,包括如上所述的显示面板。
在一些实施例中,所述显示装置还包括传感器集成电路。所述感器集成电路与所述传感器电连接,并且被配置为至少根据来自所述传感器的信号,对纹路识别或对触控位置识别。
附图说明
为了更清楚地说明本公开或相关技术中的技术方案,下面将对本公开一些实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸等的限制。
图1为本公开一些实施例提供的一种显示面板的俯视示意图;
图2A为本公开一些实施例提供的沿着图1中的线I-I’截取的一种传感器的截面示意图;
图2B为本公开一些实施例提供的沿着图1中的线I-I’截取的另一种传感器的截面示意图;
图2C为本公开一些实施例提供的沿着图1中的线J-J’截取的一种传感器的截面示意图;
图3为本公开一些实施例提供的一种传感器的结构示意图;
图4为本公开一些实施例提供的一种感光器件的结构示意图;
图5A为本公开一些实施例提供的另一种显示面板的局部俯视示意图;
图5B为本公开一些实施例提供的沿着图5A中的线A-A’截取的一种传感器的截面示意图;
图6为本公开一些实施例提供的又一种传感器的结构示意图;
图7为本公开一些实施例提供的一种传感器的制备过程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例(example)”、或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”和“电连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件有电接触。术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“若”任选地被解释为意思是“当……时”或“在……时”。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件的过程、步骤、计算或其他动作在实践中可以基于额外条件。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。示例性实施方式不应解释为局限于本文示出的层和区域的形状,而是包括因例如制造而引起的形状偏差。因此,附图中所示的层和区域本质上是示意性的,且它们的形状并非旨在示出设备的实际形状,并且并非旨在限制示例性实施方式的范围。
触控功能可基于电容式传感器来实现。电容式传感器可以设置在显示面板的外侧,该方式工艺复杂,且增加了显示装置的厚度。电容式传感器也可 以集成在显示面板内部,该种方式中,电容式传感器的电极通常与显示面板中的公共电极复用,这样容易造成信号干扰,影响显示面板正常显示。对于纹路(例如指纹)识别技术来说,需要牺牲终端显示装置(例如手机)的部分显示区域,以给指纹芯片预留位置,从而降低了屏占比,无法实现全面屏显示。
本公开一些实施例提供一种传感器,该传感器可设置于显示装置的显示面板中。在一些实施例中,该传感器和与其连接的传感器IC(Integrated Circuit,集成电路)一起被配置为对纹路识别和/或对触控位置识别,但本公开实施例对该传感器的用途不作限定。
如图1所示,显示面板具有显示区101,显示区101包括子像素区域和非子像素区域1012。该子像素区域包括多个子区域1011,该多个子区域1011中的任意相邻两个被非子像素区域1012间隔开。传感器位于非子像素区域1012。显示面板位于子像素区域的部分被配置为进行图像显示。
如图1-3所示,该传感器包括衬底20、设置于衬底20上的至少一个感光器件21以及至少一条电压供给线22。每个感光器件21包括沿衬底20的厚度方向层叠设置在衬底20上的金属电极211、光敏层212、以及透明电极213。透明电极213位于感光器件21的入光侧。透明电极213与一条电压供给线22电连接。
在一些实施例中,如图2A-2B和图3所示,传感器还包括设置于电压供给线22与透明电极213之间的第一绝缘层25,透明电极213通过设置于第一绝缘层25中的第一过孔701与电压供给线22电连接。
在一些示例中,如图2A和2B所示,电压供给线22设置在衬底20与透明电极213之间。示例的,如图2A所示,透明电极213的一部分位于第一过孔701中,且透明电极213位于第一过孔701中的部分与电压供给线22接触。又示例的,如图2B所示,第一过孔701中设置导电连接结构,该导电连接结构分别与电压供给线22和透明电极213接触。
在另一些示例中,如图3所示,电压供给线22设置于透明电极213远离衬底20的一侧。示例的,如图3所示,电压供给线22的一部分位于第一过孔701中,且电压供给线22位于第一过孔701中的部分与透明电极213接触。
在一些实施例中,如图2A-2C所示,透明电极213相对金属电极211更靠近衬底20。在此情况下,制备感光器件21的方法包括:依次在衬底20上形成透明电极213、光敏层212、以及金属电极211。
在另一些实施例中,如图3所示,金属电极211相对透明电极213更靠 近衬底20。在此情况下,制备感光器件21的方法包括:依次在衬底20上形成金属电极211、光敏层212、以及透明电极213。
在一些实施例中,衬底20是玻璃基板。衬底20也可以是其他材质(例如亚克力)衬底。此外,衬底20也可以是柔性衬底。
在一些实施例中,该感光器件21直接设置在衬底20上,即该感光器件21与衬底20之间未设置其他膜层。在另一些实施例中,感光器件21与衬底20之间设置其他膜层,感光器件21设置在该其他膜层远离衬底20的表面上。
需要说明的是,在该感光器件21设置在显示面板或其他结构中的情况下,上述衬底20可采用显示面板自身包括的衬底或其他结构中包括的起承载作用的结构充当,无需额外设置。
在一些实施例中,感光器件21是光电传感器或光敏传感器,以将光信号转换为电信号。
下面以感光器件21为光敏传感器为例进行说明。
可选的,如图4所示,光敏层212包括沿衬底20的厚度方向层叠设置的P型半导体层2121、本征半导体层2122、N型半导体层2123。P型半导体层2121与透明电极213接触,N型半导体层2123与金属电极211接触。本征半导体层2122朝向P型半导体层2121的表面的面积,小于本征半导体层2122朝向N型半导体层2123的表面的面积,并且沿衬底20的厚度方向,本征半导体层2122的纵截面呈梯形。
在一些实施例中,如图4所示,透明电极213在与衬底20的厚度方向垂直的平面上的正投影位于P型半导体层2121在该平面上的正投影范围内。
在此基础上,在一些示例中,透明电极213在该平面上的正投影的面积与P型半导体层2121在该平面上的正投影的面积之比大于或等于0.85、且小于1。这样,可确保感光器件21的有效感光区域足够大,进而确保感光器件21可正常实现检测功能。
在一些示例中,如图4所示,透明电极213的每一侧面相对于P型半导体层2121的与该侧面位于传感器同一侧的侧面均向内缩进第一间距S。即,透明电极213在上述平面上的正投影的每边与P型半导体层2121在该平面上的正投影的对应的边之间均具有第一间距S。由此可知,透明电极213和P型半导体层2121具有类似的形状。
在这种情况下,在一些示例中,如图4所示,P型半导体层2121在该平面上的正投影位于金属电极211在该平面上的正投影范围内,并且沿透明电极213的任意相对两个侧面的距离方向X,与该两个侧面中每个侧面对应的 第一间距S(即该侧面相对于P型半导体层2121的与该侧面位于传感器同一侧的侧面向内缩进第一间距S)与金属电极211的沿该距离方向的宽度之比在0.5~2%范围内。示例的,沿透明电极213的左右两个侧面的距离方向,与该两个侧面中每个侧面对应的第一间距S为K1,金属电极211的沿该距离方向的宽度为K2,K1:K2的值在0.5~2%范围内。
这样,可在保证金属电极211与光敏层212的接触面积的前提下,避免产生漏电流,从而确保光敏层212的边沿处的光电效应。
在一些示例中,如图4所示,N型半导体层2123在该平面上的正投影位于金属电极211在该平面上的正投影范围内。
需要说明的是,图4仅示意出了透明电极213、P型半导体层2121、本征半导体层2122、N型半导体层2123和金属电极211,并未对其他结构进行示意。
在一些实施例中,如图4所示,本征半导体层2122在上述平面上的正投影位于P型半导体层2121在该平面上的正投影范围内。在此基础上,在一些示例中,透明电极213在该平面上的正投影位于本征半导体层2122在该平面上的正投影范围内。
本公开实施例不对透明电极213的材料进行限定,只要透明电极213可以导电、透光即可。在一些示例中,透明电极213的材料是氧化铟锡(Indium tin oxide,简称ITO)。
此外,本公开实施例中,不对金属电极211的材料进行限定,金属电极211的材料可以是金属单质、金属合金等。
在一些实施例中,如图1-图3所示,传感器还包括至少一个薄膜晶体管31、至少一条栅线301、以及至少一条数据读出线201。每个薄膜晶体管31包括栅极312、漏极311、源极314、有源层313以及栅绝缘层315位于该薄膜晶体管31所在区域的部分。薄膜晶体管31的漏极311与对应的一个感光器件21中的金属电极211电连接。薄膜晶体管31的源极314与一条数据读出线201电连接。薄膜晶体管31的栅极312与一条栅线301电连接。
本公开实施例中,将薄膜晶体管31中除栅极312外的另外两极中的一极称为源极314,另一极称为漏极311。
在一些实施例中,如图1-图2C所示,薄膜晶体管31的栅极312由与该薄膜晶体管31连接的栅线301的一部分充当,以简化工艺。
在一些实施例中,如图2A~2C所示,薄膜晶体管31的源极314由与该薄膜晶体管31连接的数据读出线201的一部分充当,以简化工艺。
在一些实施例中,如图2B所示,薄膜晶体管31的漏极311由该薄膜晶体管31连接的金属电极211的一部分充当,以简化工艺。在另一些实施例中,如图2A和图2C所示,薄膜晶体管31的漏极311和金属电极211之间设置第二绝缘层29,薄膜晶体管31的漏极311通过在该第二绝缘层29中的第二过孔702与金属电极211电连接。
当光线照射到光敏层212所在的区域时,光敏层212作为光电转换层接收光照,并产生电流。薄膜晶体管31按照一定的时序开启,在薄膜晶体管31开启后,电流通过薄膜晶体管31的漏极311和源极314,传输至数据读出线201。在该数据读出线201与传感器IC电连接的情况下,数据读出线201将电流导出到传感器IC中。示例的,该传感器IC设置在柔性线路板上。在另一示例中,该传感器IC设置在薄膜上。
以传感器实现纹路识别功能为例,由于手指的谷、脊反射的光强的不同,因而,通过数据读出线201传输到传感器IC中的电流大小不同,从而使得传感器IC根据数据读出线201传输的信号得到纹路图像。传感器IC将该纹路图像与预存的图像进行比对,若一致,则纹路识别成功;否则,纹路识别失败。
以传感器实现触控位置识别功能为例,由于光敏层212始终处于被光照明的状态,因此,光敏层212会一直存在光电效应和电流流动,使得金属电极211与栅极312之间存在电压。当手指遮蔽光敏层212时,光电效应变化,使得该电压发生变化。这样,在薄膜晶体管31在与该薄膜晶体管31电连接的栅线301的控制下开启后,从数据读出线201读出的电压值发生变化,根据数据读出线201和栅线301的交叉点位,检测到具体触控位置。
在一些示例中,如图2A~图3所示,感光器件21在上述平面上的正投影与源极314和漏极311之间的间隙在该平面上的正投影无交叠。这样,可避免薄膜晶体管31的电场与感光器件21之间相互影响,从而提高传感器的检测准确性。
在一些实施例中,如图1所示,电压供给线22与数据读出线201平行设置,电压供给线22与栅线301交叉设置。
在一些实施例中,金属电极211的延伸方向与栅线301的延伸方向相同,且金属电极211在上述平面上的正投影、与金属电极211对应的薄膜晶体管31连接的栅线301在该平面上的正投影重叠。这里,与金属电极211对应的薄膜晶体管31,即,与金属电极211连接的薄膜晶体管31。在一些示例中,金属电极211在该平面上的正投影位于与金属电极211对应的薄膜晶体管31 连接的栅线在该平面上的正投影范围内。
在一些实施例中,如图5A和5B所示,传感器还包括至少一个遮光图案23和至少一个连接图案24。薄膜晶体管31的至少源极314和漏极311之间的间隙在上述平面上的正投影,位于对应的一个遮光图案23在该平面上的正投影范围内。每个连接图案24与一个遮光图案23和一条电压供给线22电连接,连接在一起的连接图案24、遮光图案23与电压供给线22为一体结构,且材料为遮光材料。这样,通过遮光图案23覆盖薄膜晶体管31的源极314和漏极311之间的间隙,可防止光线照射到有源层313位于源极314和漏极311之间的部分而影响薄膜晶体管31的阈值电压。
在一些示例中,连接图案24的一端与遮光图案23连接,另一端与电压供给线22连接。
在一些实施例中,如图5A所示,电压供给线22包括第一部分221和第二部分222,透明电极213通过第一过孔701与第一部分221电连接。沿垂直电压供给线22的延伸方向的方向,第一部分221的线宽大于第二部分222的线宽。这样,可使电压供给线22与透明电极213充分电连接,从而防止电阻过大。
在电压供给线22包括第一部分221和第二部分222的情况下,上述连接图案24的另一端可与电压供给线22的第一部分221连接。
在一些实施例中,如图5B所示,连接图案24与第一绝缘层25之间形成镂空区241,以防止连接图案24与下方感光器件21之间形成电容效应,影响检测精度。
在一些实施例中,显示面板例如还具有周边区102,周边区102可以位于显示区101的至少一侧。图1以周边区102位于显示区101的四侧为例示意。在另一些实施例中,显示面板是无边框显示面板,即显示面板不具有周边区102。
在一些实施例中,显示面板是液晶显示面板、有机电致发光二极管(OrganicLight-Emitting Diode,简称OLED)显示面板等。
在显示面板是液晶显示面板的情况下,显示面板包括阵列基板和对置基板。传感器可以设置在阵列基板中,也可以设置在对置基板中。
以下,以显示面板为液晶显示面板,且传感器设置在对置基板中为例进行说明。
如图2C所示,对置基板包括衬底20、设置在衬底20上的彩膜层28以及上述的传感器。彩膜层28包括多个滤光部281。每个滤光部281位于对应 的一个子区域1011中。多个滤光部281包括多个第一颜色滤光部、多个第二颜色滤光部和多个第三颜色滤光部,第一颜色、第二颜色和第三颜色为三基色。
在一些示例中,感光器件21设置在相邻两行滤光部281之间的区域中。示例的,金属电极211完全覆盖相邻两行滤光部281之间的区域。又示例的,金属电极211仅覆盖相邻两行滤光部281之间的区域中的部分。例如,沿电压供给线22的延伸方向,感光器件21可以位于一个或多个子区域1011的上方或下方的非子像素区域1012。在一些示例中,电压供给线22设置在相邻两列滤光部281之间的区域中。示例的,电压供给线22完全覆盖相邻两列滤光部281之间的区域。又示例的,电压供给线22仅覆盖相邻两列滤光部281之间的区域中的部分。
在一些示例中,如图2C所示,传感器与彩膜层28设置在衬底20的同一侧。在另一些示例中,如图6所示,传感器与彩膜层28设置在衬底20的不同侧。
在一些示例中,对置基板的制备方法,包括:
S10、如图7中(a)所示,在衬底20上形成电压供给线22,并形成与电压供给线22同层的第一平坦层26,电压供给线22的远离衬底20的表面与第一平坦层26的远离衬底20的表面齐平。
S11、如图7中(b)所示,在第一平坦层26和电压供给线22上形成第一绝缘层25,第一绝缘层25包括第一过孔701。
S12、如图7中(c)所示,在第一绝缘层25上形成透明电极213,使透明电极213通过第一绝缘层25中的第一过孔701与电压供给线22电连接。
S13、如图7中(d)所示,在透明电极213上形成光敏层212,并形成第二平坦层27,光敏层212的远离衬底20的表面与第二平坦层27的远离衬底20的表面齐平。
S14、如图7中(e)所示,在光敏层212上形成金属电极211,然后形成与金属电极211同层的彩膜层28,彩膜层28包括多个滤光部281;多个滤光部281包括多个第一颜色滤光部、多个第二颜色滤光部和多个第三颜色滤光部。
S15、如图7中(f)所示,在彩膜层28和金属电极211上形成第二绝缘层29,第二绝缘层29包括第二过孔702,并在第二绝缘层29上形成薄膜晶体管31,薄膜晶体管31的漏极311通过第二过孔702与金属电极211电连接。
这里,A和B同层是指,B填充在A周围的空白区域,使A和B形成的整体的表面平坦。
需要说明的是,在步骤S14中,金属电极211和彩膜层28先后形成,即金属电极211和彩膜层28不在同一次构图工艺中形成,并且金属电极211的厚度与彩膜层28的厚度不同。
在一些示例中,第一平坦层26、第一绝缘层25和第二平坦层27的材料相同。示例的,第一平坦层26、第一绝缘层25和第二平坦层27的材料为有机材料。
在另一些示例中,第一平坦层26、第一绝缘层25、第二平坦层27和第二绝缘层29的材料相同。
此处,在形成电压供给线22之后、形成透明电极213之前,形成第一平坦层26的目的是:由于电压供给线22具有一定的厚度,通过设置第一平坦层26,可以确保透明电极213的平坦度,进而确保光敏层212的平坦度,以使得光敏层212各个位置处的光电效应更加均一。
本公开实施例中的金属电极211是不透光的金属,电压供给线22也可以是不透光的金属材料,且传感器位于非子像素区域1012。这样,金属电极211和电压供给线22可以起到遮光作用,即防止从阵列基板侧入射的光从传感器射出,影响显示效果,也可以防止环境光从对置基板侧射入液晶显示面板内,对显示亮度造成影响。因此,本公开实施例提供的传感器还可以用来替代黑矩阵(BM)。当然,为了提高液晶显示面板的显示效果,还可以在金属电极211靠向阵列基板一侧设置BM。
当本公开实施例提供的显示面板应用于显示装置时,相较于相关技术中将传感器外挂于显示面板上,本公开通过将传感器设置在显示面板内,可减小显示装置的厚度。此外,将传感器设置在显示面板的显示区内,可提高显示装置的屏占比。在此基础上,由于金属电极211是不透光的金属,电压供给线22也可以是不透光的金属材料,且传感器位于非子像素区域1012,这样,金属电极211和电压供给线22可以起到遮光作用,即防止从阵列基板侧入射的光从传感器射出,影响显示效果,也可以防止环境光从对置基板侧射入液晶显示面板内,对显示亮度造成影响。
本公开一些实施例还提供一种显示装置,包括如上所述的显示面板。
此处,显示装置可以应用于手机、电脑、照相机、手表等具有显示功能的电子产品中,本公开实施例对此不作限定。
显示装置还包括传感器IC。传感器IC至少与数据读出线201电连接。传感器IC被配置为根据来自数据读出线201的信号进行纹路(例如指纹)识别,或者根据栅线301上的信号以及来自数据读出线201的信号进行触控位置识 别。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种传感器,包括:
    衬底;
    至少一个感光器件,每个感光器件包括沿所述衬底的厚度方向层叠设置在所述衬底上的金属电极、光敏层、以及透明电极;所述透明电极位于所述感光器件的入光侧;
    设置于所述衬底上的至少一条电压供给线,所述透明电极与一条电压供给线电连接。
  2. 根据权利要求1所述的传感器,其中,所述光敏层包括沿所述衬底的厚度方向层叠设置的P型半导体层、本征半导体层、N型半导体层;
    所述P型半导体层与所述透明电极接触,所述N型半导体层与所述金属电极接触;
    所述本征半导体层朝向所述P型半导体层的表面的面积,小于所述本征半导体层朝向所述N型半导体层的表面的面积;沿所述衬底的厚度方向,所述本征半导体层的纵截面呈梯形。
  3. 根据权利要求2所述的传感器,其中,所述透明电极在与所述衬底的厚度方向垂直的平面上的正投影位于所述P型半导体层在所述平面上的正投影范围内;
    所述透明电极在所述平面上的正投影的面积与所述P型半导体层在所述平面上的正投影的面积之比大于或等于0.85、且小于1。
  4. 根据权利要求3所述的传感器,其中,所述透明电极的每一侧面相对于所述P型半导体层的与该侧面位于所述传感器同一侧的侧面均向内缩进第一间距。
  5. 根据权利要求4所述的传感器,其中,所述P型半导体层在所述平面上的正投影位于所述金属电极在所述平面上的正投影范围内;
    沿所述透明电极的任意相对两个侧面的距离方向,与该两个侧面中每个侧面对应的所述第一间距与所述金属电极的沿该距离方向的宽度之比在0.5~2%范围内。
  6. 根据权利要求2所述的传感器,其中,所述本征半导体层在与所述衬底的厚度方向垂直的平面上的正投影位于所述P型半导体层在所述平面上的正投影范围内。
  7. 根据权利要求1-6任一项所述的传感器,还包括:
    至少一个薄膜晶体管,每个薄膜晶体管的漏极与对应的一个感光器件中的所述金属电极电连接;
    至少一条栅线,所述薄膜晶体管的栅极与一条栅线电连接;
    至少一条数据读出线,所述薄膜晶体管的源极与一条数据读出线电连接。
  8. 根据权利要求7所述的传感器,其中,所述感光器件在与所述衬底的厚度方向垂直的平面上的正投影与所述源极和所述漏极之间的间隙在所述平面上的正投影无交叠。
  9. 根据权利要求7或8所述的传感器,其中,所述薄膜晶体管的漏极由该薄膜晶体管连接的所述金属电极的一部分充当;和/或
    所述薄膜晶体管的源极由与该薄膜晶体管连接的所述数据读出线的一部分充当;和/或
    所述薄膜晶体管的栅极由与该薄膜晶体管连接的所述栅线的一部分充当。
  10. 根据权利要求7-9任一项所述的传感器,其中,所述电压供给线与所述数据读出线平行设置,所述电压供给线与所述栅线交叉设置。
  11. 根据权利要求10所述的传感器,其中,所述金属电极的延伸方向与所述栅线的延伸方向相同,且所述金属电极在与所述衬底的厚度方向垂直的平面上的正投影、与所述金属电极对应的所述薄膜晶体管连接的所述栅线在所述平面上的正投影重叠。
  12. 根据权利要求7-11任一项所述的传感器,还包括:
    至少一个遮光图案,所述薄膜晶体管的至少所述源极和所述漏极之间的间隙在与所述衬底的厚度方向垂直的平面上的正投影,位于对应的一个遮光图案在所述平面上的正投影范围内;
    至少一个连接图案,每个连接图案与一个遮光图案和一条电压供给线电连接,连接在一起的所述连接图案、所述遮光图案与所述电压供给线为一体结构,且材料为遮光材料。
  13. 根据权利要求1-12任一项所述的传感器,还包括:
    设置于所述电压供给线与所述透明电极之间的第一绝缘层,所述透明电极通过设置于所述第一绝缘层中的过孔与所述电压供给线电连接;
    所述电压供给线包括第一部分和第二部分,所述透明电极通过所述过孔与所述第一部分电连接;沿垂直所述电压供给线的延伸方向的方向,所述第一部分的线宽大于所述第二部分的线宽。
  14. 一种显示面板,包括:如权利要求1-13任一项所述的传感器;
    所述显示面板具有显示区,所述显示区包括非子像素区域;所述传感器位于所述非子像素区域。
  15. 根据权利要求14所述的显示面板,其中,所述显示面板为液晶显示面板。
  16. 根据权利要求15所述的显示面板,其中,所述显示面板包括阵列基板和对置基板;
    所述传感器设置于所述对置基板中。
  17. 根据权利要求16所述的显示面板,其中,所述对置基板还包括设置在所述衬底上的彩膜层;所述彩膜层包括阵列排布的多个滤光部;
    所述感光器件设置在相邻两行滤光部之间的区域中,所述电压供给线设置在相邻两列滤光部之间的区域中。
  18. 一种显示装置,包括如权利要求14-17任一项所述的显示面板。
  19. 根据权利要求18所述的显示装置,还包括:
    传感器集成电路,与所述传感器电连接,被配置为至少根据来自所述传感器的信号,对纹路识别或对触控位置识别。
PCT/CN2020/133989 2020-05-29 2020-12-04 传感器、显示面板及显示装置 WO2021238139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010475133.X 2020-05-29
CN202010475133.XA CN113741736B (zh) 2020-05-29 2020-05-29 一种传感器、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2021238139A1 true WO2021238139A1 (zh) 2021-12-02

Family

ID=78724718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133989 WO2021238139A1 (zh) 2020-05-29 2020-12-04 传感器、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN113741736B (zh)
WO (1) WO2021238139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883365A (zh) * 2022-04-28 2022-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415188A (zh) * 2018-05-02 2018-08-17 上海中航光电子有限公司 一种液晶显示面板、显示装置及其指纹解锁方法
US20190012508A1 (en) * 2017-03-13 2019-01-10 Boe Technology Group Co., Ltd. Optical detector, fabrication method thereof, fingerprint recognition sensor, and display device
CN109545795A (zh) * 2017-09-22 2019-03-29 群创光电股份有限公司 显示装置
CN109994498A (zh) * 2019-04-09 2019-07-09 京东方科技集团股份有限公司 一种指纹识别传感器及其制备方法、以及显示装置
CN110660356A (zh) * 2019-09-30 2020-01-07 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN111106140A (zh) * 2019-12-24 2020-05-05 厦门天马微电子有限公司 传感器及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018989A (zh) * 2012-12-07 2013-04-03 京东方科技集团股份有限公司 一种阵列基板及其制造方法和液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190012508A1 (en) * 2017-03-13 2019-01-10 Boe Technology Group Co., Ltd. Optical detector, fabrication method thereof, fingerprint recognition sensor, and display device
CN109545795A (zh) * 2017-09-22 2019-03-29 群创光电股份有限公司 显示装置
CN108415188A (zh) * 2018-05-02 2018-08-17 上海中航光电子有限公司 一种液晶显示面板、显示装置及其指纹解锁方法
CN109994498A (zh) * 2019-04-09 2019-07-09 京东方科技集团股份有限公司 一种指纹识别传感器及其制备方法、以及显示装置
CN110660356A (zh) * 2019-09-30 2020-01-07 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN111106140A (zh) * 2019-12-24 2020-05-05 厦门天马微电子有限公司 传感器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883365A (zh) * 2022-04-28 2022-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114883365B (zh) * 2022-04-28 2024-01-19 武汉华星光电半导体显示技术有限公司 一种显示面板

Also Published As

Publication number Publication date
CN113741736A (zh) 2021-12-03
CN113741736B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US11599153B2 (en) Flexible display device including touch sensor
US10565422B2 (en) Display panel and display device
TWI672621B (zh) 顯示裝置以及感測元件基板
WO2019041991A1 (zh) 感测基板及感测板、显示面板和显示装置
JP6702890B2 (ja) アレイ基板及びその作成方法と駆動方法、表示装置
WO2018028303A1 (zh) 一种指纹识别模组、其制作方法及显示装置
WO2018145461A1 (zh) 显示装置
CN111430439B (zh) 一种显示面板及显示装置
WO2018126644A1 (zh) 指纹识别装置及电子设备
US10726237B2 (en) Fingerprint identification sensor, method for manufacturing the same and fingerprint identification apparatus
WO2017045342A1 (zh) 触控基板及其制作方法和显示装置
CN112310325B (zh) 透光显示模组、显示面板及透光显示模组的制备方法
CN106605169A (zh) 液晶显示装置以及显示装置用基板
CN107765476B (zh) 一种显示面板及显示装置
US20160216817A1 (en) Array substrate, method for producing the same and display apparatus
US11508765B2 (en) Active pixel sensing circuit structure and active pixel sensor, display panel and display device
US20210124441A1 (en) Display substrate, display device and detection method by using display device
US20220005891A1 (en) Display substrate and method of manufacturing the same, display device
CN110197834A (zh) 阵列基板及其制作方法、显示面板和指纹识别显示装置
TWI389256B (zh) 主動元件陣列基板的製造方法
JP2024513414A (ja) ディスプレイパネル、ディスプレイモジュール、および電子デバイス
TW201608442A (zh) 光電感測陣列、製作光電感測陣列之方法及顯示裝置
WO2021238139A1 (zh) 传感器、显示面板及显示装置
US20230049317A1 (en) Touch substrate and display panel
WO2021238138A1 (zh) 传感器、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20937402

Country of ref document: EP

Kind code of ref document: A1