WO2021232661A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021232661A1
WO2021232661A1 PCT/CN2020/120922 CN2020120922W WO2021232661A1 WO 2021232661 A1 WO2021232661 A1 WO 2021232661A1 CN 2020120922 W CN2020120922 W CN 2020120922W WO 2021232661 A1 WO2021232661 A1 WO 2021232661A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
circuit board
light
substrate
Prior art date
Application number
PCT/CN2020/120922
Other languages
English (en)
French (fr)
Inventor
李丹
付孟博
傅钦豪
谢一帆
王腾飞
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010442745.9A external-priority patent/CN113703102A/zh
Priority claimed from CN202020885645.9U external-priority patent/CN212083740U/zh
Priority claimed from CN202010442741.0A external-priority patent/CN113703101A/zh
Priority claimed from CN202020885055.6U external-priority patent/CN212083738U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US17/475,775 priority Critical patent/US11990725B2/en
Publication of WO2021232661A1 publication Critical patent/WO2021232661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4271Cooling with thermo electric cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10287Metal wires as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0067Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto an inorganic, non-metallic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4046Through-connections; Vertical interconnect access [VIA] connections using auxiliary conductive elements, e.g. metallic spheres, eyelets, pieces of wire

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • the optical transceiver module is a standard module in the field of optical communication equipment. As the communication rate of optical modules increases, more and more devices need to be arranged in the cavity of the optical emission sub-module. At present, optical modules are becoming more and more miniaturized, and the smaller the size of the device, the better. Therefore, the space in the cavity of the light emitting sub-module is very small, which is inconvenient for production and operation.
  • an embodiment of the present disclosure provides an optical module, including: an upper housing and a lower housing; a circuit board arranged between the upper housing and the lower housing; a substrate, the lower surface of which is in contact with the lower housing, The lower surface of the end of the circuit board is set on the upper surface of the end of the substrate; the gasket, which is set on the upper surface of the substrate, includes an insulating and heat-conducting layer, a grounded metal layer arranged on the upper surface of the insulating and heat-conducting layer, and high-speed signal lines; high-speed signal lines
  • the end of the laser chip is electrically connected to the circuit board through wire bonding, and is used to transmit the electrical signal from the circuit board to the laser chip; in the laser chip, the cathode is fixed on the grounded metal layer, and the anode is electrically connected to the high-speed signal line through wire bonding.
  • the optical signal is emitted based on the electrical signal.
  • the optical module provided by the embodiments of the present disclosure includes: a circuit board; a light emitting part, which is electrically connected to the circuit board, for emitting light; the light emitting part includes: a substrate; The surface is provided with traces that are electrically connected to the circuit board; the laser chip is set on the gasket and is electrically connected to the traces for emitting light; the focusing lens is set on the transmission optical path of the light beam emitted by the laser chip, which is used to The light beam is converged to the fiber optic adapter; the fiber optic adapter is set on the substrate, and its light incident surface is an inclined surface; in a plane parallel or approximately parallel to the upper surface of the substrate, the fiber optic adapter is tilted on the substrate to make the fiber optic adapter The central axis of the optical fiber is not parallel to the optical axis of the focusing lens.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided in an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided in an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the structure of a light emitting sub-module and a circuit board provided by an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of the structure of a light emitting sub-module and a circuit board provided by an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of an exploded structure of a light emitting sub-module provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an assembly structure of a light emitting sub-module provided by an embodiment of the disclosure.
  • Fig. 9 is a partial enlarged schematic diagram of area A in Fig. 8;
  • FIG. 10 is a schematic diagram of an exploded structure of a wire bonding protection component and a circuit board provided by an embodiment of the disclosure
  • FIG. 11 is a schematic structural diagram of a wire bonding protection component provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of an exploded structure of a wire bonding protection component and a circuit board provided by an embodiment of the disclosure
  • FIG. 13 is a top view of a circuit board and a light emitting sub-module provided by an embodiment of the disclosure
  • Figure 14 is an enlarged view of part B in Figure 13;
  • 15 is a schematic diagram of the structure of a substrate provided by an embodiment of the disclosure.
  • FIG. 16 is a top view of the light emitting sub-module provided by this embodiment.
  • FIG. 17 is a schematic diagram of the first split structure of the isolator, the anti-reflection sheet, and the optical fiber adapter provided by the embodiments of the disclosure;
  • FIG. 18 is a schematic diagram of the second split structure of the isolator, the antireflection sheet, and the optical fiber adapter provided by the embodiments of the disclosure;
  • FIG. 19 is a schematic diagram of a first structure of a focusing lens and an optical fiber adapter provided by an embodiment of the disclosure.
  • FIG. 20 is a schematic diagram of a second structure of a focusing lens and an optical fiber adapter provided by an embodiment of the disclosure
  • 21A is a schematic diagram of the optical path structure of a light emission sub-module provided in the prior art
  • FIG. 21B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 21A;
  • 22A is a schematic diagram of the optical path structure of the optical emission sub-module provided by the prior art
  • 22B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 22A;
  • FIG. 23 is a simulation diagram of the coupling efficiency of the optical axis entering the inclined fiber ferrule through the center of the second lens;
  • 24A is a schematic diagram of the optical path structure of the optical emission sub-module provided by an embodiment of the disclosure.
  • FIG. 24B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 24A.
  • optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides, and the passive transmission characteristics of light in optical fibers can realize low-cost and low-loss information transmission.
  • information processing equipment such as computers uses electrical signals, which requires mutual conversion between electrical signals and optical signals in the signal transmission process.
  • the optical module implements the above-mentioned photoelectric conversion function in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data signal transmission and grounding, etc.
  • the electrical connection method realized by the golden finger has become the optical module industry.
  • the standard method, based on this, the circuit board is an essential technical feature in most optical modules.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of an optical communication terminal mainly includes an optical network unit 100, an optical module 200, an optical fiber 101, and a network cable 103;
  • One end of the optical fiber is connected to the remote server, and the other end of the network cable is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber and the network cable; and the connection between the optical fiber and the network cable is performed by the optical network with the optical module The unit is complete.
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a two-way optical signal connection with the optical fiber; the electrical port of the optical module 200 is connected to the optical network unit 100 to establish a two-way electrical signal connection with the optical network unit; the optical module implements optical signals Mutual conversion with electrical signals, thereby realizing the establishment of a connection between the optical fiber and the optical network unit; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network unit 100, The electrical signal from the optical network unit 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical module 200 is a tool for realizing the mutual conversion of photoelectric signals, and does not have the function of processing data. During the foregoing photoelectric conversion process, the information has not changed.
  • the optical network unit has an optical module interface 102, which is used to connect to the optical module and establish a two-way electrical signal connection with the optical module; the optical network unit has a network cable interface 104, which is used to connect to a network cable and establish a two-way electrical signal connection with the network cable; A connection is established between the module and the network cable through the optical network unit.
  • the optical network unit transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network unit serves as the optical module
  • the upper computer monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network units, and network cables.
  • FIG 2 is a schematic diagram of the optical network unit structure.
  • the optical network unit 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided in the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a radiator 107 is provided on the cage 106, and the radiator 107 has a convex structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit. Specifically, the electrical port of the optical module is inserted into the electrical connector in the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connectors on the circuit board in the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage. The heat generated by the optical module is conducted to the cage through the optical module housing, and finally passes through the cage.
  • the radiator 107 is diffused.
  • FIG. 3 is a schematic structural diagram of an optical module 200 according to an embodiment of the disclosure
  • FIG. 4 is an exploded structural schematic diagram of an optical module 200 according to this embodiment.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower tube housing 202, an unlocking handle 203, a circuit board 30, a light emitting part 40 and a light receiving part 50.
  • the upper shell 201 is covered on the lower tube shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower tube shell includes a main board and a On both sides of the main board, there are two side plates arranged perpendicularly to the main board; the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity; the upper casing may also include a cover On both sides of the plate, the two side walls arranged perpendicular to the cover plate are combined by the two side walls and the two side plates, so that the upper shell is covered on the lower tube shell.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into the upper computer such as the optical network unit; the other opening is the optical port 205, which is used for external optical fiber access to connect the light emitting part 40 and the light receiving part 50 inside the optical module; the circuit board 30, the light emitting part 40 and the light receiving part 50 optoelectronic devices are located in the package cavity.
  • the upper shell and the lower tube shell are combined with the assembly method to facilitate the installation of the circuit board 30, the light emitting part 40 and the light receiving part 50 into the shell.
  • the upper shell and the lower tube shell form the outermost layer of the optical module.
  • Encapsulation protection shell; the upper shell and the lower tube shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integrated structure, so that when assembling circuit boards and other devices, positioning parts, The heat dissipation and electromagnetic shielding structure cannot be installed, and it is not conducive to production automation.
  • the unlocking handle 203 is located on the outer wall of the wrapping cavity/lower shell 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking handle 203 has an engaging structure that matches the cage of the host computer; pulling the end of the unlocking handle can make the unlocking handle move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is locked by the engaging structure of the unlocking handle. Fixed in the cage of the host computer; by pulling the unlocking handle, the locking structure of the unlocking handle moves accordingly, and then the connection relationship between the locking structure and the host computer is changed, so as to release the optical module and the upper computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 30 is provided with circuit traces, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as microprocessor MCU2045, laser driver chips, limiting amplifiers, clock data recovery CDR, power management chips, and data Processing chip DSP) and so on.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as microprocessor MCU2045, laser driver chips, limiting amplifiers, clock data recovery CDR, power management chips, and data Processing chip DSP
  • the circuit board 30 connects the electrical components in the optical module according to the circuit design through circuit wiring to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board 30 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; the rigid circuit board can also be inserted into the electrical connector in the cage of the host computer. In an embodiment of the present disclosure, metal pins/gold fingers are formed on the end surface of one side of the rigid circuit board for connecting with the electrical connector; these are inconvenient for the flexible circuit board.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
  • the optical module also includes an optical emission sub-module and an optical receiving sub-module, and the optical emission sub-module and the optical receiving sub-module can be collectively referred to as an optical sub-module.
  • the optical module provided by the embodiment of the present disclosure includes a light emitting part 40 and a light receiving part 50.
  • the light transmitting part 40 is used to convert electrical signals into optical signals, and the generated optical signals are transmitted to the outside of the optical module through the optical fiber socket 60;
  • the light receiving part 50 is used to convert the optical signals received through the optical fiber socket 60 into electrical signals,
  • the light receiving part 50 is arranged on the surface of the circuit board 30.
  • the light receiving submodule is physically separated from the circuit board, and the electrical connection is realized through a flexible board.
  • the environment is relatively good.
  • the tube case is usually machined or mold-opened. Therefore, the tube case design is relatively complicated and the production cost is high.
  • the semiconductor The refrigerator, light emitting chip, lens and other components are fixed in the tube shell, and the space in the cavity of the light emitting sub-module is very small, which is inconvenient for production and operation.
  • FIG. 5 is a schematic structural diagram of a light emitting sub-module and a circuit board provided by an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of a light emitting sub-module and a circuit board provided by the embodiment of the disclosure.
  • the light emitting part 40 in this embodiment is packaged in a non-hermetic manner, physically separated from the circuit board 30, and is electrically connected by wire bonding of a metal material, for example, by a gold wire.
  • this embodiment adopts a packaging method in which a substrate is used as an optical platform, and devices such as laser chips, semiconductor refrigerators, etc. are placed on the substrate.
  • the light emitting part 40 in this embodiment includes four optical paths of the same wavelength.
  • the data transmission rate can be increased by increasing the number of optical paths, and other numbers can be set in other embodiments.
  • the following embodiment uses one of the light paths as an example to illustrate the solution of this embodiment.
  • FIG. 7 is a schematic diagram of an exploded structure of the optical emission sub-module provided by an embodiment of the disclosure
  • FIG. 8 is a schematic diagram of an assembled structure of the optical emission sub-module provided by an embodiment of the disclosure.
  • the light emitting part 40 in this embodiment includes a substrate 41 as an optical platform, on the substrate 41 The surface is provided with a TEC (Thermoelectric Cooler) 42, a gasket 43, a laser chip 44, a collimating lens 45, an isolator 46, an antireflection film (AR film) 47, an optical fiber adapter 48 and other devices.
  • TEC Thermoelectric Cooler
  • the lower surface of the substrate 41 can be fixed with a light-molded housing, such as the following housing 201, through a thermally conductive glue.
  • a light-molded housing such as the following housing 201
  • the thermally conductive glue In this way, the heat generated by the components in the light emitting part 40 can be conducted to the housing of the optical module through the substrate 41, and then conducted to the outside of the optical module through the housing of the optical module.
  • the substrate 41 in this embodiment is made of tungsten copper, that is, an alloy composed of tungsten and copper. Of course, it can also be used in other embodiments. It is made of other materials, such as ceramics and other materials.
  • the TEC 42 is used to guide the heat generated by the laser chip 44 from the substrate 41.
  • the TEC 42 includes an upper heat exchange surface and a lower heat exchange surface.
  • a gasket 43 is provided on the top of the upper heat exchange surface, and the upper heat exchange surface is used to absorb the heat generated by the laser chip 44 transferred from the gasket 43.
  • the bottom of the upper heat exchange surface is connected to the lower heat exchange surface, and the lower heat exchange surface is fixed on the upper surface of the substrate 41. Therefore, the substrate 41 can be used to conduct the heat of the lower heat exchange surface of the TEC 42 to the outside of the optical module.
  • Fig. 9 is a partial enlarged schematic diagram of area A in Fig. 8.
  • the gasket 43 in this embodiment includes an insulating and thermally conductive layer 431 and a metalized circuit pattern (also called a wiring).
  • the insulating and thermally conductive layer 431 can be selected from ceramics with good thermal conductivity, good insulation performance, and high processing accuracy. Material is not limited to ceramics, of course.
  • the metalized circuit pattern provided on the upper surface of the insulating and thermally conductive layer 431 includes a high-speed signal line 433 and a grounded metal layer 432, and the lower surface of the insulating and thermally conductive layer 431 Contact with the upper surface of TEC42.
  • the cathode of the laser chip 44 can be fixed on the ground metal layer 432 of the gasket 43 by welding or conductive glue, and the anode of the laser chip 44 can be connected to the high-speed signal line 433 by wire bonding.
  • design shape and layout of the high-speed signal line 433 and the grounding metal layer 432 are not limited to the method provided in this embodiment. In other embodiments, it can be based on the signal transmission rate, the layout of components and other requirements. design.
  • the high-frequency data electrical signal from the host computer is transmitted to the clock data recovery chip, laser drive chip and other chips arranged on the circuit board through the golden finger on the circuit board 30 during the working process of the optical module, the above-mentioned clock data recovery is used
  • Chips, laser drive chips and other chips perform signal shaping and amplitude adjustment on the high-frequency data electrical signals received by the optical module, in order to transmit the shaped high-frequency data electrical signals to the laser chip 44 arranged on the gasket 43,
  • a grounded metal layer and a high-frequency signal line are also arranged on the circuit board 30.
  • the high-frequency signal line on the circuit board 30 is connected to the high-speed signal line 433 on the pad 43 through wire bonding, and the ground metal layer on the circuit board 30 is connected through the ground metal layer 432 on the wire bonding pad 43, and then The electrical signal from the circuit board 30 can be transmitted to the laser chip 44.
  • the gasket 43 can also be provided with components such as backlight detectors, resistors, capacitors, etc., and each component can be electrically connected to the circuit board 30 through the corresponding traces laid on the gasket 45 to realize a laser chip. 44's stable light.
  • FIG. 10 is a schematic diagram of an exploded structure of a wire bonding protection component and a circuit board provided by an embodiment of the disclosure.
  • the diameter of the wire bonding between the circuit board 30 and the spacer 43 is usually relatively small, in order to prevent the relative position of the circuit board 30 and the spacer 43 from moving, the wire is disconnected, and In consideration of impedance matching and other issues, there is also a requirement for the wire length of the high-frequency signal line connecting the circuit board 30 and the pad 43. Therefore, in order to ensure the stability of the relative position of the circuit board 30 and the spacer 43, in this embodiment, the lower surface of the end of the circuit board 30 close to the substrate 41 is fixed to the upper surface of the substrate 41.
  • FIG. 11 is a schematic structural diagram of a wire bonding protection component provided by an embodiment of the disclosure.
  • the circuit board 30 is provided with a wire bonding protection member 70 in this embodiment.
  • a wire bonding protection member 70 can be made of a non-metallic material, such as a plastic material, and fixed on the circuit board 30 with non-conductive glue.
  • the wire bonding for connecting the gasket 43 and the circuit board 30 is covered under the wire bonding protection member 70, and then It can avoid problems such as collapse and damage caused by the bonding wire being touched.
  • the protection component 70 is configured to be composed of a protection board 72 and two or more support members 72, wherein the protection board 72 is a flat structure, and its specific shape can be set according to the layout requirements of the circuit board 30, for example, In this embodiment, it is designed as an L-shaped structure.
  • One end of the support 72 is fixedly connected to the lower surface of the protection board 71, and the other end is non-conductively fixed to the upper surface of the circuit board 30 by glue or the like.
  • FIG. 12 is a top view of a circuit board and a light emitting sub-module provided by an embodiment of the disclosure.
  • the protective plate provided in the wire-bonding protection component 70 is connected.
  • the spacer 43 is also arranged under the protective plate 72 in the wire-bonding protective member 70.
  • the high-frequency data signals, bias signals and other signals received by the laser chip 44 need to be processed by a laser drive chip (not shown in the figure) provided on the circuit board 30 before being sent to the laser chip 44.
  • the laser driving chip is usually electrically connected to the circuit board 30 through wire bonding. Therefore, in this embodiment, the driver driving chip is also arranged close to the spacer 43 and at the same time, it is arranged under the wire bonding protection member 70.
  • the substrate 41 is used to replace the housing of the existing light emission sub-module, which has a simple structure and effectively reduces the material cost of the light emission sub-mode.
  • the open structure above the substrate 41 can solve the problem of The problem of difficult packaging due to small internal space.
  • the assembly method between the substrate 41 and the circuit board 30 and setting the wire protection component 70 the usability of the module can be effectively ensured.
  • FIG. 13 is a top view of a circuit board and a light emitting sub-module provided by an embodiment of the disclosure
  • FIG. 14 is an enlarged view of part B in FIG. 13.
  • the light incident surface of the focusing lens 45 is set to face
  • the light exit surface of the laser chip 44 is arranged, and the light exit surface of the focusing lens 45 is arranged toward the light entrance surface of the optical fiber adapter 48.
  • the focusing lens 45 is used to couple the light emitted by the laser chip 44 into the optical fiber of the optical fiber adapter 48 as divergent light.
  • the position of the focusing lens 45 is adjusted so that the focus of the focusing lens 45 is located near the end face of the optical fiber in the optical fiber ferrule 803.
  • the direction of the optical axis is not changed before and after the convergence, that is, the light enters along the center of the focusing lens.
  • the pattern spot distribution presents a regular circular spot, which is conducive to improving the efficiency of the subsequent coupling process. Therefore, in this embodiment, the light emitted by the laser chip 44 can be set to enter along the center of the focusing lens 45. Specifically, the light is condensed through the center of the focusing lens. In an ideal state, the center of the light beam emitted by the laser chip 44 is focused.
  • the optical axis of the lens 45 is arranged.
  • the focusing lens 45 is arranged on the upper surface of the TEC 42 in this embodiment, that is, to use The spacer 43 compensates for the height difference between the laser chip 44 and the focusing lens 45.
  • this embodiment also fixes the optical fiber adapter 48 on the upper surface of the substrate 41.
  • the optical axes of the focusing lens 45 and the optical fiber distributor 48 should be in the same horizontal plane or approximately in the same horizontal plane.
  • FIG. 15 is a schematic structural diagram of a substrate provided by an embodiment of the disclosure.
  • the substrate 41 is also designed in this embodiment, wherein a recess 412 is provided in the middle area of the substrate 41, so that the upper part of the substrate 41
  • the surface is divided into a first upper surface 411 and a second upper surface 412 by the recess 412, and the first upper surface 411 and the second upper surface 412 are respectively located on both sides of the recess 412.
  • the first upper surface 411 is used to be fixedly connected to the lower surface of the end of the circuit board 30; the second upper surface 413 is used to provide an optical fiber adapter 48; the recessed portion 412 is used to install a semiconductor refrigerator 42, wherein The lower surface is in contact with the bottom of the recess, the upper surface is provided with a gasket 43 and a focusing lens 45, and the upper surface of the gasket 43 is provided with a laser chip 44 so that the upper surface of the gasket 43 and the upper surface of the circuit board 30 are at the same level The horizontal plane or approximately the same horizontal plane to facilitate wire bonding.
  • the optical axis of the optical fiber adapter 48 and the optical axis of the focusing lens 45 can be on the same horizontal plane or approximately the same horizontal plane to improve the optical coupling efficiency.
  • the substrate 41 by arranging the substrate 41 to have a recessed structure, it not only realizes its carrying function, but also effectively realizes the alignment function between the devices. Compared with the flat-plate substrate 41, it is more convenient for packaging and can be Effectively save the raw materials used to adjust the height of the device.
  • an isolator 46 is usually provided on the light exit side of this embodiment. Based on the characteristic that the light emitted by the laser chip 44 is divergent light, the isolator 46 is arranged on the light exit side of the focusing lens 45 in this embodiment. In addition, due to the small available space on the TEC 42 and other reasons, the isolator 46 is arranged in this embodiment On the second upper surface 413 of the substrate 41.
  • the isolator 46 in this embodiment is based on the polarization principle of passing light, and only allows light to pass through in one direction. Based on the working principle of the isolator 46, by adjusting the angle between the polarization direction of the laser emitted by the light transmitter 51 and the polarization direction of the isolator 46, the coupling power of the laser chip 44 and the isolator 46 can be adjusted. Realize the control of the output optical power of the optical module.
  • an anti-reflection sheet 47 is further provided between the isolator 46 and the optical fiber adapter 48, thereby effectively reducing the end-face emission at the optical fiber adapter 48.
  • FIG. 16 is a top view of the light emitting sub-module provided by this embodiment.
  • this embodiment sets the light incident surface normal (or called the incident light surface normal) of the isolator 46 and the focusing lens 45
  • the optical axis has an included angle ⁇ , and the included angle value can be set as required, for example, set to 5°, 10°, etc.
  • the optical axis of the light beam emitted by the laser chip 44 (or referred to as The light-emitting direction of the laser chip 44 coincides with or approximately coincides with the optical axis of the focusing lens 45 as an example.
  • the two may not coincide, and the normal line of the light incident surface of the isolator 46 and the optical axis of the focusing lens 45
  • the optical axis has an included angle ⁇ , so the normal line of the light incident surface of the isolator 46 and the optical axis of the light beam emitted by the laser chip 44 have an included angle ⁇ .
  • the light emitted by the laser chip 44 is sequentially focused on the lens 45, the isolator 46, and the antireflection sheet 47, and then passes through the air into the optical fiber in the optical fiber adapter 48.
  • the fiber if the fiber enters the end face of the fiber vertically, it is easy to control the angular relationship between the laser chip's light direction and the fiber ferrule in this way, but the vertical incidence will cause the reflected light to return along the original optical path, and the returned light will return to the laser chip 44 , Which in turn will affect the light output of the laser chip 44.
  • the optical path is designed to make the light non-perpendicularly incident on the end face of the optical fiber; in order to achieve non-perpendicular light incident on the end face of the optical fiber, the light incident surface of the optical fiber adapter 48 is set to be an inclined plane in this embodiment.
  • FIG. 17 is a schematic diagram of the first split structure of the isolator, the anti-reflection sheet and the optical fiber adapter provided by the embodiment of the disclosure
  • FIG. 18 is the second split structure of the isolator, the anti-reflection sheet and the optical fiber adapter provided by the embodiment of the disclosure Schematic.
  • the light incident surface of the fiber adapter 48 is also designed with a certain inclination, and, for convenience
  • the isolator 46, the anti-reflection sheet 47, and the optical fiber adapter 48 are fixed on the substrate 41.
  • the three are fixed together by means of glue, silver glue, etc., wherein the anti-reflection sheet 47 can be fixed on the optical fiber adapter 48.
  • the isolator 46 is fixed on the anti-reflection sheet 47.
  • the spacer 43, the laser chip 44, and the focusing lens 45 can be passively mounted, and then the optical component composed of the isolator 46, the antireflection film 47 and the optical fiber adapter 48 are actively coupled.
  • the end face of the fiber optic adapter 48 by setting the end face of the fiber optic adapter 48 to have a first inclination angle ⁇ 1, where the inclination angle is equal to the angle between the end face normal of the fiber optic adapter 48 and the optical axis of the focusing lens 47, and the isolator 46 and After the optical fiber adapter 48 is mounted in one body, the normal line of the light incident surface of the isolator 46 and the optical axis of the focusing lens 45 also have a first inclination angle ⁇ 1.
  • the port 481 for inserting the optical fiber in the optical fiber adapter 48 is set in a tapered structure. Glue is poured into the port 481 to facilitate the fixation of the optical fiber.
  • the optical fiber adapter 48 may be provided with an optical fiber ferrule.
  • the optical fiber ferrule is composed of a ceramic cylinder wrapped with an optical fiber.
  • the central axis of the optical fiber ferrule is the same as the central axis of the optical fiber.
  • the light incident surface of the optical fiber ferrule is ground into a bevel. , That is, to grind the light incident surface of the optical fiber into the same inclined surface, so that the light incident surface of the optical fiber adapter 48 has a certain inclination angle, or, at the same time, the optical fiber adapter 48 is also set to the same inclined surface as the light incident surface of the optical fiber.
  • the optical fiber is composed of a core layer and a cladding layer with different refractive indexes. The light is totally reflected at the interface between the core layer and the cladding layer, thereby constraining the transmission in the core layer.
  • the prerequisite for total reflection is to have a sufficiently large angle of incidence. Therefore, the total reflection of light in the optical fiber requires that after the light is refracted at the light incident surface of the optical fiber, the refraction angle is small enough to satisfy that the light has a large enough incident angle when it is reflected again in the optical fiber. After refraction, a sufficiently small refraction angle is formed, and a sufficiently small incident angle is required for refraction; in order to achieve better coupling efficiency, the optical axis after entering the fiber is required to be parallel to the central axis of the fiber, and the beam entering the fiber is symmetrical in the center axis. . Therefore, the light incident on the light incident surface of the optical fiber has a specific incident angle range.
  • the light beam condensed by the focusing lens 45 is incident on the light incident surface of the optical fiber in a non-vertical direction.
  • the refraction angle also decreases, which is not conducive to the total reflection of the light entering the fiber at the interface between the fiber core layer and the cladding layer, thereby reducing the coupling efficiency.
  • this embodiment optimizes the placement position of the optical fiber adapter 48 on the substrate 41 so that it is in a plane parallel or approximately parallel to the upper surface of the substrate 41, and the optical fiber adapter 48 is obliquely arranged on the substrate 41. So that the central axis of the optical fiber in the optical fiber adapter 48 is not parallel to the optical axis of the focusing lens 45.
  • FIG. 19 is a first structural schematic diagram of a focusing lens and an optical fiber adapter provided by an embodiment of the disclosure.
  • the end face of the optical fiber adapter 48 is set to have a first inclination angle ⁇ 1, for example, set to 7°, 8°, etc., but not limited to this value, and at the same time, the internal The light incident surface of the optical fiber (not shown in the figure) also has a first inclination angle ⁇ 1, and then along the inclination direction of the end face of the optical fiber adapter 48, the central axis of the optical fiber adapter 48 is arranged to have a second inclination relative to the optical axis of the focusing lens 45.
  • the inclination angle ⁇ 2, for example, is set to 3°, 2°, etc. but is not limited to this value.
  • the light incident surface of the isolator 46 can have an inclination angle ⁇ relative to the focusing lens 45, that is, the light incident surface of the isolator 46
  • the normal line and the optical axis of the focusing lens 45 have an included angle ⁇ .
  • FIG. 20 is a schematic diagram of a second structure of a focusing lens and an optical fiber adapter provided by an embodiment of the disclosure. As shown in FIG. 20, through the above arrangement, the optical axis direction of the light beam refracted into the optical fiber can be made parallel or nearly parallel to the central axis of the optical fiber, thereby effectively improving the optical coupling efficiency.
  • the light emitted by the laser chip 44 is center-symmetric about the optical axis, and the light entering the optical fiber is also center-symmetric about the optical axis.
  • Three typical light rays are used as an example for illustration, and light rays at the optical axis are used for illustration.
  • FIG. 21A is a schematic diagram of the optical path structure of an optical emission sub-module provided by the prior art
  • FIG. 21B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 21A
  • the focusing lens in this embodiment is composed of a first lens 45a and a second lens 45b.
  • the central axis of the fiber optic adapter (not shown in the figure) is parallel to the optical axis direction of the light beam of the laser chip 44, and the central axis of the fiber optic adapter is set to be parallel to the central axis of the fiber ferrule (not shown in the figure).
  • the central axis of the core is parallel to the central axis of the optical fiber 481 in the optical fiber ferrule (ideally coincides).
  • the divergent light emitted by the laser chip 44 is condensed into parallel light by the first lens 45a, and the parallel light is condensed by the second lens 45b and then enters the light incident surface of the optical fiber 481. After two times of convergence, the light maintains the original optical axis direction, and the shape of the spot is unchanged, and it is a circular spot in an ideal state.
  • the converged light meets the angle requirement of the total reflection of the optical fiber, and the optical axis of the converged light is perpendicular to the light incident surface of the optical fiber.
  • the light is converged through the center of the focusing lens, and the converged light is coupled to the optical fiber 481. Most of the light is transmitted through the optical fiber, and there is less light distributed around the optical fiber.
  • the optical path structure of Figure 21A realizes Higher coupling efficiency.
  • the optical axis is perpendicular to the light incident surface, and the refraction that occurs at this time has the smallest incident angle (0°) and the smallest refraction angle.
  • the optical path design adopted in FIG. 21A can meet the angle requirement of the total reflection of the optical fiber, and the spot shape is also conducive to optical coupling, but the reflected light generated on the light incident surface of the optical fiber will return along the original optical path, thereby affecting the light output of the laser chip 44.
  • the advantage of the optical path design of Figure 21A and Figure 21B is that the center of the focusing lens is used to converge the optical path, which can maintain a better spot pattern.
  • the disadvantage is that the reflected light generated by the optical fiber incident surface will return to the laser along the original optical path. In the chip.
  • FIG. 22A is a schematic diagram of the optical path structure of the optical emission sub-module provided by the prior art
  • FIG. 22B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 22A.
  • the difference in the tilt direction of the inclined surface of the optical fiber is only the difference in the viewing angle.
  • the optical fiber is a cylinder, and the tilt direction of the inclined surface is different when viewed from the rotating angle of view. As shown in FIG.
  • the central axis of the optical fiber 481 is parallel to the direction of the optical axis of the laser chip 44, the divergent light emitted by the laser chip 44 is condensed into parallel light by the first lens 45a, and the parallel light is condensed by the second lens 45b and then enters.
  • the light incident surface of the optical fiber 481 is inclined.
  • the light In order to use the principle of refraction to make the light entering the fiber meet the condition of total reflection, the light enters the non-central position of the second lens 45b, the light is condensed through the non-center of the second lens 45b, and the optical axis direction of the light is changed by the second lens 45b Then, it is incident on the light incident slope of the optical fiber 481; the light is refracted on the incident oblique surface, and then enters the optical fiber 481.
  • the light incident surface of the optical fiber is inclined, and the central axis of the optical fiber in the optical fiber ferrule has not changed.
  • the optical axis maintains the direction in FIG. 21A and is parallel to the direction of the laser chip's light-emitting optical axis, and the light incident surface is incident in a non-vertical direction, the incident angle is reduced, and the refraction angle is also reduced. Small, not conducive to total reflection.
  • the optical axis direction of the light condensed by the second lens 45b is changed, so that the condensed light is different from the propagation direction in FIG. 21B.
  • the light passes through the second lens 45b. Converge at a non-central location.
  • the light entering the light incident surface of the optical fiber 481 has a specific incident angle range, which also limits the light condensed by the second lens 45b, and cannot be condensed through the center of the second lens 45b.
  • the optical axis does not pass through the center of the second lens 45b. After the light passes through the second lens 45b, the direction of the optical axis is changed. The field distribution is irregular, and the efficiency of coupling into the optical fiber is significantly reduced.
  • the advantage of the optical path design of Figs. 22A and 22B is to prevent the reflected light from the light incident surface of the optical fiber from returning to the laser chip along the original optical path.
  • the disadvantage is that the center of the second lens 45b is not used to converge the optical path. The morphology of the spots is greatly degraded.
  • FIG. 23 is a simulation diagram of the coupling efficiency of the optical axis entering the inclined fiber ferrule through the center of the second lens.
  • the light incident surface of the optical fiber 481 is inclined.
  • the light emitted by the laser chip 44 is collimated by the first lens 45a, and then converged and injected into the optical fiber 481 of the optical fiber adapter by the second lens 45b; the light passes through the second lens
  • the center of 45b converges, and the central axis of the optical fiber is parallel to the illumination of the second lens 45b.
  • the light is refracted and coupled into the optical fiber 481. It can be seen that a large amount of light is emitted from the optical fiber 481 of the optical fiber adapter, and the coupling efficiency is low.
  • FIG. 24A is a schematic diagram of the optical path structure of the optical emission sub-module provided by an embodiment of the disclosure
  • FIG. 24B is a simulation diagram of the coupling efficiency of the optical path structure in FIG. 24A.
  • the central axis of the optical fiber 481 is parallel to the central axis of the optical fiber adapter, and the central axis of the optical fiber adapter is set to be out of direction with the optical axis of the laser chip.
  • the central axis is not parallel; the divergent light emitted by the laser chip 44 is condensed into parallel light by the first lens 45a, and the parallel light is converged by the second lens 45b and then enters the inclined surface of the optical fiber 481.
  • the light incident surface of the optical fiber is inclined; in order to use the principle of refraction to inject light into the optical fiber, the light emitted by the laser chip is emitted through the center of the second lens 45b, and the original is not changed during the focusing process.
  • the light incident surface of the optical fiber 481 when it is incident on the inclined light incident surface of the optical fiber 481, the light passes through the light incident surface of the optical fiber 481 and refracts into the optical fiber 481.
  • the signal light is refracted into the optical fiber 481 through the inclined surface, and the inclination angle of the inclined surface and the inclination angle of the optical fiber adapter are coordinated and controlled, so that the optical axis direction of the signal light refracted into the optical fiber 481 is parallel or nearly parallel to the central axis of the optical fiber 481.
  • the optical path design provided in Fig. 24A aims to maintain a better spot and mode shape after the light is condensed, and to match the light incident slope of the optical fiber 481, and the optical axis direction of the signal light refracted into the optical fiber 481 is parallel to the central axis of the optical fiber 481. In order to complete the high-efficiency coupling of light into the optical fiber.
  • the light In order to maintain a better light spot and mold spot shape after the light is converged, the light is condensed through the center of the second lens 45b, and the light is emitted through the center of the second lens 45b.
  • the direction of the focused optical axis remains unchanged.
  • the light spot shape before convergence is maintained, and the circular light spot shape can be maintained under the ideal shape, which is beneficial to improve the efficiency of light coupling.
  • the light incident surface of the optical fiber ferrule/the light incident surface of the optical fiber is designed to be inclined.
  • the optical path structure shown in FIG. 21A shows that when the light When converging through the center of the second lens 45b, the light incident surface of the subsequent matching optical fiber cannot be an inclined plane, so as to satisfy that the light refracted at the light incident surface can undergo total reflection transmission;
  • the optical path structure shown in FIG. 22A shows that, When the light incident surface is an oblique surface, the previously matched light cannot be condensed through the center of the second lens 45b, so that the light refracted at the light incident surface can undergo total reflection transmission.
  • the embodiment of the present disclosure provides a new structural design.
  • the central axis of the optical fiber 481 is not parallel to the light emitting direction of the laser chip.
  • the optical fiber is inclined at a certain angle relative to the direction of the laser chip.
  • the light is condensed through the center of the second lens 45b, and the light incident surface of the optical fiber is inclined. Part of the light enters the optical fiber.
  • the incident angle of the light is the same, and the angle after the light is refracted is also the same.
  • the central axis of the optical fiber in Fig. 22A is parallel to the direction of light emission of the laser chip, and the optical axis passes through the non-central area of the second lens 45b; Through the central area of the second lens 45b.
  • the optical path design provided by the embodiments of the present disclosure realizes that the direction of the optical axis of the signal light refracted into the optical fiber 481 is parallel to the central axis of the optical fiber, and completes the high-efficiency coupling of light into the optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块(200),将基板(41)作为承载器件的光学平台,其上表面设置垫片(43),其中,垫片(43)包括绝缘导热层(431)、布设在绝缘导热层(431)上表面的接地金属层(432)以及高速信号线(433),将激光芯片(44)的阴极固定在接地金属层(432)上、阳极通过打线与高速信号线(433)电连接。另外,垫片(43)的高速信号线(433)通过打线与电路板(30)连接,这样,便可以将来自电路板(30)的电信号传输至光接收芯片(50),实现光模块(200)的光发射功能,同时,将电路板(30)端部的下表面还固定基板(41)上,还能保证垫片(43)与电路板(30)相对位置的稳定性,保证器件的性能稳定性。

Description

一种光模块
本公开要求在2020年05月22日提交中国专利局、申请号为202010442745.9、发明名称为“一种光模块”,在2020年05月22日提交中国专利局、申请号为202020885055.6、发明名称为“一种光模块”,在2020年05月22日提交中国专利局、申请号为202010442741.0、发明名称为“一种光模块”,在2020年05月22日提交中国专利局、申请号为202020885645.9、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光收发一体模块,简称光模块,是光通讯领域设备中的一种标准模块。随着光模块通信速率的提高,使得光发射次模块的腔体内需要布设的器件越来越多,而目前光模块越来越小型化,对器件的外形尺寸要求做的越小越好。所以,会导致光发射次模块的腔体内空间非常小,不方便生产操作。
发明内容
一方面,本公开实施例提供一种光模块,包括:上壳体和下壳体;电路板,设置在上壳体和下壳体之间;基板,其下表面与下壳体相接触,电路板端部的下表面设置在基板端部的上表面;垫片,设置在基板的上表面,包括绝缘导热层、布设在绝缘导热层上表面的接地金属层以及高速信号线;高速信号线的端部通过打线与电路板电连接,用于将来自电路板的电信号传输至激光芯片;激光芯片,阴极固定在接地金属层上、阳极通过打线与高速信号线电连接,用于基于电信号发射光信号。
另一方面,本公开实施例提供的光模块,包括:电路板;光发射部分,与电路板电连接,用于发射光;光发射部分包括:基板;垫片,设置在基板上,其上表面设有与电路板电连接的走线;激光芯片,设置在垫片上并与走线电连接,用于发射光;聚焦透镜,设置在激光芯片所发射光束的传输光路上,用于将光束会聚至光纤适配器;光纤适配器,设置在基板上,其入光面为倾斜的面;在平行或近似平行于基板上表面的平面内,光纤适配器倾斜设置在基板上,以使光纤适配器中的光纤的中轴线与聚焦透镜的光轴不平行。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例中提供的一种光模块的结构示意图;
图4为本公开实施例中提供的一种光模块的分解结构示意图;
图5为本公开实施例提供的光发射次模块与电路板的结构示意图;
图6为本公开实施例提供的光发射次模块与电路板的结构示意图;
图7为本公开实施例提供的光发射次模块的分解结构示意图;
图8为本公开实施例提供的光发射次模块的组装结构示意图;
图9为图8中A区域的局部放大示意图;
图10为本公开实施例提供的打线保护部件与电路板的分解结构示意图;
图11为本公开实施例提供的打线保护部件的结构示意图;
图12为本公开实施例提供的打线保护部件与电路板的分解结构示意图;
图13为本公开实施例提供的电路板与光发射次模块的俯视图;
图14为图13中B部分的放大图;
图15为本公开实施例提供的基板的结构示意图;
图16为本实施例提供的光发射次模块的俯视图;
图17为本公开实施例提供的隔离器、增透片与光纤适配器的第一拆分结构示意图;
图18为本公开实施例提供的隔离器、增透片与光纤适配器的第二拆分结构示意图;
图19为本公开实施例提供的聚焦透镜与光纤适配器的第一结构示意图;
图20为本公开实施例提供的聚焦透镜与光纤适配器的第二结构示意图;
图21A为已有技术提供的一种光发射次模块光路结构示意图;
图21B为图21A中光路结构耦合效率仿真图;
图22A为已有技术提供的光发射次模块光路结构示意图;
图22B为图22A中光路结构耦合效率仿真图;
图23为光轴通过第二透镜中心射入倾斜光纤插芯的耦合效率仿真图;
图24A为本公开实施例提供的光发射次模块光路结构示意图;
图24B为图24A中光路结构耦合效率仿真图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光电信号的转换。光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光在光纤中的无源传输特性可以实现低成本、低损耗的信息传输。而计算机等信息处理设备采用的是电信号,这就需要在信号传输过程中实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换是 光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,金手指实现的电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103;
光纤的一端连接远端服务器,网线的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤与网线的连接完成;而光纤与网线之间的连接由具有光模块的光网络单元完成。
光模块200的光口与光纤101连接,与光纤建立双向的光信号连接;光模块200的电口接入光网络单元100中,与光网络单元建立双向的电信号连接;光模块实现光信号与电信号的相互转换,从而实现在光纤与光网络单元之间建立连接;在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络单元100中,来自光网络单元100的电信号由光模块转换为光信号输入至光纤中。光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络单元具有光模块接口102,用于接入光模块,与光模块建立双向的电信号连接;光网络单元具有网线接口104,用于接入网线,与网线建立双向的电信号连接;光模块与网线之间通过光网络单元建立连接,在本公开某一实施例中,光网络单元将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络单元作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络单元及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有电路板105,在电路板105的表面设置笼子106;在笼子106中设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络单元中,具体为光模块的电口插入笼子106中的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中;光模块插入笼子中,由笼子固定光模块,光模块产生的热量通过光模块壳体传导给笼子,最终通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块200的结构示意图,图4为本实施例提供光模块200的分解结构示意图。如图3和图4所示,本公开实施例提供的光模块200包括上壳体201、下管壳202、解锁手柄203、电路板30、光发射部分40和光接收部分50。
上壳体201盖合在下管壳202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮 廓一般呈现方形体,在本公开某一实施例中,下管壳包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下管壳上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络单元等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光发射部分40和光接收部分50;电路板30、光发射部分40和光接收部分50等光电器件位于包裹腔体中。
采用上壳体、下管壳结合的装配方式,便于将电路板30、光发射部分40和光接收部分50等器件安装到壳体中,由上壳体、下管壳形成光模块最外层的封装保护壳体;上壳体及下管壳一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄203位于包裹腔体/下管壳202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁手柄203具有与上位机笼子匹配的卡合结构;拉动解锁手柄的末端可以在使解锁手柄在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁手柄的卡合结构将光模块固定在上位机的笼子里;通过拉动解锁手柄,解锁手柄的卡合结构随之移动,进而改变卡合结构与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板30上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如微处理器MCU2045、激光驱动芯片、限幅放大器、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板30通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板30一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光模块还包括光发射次模块及光接收次模块,光发射次模块及光接收次模块可以统称为光学次模块。如图4所示,本公开实施例提供的光模块包括光发射部分40及光接收部分50。其中,光发射部分40用于将电信号转换为光信号,生成的光信号经光纤插座60传输至光模块外部;光接收部分50用于经光纤插座60所接收的光信号转换为电信号,本实施例中将光接收部分50设置在电路板30表面,在另一种常见的封装方式中,光接收次 模块与电路板物理分离,通过柔性板实现电连接。
针对一些光模块使用环境相对较好,例如,在数据中心内部有空调进行控制温度和湿度,所以对器件的密封性要求不高,而对成品成本要求更高。另外,针对于光发射次模块采用管壳的封装方式,管壳通常采用机加工或是开模管壳,所以管壳设计相对复杂、生产成本较高,并且,在模块封装时,需要将半导体制冷器、光发射芯片、透镜等元器件固定在管壳内,光发射次模块的腔体内空间非常小,不方便生产操作的问题。图5为本公开实施例提供的光发射次模块与电路板的结构示意图,图6为本公开实施例提供的光发射次模块与电路板的结构示意图。如图5和6所示,本实施例中的光发射部分40采用非气密方式封装,与电路板30物理分离,通过金属材质的打线实现电连接、例如通过金线实现电连接。其中,对于光发射部分40,本实施例采用将基板作为光学平台,激光芯片、半导体制冷器等器件放于基板上的封装方式。
需要说明的是,本实施例中的光发射部分40包括4个同波长的光通路,通过增加光路数量实现提升数据传输速率,在其它实施例中还可以设置为其它数目。另外,下面的实施例是以其中的一个光通路为例对本实施的方案进行说明。
图7为本公开实施例提供的光发射次模块的分解结构示意图,图8为本公开实施例提供的光发射次模块的组装结构示意图。如图7和8所示,为降低生产成本,以及为激光芯片、半导体制冷器等器件提供一个平整的承载面,本实施例中光发射部分40包括一个基板41作为光学平台,在基板41上表面设置有TEC(Thermoelectric cooler,半导体制冷器)42、垫片43、激光芯片44、准直透镜45、隔离器46、增透片(AR片)47、光纤适配器48等器件。
为更有利于设置在基板41上表面的各元器件的散热,基板41的下表面可以可通过导热胶与光模开的壳体、如下壳体201固定在一起。这样,光发射部分40中的元器件产生的热量可以通过基板41传导给光模块的壳体,然后通过光模块壳体传导至光模块外部。在本公开某一实施例中,考虑到散热效果、加工精度以及热膨胀等因素,本实施例中基板41采用钨铜、即钨和铜组成的合金制成,当然,在其它实施例中还可以采用其它材料制成,如采用陶瓷等材料制成。
TEC42用于将激光芯片44产生的热量由基板41导出。在本公开某一实施例中,TEC42包括上热交换面和下热交换面。上热交换面的顶部设置垫片43,上热交换面用于吸收垫片43传递来的激光芯片44产生的热量。上热交换面的底部与下热交换面连接,而下热交换面固定在基板41的上表面,因此,可利用基板41将TEC42的下热交换面的热量导出到光模块的外部。
图9为图8中A区域的局部放大示意图。如图9所示,本实施例中的垫片43包括绝缘导热层431和金属化电路图案(又称走线),绝缘导热层431可以选用热传导性能好、绝缘性能好且加工精度高的陶瓷材料制成,当然也不限于陶瓷。其中,为了便于垫片43上各电元件的安装,本实施例中,设置在绝缘导热层431上表面的金属化电路图案包括高速信号线433和接地金属层432,绝缘导热层431的下表面与TEC42的上表面相接触。激光芯片44的阴极可以通过焊接或导电胶水等方式固定在垫片43的接地金属层432上, 激光芯片44的阳极可以通过打线与高速信号线433连接。
需要说明的是,高速信号线433和接地金属层432的设计形状以及布局并不限于本实施例所提供的方式,在其它实施例中,可以根据信号的传输速率、以及布设的元器件等需求设计。
由于在光模块工作的过程中,来自上位机的高频数据电信号通过电路板30上的金手指传输给设置在电路板上的时钟数据恢复芯片、激光驱动芯片等芯片,利用上述时钟数据恢复芯片、激光驱动芯片等芯片对光模块接收的高频数据电信号进行信号整形、幅值调整等处理,为将整形后的高频数据电信号传输给设置在垫片43上的激光芯片44,以使激光芯片发射数据光信号,以及,本实施例在电路板30上也布设有接地金属层和高频信号线(图中未示出)。同时,将电路板30上的高频信号线通过打线与垫片43上的高速信号线433连接,电路板30上的接地金属层通过打线垫片43上的接地金属层432连接,进而可将来自电路板30的电信号传输给激光芯片44。需要说明的是,垫片43上还可以设置背光探测器、电阻、电容等元器件,各元器件可以通过布设在垫片45上的相应的走线与电路板30电连接,以实现激光芯片44的稳定发光。
图10为本公开实施例提供的打线保护部件与电路板的分解结构示意图。如图10所示,本实施例中,由于电路板30与垫片43之间的打线直径通常比较细,为了防止电路板30与垫片43的相对位置的移动导致打线断开,并且,考虑到阻抗匹配等问题,对于连接电路板30与垫片43上的高频信号线的打线的长度也是有要求的。因此,为了确保电路板30与垫片43相对位置的稳定性,本实施例将电路板30靠近基板41的端部的下表面固定在基板41的上表面。
图11为本公开实施例提供的打线保护部件的结构示意图。如图10和11所示,为了避免上述连接电路板30与垫片43打线被碰触到,本实施例在电路板30上设置打线保护部件70,为防止打线保护部件70导电,其可以采用非金属材质制成,例如采用塑料材质,并使用非导电胶水固定在电路板30上,用于连接垫片43与电路板30的打线被罩设在打线保护部件70下方,进而可以避免打线被碰触造成压塌、破损等问题。
在本公开某一实施例中,为便于位于打线保护部件70下方的器件的散热以及减少打线保护部件70在电路板上的占地面积,如图11所示,本实施例将打线保护部件70设置为由保护板72、两个或两个以上的支撑件72组成,其中,保护板72为一平板状结构,其具体形状可以根据电路板30的布板需要设定,例如,本实施例将其设计为L型结构。支撑件72的一端与保护板71的下表面固定连接、另一端与通过胶水等非导电固定在电路板30的上表面。
图12为本公开实施例提供的电路板与光发射次模块的俯视图。如图12所示,由于激光芯片44与垫片43之间也是通过打线连接,因此,本实施例除了将连接电路板30与垫片43打线设置在打线保护部件70中的保护板72的下方之外,还将垫片43也设置在打线保护部件70中的保护板72的下方。另外,激光芯片44所接收的高频数据信号、偏置信号等信号,需要设置在电路板30上的激光驱动芯片(图中未示出)进行相应的处理后再发送给激光芯片44,而激光驱动芯片通常也是通过打线与电路板30电连接,因此,本实 施例也将器驱动芯片靠近垫片43设置,同时将其设置在打线保护部件70下方。
因此,本实施例利用基板41替代已有的光发射次模块的壳体,结构简单,有效降低了光发射次光模的物料成本,并且,基板41上方为开放式结构,进而可以解决因壳体内空间小所存在的封装困难的问题。另外,通过设置基板41与电路板30之间的装配方式、设置打线保护部件70,可以有效保证模块的使用性能。
图13为本公开实施例提供的电路板与光发射次模块的俯视图,图14为图13中B部分的放大图。如图13和14所示,由于激光芯片44所发出的光为发散光,而光纤的入光口径一般较小,因此,为提高光耦合效率,本实施例设置聚焦透镜45的入光面朝向激光芯片44的出光面设置、聚焦透镜45的出光面朝向光纤适配器48的入光面设置。利用聚焦透镜45将激光芯片44所发出的光为发散光光耦合进入光纤适配器48中的光纤。由于光纤的入光口径一般较小,因此,为保证光耦合效率,本实施例通过调整聚焦透镜45的位置,使聚焦透镜45的焦点位于光纤插芯803中光纤的端面附近。
另外,为使经过聚焦透镜45产生了会聚,但会聚前后光轴方向并未改变,即光沿聚焦透镜的中心射入,这一射入方向可以最大程度的保证会聚后的光保有会聚前的模斑分布,呈现规则的圆形光斑,利于后续耦合过程提高效率。因此,本实施例中可以设置激光芯片44所发出的光沿聚焦透镜45的中心射入,具体指光通过聚焦透镜的中心进行会聚,理想状态下,激光芯片44所发出的光束的中心经过聚焦透镜45的光轴,因此,为了实现激光芯片44与聚焦透镜45的对准,以及,结合已有的透镜以及激光芯片尺寸特点,本实施例将聚焦透镜45设置在TEC42的上表面,即利用垫片43来弥补激光芯片44与聚焦透镜45之间的高度差。
由于光纤的入光口径一般较小,因此,聚焦透镜45与光纤适配器48之间的相对位置的稳定性也非常重要。基于上述原因,本实施例也将光纤适配器48固定在基板41的上表面。为了使聚焦透镜45所射出的光可以更多的进入光纤支配器48的光纤内,理想状态下,聚焦透镜45与光纤支配器48的光轴要处于同一水平面或近似处于同一水平面。
图15为本公开实施例提供的基板的结构示意图。如图15所示,为实现聚焦透镜45与光纤支配器48的对准,本实施例还对基板41进行设计,其中,在基板41的中部区域开设有凹陷部412,这样,基板41的上表面被凹陷部412分为第一上表面411和第二上表面412,第一上表面411和第二上表面412分别位于凹陷部412的两侧。
第一上表面411用于与电路板30端部的下表面固定连接;第二上表面413上用于设置光纤适配器48;凹陷部412用于设置半导体制冷器42,其中,半导体制冷器42的下表面与凹陷部的底部相接触、上表面设有垫片43和聚焦透镜45,垫片43的上表面设置激光芯片44,以使垫片43的上表面与电路板30的上表面处于同一水平面或近似处于同一水平面,以方便打线,另外,还可以使光纤适配器48的光轴与聚焦透镜45的光轴处于同一水平面或近似处于同一水平面,以提高光耦合效率。本实施例通过将基板41设置为具有凹陷部的结构,不仅实现了其承载功能,还有效实现了各器件之间的对准功能,与平板型的基板41相比,更方便封装,还可以有效节省用于调整器件高度用的原材料。
如图14所示,为实现对光路中反射光的隔离,在本实施例在的出光侧,通常还会设 置一个隔离器46。基于激光芯片44所发出的光为发散光的特点,本实施例将隔离器46设置在聚焦透镜45的出光侧,另外,基于TEC42上可用空间较小等原因,本实施例将隔离器46设置在基板41的第二上表面413上。
本实施例中的隔离器46是基于通过光的偏振原理,仅允许光单方向通过。基于隔离器46的工作原理,通过对光发射器51所发出的激光偏振方向与隔离器46的偏振方向之间的夹角的调整,实现激光芯片44与隔离器46耦合功率的调整,进而可以实现光模块的输出光功率的控制。
另外,对于高速率的光模块,例如,400G产品,其对光功率耦合效率提出了更高要求,而光从空气进入光纤时大约会有4%的光发射,进而造成耦合效率损失,因此,本实施例还在在隔离器46和光纤适配器48中间设置增透片47,进而可以有效减小光纤适配器48处的端面发射。
图16为本实施例提供的光发射次模块的俯视图。如图16所示,为了减少隔离器46反射的光返回至激光芯片44以及减低回损,本实施例设置隔离器46的光入射面法线(或称入光面法线)与聚焦透镜45的光轴具有夹角θ,该夹角值可以根据需要设定,例如,设置为5°、10°等,需要说明的是本实施例以激光芯片44所发出光束的光轴(或称为激光芯片44的出光方向)与聚焦透镜45的光轴重合或近似重合为例,在其它实施例中,两者也可以不重合,进而上述隔离器46的光入射面法线与聚焦透镜45的光轴具有夹角θ,则为隔离器46的光入射面法线与激光芯片44所发出光束的光轴具有夹角θ。
这样,激光芯片44发出的光依次聚焦透镜45、隔离器46以及增透片47后,通过空气射光纤适配器48中的光纤中。其中,如果光纤垂直射入光纤的端面,采用这种方式易于控制激光芯片出光方向与光纤插芯的角度关系,但是垂直入射会使反射光沿原光路返回,返回的光回到激光芯片44处,进而会影响激光芯片44的出光。
因此,为了防止反射光沿原光路返回,光路设计上使光非垂直入射光纤端面;为了实现光非垂直入射光纤端面,本实施例将光纤适配器48的入光面设置为成斜面。
图17为本公开实施例提供的隔离器、增透片与光纤适配器的第一拆分结构示意图,图18为本公开实施例提供的隔离器、增透片与光纤适配器的第二拆分结构示意图。如图17所示和18所示,基于上述隔离器46的光入射面法线与聚焦透镜45的光轴具夹角、光纤适配器48的入光面也是具有一定倾角的设计,以及,为方便将隔离器46、增透片47和光纤适配器48固定在基板41上,本实施例利用胶水、银胶等方式将三者固定在一起,其中,可以将增透片47固定在光纤适配器48的入光端面,然后,将隔离器46固定在增透片47上。模块封装时,垫片43、激光芯片44以及聚焦透镜45可以采用无源方式贴装,然后,有源耦合上述隔离器46、增透片47和光纤适配器48组成的光组件。
如图18所示,通过将光纤适配器48的端面设置具有第一倾角θ1,其中,该倾角等于光纤适配器48的端面法线与聚焦透镜47的光轴之间的夹角,进而隔离器46与光纤适配器48贴装在一体后,隔离器46的光入射面法线与聚焦透镜45的光轴便也具有第一倾角θ1。另外,如图18所示,本实施例中将光纤适配器48中用于插入光纤的端口481设置为锥形结构,封装时,通过该端口481插入至光纤适配器48中,然后,在该锥形的端 口481中灌入胶水,这样,方便光纤的固定。
在本实施例中,光纤适配器48中可以设置光纤插芯,光纤插芯由陶瓷柱体包裹光纤构成,光纤插芯的中轴线与光纤的中轴线相同,光纤插芯的入光面研磨成斜面,即将光纤的入光面研磨成同样的斜面,进而可以实现光纤适配器48的入光面具有一定的倾角,或者,同时也将光纤适配器48的也同时设置成与光纤的入光面同样的斜面。光纤由不同折射率的芯层与包层构成,光在芯层与包层的交界面发生全反射,从而约束在芯层中传输。
全反射发生的前提是具备足够大的入射角。因此光在光纤中发生全反射,要求光在光纤入光面处发生折射后,折射角足够小,以满足光在光纤内再次反射时拥有足够大的入射角。而折射后形成足够小的折射角,需要折射时具有足够小的入射角;为实现较佳的耦合效率,要求进入光纤后的光轴与光纤的中轴线平行,进入光纤的光束成中心轴对称。由此,射入光纤入光面的光具有特定的入射角度范围。
而上述将光纤适配器48的入光面设置为具有一定的倾角后,会使得经聚焦透镜45会聚后的光束,尤其是近光轴的光束,以非垂直方向射入至光纤的入光面,入射角增大,折射角也减增大,进而不利于进入光纤的光线在光纤芯层与包层的交界面发生全反射,进而降低了耦合效率。针对上述问题,本实施例将光纤适配器器48在基板41上的摆放位置进行优化,使其在平行或近似平行于基板41上表面的平面内,光纤适配器48倾斜设置在在基板41上,以使光纤适配器48中的光纤的中轴线与聚焦透镜45的光轴不平行。
图19为本公开实施例提供的聚焦透镜与光纤适配器的第一结构示意图。如图19所示,本实施例中将光纤适配器48中的端面设置为具有第一倾角θ1,例如,设置为7°、8°等但并不限于该数值,同时,相适应的使其内部光纤(图中未示出)的入光面也具有第一倾角θ1,然后,再顺着光纤适配器48的端面倾斜方向,设置光纤适配器48的中轴线相对于聚焦透镜45的光轴具有第二倾角θ2,例如,设置为3°、2°等但并不限于该数值。
另外,由于本实施例将隔离器46和增透片47固定在光纤适配器48的端面上,进而可以使隔离器46的入光面相对于聚焦透镜45具有倾角θ、即隔离器46的光入射面法线与聚焦透镜45的光轴具有夹角θ。
图20为本公开实施例提供的聚焦透镜与光纤适配器的第二结构示意图。如图20所示,通过上述设置,便可以使折射进入光纤的光束的光轴方向平行或接近平行于光纤的中轴线,进而可以有效提高光耦合效率。
下面将针对本实施例提供的方案与已有方案进行比对说明。激光芯片44射出的光以光轴呈中心对称,进入光纤中的光也以光轴呈中心对称,以三条典型光线为例进行图示,以光轴处的光线进行示意说明。
图21A为已有技术提供的一种光发射次模块光路结构示意图,图21B为图21A中光路结构耦合效率仿真图。如图21A所示,本实施例中聚焦透镜由第一透镜45a和第二透镜45b组成。光纤适配器(图中未示出)的中轴线与激光芯片44的出光光束的光轴方向平行,设定光纤适配器的中轴线与光纤插芯(图中未示出)的中轴线平行,光纤插芯的中轴线与光纤插芯中光纤481的中轴线平行(理想状态下为重合)。激光芯片44发出的发散光经第一透镜45a会聚为平行光,平行光经第二透镜45b会聚后射入光纤481的入光面。 经过两次会聚之后的光保持原光轴方向,光斑形态未改变,理想状态下为圆形光斑。会聚后的光满足光纤全反射的角度要求,会聚光的光轴与光纤入光面垂直。如图21B所示,光线经聚焦透镜的中心实现会聚,会聚后的光耦合至光纤481中,大部分的光通过光纤进行传输,光纤周围分布有较少的光线,图21A的光路结构实现了较高的耦合效率。
光轴与入光面垂直,此时发生的折射具有最小的入射角(0°)以及最小的折射角。图21A采用的光路设计,可以满足光纤全反射的角度要求,光斑形态也有利于光耦合,但是在光纤入光面产生的反射光会沿原光路返回,进而影响激光芯片44的出光。
因此,图21A及图21B这种光路设计的优点是采用聚焦透镜的中心进行光路会聚,可以保持较好的光斑模斑形态,缺点是光纤入光面产生的反射光会沿原光路回到激光芯片中。
图22A为已有技术提供的光发射次模块光路结构示意图,图22B为图22A中光路结构耦合效率仿真图。需要说明的是,在平面图中,光纤斜面的倾斜方向不同仅是视图角度的不同,光纤是圆柱体,旋转视角看到斜面的倾斜方向不同。如图22A所示,光纤481的中轴线与激光芯片44的出光光轴方向平行,激光芯片44发出的发散光经第一透镜45a会聚为平行光,平行光经第二透镜45b会聚后射入光纤481的入光面。为了防止反射光可逆的反射回激光芯片,光纤481的入光面为斜面。为了利用折射原理使进入光纤的光满足全反射的条件,光射入第二透镜45b的非中心位置,光经第二透镜45b的非中心进行会聚,经第二透镜45b改变光的光轴方向后,射入光纤481的入光斜面上;在入光斜面发生光折射从而射入光纤481中。
如图22A所示,与图21A相比,光纤的入光面为斜面,而光纤插芯中的光纤中轴线未改变,为了使折射后的光满足全反射的条件,会聚光肯定不能保持图21A这种传播方向。在本公开某一实施例中,光轴保持图21A中的方向,与激光芯片的出光光轴方向平行,则以非垂直方向射入光线的入光面,入射角减小,折射角也减小,不利于发生全反射。为了增大入射角,图22A的方案中改变了图21A中的光轴方向,经过第二透镜45b会聚后的光轴方向与激光芯片的出光光轴方向不平行,以增大折射时的入射角。
通过图22B中的仿真图可知,经过第二透镜45b会聚后的光,其光轴方向发生改变,以使得会聚后的光与图21B中的传播方向不同,此时光线经第二透镜45b的非中心位置进行会聚。为了实现光线中的全反射,射入光纤481入光面的光具有特定的入射角度范围,该角度范围也限定了经过第二透镜45b会聚的光,不能通过第二透镜45b的中心进行会聚。
但是,采用图22A这种光路设计,光轴未通过第二透镜45b的中心,光经过第二透镜45b后改变了光轴的方向,光斑会发生较大的形变,光斑形状扭曲,光斑的模场分布不规则,耦合进光纤的效率明显降低。
图22A及图22B这种光路设计的优点是防止光纤入光面产生的反射光会沿原光路回到激光芯片中,缺点是未采用第二透镜45b的中心进行光路会聚,会聚后的光斑模斑形态产生较大的劣变。
图23为光轴通过第二透镜中心射入倾斜光纤插芯的耦合效率仿真图。如图23所示,光纤481的入光面为斜面,激光芯片44发出的光经第一透镜45a准直后,由第二透镜45b 会聚射入光纤适配器的光纤481中;光经第二透镜45b的中心进行会聚,光纤的中轴线与第二透镜45b的光照平行,光经折射后耦合进光纤481中,可以看到大量的光线从光纤适配器的光纤481中射出,耦合效率较低。
图24A为本公开实施例提供的光发射次模块光路结构示意图,图24B为图24A中光路结构耦合效率仿真图。如图24A所示,本实施例设置光纤481的中轴线与光纤适配器的中轴线平行,设置光纤适配器的中轴线与激光芯片的出光光轴不方向,进而激光芯片的出光光轴方向与光纤的中轴线不平行;激光芯片44发出的发散光经第一透镜45a会聚为平行光,平行光经第二透镜45b会聚后射入光纤481的斜面。
为了防止反射光可逆的反射回激光芯片,光纤的入光面为斜面;为了利用折射原理将光射入光纤中,激光芯片发出的光通过第二透镜45b的中心射出,聚焦过程中没有改变原光轴方向,射入光纤481的斜面入光面时,通过光纤481的入光面光折射进入光纤481中。信号光通过斜面折射进入光纤481,协调控制斜面的倾斜角以及光纤适配器的倾斜角,使折射进入光纤481的信号光的光轴方向平行或接近平行于光纤481的中轴线。
图24A提供的光路设计,目的是光经会聚后保持较好的光斑模斑形态,并且与光纤481的入光斜面匹配,折射进入光纤481的信号光的光轴方向平行光纤481的中轴线,以完成光高效率耦合进光纤中。
为了使光经会聚后保持较好的光斑模斑形态,将光通过第二透镜45b的中心进行会聚,光通过第二透镜45b中心的射出,聚焦后的光轴方向没有改变,会聚之后的光保持会聚之前的光斑形态,理想状体下可以保持圆形光斑形态,这利于提高光耦合的效率。
为了防止光纤入光面产生的反射光会沿原光路回到激光芯片中,光纤插芯的入光面/光纤的入光面设计成斜面,然而,图21A示出的光路结构表明,当光通过第二透镜45b的中心进行会聚时,后续与之匹配的光纤入光面不能是斜面,才能满足在入光面处折射后的光可以发生全反射传输;图22A示出的光路结构表明,当入光面为斜面时,在前与之匹配的光不能通过第二透镜45b的中心进行会聚,才能满足在入光面处折射后的光可以发生全反射传输。
为了使耦合进光纤的光发生全反射,本公开实施例提供一种新的结构设计,通过将光纤适配器48在基板41上倾斜设置,让光纤481的中轴线与激光芯片的出光方向不平行,进而让光纤相对激光芯片出光方向倾斜一定的角度。
光折射进入光纤后,与光纤中轴线成特定的角度关系,这种角度关系在图21A、图22A及图24A中完全相同,这也是光在光纤中发生全发射的必然要求。
如图24B所示,采用图24A的光路结构,光线通过第二透镜45b的中心进行会聚,光纤的入光面呈斜面,经第二透镜45b会聚的光可以高效率的耦合进光纤中,大部分的光线进入了光纤中。
图22A与图24A中,以光纤入光斜面为参考,光入射的角度相同,光折射后的角度也相同。不同之处在于:图22A中的光纤中轴线与激光芯片的出光方向平行,光轴通过第二透镜45b的非中心区域;而图24A中光纤中轴线与激光芯片的出光方向不平行,光轴通过第二透镜45b的中心区域。进而本公开实施例提供的光路设计,实现折射进入光纤 481的信号光的光轴方向平行于光纤的中轴线,完成光高效率耦合进光纤中。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (19)

  1. 一种光模块,其特征在于,包括:
    上壳体和下壳体;
    电路板,设置在所述上壳体和所述下壳体之间;
    基板,其下表面与所述下壳体相接触,所述电路板端部的下表面设置在所述基板端部的上表面;
    垫片,设置在所述基板的上表面,包括绝缘导热层、布设在所述绝缘导热层上表面的接地金属层以及高速信号线;所述高速信号线的端部通过打线与所述电路板电连接,用于将来自所述电路板的电信号传输至激光芯片;
    所述激光芯片,阴极固定在所述接地金属层上、阳极通过打线与所述高速信号线电连接,用于基于所述电信号发射所述光信号。
  2. 根据权利要求1所述的光模块,其特征在于,所述基板上开设有凹陷部,所述基板的上表面包括分别位于所述凹陷部两侧的第一上表面和第二上表面,其中:
    所述电路板端部的下表面设置在所述第一上表面上;
    所述凹陷部内设有半导体制冷器,所述半导体制冷器的下表面与所述凹陷部的底部相接触、上表面设有所述垫片,所述垫片的上表面与所述电路板的上表面处于同一水平面或近似处于同一水平面;
    所述第二上表面上设有所述光纤适配器,所述光纤适配器的光轴与所述聚焦透镜的光轴处于同一水平面或近似处于同一水平面。
  3. 根据权利要求2所述的光模块,其特征在于,所述半导体制冷器的上表面还设置有聚焦透镜,其中:
    所述聚焦透镜,设置在所述激光芯片所发射光束的传输光路上,用于将所述光束会聚至所述光纤适配器。
  4. 根据权利要求2所述的光模块,其特征在于,所述第二上表面上还设有隔离器和增透片,其中:
    所述增透片贴装在所述光纤适配器的端面上,所述隔离器贴装在所述增透片上。
  5. 根据权利要求1所述的光模块,其特征在于,所述光模块还包括:
    打线保护部件,非导电固定在所述电路板的上表面,并且罩设在所述垫片以及连接所述垫片与所述电路板的所述打线上。
  6. 根据权利要求5所述的光模块,其特征在于,所述打线保护部件包括保护板、两个或两个以上的支撑件,其中:
    所述支撑件的一端非导电固定在所述电路板的上表面、另一端与所述保护板的下表面固定连接;
    所述垫片以及连接所述垫片与所述电路板的打线设置在所述保护板的下方。
  7. 根据权利要求4或5所述的光模块,其特征在于,所述电路板上还设有激光驱动芯片,其中:
    所述激光驱动芯片通过打线与所述电路板电连接;
    所述打线保护部件还罩设在所述激光驱动芯片上。
  8. 根据权利要求1所述的光模块,其特征在于,所述基板的下表面通过导热胶固定在所述光模块的壳体上。
  9. 根据权利要求1至6任一所述的光模块,其特征在于,所述基板为钨铜基板。
  10. 一种光模块,其特征在于,包括:
    电路板;
    光发射部分,与所述电路板电连接,用于发射光;
    所述光发射部分包括:
    基板;
    垫片,设置在所述基板上,其上表面设有与所述电路板电连接的走线;
    激光芯片,设置在所述垫片上并与所述走线电连接,用于发射光;
    聚焦透镜,设置在所述激光芯片所发射光束的传输光路上,用于将所述光束会聚至光纤适配器;
    所述光纤适配器,设置在所述基板上,其入光面为倾斜的面;在平行或近似平行于所述基板上表面的平面内,所述光纤适配器倾斜设置在所述基板上,以使所述光纤适配器中的光纤的中轴线与所述聚焦透镜的光轴不平行。
  11. 根据权利要求10所述的光模块,其特征在于,所述光发射次模块还包括:
    隔离器,设置在所述基板上并设置在所述透镜与所述光纤适配器之间,其入光面法线与所述聚焦透镜的光轴具有一定的夹角。
  12. 根据权利要求11所述的光模块,其特征在于,所述光纤适配器的端面为倾斜面,所述隔离器贴装在所述光纤适配器的端面上。
  13. 根据权利要求12所述的光模块,其特征在于,所述光发射次模块还包括:
    增透片,贴装在所述光纤适配器的端面上,其中,所述隔离器贴装在所述增透片上。
  14. 根据权利要求10所述的光模块,其特征在于,所述电路板端部的下表面设置在所述基板端部的上表面,所述基板的下表面与所述光模块的壳体相接触。
  15. 根据权利要求11所述的光模块,其特征在于,所述基板上开设有凹陷部,所述基板的上表面包括位于所述凹陷部两侧的第一上表面和第二上表面,其中:
    所述电路板端部的下表面设置在所述第一上表面上;
    所述凹陷部内设有半导体制冷器,所述半导体制冷器的下表面与所述凹陷部的底部相接触、上表面设有所述垫片和所述聚焦透镜,所述垫片的上表面与所述电路板的上表面处于同一水平面或近似处于同一水平面;
    所述第二上表面上设有所述光纤适配器,所述光纤适配器的光轴与所述聚焦透镜的光轴处于同一水平面或近似处于同一水平面。
  16. 根据权利要求10所述的光模块,其特征在于,所述光纤适配器中用于插设光纤的端口为锥形端口,光纤插入所述锥形端口内并通过胶水固定。
  17. 根据权利要求10所述的光模块,其特征在于,所述光纤的入光面的倾斜角度为 7°。
  18. 根据权利要求17所述的光模块,其特征在于,所述光纤的中轴线与所述聚焦透镜的光轴的夹角为3°。
  19. 根据权利要求10所述的光模块,其特征在于,所述光纤的中轴线与所述光纤适配器的中轴线相平行。
PCT/CN2020/120922 2020-05-22 2020-10-14 一种光模块 WO2021232661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/475,775 US11990725B2 (en) 2020-05-22 2021-09-15 Optical module

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010442745.9A CN113703102A (zh) 2020-05-22 2020-05-22 一种光模块
CN202020885645.9U CN212083740U (zh) 2020-05-22 2020-05-22 一种光模块
CN202010442745.9 2020-05-22
CN202010442741.0A CN113703101A (zh) 2020-05-22 2020-05-22 一种光模块
CN202020885055.6 2020-05-22
CN202020885055.6U CN212083738U (zh) 2020-05-22 2020-05-22 一种光模块
CN202010442741.0 2020-05-22
CN202020885645.9 2020-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/475,775 Continuation-In-Part US11990725B2 (en) 2020-05-22 2021-09-15 Optical module

Publications (1)

Publication Number Publication Date
WO2021232661A1 true WO2021232661A1 (zh) 2021-11-25

Family

ID=78709127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120922 WO2021232661A1 (zh) 2020-05-22 2020-10-14 一种光模块

Country Status (2)

Country Link
US (1) US11990725B2 (zh)
WO (1) WO2021232661A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150162990A1 (en) * 2013-12-09 2015-06-11 Emcore Corporation Small packaged tunable laser transmitter
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块
CN108761668A (zh) * 2018-05-14 2018-11-06 青岛海信宽带多媒体技术有限公司 一种光模块
CN109283634A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110471147A (zh) * 2019-08-30 2019-11-19 珠海达明科技有限公司 大发散角激光耦合单模光纤的装置及方法
CN110764202A (zh) * 2019-12-09 2020-02-07 亨通洛克利科技有限公司 一种400g光模块的结构
CN110888208A (zh) * 2019-12-09 2020-03-17 亨通洛克利科技有限公司 一种具有绕纤机构的光模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190346640A1 (en) * 2018-05-14 2019-11-14 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150162990A1 (en) * 2013-12-09 2015-06-11 Emcore Corporation Small packaged tunable laser transmitter
CN109283634A (zh) * 2017-07-19 2019-01-29 苏州旭创科技有限公司 光模块
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块
CN108761668A (zh) * 2018-05-14 2018-11-06 青岛海信宽带多媒体技术有限公司 一种光模块
CN110471147A (zh) * 2019-08-30 2019-11-19 珠海达明科技有限公司 大发散角激光耦合单模光纤的装置及方法
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110764202A (zh) * 2019-12-09 2020-02-07 亨通洛克利科技有限公司 一种400g光模块的结构
CN110888208A (zh) * 2019-12-09 2020-03-17 亨通洛克利科技有限公司 一种具有绕纤机构的光模块

Also Published As

Publication number Publication date
US11990725B2 (en) 2024-05-21
US20220006253A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
CN212083738U (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
CN212083740U (zh) 一种光模块
WO2020224644A1 (zh) 一种光模块
WO2021227643A1 (zh) 一种光模块
CN111694112A (zh) 一种光模块
CN111694113A (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2022057621A1 (zh) 一种光模块
WO2021223448A1 (zh) 一种光模块
WO2021103958A1 (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
CN113703102A (zh) 一种光模块
CN111948762A (zh) 一种光模块
WO2020248642A1 (zh) 光模块
WO2021232661A1 (zh) 一种光模块
CN217587686U (zh) 一种光模块
CN111948761A (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN113759479B (zh) 一种光模块
WO2022083040A1 (zh) 一种光模块
WO2021232862A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936961

Country of ref document: EP

Kind code of ref document: A1