WO2020220302A1 - 纹路识别装置以及纹路识别装置的驱动方法 - Google Patents

纹路识别装置以及纹路识别装置的驱动方法 Download PDF

Info

Publication number
WO2020220302A1
WO2020220302A1 PCT/CN2019/085284 CN2019085284W WO2020220302A1 WO 2020220302 A1 WO2020220302 A1 WO 2020220302A1 CN 2019085284 W CN2019085284 W CN 2019085284W WO 2020220302 A1 WO2020220302 A1 WO 2020220302A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
light
image sensor
light source
array
Prior art date
Application number
PCT/CN2019/085284
Other languages
English (en)
French (fr)
Inventor
王海生
董学
王雷
丁小梁
刘英明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/764,143 priority Critical patent/US11301707B2/en
Priority to CN201980000568.4A priority patent/CN112236774B/zh
Priority to PCT/CN2019/085284 priority patent/WO2020220302A1/zh
Publication of WO2020220302A1 publication Critical patent/WO2020220302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/54Extraction of image or video features relating to texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components

Definitions

  • the embodiment of the present disclosure relates to a pattern recognition device and a driving method of the pattern recognition device.
  • At least one embodiment of the present disclosure provides a pattern recognition device having a touch side, including a light source array, an image sensor array, and a light valve structure; the image sensor array is configured to receive light emitted from the light source array and reflected to the image sensor through the pattern The light of the array is used for grain collection; the light valve structure is arranged on the side of the light source array close to the touch side, and is configured to respond to a control signal to control the first area to be in a light-transmitting state, so as to be in the light-transmitting state The light emitted by the light source array is allowed to pass through the first area to form a first photosensitive light source.
  • the light valve structure is further configured to allow a second region different from the first region to be controlled to be in the light-transmitting state, so that The state allows the light emitted by the light source array to pass through the second area to form a second photosensitive light source, and is configured to allow the first area and the second area to be in the light-transmitting state at different times.
  • the light valve structure is a liquid crystal panel
  • the liquid crystal panel has an array substrate, a counter substrate, and liquid crystals between the array substrate and the counter substrate.
  • Layer, and the liquid crystal panel includes a pixel array, the pixel array includes a plurality of pixel units, the control signal includes a scan signal and a data signal, each pixel unit includes at least one sub-pixel unit, each sub-pixel unit and It is configured to control the light transmission state in the pixel area corresponding to the sub-pixel unit according to the scan signal and the data signal.
  • the image sensor array includes a plurality of image sensors, and the plurality of image sensors are arranged in the array substrate of the liquid crystal panel.
  • each of the plurality of image sensors is arranged between two adjacent rows of the pixel units; or, each of the plurality of image sensors One is arranged in the pixel unit.
  • each of the plurality of image sensors is disposed between the adjacent sub-pixel units; or, each of the plurality of image sensors Arranged in the sub-pixel unit.
  • each of the pixel units includes a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit, and the image sensor is arranged on adjacent pixels. Cell between the blue sub-pixel cells.
  • each of the sub-pixel units includes a first switch element to receive the scan signal and the data signal
  • each of the image sensors includes a photosensitive element and a first switch element.
  • the second switching element of the sensor and the first switching element of the first sub-pixel unit are at least partially arranged in the same layer.
  • the photosensitive element of the first image sensor includes a first electrode and a wire electrically connected to the first electrode
  • the first sub-pixel unit includes For the first pixel electrode electrically connected to the first switching element, the first electrode and the first pixel electrode are arranged in the same layer; or the lead of the first electrode and the first pixel electrode are arranged in the same layer.
  • the array substrate further includes a base substrate, and the orthographic projection of the photosensitive element of the first image sensor on the base substrate is consistent with the first image
  • the orthographic projection of the second switching element of the sensor on the base substrate at least partially overlaps.
  • the orthographic projection of the photosensitive element of the first image sensor on the base substrate is also in the same position as the first switching element of the first sub-pixel unit.
  • the orthographic projections on the base substrate at least partially overlap.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes a touch structure
  • the touch structure includes a touch electrode
  • the first sub-pixel unit further includes a first common electrode
  • the first image sensor further includes a signal readout line electrically connected to the second switch element
  • the touch control structure further includes The electrode is electrically connected to the touch lead, and the signal readout line is multiplexed as the touch lead; or, the orthographic projection of the signal readout line on the base substrate and the liner of the touch lead The orthographic projections on the base substrate at least partially overlap.
  • the touch control structure when the signal readout line is multiplexed as the touch control lead, the touch control structure further includes a third switch element, and the touch control The electrode is electrically connected to the touch lead through the third switch element.
  • the opposite substrate includes a black matrix layer, and the black matrix layer includes a plurality of first black matrix regions exposing a plurality of the sub-pixel units, and In the second black matrix area of the plurality of image sensors, a first filter pattern is arranged in the first black matrix area, the first filter pattern is used to form monochromatic light, and the second black matrix area is arranged A second filter pattern, the second filter pattern can filter the light emitted from the light source array and reflected to the image sensor array through the lines.
  • the second filter pattern can absorb light in a wavelength range of 600 nm to 900 nm.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes a controller configured to determine the position of the first area according to the touch position of the pattern on the touch side, and control the The light valve structure provides the first photosensitive light source.
  • the controller is further configured to obtain the touch area of the pattern on the touch side to determine the size and quantity of the first area.
  • the size of the second area is larger than the size of the first area
  • the first imaging range of the first photosensitive light source on the image sensor array is In a first ring shape
  • the second imaging range of the second light-sensitive light source on the image sensor array is in a second ring shape
  • the second ring shape at least partially covers the ring center portion of the first ring shape.
  • the liquid crystal light valve is further configured to allow a third area different from the first area and the second area to be controlled to be in the light-transmitting state, so that The light-transmitting state allows the light emitted by the light source array to pass through the third area to form a third photosensitive light source, and is configured to allow the first area and the third area to be in the light-transmitting state at the same time;
  • the size of the third area is equal to the size of the first area, the third imaging range of the third photosensitive light source on the image sensor array is in a third ring shape, and the second ring shape also at least partially covers the The center part of the third ring.
  • the size of the second area is equal to the size of the first area
  • the first imaging range of the first photosensitive light source on the image sensor array is The first ring shape
  • the second imaging range of the second photosensitive light source on the image sensor array is a second ring shape
  • the first ring shape and the second ring shape have only two intersections
  • the two points on the inner circle that are closest to the inner circle of the second ring are the first point and the second point, respectively, and the two intersection points, the first point, and the second point are the four sides
  • the rectangular imaging range formed by the long center is used for imaging the lines, or an imaging range is formed in the range jointly covered by the first ring and the second ring for imaging the lines.
  • the pattern recognition device has a touch side and includes a light source array, an image sensor array, and a light valve structure; the image sensor array is configured to receive and emit light from the light source array.
  • the light reflected to the image sensor array by the pattern is used for pattern collection;
  • the light valve structure is arranged on the side of the light source array close to the touch side;
  • the driving method includes: controlling the light valve according to a control signal
  • the first area of the structure is in a light-transmitting state, so that the light emitted by the light source array is allowed to pass through the first area in the light-transmitting state to form a first photosensitive light source; the first photosensitive light source is in the image sensor array
  • a first imaging range is formed on the upper surface for imaging the lines.
  • the method for driving a pattern recognition device further includes: controlling the second region of the light valve structure to be in the light-transmitting state according to a control signal, so as to allow the light source in the light-transmitting state
  • the light emitted by the array transmits through the second area to form a second photosensitive light source; wherein, the first area and the second area are different, and the first area and the second area are not at the same time.
  • the light-transmitting state; the second photosensitive light source forms a second imaging range on the image sensor array, and the second imaging range and the first imaging range are used together for imaging the lines.
  • the light valve structure is a liquid crystal panel
  • the liquid crystal panel has an array substrate, a counter substrate, and one of the array substrate and the counter substrate.
  • the pixel array includes a plurality of pixel units, each of the pixel units includes at least one sub-pixel unit, the control signal includes a scan signal and a data signal, the The driving method includes: controlling a light transmission state in a pixel region corresponding to the at least one sub-pixel unit according to the scan signal and the data signal.
  • Figure 1A is a schematic diagram of fingerprint imaging
  • Figure 1B is a schematic diagram of the imaging range of a point light source
  • Figure 1C is a schematic diagram of the imaging range of a line light source
  • FIG. 2 is a schematic cross-sectional view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • 3A is a schematic diagram of a pattern recognition device being touched by a pattern according to at least one embodiment of the present disclosure
  • 3B is a schematic diagram of a pattern recognition device forming a photosensitive light source according to at least one embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of a liquid crystal display device provided by at least one embodiment of the present disclosure
  • FIG. 5 is another schematic cross-sectional view of a liquid crystal display device provided by at least one embodiment of the present disclosure.
  • 6A is a schematic diagram of the arrangement of pixel arrays and image sensors in a liquid crystal display device provided by at least one embodiment of the present disclosure
  • 6B is another schematic diagram of the arrangement of pixel arrays and image sensors in a liquid crystal display device provided by at least one embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of the arrangement of pixel units and image sensors in a liquid crystal display device provided by at least one embodiment of the present disclosure
  • FIG. 7B is another schematic diagram of the arrangement of pixel units and image sensors in a liquid crystal display device provided by at least one embodiment of the present disclosure
  • FIG. 7C is another schematic diagram of the arrangement of pixel units and image sensors in a liquid crystal display device provided by at least one embodiment of the present disclosure
  • FIG. 8A is a schematic diagram of a liquid crystal display device provided by at least one embodiment of the disclosure forming a photosensitive light source
  • FIG. 8B is a schematic diagram of the imaging range of the photosensitive light source in FIG. 8A;
  • FIG. 9A is another schematic diagram of a liquid crystal display device provided by at least one embodiment of the disclosure forming a photosensitive light source
  • FIG. 9B is a schematic diagram of the imaging range of the photosensitive light source in FIG. 9A;
  • FIG. 10A is still another schematic diagram of a liquid crystal display device provided by at least one embodiment of the disclosure forming a photosensitive light source;
  • FIG. 10B is a schematic diagram of the imaging range of the photosensitive light source in FIG. 10A;
  • FIG. 10C is a schematic diagram of another imaging range of the photosensitive light source in FIG. 10A;
  • FIG. 11 is a schematic diagram of the pattern recognition device provided by at least one embodiment of the present disclosure forming photosensitive light sources arranged in an array;
  • 12A is a schematic diagram of the structure and connection relationship of an image sensor in a pattern recognition device provided by at least one embodiment of the present disclosure
  • 12B is a schematic diagram of the structure and connection relationship of another image sensor in the pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 13A is a schematic diagram of a touch structure in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 13B is a circuit diagram of an image sensor in a pattern recognition device provided by at least one embodiment of the present disclosure.
  • narrow bezels have gradually become the mainstream of display device design and manufacturing, especially for portable display devices such as mobile phones.
  • One of the means to realize the narrow frame is to integrate the image sensor with fingerprint recognition function into the display device, realize the fingerprint recognition mode under the screen, increase the area of the display area of the display device, and increase the screen-to-body ratio.
  • a point light source, a line light source, or a light source with a certain pattern can be used as the photosensitive light source of the image sensor to perform fingerprint recognition.
  • the light source and the image sensor can be arranged in a variety of ways.
  • the light source can be arranged on the side of the image sensor close to the fingerprint touch, or the light source can be arranged in the same plane as the image sensor, or the light source can also be arranged On the side of the image sensor away from the fingerprint touch.
  • the setting method of light source and image sensor can be selected and set according to different needs.
  • the following takes a point light source as the photosensitive light source of the image sensor and the light source is arranged on the side of the image sensor close to the fingerprint touch as an example to introduce the principle of fingerprint identification, but this does not limit the embodiments of the present disclosure.
  • a reflective optical fingerprint identification device in the fingerprint identification process, as shown in Figure 1A, when the point light source L1 emits light, the light emitted by it illuminates the fingerprint pressing interface (such as the outer surface of the glass screen) at different angles. ), due to the total reflection of the fingerprint pressing interface, the part of the light whose incident angle is greater than or equal to the critical angle ⁇ of total reflection will undergo total reflection, which causes this part of the light to fail to exit from the fingerprint pressing interface, resulting in total reflection. Reflection area.
  • the part of these lights whose incident angle is smaller than the critical angle ⁇ of total reflection emerges from the fingerprint pressing interface. Therefore, the pattern image can be collected by the light reflected by the total reflection area.
  • a clear pattern image is formed at B1 of the fingerprint imaging interface where the image sensor is located.
  • the pattern image corresponds to the part of the fingerprint at F1, and F1 is The total reflection area, B1 is the imaging area.
  • the ridge of the fingerprint touches the surface of the total reflection area F1, so the total reflection condition of the position corresponding to the ridge of the fingerprint is destroyed, so the light will be there.
  • the corresponding position is emitted, so that the original reflection path is changed, and the valley of the fingerprint will not touch the surface of the total reflection area F1. Therefore, the total reflection condition of the position corresponding to the valley of the fingerprint is not destroyed, so the light will be there.
  • the corresponding position is still totally reflected, so that the original reflection path is not changed. In this way, the light in the total reflection area, due to the different effects of the valleys and ridges of the fingerprint on the total reflection conditions, causes the light incident on the fingerprint imaging interface to form bright and dark pattern images at different positions.
  • the A1 of the fingerprint imaging interface becomes the detection Invalid area, this area cannot form a valid texture image.
  • the light emitted by the light source L1 is reflected by other functional layers to the fingerprint imaging interface before reaching the fingerprint pressing interface, and the part that is almost vertically reflected by the fingerprint pressing interface has higher brightness, which is basically located in the invalid area A1.
  • a high-brightness area is formed.
  • the high-brightness area generates relatively large photoelectric signals in the corresponding part of the image sensor array because of the high light intensity, which is easy to form afterimages, which can also be called afterimages.
  • FIG. 1B shows an imaging range diagram of a point light source.
  • the effective imaging range is annular, that is, in FIG. 1B, the annular area between the inner circle 11 and the outer circle 12 is the effective imaging range, corresponding to that in FIG. 1A
  • the imaging area B1 corresponding to the total reflection area F1; the area within the inner circle 11 of the ring (hereinafter referred to as the ring center 10) is an invalid imaging area, which corresponds to the invalid area A1 in FIG. 1A; a partial area inside the ring center 10
  • the (shaded area) 13 is a highlight area (afterimage area), which is likely to cause an afterimage in the image sensor array during imaging.
  • FIG. 1C shows an imaging range diagram of a linear light source.
  • the effective imaging range of a line light source is a racetrack-shaped ring area or an oblong ring area between the inner circle 21 and the outer circle 22, the ring center 20 is the invalid imaging area, and the part inside the ring center 10
  • the area (shaded area) 23 is a highlight area (after-image area) that is likely to cause an afterimage in the image sensor array during imaging.
  • the display panels of display devices such as mobile phones, etc.
  • self-luminous display panels such as organic light-emitting display panels (OLED).
  • OLED organic light-emitting display panels
  • LCD liquid crystal display panels
  • different methods need to be adopted to realize fingerprint recognition under the screen.
  • the pattern recognition device has a touch side and includes a light source array, an image sensor array, and a light valve structure; the image sensor array is configured to receive an image emitted from the light source array and reflected by the pattern.
  • the light of the sensor array is used for grain collection; the light valve structure is arranged on the side of the light source array close to the touch side, and is configured to respond to the control signal to control the first area to be in a light-transmitting state, so as to allow the light source array to emit light in the light-transmitting state Light passes through the first area to form a first photosensitive light source.
  • FIG. 2 is a schematic cross-sectional view of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • the pattern recognition device 100 includes a light source array, an image sensor array, and a light valve structure 120.
  • the light source array includes a plurality of light sources 101, which are arranged in an array in a predetermined area.
  • the image sensor array includes a plurality of image sensors 102, which are arranged in an array in a predetermined area.
  • the image sensor array is configured to receive light emitted from the light source array and reflected to the image sensor array through the pattern for pattern collection.
  • the light valve structure 120 is arranged on the side of the light source array close to the touch side, and is configured to respond to the control signal to control the first area to be in a light-transmitting state, so as to allow the light emitted by the light source array to pass through the first area in the light-transmitting state to form a first Photosensitive light source.
  • the operating body with lines can be a hand, and the lines recognized by the image sensor 102 are skin lines, such as fingerprints, palm prints, etc.; in addition, the operating body with lines can also be non-biological objects with certain lines, for example, An object made of resin and other materials with a certain texture, which is not specifically limited in the embodiments of the present disclosure.
  • the light valve structure 120 is a liquid crystal light valve, an electrochromic light valve, an electronic ink light valve, etc., which can achieve different light transmittances at different positions under control.
  • the light valve structure 120 when the light valve structure 120 is a liquid crystal light valve, the light valve structure 120 includes a liquid crystal material and a plurality of electrodes for driving the deflection of the liquid crystal material at different positions. Therefore, different voltages can be applied to the electrodes to cause the liquid crystal material to generate Deflection accordingly to change the light transmittance and realize the function of the light valve.
  • a first polarizer is provided on the light entrance side (here, the side where the light source array is provided) of the liquid crystal light valve, and a second polarizer is provided on the light exit side.
  • the polarization directions of the first polarizer and the second polarizer are perpendicular to each other.
  • the liquid crystal light valve at the corresponding position transmits light, and when the molecular arrangement direction of the liquid crystal material is parallel to the light propagation direction When it is vertical, the liquid crystal light valve at the corresponding position does not transmit light.
  • the light valve structure 120 when the light valve structure 120 is an electrochromic light valve, the light valve structure 120 includes an electrochromic material and a plurality of electrodes for driving the electrochromic material at different positions to change color. Therefore, different electrodes can be applied to the electrodes.
  • the voltage changes the color of the electrochromic material to change its light transmittance and realize the function of the light valve.
  • the electrochromic material can be driven by different voltages to change between the transparent state and the dark state. When the electrochromic material is in the transparent state, the corresponding position is transparent. When the electrochromic material is in the dark state, The corresponding position is opaque.
  • the light valve structure 120 when the light valve structure 120 is an electronic ink light valve, the light valve structure 120 includes an electronic ink layer (for example, including electronic ink microcapsules) and a plurality of electrodes for driving the movement of particles (for example, black particles) in the electronic ink layer. Therefore, the particles in the electronic ink can be moved by applying different voltages to the electrodes, so as to change the light transmittance of the electronic ink layer and realize the function of the light valve.
  • the electronic ink layer can switch between the transparent state and the dark state under different voltages. When the electronic ink layer is in the transparent state, the corresponding position is transparent, and when the electronic ink layer is in the dark state, the corresponding position is not Transparent.
  • the working process of the pattern recognition device 100 is as follows. In a process in which an operating body with lines such as an operator's finger touches the touch side 112 of the line recognition device 100, as shown in FIG. 3A, the line recognition device 100 starts to collect lines. In the process of the pattern recognition device 100 performing the pattern collection, as shown in FIG. 3B, the light valve structure 120 controls the first area 1 to be in a light-transmitting state in response to the control signal, so as to allow the light emitted by the light source array to pass through the first area 1 to form a second A photosensitive light source 201.
  • the pattern recognition device 100 further includes a controller 103.
  • the controller 103 can determine the position of the first area 1 according to the touch position of the texture on the touch side 112, and control the light valve structure 120 to make the first area 1. It is in a light-transmitting state to provide the first photosensitive light source 201.
  • the first photosensitive light source 201 may include one or more light sources 101.
  • the controller 103 may also be configured to obtain the touch area of the texture on the touch side 112 to determine the size and quantity of the first area 1, thereby determining the number of light sources 101 corresponding to the first area 1 (ie, the first photosensitive light source). The number of light sources 101 included in 201) and the number of first photosensitive light sources 201 (detailed later).
  • the texture recognition device 100 may also include a touch structure, and the touch position and touch area of the texture on the touch side 112 may be obtained through the touch structure.
  • the pattern recognition device 100 further includes a cover 150
  • the cover 150 is, for example, a glass cover, which can encapsulate and protect the pattern recognition device 100.
  • the surface of the cover 150 is the touch side 112.
  • the light emitted by the light source 101 can be reflected by the operating body and reach the image sensor 102, and the image sensor 102 can collect the pattern image of the operating body.
  • the light valve structure 120 is a liquid crystal panel.
  • the pattern recognition device 100 is implemented as a liquid crystal display device.
  • the liquid crystal panel is used as an example of the light valve structure for description. The disclosed embodiment does not limit this.
  • the liquid crystal panel has an array substrate 121, a counter substrate 123, and a liquid crystal layer 122 between the array substrate 121 and the counter substrate 123.
  • the liquid crystal panel includes a pixel array.
  • FIG. 6A shows a schematic plan view of a pixel array. As shown in FIG.
  • the pixel array includes a plurality of pixel units, each pixel unit includes at least one sub-pixel unit (three sub-pixel units R, G, and B are shown in the figure), and the control signal includes a scan signal and a data signal,
  • Each sub-pixel unit is configured to control the light transmission state in the pixel area corresponding to the sub-pixel unit according to the scan signal and the data signal.
  • the first area 1 includes a pixel area corresponding to at least one sub-pixel unit.
  • the liquid crystal display device includes a backlight source 110, which is arranged on the non-display side of the liquid crystal panel and is used to provide a flat light source for the liquid crystal panel.
  • the backlight source 110 is a direct type backlight source, including a plurality of sub-light sources 111 arranged in an array, and may further include a diffuser plate (not shown) as required. After the light emitted by these sub-light sources 111 is homogenized by the diffuser plate, It is incident on the liquid crystal panel for display.
  • the multiple sub-light sources 111 of the backlight 110 are implemented as multiple light sources 101 of a light source array.
  • the multiple sub-light sources 111 of the backlight source 110 are multiplexed into the multiple light sources 101 of the light source array for providing photosensitive light sources.
  • the sub-light source 111 is a light emitting diode (LED).
  • LED light emitting diode
  • a plurality of sub-light sources 111 are arranged in an array, and can be controlled by regions or independently controlled respectively.
  • the direct-lit backlight can be controlled by combining local dimming (LD) technology, so as to improve the display quality of the display device.
  • LD local dimming
  • the local dimming technology divides the entire backlight source into multiple separately driveable backlight partitions, each backlight partition includes one or more LEDs, and automatically adjusts the corresponding parts according to the gray levels that need to be displayed in different parts of the display screen
  • the driving current of the LEDs of the backlight subarea realizes the individual adjustment of the brightness of each subarea in the backlight unit, thereby improving the contrast of the display screen.
  • the local dimming of the backlight source 110 can be realized by a control circuit.
  • a plurality of image sensors 102 of the image sensor array may be disposed in the array substrate 121 of the liquid crystal panel. Therefore, multiple image sensors 102 and liquid crystal panels can be formed in the same manufacturing process.
  • the image sensor may be disposed between adjacent pixel units or in the pixel units.
  • the image sensor may also be arranged between adjacent sub-pixel units or in sub-pixel units.
  • the distance between two adjacent rows of pixel units is greater than the distance between two adjacent columns of pixel units.
  • the image sensor 102 may be arranged in adjacent rows. Between two rows of pixel units.
  • each pixel unit of the liquid crystal panel includes a red sub-pixel unit R, a green sub-pixel unit G, and a blue sub-pixel unit B.
  • Each image sensor 102 is arranged between two adjacent rows of pixel units.
  • An image sensor 102 is provided between every two adjacent pixel units.
  • the change of the blue sub-pixel unit has the least impact on the display effect of the liquid crystal panel.
  • the image sensor 102 can be set at Between the blue sub-pixel units B of adjacent pixel units. For example, as shown in FIG. 6B, an image sensor 102 is provided between the blue sub-pixel units B of every two adjacent pixel units.
  • the effective light-emitting area of the blue sub-pixel unit B can be designed to be relatively small, or during the manufacturing process, when the image sensor 102 is formed between the blue sub-pixel units B of adjacent pixel units, even Affecting the structure of the blue sub-pixel unit B will not affect the display effect of the liquid crystal panel.
  • the image sensor 102 may also be arranged between two adjacent columns of pixel units, or between two adjacent columns of sub-pixel units, which is not limited in the embodiment of the present disclosure.
  • the above definitions of rows and columns are interchangeable. For example, when the liquid crystal panel in the figure rotates, the rows and columns of the pixel array also change.
  • FIG. 5 shows a schematic cross-sectional view of a sub-pixel unit of a liquid crystal panel.
  • each sub-pixel unit includes a first switching element 1212 to receive scan signals and data signals
  • each image sensor 102 includes a photosensitive element and a second switching element 1024.
  • the pixel array includes a first sub-pixel unit
  • the image sensor array includes a first image sensor
  • the first sub-pixel unit and the first image sensor are arranged adjacent to each other
  • the second switching element 1024 of the first image sensor is connected to the first sub-pixel unit.
  • the first switching elements 1212 of 1212 are at least partially arranged in the same layer, so that the same material can be used in the manufacturing process through the same patterning process or through the same mask.
  • the first switching element 1212 and the first switching element 1212 are elements having a switching function such as a thin film transistor (TFT).
  • TFT thin film transistor
  • FIG. 12A shows the structure and circuit connection relationship of an exemplary image sensor.
  • each image sensor 102 includes a photosensitive element 1026 and a second switching element 1024.
  • the image sensor 102 may also include a capacitor 1029.
  • the first end (anode end) 1027 of the photosensitive element 1026 is connected to the bias line BL, the second end (cathode end) 1028 of the photosensitive element 1026 is connected to the first electrode of the second switching element 1024, and the second electrode of the second switching element 1024
  • the signal readout line RL is connected, the control electrode G of the second switching element 1024 is connected to the scanning signal for the image sensor array, and the readout line RL is connected to the readout integrated circuit ROIC.
  • the first pole of the capacitor 1029 is electrically connected to the first end 1023 of the photosensitive element 1026, and the second pole of the capacitor 1029 is electrically connected to the second end 1028 of the photosensitive element 1026.
  • the working process of the above exemplary image sensor including the capacitor 1029 includes: in the reset phase, the second switching element 1024 is turned on by inputting a scan signal to the control electrode G, and the ROIC writes a reset signal to the capacitor 1029 via the second switching element 1024 In order to reset the capacitor 1029, the photosensitive element 1026 is also reset; in the photosensitive phase, the second switching element 1024 is turned off, the photosensitive element 1026 is in a negative bias state, and the photosensitive element 1026 generates photo-generated carriers under the irradiation of the reflected light.
  • the capacitor 1029 is charged so that the capacitor 1029 generates and stores an electrical signal; in the detection stage, the second switching element 1024 is turned on, and the ROIC reads the electrical signal stored by the capacitor 1029 through the second switching element 1024, and then forms a pattern image.
  • FIG. 12B shows the structure and circuit connection relationship of another exemplary image sensor, which does not include a capacitor.
  • the working process of an exemplary image sensor that does not include capacitance includes: in the reset phase, the second switching element 1024 is turned on by inputting a scan signal to the control electrode G, and the ROIC writes to the cathode of the photosensitive element 1026 via the second switching element 1024 The reset signal is input to reset the photosensitive element 1026; in the photosensitive phase, the second switch element 1024 is turned off, the photosensitive element 1026 is in a negative bias state, and the photosensitive element 1026 generates photo-generated carriers under the irradiation of reflected light to cause photo-generated leakage Current; In the detection phase, the second switching element 1024 is turned on, and the ROIC reads the electrical signal corresponding to the photo-generated leakage current through the second switching element 1024, and then forms a pattern image.
  • the same functional layers of the second switching element 1024 of the first image sensor and the first switching element 1212 of the first sub-pixel unit are arranged in the same layer. Therefore, in the manufacturing process
  • the second switching element 1024 and the first switching element 1212 may be formed in the same process (for example, a patterning process).
  • the photosensitive element of the first image sensor may be a photodiode, including a first electrode 1021, a second electrode 1022, and a semiconductor layer 1023 between the first electrode 1021 and the second electrode 1022.
  • the photodiode may be of PN type or PIN type.
  • the semiconductor layer 1023 includes a stacked P-type semiconductor layer and an N-type semiconductor layer; when the photodiode is of a PIN type, the semiconductor layer 1023 includes a stacked P-type semiconductor layer, an intrinsic semiconductor layer and N-type semiconductor layer.
  • the semiconductor material used in the semiconductor layer 1023 may be silicon, germanium, selenium, gallium arsenide, etc., which are not limited in the embodiments of the present disclosure.
  • the first sub-pixel unit includes a first pixel electrode 1213 electrically connected to the first switching element 1212, and the first sub-pixel unit further includes a first common electrode 1214.
  • the first pixel electrode 1213 and the first common electrode 1214 are used in common
  • the liquid crystal material in the liquid crystal layer 122 is driven to be deflected.
  • the materials of the first pixel electrode 1213 and the first common electrode 1214 are metal oxides such as ITO and IZO, and the materials of the first pixel electrode 1213 and the first common electrode 1214 may be the same or different.
  • the first pixel electrode 1213 and the first common electrode 1214 may both be provided on the array substrate (the case shown in FIG. 5), or may be provided on the array substrate and the opposite substrate, for example, the first pixel electrode 1213 is provided.
  • the first common electrode 1214 is disposed on the opposite substrate, which is not limited in the embodiment of the present disclosure.
  • the first pixel electrode 1213 of the first sub-pixel unit and the first electrode 1021 included in the photosensitive element of the first image sensor are arranged in the same layer. Therefore, during the manufacturing process of the liquid crystal panel, the first pixel electrode 1213 and the first electrode 1021 can be formed in the same process (for example, a patterning process).
  • the photosensitive element of the first image sensor further includes a lead 1025 electrically connected to the first electrode 1021, and the lead 1025 of the first electrode 1021 and the first pixel electrode 1213 are arranged in the same layer. Therefore, during the manufacturing process of the liquid crystal panel, the first pixel electrode 1213 and the lead 1025 of the first electrode 1021 can be formed in the same process (for example, a patterning process). In this embodiment, the above designs can simplify the manufacturing process of the liquid crystal panel.
  • the first switching element 1212 of the sub-pixel unit is also provided with a light shielding layer 1215 of the same layer as the second electrode 1022.
  • the light shielding layer 1215 can prevent light from entering the first switching element. 1212 prevents light from adversely affecting the performance of the first switching element 1212.
  • the second electrode 1022 and the light shielding layer 1215 may be formed in the same process (for example, a patterning process), thereby simplifying the manufacturing process of the liquid crystal panel.
  • the array substrate 121 further includes a base substrate 1211.
  • the orthographic projection of the photosensitive element of the first image sensor on the base substrate 1211 and the second switching element 1024 of the first image sensor are on the base substrate 1211.
  • the orthographic projections overlap at least partially, for example completely overlap.
  • the orthographic projection of the second switching element 1024 on the base substrate 1211 is located inside the orthographic projection of the photosensitive element of the first image sensor on the base substrate 1211.
  • the orthographic projection of the photosensitive element of the first image sensor on the base substrate 1211 and the orthographic projection of the first switching element 1212 of the first sub-pixel unit on the base substrate 1211 at least partially overlap, for example Completely overlap.
  • the orthographic projection of the first switching element 1212 on the base substrate 1211 is located inside the orthographic projection of the photosensitive element of the first image sensor on the base substrate 1211. At this time, the photosensitive area of the photosensitive element of the first image sensor is larger, which is conducive to forming a larger grain image.
  • one pixel unit corresponds to one image sensor, and the image sensor and the first switching element of the sub-pixel unit are arranged on the same side of the pixel unit.
  • the photosensitive element of the image sensor can cover the first switching element (not shown in the figure) of the three sub-pixel units included in one pixel unit and the second switching element of the image sensor, that is, the three sub-pixels included in one pixel unit.
  • the orthographic projection of the first switching element of the unit and the second switching element of the image sensor on the base substrate 1211 are both located inside the orthographic projection of the photosensitive element of the image sensor on the base substrate 1211.
  • the photosensitive element of the image sensor has A larger photosensitive area is conducive to the formation of larger texture images.
  • one pixel unit corresponds to an image sensor, and the image sensor is arranged adjacent to the blue sub-pixel unit B.
  • the photosensitive element of the image sensor can cover the pixel unit.
  • the first switching element of the blue sub-pixel unit (not shown in the figure) and the second switching element of the image sensor, that is, the first switching element of the blue sub-pixel unit and the second switching element of the image sensor are on the substrate
  • the orthographic projection on the substrate 1211 is located inside the orthographic projection of the photosensitive element of the image sensor on the base substrate 1211. At this time, the setting of the image sensor has the least influence on the display effect of the liquid crystal display device.
  • the first switching element of the sub-pixel unit and the image sensor are respectively disposed on different sides of the sub-pixel unit.
  • two rows of first switching elements 1212A and 1212B are arranged between two adjacent rows of pixel units to respectively drive sub-pixel units in the two rows of pixel units.
  • the three first switching elements included in the first switching element 1212A in the first row are respectively used to drive the three sub-pixel units included in the upper row of pixel units in the figure
  • the first switching element 1212B in the second row includes three first switching elements.
  • the switching elements are respectively used to drive the three sub-pixel units included in the next row of pixel units in the figure.
  • the image sensor corresponding to the upper row of pixel units is arranged on the upper side of the upper row of pixel units, and the image sensor corresponding to the next row of pixel units is arranged on the lower side of the next row of pixel units.
  • one pixel unit can be provided with one image sensor, and two rows of image sensors can be provided between two adjacent rows of pixel units; or, two pixel units can be provided with one image sensor corresponding to each other.
  • a row of image sensors is arranged between rows of pixel units.
  • the embodiment of the present disclosure does not limit the corresponding manner of the pixel unit and the image sensor. Compared with the image sensor 102 and the first switching element arranged on the same side of the pixel unit, the above design can avoid the arrangement of the devices being too compact, or can avoid the excessive spacing between adjacent pixel units due to the arrangement of too many devices. Big.
  • the liquid crystal display device further includes a touch control structure for performing touch operations on the liquid crystal display device, and can also be further used to obtain the touch position and touch area of the texture on the touch side 112.
  • the touch structure includes a plurality of touch electrodes, for example, implemented as a self-capacitance type or mutual-capacitance type touch structure.
  • the first common electrode 1214 in the liquid crystal panel is multiplexed as a touch electrode, that is, the first common electrode 1214 is used to apply a common voltage during the display process, and is used as a touch electrode during the touch process to generate Touch signal.
  • FIG. 13A shows a schematic plan view of the first common electrode 1214.
  • the block-shaped first common electrodes 1214 are arranged in an array and are multiplexed as touch electrodes.
  • Each touch electrode is connected to a touch electrode.
  • the control lead 104, the touch control lead 104 is connected to a chip (for example, COG, Chip on Glass).
  • the touch structure is a self-capacitive touch structure.
  • the signal readout line RL electrically connected to the second switching element of the image sensor is multiplexed as the touch lead 104, that is, the touch lead 104 also serves as the signal readout line RL.
  • the signal readout line RL is connected to a plurality of image sensors 102, and the first common electrode 1214 (touch electrode) is connected to the signal readout line RL (touches) through a third switching element (such as a thin film transistor) 1224.
  • the control lead 104) is electrically connected.
  • the third switching element 1224 When performing a touch operation, the third switching element 1224 is controlled to be turned on by the first common electrode 1214 and the control terminal G1 of the third switching element 1224 to perform a touch operation; when the pattern is collected, the first common electrode 1214 and the control terminal G1
  • the control terminal G1 of the third switch element 1224 controls the third switch element 1224 to turn off, so as to perform pattern collection.
  • the touch wires 104 may be arranged along the edge of the pixel unit.
  • the touch wire 104 and the signal readout line RL for pattern recognition are stacked in layers, and the two are separated by an insulating layer.
  • the orthographic projection of the touch lead 104 on the base substrate 1211 and the orthographic projection of the signal readout line RL on the base substrate 1211 at least partially overlap to simplify the arrangement of the touch lead 104 and the signal readout line RL.
  • the above design may not be provided with the third switching element, so the installation space can be saved.
  • the counter substrate 123 of the liquid crystal panel includes a second base substrate 1231 and a black matrix layer 1232 on the side of the second base substrate 1231 close to the liquid crystal layer 122.
  • the black matrix layer 1232 includes a black matrix setting area 1232A, a plurality of first black matrix areas 1232B (such as a first black matrix opening) exposing a plurality of sub-pixel units, and a second black matrix area 1232C (such as a first black matrix opening) exposing a plurality of image sensors 102 Two black matrix openings).
  • the black matrix setting area 1232A corresponds to the interval area of adjacent sub-pixel units to shield light and avoid light mixing between adjacent sub-pixel units.
  • a first filter pattern is provided in the first black matrix area 1232B, and the first filter pattern is used to form monochromatic light.
  • the first filter pattern in the red sub-pixel unit is a red filter pattern, so that the light passing through the red sub-pixel unit is red light
  • the first filter pattern in the green sub-pixel unit is a green filter pattern, The light passing through the green sub-pixel unit is green light
  • the first filter pattern in the blue sub-pixel unit is a blue filter pattern, so that the light passing through the blue sub-pixel unit is blue light.
  • a second filter pattern is provided in the second black matrix area 1232C, and the second filter pattern can filter the light emitted from the light source array and reflected to the image sensor array through the lines.
  • the image sensor array may also sense the ambient light emitted by the finger. Since the image sensor is passive in receiving light and will not actively distinguish the light emitted by the light source array from the ambient light, the ambient light may interfere with the fingerprint recognition of the image sensor. For example, when ambient light is irradiated directly above the finger, the ambient light can pass through the finger and stimulate the biological tissue in the finger to emit pigment light, which may interfere with fingerprint recognition. Through detection, the pigment light mainly includes light with a wavelength above 600 nm. At this time, the second filter pattern can filter these undesired lights.
  • the second filter pattern can absorb light in the wavelength range of 600nm-900nm, so the second filter pattern can absorb the above-mentioned ambient light/pigment light to prevent the ambient light/pigment light from reaching the image sensor array to capture the image Cause interference.
  • the image sensor used in this embodiment does not respond to infrared light with a wavelength above 900 nm, so the interference of ambient light/pigment light on the image sensor can be further avoided.
  • the second filter pattern can be formed of an organic resin material, and the organic resin material can be doped with colored dyes so as to form a certain filtering effect on light with a wavelength of 600 nm to 900 nm.
  • the colored dye includes, for example, bromamine acid derivatives and the like.
  • the second filter pattern may also include an inorganic material. Specifically, it may be formed by alternately stacking inorganic layers of titanium oxide (Ti 3 O 5 ) with a high refractive index and silicon dioxide (SiO 2 ) with a low refractive index.
  • Ti 3 O 5 titanium oxide
  • SiO 2 silicon dioxide
  • the embodiment of the present disclosure does not limit the specific material of the second filter pattern.
  • the liquid crystal panel may also include a structure such as a polarizer.
  • a first polarizer is provided on the array substrate
  • a second polarizer is provided on the opposite substrate
  • the polarization directions of the first polarizer and the second polarizer are perpendicular to each other.
  • the liquid crystal molecules of the liquid crystal layer are deflected under the drive of an electric field, and the light transmittance is controlled under the cooperation of the first polarizer and the second polarizer, so as to realize gray scale display.
  • the liquid crystal panel also includes a driving circuit for driving each pixel unit, and signal lines (including gate lines, data lines, detection lines, etc.) for providing electrical signals (including scan signals, data signals, detection signals, etc.), and connections
  • the drive circuit of the image sensor 102, etc. do not specifically limit other structures of the liquid crystal panel.
  • the imaging range formed by one photosensitive light source is often limited.
  • the imaging range formed by one photosensitive light source may not be sufficient to meet the requirements of pattern recognition.
  • a way of illuminating multiple photosensitive light sources in time sharing can be used to form multiple effective imaging ranges. These effective imaging ranges are superimposed and spliced to obtain a larger grain image.
  • the pattern recognition device 100 is in the pattern collection process, as shown in FIG. 3B, the light valve structure 120 is further configured to allow the second region 2 different from the first region 1 to be controlled to be in a light-transmitting state.
  • the light emitted by the light source array is allowed to pass through the second area 2 in the light-transmitting state to form the second photosensitive light source 202.
  • the light valve structure 120 is configured to allow the first area 1 and the second area 2 to be in a light-transmitting state at different times, for example, the first area 1 is in a light-transmitting state at the first moment, and the second area is different from the first moment. Make the second area 2 in a light-transmitting state at all times.
  • the size of the second area 2 is larger than the size of the first area 1.
  • the pixel unit or sub The number of pixel units
  • the first photosensitive light source 201 and the second photosensitive light source 202 correspond to a plurality of pixel units arranged in series to form a point-shaped photosensitive light source.
  • the first photosensitive light source 201 corresponds to 2 ⁇ 2 pixel units or 3 ⁇ 3 pixel units arranged in an array
  • the second photosensitive light source 202 corresponds to 7 ⁇ 7 pixel units or 8 ⁇ 8 pixels arranged in an array.
  • the first photosensitive light source 201 is formed as a small point light source
  • the second photosensitive light source is formed as a large point light source.
  • the first imaging range of the first photosensitive light source 201 on the image sensor array is a first ring 301
  • the second imaging range of the second photosensitive light source 202 on the image sensor array is a second ring 302.
  • the ring 302 at least partially covers (shown as completely covering) the ring core portion 3011 of the first ring 301. Since the annular center portion 3011 is the ineffective imaging area of the first photosensitive light source 201, the imaging range of the second photosensitive light source 202 can supplement the ineffective imaging area, so that the effective imaging ranges of the first photosensitive light source 201 and the second photosensitive light source 202 overlap , Stitching to obtain a larger imaging range.
  • the liquid crystal light valve 120 is further configured to allow control of the third area 3 different from the first area 1 and the second area 2 to be in a light-transmitting state,
  • the light emitted by the light source array is allowed to pass through the third area 3 in the light-transmitting state to form a third photosensitive light source 203.
  • the liquid crystal light valve 120 is also configured to allow the first area 1 and the third area 3 to be in a light-transmitting state at the same time.
  • the first area 1 and the third area 3 are both in the light-transmitting state at the first moment, and the second area 2 is The second time, which is different from the first time, is in a light-transmitting state.
  • the size of the third area 3 is equal to the size of the first area 1.
  • the pattern recognition device is a liquid crystal display device
  • the number of pixel units (or sub-pixel units) corresponding to the third area 3 and the first area 1 is the same.
  • the third imaging range of the third photosensitive light source 203 on the image sensor array is a third ring 303
  • the second ring 302 also at least partially covers the center portion 3031 of the third ring 303.
  • the imaging range of the second photosensitive light source 202 can also supplement the ineffective imaging area, so that the first photosensitive light source 201, the second photosensitive light source 202, and the third photosensitive light source
  • the effective imaging range of 203 is superimposed and spliced to obtain a larger imaging range.
  • the size of the second area 2 may be equal to the size of the first area 1.
  • the pattern recognition device is a liquid crystal display device
  • the number of pixel units (or sub-pixel units) corresponding to the second area 2 and the first area 1 is the same, for example, the second area 2 and the first area 1 are correspondingly arranged in an array.
  • the first imaging range of the first photosensitive light source 201 on the image sensor array is a first ring 301
  • the second imaging range of the second photosensitive light source 202 on the image sensor array is a second ring 302
  • the first ring 301 and the second ring 302 have only two intersection points.
  • the two closest points on the inner circle 3012 of the first ring 301 and the inner circle 3022 of the second ring 302 are the first point 2043 and the second point, respectively.
  • 2044 a rectangular imaging range 204 formed by the two intersection points 2041 and 2042, the first point 2043 and the second point 2044 as the center of the four sides, is used for imaging lines.
  • the distance between the two intersections 2041 and 2042 of the first ring 301 and the second ring 302 becomes larger and larger, while the first point 2043 and the second ring 302
  • the distance between the two points 2044 is getting smaller and smaller, so the size of the rectangular imaging range 204 has a maximum value.
  • the degree of overlap between the first ring 301 and the second ring 302 maximizes the size of the rectangular imaging range 204, thereby obtaining a larger texture image.
  • the first ring 301 and the second ring 302 jointly cover an imaging range for imaging lines.
  • a larger-sized imaging range close to the "8" shape can be obtained.
  • the light valve structure 120 may also be configured to allow the control of the plurality of first regions 1 arranged in an array to transmit light at the first moment.
  • the plurality of second regions 2 arranged in an array are allowed to transmit light at the second moment to form an array arrangement
  • There are a plurality of second photosensitive light sources 202 (two are shown in the figure), so that the imaging ranges of these photosensitive light sources can be superimposed and joined to form a larger imaging range.
  • the controller 103 detects the contact area between the lines and the touch side through the touch structure, and when the contact area is greater than the threshold area, the light valve structure 120 performs the above-mentioned operations.
  • the threshold area can be set according to the operating body (such as a finger) that provides the texture, such as 1 cm ⁇ 1 cm, etc., which is not limited in the embodiment of the present disclosure. Therefore, the pattern recognition device 100 can selectively provide a photosensitive light source according to the contact area of the pattern to obtain a pattern image of a corresponding size, so as to facilitate pattern recognition.
  • the photosensitive light source may also be a line light source or other patterned light sources, which are not specifically limited in the embodiments of the present disclosure.
  • the point-shaped photosensitive light source can be obtained by adjusting the shape of the light-transmitting area (the first area 1, the second area 2, etc.).
  • the light-transmitting area may be approximately square or approximately circular.
  • the light-transmitting area is also It may be formed as an irregular pattern, which is not specifically limited in the embodiment of the present disclosure.
  • the controller 103 may be various types of controllers, such as various types of integrated circuit chips with processing functions, which may have various computing architectures, such as a complex instruction set computer (CISC ) Structure, reduced instruction set computer (RISC) structure, or a structure that implements a combination of multiple instruction sets.
  • the controller 230 may be a microprocessor, such as an X86 processor or an ARM processor, or may be a digital processor (DSP) or the like.
  • DSP digital processor
  • the controller 103 may further include a memory, which is used to store a control program for forming a light-transmitting area in a time-sharing manner, and a control program for forming multiple light-transmitting areas in a time-sharing manner.
  • the storage unit may be a storage medium in any form, such as a volatile memory or a non-volatile memory, such as a semiconductor memory or a magnetic medium memory, which is not limited in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure also provides a method for driving a pattern recognition device.
  • the pattern recognition device is, for example, the pattern recognition device described in any of the above embodiments, having a touch side, and including a light source array, an image sensor array, and a light valve structure
  • the image sensor array is configured to receive light emitted from the light source array and reflected to the image sensor array by the pattern for pattern collection; the light valve structure is arranged on the side of the light source array close to the touch side.
  • the driving method includes: controlling the first area of the light valve structure to be in a light-transmitting state according to a control signal, so as to allow the light emitted by the light source array to pass through the first area in the light-transmitting state to form a first photosensitive light source;
  • a first imaging range is formed on the array and used for imaging the pattern to obtain the first pattern image.
  • the image sensor array works to collect data corresponding to the first texture image, and sends the collected data corresponding to the first texture image to the controller or processor for further processing to obtain the first texture image.
  • the driving method further includes: controlling the second area of the light valve structure to be in a light-transmitting state according to the control signal, so as to allow the light emitted by the light source array to pass through the second area in the light-transmitting state to form a second photosensitive light source.
  • the first area and the second area are different, and the first area and the second area are in a light-transmitting state at different times.
  • the second light-sensitive light source forms a second imaging range on the image sensor array, and the second imaging range and the first imaging range are used together for imaging the pattern to obtain a second pattern image.
  • the image sensor array works to collect data corresponding to the second texture image, and sends the collected data corresponding to the second texture image to the controller or processor for further processing to obtain the second texture image.
  • the first texture image and the second texture image can be used for stitching and combining to obtain a more complete texture image.
  • the driving method further includes: controlling a third region of the light valve structure that is different from the first region and the second region to be in a light-transmitting state, so as to allow the light emitted by the light source array to pass through the light-transmitting state.
  • the pattern recognition device is implemented as a liquid crystal display device.
  • the light valve structure is a liquid crystal panel.
  • the liquid crystal panel has an array substrate, a counter substrate, and a liquid crystal layer between the array substrate and the counter substrate, and
  • the liquid crystal panel includes a pixel array, the pixel array includes a plurality of pixel units, each pixel unit includes at least one sub-pixel unit, and the control signal includes a scan signal and a data signal.
  • the driving method includes: controlling a light transmission state in a pixel region corresponding to at least one sub-pixel unit according to a scan signal and a data signal.
  • the liquid crystal display device may also include a backlight source.
  • the backlight source is a direct type backlight source and includes a plurality of sub-light sources 111 arranged in an array.
  • local dimming technology Local Dimming, LD
  • the driving method may include: controlling the backlight source to light up one or more sub-light sources at corresponding positions in the first area (and/or the second area and the third area) as required, thereby combining the light valve structure to achieve One or more light-sensitive light sources for the pattern recognition are used to realize the pattern recognition, while the sub-light sources in other positions are kept turned off, thereby reducing the energy consumption of the pattern recognition device.
  • the driving method may further include: determining the position of the first area according to the touch position of the texture on the touch side, and controlling the light valve structure to provide the first photosensitive light source.
  • the driving method may further include: after determining the position of the first area, controlling the backlight source to light up one or more sub-light sources at corresponding positions in the first area, and controlling the light valve structure to provide the first light light source.
  • the driving method may further include: obtaining the touch area of the texture on the touch side to determine the size and quantity of the first area.

Abstract

一种纹路识别装置以及纹路识别装置的驱动方法。该纹路识别装置(100)具有触摸侧(112),包括:光源阵列、图像传感器阵列和光阀结构(120);图像传感器阵列配置为可接收从光源阵列发出且经纹路反射至图像传感器阵列的光以用于纹路采集;光阀结构(120)设置在光源阵列的靠近触摸侧的一侧,配置为能响应控制信号控制第一区域(1)处于透光状态,以在透光状态允许光源阵列发出的光透过第一区域(1)形成第一感光光源(201)。该纹路识别装置(100)可以通过光阀结构(120)在相应区域形成感光光源,并且该纹路识别装置(100)还可以快速地获得具有较高清晰度与准确度的纹路图像。

Description

纹路识别装置以及纹路识别装置的驱动方法 技术领域
本公开的实施例涉及一种纹路识别装置以及纹路识别装置的驱动方法。
背景技术
随着移动终端的日益普及,越来越多的用户使用移动终端进行身份验证、电子支付等操作。由于皮肤纹路例如指纹图案或掌纹图案的唯一性,结合光学成像的指纹识别技术逐渐被移动电子设备采用以用于身份验证、电子支付等。如何设计更加优化的纹路识别装置是本领域关注的焦点问题。
发明内容
本公开至少一实施例提供一种纹路识别装置,具有触摸侧,包括光源阵列、图像传感器阵列和光阀结构;图像传感器阵列配置为可接收从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光以用于纹路采集;光阀结构设置在所述光源阵列的靠近所述触摸侧的一侧,配置为能响应控制信号控制第一区域处于透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第一区域形成第一感光光源。
例如,本公开至少一实施例提供的纹路识别装置中,所述光阀结构还配置为允许控制不同于所述第一区域的第二区域处于所述透光状态,以使在所述透光状态允许所述光源阵列发出的光透过所述第二区域,形成第二感光光源,且配置为允许所述第一区域和所述第二区域在不同时处于所述透光状态。
例如,本公开至少一实施例提供的纹路识别装置中,所述光阀结构为液晶面板,所述液晶面板具有阵列基板、对置基板以及所述阵列基板和所述对置基板之间的液晶层,且所述液晶面板包括像素阵列,所述像素阵列包括多个像素单元,所述控制信号包括扫描信号和数据信号,每个所述像素单元包括至少一个子像素单元,每个子像素单元且配置为根据所述扫描信号和所述数据信号控制与所述子像素单元对应的像素区域中的透光状态。
例如,本公开至少一实施例提供的纹路识别装置中,所述图像传感器阵 列包括多个图像传感器,所述多个图像传感器设置在所述液晶面板的所述阵列基板中。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个图像传感器中的每个设置在相邻的两行所述像素单元之间;或者,所述多个图像传感器中的每个设置在所述像素单元中。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个图像传感器中的每个设置在相邻的所述子像素单元之间;或者,所述多个图像传感器中的每个设置在所述子像素单元中。
例如,本公开至少一实施例提供的纹路识别装置中,每个所述像素单元包括红色子像素单元、绿色子像素单元和蓝色子像素单元,所述图像传感器设置在相邻的所述像素单元的蓝色子像素单元之间。
例如,本公开至少一实施例提供的纹路识别装置中,每个所述子像素单元包括第一开关元件以接收所述扫描信号和所述数据信号,每个所述图像传感器包括感光元件和第二开关元件;所述像素阵列包括第一子像素单元,所述图像传感器阵列包括第一图像传感器,所述第一子像素单元和所述第一图像传感器相邻设置,,所述第一图像传感器的第二开关元件与所述第一子像素单元的第一开关元件至少部分同层设置。
例如,本公开至少一实施例提供的纹路识别装置中,所述第一图像传感器的感光元件包括第一电极以及与所述第一电极电连接的引线,所述第一子像素单元包括与所述第一开关元件电连接的第一像素电极,所述第一电极和所述第一像素电极同层设置;或者所述第一电极的引线和所述第一像素电极同层设置。
例如,本公开至少一实施例提供的纹路识别装置中,所述阵列基板还包括衬底基板,所述第一图像传感器的感光元件在所述衬底基板上的正投影与所述第一图像传感器的第二开关元件在所述衬底基板上的正投影至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,所述第一图像传感器的感光元件在所述衬底基板上的正投影还与所述第一子像素单元的第一开关元件在所述衬底基板上的正投影至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置还包括触控结构,所述触控结构包括触控电极,所述第一子像素单元还包括第一公共电极,所述第 一公共电极复用为所述触控电极。
例如,本公开至少一实施例提供的纹路识别装置中,所述第一图像传感器还包括与所述第二开关元件电连接的信号读出线,所述触控结构还包括与所述触控电极电连接的触控引线,所述信号读出线复用为所述触控引线;或者,所述信号读出线在所述衬底基板上的正投影与所述触控引线所述衬底基板上的正投影至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,在所述信号读出线复用为所述触控引线的情况下,所述触控结构还包括第三开关元件,所述触控电极通过所述第三开关元件电连接所述触控引线。
例如,本公开至少一实施例提供的纹路识别装置中,所述对置基板包括黑色矩阵层,所述黑色矩阵层包括暴露多个所述子像素单元的多个第一黑矩阵区域以及暴露所述多个图像传感器的第二黑矩阵区域,所述第一黑矩阵区域中设置第一滤光图案,所述第一滤光图案用于形成单色光,所述第二黑矩阵区域中设置第二滤光图案,所述第二滤光图案可过滤从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光。
例如,本公开至少一实施例提供的纹路识别装置中,所述第二滤光图案可吸收波长范围为600nm-900nm的光。
例如,本公开至少一实施例提供的纹路识别装置还包括控制器,所述控制器配置为根据所述纹路在所述触摸侧的触摸位置,确定所述第一区域的位置,并控制所述光阀结构,以提供所述第一感光光源。
例如,本公开至少一实施例提供的纹路识别装置中,所述控制器还配置为获取所述纹路在所述触摸侧的触摸面积,以确定所述第一区域的大小与数量。
例如,本公开至少一实施例提供的纹路识别装置中,所述第二区域的大小大于所述第一区域的大小,所述第一感光光源在所述图像传感器阵列上的第一成像范围呈第一环形,所述第二感光光源在所述图像传感器阵列上的第二成像范围呈第二环形,所述第二环形至少部分覆盖所述第一环形的环心部分。
例如,本公开至少一实施例提供的纹路识别装置中,所述液晶光阀还配置为允许控制不同于所述第一区域和第二区域的第三区域处于所述透光状态,以使在所述透光状态允许所述光源阵列发出的光透过所述第三区域,形 成第三感光光源,且配置为允许所述第一区域和所述第三区域同时处于所述透光状态;所述第三区域的大小等于所述第一区域的大小,所述第三感光光源在所述图像传感器阵列上的第三成像范围呈第三环形,所述第二环形还至少部分覆盖所述第三环形的环心部分。
例如,本公开至少一实施例提供的纹路识别装置中,所述第二区域的大小等于所述第一区域的大小,所述第一感光光源在所述图像传感器阵列上的第一成像范围呈第一环形,所述第二感光光源在所述图像传感器阵列上的第二成像范围呈第二环形,所述第一环形和所述第二环形仅有两个交点,所述第一环形的内圆上与所述第二环形的内圆上最近距离的两点分别为第一点和第二点,以所述两个交点、所述第一点和所述第二点为四个边长的中心所形成的矩形成像范围,用于成像所述纹路,或者在所述第一环形和所述第二环形共同覆盖的范围内形成成像范围,用于成像所述纹路。
本公开至少一实施例提供一种纹路识别装置的驱动方法,该纹路识别装置具有触摸侧,且包括光源阵列、图像传感器阵列和光阀结构;图像传感器阵列配置为可接收从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光以用于纹路采集;光阀结构设置在所述光源阵列的靠近所述触摸侧的一侧;所述驱动方法包括:根据控制信号控制所述光阀结构的第一区域处于透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第一区域形成第一感光光源;所述第一感光光源在所述图像传感器阵列上形成第一成像范围,用于成像所述纹路。
例如,本公开至少一实施例提供的纹路识别装置的驱动方法还包括:根据控制信号控制所述光阀结构的第二区域处于所述透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第二区域,形成第二感光光源;其中,所述第一区域和所述第二区域不同,且所述第一区域和所述第二区域在不同时处于所述透光状态;所述第二感光光源在所述图像传感器阵列上形成第二成像范围,所述第二成像范围与所述第一成像范围共同用于成像所述纹路。
例如,本公开至少一实施例提供的纹路识别装置的驱动方法中,所述光阀结构为液晶面板,所述液晶面板具有阵列基板、对置基板以及所述阵列基板和所述对置基板之间的液晶层,且所述液晶面板包括像素阵列,所述像素阵列包括多个像素单元,每个所述像素单元包括至少一个子像素单元,所述 控制信号包括扫描信号和数据信号,所述驱动方法包括:根据所述扫描信号和所述数据信号控制与所述至少一个子像素单元对应的像素区域中的透光状态。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为指纹成像原理图;
图1B为点光源的成像范围示意图;
图1C为线光源的成像范围示意图;
图2为本公开至少一实施例提供的一种纹路识别装置的截面示意图;
图3A为本公开至少一实施例提供的一种纹路识别装置被纹路触摸的示意图;
图3B为本公开至少一实施例提供的一种纹路识别装置形成感光光源的示意图;
图4为本公开至少一实施例提供的一种液晶显示装置的截面示意图;
图5为本公开至少一实施例提供的一种液晶显示装置的另一截面示意图;
图6A为本公开至少一实施例提供的一种液晶显示装置中像素阵列和图像传感器的排布示意图;
图6B为本公开至少一实施例提供的一种液晶显示装置中像素阵列和图像传感器的另一排布示意图;
图7A为本公开至少一实施例提供的一种液晶显示装置中像素单元和图像传感器的排布示意图;
图7B为本公开至少一实施例提供的一种液晶显示装置中像素单元和图像传感器的另一排布示意图;
图7C为本公开至少一实施例提供的一种液晶显示装置中像素单元和图像传感器的再一排布示意图;
图8A为本公开至少一实施例提供的一种液晶显示装置形成感光光源的示意图;
图8B为图8A中的感光光源的成像范围示意图;
图9A为本公开至少一实施例提供的一种液晶显示装置形成感光光源的另一示意图;
图9B为图9A中的感光光源的成像范围示意图;
图10A为本公开至少一实施例提供的一种液晶显示装置形成感光光源的再一示意图;
图10B为图10A中的感光光源的成像范围示意图;
图10C为图10A中的感光光源的另一成像范围示意图;
图11为本公开至少一实施例提供的纹路识别装置形成阵列排布的感光光源的示意图;
图12A为本公开至少一实施例提供的纹路识别装置中一种图像传感器的结构以及连接关系的示意图;
图12B为本公开至少一实施例提供的纹路识别装置中的另一种图像传感器的结构以及连接关系的示意图;
图13A为本公开至少一实施例提供的纹路识别装置中的触控结构的示意图;
图13B为本公开至少一实施例提供的纹路识别装置中的图像传感器的电路图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械 的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,窄边框逐渐成为显示装置设计和制造的主流,尤其是对于例如移动电话的便携式显示装置。实现窄边框的手段之一是将具有指纹识别功能的图像传感器集成到显示装置中,实现屏下指纹识别方式,提高显示装置的显示区域的面积,进而提高屏占比。
例如,可以采用点光源、线光源或者具有一定图案的光源等作为图像传感器的感光光源,以进行指纹识别。并且,光源与图像传感器的设置方式具有多种,例如,光源可以设置在图像传感器的靠近指纹触摸的一侧,或者,光源可以与图像传感器设置在相同的平面内,又或者,光源也可以设置在图像传感器的远离指纹触摸的一侧。光源与图像传感器的设置方式可以根据不同需求进行选择设置。
下面以点光源作为图像传感器的感光光源,并且光源设置在图像传感器的靠近指纹触摸的一侧为例,对指纹识别原理进行介绍,但是这不对本公开的实施例构成限制。
在一种反射式光学指纹识别装置中,在指纹识别的过程中,如图1A所示,在点光源L1发光时,其发出的光以不同的角度照射到指纹按压界面(例如玻璃屏幕外表面)上,由于指纹按压界面的全反射的作用,这些光中入射角大于或等于全反射的临界角θ的部分会发生全反射作用,导致这部分光线不能从指纹按压界面出射,由此产生全反射区域。相应地,这些光中入射角小于全反射的临界角θ的部分从指纹按压界面出射。因此,可以通过全反射区域反射的光进行纹路图像采集,例如,在图像传感器所在的指纹成像界面的B1处形成清晰的纹路图像,该纹路图像对应于指纹的位于F1处的部分,F1即为全反射区域,B1即为成像区域。
具体而言,当例如用户手指的指纹按压到全反射区域F1时,指纹的脊触摸到全反射区域F1的表面,因此与指纹的脊相应的位置的全反射条件被破坏,因此光将在该相应的位置出射,使得原有的反射路径被改变,而指纹的谷不会触摸到全反射区域F1的表面,因此与指纹的谷相应的位置的全反射条件没有被破坏,因此光将在该相应的位置仍然被全反射,使得原有的反射路径没有被改变。这样,全反射区域中的光线由于指纹的谷、脊对于全反 射条件的不同影响,使得入射到指纹成像界面上的光在不同位置形成明暗相间的纹路图像。
另外,由于从指纹按压界面出射并被指纹等反射的光所造成的干扰,或者光源发出的光还没有到达指纹按压界面就被其他功能层反射至指纹成像界面,指纹成像界面的A1处成为检测无效的区域,该区域不能形成有效的纹路图像。在无效区A1中,光源L1发出的光中还没有到达指纹按压界面就被其他功能层反射至指纹成像界面的部分以及被指纹按压界面近乎垂直反射的部分亮度较高,基本位于无效区A1的中心位置,由此形成高亮区,该高亮区由于光线亮度较高,因此在图像传感阵列的相应部分产生较大光电信号,容易形成残影,也可称为残影区。
例如,图1B示出了一种点光源的成像范围图。如图1B所示,在点光源的感光范围中,有效的成像范围呈环形,即在图1B中,内圆11和外圆12之间的环形区域为有效的成像范围,对应于图1A中与全反射区域F1对应的成像区域B1;该环形的内圆11以内的区域(以下称为环心10)为无效成像区,对应于图1A中的无效区A1;环心10内部的部分区域(阴影区域)13为高亮区(残影区),该高亮区容易在成像过程中在图像传感器阵列中导致残影。
类似地,图1C示出了一种线光源的成像范围图。如图1C所示,对于一个线光源的有效成像范围为内圆21和外圆22之间的跑道状环形区域或长椭圆状环形区域,环心20为无效成像区,环心10内部的部分区域(阴影区域)23为容易在成像过程中在图像传感器阵列中导致残影的高亮区(残影区)。
目前,采用屏下指纹识别的显示装置(例如移动电话等)的显示面板通常为有机发光显示面板(OLED)等自发光显示面板,对于需要依靠背光源发出的光进行显示的例如液晶显示面板(LCD)等非自发光显示面板来说,由于其结构与显示方式的差异,需要采用不同方式来实现屏下指纹识别。
本公开至少一实施例提供了一种纹路识别装置,该纹路识别装置具有触摸侧,包括光源阵列、图像传感器阵列和光阀结构;图像传感器阵列配置为可接收从光源阵列发出且经纹路反射至图像传感器阵列的光以用于纹路采集;光阀结构设置在光源阵列的靠近触摸侧的一侧,配置为能响应控制信号控制第一区域处于透光状态,以在透光状态允许光源阵列发出的光透过所述 第一区域形成第一感光光源。
下面,将参考附图详细地说明本公开实施例提供的纹路识别装置以及纹路识别装置的驱动方法。
例如,图2为本公开至少一实施例提供的一种纹路识别装置的截面示意图。如图2所示,纹路识别装置100包括光源阵列、图像传感器阵列和光阀结构120。光源阵列包括多个光源101,这些光源101在预定区域内布置为阵列。图像传感器阵列包括多个图像传感器102,这些图像传感器102在预定区域内布置为阵列。图像传感器阵列配置为可接收从光源阵列发出且经纹路反射至图像传感器阵列的光以用于纹路采集。光阀结构120设置在光源阵列的靠近触摸侧的一侧,配置为能响应控制信号控制第一区域处于透光状态,以在透光状态允许光源阵列发出的光透过第一区域形成第一感光光源。
例如,当手指等具有纹路的操作体触摸纹路识别装置100的触摸侧112的表面时,光源101发出的光线可以被操作体反射而到达图像传感器102,图像传感器102即可采集操作体的纹路图像。例如,具有纹路的操作体可以为手,此时图像传感器102识别的纹路为皮肤纹路,例如指纹、掌纹等;另外,具有纹路的操作体也可以为具有一定纹路的非生物体,例如采用树脂等材料制作的具有一定纹路的物体,本公开的实施例对此不做具体限定。
例如,光阀结构120为液晶光阀、电致变色光阀、电子墨水光阀等在受控下可在不同位置实现不同光透过性的结构。例如,当光阀结构120为液晶光阀时,光阀结构120包括液晶材料以及用于驱动处于不同位置的液晶材料偏转的多个电极,因此可通过对电极施加不同的电压,使得液晶材料发生相应地偏转,以改变其光透过性,实现光阀的功能。液晶光阀的入光侧(这里为设置光源阵列的一侧)设置有第一偏光片,在出光侧设置有第二偏光片,第一偏光片和第二偏光片的偏振方向彼此垂直。结合上述第一偏光片和第二偏光片,例如,当液晶材料的分子排列方向与光的传播方向平行时,相应位置的液晶光阀透光,当液晶材料的分子排列方向与光的传播方向垂直时,相应位置的液晶光阀不透光。
例如,当光阀结构120为电致变色光阀时,光阀结构120包括电致变色材料以及用于驱动处于不同位置的电致变色材料发生变色的多个电极,因此可通过对电极施加不同的电压,使得电致变色材料发生颜色改变,以改变其光透过性,实现光阀的功能。例如,电致变色材料可以在不同的电压驱动下 在透明态与深色态之间转变,当电致变色材料处于透明态时,相应位置透光,当电致变色材料处于深色态时,相应位置不透光。
例如,当光阀结构120为电子墨水光阀时,光阀结构120包括电子墨水层(例如包括电子墨水微胶囊)以及用于驱动电子墨水层中微粒(例如黑色颗粒)移动的多个电极,因此可通过对电极施加不同的电压,使得电子墨水中的微粒移动,以改变电子墨水层的光透过性,实现光阀的功能。例如,电子墨水层可以在不同的电压驱动下在透明态与深色态之间转变,当电子墨水层处于透明态时,相应位置透光,当电子墨水层处于深色态时,相应位置不透光。
纹路识别装置100的工作过程如下所述。在操作者的手指等具有纹路的操作体触摸纹路识别装置100的触摸侧112的过程中,如图3A所示,纹路识别装置100开始进行纹路采集。在纹路识别装置100进行纹路采集的过程中,如图3B所示,光阀结构120响应控制信号控制第一区域1处于透光状态,以允许光源阵列发出的光透过第一区域1形成第一感光光源201。
例如,在一些实施例中,如图2所示,纹路识别装置100还包括控制器103。如图3A和图3B所示,例如在至少一个实施例中,控制器103可以根据纹路在触摸侧112的触摸位置,确定第一区域1的位置,并控制光阀结构120使第一区域1处于透光状态,以提供第一感光光源201。
例如,第一感光光源201可以包括一个或多个光源101。例如,控制器103还可以配置为获取纹路在触摸侧112的触摸面积,以确定第一区域1的大小与数量,从而也确定了第一区域1对应的光源101的数量(即第一感光光源201包括的光源101的数量)以及第一感光光源201的数量(稍后详述)。例如,纹路识别装置100还可以包括触控结构,纹路在触摸侧112的触摸位置以及触摸面积可以通过触控结构获得。
例如,参见图2,纹路识别装置100还包括盖板150,盖板150例如为玻璃盖板,可对纹路识别装置100进行封装与保护。例如,盖板150的表面为触摸侧112。当手指等具有纹路的操作体触摸纹路识别装置100的触摸侧112时,光源101发出的光线可以被操作体反射,并到达图像传感器102,图像传感器102即可以采集操作体的纹路图像。
例如,在一些实施例中,如图4所示,光阀结构120为液晶面板,此时,纹路识别装置100实现为液晶显示装置,下面以液晶面板作为光阀结构的示 例进行说明,但是本公开的实施例对此不作限制。液晶面板具有阵列基板121、对置基板123以及阵列基板121和对置基板123之间的液晶层122。液晶面板包括像素阵列,例如,图6A示出了一种像素阵列的平面示意图。如图6A所示,像素阵列包括多个像素单元,每个像素单元包括至少一个子像素单元(图中示出为R、G、B三个子像素单元),控制信号包括扫描信号和数据信号,每个子像素单元且配置为根据扫描信号和数据信号控制与子像素单元对应的像素区域中的透光状态。例如,第一区域1包括至少一个子像素单元对应的像素区域。
例如,液晶显示装置包括背光源110,背光源110设置在液晶面板的非显示侧,用于为液晶面板提供平面光源。例如,背光源110为直下式背光源,包括排列为阵列的多个子光源111,根据需要还可以进一步包括扩散板(未示出),这些子光源111发出的光经过扩散板均匀化之后,再入射到液晶面板之中以用于显示。例如,背光源110的多个子光源111实现为光源阵列的多个光源101。也即,背光源110的多个子光源111被复用为光源阵列的多个光源101,以用于提供感光光源。例如,子光源111为发光二极管(LED)。例如,在背光源110中,多个子光源111呈阵列排布,并且可以被分区域控制,或者被分别独立控制。例如,可以通过结合局域调光技术(Local Dimming,LD)来控制直下式背光源,从而提升显示装置的显示画质。局域调光技术通过将整个背光源分割为多个可单独驱动的背光分区,每个背光分区包括一个或多个LED,根据显示画面不同部分需要显示的灰阶而自动调整与这些部分对应的背光分区的LED的驱动电流,实现背光单元中每个分区的亮度的单独调节,从而可以提升显示画面的对比度。例如,背光源110的局域调光可以通过控制电路实现。
例如,如图4所示,图像传感器阵列的多个图像传感器102可以设置在液晶面板的阵列基板121中。由此,多个图像传感器102与液晶面板可以在同一制程中形成。
例如,在液晶面板的阵列基板121中,图像传感器可以设置在相邻的像素单元之间,或者设置在像素单元中。例如,在另一些实施例中,图像传感器还可以设置在相邻的子像素单元之间,或者设置在子像素单元中。
例如,在一些示例中,相邻的两行像素单元之间的距离比相邻的两列像素单元之间的距离大,此时,为方便器件排布,图像传感器102可以设置在 相邻的两行像素单元之间。例如,如图6A所示,液晶面板的每个像素单元包括红色子像素单元R、绿色子像素单元G和蓝色子像素单元B,每个图像传感器102设置在相邻的两行像素单元之间,且每相邻的两个像素单元之间设置一个图像传感器102。
例如,在一些示例中,蓝色子像素单元相比于红色子像素单元R和绿色子像素单元G来说,其改变对液晶面板的显示效果的影响最小,此时,图像传感器102可以设置在相邻的像素单元的蓝色子像素单元B之间。例如,如图6B所示,每相邻的两个像素单元的蓝色子像素单元B之间设置一个图像传感器102。在此情况下,蓝色子像素单元B的有效发光面积可以设计得相对较小,或者在制备过程中,在相邻的像素单元的蓝色子像素单元B之间形成图像传感器102时,即使影响到蓝色子像素单元B的结构设置,也不会对液晶面板的显示效果产生影响。
例如,在一些示例中,图像传感器102也可以设置在相邻的两列像素单元之间,或者设置在相邻的两列子像素单元之间,本公开的实施例对此不做限定。另外,需要注意的是,上述行与列的定义是可以互换的,例如当图中的液晶面板发生旋转时,像素阵列的行与列也发生变化。
例如,图5示出了液晶面板的一个子像素单元的截面示意图。如图5所示,每个子像素单元包括第一开关元件1212以接收扫描信号和数据信号,每个图像传感器102包括感光元件和第二开关元件1024。例如,像素阵列包括第一子像素单元,图像传感器阵列包括第一图像传感器,第一子像素单元和第一图像传感器相邻设置,第一图像传感器的第二开关元件1024与第一子像素单元的第一开关元件1212至少部分同层设置,从而在制备工艺中可以采用相同的材料通过相同的构图工艺或者通过相同的掩模板(mask)制备形成。例如,第一开关元件1212和第一开关元件1212为薄膜晶体管(TFT)等具有开关功能的元件。
图像传感器102的具体结构与工作过程如下所述。例如,图12A示出了一种示范性的图像传感器的结构与电路连接关系。如图12A所示,每个图像传感器102包括感光元件1026和第二开关元件1024。在一些示例中,图像传感器102还可以包括电容1029。感光元件1026的第一端(阳极端)1027连接偏压线BL,感光元件1026的第二端(阴极端)1028连接第二开关元件1024的第一电极,第二开关元件1024的第二电极连接信号读出线RL,第二 开关元件1024的控制电极G连接用于图像传感器阵列的扫描信号,读出线RL连接读出集成电路ROIC。电容1029的第一极与感光元件1026的第一端1023电连接,电容1029的第二极与感光元件1026的第二端1028电连接。
上述示例性的包括电容1029的图像传感器的工作过程包括:在复位阶段,通过对控制电极G输入扫描信号使第二开关元件1024导通,ROIC经由第二开关元件1024向电容1029写入复位信号以使电容1029复位,也使得感光元件1026复位;在感光阶段,使第二开关元件1024关断,感光元件1026处于负向偏置状态,感光元件1026在反射光线的照射下产生光生载流子并对电容1029充电,使得电容1029产生并存储电信号;在检测阶段,使第二开关元件1024导通,ROIC通过第二开关元件1024读取电容1029存储的电信号,之后形成纹路图像。
图12B示出了另一种示范性的图像传感器的结构与电路连接关系,该图像传感器不包括电容。对于示例性的不包括电容的图像传感器的工作过程包括:在复位阶段,通过对控制电极G输入扫描信号使第二开关元件1024导通,ROIC经由第二开关元件1024向感光元件1026的阴极写入复位信号,使得感光元件1026复位;在感光阶段,使得第二开关元件1024关断,感光元件1026处于负向偏置状态,感光元件1026在反射光线的照射下产生光生载流子产生光生漏电流;在检测阶段,使第二开关元件1024导通,ROIC通过第二开关元件1024读取光生漏电流对应的电信号,之后形成纹路图像。
例如,在一些实施例中,如图5所示,第一图像传感器的第二开关元件1024与第一子像素单元的第一开关元件1212的相同功能层均同层设置,因此,在制备工艺中,第二开关元件1024与第一开关元件1212可以在相同的工艺(例如构图工艺)中形成。
例如,如图5所示,第一图像传感器的感光元件可以为光电二极管,包括第一电极1021、第二电极1022、以及第一电极1021和第二电极1022之间的半导体层1023。例如,该光电二极管可以为PN型或PIN型等。当光电二极管为PN型时,半导体层1023包括叠层的P型半导体层和N型半导体层;当光电二极管为PIN型时,半导体层1023包括叠层的P型半导体层、本征半导体层和N型半导体层。例如,半导体层1023采用的半导体材料可以为硅、锗、硒、砷化镓等,本公开的实施例对此不做限定。
例如,第一子像素单元包括与第一开关元件1212电连接的第一像素电 极1213,第一子像素单元还包括第一公共电极1214,第一像素电极1213和第一公共电极1214共同用于驱动液晶层122中的液晶材料以使其发生偏转。例如,第一像素电极1213和第一公共电极1214的材料为ITO、IZO等金属氧化物,并且第一像素电极1213和第一公共电极1214的材料可以相同也可以不同。例如,第一像素电极1213和第一公共电极1214可以均设置在阵列基板上(图5中示出的情况),也可以分别设置在阵列基板和对置基板上,例如第一像素电极1213设置在阵列基板上,第一公共电极1214设置在对置基板上,本公开的实施例对此不做限定。
例如,第一子像素单元的第一像素电极1213与第一图像传感器的感光元件包括的第一电极1021同层设置。由此,在液晶面板的制备过程中,第一像素电极1213与第一电极1021可以在相同的工艺(例如构图工艺)中形成。或者,在一些示例中,第一图像传感器的感光元件还包括与第一电极1021电连接的引线1025,第一电极1021的引线1025和第一像素电极1213同层设置。由此,在液晶面板的制备过程中,第一像素电极1213与第一电极1021的引线1025可以在相同的工艺(例如构图工艺)中形成。本实施例中,上述设计均可以简化液晶面板的制备工艺。
例如,如图5所示,在液晶面板中,子像素单元的第一开关元件1212上还设置有与第二电极1022同层的遮光层1215,遮光层1215可以防止光入射到第一开关元件1212以避免光对第一开关元件1212的性能产生不良影响。此时,在液晶面板的制备过程中,第二电极1022与遮光层1215可以在相同的工艺(例如构图工艺)中形成,从而简化液晶面板的制备工艺。
例如,如图5所示,阵列基板121还包括衬底基板1211,第一图像传感器的感光元件在衬底基板1211上的正投影与第一图像传感器的第二开关元件1024在衬底基板1211上的正投影至少部分重叠,例如完全重叠。例如,如图5所示,第二开关元件1024在衬底基板1211上的正投影位于第一图像传感器的感光元件在衬底基板1211上的正投影内部。
例如,在一些示例中,第一图像传感器的感光元件在衬底基板1211上的正投影还与第一子像素单元的第一开关元件1212在衬底基板1211上的正投影至少部分重叠,例如完全重叠。例如,第一开关元件1212在衬底基板1211上的正投影位于第一图像传感器的感光元件在衬底基板1211上的正投影内部。此时,第一图像传感器的感光元件的感光面积更大,有利于形成更 大的纹路图像。
例如,在图7A示出的示例中,一个像素单元对应设置一个图像传感器,并且图像传感器和子像素单元的第一开关元件设置在像素单元的相同侧。此时,图像传感器的感光元件可以覆盖一个像素单元包括的三个子像素单元的第一开关元件(图中未示出)以及该图像传感器的第二开关元件,即一个像素单元包括的三个子像素单元的第一开关元件以及该图像传感器的第二开关元件在衬底基板1211上的正投影均位于图像传感器的感光元件在衬底基板1211上的正投影内部,此时图像传感器的感光元件具有较大的感光面积,有利于形成更大的纹路图像。
例如,在图7B示出的示例中,一个像素单元对应设置一个图像传感器,且该图像传感器相邻于蓝色子像素单元B设置,此时,图像传感器的感光元件可以覆盖该像素单元包括的蓝色子像素单元的第一开关元件(图中未示出)以及该图像传感器的第二开关元件,即蓝色子像素单元的第一开关元件以及该图像传感器的第二开关元件在衬底基板1211上的正投影位于图像传感器的感光元件在衬底基板1211上的正投影内部,此时图像传感器的设置对液晶显示装置的显示效果影响最小。
例如,如图7C所示,在一些示例中,子像素单元的第一开关元件与图像传感器分别设置在子像素单元的不同侧。例如,如图7所示,相邻的两行像素单元之间设置两行第一开关元件1212A和1212B以分别用于驱动该两行像素单元中的子像素单元。例如,第一行第一开关元件1212A包括的三个第一开关元件分别用于驱动图中的上一行像素单元包括的三个子像素单元,第二行第一开关元件1212B包括的三个第一开关元件分别用于驱动图中的下一行像素单元包括的三个子像素单元。
例如,在图7C示出的示例中,上一行像素单元对应的图像传感器设置在上一行像素单元的上侧,下一行像素单元对应的图像传感器设置在下一行像素单元的下侧。例如,可以一个像素单元对应设置一个图像传感器,此时相邻的两行像素单元之间设置两行图像传感器;或者,也可以两个像素单元对应设置一个图像传感器,此时,相邻的两行像素单元之间设置一行图像传感器。本公开的实施例对像素单元与图像传感器的对应方式不做限定。相对于图像传感器102与第一开关元件设置在像素单元的相同侧来说,上述设计可以避免器件设置的过于紧凑,或者可以避免相邻的像素单元之间由于设置 的器件过多而导致间距过大。
例如,在一些实施例中,液晶显示装置还包括触控结构,以用于对液晶显示装置进行触控操作,并且还可以进一步用于获取纹路在触摸侧112的触摸位置以及触摸面积等。该触控结构包括多个触控电极,例如实现为自电容型或互电容型触控结构。例如,液晶面板中的第一公共电极1214复用为触控电极,即第一公共电极1214在显示的过程中用于施加公共电压,而在触控的过程用作触控电极,用于产生触控信号。
图13A示出了第一公共电极1214的平面示意图,如图13A所示,块状的第一公共电极1214呈阵列排布,并且被复用为触控电极,每个触控电极连接一条触控引线104,触控引线104连接到芯片(例如COG,Chip on Glass)。例如,该触控结构为自电容式触控结构。
例如,在一些实施例中,与图像传感器的第二开关元件电连接的信号读出线RL复用为触控引线104,即触控引线104同时用作信号读出线RL。例如,如图13B所示,信号读出线RL连接多个图像传感器102,并且第一公共电极1214(触控电极)通过第三开关元件(例如薄膜晶体管)1224与信号读出线RL(触控引线104)电连接。在进行触控操作时,通过第一公共电极1214以及第三开关元件1224的控制端G1控制第三开关元件1224打开,以进行触控操作;在进行纹路采集时,通过第一公共电极1214以及第三开关元件1224的控制端G1控制第三开关元件1224关闭,以进行纹路采集。例如,参见图7B,触控引线104可以沿像素单元的边缘排布。
例如,在一些实施例中,触控引线104与用于纹路识别的信号读出线RL叠层设置,并且二者之间通过绝缘层间隔。此时,触控引线104在衬底基板1211上的正投影与信号读出线RL在衬底基板1211上的正投影至少部分重叠,以简化触控引线104和信号读出线RL排布。相比于触控引线104与信号读出线RL公用的情况,上述设计可以不设置第三开关元件,因此可以节约设置空间。
例如,在一些实施例中,如图5所示,液晶面板的对置基板123包括第二衬底基板1231以及在第二衬底基板1231的靠近液晶层122一侧的黑色矩阵层1232。黑色矩阵层1232包括黑矩阵设置区域1232A,暴露多个子像素单元的多个第一黑矩阵区域1232B(例如第一黑矩阵开口)以及暴露多个图像传感器102的第二黑矩阵区域1232C(例如第二黑矩阵开口)。例如,黑 矩阵设置区域1232A对应于相邻的子像素单元的间隔区域,以起到遮光作用,避免相邻的子像素单元之间发生混光。
例如,第一黑矩阵区域1232B中设置第一滤光图案,第一滤光图案用于形成单色光。例如,红色子像素单元中的第一滤光图案为红色滤光图案,以使得透过红色子像素单元的光为红色光;绿色子像素单元中的第一滤光图案为绿色滤光图案,以使得透过绿色子像素单元的光为绿色光;蓝色子像素单元中的第一滤光图案为蓝色滤光图案,以使得透过蓝色子像素单元的光为蓝色光。
例如,第二黑矩阵区域1232C中设置第二滤光图案,第二滤光图案可过滤从光源阵列发出且经纹路反射至图像传感器阵列的光。
由于在指纹识别的过程中,除了光源阵列所发出的光可被图像传感器阵列感应外,图像传感器阵列还可能感应通过手指射入的环境光。由于图像传感器对光的接收是被动的,不会主动将光源阵列所发出的光与环境光相区分,因此,环境光可能对图像传感器的指纹识别产生干扰。例如,当环境光照射在手指的正上方时,环境光可透过手指并激发手指内生物组织发出色素光,该色素光可能会对指纹识别产生干扰。通过检测,该色素光主要包括波长在600nm以上的光。此时,第二滤光图案可过滤这些不希望的光。
例如,第二滤光图案可吸收波长范围为600nm-900nm的光,由此第二滤光图案可吸收上述环境光/色素光,以避免环境光/色素光射至图像传感器阵列以对图像采集造成干扰。例如,本实施例采用的图像传感器对波长在900nm以上的红外光不响应,因此可进一步避免环境光/色素光对图像传感器造成干扰。
例如,第二滤光图案可以采用有机树脂材料形成,并且该有机树脂材料中可掺入有色染料,以使其对波长在600nm-900nm的光形成一定过滤效果。该有色染料例如包括溴氨酸衍生物等。例如,第二滤光图案也可以包括无机材料,具体可以为由具有高折射率的氧化钛(Ti 3O 5)和低折射率的二氧化硅(SiO 2)的无机层交替层叠而成。本公开的实施例对第二滤光图案的具体材料不做限定。
需要注意的是,液晶面板除了包括像素单元阵列以外,例如还可以包括偏光片等结构。例如,阵列基板上设置有第一偏光片,对置基板上设置有第二偏光片,第一偏光片和第二偏光片的偏振方向彼此垂直。液晶层的液晶分 子在设置在电场的驱动下偏转,并且在第一偏光片和第二偏光片的配合下控制光的透过率,从而实现灰度显示。例如,液晶面板还包括驱动各个像素单元的驱动电路,以及用于提供电信号(包括扫描信号、数据信号、检测信号等)的信号线(包括栅线、数据线、检测线等),以及连接图像传感器102的驱动电路等。本公开的实施例对液晶面板的其他结构不作具体限定。
在纹路识别装置100进行纹路采集的过程中,一个感光光源所形成的成像范围往往有限,在纹路的面积较大时,一个感光光源形成的成像范围可能不足以满足纹路识别的需求。此时,可以采用分时点亮多个感光光源的方式,以形成多个有效成像范围,这些有效成像范围相叠加、拼接,可以获得更大的纹路图像。
例如,在一些实施例中,纹路识别装置100在纹路采集过程中,如图3B所示,光阀结构120还配置为允许控制不同于第一区域1的第二区域2处于透光状态,以使在透光状态允许光源阵列发出的光透过第二区域2,形成第二感光光源202。并且,光阀结构120配置为允许第一区域1和第二区域2在不同时处于透光状态,例如在第一时刻使第一区域1处于透光状态,在不同于第一时刻的第二时刻使第二区域2处于透光状态。
例如,在一些示例中,如图8A所示,第二区域2的大小大于第一区域1的大小,例如在纹路识别装置100为液晶显示装置时,第二区域2对应的像素单元(或者子像素单元)的数量多于第一区域1对应的像素单元(或者子像素单元)的数量。例如,第一感光光源201和第二感光光源202对应连续排列的多个像素单元,以形成点状感光光源。例如,第一感光光源201对应呈阵列排布的2×2个像素单元或者3×3个像素单元,第二感光光源202对应呈阵列排布的7×7个像素单元或者8×8个像素单元,由此第一感光光源201形成为小点光源,第二感光光源形成为大点光源。
如图8B所示,第一感光光源201在图像传感器阵列上的第一成像范围呈第一环形301,第二感光光源202在图像传感器阵列上的第二成像范围呈第二环形302,第二环形302至少部分覆盖(图中示出为完全覆盖)第一环形301的环心部分3011。由于环心部分3011为第一感光光源201的无效成像区,因此第二感光光源202的成像范围可补充该无效成像区,使得第一感光光源201和第二感光光源202的有效成像范围相叠加、拼接,以获得更大的成像范围。
例如,在一些示例中,如图9A所示,为进一步扩大成像范围,液晶光阀120还配置为允许控制不同于第一区域1和第二区域2的第三区域3处于透光状态,以使在透光状态允许光源阵列发出的光透过第三区域3,形成第三感光光源203。并且,液晶光阀120还配置为允许第一区域1和第三区域3同时处于透光状态,例如第一区域1和第三区域3均在第一时刻处于透光状态,第二区域2在不同于第一时刻的第二时刻处于透光状态。
例如,第三区域3的大小等于第一区域1的大小,例如在纹路识别装置为液晶显示装置时,第三区域3和第一区域1对应的像素单元(或者子像素单元)的数量相同。如图9B所示,第三感光光源203在图像传感器阵列上的第三成像范围呈第三环形303,第二环形302还至少部分覆盖第三环形303的环心部分3031。由于环心部分3031为第三感光光源203的无效成像区,因此第二感光光源202的成像范围还可补充该无效成像区,使得第一感光光源201、第二感光光源202和第三感光光源203的有效成像范围相叠加、拼接,以获得更大的成像范围。
例如,在另一些示例中,如图10A所示,当光阀结构120配置为允许第一区域1和第二区域2在不同时处于透光状态时,例如在第一时刻使第一区域1处于透光状态,在不同于第一时刻的第二时刻使第二区域2处于透光状态时,第二区域2的大小可以等于第一区域1的大小。例如,在纹路识别装置为液晶显示装置时,第二区域2和第一区域1对应的像素单元(或者子像素单元)的数量相同,例如第二区域2和第一区域1均对应呈阵列排布的7×7个像素单元或者8×8个像素单元,由此第一感光光源201和第二感光光源均形成为大点光源。
此时,如图10B所示,第一感光光源201在图像传感器阵列上的第一成像范围呈第一环形301,第二感光光源202在图像传感器阵列上的第二成像范围呈第二环形302,第一环形301和第二环形302仅有两个交点,第一环形301的内圆3012上与第二环形302的内圆3022上最近距离的两点分别为第一点2043和第二点2044,以两个交点2041和2042、第一点2043和第二点2044为四个边长的中心所形成的矩形成像范围204,用于成像纹路。
例如,在第一环形301和第二环形302相互靠近的过程中,第一环形301和第二环形302的两个交点2041和2042之间的距离越来越大,而第一点2043和第二点2044之间的距离越来越小,因此矩形成像范围204的尺寸具 有最大值。例如,第一环形301和第二环形302重叠的程度使得矩形成像范围204的尺寸最大,由此可获得较大的纹路图像。
例如,在另一些示例中,如图10C所示,第一环形301和第二环形302共同覆盖的范围内形成成像范围,用于成像纹路。由此可获得接近“8”字形的具有更大尺寸的成像范围。
例如,在一些实施例中,当纹路的尺寸较大时,如图11所示,光阀结构120还可以配置为在第一时刻允许控制呈阵列排布的多个第一区域1透光,以形成呈阵列排布的多个第一感光光源201(图中示出为两个),在第二时刻允许控制呈阵列排布的多个第二区域2透光,以形成呈阵列排布的多个第二感光光源202(图中示出为两个),从而这些感光光源的成像范围可以相叠加、拼接,以形成更大的成像范围。例如,在其他实施例中,根据情况,所提供的第一感光光源201和第二感光光源202还可以为更多个,并且还可以提供多个第三感光光源303,本公开的实施例对此不做限定。
例如,控制器103通过触控结构检测纹路与触摸侧的接触面积,当接触面积大于阈值面积时,光阀结构120进行上述操作。例如,阈值面积可以根据提供纹路的操作体(例如手指)设定,例如设定为1cm×1cm等,本公开的实施例对此不做限定。由此,纹路识别装置100可以根据纹路的接触面积选择性提供感光光源,以获取相应大小的纹路图像,以便于纹路识别。
需要注意的是,以上实施例是以感光光源为点光源为示例进行介绍的,在其他实施例,感光光源还可以是线光源或者其他图案化的光源,本公开的实施例对此不作具体限定。另外,点状感光光源可以通过调节透光区域(第一区域1、第二区域2等)的形状而获得,例如透光区域可以为近似正方形、近似圆形,在一些情况下透光区域还可以形成为不规则图形,本公开的实施例对此不作具体限定。
另外,本公开的实施例中,控制器103可以为各种类型的控制器,例如为各种类型的具有处理功能的集成电路芯片,其可以具有各种计算架构,例如复杂指令集计算机(CISC)结构、精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。在一些实施例中,控制器230可以是微处理器,例如X86处理器或ARM处理器,或者可以是数字处理器(DSP)等。本公开的实施例对控制器103的类型不做限制。
例如,在一些实施例中,控制器103还可以包括存储器,该存储器用于 存储分时形成透光区域的控制程序以及分时形成多个透光区域的控制程序等。例如,该存储单元可以为任意形式的存储介质,例如易失性存储器或非易失性存储器等,例如半导体存储器或磁性介质存储器等,本公开的实施例对此不做限定。
本公开至少一实施例还提供一种纹路识别装置的驱动方法,该纹路识别装置例如为上述任一实施例所述的纹路识别装置,具有触摸侧,且包括光源阵列、图像传感器阵列和光阀结构;图像传感器阵列配置为可接收从光源阵列发出且经纹路反射至图像传感器阵列的光以用于纹路采集;光阀结构设置在光源阵列的靠近触摸侧的一侧。该驱动方法包括:根据控制信号控制光阀结构的第一区域处于透光状态,以在透光状态允许光源阵列发出的光透过第一区域形成第一感光光源;第一感光光源在图像传感器阵列上形成第一成像范围,用于成像纹路以得到第一纹路图像。图像传感器阵列工作以采集对应于第一纹路图像的数据,并将采集的对应于第一纹路图像的数据发送到控制器或处理器以进一步处理以得到第一纹路图像。
例如,在一些实施例中,驱动方法还包括:根据控制信号控制光阀结构的第二区域处于透光状态,以在透光状态允许光源阵列发出的光透过第二区域,形成第二感光光源。例如,第一区域和第二区域不同,且第一区域和第二区域在不同时处于透光状态。第二感光光源在图像传感器阵列上形成第二成像范围,第二成像范围与第一成像范围共同用于成像纹路,以得到第二纹路图像。图像传感器阵列工作以采集对应于第二纹路图像的数据,并将采集的对应于第二纹路图像的数据发送到控制器或处理器以进一步处理以得到第二纹路图像。例如,该第一纹路图像和第二纹路图像可以用于拼接、组合以得到更完整的纹路图像。
例如,在一些实施例中,驱动方法还包括:控制光阀结构的不同于第一区域和第二区域的第三区域处于透光状态,以在透光状态允许光源阵列发出的光透过第三区域,形成第三感光光源等。感光光源的提供方式与规则可参考上述实施例,在此不再赘述。
例如,在一些实施例中,纹路识别装置实现为液晶显示装置,此时,光阀结构为液晶面板,液晶面板具有阵列基板、对置基板以及阵列基板和对置基板之间的液晶层,且液晶面板包括像素阵列,像素阵列包括多个像素单元,每个像素单元包括至少一个子像素单元,控制信号包括扫描信号和数据信 号。例如,驱动方法包括:根据扫描信号和数据信号控制与至少一个子像素单元对应的像素区域中的透光状态。
例如,纹路识别装置实现为液晶显示装置时,液晶显示装置还可以包括背光源,该背光源为直下式背光源,包括排列为阵列的多个子光源111,例如可通过局域调光技术(Local Dimming,LD)来控制。此时,驱动方法可以包括:控制背光源,以根据需要点亮第一区域(和/或第二区域、第三区域)相应位置的一个或多个子光源,由此结合光阀结构实现用于纹路识别的一个或多个感光光源,以用于实现纹路识别,而其他位置的子光源保持关闭,由此可以降低纹路识别装置的能耗。
例如,驱动方法还可以包括:根据纹路在触摸侧的触摸位置,确定第一区域的位置,并控制光阀结构,以提供第一感光光源。
在另一个示例中,驱动方法还可以包括:确定第一区域的位置之后,控制背光源,以点亮第一区域相应位置的一个或多个子光源,并控制光阀结构,以提供第一感光光源。
另外,在一些实施例中,驱动方法还可以包括:获取纹路在触摸侧的触摸面积,以确定第一区域的大小与数量。
纹路识别装置的更多驱动方法可以参见上述实施例,在此不再赘述。
还有以下几点需要说明:
(1)本公开实施例的附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种纹路识别装置,具有触摸侧,包括:
    光源阵列;
    图像传感器阵列,配置为可接收从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光以用于纹路采集;
    光阀结构,设置在所述光源阵列的靠近所述触摸侧的一侧,配置为能响应控制信号控制第一区域处于透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第一区域形成第一感光光源。
  2. 根据权利要求1所述的纹路识别装置,其中,所述光阀结构还配置为允许控制不同于所述第一区域的第二区域处于所述透光状态,以使在所述透光状态允许所述光源阵列发出的光透过所述第二区域,形成第二感光光源,且配置为允许所述第一区域和所述第二区域在不同时处于所述透光状态。
  3. 根据权利要求1或2所述的纹路识别装置,其中,所述光阀结构为液晶面板,
    所述液晶面板具有阵列基板、对置基板以及所述阵列基板和所述对置基板之间的液晶层,且所述液晶面板包括像素阵列,所述像素阵列包括多个像素单元,所述控制信号包括扫描信号和数据信号,每个所述像素单元包括至少一个子像素单元,每个子像素单元且配置为根据所述扫描信号和所述数据信号控制与所述子像素单元对应的像素区域中的透光状态。
  4. 根据权利要求3所述的纹路识别装置,其中,所述图像传感器阵列包括多个图像传感器,所述多个图像传感器设置在所述液晶面板的所述阵列基板中。
  5. 根据权利要求4所述的纹路识别装置,其中,所述多个图像传感器中的每个设置在相邻的两行所述像素单元之间;或者,
    所述多个图像传感器中的每个设置在所述像素单元中。
  6. 根据权利要求4所述的纹路识别装置,其中,所述多个图像传感器中的每个设置在相邻的所述子像素单元之间;或者,
    所述多个图像传感器中的每个设置在所述子像素单元中。
  7. 根据权利要求6所述的纹路识别装置,其中,每个所述像素单元包 括红色子像素单元、绿色子像素单元和蓝色子像素单元,所述图像传感器设置在相邻的所述像素单元的蓝色子像素单元之间。
  8. 根据权利要求5或6所述的纹路识别装置,其中,每个所述子像素单元包括第一开关元件以接收所述扫描信号和所述数据信号,所述图像传感器每个包括感光元件和第二开关元件;
    所述像素阵列包括第一子像素单元,所述图像传感器阵列包括第一图像传感器,所述第一子像素单元和所述第一图像传感器相邻设置,所述第一图像传感器的第二开关元件与所述第一子像素单元的第一开关元件至少部分同层设置。
  9. 根据权利要求8所述的纹路识别装置,其中,所述第一图像传感器的感光元件包括第一电极以及与所述第一电极电连接的引线,所述第一子像素单元包括与所述第一开关元件电连接的第一像素电极,
    所述第一电极和所述第一像素电极同层设置;或者
    所述第一电极的引线和所述第一像素电极同层设置。
  10. 根据权利要求9所述的纹路识别装置,其中,所述阵列基板还包括衬底基板,所述第一图像传感器的感光元件在所述衬底基板上的正投影与所述第一图像传感器的第二开关元件在所述衬底基板上的正投影至少部分重叠。
  11. 根据权利要求10所述的纹路识别装置,其中,所述第一图像传感器的感光元件在所述衬底基板上的正投影还与所述第一子像素单元的第一开关元件在所述衬底基板上的正投影至少部分重叠。
  12. 根据权利要求9所述的纹路识别装置,还包括触控结构,所述触控结构包括触控电极,所述第一子像素单元还包括第一公共电极,
    所述第一公共电极复用为所述触控电极。
  13. 根据权利要求12所述的纹路识别装置,其中,所述第一图像传感器还包括与所述第二开关元件电连接的信号读出线,所述触控结构还包括与所述触控电极电连接的触控引线,
    所述信号读出线复用为所述触控引线;或者,所述信号读出线在所述衬底基板上的正投影与所述触控引线所述衬底基板上的正投影至少部分重叠。
  14. 根据权利要求13所述的纹路识别装置,其中,在所述信号读出线复用为所述触控引线下,所述触控结构还包括第三开关元件,所述触控电极 通过所述第三开关元件电连接所述触控引线。
  15. 根据权利要求3所述的纹路识别装置,其中,所述对置基板包括黑色矩阵层,所述黑色矩阵层包括暴露多个所述子像素单元的多个第一黑矩阵区域以及暴露所述多个图像传感器的第二黑矩阵区域,
    所述第一黑矩阵区域中设置第一滤光图案,所述第一滤光图案用于形成单色光,
    所述第二黑矩阵区域中设置第二滤光图案,所述第二滤光图案可过滤从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光。
  16. 根据权利要求15所述的纹路识别装置,其中,所述第二滤光图案可吸收波长范围为600nm-900nm的光。
  17. 根据权利要求1所述的纹路识别装置,还包括控制器,其中,所述控制器配置为根据所述纹路在所述触摸侧的触摸位置,确定所述第一区域的位置,并控制所述光阀结构,以提供所述第一感光光源。
  18. 根据权利要求17所述纹路识别装置,其中,所述控制器还配置为获取所述纹路在所述触摸侧的触摸面积,以确定所述第一区域的大小与数量。
  19. 根据权利要求2所述的纹路识别装置,其中,所述第二区域的大小大于所述第一区域的大小,
    所述第一感光光源在所述图像传感器阵列上的第一成像范围呈第一环形,所述第二感光光源在所述图像传感器阵列上的第二成像范围呈第二环形,所述第二环形至少部分覆盖所述第一环形的环心部分。
  20. 根据权利要求19所述的纹路识别装置,其中,所述液晶光阀还配置为允许控制不同于所述第一区域和第二区域的第三区域处于所述透光状态,以使在所述透光状态允许所述光源阵列发出的光透过所述第三区域,形成第三感光光源,且配置为允许所述第一区域和所述第三区域同时处于所述透光状态;
    所述第三区域的大小等于所述第一区域的大小,所述第三感光光源在所述图像传感器阵列上的第三成像范围呈第三环形,所述第二环形还至少部分覆盖所述第三环形的环心部分。
  21. 根据权利要求2所述的纹路识别装置,其中,所述第二区域的大小等于所述第一区域的大小,
    所述第一感光光源在所述图像传感器阵列上的第一成像范围呈第一环形,所述第二感光光源在所述图像传感器阵列上的第二成像范围呈第二环形,
    所述第一环形和所述第二环形仅有两个交点,所述第一环形的内圆上与所述第二环形的内圆上最近距离的两点分别为第一点和第二点,以所述两个交点、所述第一点和所述第二点为四个边长的中心所形成的矩形成像范围,用于成像所述纹路,或者
    在所述第一环形和所述第二环形共同覆盖的范围内形成成像范围,用于成像所述纹路。
  22. 一种纹路识别装置的驱动方法,所述纹路识别装置具有触摸侧,且包括:
    光源阵列;
    图像传感器阵列,配置为可接收从所述光源阵列发出且经纹路反射至所述图像传感器阵列的光以用于纹路采集;
    光阀结构,设置在所述光源阵列的靠近所述触摸侧的一侧;
    所述驱动方法包括:
    根据控制信号控制所述光阀结构的第一区域处于透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第一区域形成第一感光光源;
    所述第一感光光源在所述图像传感器阵列上形成第一成像范围,用于成像所述纹路。
  23. 根据权利要求22所述的驱动方法,还包括:
    根据控制信号控制所述光阀结构的第二区域处于所述透光状态,以在所述透光状态允许所述光源阵列发出的光透过所述第二区域,形成第二感光光源;
    其中,所述第一区域和所述第二区域不同,且所述第一区域和所述第二区域在不同时处于所述透光状态;
    所述第二感光光源在所述图像传感器阵列上形成第二成像范围,所述第二成像范围与所述第一成像范围共同用于成像所述纹路。
  24. 根据权利要求22所述的驱动方法,其中,所述光阀结构为液晶面板,
    所述液晶面板具有阵列基板、对置基板以及所述阵列基板和所述对置基 板之间的液晶层,且所述液晶面板包括像素阵列,所述像素阵列包括多个像素单元,每个所述像素单元包括至少一个子像素单元,所述控制信号包括扫描信号和数据信号,
    所述驱动方法包括:
    根据所述扫描信号和所述数据信号控制与所述至少一个子像素单元对应的像素区域中的透光状态。
PCT/CN2019/085284 2019-04-30 2019-04-30 纹路识别装置以及纹路识别装置的驱动方法 WO2020220302A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/764,143 US11301707B2 (en) 2019-04-30 2019-04-30 Texture recognition device and driving method of texture recognition device
CN201980000568.4A CN112236774B (zh) 2019-04-30 2019-04-30 纹路识别装置以及纹路识别装置的驱动方法
PCT/CN2019/085284 WO2020220302A1 (zh) 2019-04-30 2019-04-30 纹路识别装置以及纹路识别装置的驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085284 WO2020220302A1 (zh) 2019-04-30 2019-04-30 纹路识别装置以及纹路识别装置的驱动方法

Publications (1)

Publication Number Publication Date
WO2020220302A1 true WO2020220302A1 (zh) 2020-11-05

Family

ID=73029580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085284 WO2020220302A1 (zh) 2019-04-30 2019-04-30 纹路识别装置以及纹路识别装置的驱动方法

Country Status (3)

Country Link
US (1) US11301707B2 (zh)
CN (1) CN112236774B (zh)
WO (1) WO2020220302A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442367A (zh) * 2021-07-23 2022-05-06 友达光电股份有限公司 生物特征识别装置及其识别方法
WO2022160087A1 (zh) * 2021-01-26 2022-08-04 京东方科技集团股份有限公司 显示面板和显示装置
US20230341971A1 (en) * 2021-01-14 2023-10-26 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and driving method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442273A (zh) * 2019-07-19 2019-11-12 深圳市华星光电半导体显示技术有限公司 红外触控显示装置
US11733792B2 (en) * 2020-08-07 2023-08-22 Novatek Microelectronics Corp. Touch display device
US11658204B2 (en) * 2020-11-12 2023-05-23 GM Global Technology Operations LLC Microled display with pixelated sensors
TWI765457B (zh) * 2020-12-09 2022-05-21 友達光電股份有限公司 顯示裝置及掃描影像的方法
CN112882306B (zh) * 2021-03-15 2023-08-29 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930827A (zh) * 2016-05-16 2016-09-07 京东方科技集团股份有限公司 一种阵列基板、显示装置及其驱动方法
CN107832752A (zh) * 2017-12-15 2018-03-23 京东方科技集团股份有限公司 指纹识别面板、全屏指纹识别方法及显示装置
CN109031762A (zh) * 2018-08-23 2018-12-18 合肥京东方光电科技有限公司 显示面板及其驱动方法、显示装置
CN109508683A (zh) * 2018-11-21 2019-03-22 京东方科技集团股份有限公司 用于显示装置的纹路识别方法、纹路检测芯片及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279275B1 (ko) * 2006-09-01 2013-06-26 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
US8917387B1 (en) * 2014-06-05 2014-12-23 Secugen Corporation Fingerprint sensing apparatus
US10282649B2 (en) * 2014-08-19 2019-05-07 Empire Technology Development, Llc Machine recognizable pattern generation
US20160266695A1 (en) * 2015-03-10 2016-09-15 Crucialtec Co., Ltd. Display apparatus having image scanning function
CN106249457B (zh) * 2016-09-26 2019-09-13 京东方科技集团股份有限公司 一种阵列基板、显示装置以及指纹识别的控制方法
US11073712B2 (en) * 2018-04-10 2021-07-27 Apple Inc. Electronic device display for through-display imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930827A (zh) * 2016-05-16 2016-09-07 京东方科技集团股份有限公司 一种阵列基板、显示装置及其驱动方法
CN107832752A (zh) * 2017-12-15 2018-03-23 京东方科技集团股份有限公司 指纹识别面板、全屏指纹识别方法及显示装置
CN109031762A (zh) * 2018-08-23 2018-12-18 合肥京东方光电科技有限公司 显示面板及其驱动方法、显示装置
CN109508683A (zh) * 2018-11-21 2019-03-22 京东方科技集团股份有限公司 用于显示装置的纹路识别方法、纹路检测芯片及显示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230341971A1 (en) * 2021-01-14 2023-10-26 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and driving method thereof
WO2022160087A1 (zh) * 2021-01-26 2022-08-04 京东方科技集团股份有限公司 显示面板和显示装置
CN115210780A (zh) * 2021-01-26 2022-10-18 京东方科技集团股份有限公司 显示面板和显示装置
CN115210780B (zh) * 2021-01-26 2023-11-24 京东方科技集团股份有限公司 显示面板和显示装置
US11869268B2 (en) 2021-01-26 2024-01-09 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel and display device
CN114442367A (zh) * 2021-07-23 2022-05-06 友达光电股份有限公司 生物特征识别装置及其识别方法
CN114442367B (zh) * 2021-07-23 2023-10-17 友达光电股份有限公司 生物特征识别装置及其识别方法

Also Published As

Publication number Publication date
CN112236774B (zh) 2024-03-01
CN112236774A (zh) 2021-01-15
US20210232841A1 (en) 2021-07-29
US11301707B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2020220302A1 (zh) 纹路识别装置以及纹路识别装置的驱动方法
CN108415188B (zh) 一种液晶显示面板、显示装置及其指纹解锁方法
CN107133613B (zh) 一种显示面板及显示装置
CN106373969B (zh) 显示基板和显示装置
CN101571633B (zh) 液晶显示设备
CN107068726B (zh) 一种显示面板及显示装置
CN110263773B (zh) 显示模组、显示装置及光栅膜材层的制作方法
CN109521605A (zh) 背光模组和显示装置
WO2019137002A1 (zh) 显示面板和显示装置
CN110308583B (zh) 显示面板及指纹识别显示装置
TW202011097A (zh) 顯示面板
WO2021249178A1 (zh) 显示面板和显示装置
CN211180476U (zh) 液晶显示装置
WO2020232637A1 (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
WO2020140279A1 (zh) 显示面板及其操作方法
WO2021136342A1 (zh) 指纹识别器件、指纹识别显示基板及其制作方法
WO2021217325A1 (zh) 纹路识别装置以及对向基板
WO2021258957A1 (zh) 纹路识别装置以及电子装置
WO2022233180A1 (zh) 光学感测装置
WO2021238492A1 (zh) 纹路识别装置及其制造方法
US11188772B2 (en) Drive method for texture recognition device and texture recognition device
CN110543821A (zh) 纹路识别装置及其操作方法
US11580771B2 (en) Image capturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19927270

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927270

Country of ref document: EP

Kind code of ref document: A1