WO2021233014A1 - 显示基板及显示装置 - Google Patents

显示基板及显示装置 Download PDF

Info

Publication number
WO2021233014A1
WO2021233014A1 PCT/CN2021/086766 CN2021086766W WO2021233014A1 WO 2021233014 A1 WO2021233014 A1 WO 2021233014A1 CN 2021086766 W CN2021086766 W CN 2021086766W WO 2021233014 A1 WO2021233014 A1 WO 2021233014A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
light
light guiding
orthographic projection
Prior art date
Application number
PCT/CN2021/086766
Other languages
English (en)
French (fr)
Inventor
王雷
丁小梁
海晓泉
李扬冰
张磊
王迎姿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/765,723 priority Critical patent/US20220367582A1/en
Publication of WO2021233014A1 publication Critical patent/WO2021233014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate and a display device.
  • fingerprint sensor technology can be divided into optical fingerprint sensor technology, semiconductor capacitive fingerprint sensor technology, semiconductor thermal fingerprint sensor technology, semiconductor pressure sensitive fingerprint sensor technology and ultrasonic fingerprint sensor technology.
  • the optical fingerprint sensing technology is mainly a technology that acquires the fingerprint pattern by collecting the reflected light signal (that is, the reflected light from the finger) that is irradiated to the finger.
  • a display substrate in one aspect, includes: a substrate; a plurality of photosensitive sensors arranged on one side of the substrate; and a first light guiding layer arranged on a side of the plurality of photosensitive sensors away from the substrate.
  • the material of the first light guiding layer includes a light-shielding material.
  • the first light guiding layer is provided with a plurality of first through holes, and the orthographic projection of at least one first through hole on the substrate is located within the orthographic projection range of a photosensitive sensor on the substrate.
  • the display substrate further includes: a flat layer, an electrode layer, and a pixel defining layer disposed on a side of the plurality of photosensitive sensors away from the substrate.
  • the first light guiding layer includes at least one of the flat layer, the electrode layer, and the pixel defining layer.
  • the display substrate further includes: a spacer layer sequentially disposed on a side of the pixel defining layer away from the substrate.
  • the first light guiding layer includes at least one of the flat layer, the electrode layer, the pixel defining layer, and the spacer layer.
  • the first light guiding layer includes the flat layer, the pixel defining layer, and the spacer layer, and the plurality of first through holes are formed by using the same patterning process and pass through all of them.
  • each photosensitive sensor is on the substrate
  • the orthographic projection of is located within the outer boundary range of the orthographic projection of the electrode layer on the substrate.
  • the orthographic projection of each photosensitive sensor on the substrate partially overlaps the orthographic projection of the electrode layer on the substrate , And the orthographic projection of the plurality of first through holes on the substrate does not overlap with the orthographic projection of the electrode layer on the substrate.
  • the display substrate has a plurality of sub-pixels.
  • each sub-pixel includes a light emitting device; the light emitting device includes a light emitting layer; the pixel defining layer has a plurality of first openings, and each first opening is provided with one light emitting layer.
  • Each of the photosensitive sensors is configured to collect light emitted through at least one light-emitting device and reflected by a finger.
  • the spacer layer includes a plurality of spacers, and the orthographic projection of each spacer on the substrate is within an orthographic projection range of the pixel defining layer on the substrate , The orthographic projection of each photosensitive sensor on the substrate is located within the orthographic projection range of the spacer layer on the substrate.
  • the portion of the first light guiding layer covering each of the photosensitive sensors has 2-100 first through holes.
  • the pore diameter of the first through hole ranges from 2 ⁇ m to 10 ⁇ m.
  • the display substrate further includes: an encapsulation layer disposed on a side of the first light guiding layer away from the substrate; and, a encapsulation layer disposed on a side of the encapsulation layer away from the substrate
  • the second light guide layer is configured such that the light passing through the second light guiding layer is the light having an exit angle within a predetermined angle range.
  • the material of the second light guiding layer includes a light-shielding material.
  • a plurality of second through holes are provided in the second light guiding layer.
  • the orthographic projection of a first through hole on the substrate at least partially overlaps with the orthographic projection of a second through hole on the substrate.
  • the orthographic projection of at least one second through hole on the substrate is located within the orthographic projection range of a photosensitive sensor on the substrate.
  • the orthographic projection of the second light guiding layer on the substrate is located on the orthographic projection of the pixel defining layer on the substrate Within range.
  • the plurality of first through holes and the plurality of second through holes are filled with a light-transmitting material .
  • the thickness of the encapsulation layer ranges from 6 ⁇ m to 12 ⁇ m.
  • the display substrate when the display substrate further includes a second light guiding layer, and the material of the second light guiding layer includes a light-shielding material, the second light guiding layer has a plurality of second openings There is no overlap between the orthographic projections of the plurality of second openings on the substrate and the orthographic projections of the plurality of photosensitive sensors on the substrate.
  • the display substrate further includes: a color filter portion disposed in each of the second openings.
  • the display substrate further includes: a polarizer disposed on a side of the second light guiding layer away from the substrate.
  • the display substrate further includes: a touch control structure; the touch control structure is disposed between the encapsulation layer and the second light guiding layer, or is disposed on the second light guiding layer The side of the layer away from the substrate.
  • the material of the touch structure includes a transparent conductive material.
  • the orthographic projection of the touch structure on the substrate is within the orthographic projection range of the second light guiding layer on the substrate.
  • the material of the portion opposite to the plurality of second through holes includes a light-transmissive conductive material.
  • a display device in another aspect, includes: the display substrate as described in some of the above embodiments.
  • Figure 1 is an image of a fingerprint pattern according to the related technology
  • FIG. 2 is a distribution diagram of point light sources provided with polarizers on a display substrate according to a related art
  • Fig. 3 is a structural diagram of a display substrate according to some embodiments of the present disclosure.
  • FIG. 4 is a structural diagram of another display substrate according to some embodiments of the present disclosure.
  • FIG. 5 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 9 is a partial structural diagram of a display substrate according to some embodiments of the present disclosure.
  • FIG. 10 is a diagram of an optical path according to some embodiments of the present disclosure.
  • FIG. 11 is a partial top view of a first light guiding layer or a second light guiding layer according to some embodiments of the present disclosure.
  • FIG. 12 is a partial structural diagram of another display substrate according to some embodiments of the present disclosure.
  • Fig. 13 is a schematic diagram of a fingerprint pattern image according to some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 15 is a structural diagram of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 16 is a structural diagram of a touch structure according to some embodiments of the present disclosure.
  • FIG. 17 is a cross-sectional view of the touch structure shown in FIG. 16 along the A-A' direction;
  • FIG. 18 is a structural diagram of another touch structure according to some embodiments of the present disclosure.
  • FIG. 19 is a cross-sectional view of the touch structure shown in FIG. 18 along the B-B' direction;
  • 20 is a partial structural diagram of a touch structure and a second light guiding layer in some embodiments of the present disclosure
  • FIG. 21 is a structural diagram of a display device according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection and its extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • A is arranged on (or located) on the side of B far away from C, which not only refers to the positional relationship of the three in space, but also refers to the later preparation and formation of A compared to B.
  • the term “if” is optionally interpreted as meaning “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [stated condition or event] is detected” or “in response to detecting [stated condition or event]”.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the process of using optical fingerprint sensing technology to obtain fingerprint lines is, for example, after light is irradiated to the finger, ridge reflection light (that is, light reflected after irradiating the ridge in the fingerprint of the finger) is obtained, and Valley reflected light (that is, the light reflected from the valley in the fingerprint of the finger), the ridge reflected light and the valley reflected light have different light intensities.
  • ridge reflection light that is, light reflected after irradiating the ridge in the fingerprint of the finger
  • Valley reflected light that is, the light reflected from the valley in the fingerprint of the finger
  • the ridge reflected light and the valley reflected light have different light intensities.
  • After collecting the above-mentioned ridge reflected light and valley reflected light it can be based on the ridge reflected light and the valley reflected light.
  • the reflected light forms a fingerprint pattern image with light and dark.
  • the area of the fingerprint ridge image obtained is small, and the edge part of the fingerprint is easily interfered by strong light, resulting in the obtained fingerprint ridge image is relatively fuzzy ,
  • the definition is low (for example, as shown in Figure 1).
  • the display substrate 100 has a plurality of pixel regions P.
  • the display substrate 100 includes a plurality of sub-pixels Q.
  • Each sub-pixel Q can emit light of one color, for example, one of white, red, green, and blue.
  • each sub-pixel Q can also emit light of other colors, and the settings can be selected here according to actual needs.
  • the above-mentioned multiple sub-pixels Q cooperate with each other to realize image display.
  • a plurality of sub-pixels Q are provided in each pixel region P.
  • each pixel area P is provided with three sub-pixels Q, and the three sub-pixels Q can respectively emit red light, green light, and blue light.
  • each pixel area P is provided with four sub-pixels Q, and the four sub-pixels Q can respectively emit white light, red light, green light, and blue light, or two of the four sub-pixels Q can emit Green light, the other two sub-pixels Q can emit red light and blue light respectively.
  • each sub-pixel Q includes one light-emitting device 13.
  • the light-emitting device 13 may include a cathode 131, a light-emitting layer 132, and an anode 133 stacked in sequence, wherein the light-emitting layer 132 can emit colored light.
  • the light emitting device 13 may also include an electron injection layer and an electron transport layer disposed between the cathode 131 and the light emitting layer 132, and a hole injection layer and a hole transport layer disposed between the anode 133 and the light emitting layer 132.
  • the material of the light-emitting layer 132 includes multiple types.
  • the material of the light emitting layer 132 may include an organic material.
  • the light emitting device 13 may be an OLED (Organic Light Emitting Diode, organic light emitting diode) light emitting device.
  • the material of the light emitting layer 132 may include a quantum dot material.
  • the light emitting device 13 may be a QLED (Quantum Dot Light Emitting Diodes, quantum dot light emitting diode) light emitting device.
  • each sub-pixel Q further includes a driving circuit electrically connected to the light emitting device 13.
  • the driving circuit is configured to provide a driving voltage to the light emitting device 13 so that the light emitting device 13 emits light.
  • the driving circuit includes a driving transistor D.
  • the driving circuit may be electrically connected to the anode 133 of the light emitting device 13 through the driving transistor D.
  • the light-emitting device 13 can also be used as a light source required for obtaining fingerprint lines. In this way, additional light sources can be avoided, which is beneficial to simplify the structure of the display substrate 100 and simplify the manufacturing process of the display substrate 100.
  • the display substrate 100 further includes a substrate 10.
  • the substrate 10 has a variety of structures, which can be selected and set according to actual needs.
  • the substrate 10 is a blank base substrate.
  • the substrate 10 includes a blank base substrate and at least one functional film (for example, an insulating layer and/or a buffer layer) disposed on the blank base substrate.
  • blank base substrate There are many types of the blank base substrate, which can be selected and set according to actual needs.
  • the blank base substrate may be a rigid base substrate.
  • the rigid base substrate may be, for example, a glass base substrate or a PMMA (Polymethyl methacrylate) base substrate.
  • the blank base substrate may be a flexible base substrate.
  • the flexible base substrate may be, for example, a PET (Polyethylene terephthalate, polyethylene terephthalate) base substrate, a PEN (Polyethylene naphthalate two formal acid glycol ester, polyethylene naphthalate) base substrate, or PI (Polyimide, polyimide) substrate substrate.
  • the display substrate 100 further includes: a plurality of photosensitive sensors 11 arranged on one side of the substrate 10.
  • the substrate 10 includes at least one functional film
  • the plurality of photosensitive sensors 11 are arranged on the side of the at least one functional film away from the blank base substrate.
  • the above-mentioned light emitting device 13 and the plurality of photosensitive sensors 11 are located on the same side of the substrate 10.
  • each pixel area P is provided with at least one photosensitive sensor 11. That is, one photosensitive sensor 11 may be arranged in each pixel area P, or multiple photosensitive sensors 11 may be arranged in each pixel area P.
  • Each photosensitive sensor 11 is configured to collect light emitted through at least one light-emitting device 13 and reflected by a finger.
  • the light collected by different photosensitive sensors 11 is the light reflected by different positions of the finger.
  • the photosensitive sensor 11 After the photosensitive sensor 11 collects the light, it can perform photoelectric conversion and output an electrical signal.
  • the display substrate 100 can more accurately determine the light collected by different photosensitive sensors 11 (that is, determine that the light is ridge reflected light or valley reflected light) according to the electrical signals output by different photosensitive sensors 11, and then can integrate and analyze different photosensitive sensors 11
  • the output electrical signal determines the fingerprint image and realizes the acquisition of the fingerprint.
  • the above-mentioned photosensitive sensor 11 includes multiple structures.
  • the photosensitive sensor 11 includes a semiconductor layer 111 disposed on one side of the substrate 10, and a surface covering the first semiconductor layer 111 on the side away from the substrate 10 Protection electrode 112.
  • the semiconductor layer 111 includes, for example, an N-type semiconductor layer 1111 (the material is, for example, N-type amorphous silicon), and an intrinsic semiconductor layer 1112 (the material is, for example, amorphous Silicon) and the P-type semiconductor layer 1113 (the material of which is, for example, P-type amorphous silicon).
  • the N-type amorphous silicon may be amorphous silicon doped with phosphorus ions
  • the P-type amorphous silicon may be amorphous silicon doped with boron ions.
  • the above-mentioned semiconductor layer 111 can collect light emitted through at least one light-emitting device 13 and reflected by a finger, and perform photoelectric conversion.
  • the protective electrode 112 can protect the surface of the semiconductor layer 111 away from the substrate 10 to prevent the surface of the semiconductor layer 111 away from the substrate 10 from being damaged, thereby preventing the performance of the semiconductor layer 111 from being affected.
  • the material of the protective electrode 112 is a light-transmitting conductive material.
  • the material of the protective electrode 112 may be indium tin oxide (Indium Tin Oxides, ITO for short) or Indium doped Zinc Oxide (IZO for short). In this way, it is possible to prevent the protection electrode 112 from blocking the light, which affects the collection of light by the semiconductor layer 111.
  • the display substrate 100 further includes: a photosensitive control transistor E arranged on a side of each photosensitive sensor 11 close to the substrate 10 and electrically connected to the photosensitive sensor 11.
  • the above-mentioned photosensitive control transistor E is configured to control the derivation of the electrical signal converted by the photosensitive sensor 11. That is, when the photosensitive control transistor E is turned on, the electric signal converted by the photosensitive control transistor E to control the photosensitive sensor 11 is output through the photosensitive control transistor E.
  • the above-mentioned photosensitive control transistor E and the driving transistor D may use the same type of transistors, which facilitates the simultaneous preparation and formation of the photosensitive control transistor E and the driving transistor D, simplifying the display substrate 100 Preparation Process.
  • the photosensitive control transistor E and the driving transistor D may both be top-gate transistors.
  • both the photosensitive control transistor E and the driving transistor D may be bottom-gate transistors.
  • the structure of the driving transistor D includes various types.
  • the driving transistor D may be a single-gate transistor, or may also be a double-gate transistor as shown in FIGS. 4 to 8.
  • the display substrate 100 further includes: a source-drain conductive layer SD disposed on the side of the photosensitive control transistor E and the driving transistor D away from the substrate 10, and the source-drain conductive layer SD It includes a plurality of first conductive patterns SD1 and a plurality of second conductive patterns SD2.
  • each light emitting device 13 may be electrically connected to the corresponding driving transistor D through a first conductive pattern SD1; each photosensitive sensor 11 may be electrically connected to the corresponding photosensitive control transistor E through a second conductive pattern SD2.
  • the source-drain conductive layer SD By providing the source-drain conductive layer SD, it is beneficial to reduce the spatial occupation area of the thin films provided on the substrate 10, and facilitate the arrangement of the thin films.
  • the display substrate 100 further includes: a first light guiding layer L1 disposed on a side of the plurality of photosensitive sensors 11 away from the substrate 10.
  • a plurality of first through holes K1 are provided in the first light guiding layer L1.
  • the material of the first light guiding layer L1 includes a light-shielding material.
  • the above-mentioned light-shielding material has a high light absorption rate.
  • the first light guiding layer L1 can absorb light and avoid reflecting the light directed to itself.
  • light incident at a certain first through hole K1 of the first light guiding layer L1 at different angles of incidence for example, includes light emitted by a plurality of light-emitting devices 13 and reflected by a finger).
  • a part of the light (that is, the light with a large incident angle, for example, including the light reflected by the finger position that does not correspond to the first through hole K1) may be directly directed to the side of the first through hole K1
  • the wall is absorbed by the first light guiding layer L1; another part of the light (that is, the light with a small incident angle, for example, including the light reflected by the finger position corresponding to the first through hole K1) may pass through the first through hole K1 is emitted in parallel, and this part of the light is parallel to each other or roughly parallel to each other.
  • each first through hole K1 can form a collimated light path.
  • the light rays passing through the collimated light path are mutually parallel rays or substantially parallel rays, and the rays may be referred to as collimated rays.
  • the orthographic projection of at least one first through hole K1 on the substrate 10 is located within the orthographic projection range of a photosensitive sensor 11 on the substrate 10.
  • the collimated light path formed by the first through hole K1 can be used to remove part of the light with a larger incident angle (this part of the light may be called stray light), and the collimated light can be obtained.
  • Light for example, including the light reflected by the finger position corresponding to the first through hole K1
  • the collimated light is directed to the corresponding photosensitive sensor 11, and is collected by the photosensitive sensor 11, which is beneficial to improve the acquisition The accuracy of the fingerprint pattern image.
  • the area of the fingerprint pattern image obtained can be increased.
  • the first light guiding layer L1 with the plurality of first through holes K1 is provided on the side of the plurality of photosensitive sensors 11 away from the substrate 10, so that each The first through holes K1 constitute a collimated light path.
  • the collimated light path can be used to remove stray light (for example, including fingerprint information at a far distance), and improve the accuracy of the fingerprint ridge image obtained.
  • the use of the collimated light path described above can also block the transmitted or reflected light from external natural light irradiated to the finger, avoiding the interference of this part of the light on the collection of light, and improving the clarity of the acquired fingerprint pattern image.
  • the area of the fingerprint pattern image obtained can be increased.
  • the display substrate 100 further includes: an encapsulation layer 12 disposed on the side of the first light guiding layer L1 away from the substrate 10. Wherein, the encapsulation layer 12 covers the plurality of light emitting devices 13 and the plurality of photosensitive sensors 11 mentioned above.
  • the above-mentioned encapsulation layer 12 may be a thin-film encapsulation layer, for example, including a first inorganic layer, an organic layer, and a second inorganic layer that are sequentially stacked.
  • the material of the encapsulation layer 12 may be a material with a higher light transmittance, so as to avoid affecting the display quality of the display substrate 100 and avoid affecting the photosensitive sensor 11 to collect light reflected by the finger.
  • the encapsulation layer 12 can be used to block water and oxygen to the light emitting device 13 to prevent external water vapor and/or oxygen from corroding the light emitting device 13 and thereby avoid affecting the performance of the display substrate 100.
  • the display substrate 100 further includes: a second light guiding layer L2 disposed on the side of the packaging layer 12 away from the substrate 10.
  • the second light guiding layer L2 is configured such that the light passing through the second light guiding layer L2 is the light having an exit angle within a predetermined angle range.
  • the above-mentioned second light guiding layer L2 has a variety of structures, which can be selected and set according to actual needs.
  • the materials of the second light guiding layer L2 all include light-shielding materials, and a plurality of second through holes K2 are provided in the second light guiding layer L2.
  • the above-mentioned light-shielding material has a high light absorption rate.
  • the first light guiding layer L1 can absorb light and avoid reflecting the light directed to itself.
  • light incident at a certain second through hole K2 of the second light guiding layer L2 at different angles of incidence for example, includes light emitted by a plurality of light-emitting devices 13 and reflected by a finger).
  • a part of the light (that is, the light with a large incident angle, for example, including the light reflected by the finger position that does not correspond to the second through hole K2) may be directly directed to the side of the second through hole K2
  • the wall is absorbed by the second light guiding layer L2; another part of the light (that is, the light with a small incident angle, for example, including the light reflected by the finger position corresponding to the second through hole K2) may pass through the second through hole K2 is emitted and this part of the light is parallel to each other or roughly parallel to each other.
  • the preset angle range of the exit angle of the light passing through the second light guiding layer L2 can be set according to the aperture of the second through hole K2 and the thickness of the second light guiding layer L2.
  • the relationship between the first through hole K1 in the first light guiding layer L1 and the second through hole K2 in the second light guiding layer L2 may be, for example, a first The orthographic projection of a through hole K1 on the substrate 10 and the orthographic projection of a second through hole K2 on the substrate 10 at least partially overlap.
  • the first through holes K1 and the second through holes K2 can be in one-to-one correspondence.
  • each first through hole K1 The orthographic projection on the substrate 10 and the orthographic projection of the corresponding second through hole K2 on the substrate 10 at least partially overlap.
  • each first through hole K1 on the substrate 10 and the orthographic projection of its corresponding second through hole K2 on the substrate 10 partially overlap.
  • each first through hole K1 and its corresponding The second through holes K2 of K2 can be partially staggered in space, and the aperture size of the two can be selected and set according to actual needs.
  • Each first through hole K1 and its corresponding second through hole K2 form a better alignment.
  • each first through hole K1 on the substrate 10 coincides with the orthographic projection of its corresponding second through hole K2 on the substrate 10.
  • each first through hole K1 is on the substrate 10.
  • the area of the orthographic projection on 10 is equal to the area of the orthographic projection of the corresponding second through hole K2 on the substrate 10, that is, the aperture of each first through hole K1 and the aperture of the corresponding second through hole K2 They are equal, and each first through hole K1 and its corresponding second through hole K2 form a good alignment.
  • each first through hole K1 on the substrate 10 By setting the relationship between the orthographic projection of each first through hole K1 on the substrate 10 and the orthographic projection of its corresponding second through hole K2 on the substrate 10, and using the encapsulation layer 12 to guide the first light
  • the layer L1 and the second light guiding layer L2 are separated, so that there is a certain distance between each first through hole K1 and its corresponding second through hole K2, so that each first through hole and its corresponding second
  • the through holes K2 together form a collimated light path with a good collimation effect.
  • the thickness of the encapsulation layer 12 (that is, the size of the encapsulation layer 12 in the direction perpendicular to the substrate 10) can be selected and set according to actual needs.
  • the thickness (for example, the maximum thickness, the minimum thickness, or the average thickness) of the encapsulation layer 12 ranges from 6 ⁇ m to 12 ⁇ m. In this way, while isolating the first light guiding layer L1 and the second light guiding layer L2, it is ensured that each first through hole K1 and its corresponding second through hole K2 can form a collimated light path.
  • the thickness of the encapsulation layer 12 may be 6 ⁇ m, 7 ⁇ m, 8.5 ⁇ m, 10 ⁇ m, 11 ⁇ m, or 12 ⁇ m, etc.
  • the orthographic projection of at least one first through hole K1 and at least one second through hole K2 on the substrate 10 is located in the orthographic projection range of a photosensitive sensor 11 on the substrate 10. Inside.
  • At least one first through hole K1 and at least one second through hole K2 correspond one-to-one.
  • the collimated light path formed by the first through hole K1 and the second through hole K2 can be used to remove part of the light with a larger incident angle (the Part of the light can be called stray light) to obtain collimated light (for example, including the light reflected by the finger position corresponding to the second through hole K2), and make the collimated light directed to the corresponding photosensitive sensor 11,
  • the photosensitive sensor 11 collects, which is beneficial to further improve the accuracy of the fingerprint pattern image obtained.
  • the area of the fingerprint pattern image obtained can be further increased.
  • the above-mentioned second light guiding layer L2 may be a prism sheet, and one side surface of the prism sheet is provided with a plurality of micro prism structures.
  • the second light guiding layer L2 can concentrate the light passing through itself.
  • the first light guiding layer L1 can be used to screen the collected light so that the light incident to the photosensitive sensor 11 is parallel or approximately Parallel rays.
  • the preset angle range of the exit angle of the light passing through the second light guiding layer L2 can be set according to the size of the above-mentioned multiple microprism structures.
  • the portion of the first light guiding layer L1 that covers each photosensitive sensor 11 has 2-100 first through holes K1. That is, the orthographic projection of the 2-100 first through holes K1 on the substrate 10 is within the orthographic projection range of one photosensitive sensor 11 on the substrate 10.
  • the second light guiding layer L2 includes a plurality of second through holes K2
  • the orthographic projections of 2 to 100 second through holes K2 on the substrate 10 are located at the position of a photosensitive sensor 11 on the substrate 10. Within the range of orthographic projection.
  • the aperture d of each first through hole K1 may range from 2 ⁇ m to 10 ⁇ m.
  • the aperture d of each first through hole K1 may be 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, or the like.
  • the aperture d of each second through hole K2 may range from 2 ⁇ m to 10 ⁇ m.
  • each photosensitive sensor 11 when the portion of the first light guiding layer L1 that covers each photosensitive sensor 11 has a larger number of first through holes K1, the aperture d of each first through hole K1 may be smaller; When the number of first through holes K1 in a portion of the light guiding layer L1 covering each photosensitive sensor 11 is small, the aperture d of each first through hole K1 may be larger. In this way, each photosensitive sensor 11 can collect more light, which ensures that the acquired fingerprint pattern image has higher definition and accuracy.
  • the distance between each two adjacent first through holes K1 may be 1 ⁇ m to 5 ⁇ m.
  • the distance between each two adjacent first through holes K1 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the distance between every two adjacent second through holes K2 may be 1 ⁇ m to 5 ⁇ m.
  • the display substrate 100 further includes: a flat layer 14, an electrode layer 15, and a pixel defining layer, which are sequentially disposed on the side of the plurality of photosensitive sensors 11 away from the substrate. 16.
  • the electrode layer 15 includes a plurality of electrode patterns 151.
  • the plurality of electrode patterns 151 are in one-to-one correspondence with the plurality of photosensitive sensors 11 and are electrically connected.
  • Each electrode pattern 151 is configured to provide a voltage signal (for example, a bias voltage signal) to the corresponding photosensitive sensor 11.
  • the voltage signal provided by each electrode pattern 151 is matched with the corresponding photosensitive control transistor E, and the electrical signal converted by the corresponding photosensitive sensor 11 is controlled to be output through the photosensitive control transistor E.
  • the anode 133 of each light-emitting device 13 and the above-mentioned electrode layer 15 may be arranged in the same layer, and both are arranged on the side of the flat layer 14 away from the substrate 10. In this way, the planarization layer 14 can be used for planarization, so that the topography of the anode 133 and the electrode layer 15 are relatively flat.
  • the "same layer” mentioned in this article refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask plate through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses.
  • the anode 133 and the electrode layer 15 can be manufactured at the same time, thereby simplifying the manufacturing process of the display substrate 100.
  • the aforementioned pixel defining layer 16 has a plurality of first openings K3, and each first opening K3 is provided with a light-emitting layer 132 of a light-emitting device 13.
  • the light-emitting layer 132 can also extend beyond the first opening K3 and be disposed on the side surface of the pixel defining layer 16 away from the substrate 10, but there is no overlap with the adjacent light-emitting layer 132.
  • each light-emitting device 13 may be arranged in a first opening K3; of course, as shown in FIGS. 4 to 8, the cathodes 131 of a plurality of light-emitting devices 13 may also be an integrated structure and arranged in the pixel defining layer. 16 is away from the side of the substrate 10.
  • the first light guiding layer L1 includes at least one of a flat layer 14, an electrode layer 15 and a pixel defining layer 16. That is, at least one of the flat layer 14, the electrode layer 15, and the pixel defining layer 16 is provided with a plurality of first through holes K1, and the material thereof includes a light-shielding material.
  • the material of the electrode layer 15 may be a conductive material (for example, a metal material), and the conductive material has a low light transmittance.
  • the first light guiding layer L1 does not include the electrode layer 15 (that is, the electrode layer 15 is not provided with a plurality of first through holes K1)
  • each photosensitive sensor 11 is in the lining
  • the orthographic projection on the substrate 10 and the orthographic projection of the electrode layer 15 on the substrate 10 partially overlap (that is, the orthographic projection of each photosensitive sensor 11 on the substrate 10 and the orthographic projection of the corresponding electrode pattern 151 on the substrate 10 Partially overlap), and the orthographic projections of the plurality of first through holes K1 on the substrate 10 and the orthographic projections of the electrode layer 15 on the substrate 10 do not overlap. This can prevent the electrode layer 15 from blocking the light directed to the photosensitive sensor 11, and avoid affecting the acquisition of fingerprint pattern images.
  • each photosensitive sensor 11 is on the substrate 10
  • the orthographic projection is located in the outer boundary range of the orthographic projection of the electrode layer 15 on the substrate 10, that is, in the outer boundary range of the orthographic projection of the corresponding electrode pattern 151 on the substrate 10. In this way, it can be ensured that the plurality of second through holes K2 in the second light guiding layer L2 can form a collimated light path with the plurality of first through holes K1 provided in the electrode layer 15.
  • the display substrate 100 further includes a spacer layer 17 disposed on the side of the pixel defining layer 16 away from the substrate 10.
  • the spacer layer 17 can be used to support the display substrate 100 , To prevent the display substrate 100 from being damaged.
  • the spacer layer 17 includes a plurality of spacers 171, and the orthographic projection of each spacer 171 on the substrate 10 is located on the pixel defining layer 16 on the substrate 10. Within the range of the orthographic projection. That is, there is no overlap between the orthographic projection of each spacer 171 on the substrate 10 and the orthographic projection of each first opening K3 on the substrate 10. In this way, while the spacer layer 17 is used to support the display substrate 100, the spacer 171 can prevent the first opening K3 from blocking the first opening K3, thereby avoiding adverse effects on the process of forming the light-emitting layer 132 of the light-emitting device 13 by evaporation.
  • the first light guiding layer L1 includes at least one of a flat layer 14, an electrode layer 15, a pixel defining layer 16 and a spacer layer 17.
  • the first light guiding layer L1 includes a flat layer 14, an electrode layer 15, a pixel defining layer 16 and a spacer layer 17.
  • the orthographic projection of each photosensitive sensor 11 on the substrate 10 is within the orthographic projection range of the spacer layer 17 on the substrate 10.
  • the number of spacers 171 included in the photosensitive sensor 11 and the spacer layer 17 is the same, and corresponds to each other one to one.
  • the orthographic projection of each photosensitive sensor 11 on the substrate 10 is within the orthographic projection range of the corresponding spacer 171 on the substrate 10. In this way, when the first light guiding layer L1 includes the spacer layer 17, it can be ensured that the second through holes K2 in the second light guiding layer L2 can be formed with the first through holes K1 provided in the plurality of spacers 171. Collimate the light path.
  • the light-shielding material included in the first light guiding layer L1 includes, for example, Shading resin material.
  • the light-shielding resin material may be acrylic resin doped with black pigments (for example carbon), or black resin (for example, it may be a material formed by doping carbon, titanium or nickel in photoresist).
  • the material thereof may be, for example, a material with higher light transmittance (for example, Transparent resin material or inorganic material). In this way, adverse effects on the light emitted to the photosensitive sensor 11 can be avoided.
  • the plurality of first through holes K1 in the first light guiding layer L1 are filled with a light-transmitting material.
  • the light-transmitting material filled in the plurality of first through holes K1 may be a part of the film on the side of the first light guiding layer L1 away from the substrate 10.
  • the light-transmitting material filled in the plurality of first through holes K1 may be a part of the pixel defining layer 16.
  • the light-transmitting material filled in the plurality of first through holes K1 may be a part of the encapsulation layer 12.
  • the cathode 131 in the process of forming the cathode 131 on the side of the spacer layer 17 away from the substrate 10, the cathode 131 will form a fracture at the position of the plurality of first through holes K1, and a part of the encapsulation layer 12 can pass through the fracture. It sinks into the plurality of first through holes K1, and fills the plurality of first through holes K1.
  • the first light guiding layer L1 includes a flat layer 14, a pixel defining layer 16 and a spacer layer 17.
  • the same patterning process for example, exposure and development
  • the plurality of first through holes K1 all penetrate the planarization layer 14, the pixel defining layer 16 and the spacer layer 17. This is beneficial to simplify the manufacturing process of the display substrate 100.
  • the orthographic projection of the second light guiding layer L2 on the substrate 10 is within the orthographic projection range of the pixel defining layer 16 on the substrate 10. That is, the orthographic projection of the second light guiding layer L2 on the substrate 10 and the orthographic projection of the light emitting layer 132 of each light emitting device 13 on the substrate 10 do not overlap.
  • the second light guiding layer L2 includes a light-shielding material, for example, a light-shielding resin material or chromium metal.
  • the light-shielding resin material may be, for example, acrylic resin doped with black pigments (for example, carbon), or black resin (for example, it may be a material formed by doping carbon, titanium, or nickel in photoresist).
  • the material of the second light guiding layer L2 can absorb light, by setting the positional relationship between the second light guiding layer L2 and the light emitting layer 132, the light emitted by the light emitting layer 132 can be prevented from being emitted before the display surface of the display substrate 100
  • the second light guiding layer L2 absorbs, thereby avoiding affecting the display effect of the display substrate 100.
  • the second light guiding layer L2 has a plurality of second openings K4.
  • the second light guiding layer L2 may have a grid-like structure similar to the pixel defining layer 16.
  • the orthographic projections of the plurality of second openings K4 on the substrate 10 and the orthographic projections of the plurality of photosensitive sensors 11 on the substrate 10 do not overlap.
  • the second light guiding layer L2 covers the plurality of photosensitive sensors 11 described above.
  • the plurality of second openings K4 and the plurality of first openings K3 have a one-to-one correspondence, and the orthographic projection of the plurality of second openings K4 on the substrate 10 is similar to that of the plurality of first openings K3 on the substrate.
  • the orthographic projections on the substrate 10 coincide; or, the orthographic projection of each first opening K3 on the substrate 10 is within the orthographic projection range of the corresponding second opening K4 on the substrate 10. In this way, adverse effects on the light emitting effect of the display substrate 100 can be avoided.
  • the display substrate 100 further includes: a protective substrate 20 disposed on the side of the second light guiding layer L2 away from the substrate 10.
  • the protective substrate 20 may be, for example, a glass substrate, which is configured to protect each layer of thin film provided on the substrate 10.
  • the display substrate 100 further includes a polarizer 18 disposed on the side of the second light guiding layer L2 away from the substrate 10.
  • the polarizer 18 may be arranged between the second light guiding layer L2 and the protective substrate 20.
  • the reflection of natural light by the display substrate 100 can be reduced, and the display effect of the display substrate 100 can be improved.
  • the display substrate 100 further includes: a first adhesive layer Z1 disposed between the polarizer 18 and the second light guiding layer L2, and a first adhesive layer Z1 disposed between the polarizer 18 and the protective substrate 20 Two bonding layer Z2.
  • the first adhesive layer Z1 is configured to bond the polarizer 18 and the second light guiding layer L2; the second adhesive layer Z2 is configured to bond the polarizer 18 and the protective substrate 20.
  • the materials of the first adhesive layer Z1 and the second adhesive layer Z2 may be acrylic adhesive, for example.
  • the display substrate 100 further includes: a color filter 19 arranged in each second opening K4.
  • the color of the light allowed to pass through the color filter 19 in each second opening K4 is the same as the color of the light emitted by the corresponding light-emitting layer 132.
  • the plurality of light-emitting layers 132 include a light-emitting layer capable of emitting red light, a light-emitting layer capable of emitting green light, and a light-emitting layer capable of emitting yellow light.
  • the plurality of color filter portions 19 include a red color filter portion and a green color filter portion. Color part and yellow filter part.
  • each light-emitting layer 132 By disposing the color filter portion 19 on the side of each light-emitting layer 132 away from the substrate 10 and making the color of the light emitted by each light-emitting layer 132 the same as the color of the light that the corresponding color filter portion 19 allows to pass through, it is possible to When natural light is irradiated to the display substrate 100, most of the light is filtered out by the color filter. A small part of the light incident to the inside of the display substrate 100 can be further consumed under the action of the film inside the display substrate 100.
  • the display substrate 100 In the case where the small part of the light is not completely consumed and the display substrate 100 is emitted through the color filter 19, it can be ensured that the color of the emitted light is the same as the color of the light emitted by the corresponding light-emitting device 13. In this way, the reflection of natural light by the display substrate 100 can be effectively reduced, the display effect of the display substrate 100 can be improved, the light extraction efficiency of the display substrate 100 can be improved, and the power consumption of the display substrate 100 can be reduced.
  • the unevenness of the illuminance of the fingerprint pattern image can also be avoided (for example, as shown in FIG. 2), so that the fingerprint pattern image can be clearer as a whole. And easy to distinguish.
  • the second light guiding layer L2 and the plurality of color filters 19 when the second light guiding layer L2 and the plurality of color filters 19 are simultaneously disposed on the side of the encapsulation layer 12 away from the substrate 10, the second light guiding layer L2 may also be referred to as a black matrix.
  • the structure of the display substrate 100 may be referred to as a COE (CF on encapsulation, color film on the encapsulation layer) structure.
  • the display substrate 100 further includes a third adhesive layer Z3 provided between the second light guiding layer L2 and the protective substrate 20.
  • the third adhesive layer Z3 also covers the color filter portion 19 provided in each second opening K4 of the second light guiding layer L2.
  • the third adhesive layer Z2 is configured to adhere the second light guiding layer L2 and the protective substrate 20, and to adhere the color filter portion 19 and the protective substrate 20.
  • the material of the third adhesive layer Z3 may be acrylic adhesive, for example.
  • the plurality of second through holes K2 in the second light guiding layer L2 are filled with a light-transmitting material. By providing light-transmitting materials, adverse effects on the transmission of light can be avoided.
  • the above-mentioned light-transmitting material may be a part of the first adhesive layer Z1. That is, in the process of preparing and forming the first adhesive layer Z1, a part of the first adhesive layer Z1 may naturally sink into the plurality of second through holes K2 to fill the plurality of second through holes K2.
  • the above-mentioned light-transmitting material may be a part of the third adhesive layer Z3. That is, in the process of preparing and forming the third adhesive layer Z3, a part of the third adhesive layer Z3 may naturally sink into the plurality of second through holes K2 to fill the plurality of second through holes K2.
  • the additional filling of the light-transmitting material in the plurality of second through holes K2 can be avoided, thereby avoiding an additional process flow of filling the light-transmitting material in the plurality of second through holes K2, which is beneficial to simplify the manufacturing process of the display substrate 100.
  • different parts of the display substrate 100 may have a certain thickness (that is, a size along a direction perpendicular to the substrate 10) requirements, and the thickness may be selected and set according to actual needs.
  • the minimum distance h 0 between the surface of the photosensitive sensor 11 away from the substrate 10 and the first light guiding layer L1 may be 0.5 ⁇ m to 5 ⁇ m.
  • the distance h 0 is also the sum of the thickness of the first light guiding layer L1 (for example, the flat layer 14) closest to the photosensitive sensor 11 and the thickness of the film located between the photosensitive sensor 11 and the first light guiding layer L1.
  • the aforementioned distance h 0 may be 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, or the like.
  • the distance h 1 between the first light guiding layer L1 and the second light guiding layer L2 may be 6 ⁇ m to 20 ⁇ m.
  • the distance h 2 is also the thin films between the first light guiding layer L1 and the second light guiding layer L2 (for example, the electrode layer 15, the pixel defining layer 16, the spacer layer 17 or the encapsulation layer 12, etc.) The sum of the thickness.
  • the aforementioned distance h 1 may be 6 ⁇ m, 9 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, or the like.
  • the distance h 2 from the second light guiding layer L2 to the protective substrate 20 may be 300 ⁇ m to 1000 ⁇ m.
  • the distance h 2 is also the thickness of the second light guiding layer L2, the thickness of the protective substrate 20, and the film between the second light guiding layer L2 and the protective substrate 20 (for example, the second adhesive layer Z2 or the polarizer 19, etc.) ) Is the sum of the thicknesses.
  • the aforementioned distance h 2 may be 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, or the like.
  • the above-mentioned distance h 0 can be set to 1 ⁇ m
  • the set distance h 1 is 18 ⁇ m
  • the set distance h 2 is 600 ⁇ m
  • the apertures of the first through hole K1 and the second through hole K2 can be set to 8 ⁇ m
  • the distance between two adjacent first through holes K1 and the distance between two adjacent second through holes K2 are 4 ⁇ m (that is, the hole distance between two adjacent first through holes K1 and the adjacent
  • the hole spacing of the two second through holes K2 is 12 ⁇ m)
  • a photosensitive sensor 11 is provided in each pixel area P.
  • the material of the film of the display substrate 100 itself is adjusted, and through holes are provided in the film after the adjustment of the material to form the light collimation path, and different parts of the display substrate 100 may have certain Thickness can not only increase the area of the fingerprint ridge image, but also improve the overall clarity of the fingerprint ridge image, which improves the performance of the fingerprint ridge image.
  • the display substrate 100 further includes a touch structure 21.
  • the display substrate 100 can not only have the fingerprint identification function, but also have the touch function, so as to realize the integration of multiple functions.
  • the above-mentioned setting positions of the touch structure 21 include multiple types, which can be selected and set according to actual needs.
  • the touch structure 21 may be disposed between the encapsulation layer 12 and the second light guiding layer L2. At this time, it can be called on-cell touch (that is, the touch structure 21 is made on the encapsulation layer 12). This is beneficial to reduce the thickness of the display substrate 100 and realize the light and thin development of the display substrate 100.
  • the orthographic projection of the touch structure 21 on the substrate 10 may be within the orthographic projection range of the second light guiding layer L2 on the substrate 10. In this way, it is possible to prevent the touch structure 21 from adversely affecting the display effect and display quality of the display substrate 100.
  • the above-mentioned touch structure 21 has a variety of structures, which can be selected and set according to actual needs.
  • the touch structure 21 includes: a plurality of first touch electrodes 211 arranged on a side of the packaging layer 12 away from the substrate 10, and a plurality of first touch electrodes 211 arranged on the 211 A plurality of second touch electrodes 212 on a side away from the substrate 10.
  • the plurality of first touch electrodes 211 extend along the first direction X and are arranged at intervals
  • the plurality of second touch electrodes 212 extend along the second direction Y and are arranged at intervals.
  • the plurality of first touch electrodes 211 and the plurality of second touch electrodes 212 are insulated from each other.
  • the first direction X and the second direction Y cross.
  • the touch control structure 21 includes a plurality of conductive bridges 2122 disposed on the side of the packaging layer 12 away from the substrate 10.
  • the conductive bridges 2122 are arranged in an array, for example.
  • the touch structure 21 further includes a plurality of first touch electrodes 211 arranged on a side of the plurality of conductive bridges 2122 away from the substrate 10 and extending along the first direction X.
  • Each first touch electrode 211 includes a plurality of first touch sub-electrodes 2111 connected in series. Wherein, each first touch electrode 211 is, for example, an integral structure.
  • the touch structure 21 further includes a plurality of rows of second touch sub-electrodes 2121 arranged in the same layer as the plurality of first touch electrodes 211 described above.
  • Each row of the second touch sub-electrodes 2121 includes a plurality of second touch sub-electrodes 2121 arranged at intervals along the second direction Y.
  • every two adjacent second touch sub-electrodes 2121 are electrically connected to a conductive bridge 2122, so that the plurality of rows of second touch sub-electrodes 2121 and the plurality of conductive bridges are electrically connected 2122 constitutes a plurality of second touch electrodes 212.
  • the multiple first touch electrodes 211 and multiple rows of second touch sub-electrodes 2121 can be prepared and formed at the same time. , Which is beneficial to simplify the manufacturing process of the display substrate 100.
  • the above-mentioned touch structure 21 includes a variety of materials.
  • the material of the touch structure 21 includes a transparent conductive material.
  • the light-transmitting conductive material is, for example, ITO or IZO. In this way, it is possible to prevent the touch structure 21 from blocking the light directed to the photosensitive sensor 11, thereby avoiding adverse effects on the propagation of the light.
  • the material of the portion opposite to the plurality of second through holes K2 in the second light guiding layer L2 includes a light-transmitting conductive material.
  • the part that is not opposite to the plurality of second through holes K2 in the second light guiding layer L2 may pass through the via holes and the plurality of second through holes in the second light guiding layer L2.
  • the opposite part of K2 bridges and forms an electrical connection.
  • a part of the first touch electrode 211 in the touch structure 21 opposite to the second through hole K2 is taken as an example, wherein the part of the first touch electrode 211 that is not opposite to the second through hole K2 211a, an electrical connection is formed with the portion 211b of the first touch electrode 211 opposite to the second through hole K2 through the via hole.
  • the light-transmissive conductive material included in the portion opposite to the plurality of second through holes K2 in the second light guiding layer L2 is, for example, ITO or IZO.
  • the material of the part that is not opposite to the plurality of second through holes K2 in the second light guiding layer L2 may be molybdenum (Mo) or aluminum (Al), for example. In this way, it is possible to avoid blocking the light emitted to the photosensitive sensor 11, and at the same time, make the touch structure 21 have a smaller resistance, and avoid affecting the accuracy of the touch signal in the touch structure 21.
  • the touch structure 21 may be disposed on the side of the second light guiding layer L2 away from the substrate 10.
  • the touch structure 21 may be disposed between the second light guiding layer L2 and the protective substrate 20. At this time, it can be called an external touch. This is beneficial to reduce the difficulty of preparing the display substrate 100.
  • the touch structure 21 in this example may adopt the same structure and materials as the touch structure 21 in some of the above examples, and will not be repeated here.
  • the display device 1000 includes the display substrate 100 as provided in some of the above-mentioned embodiments.
  • the display substrate 100 included in the above-mentioned display device 1000 has the same structure and beneficial technical effects as the display substrate 100 provided in some of the above-mentioned embodiments, and will not be repeated here.
  • the above-mentioned display device 1000 further includes: a housing for installing the above-mentioned display substrate 100, and/or a camera installed on the display substrate 100, and the like.
  • the above-mentioned display device 1000 is any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种显示基板,包括:衬底;设置在所述衬底的一侧的多个光敏传感器;以及,设置在所述多个光敏传感器远离所述衬底一侧的第一光线引导层。其中,所述第一光线引导层的材料包括遮光材料。所述第一光线引导层中设置有多个第一通孔,至少一个第一通孔在所述衬底上的正投影位于一个光敏传感器在所述衬底上的正投影范围内。

Description

显示基板及显示装置
本申请要求于2020年05月18日提交的、申请号为202010421935.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及显示装置。
背景技术
随着科技的发展,指纹传感技术在日常生活中的应用越来越广泛。
按照指纹的成像原理,指纹传感技术可以划分为光学式指纹传感技术、半导体电容式指纹传感技术、半导体热敏式指纹传感技术、半导体压感式指纹传感技术和超声波式指纹传感技术等。其中,光学式指纹传感技术,主要是通过采集照射至手指后的反射光信号(也即手指反射光)来获取指纹的纹路的技术。
发明内容
一方面,提供一种显示基板。所述显示基板包括:衬底;设置在所述衬底的一侧的多个光敏传感器;以及,设置在所述多个光敏传感器远离所述衬底一侧的第一光线引导层。其中,所述第一光线引导层的材料包括遮光材料。所述第一光线引导层中设置有多个第一通孔,至少一个第一通孔在所述衬底上的正投影位于一个光敏传感器在所述衬底上的正投影范围内。
在一些实施例中,所述显示基板,还包括:设置在所述多个光敏传感器的远离所述衬底一侧的平坦层、电极层和像素界定层。所述第一光线引导层包括所述平坦层、所述电极层和所述像素界定层中的至少一者。
在一些实施例中,所述显示基板,还包括:依次设置在所述像素界定层的远离所述衬底一侧的隔垫物层。所述第一光线引导层包括所述平坦层、所述电极层、所述像素界定层和所述隔垫物层中的至少一者。
在一些实施例中,所述第一光线引导层包括所述平坦层、所述像素界定层和所述隔垫物层,所述多个第一通孔采用同一次构图工艺形成,并贯穿所述平坦层、所述像素界定层和所述隔垫物层。
在一些实施例中,在所述第一光线引导层包括所述电极层、且所述电极层中设置有多个第一通孔的情况下,每个所述光敏传感器在所述衬底上的正投影,位于所述电极层在所述衬底上的正投影外边界范围内。在所述电极层中未设置有多个第一通孔的情况下,每个所述光敏传感器在所述衬底上的正投影与所述电极层在所述衬底上的正投影部分重叠,且所述多个第一通孔在 所述衬底上的正投影与所述电极层在所述衬底上的正投影无交叠。
在一些实施例中,所述显示基板,具有多个子像素。其中,每个子像素包括一个发光器件;所述发光器件包括发光层;所述像素界定层具有多个第一开口,每个第一开口内设置有一个所述发光层。每个所述光敏传感器被配置为,采集经由至少一个发光器件发出的、且被手指反射的光线。
在一些实施例中,所述隔垫物层包括多个隔垫物,每个隔垫物在所述衬底上的正投影位于所述像素界定层在所述衬底上的正投影范围内,每个所述光敏传感器在所述衬底上的正投影位于所述隔垫物层在所述衬底上的正投影范围内。
在一些实施例中,所述第一光线引导层的覆盖每个所述光敏传感器的部分中,具有2~100个所述第一通孔。
在一些实施例中,所述第一通孔的孔径的范围为2μm~10μm。
在一些实施例中,所述显示基板,还包括:设置在所述第一光线引导层远离所述衬底一侧的封装层;以及,设置在所述封装层远离所述衬底一侧的第二光线引导层。所述第二光线引导层被配置为,使透过所述第二光线引导层的光线为出射角在预设角度范围内的光线。
在一些实施例中,所述第二光线引导层的材料均包括遮光材料。所述第二光线引导层中设置有多个第二通孔。一个第一通孔在所述衬底上的正投影与一个第二通孔在所述衬底上的正投影至少部分重合。至少一个所述第二通孔在所述衬底上的正投影位于一个光敏传感器在所述衬底上的正投影范围内。
在一些实施例中,在所述显示基板包括像素界定层的情况下,所述第二光线引导层在所述衬底上的正投影位于所述像素界定层在所述衬底上的正投影范围内。
在一些实施例中,在所述第二光线引导层中设置有多个第二通孔的情况下,所述多个第一通孔和所述多个第二通孔中填充有透光材料。
在一些实施例中,所述封装层的厚度的范围为6μm~12μm。
在一些实施例中,在所述显示基板还包括第二光线引导层、且所述第二光线引导层的材料均包括遮光材料的情况下,所述第二光线引导层具有多个第二开口,所述多个第二开口在所述衬底上的正投影与所述多个光敏传感器在所述衬底上的正投影无交叠。所述显示基板还包括:设置在每个第二开口内的滤色部。
在一些实施例中,所述显示基板,还包括:设置在所述第二光线引导层 远离所述衬底一侧的偏光片。
在一些实施例中,所述显示基板,还包括:触控结构;所述触控结构设置在所述封装层和所述第二光线引导层之间,或者,设置在所述第二光线引导层远离所述衬底的一侧。
在一些实施例中,所述触控结构的材料包括透光的导电材料。
在一些实施例中,所述触控结构在所述衬底上的正投影位于所述第二光线引导层在所述衬底上的正投影范围内。在所述第二光线引导层中设置有多个第二通孔的情况下,所述触控结构中,与所述多个第二通孔相对的部分的材料包括透光的导电材料。
另一方面,提供一种显示装置。所述显示装置,包括:如上述一些实施例中所述的显示基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据相关技术中的一种指纹纹路的图像;
图2为根据相关技术中的一种显示基板设置有偏光片的点光源的分布图;
图3为根据本公开一些实施例中的一种显示基板的结构图;
图4为根据本公开一些实施例中的另一种显示基板的结构图;
图5为根据本公开一些实施例中的又一种显示基板的结构图;
图6为根据本公开一些实施例中的又一种显示基板的结构图;
图7为根据本公开一些实施例中的又一种显示基板的结构图;
图8为根据本公开一些实施例中的又一种显示基板的结构图;
图9为根据本公开一些实施例中的一种显示基板的局部的结构图;
图10为根据本公开一些实施例中的一种光路图;
图11为根据本公开一些实施例中的一种第一光线引导层或第二光线引导层的局部的俯视图;
图12为根据本公开一些实施例中的另一种显示基板的局部的结构图;
图13为根据本公开一些实施例中的一种指纹纹路图像的示意图;
图14为根据本公开一些实施例中的又一种显示基板的结构图;
图15为根据本公开一些实施例中的又一种显示基板的结构图;
图16为根据本公开一些实施例中的一种触控结构的结构图;
图17为图16所示触控结构沿A-A'向的一种剖视图;
图18为根据本公开一些实施例中的另一种触控结构的结构图;
图19为图18所示触控结构沿B-B'向的一种剖视图;
图20为根据本公开一些实施例中的一种触控结构和第二光线引导层的局部的结构图;
图21为根据本公开一些实施例中的一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A 和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
A设置在(或位于)B远离C的一侧,既指在空间上的三者的位置关系,又指A相比于B在后制备形成。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在一些实施例中,采用光学式指纹传感技术来获取指纹的纹路的过程例如为:光线在照射至手指后会获得脊反射光(也即照射至手指指纹中的脊后反射的光线)和谷反射光(也即照射至手指指纹中的谷后反射的光线),脊反射光和谷反射光的光强度不同,在采集上述脊反射光和谷反射光之后,可以根据脊反射光和谷反射光形成明暗相间的指纹纹路图像。
在相关技术中,采用光学式指纹传感技术来获取指纹纹路图像的过程中,所获取的指纹纹路图像面积较小,且指纹边缘部分容易受到强光干扰,导致所获取的指纹纹路图像较为模糊,清晰度较低(例如图1所示)。
基于此,本公开的一些实施例提供了一种显示基板100。如图3所示,该显示基板100具有多个像素区域P。显示基板100包括多个子像素Q。每个子像素Q可以发出一种颜色的光,例如白色、红色、绿色和蓝色中的一种。当然,每个子像素Q还可以发出其他颜色的光,此处可以根据实际需要选择设置。上述多个子像素Q相互配合,可以实现图像显示。
在一些示例中,每个像素区域P内设置有多个子像素Q。
每个像素区域P内设置的子像素Q的数量,可以根据实际需要选择设置。例如,如图1所示,每个像素区域P内设置有三个子像素Q,该三个子像素Q分别可以发出红色光、绿色光以及蓝色光。又如,每个像素区域P内设置有四个子像素Q,该四个子像素Q分别可以发出白色光、红色光、绿色光以及蓝色光,或者,该四个子像素Q中的两个子像素可以发出绿色光,其余两个子像素Q分别可以发出红色光和蓝色光。
在一些示例中,如图4~图8所示,每个子像素Q包括一个发光器件13。
示例性的,如图4~图8所示,发光器件13可以包括依次层叠设置的阴极131、发光层132和阳极133,其中,发光层132能够发出有颜色的光。当然,发光器件13还可以包括设置在阴极131和发光层132之间的电子注入层和电子传输层,以及设置在阳极133和发光层132之间的空穴注入层和空穴传输层。
上述发光层132的材料包括多种。示例性的,发光层132的材料可以包括有机材料,此时,上述发光器件13可以为OLED(Organic Light Emitting Diode,有机发光二极管)发光器件。示例性的,发光层132的材料可以包括量子点材料,此时,上述发光器件13可以为QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)发光器件。
在一些示例中,每个子像素Q还包括:与发光器件13电连接的驱动电路。该驱动电路被配置为提供驱动电压至发光器件13,以使得发光器件13发光。
示例性的,如图4~图8所示,驱动电路包括驱动晶体管D。驱动电路可以通过驱动晶体管D与发光器件13的阳极133电连接。
需要说明的是,发光器件13还可以作为获取指纹的纹路所需的光源。这样可以避免额外设置光源,有利于简化显示基板100的结构,简化显示基板100的制备工艺。
在一些实施例中,如图4~图8所示,显示基板100还包括:衬底10。
上述衬底10的结构包括多种,具体可以根据实际需要选择设置。例如,衬底10为空白的衬底基板。又如,衬底10包括空白的衬底基板以及设置在 该空白的衬底基板上的至少一层功能薄膜(例如绝缘层和/或缓冲层)。
上述空白的衬底基板的类型包括多种,具体可以根据实际需要选择设置。
例如,空白的衬底基板可以为刚性衬底基板。该刚性衬底基板例如可以为玻璃衬底基板或PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)衬底基板。
又如,空白的衬底基板可以为柔性衬底基板。该柔性衬底基板例如可以为PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底基板、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底基板或PI(Polyimide,聚酰亚胺)衬底基板。
在一些实施例中,如图4~图8所示,显示基板100还包括:设置在衬底10的一侧的多个光敏传感器11。在衬底10包括至少一层功能薄膜的情况下,该多个光敏传感器11设置在该至少一层功能薄膜远离空白的衬底基板的一侧。
此处,上述发光器件13与该多个光敏传感器11位于衬底10的同一侧。
在一些示例中,上述多个光敏传感器11与像素区域P之间的关系为:每个像素区域P内设置有至少一个光敏传感器11。也即,每个像素区域P内可以设置有一个光敏传感器11,或者,每个像素区域P内可以设置有多个光敏传感器11。
每个光敏传感器11被配置为,采集经由至少一个发光器件13发出的、且被手指反射的光线。不同的光敏传感器11所采集的光线,为被手指不同位置反射的光线。
光敏传感器11在采集该光线之后,可以进行光电转换,并输出电信号。显示基板100可以根据不同光敏传感器11输出的电信号,较为准确地确定不同光敏传感器11所采集的光线(也即确定该光线为脊反射光或谷反射光),进而可以整合分析不同光敏传感器11输出的电信号确定指纹的纹路图像,实现对指纹纹路的获取。
在一些示例中,上述光敏传感器11的结构包括多种。示例性的,如图4~图8所示,光敏传感器11包括设置在衬底10的一侧的半导体层111,以及覆盖在该第一半导体层111的远离衬底10的一侧表面上的保护电极112。其中,如图4~图8所示,半导体层111例如包括依次层叠设置的的N型半导体层1111(其材料例如为N型非晶硅)、本征半导体层1112(其材料例如为非晶硅)和P型半导体层1113(其材料例如为P型非晶硅)。此处,N型非晶硅可以为掺杂有磷离子的非晶硅,P型非晶硅可以为掺杂有硼离子的非晶硅。
上述半导体层111能够对经由至少一个发光器件13发出的、且被手指反射的光线进行采集,并进行光电转换。上述保护电极112能够对半导体层111的远离衬底10的一侧表面进行保护,避免半导体层111的远离衬底10的一侧表面被损伤,进而避免半导体层111的性能受到影响。
在一些示例中,保护电极112的材料为透光的导电材料。示例性的,保护电极112的材料可以为氧化铟锡(Indium Tin Oxides,简称ITO)或掺铟氧化锌(Indium doped Zinc Oxide,简称IZO)。这样可以避免保护电极112对光线形成遮挡,影响半导体层111的对光线的采集。
在一些示例中,如图4~图8所示,显示基板100还包括:设置在每个光敏传感器11靠近衬底10的一侧、且与该光敏传感器11电连接的光敏控制晶体管E。
上述光敏控制晶体管E被配置为控制光敏传感器11所转化的电信号的导出。也即,在光敏控制晶体管E导通时,光敏控制晶体管E控制光敏传感器11所转化的电信号通过光敏控制晶体管E输出。
在一些示例中,如图4~图8所示,上述光敏控制晶体管E和驱动晶体管D可以采用相同类型的晶体管,这样有利于同时制备形成光敏控制晶体管E和驱动晶体管D,简化显示基板100的制备工艺。
示例性的,如图4~图8所示,光敏控制晶体管E和驱动晶体管D可以均采用顶栅型晶体管。或者,光敏控制晶体管E和驱动晶体管D可以均采用底栅型晶体管。
此外,驱动晶体管D的结构包括多种。示例性的,驱动晶体管D例如可以为单栅晶体管,或者也可以为如图4~图8所示的双栅晶体管。
在一些示例中,如图4~图8所示,显示基板100还包括:设置在光敏控制晶体管E和驱动晶体管D远离衬底10的一侧的源漏导电层SD,该源漏导电层SD包括多个第一导电图案SD1和多个第二导电图案SD2。其中,每个发光器件13可以通过一个第一导电图案SD1与对应的驱动晶体管D电连接;每个光敏传感器11可以通过一个第二导电图案SD2与对应的光敏控制晶体管E电连接。
通过设置源漏导电层SD,有利于减小衬底10上设置的各薄膜在空间上的占据面积,便于对各薄膜进行排布。
在一些实施例中,如图4~图8所示,显示基板100还包括:设置在上述多个光敏传感器11的远离衬底10的一侧的第一光线引导层L1。
在一些示例中,如图4~图9所示,第一光线引导层L1中设置有多个第一 通孔K1。第一光线引导层L1的材料包括遮光材料。
上述遮光材料具有较高的光线吸收率。这样可以使得第一光线引导层L1能够对光线进行吸收,避免对射向至其自身的光线形成反射。
示例性的,如图10所示,以不同的入射角度入射至第一光线引导层L1的某个第一通孔K1的的光线(例如包括由多个发光器件13发出的、且被手指反射的光线)中,其中一部分光线(也即入射角度较大的光线,例如包括未与该第一通孔K1对应的手指位置所反射的光线)可能会直接射向至第一通孔K1的侧壁而被第一光线引导层L1吸收;另一部分光线(也即入射角度较小的光线,例如包括与该第一通孔K1对应的手指位置所反射的光线)可能会穿过第一通孔K1并射出,该部分光线相互平行或大致相互平行。这样可以使得每个第一通孔K1构成准直光通路。如图10所示,穿过该准直光通路的光线为相互平行的光线或大致相互平行的光线,该光线可以称为准直光线。
在一些示例中,如图4~图8所示,至少一个第一通孔K1在衬底10上的正投影位于一个光敏传感器11在衬底10上的正投影范围内。
通过设置第一通孔K1与光敏传感器11的位置,可以利用第一通孔K1所构成的准直光通路去除入射角度较大的部分光线(该部分光线可以称为杂散光),得到准直光线(例如包括与该第一通孔K1对应的手指位置所反射的光线),并使得该准直光线射向至相对应的光敏传感器11,被该光敏传感器11采集,这样有利于提高所获取的指纹纹路图像的精度。并且,由于光敏传感器11所采集的光线为准直光,可以增大所获取的指纹纹路图像的面积。
由此,本公开的一些实施例所提供的显示基板100,通过在多个光敏传感器11远离衬底10的一侧设置具有多个第一通孔K1的第一光线引导层L1,可以使得每个第一通孔K1构成准直光通路。这样在进行指纹识别的过程中,可以利用该准直光通路去除杂散光(例如包括较远位置的指纹信息),提高所获取的指纹纹路图像的精度。而且,利用上述准直光通路,还可以对外界自然光照射至手指后透射或反射的光线进行遮挡,避免该部分光线对光线的采集产生干扰,有利于提高所获取的指纹纹路图像的清晰度。
此外,由于光敏传感器11所采集的光线为准直光,可以增大所获取的指纹纹路图像的面积。
在一些实施例中,如图5~图8所示,显示基板100还包括:设置在第一光线引导层L1远离衬底10的一侧的封装层12。其中,封装层12覆盖上述多个发光器件13和多个光敏传感器11。
在一些示例中,上述封装层12可以为薄膜封装层,例如包括依次层叠设 置的第一无机层、有机层和第二无机层。
在一些示例中,封装层12的材料可以为具有较高光线透过率的材料,这样可以避免影响显示基板100的显示质量,并避免影响光敏传感器11对被手指反射的光线的采集。
通过在设置封装层12,可以利用封装层12对发光器件13起到阻水阻氧的作用,防止外部水汽和/或氧气对发光器件13造成侵蚀,进而避免影响显示基板100的性能。
在一些实施例中,如图5~图8所示,显示基板100还包括:设置在该封装层12远离衬底10一侧的第二光线引导层L2。第二光线引导层L2被配置为,使透过第二光线引导层L2的光线为出射角在预设角度范围内的光线。
上述第二光线引导层L2的结构包括多种,可以根据实际需要选择设置。
在一些示例中,第二光线引导层L2的材料均包括遮光材料,第二光线引导层L2中设置有多个第二通孔K2。
上述遮光材料具有较高的光线吸收率。这样可以使得第一光线引导层L1能够对光线进行吸收,避免对射向至其自身的光线形成反射。
示例性的,如图10所示,以不同的入射角度入射至第二光线引导层L2的某个第二通孔K2的的光线(例如包括由多个发光器件13发出的、且被手指反射的光线)中,其中一部分光线(也即入射角度较大的光线,例如包括未与该第二通孔K2对应的手指位置所反射的光线)可能会直接射向至第二通孔K2的侧壁而被第二光线引导层L2吸收;另一部分光线(也即入射角度较小的光线,例如包括与该第二通孔K2对应的手指位置所反射的光线)可能会穿过第二通孔K2并射出,该部分光线相互平行或大致相互平行。
基于此,透过第二光线引导层L2的光线的出射角的预设角度范围,可以根据第二通孔K2的孔径及第二光线引导层L2的厚度设置。
示例性的,如图5~图9所示,第一光线引导层L1中的第一通孔K1和第二光线引导层L2中的第二通孔K2之间的关系例如可以为:一个第一通孔K1在衬底10上的正投影与一个第二通孔K2在衬底10上的正投影至少部分重合。此处,在第一通孔K1的数量和第二通孔K2的数量相同的情况下,第一通孔K1和第二通孔K2可以一一对应,此时,每个第一通孔K1在衬底10上的正投影则和其对应的第二通孔K2在衬底10上的正投影至少部分重合。
例如,每个第一通孔K1在衬底10上的正投影和其对应的第二通孔K2在衬底10上的正投影部分重合,此时,每个第一通孔K1和其对应的第二通孔K2在空间上可以是部分错开的,两者的孔径大小可以根据实际需要选择设 置。每个第一通孔K1和其对应的第二通孔K2形成了较好的对准。
又如,每个第一通孔K1在衬底10上的正投影和其对应的第二通孔K2在衬底10上的正投影重合,此时,每个第一通孔K1在衬底10上的正投影的面积和其对应的第二通孔K2在衬底10上的正投影的面积相等,也即每个第一通孔K1的孔径和其对应的第二通孔K2的孔径相等,且每个第一通孔K1和其对应的第二通孔K2形成了良好的对准。
通过将设置每个第一通孔K1在衬底10上的正投影和其对应的第二通孔K2在衬底10上的正投影之间的关系,并利用封装层12将第一光线引导层L1和第二光线引导层L2隔离开,使得每个第一通孔K1和其对应的第二通孔K2之间具有一定的距离,可以使得每个第一通孔和其对应的第二通孔K2共同构成具有良好准直效果的准直光通路。
上述封装层12的厚度(也即封装层12在垂直于衬底10的方向上的尺寸)可以根据实际需要选择设置。
示例性的,封装层12的厚度(例如为最大厚度、最小厚度或平均厚度)的范围为6μm~12μm。这样能够在将第一光线引导层L1和第二光线引导层L2隔离开的同时,确保每个第一通孔K1和其对应的第二通孔K2能够构成准直光通路。
示例性的,封装层12的厚度可以为6μm、7μm、8.5μm、10μm、11μm、或12μm等。
示例性的,如图5~图8所示,至少一个第一通孔K1和至少一个第二通孔K2在衬底10上的正投影位于一个光敏传感器11在衬底10上的正投影范围内。
例如,上述至少一个第一通孔K1和至少一个第二通孔K2一一对应。
通过设置第一通孔K1和第二通孔K2与光敏传感器11的位置,可以利用第一通孔K1和第二通孔K2所构成的准直光通路去除入射角度较大的部分光线(该部分光线可以称为杂散光),得到准直光线(例如包括与该第二通孔K2对应的手指位置所反射的光线),并使得该准直光线射向至相对应的光敏传感器11,被该光敏传感器11采集,这样有利于进一步提高所获取的指纹纹路图像的精度。并且,由于光敏传感器11所采集的光线为准直光,可以进一步增大所获取的指纹纹路图像的面积。
在另一些示例中,上述第二光线引导层L2可以为棱镜片,该棱镜片的一侧表面设置有多个微棱镜结构。该第二光线引导层L2可以使得透过其自身的光线发生聚集。
这样在利用第二光线引导层L2对透过其自身的光线进行聚集之后,可以利用第一光线引导层L1对经聚集后的光线进行筛选,使得入射至光敏传感器11的光线为相互平行或大致平行的光线。
此处,透过第二光线引导层L2的光线的出射角的预设角度范围,可以根据上述多个微棱镜结构的尺寸设置。
在一些实施例中,第一光线引导层L1的覆盖每个光敏传感器11的部分中,具有2~100个第一通孔K1。也即,2~100个第一通孔K1在衬底10上的正投影位于一个光敏传感器11在衬底10上的正投影范围内。相应的,在第二光线引导层L2包括多个第二通孔K2的情况下,2~100个第二通孔K2在衬底10上的正投影位于一个光敏传感器11在衬底10上的正投影范围内。
在一些示例中,如图11所示,每个第一通孔K1的孔径d的范围可以为2μm~10μm。示例性的,每个第一通孔K1的孔径d可以为2μm、3μm、5μm、7μm或10μm等。相应的,每个第二通孔K2的孔径d的范围可以为2μm~10μm。
此处,在第一光线引导层L1的覆盖每个光敏传感器11的部分中,所具有的第一通孔K1的数量较多时,每个第一通孔K1的孔径d可以较小;在第一光线引导层L1的覆盖每个光敏传感器11的部分中,所具有的第一通孔K1的数量较少时,每个第一通孔K1的孔径d可以较大。这样可以使得每个光敏传感器11能够采集到较多的光线,确保所获取的指纹纹路图像具有较高的清晰度和准确度。
在一些示例中,如图11所示,每相邻的两个第一通孔K1之间的间距可以为1μm~5μm。示例性的,每相邻的两个第一通孔K1之间的间距可以为1μm、2μm、3μm、4μm或5μm。这样既可以避免增加形成第一通孔K1的工艺难度,又有利于设置第一通孔K1的数量及排布方式。相应的,每相邻的两个第二通孔K2之间的间距可以为1μm~5μm。
在一些实施例中,如图5~图8所示,显示基板100还包括:依次设置在上述多个光敏传感器11的远离所述衬底一侧的平坦层14、电极层15和像素界定层16。
在一些示例中,如图4~图8所示,电极层15包括多个电极图案151。该多个电极图案151与上述多个光敏传感器11一一对应且电连接。每个电极图案151被配置为提供电压信号(例如偏置电压信号)至对应的光敏传感器11。
此处,每个电极图案151所提供的电压信号和对应的光敏控制晶体管E相配合,控制对应的光敏传感器11所转化的电信号通过光敏控制晶体管E输出。
在一些示例中,如图4~图8所示,每个发光器件13的阳极133与上述电极层15可以同层设置,且均设置在平坦层14远离衬底10的一侧。这样可以利用平坦层14进行平坦化,使得阳极133与电极层15的形貌较为平整。
此处,本文中提及的“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。这样一来,可以同时制作阳极133和电极层15,从而简化了显示基板100的制备工艺。
在一些示例中,如图4~图8所示,上述像素界定层16具有多个第一开口K3,每个第一开口K3内设置有一个发光器件13的发光层132。当然,发光层132也可以超出第一开口K3,设置在像素界定层16远离衬底10的一侧表面上,但与相邻发光层132之间无交叠。
此外,每个发光器件13的阴极131可以设置在一个第一开口K3内;当然,如图4~图8所示,多个发光器件13的阴极131也可以为一体结构,设置在像素界定层16远离衬底10的一侧。
在一些示例中,第一光线引导层L1包括平坦层14、电极层15和像素界定层16中的至少一者。也即,平坦层14、电极层15和像素界定层16中的至少一者中设置有多个第一通孔K1,且其材料包括遮光材料。
需要说明的是,电极层15的材料可以为导电材料(例如金属材料),该导电材料的光线透过率较低。如图4~图8所示,在第一光线引导层L1不包括电极层15(也即电极层15中未设置有多个第一通孔K1)的情况下,每个光敏传感器11在衬底10上的正投影与电极层15在衬底10上的正投影部分重叠(也即每个光敏传感器11在衬底10上的正投影与对应的电极图案151在衬底10上的正投影部分重叠),且上述多个第一通孔K1在衬底10上的正投影与电极层15在衬底10上的正投影无交叠。这样可以避免电极层15对射向光敏传感器11的光线形成遮挡,避免影响指纹纹路图像的获取。
此处,如图9所示,在第一光线引导层L1包括电极层15、且电极层15中设置有多个第一通孔K1的情况下,每个光敏传感器11在衬底10上的正投影,位于电极层15在衬底10上的正投影外边界范围内,也即位于对应的电极图案151在衬底10上的正投影外边界范围内。这样可以确保第二光线引导层L2中的多个第二通孔K2能够与电极层15中设置的多个第一通孔K1构成准直光通路。
在一些实施例中,如图4~图8所示,显示基板100还包括:设置在像素界定层16远离衬底10一侧的隔垫物层17。
此处,需要说明的是,在发光器件13的发光层132的材料包括有机材料、且发光层132采用蒸镀工艺制备形成的情况下,可以利用该隔垫物层17对显示基板100形成支撑,避免显示基板100受到损伤。
在一些示例中,如图4~图8所示,隔垫物层17包括多个隔垫物171,每个隔垫物171在衬底10上的正投影位于像素界定层16在衬底10上的正投影范围内。也即,各隔垫物171在衬底10上的正投影与各第一开口K3在衬底10上的正投影之间无交叠。这样在利用隔垫物层17对显示基板100形成支撑的同时,可以避免隔垫物171对第一开口K3形成遮挡,进而避免对蒸镀形成发光器件13的发光层132的过程产生不良影响。
在一些示例中,第一光线引导层L1包括平坦层14、电极层15、像素界定层16和隔垫物层17中的至少一者。示例性的,如图9所示,第一光线引导层L1包括平坦层14、电极层15、像素界定层16和隔垫物层17。
基于此,每个光敏传感器11在衬底10上的正投影位于隔垫物层17在衬底10上的正投影范围内。
在一些示例中,光敏传感器11与隔垫物层17所包括的隔垫物171的数量相同,且一一对应。每个光敏传感器11在衬底10上的正投影位于对应的隔垫物171在衬底10上的正投影范围内。这样在第一光线引导层L1包括隔垫物层17的情况下,可以确保第二光线引导层L2中的第二通孔K2能够与多个隔垫物171中设置的第一通孔K1构成准直光通路。
在一些实施例中,在第一光线引导层L1包括平坦层14、像素界定层16和隔垫物层17中的至少一者的情况下,第一光线引导层L1所包括的遮光材料例如包括遮光树脂材料。示例性的,该遮光树脂材料例如可以为掺杂有黑色颜料(例如碳)的丙烯树脂,或者黑色树脂(例如可以是在光刻胶中掺杂碳、钛或镍等形成的材料)。
此外,在平坦层14、像素界定层16和隔垫物层17中的至少一者不属于第一光线引导层L1的情况下,其材料例如可以为具有较高光线透过率的材料(例如透明树脂材料或无机材料)。这样可以避免对射向光敏传感器11的光线产生不良影响。
在一些实施例中,第一光线引导层L1中的多个第一通孔K1中填充有透光材料。
在一些示例中,多个第一通孔K1中填充的透光材料,可以为第一光线引 导层L1远离衬底10一侧的薄膜的一部分。
示例性的,在第一光线引导层L1为平坦层14的情况下,多个第一通孔K1中填充的透光材料可以为像素界定层16中的一部分。
示例性的,在第一光线引导层L1为隔垫物层17的情况下,多个第一通孔K1中填充的透光材料可以为封装层12的一部分。此处,在隔垫物层17远离衬底10的一侧形成阴极131的过程中,阴极131会在多个第一通孔K1的位置处形成断裂,进而封装层12的一部分可以通过该断裂处陷入多个第一通孔K1内,对多个第一通孔K1进行填充。
这样可以避免额外在多个第一通孔K1中填充透光材料,进而避免额外增加在多个第一通孔K1中填充透光材料的工艺流程,有利于简化显示基板100的制备工艺。
在一些示例中,第一光线引导层L1包括平坦层14、像素界定层16和隔垫物层17。此时,可以采用同一次构图工艺(例如曝光和显影)形成多个第一通孔K1,该多个第一通孔K1均贯穿平坦层14、像素界定层16和隔垫物层17。这样有利于简化显示基板100的制备工艺。
在一些实施例中,如图5~图8所示,第二光线引导层L2在衬底10上的正投影位于像素界定层16在衬底10上的正投影范围内。也即,第二光线引导层L2在衬底10上的正投影与每个发光器件13的发光层132在衬底10上的正投影无交叠。
在一些示例中,第二光线引导层L2所包括遮光材料,例如包括遮光树脂材料或铬金属。其中,遮光树脂材料例如可以为掺杂有黑色颜料(例如碳)的丙烯树脂,或者黑色树脂(例如可以是在光刻胶中掺杂碳、钛或镍等形成的材料)。
由于第二光线引导层L2的材料能够吸收光线,通过设置第二光线引导层L2和发光层132之间的位置关系,可以避免发光层132所发出的光线在射出显示基板100的显示面之前被第二光线引导层L2吸收,进而避免影响显示基板100的显示效果。
在一些示例中,如图5~图8所示,第二光线引导层L2具有多个第二开口K4。示例性的,第二光线引导层L2可以为与像素界定层16类似的网格状结构。
在一些示例中,如图5~图8所示,上述多个第二开口K4在衬底10上的正投影与上述多个光敏传感器11在衬底10上的正投影无交叠。这也就意味着,第二光线引导层L2覆盖上述多个光敏传感器11。这样有利于使得第二光 线引导层L2中的多个第二通孔K2在衬底10上的正投影位于上述多个光敏传感器11在衬底10上的正投影范围内,确保由每个第二通孔K2和对应的第一通孔K1构成的准直光通路在衬底10上的正投影位于上述多个光敏传感器11在衬底10上的正投影范围内。
在一些示例中,上述多个第二开口K4和上述多个第一开口K3一一对应,且上述多个第二开口K4在衬底10上的正投影与多个第一开口K3在衬底10上的正投影重合;或者,每个第一开口K3在衬底10上的正投影位于对应的第二开口K4在衬底10上的正投影范围内。这样可以避免对显示基板100的出光效果产生不良影响。
在一些实施例中,如图5~图8所示,显示基板100还包括:设置在第二光线引导层L2远离衬底10一侧保护基板20。
该保护基板20例如可以为玻璃基板,被配置为对设置在衬底10上的各层薄膜进行保护。
在一些实施例中,如图7所示,显示基板100还包括:设置在第二光线引导层L2远离衬底10一侧的偏光片18。该偏光片18可以设置在第二光线引导层L2和保护基板20之间。
通过设置该偏光片18,可以降低显示基板100对自然光的反射,提高显示基板100的显示效果。
基于此,如图7所示,显示基板100还包括:设置在偏光片18和第二光线引导层L2之间的第一粘层Z1,以及设置在偏光片18和保护基板20之间的第二粘接层Z2。
此处,第一粘层Z1被配置为,粘接偏光片18和第二光线引导层L2;第二粘接层Z2被配置为,粘接偏光片18和保护基板20。第一粘层Z1和第二粘接层Z2的材料例如均可以为亚克力胶。
在另一些实施例中,如图8所示,显示基板100还包括:设置在每个第二开口K4内的滤色部19。
由于上述多个第二开口K4和上述多个第一开口K3一一对应,这也就意味着,上述多个第二开口K4与上述多个第一开口K3内的发光层132一一对应。
示例性的,每个第二开口K4内的滤色部19所允许透过的光线的颜色,与对应的发光层132所发出的光线的颜色相同。例如,多个发光层132中包括能够发出红色光的发光层、能够发出绿色光的发光层和能够发出黄色光的发光层,相应的,多个滤色部19包括红色滤色部、绿色滤色部和黄色滤色部。
通过在每个发光层132远离衬底10的一侧设置滤色部19,且使得每个发光层132所发出的光线的颜色与对应的滤色部19允许透过的光线的颜色相同,可以在自然光照射至显示基板100时,利用滤色部滤掉大部分的光线。而入射至显示基板100内部的小部分光线可以在显示基板100内部薄膜的作用下被进一步消耗。在该小部分光线未被完全消耗、且经滤色部19射出显示基板100的情况下,可以确保射出的光线的颜色与对应的发光器件13所发出的光线的颜色相同。这样既可以有效降低显示基板100对自然光的反射,提高显示基板100的显示效果,还可以提高显示基板100的出光效率,降低显示基板100的功耗。
此外,通过在每个发光层132远离衬底10的一侧设置滤色部19,还可以避免出现指纹纹路图像照度分别不均现象(例如图2所示),使得指纹纹路图像整体能够较为清晰且易分辨。
在一些示例中,在将第二光线引导层L2和多个滤色部19同时设置在封装层12远离衬底10的一侧的情况下,第二光线引导层L2又可以称为黑矩阵。显示基板100的结构可以称为COE(CF on encapsulation,将彩膜做在封装层上)结构。
基于此,如图8所示,显示基板100还包括:设置在第二光线引导层L2和保护基板20之间的第三粘接层Z3。第三粘接层Z3还覆盖设置在第二光线引导层L2的每个第二开口K4内的滤色部19。
此处,第三粘接层Z2被配置为,粘接第二光线引导层L2和保护基板20,以及粘接滤色部19和保护基板20。第三粘接层Z3的材料例如均可以为亚克力胶。
在一些实施例中,第二光线引导层L2中的多个第二通孔K2中填充有透光材料。通过设置透光材料可以避免对光线的传输产生不良影响。
在一些示例中,在显示基板100还包括偏光片18的情况下,上述透光材料可以为第一粘层Z1的一部分。也即,在制备形成第一粘接层Z1的过程中,第一粘接层Z1中的一部分可以自然而然地陷入多个第二通孔K2中,对多个第二通孔K2进行填充。
在另一些示例中,在显示基板100还包括滤色部19的情况下,上述透光材料可以为第三粘层Z3的一部分。也即,在制备形成第三粘接层Z3的过程中,第三粘接层Z3中的一部分可以自然而然地陷入多个第二通孔K2中,对多个第二通孔K2进行填充。
这样可以避免额外在多个第二通孔K2中填充透光材料,进而避免额外增 加在多个第二通孔K2中填充透光材料的工艺流程,有利于简化显示基板100的制备工艺。
在一些实施例中,显示基板100的不同部分可以具有一定的厚度(也即沿垂直于衬底10的方向上的尺寸)要求,该厚度可以根据实际需要选择设置。
在一些示例中,如图12所示,光敏传感器11远离衬底10的一侧表面与第一光线引导层L1之间的最小距离h 0可以为0.5μm~5μm。该距离h 0也即为,距光敏传感器11最近的第一光线引导层L1(例如为平坦层14)的厚度以及位于光敏传感器11和第一光线引导层L1之间的薄膜的厚度之和。
示例性的,上述距离h 0可以为0.5μm、1μm、2μm、3μm、4μm或5μm等。
在一些示例中,如图12所示,第一光线引导层L1和第二光线引导层L2之间的距离h 1可以为6μm~20μm。该距离h 2也即为,第一光线引导层L1和第二光线引导层L2之间的各层薄膜(例如为电极层15、像素界定层16、隔垫物层17或封装层12等)的厚度之和。
示例性的,上述距离h 1可以为6μm、9μm、12μm、15μm、18μm或20μm等。
在一些示例中,如图12所示,第二光线引导层L2至保护基板20的距离h 2可以为300μm~1000μm。该距离h 2也即为,第二光线引导层L2的厚度、保护基板20的厚度以及第二光线引导层L2和保护基板20之间的薄膜(例如第二粘接层Z2或偏光片19等)的厚度之和。
示例性的,上述距离h 2可以为300μm、500μm、700μm、800μm、900μm或1000μm等。
通过设置上述距离h 0、距离h 1及距离h 2,有利于确保显示基板100中的准直光通路具有良好的形成准直光的效果,并避免大幅增大显示基板100的厚度。
下面以光学仿真试验为例,对本公开实施例提供的显示基板100获取指纹纹路图像进行示意性说明。
示例性的,可以设定上述距离h 0为1μm、设定距离h 1为18μm、设定距离h 2为600μm、设定第一通孔K1和第二通孔K2的孔径为8μm、设定相邻的两个第一通孔K1之间的间距及相邻的两个第二通孔K2之间的间距为4μm(也即相邻的两个第一通孔K1的孔间距及相邻的两个第二通孔K2的孔间距为12μm),并设定每个像素区域P内设置有一个光敏传感器11。
光学仿真结果如图13所示。从图中可以看出,指纹的纹路整体均清晰可见,未出现模糊或局部不清晰难以确认的现象。
由此,本公开实施例通过调整显示基板100本身所具有的薄膜的材料,并在调整材料后的薄膜中设置通孔以构成光准直通路,还设置显示基板100的不同部分可以具有一定的厚度,能够在增大指纹纹路图像的面积的同时,还提高指纹纹路图像的整体清晰度,提高指纹纹路图的是被性能。
在一些实施例中,如图14和图15所示,显示基板100还包括:触控结构21。这样既可以使得显示基板100具有指纹设别功能,又可以具有触控功能,实现多种功能的集成。
上述触控结构21的设置位置包括多种,可以根据实际需要选择设置。
在一些示例中,如图14所示,触控结构21可以设置在封装层12和第二光线引导层L2之间。此时,可以称为On-cell touch(也即,触控结构21做在封装层12上)。这样有利于减小显示基板100的厚度,实现显示基板100轻薄化发展。
此处,触控结构21在衬底10上的正投影,可以位于第二光线引导层L2在衬底10上的正投影范围内。这样可以避免触控结构21对显示基板100的显示效果和显示质量等产生不良影响。
上述触控结构21的结构包括多种,可以根据实际需要选择设置。
例如,如图16和图17所示,触控结构21包括:设置在封装层12远离衬底10的一侧的多个第一触控电极211,以及设置在该多个第一触控电极211远离衬底10的一侧的多个第二触控电极212。其中,该多个第一触控电极211沿第一方向X延伸且间隔设置,该多个第二触控电极212沿第二方向Y延伸且间隔设置。该多个第一触控电极211和多个第二触控电极212相互绝缘。第一方向X和第二方向Y交叉。
又如,如图18和图19所示,触控结构21包括:设置在封装层12远离衬底10的一侧的多个导电搭桥2122。该导电搭桥2122例如呈阵列状排布。
触控结构21还包括:设置在上述多个导电搭桥2122远离衬底10的一侧、且沿第一方向X延伸的多个第一触控电极211。每个第一触控电极211包括多个串接的第一触控子电极2111。其中,每个第一触控电极211例如为一体结构。
触控结构21还包括:与上述多个第一触控电极211同层设置的多行第二触控子电极2121。每行第二触控子电极2121包括沿第二方向Y间隔设置的多个第二触控子电极2121。每行第二触控子电极2121中,每相邻的两个第二触控子电极2121与一个导电搭桥2122电连接,以使得上述多行第二触控子电极2121和上述多个导电搭桥2122构成多个第二触控电极212。
通过将上述多个第一触控电极211和多行第二触控子电极2121同层设置,这样在可以同时制备形成上述多个第一触控电极211和多行第二触控子电极2121,有利于简化显示基板100的制备工艺。
上述触控结构21的材料包括多种。
例如,触控结构21的材料包括透光的导电材料。示例性的,该透光的导电材料例如为ITO或IZO等。这样可以避免触控结构21对射向光敏传感器11的光线形成遮挡,进而避免对光线的传播产生不良影响。
又如,如图20所示,触控结构21中,与第二光线引导层L2中的多个第二通孔K2相对的部分的材料包括透光的导电材料。此时,触控结构21中,未与第二光线引导层L2中的多个第二通孔K2相对的部分,可以通过过孔和与第二光线引导层L2中的多个第二通孔K2相对的部分桥接,并形成电连接。
如图20所示,以触控结构21中的第一触控电极211的部分与第二通孔K2相对为例,其中,第一触控电极211的未与第二通孔K2相对的部分211a,通过过孔与第一触控电极211的与第二通孔K2相对的部分211b形成电连接。
此处,触控结构21中,与第二光线引导层L2中的多个第二通孔K2相对的部分所包括的透光的导电材料,例如为ITO或IZO等。触控结构21中,未与第二光线引导层L2中的多个第二通孔K2相对的部分的材料,例如可以为钼(Mo)或铝(Al)等。这样可以在避免对射向光敏传感器11的光线形成遮挡的同时,使得触控结构21具有较小的电阻,避免影响触控结构21中的触控信号的准确性。
在另一些示例中,如图15所示,触控结构21可以设置在第二光线引导层L2远离衬底10的一侧。示例性的,触控结构21可以设置在第二光线引导层L2和保护基板20之间。此时,可以称为外挂式触控。这样有利于降低显示基板100的制备难度。
示例性的,本示例中的触控结构21,可以采用上述一些示例中的触控结构21相同的结构及材料,此处不再赘述。
本公开的一些实施例还提供了一种显示装置1000。如图21所示,该显示装置1000包括如上述一些实施例中提供的显示基板100。
上述显示装置1000所包括的显示基板100,具有与上述一些实施例中提供的显示基板100相同的结构和有益技术效果,在此不再赘述。
在一些示例中,上述显示装置1000还包括:用于安装上述显示基板100的外壳,和/或,安装在显示基板100上的摄像头等。
在一些实施例中,上述显示装置1000为手机、平板电脑、电视机、显示 器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示基板,包括:
    衬底;
    设置在所述衬底的一侧的多个光敏传感器;以及,
    设置在所述多个光敏传感器远离所述衬底一侧的第一光线引导层;其中,
    所述第一光线引导层的材料包括遮光材料;
    所述第一光线引导层中设置有多个第一通孔,至少一个第一通孔在所述衬底上的正投影位于一个光敏传感器在所述衬底上的正投影范围内。
  2. 根据权利要求1所述的显示基板,还包括:依次设置在所述多个光敏传感器的远离所述衬底一侧的平坦层、电极层和像素界定层;
    所述第一光线引导层包括所述平坦层、所述电极层和所述像素界定层中的至少一者。
  3. 根据权利要求2所述的显示基板,还包括:设置在所述像素界定层的远离所述衬底一侧的隔垫物层;
    所述第一光线引导层包括所述平坦层、所述电极层、所述像素界定层和所述隔垫物层中的至少一者。
  4. 根据权利要求3所述的显示基板,其中,所述第一光线引导层包括所述平坦层、所述像素界定层和所述隔垫物层,所述多个第一通孔采用同一次构图工艺形成,并贯穿所述平坦层、所述像素界定层和所述隔垫物层。
  5. 根据权利要求2~4中任一项所述的显示基板,其中,在所述第一光线引导层包括所述电极层、且所述电极层中设置有多个第一通孔的情况下,每个所述光敏传感器在所述衬底上的正投影,位于所述电极层在所述衬底上的正投影外边界范围内;
    在所述电极层中未设置有多个第一通孔的情况下,每个所述光敏传感器在所述衬底上的正投影与所述电极层在所述衬底上的正投影部分重叠,且所述多个第一通孔在所述衬底上的正投影与所述电极层在所述衬底上的正投影无交叠。
  6. 根据权利要求2~5中任一项所述的显示基板,具有多个子像素;其中,
    每个子像素包括一个发光器件;所述发光器件包括发光层;所述像素界定层具有多个第一开口,每个第一开口内设置有一个所述发光层;
    每个所述光敏传感器被配置为,采集经由至少一个发光器件发出的、且被手指反射的光线。
  7. 根据权利要求6所述的显示基板,其中,所述隔垫物层包括多个隔垫 物,每个隔垫物在所述衬底上的正投影位于所述像素界定层在所述衬底上的正投影范围内,每个所述光敏传感器在所述衬底上的正投影位于所述隔垫物层在所述衬底上的正投影范围内。
  8. 根据权利要求1~7中任一项所述的显示基板,其中,所述第一光线引导层的覆盖每个所述光敏传感器的部分中,具有2~100个所述第一通孔。
  9. 根据权利要求8所述的显示基板,其中,所述第一通孔的孔径的范围为2μm~10μm。
  10. 根据权利要求1~9中任一项所述的显示基板,还包括:
    设置在所述第一光线引导层远离所述衬底一侧的封装层;以及,
    设置在所述封装层远离所述衬底一侧的第二光线引导层;
    所述第二光线引导层被配置为,使透过所述第二光线引导层的光线为出射角在预设角度范围内的光线。
  11. 根据权利要求10所述的显示基板,其中,所述第二光线引导层的材料均包括遮光材料;
    所述第二光线引导层中设置有多个第二通孔;
    一个第一通孔在所述衬底上的正投影与一个第二通孔在所述衬底上的正投影至少部分重合;
    至少一个所述第二通孔在所述衬底上的正投影位于一个光敏传感器在所述衬底上的正投影范围内。
  12. 根据权利要求10或11所述的显示基板,其中,在所述显示基板包括像素界定层的情况下,
    所述第二光线引导层在所述衬底上的正投影位于所述像素界定层在所述衬底上的正投影范围内。
  13. 根据权利要求10~12中任一项所述的显示基板,其中,在所述第二光线引导层中设置有多个第二通孔的情况下,所述多个第一通孔中填充有和所述多个第二通孔中填充有透光材料。
  14. 根据权利要求10~13中任一项所述的显示基板,其中,所述封装层的厚度的范围为6μm~12μm。
  15. 根据权利要求11~14中任一项所述的显示基板,其中,
    所述第二光线引导层具有多个第二开口,所述多个第二开口在所述衬底上的正投影与所述多个光敏传感器在所述衬底上的正投影无交叠;
    所述显示基板还包括:设置在每个第二开口内的滤色部。
  16. 根据权利要求10~15中任一项所述的显示基板,还包括:设置在所 述第二光线引导层远离所述衬底一侧的偏光片。
  17. 根据权利要求10~16中任一项所述的显示基板,还包括:触控结构;所述触控结构设置在所述封装层和所述第二光线引导层之间,或者,设置在所述第二光线引导层远离所述衬底的一侧。
  18. 根据权利要求17所述的显示基板,其中,所述触控结构的材料包括透光的导电材料。
  19. 根据权利要求17所述的显示基板,其中,
    所述触控结构在所述衬底上的正投影位于所述第二光线引导层在所述衬底上的正投影范围内;
    在所述第二光线引导层中设置有多个第二通孔的情况下,所述触控结构中,与所述多个第二通孔相对的部分的材料包括透光的导电材料。
  20. 一种显示装置,包括:如权利要求1~19中任一项所述的显示基板。
PCT/CN2021/086766 2020-05-18 2021-04-13 显示基板及显示装置 WO2021233014A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/765,723 US20220367582A1 (en) 2020-05-18 2021-04-13 Display substrate and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421935.2 2020-05-18
CN202010421935.2A CN113690271B (zh) 2020-05-18 2020-05-18 显示基板及显示装置

Publications (1)

Publication Number Publication Date
WO2021233014A1 true WO2021233014A1 (zh) 2021-11-25

Family

ID=78575679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086766 WO2021233014A1 (zh) 2020-05-18 2021-04-13 显示基板及显示装置

Country Status (3)

Country Link
US (1) US20220367582A1 (zh)
CN (1) CN113690271B (zh)
WO (1) WO2021233014A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113901857A (zh) * 2020-06-22 2022-01-07 京东方科技集团股份有限公司 纹路识别装置以及电子装置
WO2023230805A1 (zh) * 2022-05-31 2023-12-07 京东方科技集团股份有限公司 显示基板以及显示装置
CN117501832A (zh) * 2022-05-31 2024-02-02 京东方科技集团股份有限公司 显示基板以及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
CN107122750A (zh) * 2017-05-03 2017-09-01 京东方科技集团股份有限公司 一种光学指纹识别装置及显示面板
CN110175492A (zh) * 2018-07-20 2019-08-27 神盾股份有限公司 光学指纹感测装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056439B2 (en) * 2015-12-11 2018-08-21 Gingy Technologies Inc. Image capturing apparatus
CN106886767B (zh) * 2017-02-23 2019-07-05 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板
CN107506728B (zh) * 2017-08-23 2021-02-12 京东方科技集团股份有限公司 感光单元、感光模组及感光装置
US10809853B2 (en) * 2017-12-11 2020-10-20 Will Semiconductor (Shanghai) Co. Ltd. Optical sensor having apertures
KR102615589B1 (ko) * 2017-12-28 2023-12-18 엘지디스플레이 주식회사 지문 인식이 가능한 표시 장치
CN108288681B (zh) * 2018-01-11 2021-01-22 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN108922905A (zh) * 2018-07-17 2018-11-30 京东方科技集团股份有限公司 一种显示基板及制备方法、显示面板
CN109144311B (zh) * 2018-07-26 2022-06-07 京东方科技集团股份有限公司 显示基板、指纹识别方法、触控显示装置
KR20200022077A (ko) * 2018-08-22 2020-03-03 (주)포인트엔지니어링 생체인식센서 및 이를 구비한 디스플레이 장치
WO2020186428A1 (zh) * 2019-03-18 2020-09-24 京东方科技集团股份有限公司 显示面板及其制作方法
CN110164937A (zh) * 2019-05-30 2019-08-23 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN110119046B (zh) * 2019-05-31 2022-01-14 厦门天马微电子有限公司 一种显示面板和显示装置
KR20210010681A (ko) * 2019-07-17 2021-01-28 삼성디스플레이 주식회사 전계 발광 장치
KR20210037057A (ko) * 2019-09-26 2021-04-06 삼성디스플레이 주식회사 지문 센서 및 이를 포함하는 표시 장치
CN111106157A (zh) * 2020-01-07 2020-05-05 武汉华星光电半导体显示技术有限公司 一种显示装置
CN111312792B (zh) * 2020-03-04 2022-11-25 上海天马微电子有限公司 显示面板和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
CN107122750A (zh) * 2017-05-03 2017-09-01 京东方科技集团股份有限公司 一种光学指纹识别装置及显示面板
CN110175492A (zh) * 2018-07-20 2019-08-27 神盾股份有限公司 光学指纹感测装置

Also Published As

Publication number Publication date
US20220367582A1 (en) 2022-11-17
CN113690271B (zh) 2024-03-19
CN113690271A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2021233014A1 (zh) 显示基板及显示装置
US10803285B2 (en) Display panel with photosensitve circuit and manufacturing method thereof and display device
CN108415188B (zh) 一种液晶显示面板、显示装置及其指纹解锁方法
CN107480639B (zh) 一种触控显示面板和显示装置
CN107368822B (zh) 一种显示装置及其制造方法、以及电子设备
US10185861B2 (en) Display panel and electronic device
US11538270B2 (en) Display panel and display device
CN110610990B (zh) 显示屏、显示装置及移动终端
CN111584594B (zh) 显示面板、显示装置及其制造方法
WO2018145461A1 (zh) 显示装置
US11341766B2 (en) Optical structure, display substrate and display device
KR20190128010A (ko) 유기발광 표시장치
US11538871B2 (en) Array substrate and fabricating method thereof, and display apparatus
US11644914B2 (en) Display panel and display device
CN108764147B (zh) 一种显示面板及显示装置
KR20110020743A (ko) 광 검출 장치 및 표시 장치
CN112596294B (zh) 显示装置、显示面板及其制造方法
US20230142687A1 (en) Display panel and display apparatus
US11645863B2 (en) Display device having fingerprint recognition component
WO2020164316A1 (zh) 显示装置及其制备方法
CN110828696A (zh) 一种底发射显示面板、制作方法和光学补偿方法
CN111564483A (zh) 一种显示装置
WO2020232637A1 (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
CN111160323A (zh) 一种显示面板及电子装置
CN110928028A (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808517

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21808517

Country of ref document: EP

Kind code of ref document: A1