WO2021232976A1 - 动力驱动系统及车辆 - Google Patents
动力驱动系统及车辆 Download PDFInfo
- Publication number
- WO2021232976A1 WO2021232976A1 PCT/CN2021/085638 CN2021085638W WO2021232976A1 WO 2021232976 A1 WO2021232976 A1 WO 2021232976A1 CN 2021085638 W CN2021085638 W CN 2021085638W WO 2021232976 A1 WO2021232976 A1 WO 2021232976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive motor
- motor
- power
- vehicle
- drive
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/32—Control or regulation of multiple-unit electrically-propelled vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/16—DC brushless machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/425—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- This application relates to the field of automobile technology, and in particular to a power drive system, a control method, a device, a vehicle, and a storage medium.
- the existing electric vehicle drive system can be driven by four-wheel drive; usually four-wheel drive electric vehicles have two sets of power devices, main drive and auxiliary drive. It is composed of an asynchronous motor or a synchronous motor.
- synchronous motors due to the high cost of synchronous motors, large drag losses, high back-EMF, and the risk of overheating, they need to be isolated by the clutch; while asynchronous motors are large in size, and their power and torque drop severely when the vehicle is at a high speed.
- the efficiency of the electric vehicle is low, and it cannot effectively improve the endurance; therefore, the configuration of the existing electric vehicle power unit is restricted by the above-mentioned motor characteristics, which has an impact on the safety and power performance of the electric vehicle.
- the embodiments of the present application provide a power drive system, a control method, a device, a vehicle, and a storage medium to provide a power drive system using an electric excitation motor.
- the electric excitation motor is used in the front drive and/or the rear drive, and The electric excitation motor drives the vehicle, which can take into account the power and economy of the vehicle.
- an embodiment of the present application provides a power drive system for a vehicle.
- the power drive system includes: a front drive motor and a rear drive motor, at least one of the front drive motor and the rear drive motor is an electric excitation motor, wherein ,
- the front drive motor is used to power the front wheels to drive the vehicle, and the rear drive motor is used to power the rear wheels to drive the vehicle.
- the front-drive motor is an electric excitation motor
- the rear-drive motor is a permanent magnet synchronous motor or an asynchronous motor
- the front-drive motor is a permanent magnet synchronous motor or an asynchronous motor
- the rear-drive motor is an electric excitation motor
- the front-drive motor and the rear-drive motor are electric excitation motors.
- the driving motors are all electrically excited motors.
- the electric excitation motor is any one of a wireless-fed excitation motor, a brush excitation motor, and a hybrid excitation motor.
- an embodiment of the present application also provides a power drive system control method for the above-mentioned power drive system.
- the power drive system control method includes: real-time acquisition of vehicle operating condition information; dynamic adjustment according to vehicle operating condition information Power distribution ratio, which is the ratio of the power output to the front-drive motor and the power output to the rear-drive motor.
- obtaining the vehicle's operating condition information in real time further includes: obtaining the vehicle's power demand torque Q, a preset high-efficiency range of front-drive torque [Fmin1, Fmax1], and a preset high-efficiency range of rear-drive torque [Fmin2, Fmax2];
- Dynamically adjusting the power distribution ratio according to the vehicle's working condition information includes: adjusting the power distribution ratio according to Q, [Fmin1, Fmax1] and [Fmin2, Fmax2], where:
- the rear drive motor is an electric excitation motor
- the process of adjusting the power distribution ratio according to Q, [Fmin1, Fmax1] and [Fmin2, Fmax2] also includes:
- the front-drive motor is an electric excitation motor.
- the process of adjusting the power distribution ratio according to Q, [Fmin1, Fmax1] and [Fmin2, Fmax2] also includes:
- obtaining the working condition information of the vehicle in real time includes: obtaining the temperature of the front drive motor and the temperature of the rear drive motor; dynamically adjusting the power distribution ratio according to the working condition information of the vehicle includes: The power output to the front drive motor increases the power output to the rear drive motor; when the temperature of the rear drive motor reaches above the second threshold, the power output to the front drive motor is increased and the power output to the rear drive motor is reduced.
- obtaining the vehicle's operating condition information in real time includes: obtaining the vehicle's running status; dynamically adjusting the power distribution ratio according to the vehicle's operating condition information includes: when the vehicle's running status is uphill, reducing the power output to the front drive motor and increasing the output The power to the rear-drive motor; when the vehicle is driving a turn that exceeds a preset angle, the power output to the front-drive motor is increased, and the power output to the rear-drive motor is reduced.
- an embodiment of the present application also provides a power drive system control device, including: a processor and a memory, the memory is used to store at least one instruction, and the instruction is loaded and executed by the processor to implement the above-mentioned power drive system control method .
- an embodiment of the present application also provides a vehicle, including the above-mentioned power drive system and the above-mentioned power drive system control device.
- the embodiments of the present application also provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program, which when running on a computer, causes the computer to execute the above-mentioned power drive system control method.
- At least one of the front-drive motor and the rear-drive motor is an electric excitation motor. Since the torque of the electric excitation motor has a large high efficiency range, The power allocated to the front drive motor and the rear drive motor can be dynamically adjusted according to the vehicle's working condition information.
- the electric excitation motor When the power of one of the front drive motor and the rear drive motor is adjusted to 0, the electric excitation motor is in a non-working state , Because it can directly control the electric excitation motor not to work through the excitation component without transmitting energy, without the cooperation of the clutch, the cost is low, and at this time, the back EMF will not be generated in the stator, or a small amount of back EMF will be generated, so the loss is generated. It is lower, which can reduce the cost while improving the efficiency, that is, taking into account the power and economy of the vehicle.
- Fig. 1 is a structural block diagram of a power drive system of a vehicle in an embodiment of the application
- FIG. 2 is a schematic diagram of a rotating state of a rotor of an electrically excited motor in an embodiment of the application;
- Fig. 3 is a structural block diagram of another vehicle power drive system in an embodiment of the application.
- FIG. 4 is a structural block diagram of another vehicle power drive system in an embodiment of the application.
- FIG. 5 is a structural block diagram of another vehicle power drive system in an embodiment of the application.
- FIG. 6 is a schematic flowchart of a method for controlling a power drive system in an embodiment of the application
- FIG. 7 is a schematic diagram of the efficiency interval of a front-drive motor in an embodiment of the application.
- FIG. 8 is a schematic diagram of the efficiency interval of a rear-drive motor in an embodiment of the application.
- FIG. 9 is a schematic flowchart of another method for controlling a power drive system in an embodiment of the application.
- FIG. 10 is a schematic flowchart of another method for controlling a power drive system in an embodiment of the application.
- FIG. 11 is a structural block diagram of a power drive system of a vehicle in an embodiment of the application.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “plurality” means two or more.
- four-wheel drive electric vehicles have two sets of power devices, the main drive and the auxiliary drive, and the main and auxiliary drive devices are placed on the side of the front and rear wheels respectively.
- the auxiliary drive device will be in In the non-working state, the motor in the auxiliary driving force device can be rotated along or in a cut-off state at this time.
- the main driving force device is mainly composed of a permanent magnet synchronous motor
- the auxiliary driving force device is usually composed of an asynchronous motor or a permanent magnet synchronous motor.
- the permanent magnet synchronous motor has high cost, large drag loss, high back-EMF, and the risk of over-temperature. Therefore, it is necessary to cut off the motor in the auxiliary driving force device through a clutch to prevent the motor from following.
- the magnetic field is generated by the rotation, which generates a back EMF, which affects the motor controller and generates losses; and the asynchronous motor is large in size, and the power and torque are severely reduced when the vehicle is running at high speed, and the overall efficiency is low, which cannot effectively improve the endurance. Capacity; Therefore, no matter what kind of motor is used to form the auxiliary driving force device, the above-mentioned problem will arise, that is, the power and economy of the four-wheel drive electric vehicle cannot be taken into account.
- Figure 1 is a structural block diagram of a power drive system of a vehicle in an embodiment of the application.
- the embodiment of the application provides a power drive system for electric vehicles.
- the power drive system includes: a front drive motor and a rear drive motor. At least one of the front drive motor and the rear drive motor is an electric excitation motor, where the front drive motor is used to power the front wheels to drive the vehicle, and the rear drive motor is used to power the rear wheels to drive the vehicle.
- Figure 1 also shows the power drive system control device, which is used to control the power drive system as a whole, that is, control the front drive motor and the rear drive motor.
- FIG. 2 is a schematic diagram of the state of the rotor of an electric excitation motor in an embodiment of the application while rotating.
- the electric excitation motor includes a stator and a rotor.
- FIG. 2 also shows an excitation component for driving the rotor.
- at least one of the front drive motor and the rear drive motor is an electric excitation motor.
- the electric excitation motor is used as an auxiliary drive and is not working, it is not necessary to disconnect the auxiliary drive on the main drive shaft of the vehicle.
- the rotor of the electric excitation motor does not contain magnetic steel or only contains a small amount of magnetic steel, the excitation current on the rotor can be cut off (the excitation current becomes 0), so that the rotor rotates along, so as to achieve the purpose of minimizing the auxiliary drive loss.
- the electric excitation motor can be controlled directly by the excitation current to make the electric excitation motor inoperative, therefore, the cooperation of the clutch is not required, and the cost is low.
- the excitation components do not transmit energy, there is no magnetic field in the rotor, or there is only a small amount of magnetic flux, and no back EMF or a small amount of back EMF is generated in the stator, so the resulting loss is low.
- the electric excitation motor itself has high efficiency, so when used as a motor in a four-wheel drive vehicle, it can reduce the cost while improving the efficiency, that is, taking into account the power and economy of the vehicle.
- FIG. 3 is a structural block diagram of another vehicle power drive system in an embodiment of the application.
- the front drive motor is an electric excitation motor
- the rear drive motor is a permanent magnet synchronous motor or an asynchronous motor.
- the front drive motor is the auxiliary drive motor
- the rear drive motor is the main drive motor, that is, the electric excitation motor may be in a non-working state; or, as shown in Figure 4, Figure 4 is another example of this application.
- the front drive motor is a permanent magnet synchronous motor or an asynchronous motor
- the rear drive motor is an electric excitation motor.
- the front drive motor is the main drive motor
- the rear drive motor is the auxiliary drive motor.
- the electric excitation motor may be in a non-working state; or, as shown in FIG. 5, which is a structural block diagram of another vehicle power drive system in an embodiment of the application, the front-drive motor and the rear-drive motor are both Electrically excited motor.
- the vehicle is driving in a state such as climbing or accelerating It can be switched to the rear-drive mode, that is, the rear-drive motor works alone.
- the front-drive motor does not work, and the rotor of the front-drive motor rotates accordingly to improve the dynamic performance of the vehicle in a specific state.
- Flexible switching, no clutch is required, and the loss is small, and there is no risk of back EMF.
- the electric excitation motor is any one of a wireless-fed excitation motor, a brush excitation motor, and a hybrid excitation motor.
- the wireless-fed excitation motor realizes the drive of the motor by wirelessly transmitting the excitation current
- the brush excitation motor uses carbon brushes. Or slip ring or other methods to transmit the excitation current to achieve the drive of the motor.
- the hybrid excitation motor refers to the combination of permanent magnet and excitation to achieve the drive of the motor.
- FIG. 6 is a schematic flowchart of a power drive system control method in an embodiment of the application.
- An embodiment of the application also provides a power drive system control method for the power drive system in the above embodiment.
- the control method includes:
- Step 101 Acquire vehicle operating condition information in real time
- Step 102 Dynamically adjust the power distribution ratio according to the operating condition information of the vehicle, the power distribution ratio being the ratio of the power output to the front drive motor and the power output to the rear drive motor.
- the working condition information of the vehicle can reflect the working state of the vehicle.
- the temperature of the electrode, the road condition of the vehicle, the torque of the motor, etc. can be determined through the working condition information.
- the torque of the electric excitation motor has a relatively high value.
- the high-efficiency range refers to the higher working efficiency of the motor within the torque range.
- the torque of the electric excitation motor is positively correlated with the power input to the electric excitation motor. For the motor, after using the electric excitation motor, the torque of the electric excitation motor can be adjusted in a larger range while maintaining high working efficiency, that is, the power output to the electric excitation motor can be adjusted in a larger range.
- the power distribution ratio between the front-drive motor and the rear-drive motor can be dynamically adjusted according to the vehicle's operating status, so as to achieve a flexible adjustment of the power distribution ratio for the specific operating status of the vehicle. At the same time, it maintains a high motor efficiency.
- the rear-drive motor is an electrically excited motor.
- the ratio of the power output to the front-drive motor to the power output to the rear-drive motor is 1:0, it means the switch to the front-drive mode, the front-drive motor works alone, and the rear-drive motor does not work ,
- the excitation component corresponding to the rear-drive motor does not transmit energy, there is no magnetic field in the rotor, or there is only a small amount of magnetic flux, it will not generate back EMF in the stator, or generate a small amount of back EMF, so the generated loss is low, that is, the The improvement of efficiency reduces the cost, that is, both the power and economy of the vehicle are taken into consideration.
- FIG. 9 is a schematic flowchart of another power drive system control method in an embodiment of the application.
- the rear drive motor is an electric excitation motor
- the front drive motor can be an electric excitation motor or a permanent magnet motor.
- step 101 real-time acquisition of vehicle operating condition information includes: step 201, acquiring the vehicle's power demand torque Q, and a preset high efficiency range of front drive torque [Fmin1, Fmax1], And the preset rear-drive torque efficiency range [Fmin2, Fmax2];
- step 102 dynamically adjusting the power distribution ratio according to the vehicle's working condition information includes: step 202, determining Q, [Fmin1, Fmax1] and [Fmin2, Fmax2] If Fmin1+Fmin2 ⁇ Q ⁇ Fmax1+Fmax2, go to step 203, if Q ⁇
- Fmin1+Fmin2, and Q ⁇ Fmax1 then go to step 204, Fmin1 is the minimum value of the preset front-drive torque high-efficiency interval [Fmin1, Fmax1], and Fmin2 is the minimum value of the preset rear-drive torque high-efficiency interval [Fmin2, Fmax2] , Fmax1 is the maximum value of the preset front-drive torque high-efficiency interval [Fmin1, Fmax1], and Fmax2 is the maximum value of the preset rear-drive torque high-efficiency interval [Fmin2, Fmax2];
- the power distribution ratio actually refers to the distribution of the current power demand torque Q.
- the power demand torque Q can be comprehensively calculated based on the current accelerator opening and other real-time operating conditions of the vehicle. Regardless of how the power is distributed, it needs to be satisfied.
- the power demand torque Q of the vehicle for example, suppose that the front drive motor is a permanent magnet synchronous motor or an asynchronous motor, and the rear drive motor is an electric excitation motor, as shown in Figs. 7 and 8.
- Fig. 7 is a front drive motor in an embodiment of the application 8 is a schematic diagram of the efficiency interval of a rear-drive motor in an embodiment of the application. In FIGS.
- the abscissa represents the motor speed
- the ordinate represents the motor torque
- the different gray-scale intervals represent Different efficiency intervals, the deeper the gray scale, the higher the efficiency.
- the A1 interval in Fig. 7 is the preset high efficiency interval of the front-drive torque. In this interval, the front-drive motor has higher efficiency.
- the A2 interval in Fig. 8 indicates the preset The rear-drive torque high-efficiency range in which the rear-drive motor has higher efficiency.
- the preset high-efficiency range of the front-drive torque is [30N ⁇ m, 260N ⁇ m]
- the speed of the rear-drive motor is 5000rpm
- the preset range of the high-efficiency rear-drive torque is [30N ⁇ m, 220N ⁇ m].
- FIG. 10 is a schematic flowchart of another power drive system control method in an embodiment of the application.
- the drive motor can be an electric excitation motor or a permanent magnet motor.
- the power distribution method under Q satisfies all conditions is not given.
- the embodiment of this application does not provide power distribution methods under Q satisfies other conditions Limits and can be adjusted as needed.
- the preset high-efficiency interval range of front-drive torque is [30N ⁇ m, 50N ⁇ m]
- the preset high-efficiency interval range of rear-drive torque is [30N ⁇ m, 50N ⁇ m]
- step 101 real-time acquisition of vehicle operating condition information includes: acquiring the temperature of the front drive motor and the temperature of the rear drive motor; step 102, dynamically adjusting the power distribution ratio according to the vehicle operating condition information includes: current drive motor temperature When the first threshold is reached, the power output to the front drive motor is reduced, and the power output to the rear drive motor is increased; when the temperature of the rear drive motor reaches the second threshold or higher, the power output to the front drive motor is increased, and the power output to the rear drive motor is reduced. power.
- the temperature sensor installed at the front-drive motor can be used to monitor the temperature of the front-drive motor in real time
- the temperature sensor installed at the rear-drive motor can be used to monitor the temperature of the front-drive motor. Monitor the temperature of the rear-drive motor in real time. For example, if the temperature of the front-drive motor is above the first threshold, it means that the temperature of the front-drive motor is too high. At this time, reduce the power output to the front-drive motor and increase the power output to the rear-drive motor. In this way, the front-drive motor can be cooled while keeping the total power output unchanged to ensure safety.
- the power can be reduced to 0 as needed, even if the front-drive motor is not working, to achieve The best cooling effect; similarly, if the temperature of the rear-drive motor is monitored to exceed the second threshold, it indicates that the temperature of the rear-drive motor is too high. At this time, the power output to the rear-drive motor is reduced, and the output to the front-drive motor is increased. In this way, the rear-drive motor can be cooled under the premise of keeping the total power output unchanged to ensure safety. If the rear-drive motor is an electrically excited motor, the power can be reduced to 0 as needed, even if the rear-drive motor is not Work to achieve the best cooling effect.
- the priority of adjusting the power distribution ratio according to the motor temperature may be higher than the priority of adjusting the power distribution ratio according to the motor torque, so as to give priority to ensuring safety and further ensuring work efficiency.
- the vehicle dynamically adjusts the power distribution ratio according to the efficiency interval shown in Figure 7 and Figure 8.
- the efficiency interval shown in Figure 7 and Figure 8 When the temperature of the front drive motor or the rear drive motor is detected to rise to the corresponding threshold, it will enter the efficiency distribution Mode. At this time, the power is no longer distributed according to the efficiency interval shown in Figure 7 and Figure 8, but the power is distributed according to the temperature of the motor to achieve cooling of the overheated motor.
- the efficiency distribution mode When it is detected that the temperature of the motor is reduced to a level After accepting the range, return to the efficiency distribution mode, and redistribute power according to the efficiency intervals shown in Figs. 7 and 8.
- step 101 real-time acquisition of vehicle working condition information includes: acquiring the vehicle driving state; step 102, dynamically adjusting the power distribution ratio according to the vehicle working condition information includes: when the vehicle driving state is uphill, reducing the output to The power of the front-drive motor increases the power output to the rear-drive motor; when the vehicle is driving a turn that exceeds a preset angle, the power output to the front-drive motor is increased, and the power output to the rear-drive motor is reduced.
- the driving state of the vehicle can be determined according to the sensors on the vehicle.
- the current driving state of the vehicle can be determined based on the information detected by the Electronic Stability Program (ESP) and the gyroscope on the vehicle.
- ESP Electronic Stability Program
- the rear-wheel drive mode has higher stability and safety, while the front-wheel drive mode is more conducive to turning at a large angle. Therefore, when different vehicle driving conditions are detected, the power distribution ratio can be adjusted as needed.
- the front-drive motor is an electric excitation motor
- the power of the front-drive motor can be reduced to 0. Even if the front-drive motor does not work, the rear-drive motor works alone, that is, enters the rear-drive mode.
- the uphill stability and Safety will be improved, and no additional power output is required; when turning at a large angle, if the rear-drive motor is an electrically excited motor, the power of the rear-drive motor can be reduced to 0 to improve the performance of large-angle turning.
- the priority of adjusting the power distribution ratio according to the form and state of the vehicle may be higher than the priority of adjusting the power distribution ratio according to the motor torque, so as to give priority to ensuring the stability and safety of specific road conditions.
- the vehicle dynamically adjusts the power distribution ratio according to the efficiency interval shown in Figs. Road condition distribution mode. At this time, the power is no longer distributed according to the efficiency interval shown in Figure 7 and Figure 8, but according to the form state.
- the efficiency distribution mode When it is detected that the vehicle driving road condition returns to normal, it returns to the efficiency distribution mode and restarts The power is distributed according to the efficiency zones shown in Figs. 7 and 8.
- An embodiment of the present application further provides a power drive system control device, which includes a processor and a memory, where the memory is used to store at least one instruction, and the instruction is loaded and executed by the processor to implement the above-mentioned power drive system control method.
- the number of processors may be one or more, and the processors and the memory may be connected by a bus or other methods.
- the memory can be used to store non-transitory software programs, non-transitory computer executable programs and modules.
- the processor runs the non-transitory software programs, instructions and modules stored in the memory. , So as to execute various functional applications and data processing, that is, to implement the method in any of the foregoing method embodiments.
- the memory may include a program storage area and a data storage area, where the program storage area may store an operating system, an application program required by at least one function, and necessary data.
- the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
- Fig. 11 is a structural block diagram of a power drive system of a vehicle in an embodiment of the application. Drive system control device.
- the vehicle may also include: a power battery box, which is used to provide electrical energy for the high-voltage and low-voltage electrical components of the vehicle; a battery management system, which is used to provide dynamic parameters of the power battery; a front-wheel drive temperature sensor, which is used to monitor the temperature of the front-wheel drive motor; The rear drive temperature sensor is used to monitor the temperature of the rear drive motor; the rear drive controller is used to drive the rear drive motor; the front drive automatic transmission is used to change the front drive motor and the front drive motor speed according to the vehicle speed and the front drive motor speed.
- a power battery box which is used to provide electrical energy for the high-voltage and low-voltage electrical components of the vehicle
- a battery management system which is used to provide dynamic parameters of the power battery
- a front-wheel drive temperature sensor which is used to monitor the temperature of the front-wheel drive motor
- the rear drive temperature sensor is used to monitor the temperature of the rear drive motor
- the rear drive controller is used to drive the rear drive motor
- the front drive automatic transmission is used to change
- the transmission ratio of the front drive shaft has a differential in the automatic transmission; the front drive shaft is used to transmit the output power of the front drive motor to the front wheels; the rear drive automatic transmission changes the rear drive motor and The transmission ratio of the rear drive shaft, the differential is in the automatic transmission; the rear drive shaft is used to transmit the output power of the rear drive motor to the rear wheels; the front and rear wheels; the high-voltage control box is used to provide high voltage for the entire vehicle
- the components distribute electrical energy.
- the front drive motor in the power drive system is used to drive the front wheels through the front drive automatic transmission and the front drive shaft;
- the rear drive motor in the power drive system is used to drive the rear wheels through the rear drive automatic transmission and the rear drive shaft;
- the power drive system control device It is used to control a power drive system including a front drive motor and a rear drive motor through the power drive system control method in the foregoing embodiment.
- the vehicle in the application example may be a battery electric vehicle (BEV), a hybrid electric vehicle (Plug-in hybrid electric vehicle, PHEV), or a fuel cell vehicle (Fuel Cell Electric Vehicle, FCEV). This is not limited.
- BEV battery electric vehicle
- PHEV hybrid electric vehicle
- FCEV Fuel Cell Electric Vehicle
- the embodiments of the present application also provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program, which when running on a computer, causes the computer to execute the power drive system control method in the above-mentioned embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种动力驱动系统、控制方法、装置、车辆和存储介质,涉及汽车技术领域,该动力驱动系统,用于电动车辆,该动力驱动系统包括:前驱电机和后驱电机,前驱电机和后驱电机中的至少一者为电励磁电机,其中,前驱电机用于为前轮提供动力以驱动车辆,后驱电机用于为后轮提供动力以驱动车辆。
Description
本申请要求于2020年05月21日提交中国专利局、申请号为202010438041.4、申请名称为“动力驱动系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及汽车技术领域,特别涉及一种动力驱动系统、控制方法、装置、车辆和存储介质。
电动汽车作为一种降低石油消耗、低污染、低噪声的新能源汽车,被认为是应对能源危机和环境恶化问题,未来路面交通工具的主要发展方向。目前,现有的电动汽车驱动系统可以通过四轮驱动;通常四驱电动汽车拥有主驱和辅驱两套动力装置,其中,主驱动力装置主要由永磁同步电机构成,辅驱动力装置主要由异步电机或者同步电机构成。然而,由于同步电机成本高,拖拽损耗大,反电势高,且通常有过温风险,需要依靠离合器进行隔断;而异步电机体积大,且在车辆高速的情况下功率和扭矩下降严重,整体的效率低,且无法有效提升续航;因此,现有的电动汽车动力装置的配置,受到上述电机特性的制约,对电动车辆的安全性和动力性等指标存在影响。
发明内容
本申请实施例提供了一种动力驱动系统、控制方法、装置、车辆和存储介质,以提供一种采用电励磁电机的动力驱动系统,通过在前驱和/或后驱中采用电励磁电机,并由该电励磁电机驱动车辆,可以兼顾车辆的动力性和经济性。
第一方面,本申请实施例提供了一种动力驱动系统,用于车辆,该动力驱动系统包括:前驱电机和后驱电机,前驱电机和后驱电机中的至少一者为电励磁电机,其中,前驱电机用于为前轮提供动力以驱动车辆,后驱电机用于为后轮提供动力以驱动车辆。
可选地,前驱电机为电励磁电机,后驱电机为永磁同步电机或异步电机;或者,前驱电机为永磁同步电机或异步电机,后驱电机为电励磁电机;或者,前驱电机和后驱电机均为电励磁电机。
可选地,电励磁电机为无线馈电励磁电机、电刷励磁电机及混合励磁电机中的任一种。
第二方面,本申请实施例还提供一种动力驱动系统控制方法,用于上述的动力驱动系统,该动力驱动系统控制方法包括:实时获取车辆的工况信息;根据车辆的工况信息动态调整动力分配比例,动力分配比例为输出至前驱电机的动力和输出至后驱电 机的动力之比。
可选地,实时获取车辆的工况信息还包括:获取车辆的动力需求扭矩Q、预设的前驱扭矩高效区间[Fmin1,Fmax1],以及预设的后驱扭矩高效区间[Fmin2,Fmax2];
根据车辆的工况信息动态调整动力分配比例包括:根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整动力分配比例,其中:
若Fmin1+Fmin2≤Q≤Fmax1+Fmax2,则使调整动力分配比例之后,Fmin1≤F1≤Fmax1,Fmin2≤F2≤Fmax2,F1+F2=Q,F1为前驱电机的扭矩,F2为后驱电机的扭矩。
可选地,在动力驱动系统中,后驱电机为电励磁电机,在根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整动力分配比例的过程中,还包括:
若Q<Fmin1+Fmin2,且Q≤Fmax1,则使调整动力分配比例之后,Fmin1≤F1≤Fmax1,F2=0,F1+F2=Q。
可选地,在动力驱动系统中,前驱电机为电励磁电机,在根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整动力分配比例的过程中,还包括:
若Q<Fmin1+Fmin2,且Q≤Fmax2,则使调整动力分配比例之后,F1=0,Fmin2≤F2≤Fmax2,F1+F2=Q。
可选地,实时获取车辆的工况信息包括:获取前驱电机的温度和后驱电机的温度;根据车辆的工况信息动态调整动力分配比例包括:当前驱电机的温度达到第一阈值以上,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当后驱电机的温度达到第二阈值以上,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
可选地,实时获取车辆的工况信息包括:获取车辆行驶状态;根据车辆的工况信息动态调整动力分配比例包括:当车辆行驶状态为上坡时,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当车辆行驶状态为超过预设角度的转弯时,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
第三方面,本申请实施例还提供一种动力驱动系统控制装置,包括:处理器和存储器,存储器用于存储至少一条指令,指令由处理器加载并执行时以实现上述的动力驱动系统控制方法。
第四方面,本申请实施例还提供一种车辆,包括上述的动力驱动系统以及上述的动力驱动系统控制装置。
第五方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述的动力驱动系统控制方法。
本申请实施例中的动力驱动系统、控制方法、装置、车辆和存储介质,前驱电机和后驱电机中的至少一者为电励磁电机,由于电励磁电机的扭矩具有较大的高效区间,因此可以根据车辆的工况信息动态调整分配至前驱电机和后驱电机的动力,当调整至其中前驱电机和后驱电机中其中一个电励磁电机的动力为0时,该电励磁电机处于不工作状态,由于可以直接通过励磁部件不传输能量来控制使电励磁电机不工作,无需离合器的配合,成本较低,且此时不会在定子中产生反电势,或产生少量反电势,因此产生的损耗较低,从而可以在提高效率的情况下降低成本,即兼顾了车辆的动力性 和经济性。
图1为本申请实施例中一种车辆的动力驱动系统的结构框图;
图2为本申请实施例中一种电励磁电机转子随转的状态示意图;
图3为本申请实施例中另一种车辆的动力驱动系统的结构框图;
图4为本申请实施例中另一种车辆的动力驱动系统的结构框图;
图5为本申请实施例中另一种车辆的动力驱动系统的结构框图;
图6为本申请实施例中一种动力驱动系统控制方法的流程示意图;
图7为本申请实施例中一种前驱电机的效率区间示意图;
图8为本申请实施例中一种后驱电机的效率区间示意图;
图9为本申请实施例中另一种动力驱动系统控制方法的流程示意图;
图10为本申请实施例中另一种动力驱动系统控制方法的流程示意图;
图11为本申请实施例中一种车辆的动力驱动系统的结构框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
目前,四驱电动汽车拥有主驱和辅驱两套动力装置,而该主驱和辅驱动力装置分别安置在前轮和后轮的一侧,在某些情况下,辅驱动力装置会处于非工作状态,此时辅驱动力装置中的电机可以进行随转或者处于切断状态。
目前的四驱电动汽车中,主驱动力装置主要由永磁同步电机构成,而辅驱动力装置通常由异步电机或永磁同步电机构成。对于辅驱动力装置来说,永磁同步电机成本高,拖拽损耗大,反电势高,且有过温风险,因此需要通过离合器对该辅驱动力装置中的电机进行切断,防止该电机随转产生磁场,由此产生反电势,进而对电机控制器产生影响以及产生损耗;而异步电机体积大,在车辆高速行驶的状态下功率和扭矩下降严重,且整体的效率低,无法有效提升续航能力;因此,无论采用上述哪种电机构成辅驱动力装置,都会产生上述问题,即无法兼顾四驱电动汽车的动力性和经济性。
如图1所示,图1为本申请实施例中一种车辆的动力驱动系统的结构框图,本申请实施例提供一种动力驱动系统,用于电动车辆,动力驱动系统包括:前驱电机和后驱电机,前驱电机和后驱电机中的至少一者为电励磁电机,其中,前驱电机用于为前轮提供动力以驱动车辆,后驱电机用于为后轮提供动力以驱动车辆。图1中还示意了 动力驱动系统控制装置,用于对动力驱动系统进行整体控制,即控制前驱电机和后驱电机。
具体地,如图2所示,图2为本申请实施例中一种电励磁电机转子随转的状态示意图,电励磁电机包括定子和转子,图2中还示意了用于驱动转子的励磁部件,本申请实施例中,前驱电机和后驱电机中的至少一者为电励磁电机,当电励磁电机作为辅驱使用,处于不工作状态时,不需要断开车辆的主传动轴上的辅驱部分,由于电励磁电机转子不含有磁钢或仅含有少量磁钢,因此可以将转子上励磁电流切断(励磁电流变为0),使转子随转,从而达到辅驱损耗最小的目的,由于可以直接通过励磁电流进行控制使该电励磁电机不工作,因此,无需离合器的配合,成本较低。另外,在辅驱随转情况下,励磁部件不传输能量,转子中无磁场,或者仅有少量磁通,不会在定子中产生反电势,或产生少量反电势,因此产生的损耗较低。且电励磁电机本身具有较高的效率,因此在四驱汽车中作为电机使用,可以在提高效率的情况下降低成本,即兼顾了车辆的动力性和经济性。
可选地,如图3所示,图3为本申请实施例中另一种车辆的动力驱动系统的结构框图,前驱电机为电励磁电机,后驱电机为永磁同步电机或异步电机,此时,前驱电机为辅驱电机,后驱电机为主驱电机,也就是说,其中的电励磁电机可能会处于不工作状态;或者,如图4所示,图4为本申请实施例中另一种车辆的动力驱动系统的结构框图,前驱电机为永磁同步电机或异步电机,后驱电机为电励磁电机,此时,前驱电机为主驱电机,后驱电机为辅驱电机,也就是说,其中的电励磁电机可能会处于不工作状态;或者,如图5所示,图5为本申请实施例中另一种车辆的动力驱动系统的结构框图,前驱电机和后驱电机均为电励磁电机,此时可以选择前驱电机和后驱电机中的任意一者作为主驱电机,另外一者作为辅驱电机,并且,前驱电机和后驱电机均为电励磁电机时,还可以实现前驱模式和后驱模式之间地灵活切换,例如,在前驱模式下,前驱电机单独工作,后驱电机不工作,后驱电机的转子随转,此时如果车辆行驶在例如爬坡或加速状态下,可以切换至后驱模式,即切换为后驱电机单独工作,前驱电机不工作,前驱电机的转子随转,以提高车辆在特定状态下的动力性能,前驱模式和后驱模式之间地灵活切换,不需要离合器,且损耗较小,无反电势的风险。
可选地,电励磁电机为无线馈电励磁电机、电刷励磁电机及混合励磁电机中的任一种,无线馈电励磁电机通过无线传输励磁电流实现电机的驱动,电刷励磁电机通过碳刷或滑环等方式传输励磁电流实现电机的驱动,混合励磁电机是指结合永磁和励磁两种方式实现电机的驱动。
如图6所示,图6为本申请实施例中一种动力驱动系统控制方法的流程示意图,本申请实施例还提供一种动力驱动系统控制方法,用于上述实施例中的动力驱动系统,该控制方法包括:
步骤101、实时获取车辆的工况信息;
步骤102、根据车辆的工况信息动态调整动力分配比例,动力分配比例为输出至前驱电机的动力和输出至后驱电机的动力之比。
具体地,车辆的工况信息可以反映车辆的工作状态,例如可以通过工况信息确定电极的温度、车辆行驶的路况、电机的扭矩等,由于使用了电励磁电机,电励磁电机 的扭矩具有较大的高效区间,高效区间是指在该扭矩区间范围内,电机的工作效率较高,电励磁电机的扭矩和输入至该电励磁电机的动力正相关,因此,相对于永磁同步电机或异步电机,使用电励磁电机后可以在保持较高工作效率的同时,在更大区间范围内调节电励磁电机的扭矩,即在更大区间范围内调节输出至电励磁电机的动力。同时,配合实施获取到的车辆的工况信息,可以根据车辆的工作状态,动态调整前驱电机和后驱电机之间的动力分配比例,以实现针对车辆的特定工作状态,灵活调节动力分配比例,同时保持较高的电机工作效率。例如,后驱电机为电励磁电机,当输出至前驱电机的动力和输出至后驱电机的动力之比为1:0时,即表示切换为前驱模式,前驱电机单独工作,后驱电机不工作,后驱电机对应的励磁部件不传输能量,转子中无磁场,或者仅有少量磁通,不会在定子中产生反电势,或产生少量反电势,因此产生的损耗较低,即实现了在提高效率的情况下降低成本,即兼顾了车辆的动力性和经济性。
可选地,如图9所示,图9为本申请实施例中另一种动力驱动系统控制方法的流程示意图,图9所示方法对应的动力驱动系统中,后驱电机为电励磁电机,前驱电机可以为电励磁电机或永磁电机等,上述步骤101、实时获取车辆的工况信息包括:步骤201、获取车辆的动力需求扭矩Q、预设的前驱扭矩高效区间[Fmin1,Fmax1],以及预设的后驱扭矩高效区间[Fmin2,Fmax2];上述步骤102、根据车辆的工况信息动态调整动力分配比例包括:步骤202、判断Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]之间的关系,若Fmin1+Fmin2≤Q≤Fmax1+Fmax2,则进入步骤203,若Q<
Fmin1+Fmin2,且Q≤Fmax1,则进入步骤204,Fmin1为预设的前驱扭矩高效区间[Fmin1,Fmax1]的最小值,Fmin2为预设的后驱扭矩高效区间[Fmin2,Fmax2]的最小值,Fmax1为预设的前驱扭矩高效区间[Fmin1,Fmax1]的最大值,Fmax2为预设的后驱扭矩高效区间[Fmin2,Fmax2]的最大值;
步骤203、使调整动力分配比例之后,Fmin1≤F1≤Fmax1,Fmin2≤F2≤Fmax2,F1+F2=Q,F1为前驱电机的扭矩,F2为后驱电机的扭矩;
步骤204、使调整动力分配比例之后,Fmin1≤F1≤Fmax1,F2=0,F1+F2=Q。
具体地,动力分配比例实际是指对当前动力需求扭矩Q进行分配,动力需求扭矩Q例如可以根据当前的油门开度等车辆的实时工况信息进行综合计算得到,不论动力如何分配,都需要满足车辆的动力需求扭矩Q,例如,假设前驱电机为永磁同步电机或异步电机,后驱电机为电励磁电机,如图7和图8所示,图7为本申请实施例中一种前驱电机的效率区间示意图,图8为本申请实施例中一种后驱电机的效率区间示意图,在图7和图8中,横坐标表示电机转速,纵坐标表示电机扭矩,其中不同的灰度区间表示不同的效率区间,灰度越深表示效率越高,图7中的A1区间为预设的前驱扭矩高效区间,在该区间内前驱电机具有较高的效率,图8中的A2区间表示预设的后驱扭矩高效区间,在该区间内后驱电机具有较高的效率,例如,当前驱电机的转速为5000rpm时,预设的前驱扭矩高效区间范围为[30N·m,260N·m],后驱电机的转速为5000rpm,预设的后驱扭矩高效区间范围为[30N·m,220N·m],假设在步骤201中获取到实际的Q=60N·m,即在步骤202中判断Q满足Fmin1+Fmin2≤Q≤Fmax1+Fmax2,即Q=60N·m,60N·m≤Q≤480N·m,则进入步骤203,调整动力分 配比例,例如使调整动力分配比例之后,F1=30N·m,F2=30N·m,即在满足动力需求扭矩的同时保持前驱电机和后驱电机均具有较高的工作效率;另外,假设在步骤201中获取到实际的Q=40N·m,即在步骤202中判断Q满足Q<Fmin1+Fmin2,即Q=40N·m<60N·m,则进入步骤204,调整动力分配比例,例如使调整动力分配比例之后,F1=40N·m,F2=0,即在满足动力需求扭矩的同时保持前驱电机具有较高的工作效率,同时后驱电机不工作,不会产生损耗。另外需要说明的是,前驱电机的扭矩和后驱电机的扭矩具体获取方法可以为获取输出至相应电机的电流和电压,根据该电流和电压计算估计得到相应的电机扭矩。
可选地,如图10所示,图10为本申请实施例中另一种动力驱动系统控制方法的流程示意图,图10所示方法对应的动力驱动系统中,前驱电机为电励磁电机,后驱电机可以为电励磁电机或永磁电机等,图10所示方法与图9所示方法的区别在于,在图10所示的方法中,在步骤202、判断Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]之间的关系的过程中,若Q<Fmin1+Fmin2,且Q≤Fmax2,则进入步骤204,步骤204、使调整动力分配比例之后,F1=0,Fmin2≤F2≤Fmax2,F1+F2=Q。
另外需要说明的是,上述图9和图10所示方法对应的实施例中,并未给出Q满足所有条件下的动力分配方式,本申请实施例对于Q满足其他条件下的动力分配方法不作限定,可以根据需要进行调整,例如,预设的前驱扭矩高效区间范围为[30N·m,50N·m],预设的后驱扭矩高效区间范围为[30N·m,50N·m],假设在步骤201中获取到实际的Q=55N·m,此时,调整动力分配比例,使调整动力分配比例之后,前驱电机和后驱电机中的一者满足预设的扭矩高效范围,另外一者分配余下的扭矩,例如分配为F1=30N·m,F2=25N·m,这样,可以使前驱电机具有较高效率,后驱电机的扭矩尽量接近预设的后驱高效区间;另外,如果后驱电机为电励磁电机,假设在步骤201中获取到实际的Q=55N·m,也可以使调整动力分配比例之后,F1=55N·m,F2=0,即控制后驱电机不工作,动力全部分配至前驱电机;假设在步骤201中获取到实际的Q=120N·m,此时,无论怎么调整都无法使两个电机均工作在高效区间,此时可以根据其他的原则来调整动力分配比例,例如可以平均分配,使F1=60N·m,F2=60N·m,这样,虽然两个电机都无法工作在高效区间,但是扭矩都比较接近高效区间,且不容易造成某一个过热的情况,另外也可以使调整动力分配比例之后,使某一个电机的扭矩位于高效区间,另一个电极分配余下的扭矩,例如使F1=50N·m,F2=70N·m,这样可以使前驱电机工作在高效区间,后驱电机的扭矩尽量接近高效区间。
可选地,上述步骤101、实时获取车辆的工况信息包括:获取前驱电机的温度和后驱电机的温度;步骤102、根据车辆的工况信息动态调整动力分配比例包括:当前驱电机的温度达到第一阈值以上,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当后驱电机的温度达到第二阈值以上,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
具体地,电机过热可能会导致故障或安全隐患,因此,在车辆行驶过程中,可以通过安装在前驱电机处的温度传感器来实时监测前驱电机的温度,通过安装在后驱电机处的温度传感器来实时监测后驱电机的温度,例如,如果监测到前驱电机的温度达到第一阈值以上,表示前驱电机的温度过高,此时降低输出至前驱电机的动力,同时 提高输出至后驱电机的动力,这样,可以在保持总动力输出不变的前提下,对前驱电机进行降温,以保证安全,如果前驱电机为电励磁电机,可以根据需要将动力降低至0,即使前驱电机不工作,以达到最佳的降温效果;类似地,如果监测到后驱电机的温度达到第二阈值以上,表示后驱电机的温度过高,此时降低输出至后驱电机的动力,同时提高输出至前驱电机的动力,这样,可以在保持总动力输出不变的前提下,对后驱电机进行降温,以保证安全,如果后驱电机为电励磁电机,可以根据需要将动力降低至0,即使后驱电机不工作,以达到最佳的降温效果。需要说明的是,根据电机温度调整动力分配比例的优先级可以高于根据电机扭矩调整动力分配比例的优先级,以优先保证安全性,进一步保证工作效率。例如,在效率分配模式下,车辆根据图7和图8所示的效率区间来动态调整动力分配比例,当检测到前驱电机或后驱电机的温度升高到相应的阈值后,则进入效率分配模式,此时不再根据图7和图8中所示的效率区间来分配动力,而是根据电机的温度来分配动力,以实现对过热电机的冷却,当检测到该电机的温度降低到可接受的范围之后,恢复至效率分配模式,重新根据图7和图8中所示的效率区间来分配动力。
可选地,上述步骤101、实时获取车辆的工况信息包括:获取车辆行驶状态;步骤102、根据车辆的工况信息动态调整动力分配比例包括:当车辆行驶状态为上坡时,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当车辆行驶状态为超过预设角度的转弯时,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
具体地,车辆行驶状态可以根据车辆上的传感器判断,例如,根据车身电子稳定系统(Electronic Stability Program,ESP)和车辆上的陀螺仪检测到的信息,可以确定车辆当前的行驶状态,例如在上坡时,后驱模式具有更高的稳定性和安全性,而前驱模式更加利于大角度的转弯,因此,当检测到不同的车辆行驶状态时,可以根据需要调整动力分配比例,在上坡时,根据需求,如果前驱电机为电励磁电机,可以将前驱电机的动力降低至0,即使前驱电机不工作,后驱电机单独工作,即进入后驱模式,在动力调节之后,上坡稳定性和安全性均会提高,且不需要额外增加动力输出;在大角度转弯时,根据需求,如果后驱电机为电励磁电机,可以将后驱电机动力降低至0,以提高大角度转弯的性能。
需要说明的是,根据车辆形式状态调整动力分配比例的优先级可以高于根据电机扭矩调整动力分配比例的优先级,以优先保证特定路况的稳定性和安全性。例如,例如,在效率分配模式下,车辆根据图7和图8所示的效率区间来动态调整动力分配比例,当检测到车辆行驶状态为上坡或超过预设角度的转弯时,则进入特定路况分配模式,此时不再根据图7和图8中所示的效率区间来分配动力,而是根据形式状态来分配动力,当检测到车辆行驶路况恢复正常之后,恢复至效率分配模式,重新根据图7和图8中所示的效率区间来分配动力。
本申请实施例还提供一种动力驱动系统控制装置,包括:处理器和存储器,存储器用于存储至少一条指令,指令由处理器加载并执行时以实现上述的动力驱动系统控制方法。
其中,处理器的数量可以为一个或多个,处理器和存储器可以通过总线或者其他方式连接。存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、 非暂态计算机可执行程序以及模块,处理器通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而执行各种功能应用以及数据处理,即实现上述任意方法实施例中的方法。存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;以及必要数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。
如图11所示,图11为本申请实施例中一种车辆的动力驱动系统的结构框图,本申请实施例提供一种车辆,包括上述实施例中的动力驱动系统以及上述实施例中的动力驱动系统控制装置。
另外,车辆还可以包括:动力电池箱,用于为整车高压及低压电器部件提供电能;电池管理系统,用于提供动力电池动态参数;前驱温度传感器,用于监测前驱电机的温度;前驱控制器,用于驱动前驱电机;后驱温度传感器,用于监测后驱电机的温度;后驱控制器,用于驱动后驱电机;前驱自动变速器,根据车辆行驶速度及前驱电机转速改变前驱电机与前驱传动轴的传动比,自动变速器内有差速器;前驱传动轴,用于将前驱电机输出动力传递给前轮;后驱自动变速器,根据车辆行驶速度及后驱电机转速改变后驱电机与后驱传动轴的传动比,自动变速器内有差速器;后驱传动轴,用于将后驱电机输出动力传递给后轮;前轮、后轮;高压控制箱,用于为整车高压零部件分配电能。动力驱动系统中的前驱电机用于通过前驱自动变速器和前驱传动轴驱动前轮;动力驱动系统中的后驱电机用于通过后驱自动变速器和后驱传动轴驱动后轮;动力驱动系统控制装置用于通过上述实施例中的动力驱动系统控制方法对包括前驱电机和后驱电机的动力驱动系统进行控制。
申请实施例中的车辆可以为纯电动汽车(Battery Electric vehicle,BEV)、混合动力汽车(Plug-in hybrid electric vehicle,PHEV)或燃料电池汽车(Fuel Cell Electric Vehicle,FCEV),本申请实施例对此不作限定。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述实施例中的动力驱动系统控制方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (12)
- 一种动力驱动系统,用于电动车辆,其特征在于,所述系统包括:前驱电机和后驱电机,所述前驱电机和所述后驱电机中的至少一者为电励磁电机,其中,所述前驱电机用于为前轮提供动力以驱动车辆,所述后驱电机用于为后轮提供动力以驱动车辆。
- 根据权利要求1所述的系统,其特征在于,所述前驱电机为电励磁电机,所述后驱电机为永磁同步电机或异步电机;或者,所述前驱电机为永磁同步电机或异步电机,所述后驱电机为电励磁电机;或者,所述前驱电机和所述后驱电机均为电励磁电机。
- 根据权利要求1或2所述的系统,其特征在于,所述电励磁电机为无线馈电励磁电机、电刷励磁电机及混合励磁电机中的任一种。
- 一种动力驱动系统控制方法,其特征在于,用于如权利要求1至3中任意一项所述的动力驱动系统,所述控制方法包括:实时获取车辆的工况信息;根据所述车辆的工况信息动态调整动力分配比例,所述动力分配比例为输出至前驱电机的动力和输出至后驱电机的动力之比。
- 根据权利要求4所述的方法,其特征在于,所述实时获取车辆的工况信息包括:获取车辆的动力需求扭矩Q、预设的前驱扭矩高效区间[Fmin1,Fmax1],以及预设的后驱扭矩高效区间[Fmin2,Fmax2];所述根据所述车辆的工况信息动态调整动力分配比例包括:根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整所述动力分配比例,其中:若Fmin1+Fmin2≤Q≤Fmax1+Fmax2,则使调整所述动力分配比例之后,Fmin1≤F1≤Fmax1,Fmin2≤F2≤Fmax2,F1+F2=Q,F1为所述前驱电机的扭矩,F2为所述后驱电机的扭矩。
- 根据权利要求5所述的方法,其特征在于,在所述动力驱动系统中,后驱电机为电励磁电机,在所述根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整所述动力分配比例的过程中,还包括:若Q<Fmin1+Fmin2,且Q≤Fmax1,则使调整所述动力分配比例之后,Fmin1≤F1≤Fmax1,F2=0,F1+F2=Q。
- 根据权利要求5所述的方法,其特征在于,在所述动力驱动系统中,前驱电机为电励磁电机,在所述根据Q、[Fmin1,Fmax1]以及[Fmin2,Fmax2]调整所述动力分配比例的过程中,还包括:若Q<Fmin1+Fmin2,且Q≤Fmax2,则使调整所述动力分配比例之后,F1=0,Fmin2≤F2≤Fmax2,F1+F2=Q。
- 根据权利要求4所述的方法,其特征在于,所述实时获取车辆的工况信息包括:获取前驱电机的温度和后驱电机的温度;所述根据所述车辆的工况信息动态调整动力分配比例包括:当所述前驱电机的温度达到第一阈值以上,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当所述后驱电机的温度达到第二阈值以上,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
- 根据权利要求4所述的方法,其特征在于,所述实时获取车辆的工况信息包括:获取车辆行驶状态;所述根据所述车辆的工况信息动态调整动力分配比例包括:当所述车辆行驶状态为上坡时,降低输出至前驱电机的动力、提高输出至后驱电机的动力;当所述车辆行驶状态为超过预设角度的转弯时,提高输出至前驱电机的动力、降低输出至后驱电机的动力。
- 一种动力驱动系统控制装置,其特征在于,包括:处理器和存储器,所述存储器用于存储至少一条指令,所述指令由所述处理器加载并执行时以实现如权利要求4至9中任意一项所述的方法。
- 一种车辆,其特征在于,包括如权利要求1至3中任意一项所述的动力驱动系统以及如权利要求10所述的动力驱动系统控制装置。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求4至9中任意一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21807687.5A EP4140794A4 (en) | 2020-05-21 | 2021-04-06 | ELECTRIC DRIVE SYSTEM AND VEHICLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438041.4 | 2020-05-21 | ||
CN202010438041.4A CN111497583B (zh) | 2020-05-21 | 2020-05-21 | 动力驱动系统及车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021232976A1 true WO2021232976A1 (zh) | 2021-11-25 |
Family
ID=71868440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/085638 WO2021232976A1 (zh) | 2020-05-21 | 2021-04-06 | 动力驱动系统及车辆 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4140794A4 (zh) |
CN (2) | CN111497583B (zh) |
WO (1) | WO2021232976A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023198678A1 (en) * | 2022-04-11 | 2023-10-19 | Valeo Eautomotive France Sas | Motive power system for electric vehicle, and electric vehicle comprising same |
WO2024046705A1 (de) * | 2022-08-29 | 2024-03-07 | Mercedes-Benz Group AG | Verfahren zum betreiben eines elektrischen antriebssystems |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111497583B (zh) * | 2020-05-21 | 2021-09-03 | 华为技术有限公司 | 动力驱动系统及车辆 |
CN115891677A (zh) * | 2022-11-14 | 2023-04-04 | 华为数字能源技术有限公司 | 一种电动车辆动力系统的控制装置及其相关设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183505A (ja) * | 2012-02-29 | 2013-09-12 | Aisin Aw Co Ltd | ハイブリッド励磁モータ |
CN108068661A (zh) * | 2017-11-15 | 2018-05-25 | 沈阳工业大学 | 电动汽车辅助激磁开关磁阻电机牵引系统及控制方法 |
CN108569168A (zh) * | 2017-11-08 | 2018-09-25 | 蔚来汽车有限公司 | 电动车驱动系统控制方法及系统 |
CN109624729A (zh) * | 2018-12-06 | 2019-04-16 | 北京长城华冠汽车科技股份有限公司 | 电动汽车双电机前后扭矩的分配方法、控制系统以及电动汽车 |
CN110155061A (zh) * | 2018-02-13 | 2019-08-23 | 大众汽车有限公司 | 用于确定载荷分配的方法、控制器、驱动系和汽车 |
CN110418729A (zh) * | 2017-05-09 | 2019-11-05 | 宝马股份公司 | 用于电动车辆的驱动单元以及机动车 |
CN111497583A (zh) * | 2020-05-21 | 2020-08-07 | 华为技术有限公司 | 动力驱动系统及车辆 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3175895B2 (ja) * | 1993-04-28 | 2001-06-11 | 株式会社日立製作所 | 電気自動車の駆動システム |
KR100556225B1 (ko) * | 2002-12-20 | 2006-03-03 | 가부시끼가이샤 히다치 세이사꾸쇼 | 하이브리드자동차 및 그 구동장치와 하이브리드 4륜구동차 및 그 제어장치 |
JP2007237819A (ja) * | 2006-03-07 | 2007-09-20 | Hitachi Ltd | 車両用駆動装置及び4輪駆動車 |
US20100025131A1 (en) * | 2006-04-03 | 2010-02-04 | Bluwav Systems, Llc | Electric propulsion system |
JP2012153245A (ja) * | 2011-01-26 | 2012-08-16 | Jtekt Corp | 駆動力配分制御装置 |
EP2676830A4 (en) * | 2011-02-18 | 2016-02-17 | Pioneer Corp | TORQUE DISTRIBUTION DEVICE, TORQUE DISTRIBUTION METHOD. METHOD AND PROGRAM FOR GENERATING TORQUE DISTRIBUTION VALUE |
US9020723B2 (en) * | 2011-03-31 | 2015-04-28 | Jtekt Corporation | Driving force distribution controller and four-wheel drive vehicle |
CN102259647A (zh) * | 2011-05-24 | 2011-11-30 | 深圳市海博瑞德汽车技术有限公司 | 一种混合动力整车控制以及amt集成式控制系统 |
JP5966428B2 (ja) * | 2012-02-27 | 2016-08-10 | 日産自動車株式会社 | 車両用駆動制御装置、車両用駆動制御方法 |
GB201210282D0 (en) * | 2012-06-11 | 2012-07-25 | Jaguar Cars | Vehicle and method of control thereof |
US9744879B2 (en) * | 2014-03-10 | 2017-08-29 | R Motor Company | Distributed motor torque generation system and method of control |
KR101643864B1 (ko) * | 2014-08-26 | 2016-07-29 | 엘지전자 주식회사 | 차량용 구동모듈 |
EP3132966B1 (de) * | 2015-08-21 | 2024-08-07 | MAGNA STEYR Fahrzeugtechnik GmbH & Co KG | Verfahren zum betreiben eines fahrzeuges sowie fahrzeug |
JP2017158403A (ja) * | 2016-03-04 | 2017-09-07 | 株式会社ジェイテクト | 車両 |
US10647324B2 (en) * | 2016-09-28 | 2020-05-12 | Polaris Industries Inc. | Systems and methods for control of two independent powertrains in a vehicle |
JP6946630B2 (ja) * | 2016-10-04 | 2021-10-06 | 株式会社ジェイテクト | 駆動力伝達装置の制御装置及び路面状態判定装置 |
CN108528266A (zh) * | 2017-03-01 | 2018-09-14 | 华为技术有限公司 | 故障处理的方法和装置 |
CN108189705B (zh) * | 2017-12-11 | 2021-01-15 | 江苏大学 | 一种兼顾节能和稳定的分布式驱动电动汽车控制方法 |
CN110834546B (zh) * | 2018-08-17 | 2021-11-02 | 宝沃汽车(中国)有限公司 | 双电机电动汽车及其电机扭矩控制方法和装置 |
JP2020048296A (ja) * | 2018-09-18 | 2020-03-26 | 本田技研工業株式会社 | 4輪駆動車両の制御システム及び4輪駆動車両の制御方法 |
CN209111947U (zh) * | 2018-09-28 | 2019-07-16 | 德威(苏州)新能源有限公司 | 一种双电机组合式电动汽车全轮控制结构 |
-
2020
- 2020-05-21 CN CN202010438041.4A patent/CN111497583B/zh active Active
- 2020-05-21 CN CN202111037598.8A patent/CN113715597B/zh active Active
-
2021
- 2021-04-06 EP EP21807687.5A patent/EP4140794A4/en active Pending
- 2021-04-06 WO PCT/CN2021/085638 patent/WO2021232976A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183505A (ja) * | 2012-02-29 | 2013-09-12 | Aisin Aw Co Ltd | ハイブリッド励磁モータ |
CN110418729A (zh) * | 2017-05-09 | 2019-11-05 | 宝马股份公司 | 用于电动车辆的驱动单元以及机动车 |
CN108569168A (zh) * | 2017-11-08 | 2018-09-25 | 蔚来汽车有限公司 | 电动车驱动系统控制方法及系统 |
CN108068661A (zh) * | 2017-11-15 | 2018-05-25 | 沈阳工业大学 | 电动汽车辅助激磁开关磁阻电机牵引系统及控制方法 |
CN110155061A (zh) * | 2018-02-13 | 2019-08-23 | 大众汽车有限公司 | 用于确定载荷分配的方法、控制器、驱动系和汽车 |
CN109624729A (zh) * | 2018-12-06 | 2019-04-16 | 北京长城华冠汽车科技股份有限公司 | 电动汽车双电机前后扭矩的分配方法、控制系统以及电动汽车 |
CN111497583A (zh) * | 2020-05-21 | 2020-08-07 | 华为技术有限公司 | 动力驱动系统及车辆 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023198678A1 (en) * | 2022-04-11 | 2023-10-19 | Valeo Eautomotive France Sas | Motive power system for electric vehicle, and electric vehicle comprising same |
WO2024046705A1 (de) * | 2022-08-29 | 2024-03-07 | Mercedes-Benz Group AG | Verfahren zum betreiben eines elektrischen antriebssystems |
Also Published As
Publication number | Publication date |
---|---|
CN113715597B (zh) | 2023-02-03 |
EP4140794A4 (en) | 2023-10-18 |
CN113715597A (zh) | 2021-11-30 |
CN111497583A (zh) | 2020-08-07 |
CN111497583B (zh) | 2021-09-03 |
EP4140794A1 (en) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021232976A1 (zh) | 动力驱动系统及车辆 | |
US7151355B2 (en) | Electric motor driving system, electric four-wheel drive vehicle, and hybrid vehicle | |
US7216729B2 (en) | Method and system of requesting engine on/off state in a hybrid electric vehicle | |
JP5074876B2 (ja) | ハイブリッド車両のアイドルストップモード制御方法 | |
CN102390285B (zh) | 一种电驱动系统堵转保护及限扭矩方法 | |
KR20230111252A (ko) | 하이브리드 차량을 위한 제어 방법, 및 차량 제어 유닛 | |
US20050173179A1 (en) | Driving force switching control apparatus | |
EP2423064A1 (en) | Vehicle control unit and vehicle control method | |
KR101865493B1 (ko) | 하이브리드 차량 및 그 제어 방법 | |
KR20170057681A (ko) | 모터 시스템의 배터리 충전 제어 방법 및 장치 | |
US8527123B2 (en) | Vehicle response system and method | |
US8928263B2 (en) | Control apparatus in motor drive system and method of controlling motor drive system | |
RU2613752C2 (ru) | Способ и устройство для управления приводным механизмом в электротранспортном средстве | |
JP2010022123A (ja) | 電動車両の駆動制御装置 | |
JP5211573B2 (ja) | ハイブリッド車両の発電制御装置 | |
US20140195079A1 (en) | Method and device for controlling the drive train of an electric vehicle | |
US20190168598A1 (en) | Electric vehicle | |
US20200247390A1 (en) | Drive force control system for hybrid vehicle | |
CN112412638B (zh) | 车辆及其控制方法、控制装置 | |
JP6070014B2 (ja) | エンジンアシスト制御装置およびエンジンアシスト制御方法 | |
JP2012131290A (ja) | ハイブリッド電気自動車の制御装置 | |
US20240083258A1 (en) | Vehicle | |
CN108290573A (zh) | 混合动力车辆及其控制方法 | |
CN116442981A (zh) | 一种增程式发动机驱动方法及系统 | |
CN118770170A (zh) | 一种混动车辆控制方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21807687 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021807687 Country of ref document: EP Effective date: 20221122 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |