WO2021232455A1 - 行驶稳定系统、挖掘装载机及控制方法 - Google Patents

行驶稳定系统、挖掘装载机及控制方法 Download PDF

Info

Publication number
WO2021232455A1
WO2021232455A1 PCT/CN2020/092471 CN2020092471W WO2021232455A1 WO 2021232455 A1 WO2021232455 A1 WO 2021232455A1 CN 2020092471 W CN2020092471 W CN 2020092471W WO 2021232455 A1 WO2021232455 A1 WO 2021232455A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
energy storage
storage element
hydraulic
hydraulic actuator
Prior art date
Application number
PCT/CN2020/092471
Other languages
English (en)
French (fr)
Inventor
赵斌
张战文
耿彦波
郎保乡
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Priority to EP20936656.6A priority Critical patent/EP4155467A1/en
Priority to US17/761,758 priority patent/US20230349130A1/en
Publication of WO2021232455A1 publication Critical patent/WO2021232455A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/021Installations or systems with accumulators used for damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/008Reduction of noise or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel

Definitions

  • the present disclosure relates to the field of construction machinery, and in particular to a driving stabilization system, backhoe loader and control method.
  • Backhoe loader is a multi-functional construction machinery integrating excavation and loading. It is widely used in the construction of various basic engineering projects, and can be engaged in many operations such as excavation, shoveling, carrying, crushing and leveling of the ground. Because they often need to travel on a variety of complex and even harsh off-highway roads, they are required to have a higher travel speed to improve work efficiency.
  • the backhoe loader is affected by the structure of the working device at the loading end. When excited by the uneven road surface, the uneven road surface will cause vibration and bumps of the whole vehicle, which is mainly manifested as the phenomenon of front and rear pitching vibration.
  • the passive energy storage driving stability system developed by the hydro-pneumatic suspension technology is used to solve the problem. Its working principle is to use the accumulator to effectively absorb the shock and vibration that enters the hydraulic circuit of the bucket and other working devices.
  • a driving stabilization system including:
  • a first hydraulic oil source operatively connected to the hydraulic actuator, and configured to provide pressure oil to the hydraulic actuator
  • An energy storage element operably connected to the first oil supply circuit between the first hydraulic oil source and the hydraulic actuator;
  • the controller is configured to compare the oil pressure of the hydraulic actuator and the energy storage element after the driving stability system is turned on, and to use the energy storage element before the energy storage element is connected to the first oil supply oil path The oil pressure of the energy storage element and the hydraulic actuator is balanced.
  • the driving stabilization system further includes:
  • a second hydraulic oil source operably connected to the energy storage element, and configured to supply pressure oil to the energy storage element through a second oil supply oil path, so as to increase the oil pressure of the energy storage element;
  • the oil drain element is operatively connected with the energy storage element, and is configured to unload the energy storage element through an oil drain oil passage to reduce the oil pressure of the energy storage element.
  • the driving stabilization system further includes:
  • the first pressure sensor is arranged on the energy storage element or connected to the outlet of the energy storage element, and is configured to detect the oil pressure of the energy storage element;
  • the second pressure sensor is arranged on the hydraulic actuator or connected to the oil port of the hydraulic actuator, and is configured to detect the oil pressure of the hydraulic actuator.
  • the second hydraulic oil source includes:
  • An oil pump which communicates with the energy storage element through the second oil supply oil passage;
  • the first control valve is connected in series with the second oil supply circuit and signally connected with the controller, and is configured to connect or shut off the second oil supply circuit according to a control command of the controller.
  • the oil drain element includes:
  • An oil tank which is in communication with the energy storage element through the oil drain oil path;
  • the second control valve is serially connected to the oil drain circuit and is signal-connected to the controller, and is configured to connect or shut off the oil drain circuit according to a control command of the controller.
  • the driving stabilization system further includes:
  • the third control valve is located in the oil path between the first oil supply oil path and the energy storage element, and is signally connected to the controller, and is configured to make the first oil supply path according to a control instruction of the controller
  • An oil supply oil path is communicated with or disconnected from the oil path between the energy storage element.
  • the driving stabilization system further includes:
  • the electro-hydraulic proportional throttle valve is in signal connection with the controller, and is configured to change the throttle aperture of the electro-hydraulic proportional throttle valve according to a control instruction of the controller;
  • the one-way valve after being connected in parallel with the electro-hydraulic proportional throttle valve, is arranged in series on the second oil supply line, and is configured to realize one-way conduction in the charging direction of the energy storage element.
  • the driving stabilization system further includes:
  • a road surface roughness detection element connected to the controller signal, configured to detect a signal used to characterize the roughness of the current driving road;
  • the working end load detection element is signally connected to the controller and is configured to detect the current load of the hydraulic actuator
  • a database located in the controller or in signal connection with the controller, and configured to store the mapping data of the road roughness level and/or the hydraulic actuator load and the throttle aperture of the electro-hydraulic proportional throttle valve;
  • the controller is configured to determine a road roughness level according to the signal used to characterize the roughness of the current driving road, and query according to the road roughness level and/or the current load of the hydraulic actuator
  • the database then sends a control instruction to the electro-hydraulic proportional throttle valve according to the inquired throttle aperture of the electro-hydraulic proportional throttle valve, so that the electro-hydraulic proportional throttle valve adjusts the throttle aperture.
  • the driving stabilization system further includes:
  • the model building unit connected with the database signal, is configured to use the throttle aperture of the electro-hydraulic proportional throttle as an independent variable under the input of different hydraulic actuator loads and different levels of road spectrum information, Taking ride comfort as the objective function, iterative optimization is performed through neural network algorithms to fit the optimal throttle of the electro-hydraulic proportional throttle corresponding to different road roughness levels and different hydraulic actuator loads.
  • the pore size curve is collected, and the fitting data is saved in the database.
  • the energy storage element includes:
  • the first accumulator has the first maximum working oil pressure
  • a second accumulator having a second maximum working oil pressure, and the second maximum working oil pressure is greater than the first maximum working oil pressure
  • the fourth control valve is respectively connected with the second hydraulic oil source, the oil drain element, the first accumulator and the second accumulator, and is configured to switch the second hydraulic oil source to The oil circuit of the first accumulator or the second accumulator, and the oil circuit of switching the first accumulator or the second accumulator to the oil drain element.
  • the controller is in signal connection with the fourth control valve, and is configured to determine whether the hydraulic actuator is in an idling condition when the driving stability system is turned on, and if it is in an idling condition, Working condition, send a control instruction to the fourth control valve to switch to the first accumulator to communicate with the first oil supply path via the second oil supply path, otherwise to the first oil supply path.
  • the fourth control valve sends a control command to switch the second accumulator to communicate with the first oil supply path via the second oil supply path.
  • the initial oil pressure of the first accumulator before the driving stabilization system is turned on is equal to the oil pressure of the hydraulic actuator under no-load conditions
  • the second accumulator The initial oil pressure before the driving stability system is turned on is equal to the oil pressure when the hydraulic actuator is in a full load condition.
  • the driving stabilization system further includes:
  • a safety valve is arranged between the energy storage element and the oil tank, and is configured to unload the energy storage element via the safety valve when the oil pressure of the energy storage element exceeds a preset maximum oil pressure .
  • the driving stabilization system further includes:
  • a speed sensor signally connected to the controller, and configured to test the speed of the vehicle body where the driving stabilization system is located;
  • the controller is configured to turn on the driving stability system when the speed of the vehicle body on which the driving stability system is located exceeds a preset speed for a preset time period, and when the driving stability system is in an open state. In the state, when the speed of the vehicle body does not meet the condition of maintaining the speed exceeding the preset speed for a preset time period, the oil path between the first oil supply path and the energy storage element is disconnected, and Turn off the driving stability system.
  • a backhoe loader including:
  • the hydraulic actuator includes a boom cylinder.
  • a control method based on the aforementioned driving stability system including:
  • the energy storage element is connected to the first oil supply oil path.
  • the balancing the oil pressure of the energy storage element and the hydraulic actuator includes:
  • the accumulator element If the oil pressure of the accumulator element is higher than the oil pressure of the hydraulic actuator, the accumulator element is unloaded through the oil drain circuit, so as to reduce the oil pressure of the accumulator element to the same level as the oil pressure of the accumulator element.
  • the oil pressure of the hydraulic actuator is balanced;
  • the pressure oil is supplied to the energy storage element through the second oil supply path, so as to increase the oil pressure of the energy storage element to It is balanced with the oil pressure of the hydraulic actuator.
  • the driving stability system further includes: a second hydraulic oil source, an electro-hydraulic proportional throttle valve, a one-way valve, and a database, and the second hydraulic oil source is operatively connected with the energy storage element , Configured to supply pressure oil to the energy storage element through a second oil supply path, the electro-hydraulic proportional throttle valve is connected in parallel with the one-way valve, and is arranged in series on the second oil supply path, so The one-way valve is configured to realize one-way conduction in the charging direction of the energy storage element, the electro-hydraulic proportional throttle valve and the database are both signally connected to the controller; the control method further includes:
  • the electro-hydraulic proportional throttle valve is made to adjust the throttle aperture.
  • control method further includes:
  • the throttle aperture of the electro-hydraulic proportional throttle valve is used as the independent variable, and the driving comfort is the objective function, and iterated through the neural network algorithm. Optimized to fit the curve set of the optimal throttle aperture of the electro-hydraulic proportional throttle corresponding to different hydraulic actuator loads under different road roughness levels, and save the fitted data to the In the database.
  • the energy storage element includes: a first accumulator, a second accumulator, and a fourth control valve, and the first maximum working oil pressure of the first accumulator is lower than the second accumulator.
  • the second maximum working oil pressure of the energy device; the control method further includes:
  • the fourth control valve is switched so that the second accumulator communicates with the first oil supply path.
  • control method further includes:
  • the driving stabilization system When the driving stabilization system is turned on, when the speed of the vehicle body does not meet the condition of maintaining a speed exceeding the preset speed for a preset period of time, the first fuel supply circuit and the energy storage The oil circuit between the components is disconnected, and the driving stability system is turned off.
  • Fig. 1 is a schematic diagram of hydraulic principles of some embodiments of a driving stabilization system according to the present disclosure
  • Figure 2 is a block schematic diagram of some embodiments of the driving stabilization system according to the present disclosure.
  • Figure 3 is a schematic structural diagram of some embodiments of the backhoe loader according to the present disclosure.
  • FIG. 4 is a schematic flowchart of some embodiments of the control method according to the present disclosure.
  • Fig. 5 is a flow diagram of automatic adjustment of the throttle aperture in some embodiments of the control method according to the present disclosure
  • Fig. 6 is a schematic diagram of the control flow of some embodiments of the driving stabilization system according to the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intermediate device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but with an intervening device.
  • the passive energy storage driving stability system developed by the hydro-pneumatic suspension technology is used to solve the vibration problem.
  • Research has found that when the passive accumulator driving stability system is turned on, the pressure of the accumulator and the rodless chamber pressure of the boom hydraulic cylinder of the working device may not be balanced after the system is turned on, and it is easy to move the piston rod of the boom cylinder back and forth.
  • the working device cannot always be kept at the set position and changes, which may cause material spilling in the bucket or other safety hazards.
  • the setting position here refers to a specific position (such as the open end of the bucket) that the construction machinery such as backhoe loader and other construction machinery that can carry materials for transition or operation will keep the working device at a specific position when driving or carrying materials for transition operations. Keep it level, the bucket connecting hinge point is about 300mm away from the ground), so that the center of gravity of the whole vehicle is lower, and the steering stability and driving smoothness of the vehicle are improved.
  • the damping required for vibration reduction is also different.
  • the passive energy storage driving stability system in the related technology is difficult to dampen the system according to the unevenness of the road surface and the weight of the bucket material. Make real-time adjustments.
  • the present disclosure provides a driving stabilization system, a backhoe loader, and a control method, which can improve safety during driving.
  • the driving stabilization system includes: a hydraulic actuator 1, a first hydraulic oil source B, an energy storage element A, and a controller E.
  • the hydraulic actuator 1 may be a working unit of a working vehicle to which the driving stability system is applied.
  • the hydraulic actuator 1 can carry materials when the construction machinery vehicle is traveling.
  • the hydraulic actuator 1 may be a boom cylinder.
  • the first hydraulic oil source B is operatively connected with the hydraulic actuator 1 and is configured to provide pressure oil to the hydraulic actuator 1.
  • the first hydraulic oil source B can provide hydraulic oil to the hydraulic actuator 1 through the first oil supply oil path r1 as needed, and stop the supply of hydraulic oil to the hydraulic actuator 1 as needed.
  • the first hydraulic oil source B includes a hydraulic source, such as the oil pump 7 in FIG. 1.
  • the first hydraulic oil source B may further include an electromagnetic reversing valve 3 arranged on the first oil supply oil path r1 to realize the operability of oil supply.
  • the first hydraulic oil source B may also include an overflow valve 4 arranged between the first oil supply oil path r1 and the oil return oil path to provide overload protection of the system or realize functions such as constant pressure of the hydraulic source.
  • the oil pump 7 can be driven by the electric motor 5 or the engine to pump hydraulic oil from the oil tank 6.
  • the oil inlet and return port of the electromagnetic reversing valve 3 are respectively connected to the outlet of the oil pump 7 and the oil tank 6, and the two working oil ports of the electromagnetic reversing valve 3 are respectively connected to the rodless chambers of the two hydraulic actuators 1, Through the switching of the electromagnetic reversing valve 3, the start and stop of the hydraulic actuator 1 and the work operation in different operating directions are realized.
  • the first hydraulic oil source B may also be an oil supply mechanism used to drive its own work unit in an existing work machine.
  • the energy storage element A is operatively connected to the first oil supply oil path r1 between the first hydraulic oil source B and the hydraulic actuator 1.
  • the accumulator element A may include one or more accumulators, such as gas, spring or piston accumulators.
  • the energy storage element A can effectively absorb the shock and vibration in the associated hydraulic circuit of the hydraulic actuator 1, thereby effectively solving the oil penetration and cab As well as problems such as severe vibration of the body structure and easy spillage of the load-bearing materials, the reliability, handling comfort, driving stability and operating efficiency of the operating vehicle are improved.
  • the controller E can compare the oil pressure of the hydraulic actuator 1 and the energy storage element A after the driving stabilization system is turned on, and connect to the energy storage element A. Before entering the first oil supply oil path r1, the oil pressures of the energy storage element A and the hydraulic actuator 1 are balanced. In this embodiment, the pressure of the energy storage element is adjusted to keep it consistent with the pressure of the hydraulic actuator, so as to ensure that after the driving stability system is turned on, the working device can still be maintained at the set position before turning on. Changes or no obvious changes occur, thereby improving the handling stability and driving comfort of the work vehicle.
  • the controller E may be an electronic controller that operates in a logical manner to perform operations, execute control algorithms, store and retrieve data, and other required operations.
  • the controller E may include or be able to access memory, auxiliary storage devices, processors, and any other components for running application programs.
  • the memory and auxiliary storage devices may be in the form of read only memory (ROM), random access memory (RAM), or integrated circuits that can be accessed by the controller.
  • Various other circuits (such as power supply circuits, signal conditioning circuits, driver circuits, and other types of circuits) may be associated with the controller E.
  • the driving stabilization system further includes: a second hydraulic oil source C and an oil drain element D.
  • the second hydraulic oil source C is operatively connected to the energy storage element A, and can supply pressure oil to the energy storage element A through the second oil supply oil path r2 to increase the oil pressure of the energy storage element A.
  • the second hydraulic oil source C and the supply of pressure oil to the energy storage element A increase the oil pressure of the energy storage element A. And it tends to be consistent with the pressure of the hydraulic actuator 1.
  • the second hydraulic oil source C includes: an oil pump 7 and a first control valve 8.
  • the oil pump 7 communicates with the energy storage element A through the second oil supply oil passage r2.
  • the first control valve 8 is connected in series to the second oil supply oil passage r2, and is signally connected to the controller E, and is configured to connect the second oil supply oil passage r2 according to a control command of the controller E Or shut down.
  • the first hydraulic oil source B and the second hydraulic oil source C use the same oil pump to provide hydraulic oil.
  • the first hydraulic oil source B and the second hydraulic oil source C use different oil pumps to provide hydraulic oil.
  • the oil drain element D is operatively connected with the energy storage element A, and is configured to unload the energy storage element A through the oil drain oil passage r3 to reduce the oil pressure of the energy storage element A.
  • the accumulator element A can be unloaded by the oil drain element D, so that the oil pressure of the accumulator element A is reduced, and tends to be in line with the hydraulic pressure.
  • the pressure of actuator 1 is the same.
  • the oil drain element D includes an oil tank 6 and a second control valve 14.
  • the oil tank 6 communicates with the energy storage element A through the oil drain oil passage r3.
  • the second control valve 14 is connected in series to the drain oil passage r3, and is signal-connected to the controller E, and is configured to connect or close the drain oil passage r3 according to the control command of the controller E .
  • the driving stabilization system further includes a first pressure sensor 2 and a second pressure sensor 16.
  • the first pressure sensor 2 may be arranged on the energy storage element A or connected to the outlet of the energy storage element A.
  • the first pressure sensor 2 is configured to detect the oil pressure of the energy storage element A.
  • the second pressure sensor 16 may be arranged on the hydraulic actuator 1 or connected to the oil port of the hydraulic actuator 1.
  • the second pressure sensor 16 is configured to detect the oil pressure of the hydraulic actuator 1.
  • the driving stabilization system further includes a third control valve 9.
  • the third control valve 9 is located in the oil path between the first oil supply oil path r1 and the energy storage element A, and is signally connected to the controller E.
  • the third control valve 9 can connect or disconnect the first oil supply path r1 and the energy storage element A according to the control command of the controller E.
  • the third control valve 9 may be located on an oil passage r4 that connects the first oil supply oil passage r1 and the second oil supply oil passage r2. Before the energy storage element A is connected to the first oil supply oil path r1, the oil path between the energy storage element A and the first oil supply oil path r1 is disconnected through the third control valve 9.
  • the third control valve 9 is opened so that the accumulating element A and the first oil supply path r1
  • the oil circuit is connected, so as to provide protection against shock and vibration to the hydraulic actuator 1 through the energy storage element A.
  • the driving stability system further includes: an electro-hydraulic proportional throttle valve 11 and a one-way valve 12.
  • the electro-hydraulic proportional throttle valve 11 is in signal connection with the controller E, and is configured to change the throttle aperture of the electro-hydraulic proportional throttle valve 11 according to a control instruction of the controller E.
  • the one-way valve 12 is arranged in series on the second oil supply oil path r2, and is configured to realize one-way conduction in the charging direction of the energy storage element A.
  • the electro-hydraulic proportional throttle valve 11 and the one-way valve 12 can constitute a one-way throttle valve for controlling the flow of pressure oil between the energy storage element A and the first oil supply path r1, and Controlling the current to adjust the throttle aperture of the electro-hydraulic proportional throttle valve 11 can change the damping of the system.
  • the road surface roughness detecting element G may include an acceleration sensor or an inclination sensor provided on the vehicle body, and is signally connected to the controller E.
  • the road surface roughness detecting element G may be configured to detect a signal used to characterize the roughness of the current driving road surface.
  • Road unevenness refers to the degree of deviation of the road surface from the reference plane, which can be characterized by wavelength and amplitude.
  • the load detection element F at the working end may use a load cell to weigh the weight of the material carried by the working end as the current load of the hydraulic actuator.
  • the working end load detection element F is signally connected to the controller E, and is configured to detect the current load of the hydraulic actuator 1.
  • the database H is located in the controller E or is in signal connection with the controller E, and is configured to store the level of road roughness and/or the hydraulic actuator load and the ratio of the throttle aperture of the electro-hydraulic proportional throttle valve 11 Map data.
  • the controller E can determine the level of road roughness according to the signal used to characterize the roughness of the current driving road, and query the database H according to the level of road roughness and/or the current load of the hydraulic actuator 1 , And then send a control instruction to the electro-hydraulic proportional throttle valve 11 according to the inquired throttle aperture of the electro-hydraulic proportional throttle valve 11, so that the electro-hydraulic proportional throttle valve 11 adjusts the throttle aperture.
  • the driving stabilization system further includes a model building unit 1.
  • the model building unit I is signal-connected to the database H, and is configured to use the throttle aperture of the electro-hydraulic proportional throttle valve 11 as the auto Variable, taking ride comfort as the objective function, and iteratively optimized by neural network algorithm to fit the maximum value of the electro-hydraulic proportional throttle valve 11 corresponding to different hydraulic actuator loads under different road roughness levels.
  • the curves of the optimal throttling aperture are collected, and the fitting data is stored in the database H.
  • a simulation model corresponding to a variety of road levels can be established.
  • the curve may include the curve of the optimal orifice diameter of the hydraulic brake under no load.
  • the controller can detect the current load of the hydraulic actuator 1 and the signal used to characterize the unevenness of the current driving road, according to The signal used to characterize the unevenness of the current driving road determines the level of the unevenness of the road.
  • the controller may further query the database H according to the road roughness level and/or the current load of the hydraulic actuator 1, and make the The electro-hydraulic proportional throttle valve 11 adjusts the throttle aperture.
  • the road surface roughness level here represents a certain range of roughness.
  • the road surface roughness detection element G can monitor the road surface roughness in real time. When the road surface roughness is within a range corresponding to a certain road surface roughness level, there is no need to adjust the throttle aperture of the electro-hydraulic proportional throttle valve 11. When it is detected that the road surface roughness level where the current road surface roughness is located has changed, the corresponding throttle aperture adjustment is performed according to the current road surface roughness level.
  • the best throttle aperture stored in the database is used to reduce the adverse effects of vibration and impact on the work vehicle during driving, and improve the driver's comfort and driving smoothness.
  • the energy storage element A includes: a first accumulator 18, a second accumulator 19, and The fourth control valve 17.
  • the first accumulator 18 has a first maximum working oil pressure
  • the second accumulator 19 has a second maximum working oil pressure
  • the second maximum working oil pressure is greater than the first maximum working oil pressure.
  • the first accumulator 18 is equivalent to a low-pressure accumulator and is mainly used in a no-load state
  • the second accumulator 19 is equivalent to a high-pressure accumulator and is mainly used in a loaded state.
  • the fourth control valve 17 is respectively connected with the second hydraulic oil source C, the oil drain element D, the first accumulator 18 and the second accumulator 19.
  • the fourth control valve 17 can switch the oil path from the second hydraulic oil source C to the first accumulator 18 or the second accumulator 19, and switch the first accumulator 18 or the The oil path from the second accumulator 19 to the oil drain element D.
  • the fourth control valve 17 can realize the switching of the charging and unloading of any one of the first accumulator 18 and the second accumulator 19 and the buffering effect of the hydraulic actuator.
  • the controller E is in signal connection with the fourth control valve 17.
  • the controller E can determine whether the hydraulic actuator 1 is in an idling condition when the driving stability system is turned on. If it is in no-load condition, the controller E sends a control instruction to the fourth control valve 17 to switch it to the first accumulator 18 via the second oil supply path r2 and the first oil supply path r2.
  • An oil supply path r1 is connected, otherwise, a control command is sent to the fourth control valve 17 to switch to the second accumulator 19 via the second oil supply path r2 and the first supply oil path r2.
  • the oil passage r1 is connected.
  • the initial oil pressure of the first accumulator 18 before the driving stabilization system is turned on is equal to the oil pressure of the hydraulic actuator 1 under no-load conditions, so that the first balance of the first oil pressure can be omitted.
  • the rigidity and damping of the first accumulator 18 are relatively small, which can provide the hydraulic actuator with a better damping effect for no-load conditions.
  • the initial oil pressure of the second accumulator 19 before the driving stabilization system is turned on is equal to the oil pressure of the hydraulic actuator 1 in a full load condition. Since the second accumulator 19 has a relatively large charging pressure and volume, it can meet the vibration damping requirements under load or even full load conditions. For some work vehicles, full load operation is usually adopted. By making the initial oil pressure of the second accumulator 19 equal to the oil pressure of the hydraulic actuator 1 under full load conditions, the balance between the second accumulator 19 and the hydraulic actuator 1 can be reduced. The time it takes for the pressure of the hydraulic actuator 1 to increase the response speed of the system and increase the response sensitivity.
  • each control valve can be an electromagnetic switching valve, or a hydraulic control switching valve, an electro-hydraulic switching valve, etc. can also be used.
  • the driving stabilization system further includes: a safety valve 15 located between the energy storage element A and the fuel tank 6.
  • the safety valve 15 can unload the energy storage element A via the safety valve 15 when the oil pressure of the energy storage element A exceeds a preset maximum oil pressure. When the road surface is excessively excited, the maximum pressure-bearing capacity of the energy storage element may be exceeded. At this time, the oil can flow into the oil tank 6 through the safety valve 15 to achieve overload protection of the energy storage element and its pipeline.
  • an electromagnetic on-off valve 10 can also be connected in series on the second oil supply line. The electromagnetic on-off valve 10 can be used to connect or disconnect the communication relationship between the energy storage element A and the first oil supply path r1 and the second oil supply path r2.
  • the driving stabilization system further includes: a speed sensor J.
  • the speed sensor J is signally connected to the controller E, and is configured to test the speed of the vehicle body K where the driving stabilization system is located.
  • the controller E can turn on the driving stability system when the speed of the vehicle body where the driving stability system is maintained exceeds a preset speed (for example, 5KM/h, etc.) for a preset time period (for example, 10s).
  • a preset speed for example, 5KM/h, etc.
  • a preset time period for example, 10s.
  • FIG. 3 it is a schematic structural diagram of some embodiments of the backhoe loader according to the present disclosure.
  • the backhoe loader includes a vehicle body K and any of the foregoing embodiments of the driving stabilization system.
  • the hydraulic actuator 1 may include a boom cylinder of a backhoe loader.
  • the boom cylinder is connected with a loading mechanism (such as a bucket) and can be used to lift materials.
  • the present disclosure also provides a control method of the system.
  • FIG. 4 it is a schematic flowchart of some embodiments of the control method according to the present disclosure.
  • the control method includes:
  • Step 100 After the driving stabilization system is turned on, compare the oil pressures of the hydraulic actuator 1 and the energy storage element A;
  • Step 200 Balance the oil pressure of the energy storage element A and the hydraulic actuator 1;
  • Step 300 Connect the energy storage element A to the first oil supply oil path r1.
  • the above steps can be implemented by the controller E in the driving stabilization system.
  • the pressure of the energy storage element is adjusted to keep it consistent with the pressure of the hydraulic actuator, so as to ensure that after the driving stability system is turned on, the working device can still remain at the set position before opening without changing or No significant changes will occur, thereby improving the handling stability and driving comfort of the work vehicle.
  • step 200 may include: if the oil pressure of the energy storage element A is higher than the oil pressure of the hydraulic actuator 1, unloading the energy storage element A through the drain oil path r3 , So as to reduce the oil pressure of the energy storage element A to balance with the oil pressure of the hydraulic actuator 1. If the oil pressure of the energy storage element A is lower than the oil pressure of the hydraulic actuator 1, the pressure oil is supplied to the energy storage element A through the second oil supply path r2, so that the energy storage element The oil pressure of A is increased to balance with the oil pressure of the hydraulic actuator 1.
  • the driving stabilization system further includes: a second hydraulic oil source C, an electro-hydraulic proportional throttle valve 11, a one-way valve 12, and a database H.
  • the second hydraulic oil source C It is operatively connected to the energy storage element A, and is configured to supply pressure oil to the energy storage element A through the second oil supply path r2, the electro-hydraulic proportional throttle valve 11 and the one-way valve 12 After being connected in parallel, they are arranged in series on the second oil supply path r2, the one-way valve 12 is configured to realize one-way conduction in the charging direction of the energy storage element A, and the electro-hydraulic proportional throttle valve 11
  • Both and the database H are signally connected to the controller E.
  • the control method further includes steps 400-700 for realizing the automatic adjustment of the throttle aperture of the electro-hydraulic proportional throttle valve 11.
  • step 400 when the energy storage element A is connected to the first oil supply path r1, the current load of the hydraulic actuator 1 and the signal used to characterize the unevenness of the current road surface are detected.
  • step 500 the road surface roughness level is determined according to the signal used to characterize the roughness of the current driving road surface.
  • step 600 the database H is queried according to the road roughness level and/or the current load of the hydraulic actuator 1.
  • the electro-hydraulic proportional throttle valve 11 is made to adjust the throttle aperture according to the inquired throttle aperture of the electro-hydraulic proportional throttle valve 11.
  • control method may further include the following steps: under the input of different hydraulic actuator loads and different levels of road spectrum information, the throttle aperture of the electro-hydraulic proportional throttle valve 11 is used as an independent variable. , Taking ride comfort as the objective function, iterative optimization is carried out through neural network algorithm to fit the optimal electro-hydraulic proportional throttle valve 11 corresponding to different levels of road roughness and different hydraulic actuator loads. The curve of the throttle aperture is collected, and the fitting data is stored in the database H.
  • the energy storage element A includes: a first accumulator 18, a second accumulator 19, and a fourth control valve 17.
  • the first maximum working oil pressure of the first accumulator 18 is lower than the second maximum working oil pressure of the second accumulator 19.
  • the control method may further include: when the driving stabilization system is turned on, determining whether the hydraulic actuator 1 is in an idling condition; if it is in an idling condition, switching the fourth control valve 17 Connect the first accumulator 18 with the first oil supply path r1; if it is in a load condition, the fourth control valve 17 is switched to the second accumulator 19 and the The first oil supply oil passage r1 is connected.
  • control method further includes: when the driving stability system is not turned on, when the speed of the vehicle body K where the driving stability system is maintained exceeds a first preset value for a period of time that reaches the first preset value.
  • the driving stability system is turned on; when the driving stability system is in the turned-on state, when the speed of the vehicle body K is maintained at no greater than the second preset value for a period of time that reaches the second preset period of time, Turn off the driving stability system.
  • step S101 when the backhoe loader is performing short-to-medium-distance load operations or high-speed no-load driving, the controller can determine whether the speed of the vehicle body meets the speed of more than 10 seconds according to the speed signal returned by the speed sensor located in the wheel assembly. If the time duration is greater than the limit value of 5Km/h, if it is met, step S102 is executed, that is, the controller starts the driving stabilization system. If the condition is not met, step S120 is executed, and the driving stabilization system is not activated or deactivated.
  • the driver can manipulate the handle to energize the left or right position of the three-position four-way electromagnetic reversing valve 3 to fill the boom cylinder with oil through the oil pump 7, thereby controlling the boom cylinder 1 to expand and contract to complete the shovel assembly Operation.
  • the driving stability system can be set to a manual opening and closing mode, and the controller receives the control instructions from the driver through the control panel to realize the opening or closing of the driving stability system, thereby preventing the automatic mode from failing and improving the safety of the system.
  • step S104 it is determined whether it is in an idling condition by a load sensor installed at the lower part of the bucket. If it is in the no-load condition, step S104 is executed.
  • step S104 the fourth control valve 17 is selectively connected to the first accumulator 18. Since the initial pressure of the first accumulator 18 is the same as the rodless chamber pressure of the boom cylinder under no load, the two pressures are balanced, and the position of the working device will not change after being connected.
  • step S105 the road surface roughness signal is collected in real time through the acceleration sensor installed at the position of the axle, and fed back to the controller to further determine the current road surface roughness level.
  • the database is queried for the value of the throttle aperture of the electro-hydraulic proportional throttle under the current road roughness level in the no-load state.
  • step S106 the controller adjusts the throttle aperture of the electro-hydraulic proportional throttle valve 11 according to the query result. If the road surface level does not change in step S107, step S117 is executed to make the electromagnetic on-off valve 10 energized to open, and the third control valve 9 is switched from the closed state to the open state to keep the oil path r4 unblocked, thereby forming a secondary An accumulator 18 passes through the fourth control valve 17, the electro-hydraulic proportional throttle valve 11, the electromagnetic on-off valve 10 and the third control valve 9 to the hydraulic path of the rodless cavity of the boom cylinder. If the road surface level changes, return to step S105 to re-determine the value of the throttle aperture of the optional electro-hydraulic proportional throttle valve.
  • step S108 is executed.
  • step S108 the fourth control valve 17 is selectively connected to the second accumulator 19.
  • step S109 the boom cylinder with the pressure accumulator N determines the working end 19 of the second accumulator operating pressure N is the same, if not identical, the step S110 is executed, determining a second pressure in the accumulator reservoir 19 N energy is greater than the working end of the boom cylinder pressure N job, if yes, executes step S115 to the second accumulator 19 via the oil control valve 17 through the fourth drain lines, control valve 14 and the second section
  • the flow valve 13 flows back to the fuel tank 6 to realize the unloading operation.
  • the second accumulator 19 is supplemented with oil through the second oil supply path to realize the pressurization operation.
  • the pressure oil pumped by the oil pump 7 flows into the second accumulator 19 via the first control valve 8, the electromagnetic on-off valve 10, the one-way valve 12 and the fourth control valve 17.
  • steps S115 and 116 both return to re-execute step S108. After one or more cycles, until the boom cylinder pressure N terminal of the second accumulator and the working pressure of the accumulator 19 N after step S109 is executed the same job.
  • step S111 If the pressure of the boom cylinder pressure accumulator 19 and the working end of the N second accumulator N same job, step S111. For example, if the initial oil pressure of the second accumulator 19 before the driving stabilization system is turned on is equal to the oil pressure of the hydraulic actuator 1 in the full load condition, then after the determination of step S108 is performed in the full load state , Step S111 can be executed directly.
  • step S111 the current load of the hydraulic actuator is detected. This operation can also be performed before the step of judging whether it is in the no-load state.
  • the database is queried in step S112, and then the electro-hydraulic proportional throttle is executed according to the queried value of the throttle aperture of the electro-hydraulic proportional throttle in step S113 Adjustment operation.
  • step S117 is executed to enable the electromagnetic on-off valve 10 to be energized to open, and the third control valve 9 is switched from the closed state to the open state to keep the oil path r4 unblocked, thereby forming a secondary
  • the second accumulator 19 passes through the fourth control valve 17, the electro-hydraulic proportional throttle valve 11, the electromagnetic on-off valve 10 and the third control valve 9 to the hydraulic path of the rodless chamber of the boom cylinder. If the road surface level changes, return to step S112 to re-determine the value of the throttle aperture of the optional electro-hydraulic proportional throttle valve.
  • step S119 may be executed to disconnect the communication oil path between the energy storage element and the first oil supply path, And further turn off the driving stabilization system through step S120.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

本公开涉及一种行驶稳定系统、挖掘装载机及控制方法。行驶稳定系统包括:液压致动器(1);第一液压油源(B),与所述液压致动器(1)可操作地连接,被配置为向所述液压致动器(1)提供压力油;蓄能元件(A),可操作地连接所述第一液压油源(B)与所述液压致动器(1)之间的第一供油油路(r1);和控制器(E),被配置为在所述行驶稳定系统开启后比较所述液压致动器(1)和所述蓄能元件(A)的油压,并在所述蓄能元件(A)接入所述第一供油油路(r1)之前使所述蓄能元件(A)与所述液压致动器(1)的油压达到平衡。

Description

行驶稳定系统、挖掘装载机及控制方法
相关申请的交叉引用
本申请是以CN申请号为202010425641.7,申请日为2020年5月19日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及工程机械领域,尤其涉及一种行驶稳定系统、挖掘装载机及控制方法。
背景技术
挖掘装载机是集挖掘、装载于一体的多功能工程机械。其广泛用于各类基础工程项目的施工,能够从事挖掘、铲装、运载、破碎和平整场地等多项作业。由于其需要经常在各种复杂、甚至恶劣的非公路路面上进行行驶作业,它们被要求具有较高的行驶速度以提高作业效率。但是,挖掘装载机受其装载端作业装置的结构影响,当受到不平路面激励时,凸凹不平的路面会引起整车的振动和颠簸,主要表现为前后俯仰振动现象。由于前部类似悬臂梁结构的装载端工作装置负载的影响,整车重心的移动进一步放大了这种振动,从而导致更加严重的纵向俯仰振动现象的发生。一方面,这会导致较差的操作舒适性,另一方面由于纵向俯仰振动容易导致料斗内的物料洒落,从而降低作业效率。因此,这种振动问题已经严重制约了挖掘装载机在高速、高效、安全性的发展。
针对此类工作装置液压系统的振动问题,在国内外的一些相关技术中,利用油气悬架技术开发的被动蓄能式行驶稳定系统来解决。其工作原理是利用蓄能器有效地吸收进入铲斗等工作装置液压回路中的冲击振动。
发明内容
在本公开的一个方面,提供一种行驶稳定系统,包括:
液压致动器;
第一液压油源,与所述液压致动器可操作地连接,被配置为向所述液压致动器提供压力油;
蓄能元件,可操作地连接所述第一液压油源与所述液压致动器之间的第一供油油 路;和
控制器,被配置为在所述行驶稳定系统开启后比较所述液压致动器和所述蓄能元件的油压,并在所述蓄能元件接入所述第一供油油路之前使所述蓄能元件与所述液压致动器的油压达到平衡。
在一些实施例中,所述行驶稳定系统还包括:
第二液压油源,与所述蓄能元件可操作地连接,被配置为通过第二供油油路向所述蓄能元件供应压力油,以提高所述蓄能元件的油压;
泄油元件,与所述蓄能元件可操作地连接,被配置为通过泄油油路对所述蓄能元件进行卸荷,以降低所述蓄能元件的油压。
在一些实施例中,所述行驶稳定系统还包括:
第一压力传感器,设置在所述蓄能元件上,或者与所述蓄能元件的出口连接,被配置为检测所述蓄能元件的油压;
第二压力传感器,设置在所述液压致动器上,或者与所述液压致动器的油口连接,被配置为检测所述液压致动器的油压。
在一些实施例中,所述第二液压油源包括:
油泵,通过所述第二供油油路与所述蓄能元件连通;
第一控制阀,串联所述第二供油油路上,且与所述控制器信号连接,被配置为根据所述控制器的控制指令使所述第二供油油路连通或关断。
在一些实施例中,所述泄油元件包括:
油箱,通过所述泄油油路与所述蓄能元件连通;
第二控制阀,串联在所述泄油油路上,且与所述控制器信号连接,被配置为根据所述控制器的控制指令使所述泄油油路连通或关断。
在一些实施例中,所述行驶稳定系统还包括:
第三控制阀,位于所述第一供油油路与所述蓄能元件之间的油路,且与所述控制器信号连接,被配置为根据所述控制器的控制指令使所述第一供油油路与所述蓄能元件之间的油路连通或断开。
在一些实施例中,所述行驶稳定系统还包括:
电液比例节流阀,与所述控制器信号连接,被配置为根据所述控制器的控制指令改变所述电液比例节流阀的节流孔径;
单向阀,与所述电液比例节流阀并联后,串联设置在所述第二供油油路上,被配 置为实现所述蓄能元件充油方向的单向导通。
在一些实施例中,所述行驶稳定系统还包括:
路面不平度检测元件,与所述控制器信号连接,被配置为检测用于表征当前行驶路面的不平度的信号;
作业端载荷检测元件,与所述控制器信号连接,被配置为检测所述液压致动器的当前载荷;和
数据库,位于所述控制器内或与所述控制器信号连接,被配置为存储路面不平度等级和/或液压致动器载荷与所述电液比例节流阀的节流孔径的映射数据;
其中,所述控制器被配置为根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级,并根据所述路面不平度等级和/或所述液压致动器的当前载荷查询所述数据库,然后根据查询到的电液比例节流阀的节流孔径向所述电液比例节流阀发送控制指令,以使所述电液比例节流阀进行节流孔径的调整。
在一些实施例中,所述行驶稳定系统还包括:
模型建立单元,与所述数据库信号连接,被配置为在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀的最优节流孔径的曲线集合,并将拟合数据保存到所述数据库内。
在一些实施例中,所述蓄能元件包括:
第一蓄能器,具有第一最大工作油压;
第二蓄能器,具有第二最大工作油压,且所述第二最大工作油压大于所述第一最大工作油压;
第四控制阀,分别与所述第二液压油源、所述泄油元件、所述第一蓄能器和所述第二蓄能器连接,被配置为切换所述第二液压油源到所述第一蓄能器或所述第二蓄能器的油路,以及切换所述第一蓄能器或所述第二蓄能器到所述泄油元件的油路。
在一些实施例中,所述控制器与所述第四控制阀信号连接,被配置为在所述行驶稳定系统开启时,判断所述液压致动器是否处于空载工况,如果处于空载工况,则向所述第四控制阀发送控制指令,以使其切换为所述第一蓄能器经由所述第二供油油路与所述第一供油油路连通,否则向所述第四控制阀发送控制指令,以使其切换为所述第二蓄能器经由所述第二供油油路与所述第一供油油路连通。
在一些实施例中,所述第一蓄能器在所述行驶稳定系统开启前的初始油压与所述液压致动器处于空载工况下的油压相等,所述第二蓄能器在所述行驶稳定系统开启前的初始油压与所述液压致动器处于满载工况下的油压相等。
在一些实施例中,所述行驶稳定系统还包括:
安全阀,设置在所述蓄能元件与所述油箱之间,被配置为在所述蓄能元件的油压超过预设最大油压时,使所述蓄能元件经由所述安全阀卸荷。
在一些实施例中,所述行驶稳定系统还包括:
速度传感器,与所述控制器信号连接,被配置为测试所述行驶稳定系统所在的车体的速度;
所述控制器被配置为在所述行驶稳定系统所在的车体的速度维持超过预设速度的时长达到预设时长时,开启所述行驶稳定系统,以及在所述行驶稳定系统处于已开启的状态下,当所述车体的速度不满足在预设时长内维持超过预设速度的条件时,使所述第一供油油路与所述蓄能元件之间的油路断开,并关闭所述行驶稳定系统。
在本公开的一个方面,提供一种挖掘装载机,包括:
车体;和
前述的行驶稳定系统。
在一些实施例中,所述液压致动器包括动臂油缸。
在本公开的一个方面,提供一种基于前述的行驶稳定系统的控制方法,包括:
在所述行驶稳定系统开启后,比较所述液压致动器和所述蓄能元件的油压;
使所述蓄能元件与所述液压致动器的油压达到平衡;
将所述蓄能元件接入所述第一供油油路。
在一些实施例中,所述使所述蓄能元件与所述液压致动器的油压达到平衡包括:
如果所述蓄能元件的油压高于所述液压致动器的油压,则使所述蓄能元件通过泄油油路卸荷,以便将所述蓄能元件的油压降低到与所述液压致动器的油压达到平衡;
如果所述蓄能元件的油压低于所述液压致动器的油压,则通过第二供油油路向所述蓄能元件供应压力油,以便将所述蓄能元件的油压提高到与所述液压致动器的油压达到平衡。
在一些实施例中,所述行驶稳定系统还包括:第二液压油源、电液比例节流阀、单向阀和数据库,所述第二液压油源与所述蓄能元件可操作地连接,被配置为通过第二供油油路向所述蓄能元件供应压力油,所述电液比例节流阀与所述单向阀并联后, 串联设置在所述第二供油油路上,所述单向阀被配置为实现所述蓄能元件充油方向的单向导通,所述电液比例节流阀和所述数据库均与所述控制器信号连接;所述控制方法还包括:
在将所述蓄能元件接入所述第一供油油路时,检测所述液压致动器的当前载荷和用于表征当前行驶路面的不平度的信号;
根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级;
根据所述路面不平度等级和/或所述液压致动器的当前载荷查询所述数据库;
根据查询到的电液比例节流阀的节流孔径,使所述电液比例节流阀进行节流孔径的调整。
在一些实施例中,所述控制方法还包括:
在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀的最优节流孔径的曲线集合,并将拟合数据保存到所述数据库内。
在一些实施例中,所述蓄能元件包括:第一蓄能器、第二蓄能器和第四控制阀,所述第一蓄能器的第一最大工作油压小于所述第二蓄能器的第二最大工作油压;所述控制方法还包括:
在所述行驶稳定系统开启时,判断所述液压致动器是否处于空载工况;
如果处于空载工况,则使所述第四控制阀切换为所述第一蓄能器与所述第一供油油路连通;
如果处于有负载工况,则使所述第四控制阀切换为所述第二蓄能器与所述第一供油油路连通。
在一些实施例中,所述控制方法还包括:
在所述行驶稳定系统处于未开启的状态下,当所述行驶稳定系统所在的车体的速度维持超过预设速度的时长达到预设时长时,开启所述行驶稳定系统;
在所述行驶稳定系统处于已开启的状态下,当所述车体的速度不满足在预设时长内维持超过预设速度的条件时,使所述第一供油油路与所述蓄能元件之间的油路断开,并关闭所述行驶稳定系统。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开行驶稳定系统的一些实施例的液压原理示意图;
图2是根据本公开行驶稳定系统的一些实施例的方框示意图;
图3是根据本公开挖掘装载机的一些实施例的结构示意图;
图4是根据本公开控制方法的一些实施例的流程示意图;
图5是根据本公开控制方法的一些实施例中节流孔径自动调节的流程示意图;
图6是根据本公开行驶稳定系统的一些实施例的控制流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义 的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在一些相关技术中,利用油气悬架技术开发的被动蓄能式行驶稳定系统来解决振动问题。经研究发现,被动蓄能式行驶稳定系统在开启时,系统开启后由于蓄能器的压力与工作装置动臂液压缸无杆腔压力不一定平衡,容易使动臂油缸的活塞杆前后移动,使得工作装置无法始终保持在设定位置而发生变化,从而引起铲斗中物料洒落或其他安全危险。
这里的设定位置是指挖掘装载机等能够携带物料转场或作业的工程机械在行驶或携带物料进行转场作业时,会使工作装置保持在的一个特定的位置(例如使铲斗开口端保持水平,铲斗连接铰点距离地面300mm左右),以使整车重心较低,提高车辆的操纵稳定性和行驶平顺性。
另外,由于路面不平度和铲斗中物料重量的不同,导致减振所需要的阻尼也不一样,相关技术中的被动蓄能式行驶稳定系统难以根据路面不平度和铲斗物料重量对系统阻尼进行实时调节。
有鉴于此,本公开提供一种行驶稳定系统、挖掘装载机及控制方法,能够提高行驶过程中的安全性。
如图1所示,为根据本公开行驶稳定系统的一些实施例的液压原理示意图。图2为根据本公开行驶稳定系统的一些实施例的方框示意图。参考图1和图2,在一些实施例中,行驶稳定系统包括:液压致动器1、第一液压油源B、蓄能元件A和控制器E。液压致动器1可以是行驶稳定系统所应用的作业车辆的作业单元。在一些实施例中,液压致动器1能够在工程机械车辆的行驶时承载物料。例如在采用本公开行驶稳定系统实施例的挖掘装载机中,液压致动器1可为动臂油缸。
第一液压油源B与所述液压致动器1可操作地连接,被配置为向所述液压致动器1提供压力油。第一液压油源B可根据需要通过第一供油油路r1向液压致动器1提供液压油,并根据需要停止向液压致动器1提供液压油。
参考图1,在一些实施例中,第一液压油源B包括液压源,例如图1中的油泵7。在一些实施例中,第一液压油源B还可以包括设置在第一供油油路r1上的电磁换向阀3,以实现供油的可操作性。第一液压油源B还可以包括设置在第一供油油路r1和 回油油路之间的溢流阀4,以提供系统的过载保护,或者实现液压源的压力恒定等功能。
在图1中,油泵7可通过电机5或发动机驱动而从油箱6中抽出液压油。电磁换向阀3的进油口和回油口分别与油泵7的出口和油箱6连接,电磁换向阀3的两个工作油口分别与两个液压致动器1的无杆腔连接,通过电磁换向阀3的切换实现液压致动器1的启动、停止以及在不同运行方向的作业操作。在另一些实施例中,第一液压油源B也可以采用已有作业机械中用于驱动自身的作业单元的供油机构。
蓄能元件A可操作地连接所述第一液压油源B与所述液压致动器1之间的第一供油油路r1。蓄能元件A可包括一个或多个蓄能器,例如气体式、弹簧式或活塞式蓄能器等。蓄能元件A能够对液压致动器1的关联液压回路中的冲击和振动进行有效吸收,从而有效地解决应用了行驶稳定系统的一些作业车辆中的液压管路接头的油液渗透、驾驶室以及车身结构振动剧烈、承载物料易洒落等问题,提高作业车辆的可靠性、操纵舒适性、行驶稳定性和作业效率。
参考图2,在一些实施例中,控制器E能够在所述行驶稳定系统开启后比较所述液压致动器1和所述蓄能元件A的油压,并在所述蓄能元件A接入所述第一供油油路r1之前使所述蓄能元件A与所述液压致动器1的油压达到平衡。在本实施例中,通过调整蓄能元件的压力,使其与液压致动器的压力保持一致,从而确保在开启行驶稳定系统之后,工作装置仍能保持在开启前的设定位置而不会发生变化或不会发生明显变化,从而提高作业车辆的操纵稳定性和行驶平顺性。
控制器E可以是以逻辑方式操作,以执行操作、执行控制算法、存储和检索数据以及其它所需操作的电子控制器。控制器E可以包括或者能够访问存储器、辅助存储设备、处理器和用于运行应用程序的其他任何组件。存储器和辅助存储设备可以为只读存储器(ROM)、随机存取存储器(RAM)或可由控制器访问的集成电路的形式。各种其它电路(例如电源电路,信号调节电路,驱动器电路和其它类型的电路)可以与控制器E相关联。
参考图1和图2,在一些实施例中,行驶稳定系统还包括:第二液压油源C和泄油元件D。第二液压油源C与所述蓄能元件A可操作地连接,能够通过第二供油油路r2向所述蓄能元件A供应压力油,以提高所述蓄能元件A的油压。例如,当蓄能元件A的压力低于液压致动器1的压力时,通过第二液压油源C与向所述蓄能元件A供应压力油,使得蓄能元件A的油压得以提高,并趋于与液压致动器1的压力一致。
在图1中,第二液压油源C包括:油泵7和第一控制阀8。油泵7通过所述第二供油油路r2与所述蓄能元件A连通。第一控制阀8串联所述第二供油油路r2上,且与所述控制器E信号连接,被配置为根据所述控制器E的控制指令使所述第二供油油路r2连通或关断。在一些实施例中,第一液压油源B和第二液压油源C采用相同的油泵提供液压油。在另一些实施例中,第一液压油源B和第二液压油源C采用不同的油泵提供液压油。
泄油元件D与所述蓄能元件A可操作地连接,被配置为通过泄油油路r3对所述蓄能元件A进行卸荷,以降低所述蓄能元件A的油压。例如,当蓄能元件A的压力高于液压致动器1的压力时,蓄能元件A能够通过泄油元件D卸荷,使得蓄能元件A的油压得以降低,并趋于与液压致动器1的压力一致。
在图1中,泄油元件D包括油箱6和第二控制阀14。油箱6通过所述泄油油路r3与所述蓄能元件A连通。第二控制阀14串联在所述泄油油路r3上,且与所述控制器E信号连接,被配置为根据所述控制器E的控制指令使所述泄油油路r3连通或关断。
为了有效地获取蓄能元件A和液压致动器1的压力,参考图1和图2,在一些实施例中,行驶稳定系统还包括第一压力传感器2和第二压力传感器16。第一压力传感器2可设置在所述蓄能元件A上,或者与所述蓄能元件A的出口连接。第一压力传感器2被配置为检测所述蓄能元件A的油压。第二压力传感器16可设置在所述液压致动器1上,或者与所述液压致动器1的油口连接。第二压力传感器16被配置为检测所述液压致动器1的油压。
参考图1,在一些实施例中,行驶稳定系统还包括第三控制阀9。第三控制阀9位于所述第一供油油路r1与蓄能元件A之间的油路,且与所述控制器E信号连接。第三控制阀9能够根据所述控制器E的控制指令使所述第一供油油路r1与蓄能元件A之间连通或断开。在图1中,第三控制阀9可位于连通第一供油油路r1和第二供油油路r2的油路r4上。在蓄能元件A接入所述第一供油油路r1之前,通过第三控制阀9断开蓄能元件A与第一供油油路r1的油路。在通过第二液压油源C或泄油元件D使得蓄能元件A与液压致动器1的压力一致后,开启第三控制阀9,以使得蓄能元件A与第一供油油路r1的油路接通,从而通过蓄能元件A向液压致动器1提供冲击和振动的防护作用。
作业车辆的行驶路面的不平度可能随着行驶过程发生变化,例如挖掘装载机的工 作环境一般为非铺装越野路面。为了降低路面不平度变化对驾驶员舒适性和行驶平顺性的影响,参考图1,在一些实施例中,行驶稳定系统还包括:电液比例节流阀11和单向阀12。电液比例节流阀11与所述控制器E信号连接,被配置为根据所述控制器E的控制指令改变所述电液比例节流阀11的节流孔径。单向阀12与所述电液比例节流阀11并联后,串联设置在所述第二供油油路r2上,被配置为实现所述蓄能元件A充油方向的单向导通。
在本实施例中,电液比例节流阀11和单向阀12能够构成单向节流阀,用于控制蓄能元件A与第一供油油路r1之间的压力油流动,而通过控制电流调整电液比例节流阀11的节流孔径能够改变系统阻尼。
对于电液比例节流阀11的节流孔径的调节,参考图2,在一些实施例中,行驶稳定系统还包括:路面不平度检测元件G、作业端载荷检测元件F和数据库H。路面不平度检测元件G可包括设置在车体上的加速度传感器或倾角传感器,并与所述控制器E信号连接。路面不平度检测元件G可被配置为检测用于表征当前行驶路面的不平度的信号。路面不平度指的是路面表面相对于基准平面的偏离程度,可通过波长和幅值进行表征。
作业端载荷检测元件F可采用称重传感器对作业端所承载的物料重量进行称重来作为液压致动器的当前载荷。作业端载荷检测元件F与所述控制器E信号连接,被配置为检测所述液压致动器1的当前载荷。数据库H位于所述控制器E内或与所述控制器E信号连接,被配置为存储路面不平度等级和/或液压致动器载荷与所述电液比例节流阀11的节流孔径的映射数据。
控制器E能够根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级,并根据所述路面不平度等级和/或所述液压致动器1的当前载荷查询所述数据库H,然后根据查询到的电液比例节流阀11的节流孔径向所述电液比例节流阀11发送控制指令,以使所述电液比例节流阀11进行节流孔径的调整。
数据库内存储的映射数据可预先根据仿真模型计算获得。相应地,在一些实施例中,行驶稳定系统还包括模型建立单元I。模型建立单元I与所述数据库H信号连接,被配置为在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀11的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀11的最优节流孔径的曲线集合,并将拟合数据保存到所述数据 库H内。
在建立模型时,可建立分别对应于多种路面等级的仿真模型,在每种路面等级的仿真模型中针对不同的液压制动器载荷输入多个节流孔径的数值,找出不同载荷下对应于最佳行驶平顺性的最优节流孔径的曲线集合。曲线可包括液压制动器空载下的最优节流孔径的曲线。
这样,在所述蓄能元件A接入所述第一供油油路r1时,控制器可检测所述液压致动器1的当前载荷和用于表征当前行驶路面的不平度的信号,根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级。控制器可进一步根据所述路面不平度等级和/或所述液压致动器1的当前载荷查询所述数据库H,并根据查询到的电液比例节流阀11的节流孔径,使所述电液比例节流阀11进行节流孔径的调整。
这里的路面不平度等级代表一定的不平度范围,在行驶稳定系统开启后,路面不平度检测元件G可对路面不平度进行实时监测。当路面不平度处在某个路面不平度等级对应的范围内,则无需对电液比例节流阀11的节流孔径进行调节。而当检测到当前路面不平度所在的路面不平度等级发生变化后,则根据当前所处的路面不平度等级进行相应的节流孔径调节。利用数据库中存储的最佳节流孔径来减小作业车辆在行驶过程中受到振动和冲击的不利影响,提高驾驶员舒适性和行驶平顺性。
对于作业车辆来说,作业端在空载和满载状态下的载荷相差较大,对减振的需求存在一定差异。为了使作业车辆在这两类状态下都能有较好的减震效果,参考图1,在一些实施例中,蓄能元件A包括:第一蓄能器18、第二蓄能器19和第四控制阀17。第一蓄能器18具有第一最大工作油压,第二蓄能器19具有第二最大工作油压,且所述第二最大工作油压大于所述第一最大工作油压。第一蓄能器18相当于低压蓄能器,主要应用在空载状态下,而第二蓄能器19相当于高压蓄能器,主要应用在带载状态下。
第四控制阀17分别与所述第二液压油源C、所述泄油元件D、所述第一蓄能器18和所述第二蓄能器19连接。第四控制阀17能够切换所述第二液压油源C到所述第一蓄能器18或所述第二蓄能器19的油路,以及切换所述第一蓄能器18或所述第二蓄能器19到所述泄油元件D的油路。第四控制阀17可实现第一蓄能器18和第二蓄能器19中的任一个的充压、卸荷以及对液压致动器进行缓冲的作用的切换。
在一些实施例中,控制器E与所述第四控制阀17信号连接。控制器E能够在所述行驶稳定系统开启时,判断所述液压致动器1是否处于空载工况。如果处于空载工 况,则控制器E向所述第四控制阀17发送控制指令,以使其切换为所述第一蓄能器18经由所述第二供油油路r2与所述第一供油油路r1连通,否则向所述第四控制阀17发送控制指令,以使其切换为所述第二蓄能器19经由所述第二供油油路r2与所述第一供油油路r1连通。
在一些实施例中,第一蓄能器18在所述行驶稳定系统开启前的初始油压与所述液压致动器1处于空载工况下的油压相等,这样可以省去平衡第一蓄能器18与液压致动器1的压力所花费的时间,提高系统的响应速度,提高反应灵敏性。并且,第一蓄能器18的刚性和阻尼相对较小,能够针对空载工况给液压致动器提供更好的减振效果。
在一些实施例中,第二蓄能器19在所述行驶稳定系统开启前的初始油压与所述液压致动器1处于满载工况下的油压相等。基于第二蓄能器19具有较大的充气压力和体积,能够满足带载甚至满载工况下的减振需求。对于一些作业车辆来说,通常采用满载作业,通过使第二蓄能器19的初始油压与液压致动器1处于满载工况下的油压相等,可以减少平衡第二蓄能器19与液压致动器1的压力所花费的时间,提高系统的响应速度,提高反应灵敏性。
在上述实施例中,各个控制阀可采用电磁切换阀,还可以采用液控切换阀、电液切换阀等。
参考图1,在一些实施例中,行驶稳定系统还包括:位于所述蓄能元件A与所述油箱6之间的安全阀15。该安全阀15能够在所述蓄能元件A的油压超过预设最大油压时,使所述蓄能元件A经由所述安全阀15卸荷。当路面激励过大时,有可能超过蓄能元件的最大承压能力,此时油液可通过安全阀15流入油箱6,从而实现对蓄能元件及其管路的过载保护。在图1中,第二供油油路上还可以串联电磁通断阀10。电磁通断阀10可用于接通或断开蓄能元件A与第一供油油路r1和第二供油油路r2的连通关系。
考虑到作业车辆在一些作业状态(例如挖掘装载机的铲装和卸料作业)下,行驶时间很短,车速变化也比较频繁,无需使用行驶稳定系统。因此参考图2,在一些实施例中,行驶稳定系统还包括:速度传感器J。速度传感器J与所述控制器E信号连接,被配置为测试所述行驶稳定系统所在的车体K的速度。控制器E能够在所述行驶稳定系统所在的车体的速度维持超过预设速度(例如5KM/h等)的时长达到预设时长(例如10s)时,开启所述行驶稳定系统。在所述行驶稳定系统处于已开启的状态 下,控制器E能够在所述车体的速度不满足在预设时长内维持超过预设速度的条件时,关闭所述行驶稳定系统,以便节省系统资源。
上述行驶稳定系统可应用于各类作业车辆,例如:挖掘装载机、装载机、滑移装载机、叉装机等。如图3所示,是根据本公开挖掘装载机的一些实施例的结构示意图。在图3中,挖掘装载机包括车体K和前述任一种行驶稳定系统的实施例。在一些实施例中,液压致动器1可包括挖掘装载机的动臂油缸。其中,动臂油缸与装载机构(例如铲斗)相连,可用于举升物料。
基于前述行驶稳定系统的实施例,本公开还提供了该系统的控制方法。如图4所示,为根据本公开控制方法的一些实施例的流程示意图。参考图4,在一些实施例中,控制方法包括:
步骤100、在所述行驶稳定系统开启后,比较所述液压致动器1和所述蓄能元件A的油压;
步骤200、使所述蓄能元件A与所述液压致动器1的油压达到平衡;
步骤300、将所述蓄能元件A接入所述第一供油油路r1。
在本实施例中,上述步骤可由行驶稳定系统中的控制器E实现。本实施例通过调整蓄能元件的压力,使其与液压致动器的压力保持一致,从而确保在开启行驶稳定系统之后,工作装置仍能保持在开启前的设定位置而不会发生变化或不会发生明显变化,从而提高作业车辆的操纵稳定性和行驶平顺性。
在一些实施例中,步骤200可包括:如果所述蓄能元件A的油压高于所述液压致动器1的油压,则使所述蓄能元件A通过泄油油路r3卸荷,以便将所述蓄能元件A的油压降低到与所述液压致动器1的油压达到平衡。如果所述蓄能元件A的油压低于所述液压致动器1的油压,则通过第二供油油路r2向所述蓄能元件A供应压力油,以便将所述蓄能元件A的油压提高到与所述液压致动器1的油压达到平衡。
参考图1和图2,在一些实施例中,行驶稳定系统还包括:第二液压油源C、电液比例节流阀11、单向阀12和数据库H,所述第二液压油源C与所述蓄能元件A可操作地连接,被配置为通过第二供油油路r2向所述蓄能元件A供应压力油,所述电液比例节流阀11与所述单向阀12并联后,串联设置在所述第二供油油路r2上,所述单向阀12被配置为实现所述蓄能元件A充油方向的单向导通,所述电液比例节流阀11和所述数据库H均与所述控制器E信号连接。
参考图5,相应地,控制方法还包括用于实现电液比例节流阀11的节流孔径自动 调节的步骤400-步骤700。在步骤400中,在将所述蓄能元件A接入所述第一供油油路r1时,检测所述液压致动器1的当前载荷和用于表征当前行驶路面的不平度的信号。在步骤500中,根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级。在步骤600中,根据所述路面不平度等级和/或所述液压致动器1的当前载荷查询所述数据库H。在步骤700中,根据查询到的电液比例节流阀11的节流孔径,使所述电液比例节流阀11进行节流孔径的调整。
在一些实施例中,控制方法还可以包括以下步骤:在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀11的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀11的最优节流孔径的曲线集合,并将拟合数据保存到所述数据库H内。
参考图1,在一些实施例中,蓄能元件A包括:第一蓄能器18、第二蓄能器19和第四控制阀17。所述第一蓄能器18的第一最大工作油压小于所述第二蓄能器19的第二最大工作油压。相应的,控制方法还可包括:在所述行驶稳定系统开启时,判断所述液压致动器1是否处于空载工况;如果处于空载工况,则使所述第四控制阀17切换为所述第一蓄能器18与所述第一供油油路r1连通;如果处于有负载工况,则使所述第四控制阀17切换为所述第二蓄能器19与所述第一供油油路r1连通。
在一些实施例中,控制方法还包括:在所述行驶稳定系统处于未开启的状态下,当所述行驶稳定系统所在的车体K的速度维持超过第一预设值的时长达到第一预设时长时,开启所述行驶稳定系统;在所述行驶稳定系统处于已开启的状态下,当所述车体K的速度维持不大于第二预设值的时长达到第二预设时长时,关闭所述行驶稳定系统。
下面结合图1-图3,通过图6对应用在挖掘装载机上的行驶稳定系统的某个实例的控制过程进行描述。
在步骤S101中,当挖掘装载机在进行中短距离负载作业或高速空载行驶时,控制器可根据位于车轮组件的速度传感器传回的速度信号判定车体的速度是否满足在10秒以上的时长下大于限定值5Km/h的条件,如果满足则执行步骤S102,即由控制器启动行驶稳定系统。如果不满足该条件,则执行步骤S120,不启动或关闭行驶稳定系统。
驾驶员可操纵手柄使得三位四通的电磁换向阀3的左位或右位得电,以通过油泵 7对动臂油缸进行充油,从而控制动臂油缸1进行伸缩动作,完成铲装作业。另外,行驶稳定系统可设置手动启闭模式,由控制器接收驾驶员通过控制面板发出的控制指令来实现行驶稳定系统的开启或关闭,从而防止自动模式失效,提高系统的安全性。
在步骤S102之后,在步骤S103中通过安装在铲斗下部的载荷传感器判断是否处于空载工况。如果处于空载工况,则执行步骤S104。在步骤S104中,使第四控制阀17选择接通第一蓄能器18。由于第一蓄能器18的初始压力与空载时动臂油缸的无杆腔压力设定相同,两者压力达到平衡,在连通后工作装置的位置不会发生变化。
随后,在步骤S105中,通过安装在车轴位置的加速度传感器实时采集路面的不平度信号,并反馈到控制器中进一步判定当前的路面不平度等级。根据该路面不平度等级在数据库中查询空载状态下当前路面不平度等级下对应的电液比例节流阀的节流孔径的数值。
接下来在步骤S106中,控制器根据查询结果调整电液比例节流阀11的节流孔径。如果在步骤S107中路面等级未发生变化,则执行步骤S117,使得电磁通断阀10得电开启,第三控制阀9从关闭状态切换成开启,以保持油路r4的畅通,从而形成从第一蓄能器18经由第四控制阀17、电液比例节流阀11、电磁通断阀10和第三控制阀9到动臂油缸的无杆腔的液压通路。如果路面等级发生变化,则返回步骤S105,以便重新确定可选的电液比例节流阀的节流孔径的数值。
在步骤S103中确定未处在空载工况,即处于带载工况时,执行步骤S108。在步骤S108中,使第四控制阀17选择接通第二蓄能器19。然后执行步骤S109,判断第二蓄能器19的压力N 蓄能与作业端的动臂油缸的压力N 作业是否相同,如果不相同,则执行步骤S110,判断第二蓄能器19的压力N 蓄能是否大于作业端的动臂油缸的压力N 作业,如果大于,则执行步骤S115来通过泄油油路使第二蓄能器19的油液经由第四控制阀17、第二控制阀14和节流阀13流回油箱6,来实现卸荷操作。如果小于,则通过第二供油油路向第二蓄能器19补油来实现加压操作。在加压时,油泵7泵出的压力油经由第一控制阀8、电磁通断阀10、单向阀12和第四控制阀17流入第二蓄能器19。
在步骤S115和116之后,均返回重新执行步骤S108。经过一次或多次循环,直至第二蓄能器19的压力N 蓄能与作业端的动臂油缸的压力N 作业相同后执行步骤S109。
如果第二蓄能器19的压力N 蓄能与作业端的动臂油缸的压力N 作业相同,则执行步骤S111。例如,如果第二蓄能器19在所述行驶稳定系统开启前的初始油压与所述液 压致动器1处于满载工况下的油压相等,则在满载状态下经过步骤S108的判断后,可直接执行步骤S111。
在步骤S111中,对液压致动器的当前载荷进行检测。这个操作也可以在判断是否处于空载状态的步骤之前执行。根据当前载荷,以及路面不平度信号所对应的路面不平度等级,通过步骤S112查询数据库,再通过步骤S113根据查询到的电液比例节流阀的节流孔径的数值执行电液比例节流阀的调整操作。
如果在步骤S114中路面等级未发生变化,则执行步骤S117,使得电磁通断阀10得电开启,第三控制阀9从关闭状态切换成开启,以保持油路r4的畅通,从而形成从第二蓄能器19经由第四控制阀17、电液比例节流阀11、电磁通断阀10和第三控制阀9到动臂油缸的无杆腔的液压通路。如果路面等级发生变化,则返回步骤S112,以便重新确定可选的电液比例节流阀的节流孔径的数值。
在步骤S117之后,如果车体K的速度不满足在10s内维持超过5Km/h的条件时,则可执行步骤S119,断开蓄能元件与第一供油油路之间的连通油路,并进一步通过步骤S120关闭行驶稳定系统。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (22)

  1. 一种行驶稳定系统,包括:
    液压致动器(1);
    第一液压油源(B),与所述液压致动器(1)可操作地连接,被配置为向所述液压致动器(1)提供压力油;
    蓄能元件(A),可操作地连接所述第一液压油源(B)与所述液压致动器(1)之间的第一供油油路(r1);和
    控制器(E),被配置为在所述行驶稳定系统开启后比较所述液压致动器(1)和所述蓄能元件(A)的油压,并在所述蓄能元件(A)接入所述第一供油油路(r1)之前使所述蓄能元件(A)与所述液压致动器(1)的油压达到平衡。
  2. 根据权利要求1所述的行驶稳定系统,还包括:
    第二液压油源(C),与所述蓄能元件(A)可操作地连接,被配置为通过第二供油油路(r2)向所述蓄能元件(A)供应压力油,以提高所述蓄能元件(A)的油压;和
    泄油元件(D),与所述蓄能元件(A)可操作地连接,被配置为通过泄油油路(r3)对所述蓄能元件(A)进行卸荷,以降低所述蓄能元件(A)的油压。
  3. 根据权利要求2所述的行驶稳定系统,还包括:
    第一压力传感器(2),设置在所述蓄能元件(A)上,或者与所述蓄能元件(A)的出口连接,被配置为检测所述蓄能元件(A)的油压;和
    第二压力传感器(16),设置在所述液压致动器(1)上,或者与所述液压致动器(1)的油口连接,被配置为检测所述液压致动器(1)的油压。
  4. 根据权利要求2所述的行驶稳定系统,其中所述第二液压油源(C)包括:
    油泵(7),通过所述第二供油油路(r2)与所述蓄能元件(A)连通;和
    第一控制阀(8),串联所述第二供油油路(r2)上,且与所述控制器(E)信号连接,被配置为根据所述控制器(E)的控制指令使所述第二供油油路(r2)连通或关断。
  5. 根据权利要求2所述的行驶稳定系统,其中所述泄油元件(D)包括:
    油箱(6),通过所述泄油油路(r3)与所述蓄能元件(A)连通;和
    第二控制阀(14),串联在所述泄油油路(r3)上,且与所述控制器(E)信号 连接,被配置为根据所述控制器(E)的控制指令使所述泄油油路(r3)连通或关断。
  6. 根据权利要求2所述的行驶稳定系统,还包括:
    第三控制阀(9),位于所述第一供油油路(r1)与所述蓄能元件(A)之间的油路,且与所述控制器(E)信号连接,被配置为根据所述控制器(E)的控制指令使所述第一供油油路(r1)与所述蓄能元件(A)之间的油路连通或断开。
  7. 根据权利要求2所述的行驶稳定系统,还包括:
    电液比例节流阀(11),与所述控制器(E)信号连接,被配置为根据所述控制器(E)的控制指令改变所述电液比例节流阀(11)的节流孔径;和
    单向阀(12),与所述电液比例节流阀(11)并联后,串联设置在所述第二供油油路(r2)上,被配置为实现所述蓄能元件(A)充油方向的单向导通。
  8. 根据权利要求7所述的行驶稳定系统,还包括:
    路面不平度检测元件(G),与所述控制器(E)信号连接,被配置为检测用于表征当前行驶路面的不平度的信号;
    作业端载荷检测元件(F),与所述控制器(E)信号连接,被配置为检测所述液压致动器(1)的当前载荷;和
    数据库(H),位于所述控制器(E)内或与所述控制器(E)信号连接,被配置为存储路面不平度等级和/或液压致动器载荷与所述电液比例节流阀(11)的节流孔径的映射数据;
    其中,所述控制器(E)被配置为根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级,并根据所述路面不平度等级和/或所述液压致动器(1)的当前载荷查询所述数据库(H),然后根据查询到的电液比例节流阀(11)的节流孔径向所述电液比例节流阀(11)发送控制指令,以使所述电液比例节流阀(11)进行节流孔径的调整。
  9. 根据权利要求8所述的行驶稳定系统,还包括:
    模型建立单元(I),与所述数据库(H)信号连接,被配置为在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀(11)的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀(11)的最优节流孔径的曲线集合,并将拟合数据保存到所述数据库(H)内。
  10. 根据权利要求2所述的行驶稳定系统,其中所述蓄能元件(A)包括:
    第一蓄能器(18),具有第一最大工作油压;
    第二蓄能器(19),具有第二最大工作油压,且所述第二最大工作油压大于所述第一最大工作油压;
    第四控制阀(17),分别与所述第二液压油源(C)、所述泄油元件(D)、所述第一蓄能器(18)和所述第二蓄能器(19)连接,被配置为切换所述第二液压油源(C)到所述第一蓄能器(18)或所述第二蓄能器(19)的油路,以及切换所述第一蓄能器(18)或所述第二蓄能器(19)到所述泄油元件(D)的油路。
  11. 根据权利要求10所述的行驶稳定系统,其中所述控制器(E)与所述第四控制阀(17)信号连接,被配置为在所述行驶稳定系统开启时,判断所述液压致动器(1)是否处于空载工况,如果处于空载工况,则向所述第四控制阀(17)发送控制指令,以使其切换为所述第一蓄能器(18)经由所述第二供油油路(r2)与所述第一供油油路(r1)连通,否则向所述第四控制阀(17)发送控制指令,以使其切换为所述第二蓄能器(19)经由所述第二供油油路(r2)与所述第一供油油路(r1)连通。
  12. 根据权利要求10所述的行驶稳定系统,其中所述第一蓄能器(18)在所述行驶稳定系统开启前的初始油压与所述液压致动器(1)处于空载工况下的油压相等,所述第二蓄能器(19)在所述行驶稳定系统开启前的初始油压与所述液压致动器(1)处于满载工况下的油压相等。
  13. 根据权利要求5所述的行驶稳定系统,还包括:
    安全阀(15),设置在所述蓄能元件(A)与所述油箱(6)之间,被配置为在所述蓄能元件(A)的油压超过预设最大油压时,使所述蓄能元件(A)经由所述安全阀(15)卸荷。
  14. 根据权利要求1所述的行驶稳定系统,还包括:
    速度传感器(J),与所述控制器(E)信号连接,被配置为测试所述行驶稳定系统所在的车体(K)的速度;
    所述控制器(E)被配置为在所述行驶稳定系统所在的车体(K)的速度维持超过预设速度的时长达到预设时长时,开启所述行驶稳定系统,以及在所述行驶稳定系统处于已开启的状态下,当所述车体(K)的速度不满足在预设时长内维持超过预设速度的条件时,使所述第一供油油路(r1)与所述蓄能元件(A)之间的油路断开,并关闭所述行驶稳定系统。
  15. 一种挖掘装载机,包括:
    车体(K);和
    权利要求1~14任一所述的行驶稳定系统。
  16. 根据权利要求15所述的挖掘装载机,其中所述液压致动器(1)包括动臂油缸。
  17. 一种基于权利要求1~14任一所述的行驶稳定系统的控制方法,包括:
    在所述行驶稳定系统开启后,比较所述液压致动器(1)和所述蓄能元件(A)的油压;
    使所述蓄能元件(A)与所述液压致动器(1)的油压达到平衡;
    将所述蓄能元件(A)接入所述第一供油油路(r1)。
  18. 根据权利要求17所述的控制方法,其中所述使所述蓄能元件(A)与所述液压致动器(1)的油压达到平衡包括:
    如果所述蓄能元件(A)的油压高于所述液压致动器(1)的油压,则使所述蓄能元件(A)通过泄油油路(r3)卸荷,以便将所述蓄能元件(A)的油压降低到与所述液压致动器(1)的油压达到平衡;
    如果所述蓄能元件(A)的油压低于所述液压致动器(1)的油压,则通过第二供油油路(r2)向所述蓄能元件(A)供应压力油,以便将所述蓄能元件(A)的油压提高到与所述液压致动器(1)的油压达到平衡。
  19. 根据权利要求17所述的控制方法,其中所述行驶稳定系统还包括:第二液压油源(C)、电液比例节流阀(11)、单向阀(12)和数据库(H),所述第二液压油源(C)与所述蓄能元件(A)可操作地连接,被配置为通过第二供油油路(r2)向所述蓄能元件(A)供应压力油,所述电液比例节流阀(11)与所述单向阀(12)并联后,串联设置在所述第二供油油路(r2)上,所述单向阀(12)被配置为实现所述蓄能元件(A)充油方向的单向导通,所述电液比例节流阀(11)和所述数据库(H)均与所述控制器(E)信号连接;所述控制方法还包括:
    在将所述蓄能元件(A)接入所述第一供油油路(r1)时,检测所述液压致动器(1)的当前载荷和用于表征当前行驶路面的不平度的信号;
    根据所述用于表征当前行驶路面的不平度的信号确定路面不平度等级;
    根据所述路面不平度等级和/或所述液压致动器(1)的当前载荷查询所述数据库(H);
    根据查询到的电液比例节流阀(11)的节流孔径,使所述电液比例节流阀(11) 进行节流孔径的调整。
  20. 根据权利要求19所述的控制方法,还包括:
    在不同的液压致动器载荷和不同等级的路面谱信息的输入下,以所述电液比例节流阀(11)的节流孔径作为自变量,以行驶平顺性为目标函数,通过神经网络算法进行迭代优化,以拟合出在不同的路面不平度等级下,不同的液压致动器载荷分别对应的电液比例节流阀(11)的最优节流孔径的曲线集合,并将拟合数据保存到所述数据库(H)内。
  21. 根据权利要求17所述的控制方法,其中所述蓄能元件(A)包括:第一蓄能器(18)、第二蓄能器(19)和第四控制阀(17),所述第一蓄能器(18)的第一最大工作油压小于所述第二蓄能器(19)的第二最大工作油压;所述控制方法还包括:
    在所述行驶稳定系统开启时,判断所述液压致动器(1)是否处于空载工况;
    如果处于空载工况,则使所述第四控制阀(17)切换为所述第一蓄能器(18)与所述第一供油油路(r1)连通;
    如果处于有负载工况,则使所述第四控制阀(17)切换为所述第二蓄能器(19)与所述第一供油油路(r1)连通。
  22. 根据权利要求17所述的控制方法,还包括:
    在所述行驶稳定系统处于未开启的状态下,当所述行驶稳定系统所在的车体(K)的速度维持超过预设速度的时长达到预设时长时,开启所述行驶稳定系统;
    在所述行驶稳定系统处于已开启的状态下,当所述车体(K)的速度不满足在预设时长内维持超过预设速度的条件时,使所述第一供油油路(r1)与所述蓄能元件(A)之间的油路断开,并关闭所述行驶稳定系统。
PCT/CN2020/092471 2020-05-19 2020-05-27 行驶稳定系统、挖掘装载机及控制方法 WO2021232455A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20936656.6A EP4155467A1 (en) 2020-05-19 2020-05-27 Driving stabilizing system, backhoe-loader and control method
US17/761,758 US20230349130A1 (en) 2020-05-19 2020-05-27 Travel stability system, backhoe loader and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010425641.7 2020-05-19
CN202010425641.7A CN111501894B (zh) 2020-05-19 2020-05-19 行驶稳定系统、挖掘装载机及控制方法

Publications (1)

Publication Number Publication Date
WO2021232455A1 true WO2021232455A1 (zh) 2021-11-25

Family

ID=71872025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092471 WO2021232455A1 (zh) 2020-05-19 2020-05-27 行驶稳定系统、挖掘装载机及控制方法

Country Status (4)

Country Link
US (1) US20230349130A1 (zh)
EP (1) EP4155467A1 (zh)
CN (1) CN111501894B (zh)
WO (1) WO2021232455A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143317A (zh) * 2022-09-05 2022-10-04 浙江大学高端装备研究院 一种磁感应位置的带紧急关断的防爆电液伺服执行器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086214B1 (en) 2021-05-04 2023-11-15 Hiab AB A crane, and a method of a crane
CN113790184B (zh) * 2021-11-17 2022-02-08 太原理工大学 液电耦合驱动多执行器系统及控制方法
CN114590749A (zh) * 2022-02-25 2022-06-07 安徽合力股份有限公司 一种带冲击吸收的叉车全自由门架液压系统
CN116335219B (zh) * 2023-05-29 2023-08-08 华侨大学 提高工程机械行驶速度的主动机械臂系统及轮式工程机械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136375A (ja) * 1997-07-22 1999-02-09 Komatsu Ltd 装輪式建設機械の走行振動制振油圧回路
US6634653B2 (en) * 2001-07-17 2003-10-21 Probir Chatterjea & Associates, Inc. Ride control system for construction equipment
CN102720232A (zh) * 2012-06-15 2012-10-10 江苏柳工机械有限公司 滑移转向装载机动臂减振装置
CN202595778U (zh) * 2012-06-15 2012-12-12 江苏柳工机械有限公司 滑移转向装载机动臂减振装置
CN107531123A (zh) * 2015-04-29 2018-01-02 克拉克设备公司 用于动力机器的行驶稳定系统
CN111094665A (zh) * 2017-09-15 2020-05-01 川崎重工业株式会社 建筑机械的油压驱动系统
CN212477899U (zh) * 2020-05-19 2021-02-05 江苏徐工工程机械研究院有限公司 行驶稳定系统及挖掘装载机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147172A (en) * 1991-09-03 1992-09-15 Caterpillar Inc. Automatic ride control
JPH0719203A (ja) * 1993-06-16 1995-01-20 Kobe Steel Ltd 油圧ポンプ回路
KR100540445B1 (ko) * 1998-05-12 2006-03-14 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 건설기계의 주행진동 제어장치
US7621124B2 (en) * 2004-10-07 2009-11-24 Komatsu Ltd. Travel vibration suppressing device for working vehicle
JP4855783B2 (ja) * 2006-01-16 2012-01-18 日立建機株式会社 走行振動抑制装置
US7693642B2 (en) * 2006-10-06 2010-04-06 Deere & Company Anti-overspeed system for vehicle and associated method
JP6324933B2 (ja) * 2015-08-26 2018-05-16 株式会社日立建機ティエラ 作業機械の油圧駆動装置
CN110106937A (zh) * 2019-05-14 2019-08-09 三一重机有限公司 低油耗控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136375A (ja) * 1997-07-22 1999-02-09 Komatsu Ltd 装輪式建設機械の走行振動制振油圧回路
US6634653B2 (en) * 2001-07-17 2003-10-21 Probir Chatterjea & Associates, Inc. Ride control system for construction equipment
CN102720232A (zh) * 2012-06-15 2012-10-10 江苏柳工机械有限公司 滑移转向装载机动臂减振装置
CN202595778U (zh) * 2012-06-15 2012-12-12 江苏柳工机械有限公司 滑移转向装载机动臂减振装置
CN107531123A (zh) * 2015-04-29 2018-01-02 克拉克设备公司 用于动力机器的行驶稳定系统
CN111094665A (zh) * 2017-09-15 2020-05-01 川崎重工业株式会社 建筑机械的油压驱动系统
CN212477899U (zh) * 2020-05-19 2021-02-05 江苏徐工工程机械研究院有限公司 行驶稳定系统及挖掘装载机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143317A (zh) * 2022-09-05 2022-10-04 浙江大学高端装备研究院 一种磁感应位置的带紧急关断的防爆电液伺服执行器

Also Published As

Publication number Publication date
EP4155467A1 (en) 2023-03-29
CN111501894B (zh) 2024-02-02
CN111501894A (zh) 2020-08-07
US20230349130A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2021232455A1 (zh) 行驶稳定系统、挖掘装载机及控制方法
US8065875B2 (en) Method for springing a movement of an implement of a work machine
JP5271082B2 (ja) 独立した計量弁制御システム及び方法
US8683793B2 (en) Method for recuperating potential energy during a lowering operation of a load
JP5119363B2 (ja) 運搬車両
JP5283503B2 (ja) Imv走行制御装置を有する油圧システム
US8657083B2 (en) Method for damping relative movements occurring in a work vehicle during advance
US10030364B2 (en) Hydraulic system having automatic ride control
US8483916B2 (en) Hydraulic control system implementing pump torque limiting
KR20120086288A (ko) 작업 기계의 유압 시스템
JP2010539411A (ja) 適応流量制御を実施するアクチュエータ制御システム
WO2005035883A1 (ja) 作業車両の走行振動抑制装置
CN212477899U (zh) 行驶稳定系统及挖掘装载机
JP3162384B2 (ja) 作業装置を備えた作業機械のための液圧装置
CN102510922A (zh) 作业车辆的行驶振动抑制装置
US10655297B2 (en) Hydraulic system and a method for moving an implement of a working machine
US20130299266A1 (en) Hydraulic Ride Control System with Manual Mode Safeguard
US10082159B2 (en) Twin priority valve
US11787255B2 (en) Suspension system with individual ride height and dampening control
US20140032057A1 (en) Feedforward control system
JP6932635B2 (ja) 作業車両
WO2024071261A1 (ja) 作業機械
CN214884016U (zh) 集成浮动稳定模块及液压能再生的液压控制系统及铲运机
CN118107332A (zh) 一种矿车后悬挂缸的控制方法及矿车后悬挂缸控制总成
KR20230053427A (ko) 산업용 차량 및 이의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020936656

Country of ref document: EP

Effective date: 20221219