WO2021232254A1 - 制冷剂泵和数据中心制冷系统 - Google Patents

制冷剂泵和数据中心制冷系统 Download PDF

Info

Publication number
WO2021232254A1
WO2021232254A1 PCT/CN2020/091111 CN2020091111W WO2021232254A1 WO 2021232254 A1 WO2021232254 A1 WO 2021232254A1 CN 2020091111 W CN2020091111 W CN 2020091111W WO 2021232254 A1 WO2021232254 A1 WO 2021232254A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
refrigerant
pump
refrigeration system
pump head
Prior art date
Application number
PCT/CN2020/091111
Other languages
English (en)
French (fr)
Inventor
王慧
程鹏
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080012421.XA priority Critical patent/CN113454339B/zh
Priority to EP20920762.0A priority patent/EP3934398B1/en
Priority to PCT/CN2020/091111 priority patent/WO2021232254A1/zh
Priority to EP22213129.4A priority patent/EP4219949A1/en
Publication of WO2021232254A1 publication Critical patent/WO2021232254A1/zh
Priority to US17/990,076 priority patent/US20230083147A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/086Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/021Pumping installations or systems having reservoirs the pump being immersed in the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/005Adaptations or arrangements of valves used as foot valves, of suction strainers, or of mud-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/20Filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/16Pumping installations or systems with storage reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Definitions

  • the present invention relates to the technical field of refrigeration equipment, and in particular to a refrigerant pump and a refrigeration system with the refrigerant pump.
  • the number and scale of data centers are also increasing rapidly, and their total energy consumption is also getting higher and higher, of which the air conditioning system accounts for more than 40% of the total energy consumption .
  • the power of the refrigerant pump is much smaller than that of the compressor. Therefore, for the compression refrigeration cycle system, in winter or when the outdoor temperature is low, the refrigerant pump is used to replace the compressor to deliver low-temperature refrigerant to cool indoor hot air, which can effectively reduce the energy consumption of the system. The energy saving effect is outstanding.
  • the prerequisite for the stable operation of the refrigerant pump is that cavitation does not occur.
  • the state of the refrigerant passing through the condenser and the accumulator to the inlet of the refrigerant pump is very unstable.
  • the refrigerant pump The refrigerant at the inlet is easy to evaporate or flash into a gaseous state, causing cavitation in the refrigerant pump, resulting in system shutdown or refrigerant pump failure.
  • the embodiment of the present application provides a refrigerant pump and a data center refrigeration system, which solves the problem of cavitation at the inlet of the refrigerant pump.
  • an embodiment of the present application provides a refrigerant pump including a casing and a pump body.
  • the casing is provided with a liquid inlet and a liquid outlet.
  • the casing is of a hollow structure.
  • the housing includes a first space and a second space that are arranged side by side and isolated from each other. Specifically, the space in the housing is divided into a first space and a second space by a built-in partition board, and the liquid inlet is in communication with each other.
  • the liquid outlet is connected to the second space;
  • the pump body includes a pump head and a motor, the pump head is located at the bottom of the gravity direction of the first space, and the motor is located in the second space (about the motor
  • the specific position of the pump head is not limited in this application.
  • the motor can be located in the second space, in the first space, or outside the housing, as long as the motor can drive the pump head to work); the pump body is used To transport the refrigerant in the first space to the second space, the first space is used to store the refrigerant in the refrigeration system, and the liquid inlet is used to directly connect to the refrigeration system through a pipeline. Condenser, no additional liquid reservoir is provided between the liquid inlet and the condenser.
  • the first space is designed as a liquid storage space, that is, excess refrigerant except for the refrigerant required for the current normal operation of the data center refrigeration system is stored in the first space. Since the pump inlet is located at the bottom of the gravity direction of the first space, the liquid refrigerant can directly flow into the pump inlet without cavitation.
  • the refrigerant pump provided by the present application has the advantage of high reliability.
  • the refrigerant pump has the function of an accumulator, and the system does not need a separate accumulator, which makes the refrigeration system more concise, low in cost, and small in area. While the application can protect the pump body of the refrigerant pump, it can also optimize the piping configuration of the data center refrigeration system.
  • the pump body can be a gear pump, a centrifugal pump, a diaphragm pump or other types of pumps.
  • the first space and the second space are arranged up and down along the direction of gravity.
  • the periphery of the partition is connected with the side wall of the housing, and the top wall and bottom wall of the housing are distributed on the opposite sides of the partition (can be It is understood as the upper and lower sides in the direction of gravity)
  • the first space is between the top wall and the partition
  • the second space is between the partition and the bottom wall.
  • the pump head can be arranged at any position on the partition to satisfy the requirement that the pump head is located at the bottom of the first space in the direction of gravity.
  • the high degree of design freedom is more conducive to avoiding cavitation at the inlet of the pump head.
  • the housing includes a top wall and a bottom wall arranged up and down in the direction of gravity, and the first space and the second space are both formed between the top wall and the bottom wall , Part of the bottom wall is located at the bottom of the first space, and part of the bottom wall is located at the bottom of the second space.
  • the first space and the second space are arranged side by side in the horizontal direction.
  • the partitions vertically, that is, the plane on which the partitions are located is approximately perpendicular to the horizontal plane, and the left and right sides of the partitions The sides are respectively the first space and the second space, the top edge of the partition is connected to the top wall of the housing, and the bottom edge of the partition is connected to the bottom of the housing.
  • the pump head is installed on the partition plate and is close to the bottom wall.
  • the refrigerant pump further includes a one-way valve, the one-way valve and the pump head are arranged in parallel between the first space and the second space, and the one-way valve The valve is located at the bottom of the gravity direction of the first space.
  • the one-way valve can realize the flow of refrigerant from the first space to the second space.
  • the one-way valve forms a branch in parallel with the pump head. When the pump head is working, the refrigerant in the first space can flow to the second space through the pump head.
  • the pressure in the first space is greater than With the pressure in the second space, the one-way valve is turned on, so that the refrigerant flows from the first space to the second space, and the refrigerant entering the second space flows out from the liquid outlet of the housing.
  • the refrigerant pump further includes a liquid level sensor, and the liquid level sensor is located in the first space.
  • the liquid level sensor is used to detect the position of the liquid level of the refrigerant in the first space.
  • the liquid level sensor is electrically connected to the control center located outside the housing to transmit liquid level position information for the control center.
  • the control center controls the pump head to stop working, or alarm, prompting the staff to replenish refrigerant.
  • the preset value mentioned here can be based on the horizontal plane where the inlet of the pump head is located, and can be the horizontal plane where the inlet of the pump head is located or within a certain range higher than the horizontal plane where the inlet of the pump head is located.
  • the state of the refrigerant at the inlet of the pump body can be monitored in real time, which is convenient for development and testing and alarm protection during operation.
  • the liquid level sensor can be of various types such as float type or solenoid valve type.
  • the horizontal plane where the liquid level sensor is located is higher than the horizontal plane where the inlet position of the pump head is located. Setting the liquid level sensor at a position higher than the inlet of the pump head can ensure that there is sufficient refrigerant at the inlet of the pump head to avoid the risk of cavitation. Moreover, the liquid level sensor can also detect whether the liquid storage volume in the first space meets the pipeline circulation volume of the refrigeration system.
  • the refrigerant pump further includes a first electrical connector disposed on the housing, the first electrical connector is electrically connected to the liquid level sensor, and the first electrical connector can be connected through a wire
  • the cable is electrically connected to the control center, so that the liquid level sensor transmits signals to the control center.
  • the refrigerant pump further includes a filter screen, and the filter screen is located in the first space and between the liquid inlet and the pump head.
  • the filter screen is used to filter the refrigerant impurities.
  • the filter screen can be installed on the periphery of the pump head to cover the pump head.
  • the pump head can be installed on the partition inside the casing.
  • the filter screen can also be installed on the partition.
  • the filter screen and the partition are enclosed to enclose the space. In this enclosed space, the size of the filter screen of this structure is small, and it only needs to cover the pump head.
  • the filter screen may have a larger mesh structure.
  • the filter screen is combined with the inner wall of the housing.
  • the filter screen divides the first space into two parts.
  • the pump head is located on one side of the filter screen.
  • the liquid port is located on the other side of the filter.
  • the filter screen may be located below the liquid surface or above the liquid surface, as long as the refrigerant flowing into the first space from the liquid inlet can pass through the filter screen.
  • the liquid storage volume of the first space is greater than or equal to 10 liters.
  • the amount of refrigerant stored in the first space can be clearly defined. It is the liquid storage capacity for the entire refrigeration system, and the liquid storage capacity in the first space is much larger than the amount of refrigerant contained in a refrigerant pump that is generally only used to transport refrigerant.
  • the housing of the refrigerant pump further includes a branch opening, which communicates with the first space and the outside of the housing, and the branch opening may be located at (but not limited to) the bottom of the gravity direction of the first space,
  • the branch opening is used to connect with the one-way valve branch.
  • the one-way valve is not provided in the housing, and the one-way valve branch is set outside the housing, but the refrigerant liquid of the refrigeration system will first flow into the first Space, and then selectively flow into the pump head or the one-way valve branch. That is, the check valve branch and the pump body are connected in parallel between the first space and the evaporator.
  • the refrigerant pump further includes a motor for driving the pump head, and the motor is arranged in the second space. Since the second space and the first space are separated by a partition, the first space is used to store refrigerant, and the amount of refrigerant in the first space is relatively large, and the storage environment temperature needs to be kept stable and suitable.
  • This embodiment is particularly The location of the motor is designed to be isolated from the refrigerant, so as to avoid the heating of the motor, which will affect the temperature of the refrigerant storage environment. If the motor is placed in the first space, the motor will be directly immersed in the refrigerant, and the motor will generate heat directly for cooling. The heating of the refrigerant may cause the vaporization of the refrigerant.
  • the second space is only a path for the refrigerant to flow through, and there is no need to store the refrigerant. The refrigerant that enters the second space is simultaneously discharged from the liquid outlet.
  • the present application provides a data center refrigeration system, including a condenser, an evaporator, and a refrigerant pump connected between the two.
  • the refrigerant of the data center refrigeration system includes a working refrigerant and a storage refrigerant,
  • the working refrigerant is in the circulation pipeline of the data center refrigeration system, and the storage refrigerant is stored in the first space of the refrigerant pump.
  • the data center refrigeration system provided by the present application does not need to be equipped with a liquid accumulator, and uses the refrigerant pump described in the first aspect. While transporting the refrigerant, it can also store the refrigerant, which not only solves the cavitation problem of the refrigerant pump, but also Make the overall structure of the refrigeration system simple and occupy a small space.
  • the present application provides a data center refrigeration system, including a refrigerator pump connected between a condenser and an evaporator, the refrigerator pump including a casing, a partition, and a pump head, and the casing is provided with a liquid inlet And a liquid outlet, the partition is provided inside the housing and forms a first space and a second space side by side and isolated from each other with the housing, the liquid inlet communicates with the first space, and The liquid outlet communicates with the second space, the pump head is connected to the partition plate and is located at the bottom of the gravity direction of the first space, and the pump head is used to deliver the refrigerant in the first space to In the second space, the liquid inlet is directly connected to the condenser through a pipeline, and the first space is used to store the refrigerant of the data center refrigeration system so that the data center refrigeration system does not have additional Set up the reservoir.
  • a one-way valve is provided on the partition plate, and the one-way valve is arranged in parallel with the pump head between the first space and the second space, and the one-way valve The valve is located at the bottom of the gravity direction of the first space.
  • the refrigerant pump further includes a filter screen, which is connected to the partition and covers the pump head. Fix the filter screen to the partition so that the partition becomes the installation carrier in the refrigerant pump, which carries most of the components, including the pump head, one-way valve, and the filter.
  • This configuration makes the structure of the refrigerant pump simple , Easy to assemble.
  • the refrigerant pump further includes a liquid level sensor, and the liquid level sensor is located in the first space.
  • the liquid level sensor is located in the shielding space of the filter screen, and is located at the inlet of the pump head.
  • the liquid level sensor is integrated in the shielding space of the filter screen, and the refrigerant around the liquid level sensor is filtered refrigerant with good purity, which is beneficial to guarantee the service life of the liquid level sensor.
  • the liquid level sensor is located outside the shielding space of the filter screen and close to the filter screen.
  • the liquid level sensor is arranged outside the shielding space of the filter screen, which makes it easier to install and fix.
  • the refrigerant pump further includes a motor for driving the pump head, and the motor is arranged in the second space.
  • the data center refrigeration system further includes a compressor and a bypass, the compressor and the bypass are connected in parallel between the condenser and the evaporator, and the condenser ,
  • the pump head of the refrigerant pump, the evaporator and the bypass together constitute a first circulation path
  • the condenser, the one-way valve of the refrigerant pump, the evaporator and The compressors together constitute a second circulation path.
  • Fig. 1 is a schematic diagram of a data center refrigeration system provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a data center refrigeration system provided by another embodiment of the present application.
  • Fig. 3 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a refrigerant pump provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a data center refrigeration system provided by an embodiment of the application.
  • the data center refrigeration system includes a condenser 10, an evaporator 20, a compressor 30, a bypass 40, an expansion valve 50, and a refrigerant pump 60.
  • the compressor 30 and the bypass 40 are connected in parallel between the condenser 10 and the evaporator 20 through pipelines, and the bypass 40 includes a check valve 42.
  • the refrigerant pump 60 is also connected between the condenser 10 and the evaporator 20. When the ambient temperature is low, the refrigeration system does not need to be compressed by the compressor 30 to achieve heat dissipation. At this time, the refrigerant pump 60 is used to provide power to To achieve the purpose of energy saving.
  • the refrigerant pump 60 is provided with two parallel branches, which are the pump body branch and the one-way valve branch respectively.
  • the pump body includes a pump head 62 and a motor, and the pump head 62 and the one-way valve 64 are arranged in parallel.
  • the refrigerant flow path through the pump head 62 is a branch of the pump body, and the refrigerant flow path through the one-way valve 64 is a one-way valve branch.
  • the condenser 10, the pump head 62 of the refrigerant pump 60, the evaporator 20, and the bypass 40 together form a first circulation path.
  • the one-way valve 64, the evaporator 20, and the compressor 30 jointly constitute a second circulation path.
  • the first circulation path and the second circulation path are used according to demand. For example, when the ambient temperature is high, the compressor 30 is required, and the data center refrigeration system starts the second circulation path. When the ambient temperature is low, only the refrigerant pump is used The refrigeration function can be realized by driving the refrigerant 60, and the first circulation path can be started.
  • Fig. 2 is a schematic diagram of a data center refrigeration system provided by another embodiment of the application.
  • the refrigerant pump 60 is not provided with a one-way valve, that is, refrigeration
  • a one-way valve branch 70 is added to the outside of the refrigerant pump 60.
  • a one-way valve 72 is provided on the one-way valve branch 70, specifically, the housing of the refrigerant pump 60
  • One end of the one-way valve branch 70 is connected to the branch opening P, and the other end of the one-way valve branch 70 is connected to the evaporator 20.
  • the one-way valve 72 Closed, the refrigerant only flows from the branch of the pump body to the evaporator 20.
  • the refrigerant enters the liquid storage space in the refrigerant pump 60 from the condenser 10, and then flows into the unit through the branch opening P.
  • valve branch 70 To valve branch 70.
  • the liquid storage space, the one-way valve branch 70, the evaporator 20 and the compressor 30 together form a second circulation path.
  • the one-way valve branch 70 and the bypass 40 can have the same pipeline form, and both are realized by connecting the one-way valve in the pipeline. Understandably, the bypass 40 may not use a one-way valve, and may use other valve structures, such as a solenoid valve. Similarly, the one-way valve branch 70 can also be replaced by other valve structures.
  • the data center refrigeration systems provided by the two implementations shown in FIG. 1 and FIG. 2 both use the liquid storage space of the refrigerant pump, and no additional liquid storage is provided.
  • the refrigerant pump 60 is directly connected to the condenser 10 through a pipeline, and there is no accumulator, but the refrigerant pump 60 has the functions of storing liquid and providing power for the refrigerant, that is to say, the data center Excess refrigerant during the operation of the refrigeration system is stored in the refrigerant pump 60.
  • the refrigerant pump 60 includes a housing 61, a pump head 62 installed in the housing 61, and a motor 63 for driving the pump head 62.
  • the pump head 62 and the motor 63 together constitute the pump body.
  • the housing 61 is provided with a liquid inlet 611 and a liquid outlet 612.
  • the housing 61 has a hollow structure.
  • the liquid inlet 611 and the liquid outlet 612 are opening structures on the housing 61 that penetrate the inner space of the housing 61 and the outside of the housing 61.
  • the housing 61 includes a first space R1 and a second space R2 that are arranged side by side and isolated from each other.
  • the liquid inlet 611 is connected to the pipeline of the refrigeration system, the liquid inlet 611 is connected to the condenser 10 through the pipeline, and the liquid outlet
  • the 612 position is connected to the pipeline of the refrigeration system, and the liquid outlet 612 is connected to the evaporator 20 through the pipeline.
  • the pipeline between the liquid inlet 611 and the condenser 10 and the pipeline between the liquid outlet 612 and the evaporator 20 can be provided with an expansion valve 50, but no accumulator is provided, that is, the refrigerant is flowing from the condenser 10 enters the first space R1 of the housing 61 through the pipeline directly through the liquid feeder.
  • the pump head 62 is located at the bottom of the gravity direction of the first space R1, and the pump head 62 is used to deliver the refrigerant in the first space R1 to the second space R2, and the first space R1
  • the liquid inlet 611 is used for storing refrigerant of the refrigeration system, and the liquid inlet 611 is used to directly connect to the condenser 10 of the refrigeration system through a pipeline, and no additional liquid accumulator is provided between the liquid inlet 611 and the condenser 10.
  • the liquid storage volume of the first space R1 is greater than or equal to 10 liters.
  • the refrigeration stored in the first space R1 can be clearly defined.
  • the amount of refrigerant is the amount of liquid stored in the entire refrigeration system, and the amount of liquid stored in the first space R1 is much larger than the amount of refrigerant contained in the refrigerant pump 60 that is generally only used to transport refrigerant.
  • the housing 61 includes a top wall 613, a bottom wall 614, and a side wall 615 connected between the top wall 613 and the bottom wall 614. In the direction of gravity, the top wall 613 and the bottom wall 614 are arranged up and down.
  • the housing 61 as a whole can be, but is not limited to, cylindrical, cuboid, or spherical.
  • the top wall 613 and the bottom wall 614 can have a curved structure or a flat structure.
  • the side wall 615 can also be a flat or curved structure.
  • the side wall 615 may enclose a cylindrical space or may enclose a square space.
  • the side wall 615 and the top wall 613 can form a clear boundary or be coplanar.
  • the housing 61 is spherical or hemispherical
  • the top wall 613 and the side wall 615 are both curved surfaces and have the same curvature to form a joint Spherical.
  • the specific positions of the liquid inlet 611 and the liquid outlet 612 are not limited to certain embodiments, as long as it can be ensured that the refrigerant can enter the first space R1 through the liquid inlet 611 and output the refrigerant pump 60 through the liquid outlet 612.
  • the position of the liquid inlet 611 can be located on the top wall 613 or on the side wall 615 or the bottom wall 614, and the position of the liquid outlet 612 can be set on the side.
  • the wall 615 can also be provided on the bottom wall 614 or the top wall 613.
  • the built-in partition 616 separates the space in the housing 61 into the first space R1 and the second space R2, and the edge of the partition 616 can be sealed to the inner surface of the housing 61.
  • the housing 61 can be With an integrated structure, the edge of the partition 616 and the inner surface of the housing 61 can be connected by a concave-convex fit, and a sealant or a gasket can be provided at the connection.
  • the housing 61 may be divided into two parts, and the partition 616 may be integrally formed with one part of the housing 61, and then the two parts of the housing 61 may be connected and fixed, for example, by welding and sealing.
  • the first space R1 and the second space R2 are arranged up and down along the direction of gravity. Specifically, by placing the partition 616 horizontally, that is, the direction where the partition 616 is located is close to the horizontal plane, the periphery of the partition 616 is connected to the side wall 615 of the housing 61, and the top wall 613 and the bottom wall 614 of the housing 61 are distributed in On opposite sides of the partition 616 (which can be understood as the upper and lower sides in the direction of gravity), a first space R1 is formed between the top wall 613 and the partition 616, and a second space R2 is formed between the partition 616 and the bottom wall 614.
  • the pump head 62 can be arranged at any position on the partition 616 to satisfy the requirement that the pump head 62 is located in the first space R1.
  • the bottom of the gravity direction has a high degree of freedom in structural design, which is more conducive to avoiding cavitation at the inlet of the pump head 62.
  • a motor 63 for driving the pump head 62 is provided in the second space R2, and the motor 63 is installed on the bottom wall 614. Since the second space R2 and the first space R1 are separated by a partition 616, the first space R1 is used to store refrigerant, and the amount of refrigerant in the first space R1 is relatively large, and the storage environment temperature needs to be kept stable and suitable In this embodiment, the placement position of the motor 63 is specifically designed to be isolated from the refrigerant, so as to prevent the heating of the motor 63 from affecting the temperature of the refrigerant storage environment.
  • the motor 63 If the motor 63 is placed in the first space R1, the motor 63 will be directly immersed in the refrigeration In the refrigerant, the motor 63 generates heat during operation and directly heats the refrigerant, which may cause the vaporization of the refrigerant.
  • the second space R2 is only a path for refrigerant to flow through, and does not need to store refrigerant.
  • the refrigerant that enters the second space R2 is discharged from the liquid outlet 612 at the same time. Placing the motor 63 in the second space R2 is also beneficial for cooling
  • the size of the second space R2 can be designed to be slightly larger, not only for transporting refrigerant, but also for accommodating the motor 63. If the second space R2 is located at the bottom of the first space R1 in the direction of gravity, The motor 63 is at the bottom, which increases the weight of the bottom, which can ensure the stability of the overall structure of the refrigerant pump 60.
  • the motor 63 can also be placed in the first space R1, and the motor 63 can be protected so that the heat generated by the motor 63 is not directly transferred to the refrigerant stored in the first space R1.
  • an independent space where the motor 63 is placed is provided in the first space R1, so that the motor 63 is separated from the refrigerant.
  • the motor 63 can also be placed outside the housing 61, and the shaft of the motor 63 is extended into the housing 61 to drive the pump head 62, as long as the joint between the shaft of the motor 63 and the housing 61 is sealed.
  • the one-way valve 64 and the pump head 62 are arranged in parallel between the first space R1 and the second space R2, and the one-way valve 64 is located in the gravity of the first space R1. The bottom of the direction.
  • the one-way valve 64 can realize the flow of refrigerant from the first space R1 to the second space R2.
  • the one-way valve 64 forms a branch in parallel with the pump head 62. When the pump head 62 is working, the refrigerant in the first space R1 can flow to the second space R2 through the pump head 62.
  • the second space R2 It is a high-pressure zone, and the first space R1 is a low-pressure zone. Since the pressure in the second space R2 is greater than that of the first space R1, the one-way valve 64 cannot input liquid from the low-pressure zone into the high-pressure zone, and the one-way valve 64 does not work. After the pump head 62 delivers the refrigerant to the second space R2, the refrigerant in the second space R2 flows out through the liquid outlet 612 of the casing 61.
  • the pressure in the first space R1 is greater than the pressure in the second space R2, and the one-way valve 64 is opened to allow the refrigerant to flow from the first space R1 to the second space R2 and enter the second space R2.
  • the refrigerant flows out from the liquid outlet 612 of the housing 61.
  • the refrigerant pump 60 further includes a liquid level sensor 65 and a filter 66.
  • the liquid level sensor 65 and the filter screen 66 are located in the first space R1.
  • the liquid level sensor 65 is used to detect the position of the liquid level of the refrigerant in the first space R1.
  • the liquid level sensor 65 is electrically connected to the control center located outside the housing 61 to transmit liquid level position information for the control center.
  • the pump head 62 has a risk of cavitation, and the control center controls the pump head 62 to stop working, or alarm, prompting the staff to replenish refrigerant.
  • the preset value mentioned here may be based on the horizontal plane where the inlet of the pump head 62 is located, and the liquid level sensor 65 may be located at the horizontal plane where the inlet of the pump head 62 is located or within a certain range higher than the horizontal plane where the inlet of the pump head 62 is located.
  • the level where the liquid level sensor 65 is located is higher than the level where the inlet position of the pump head 62 is located. Setting the liquid level sensor 65 at a position higher than the inlet of the pump head 62 can ensure that there is sufficient refrigerant at the inlet of the pump head 62 to avoid the risk of cavitation. Moreover, the liquid level sensor 65 can also detect whether the liquid storage volume in the first space R1 meets the pipeline circulation volume of the refrigeration system.
  • the filter 66 is located between the liquid inlet 611 and the pump head 62.
  • the filter 66 is used to filter impurities and ensure the quality of the refrigerant entering the inlet of the pump head 62.
  • the filter 66 can be installed on the periphery of the pump head 62 to cover the pump head 62.
  • the pump head 62 is installed on the partition 616 inside the housing 61, and the filter 66 can also be installed on the partition 616.
  • the filter 66 is connected to the partition 616.
  • the plate 616 is arranged to enclose a space in which the pump head 62 is enclosed.
  • the filter screen 66 of this structure is small in size and only needs to cover the pump head 62.
  • the liquid level sensor 65 is located in the shielding space of the filter screen 66 and is located at the entrance of the pump head 62.
  • the liquid level sensor 65 can be fixed on the filter screen 66, and the level where the liquid level sensor 65 is located is higher than the level where the inlet of the pump head 62 is located.
  • the liquid level sensor 65 is located outside the shielding space of the filter mesh 66 and is close to the filter mesh 66.
  • the liquid level sensor 65 can be fixed on the filter screen 66 or can be fixed on a bracket in the housing 61.
  • the filter 66 may be a larger mesh structure, for example, the filter 66 is combined with the inner wall of the housing 61, the filter 66 divides the first space R1 into two parts, and the pump head 62 is located On one side of the filter screen 66, the liquid inlet 611 on the housing 61 is located on the other side of the filter screen 66.
  • the filter 66 may be located below the liquid surface or above the liquid surface, as long as the refrigerant flowing into the first space R1 from the liquid inlet 611 can pass through the filter 66.
  • the liquid level sensor 65 is fixed to the inner wall of the housing 61. It can be understood that the liquid level sensor 65 can also be fixed to the filter 66, or the liquid level sensor 65 can also be fixed to the inner wall of the housing 61 facing toward On the bracket extending from the first space R1.
  • the housing 61 includes a top wall 613 and a bottom wall 614 arranged up and down in the direction of gravity, and the first space R1 and the second space R2 are both formed in the Between the top wall 613 and the bottom wall 614, part of the bottom wall 614 is located at the bottom of the first space R1, and part of the bottom wall 614 is located at the bottom of the second space R2.
  • the first space R1 and the second space R2 are arranged side by side in the horizontal direction.
  • the left and right sides of the plate 616 are respectively the first space R1 and the second space R2.
  • the top edge of the partition 616 is connected to the top wall 613 of the housing 61, and the bottom edge of the partition 616 is connected to the bottom of the housing 61.
  • the pump head 62 is installed on the partition 616 and is close to the bottom wall 614.
  • the one-way valve 64 can be located between the pump head 62 and the bottom wall 614, and the one-way valve 64 can also be located on the side of the pump head 62 away from the bottom wall 614, as long as the position of the one-way valve 64 is in the first space. It is sufficient if the liquid level in R1 is below the level.
  • the liquid inlet 611 and the liquid outlet 612 are both provided on the side wall 615, the liquid inlet 611 is close to the top wall 613, and the liquid outlet 612 is close to the bottom wall 614.
  • the liquid inlet 611 and The position of the liquid outlet 612 can also be set at other positions of the housing 61, which is not limited in this application, as long as it can meet the input and output of the refrigerant.
  • the refrigerant pump 60 further includes a first electrical connector 617 and a second electrical connector 618 provided on the housing 61.
  • the first electrical connector 617 is electrically connected to the liquid level sensor 65, and the first electrical connector 617 can be electrically connected to the control center through a cable, so that the liquid level sensor 65 transmits signals to the control center.
  • the second electrical connector 618 is electrically connected to the motor 63. Similarly, the second electrical connector 618 can also be electrically connected to the control center through a cable.
  • the first electrical connector 617 and the second electrical connector 618 are located on the same side of the housing 61, and this structure facilitates wiring.
  • a branch opening P is also provided on the housing 61 of the refrigerant pump 60.
  • the branch opening P communicates with the first space R1 and the outside of the housing 61 and is used to connect the check valve branch.
  • the structure of the branch opening P can be the same as that of the liquid inlet 611 and the liquid outlet 612.

Abstract

本申请涉及一种制冷剂泵和数据中心制冷系统,数据中心制冷系统包括连接在冷凝器和蒸发器之间的制冷器泵,制冷器泵包括外壳、隔板和泵头,外壳设进液口和出液口,隔板设于所述外壳内部且与所述外壳共同形成并排设置且相互隔离的第一空间和第二空间,所述泵头由泵头和电机组成,泵头位于所述第一空间的重力方向的底部,电机位于第二空间。所述泵头用于将所述第一空间的制冷剂输送至所述第二空间,所述进液口通过管路直接连接至所述冷凝器,所述第一空间用于储存所述数据中心制冷系统的制冷剂,所述数据中心制冷系统不额外设置储液器。本申请解决了制冷剂泵的气蚀的问题,还简化了数据中心带制冷剂泵制冷系统的配置。

Description

制冷剂泵和数据中心制冷系统 技术领域
本发明涉及制冷设备技术领域,特别涉及一种制冷剂泵及具有该制冷剂泵的制冷系统。
背景技术
随着ICT(Information and Communication Technology,信息和通信技术)行业的快速发展,数据中心的数量和规模也在飞速增加,其总能耗也越来越高,其中空调系统占总能耗40%以上。制冷剂泵功率远小于压缩机,因此,对压缩式制冷循环系统,在冬季或室外温度较低的时候用制冷剂泵替代压缩机输送低温制冷剂冷却室内热空气,可有效降低系统能耗,节能效果突出。
制冷剂泵稳定运行的前提条件是不发生气蚀,实际应用中,经过冷凝器和储液器到达制冷剂泵的入口的制冷剂的状态很不稳定,当压力、温度波动时,制冷剂泵的入口的制冷剂很容易蒸发或闪发为气态,使得制冷剂泵产生气蚀,导致系统停机或制冷剂泵故障。
因此,避免气蚀是制冷剂泵在制冷系统中可靠应用的关键。
发明内容
本申请实施例提供一种制冷剂泵和数据中心制冷系统,解决了制冷剂泵的入口处气蚀的问题。
第一方面,本申请实施例提供一种制冷剂泵,包括外壳和泵主体,所述外壳设进液口和出液口,外壳为中空结构,进液口和出液口为外壳上贯通外壳内部空间和外壳的外部的开口结构。所述外壳内包括并排设置且相互隔离的第一空间和第二空间,具体而言,通过内置的隔板实现将外壳内的空间分隔为第一空间和第二空间,所述进液口连通所述第一空间,所述出液口连通所述第二空间;所述泵主体包含泵头和电机,泵头位于所述第一空间的重力方向的底部,电机位于第二空间(关于电机的具体的位置,本申请不做限制,电机可以位于第二空间,也可以位于第一空间,也可以位于外壳的外部,只要能满足电机可以驱动泵头工作即可);所述泵主体用于将所述第一空间的制冷剂输送至所述第二空间,所述第一空间用于储存制冷系统的制冷剂,所述进液口用于通过管路直接连接至所述制冷系统的冷凝器,进液口和冷凝器之间不再额外设置储液器。
本申请将第一空间设计为储液空间,即除数据中心制冷系统当前正常运行所需的制冷剂之外多余的制冷剂存储在第一空间内。由于泵进口位于所述第一空间的重力方向的底部,液态制冷剂可直接流入泵进口,不会产生气蚀现象,本申请提供的制冷剂泵具有可靠性高的优势。制冷剂泵兼备储液器功能,系统不需要单独设置储液器,使得制冷系统更简洁,成本低,占地小。本申请能够保护制冷剂泵的泵主体的同时,也可以优化数据中心制冷系统管路配置。
具体而言,泵主体可以为齿轮泵、离心泵、隔膜式泵或其它形式的泵。
一种可能的实现方式中,所述第一空间和所述第二空间沿重力方向上下排布。具体而言,通过将隔板水平放置,即隔板所在的平面近似水平面的方向,隔板的四周与外壳的侧 壁相连,外壳的顶壁和底壁分布在隔板相对的两侧(可以理解为重力方向上的上下两侧),顶壁和隔板之间为第一空间,隔板和底壁之间为第二空间。本实施方式中,通过将第一空间和第二空间在重力方向上呈上下分布,使得将泵头设置在隔板上的任意位置,都可以满足泵头位于第一空间重力方向的底部,结构设计自由度高,更利于避免泵头入口位置的气蚀现象。
一种可能的实现方式中,所述外壳包括沿重力方向上下排布的顶壁和底壁,所述第一空间和所述第二空间均形成在所述顶壁和所述底壁之间,部分所述底壁位于所述第一空间的底部,部分所述底壁位于所述第二空间的底部。本实施方式中的第一空间和第二空间在水平方向上左右并排设置,可以理解为,通过将隔板竖直放置,即隔板所在的平面近似垂直于水平面的方向,隔板的左右两侧分别为第一空间和第二空间,隔板的顶部边缘连接至外壳的顶壁,隔板的底部边缘连接至外壳的底部。本实施方式中,泵头安装在隔板上,且靠近底壁的位置。
一种可能的实现方式中,所述制冷剂泵还包括单向阀,所述单向阀与所述泵头并联设置在所述第一空间和所述第二空间之间,所述单向阀位于所述第一空间的重力方向的底部。本实施方式通过在第一空间和第二空间之间增设单向阀,单向阀可以实现制冷剂从第一空间流向第二空间。单向阀形成与泵头并联的支路,泵头工作的情况下,第一空间的制冷液可以通过泵头流动至第二空间,当泵头不工作的情况下,第一空间的压力大于第二空间的压力,单向阀导通,使制冷剂从第一空间流向第二空间,进入第二空间的制冷剂从外壳的出液口流出。
一种可能的实现方式中,所述制冷剂泵还包括液位传感器,所述液位传感器位于所述第一空间内。液位传感器用于检测第一空间内的制冷剂的液面的位置,液位传感器与位于外壳外部的控制中心电连接,以为控制中心传送液面位置信息,当液面低于预设值时,泵头具有气蚀的风险,控制中心控制泵头停止工作,或者报警,提示工作人员补充制冷剂。此处所说的预设值可以以泵头的入口所在的水平面为参考,可以为泵头的入口所在水平面或高于泵头的入口所在水平面的某个范围内。本申请通过在第一空间内设置液位传感器,能够实时监测泵主体入口位置的制冷剂状态,方便开发测试和运行中告警保护。
液位传感器可以为浮球式或电磁阀式等多种类型。
一种可能的实现方式中,所述液位传感器所在的水平面高于所述泵头的入口位置所在的水平面。将液位传感器设于高于泵头的入口位置,可以保证泵头入口位置有充足的制冷剂,远离气蚀风险。而且液位传感器也能够检测第一空间内的储液量,是否满足制冷系统的管路循环用量。
一种可能的实现方式中,所述制冷剂泵还包括设置在所述外壳上的第一电接头,所述第一电接头与所述这液位传感器电连接,第一电接头可以通过线缆与控制中心电连接,以使液位传感器传输信号至控制中心。
一种可能的实现方式中,所述制冷剂泵还包括过滤网,所述过滤网位于所述第一空间内,且位于所述进液口与所述泵头之间。过滤网用于过滤制冷剂杂质。过滤网可以安装在泵头的外围,遮罩泵头,例如泵头安装在外壳内部的隔板上,过滤网也可以安装在隔板上,过滤网与隔板围设成包围空间,泵头在此包围空间内,这种架构的过滤网尺寸较小,只需 要满足遮挡泵头。其它实施方式中,过滤网可以为尺寸较大的网状结构,例如过滤网与外壳的内壁结合,过滤网将第一空间分隔为两部分,泵头位于过滤网的一侧,外壳上的进液口位于过滤网的另一侧。过滤网可以位于液面以下,也可以位于液面上方,只要从进液口流入第一空间的制冷剂可以经过过滤网即可。
一种可能的实现方式中,所述第一空间的储液量大于等于10升,通过对第一空间的储液量的具体的限定,可以清楚地限定第一空间所储存的制冷剂的量是用于整个制冷系统的储液量,第一空间的储液量远大于一般只用于输送制冷剂的制冷剂泵中所包含的制冷剂的量。
一种可能的实施方式中,制冷剂泵的外壳上还包括支路开口,支路开口连通第一空间和外壳的外部,支路开口可以位于(但不限于)第一空间重力方向的底部,支路开口用于与单向阀支路连接,本实施方式中,在外壳内不设置单向阀,将单向阀支路设置在外壳的外部,但是制冷系统的制冷液都会先流入第一空间,再选择性地流入泵头或单向阀支路。即,单向阀支路和泵主体并联在第一空间和蒸发器之间。
一种可能的实现方式中,所述制冷剂泵还包括用于驱动所述泵头的电机,所述电机设于所述第二空间内。由于第二空间和第一空间之间通过隔板相隔离,第一空间用于储存制冷剂,第一空间内的制冷剂的量较大,需要保持其存储环境温度稳定适宜,本实施方式特别将电机放置位置设计为与制冷剂隔离状态,以免电机工作发热会影响制冷剂存储环境的温度,若电机放在第一空间内,电机会直接浸泡在制冷剂中,电机工作发热,直接为制冷剂加温,可能会导致制冷剂的汽化。第二空间只是供制冷剂流经的路径,并不需要存储制冷剂,进入第二空间的制冷剂同时又从出液口排出。
第二方面,本申请提供一种数据中心制冷系统,包括冷凝器、蒸发器和连接在二者之间的制冷剂泵,所述数据中心制冷系统的制冷剂包括工作制冷剂和存储制冷剂,所述工作制冷剂在所述数据中心制冷系统的循环管路中,所述存储制冷剂存储在所述制冷剂泵的所述第一空间内。本申请提供的数据中心制冷系统不需要设置储液器,使用第一方面所述的制冷剂泵,输送制冷剂的同时,还可以储存制冷剂,不但解决了制冷剂泵的气蚀问题,还使得制冷系统整体架构简洁,占用空间小。
第三方面,本申请提供一种数据中心制冷系统,包括连接在冷凝器和蒸发器之间的制冷器泵,所述制冷器泵包括外壳、隔板和泵头,所述外壳设进液口和出液口,所述隔板设于所述外壳内部且与所述外壳共同形成并排设置且相互隔离的第一空间和第二空间,所述进液口连通所述第一空间,所述出液口连通所述第二空间,所述泵头连接至所述隔板且位于所述第一空间的重力方向的底部,所述泵头用于将所述第一空间的制冷剂输送至所述第二空间,所述进液口通过管路直接连接至所述冷凝器,所述第一空间用于储存所述数据中心制冷系统的制冷剂,以使所述数据中心制冷系统不额外设置储液器。
第三方面所述的数据中心制冷系统的有益效果与第二方面相同,不再赘述。
一种可能的实现方式中,所述隔板上设有单向阀,所述单向阀与所述泵头并联设置在所述第一空间和所述第二空间之间,所述单向阀位于所述第一空间的重力方向的底部。
本实施方式中,通过将单向阀和泵头均安装至隔板上,使得制冷剂泵外壳内部的结构配置简化合理,节约制冷剂泵的成本。而且不需要在制冷剂泵的外部增设并联支路,使得 数据中心制冷系统的结构也得到了简化。
一种可能的实现方式中,所述制冷剂泵还包括过滤网,所述过滤网连接至所述隔板且遮罩所述泵头。将过滤网固定至隔板,使得隔板成为制冷剂泵内的安装载体,承载了其中的大部分元件,包括泵头、单向阀、过滤网,这样的配置,使得制冷剂泵的结构简单,易于组装。
一种可能的实现方式中,所述制冷剂泵还包括液位传感器,所述液位传感器位于所述第一空间内。
一种可能的实现方式中,所述液位传感器位于所述过滤网的遮罩空间内,且位于所述泵头的入口位置处。本实施方式将液位传感器结合在过滤网的遮罩空间内,液位传感器周围的制冷剂为过滤后的制冷剂,纯净度好,有利于保障液位传感器的使用寿命。
一种可能的实现方式中,所述液位传感器位于所述过滤网的遮罩空间的外部,且靠近所述过滤网。液位传感器设置在过滤网的遮罩空间外部,使得它的安装和固定都比较方便。
一种可能的实现方式中,所述制冷剂泵还包括用于驱动所述泵头的电机,所述电机设于所述第二空间内。
一种可能的实现方式中,所述数据中心制冷系统还包括压缩机和旁路,所述压缩机和所述旁路并联连接在所述冷凝器和所述蒸发器之间,所述冷凝器、所述制冷剂泵的所述泵头、所述蒸发器和所述旁路共同构成第一循环路径,所述冷凝器、所述制冷剂泵的所述单向阀、所述蒸发器和所述压缩机共同构成第二循环路径。
附图说明
图1是本申请一种实施方式提供的数据中心制冷系统的示意图。
图2是本申请另一种实施方式提供的数据中心制冷系统的示意图。
图3是本申请一种实施方式提供的制冷剂泵的示意图。
图4是本申请一种实施方式提供的制冷剂泵的示意图。
图5是本申请一种实施方式提供的制冷剂泵的示意图。
图6是本申请一种实施方式提供的制冷剂泵的示意图。
图7是本申请一种实施方式提供的制冷剂泵的示意图。
图8是本申请一种实施方式提供的制冷剂泵的示意图。
图9是本申请一种实施方式提供的制冷剂泵的示意图。
图10是本申请一种实施方式提供的制冷剂泵的示意图。
图11是本申请一种实施方式提供的制冷剂泵的示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
图1所示为本申请一种实施方式提供的数据中心制冷系统的示意图,数据中心制冷系统包括冷凝器10、蒸发器20、压缩机30、旁路40、膨胀阀50和制冷剂泵60。压缩机30和旁路40通过管路并联连接在冷凝器10和蒸发器20之间,旁路40上包括单向阀42。制冷剂泵60亦连接在冷凝器10和蒸发器20之间,当环境温度低的情况下,制冷系统不需要 压缩机30压缩即可实现散热,此时,用制冷剂泵60提供动力,以实现节能的目的。本实施方式中,制冷剂泵60内设两条并联的支路,分别为泵主体支路和单向阀支路,泵主体包括泵头62和电机,泵头62和单向阀64并联设置,通过泵头62的制冷剂流道为泵主体支路,通过单向阀64的制冷剂流道为单向阀支路。所述冷凝器10、所述制冷剂泵60的所述泵头62、所述蒸发器20和所述旁路40共同构成第一循环路径,所述冷凝器10、所述制冷剂泵60的所述单向阀64、所述蒸发器20和所述压缩机30共同构成第二循环路径。第一循环路径和第二循环路径依需求使用,例如,环境温度较高时,需要使用压缩机30,数据中心制冷系统启动第二循环路径,环境温度较低的情况下,只用制冷剂泵60驱动制冷剂即可实现制冷功能,就可以启动第一循环路径。
图2所示为本申请另一种实施方式提供的数据中心制冷系统的示意图,与图1所示的实施方式的区别在于:本实施方式中制冷剂泵60内不设置单向阀,即制冷剂泵60内只有一条泵主体支路,在制冷剂泵60外部,增设一条单向阀支路70,单向阀支路70上设单向阀72,具体而言,制冷剂泵60的外壳上引出一个支路开口P,单向阀支路70的一端连接至支路开口P,单向阀支路70的另一端连接至蒸发器20,当泵主体工作的情况下,单向阀72关闭,制冷剂只从泵主体支路流动至蒸发器20,当泵主体不工作的情况下,制冷剂从冷凝器10进入制冷剂泵60内的储液空间,再从支路开口P流入单向阀支路70。所述冷凝器10、所述制冷剂泵60的储液空间、泵主体、所述蒸发器20和所述旁路40共同构成第一循环路径,所述冷凝器10、所述制冷剂泵60的储液空间、所述单向阀支路70、所述蒸发器20和所述压缩机30共同构成第二循环路径。此种架构下,单向阀支路70与旁路40可以为同样的管路形态,均通过单向阀连接在管路中实现。可以理解地,旁路40也可以不使用单向阀,可以使用其它的阀结构,例如,电磁阀。同样,单向阀支路70也可以用其它的阀结构替代单向阀。
图1和图2所示的两种实施方式提供的数据中心制冷系统均利用了制冷剂泵的储液空间,均不额外设置储液器。制冷剂泵60与冷凝器10之间的通过管路直接相连,没有设置储液器,但其中的制冷剂泵60均具有储液及为制冷剂提供动力两个功能,也就是说,数据中心制冷系统运行时多余的制冷剂储存在制冷剂泵60中。
参阅图3,制冷剂泵60包括外壳61、安装在外壳61内的泵头62及用于驱动泵头62的电机63。泵头62和电机63共同构成泵主体。
所述外壳61设进液口611和出液口612,外壳61为中空结构,进液口611和出液口612为外壳61上贯通外壳61内部空间和外壳61的外部的开口结构。所述外壳61内包括并排设置且相互隔离的第一空间R1和第二空间R2,进液口611位置连接制冷系统的管路,进液口611通过管路连接至冷凝器10,出液口612位置连接制冷系统的管路,出液口612通过管路连接至蒸发器20。进液口611与冷凝器10之间的管路及出液口612与蒸发器20之间的管路可以设置膨胀阀50,但不设置储液器,也就是说,制冷剂在从冷凝器10通过管路直接通过进液器进入外壳61的第一空间R1内。所述泵头62位于所述第一空间R1的重力方向的底部,所述泵头62用于将所述第一空间R1的制冷剂输送至所述第二空间R2,所述第一空间R1用于储存制冷系统的制冷剂,所述进液口611用于通过管路直接连接至所述制冷系统的冷凝器10,进液口611和冷凝器10之间不再额外设置储液器。
一种可能的实现方式中,所述第一空间R1的储液量大于等于10升,通过对第一空间R1的储液量的具体的限定,可以清楚地限定第一空间R1所储存的制冷剂的量是用于整个制冷系统的储液量,第一空间R1的储液量远大于一般只用于输送制冷剂的制冷剂泵60中所包含的制冷剂的量。
具体而言,外壳61包括顶壁613、底壁614和连接在顶壁613和底壁614之间的侧壁615,沿重力方向上,顶壁613和底壁614呈上下排布。
外壳61整体可以但不限于呈圆筒状、长方体状、球体状,顶壁613和底壁614可以为弧面结构,也可以为平面结构,同样,侧壁615也可以为平面或弧面结构,侧壁615可以包围形成圆柱状空间也可以包围形成方形空间。侧壁615和顶壁613之间可以形成明显的交界也可以共面,例如外壳61整体呈球体或半球体状时,顶壁613和侧壁615均为弧面,且曲率相同,以共同构成球面。
进液口611和出液口612的具体位置不限于某种实施方式,只要能保证制冷剂能通过进液口611进入第一空间R1及通过出液口612输出制冷剂泵60即可。根据第一空间R1和第二空间R2不同的位置布置架构,进液口611的位置可以位于顶壁613也可以设置在侧壁615或底壁614上,出液口612的位置可以设置在侧壁615也可以设置在底壁614或顶壁613上。
通过内置的隔板616实现将外壳61内的空间分隔为第一空间R1和第二空间R2,可以将隔板616边缘与外壳61的内表面密封连接,一种实施方式中,外壳61可以为一体式的结构,隔板616的边缘与外壳61内表面之间可以通过凹凸配合的方式连接,连接处可以设置密封胶或密封垫。其它实施方式中,外壳61可以分为两部分,隔板616可以与其中一部分外壳61一体成型,再将这两部分外壳61连接固定,例如可以通过焊接密封固定。
所述第一空间R1和所述第二空间R2沿重力方向上下排布。具体而言,通过将隔板616水平放置,即隔板616所在的平面近似水平面的方向,隔板616的四周与外壳61的侧壁615相连,外壳61的顶壁613和底壁614分布在隔板616相对的两侧(可以理解为重力方向上的上下两侧),顶壁613和隔板616之间为第一空间R1,隔板616和底壁614之间为第二空间R2。本实施方式中,通过将第一空间R1和第二空间R2在重力方向上呈上下分布,使得将泵头62设置在隔板616上的任意位置,都可以满足泵头62位于第一空间R1重力方向的底部,结构设计自由度高,更利于避免泵头62入口位置的气蚀现象。
本实施方式中,用于驱动所述泵头62的电机63设于所述第二空间R2内,电机63安装在底壁614上。由于第二空间R2和第一空间R1之间通过隔板616相隔离,第一空间R1用于储存制冷剂,第一空间R1内的制冷剂的量较大,需要保持其存储环境温度稳定适宜,本实施方式特别将电机63放置位置设计为与制冷剂隔离状态,以免电机63工作发热会影响制冷剂存储环境的温度,若电机63放在第一空间R1内,电机63会直接浸泡在制冷剂中,电机63工作发热,直接为制冷剂加温,可能会导致制冷剂的汽化。第二空间R2只是供制冷剂流经的路径,并不需要存储制冷剂,进入第二空间R2的制冷剂同时又从出液口612排出,将电机63放在第二空间R2也有利于制冷剂泵60整体架构的布局,第二空间R2的尺寸可以设计为稍大,而不只是用于输送制冷剂,还要容纳电机63,若第二空间R2位于第一空间R1重力方向的底部,电机63在底部,使底部重量占比提升,可以保证制冷剂泵60 整体结构的稳定。
可以理解地,其它实施方式中也可以将电机63放置在第一空间R1内,可以对电机63做防护,使电机63工作发的热不直接传递至第一空间R1内储存的制冷剂中,或者在第一空间R1内设置电机63放置的独立的空间,使得电机63与制冷剂分隔。其它实施方式中也可以将电机63放置在外壳61的外部,将电机63轴伸入外壳61内驱动泵头62,只要在电机63轴与外壳61结合处做好密封即可。
参阅图4,本申请一种实施方式中,制冷剂泵60的外壳61内,在入液口和出液口612之间形成两条并联设置的制冷剂流动的路径,其一为从入液口经过泵头62流至出液口612,其二为从入液口经过单向阀64流至出液口612。
具体而言,所述单向阀64与所述泵头62并联设置在所述第一空间R1和所述第二空间R2之间,所述单向阀64位于所述第一空间R1的重力方向的底部。本实施方式通过在第一空间R1和第二空间R2之间增设单向阀64,单向阀64可以实现制冷剂从第一空间R1流向第二空间R2。单向阀64形成与泵头62并联的支路,泵头62工作的情况下,第一空间R1的制冷液可以通过泵头62流动至第二空间R2,由于此状态下,第二空间R2为高压区,第一空间R1为低压区,由于第二空间R2的压力大于第一空间R1,单向阀64不能将低压区的液体输入高压区,单向阀64不工作。泵头62将制冷剂输送至第二空间R2后,在第二空间R2的制冷液通过外壳61的出液口612流出。当泵头62不工作的情况下,第一空间R1的压力大于第二空间R2的压力,单向阀64打开,使制冷液从第一空间R1流向第二空间R2,进入第二空间R2的制冷剂从外壳61的出液口612流出。
参阅图5,制冷剂泵60还包括液位传感器65和过滤网66。所述液位传感器65和过滤网66位于所述第一空间R1内。液位传感器65用于检测第一空间R1内的制冷剂的液面的位置,液位传感器65与位于外壳61外部的控制中心电连接,以为控制中心传送液面位置信息,当液面低于预设值时,泵头62具有气蚀的风险,控制中心控制泵头62停止工作,或者报警,提示工作人员补充制冷剂。此处所说的预设值可以以泵头62的入口所在的水平面为参考,液位传感器65可以位于为泵头62的入口所在水平面或高于泵头62的入口所在水平面的某个范围内。
所述液位传感器65所在的水平面高于所述泵头62的入口位置所在的水平面。将液位传感器65设于高于泵头62的入口位置,可以保证泵头62入口位置有充足的制冷剂,远离气蚀风险。而且液位传感器65也能够检测第一空间R1内的储液量,是否满足制冷系统的管路循环用量。
过滤网66位于所述进液口611与所述泵头62之间。过滤网66用于过滤杂质,保证进入泵头62的入口的制冷剂的质量。过滤网66可以安装在泵头62的外围,遮罩泵头62,例如泵头62安装在外壳61内部的隔板616上,过滤网66也可以安装在隔板616上,过滤网66与隔板616围设成包围空间,泵头62在此包围空间内,这种架构的过滤网66尺寸较小,只需要满足遮挡泵头62。
参阅图6,过滤网66遮罩泵头62的实施方式中,所述液位传感器65位于所述过滤网66的遮罩空间内,且位于所述泵头62的入口位置处。液位传感器65可以固定在过滤网66上,液位传感器65所在的水平面高于泵头62的入口所在的水平面。
参阅图7,过滤网66遮罩泵头62的实施方式中,所述液位传感器65位于所述过滤网66的遮罩空间的外部,且靠近所述过滤网66。液位传感器65可以固定在过滤网66上,也可以固定在外壳61内的支架上。
其它实施方式中,参阅图8,过滤网66可以为尺寸较大的网状结构,例如过滤网66与外壳61的内壁结合,过滤网66将第一空间R1分隔为两部分,泵头62位于过滤网66的一侧,外壳61上的进液口611位于过滤网66的另一侧。过滤网66可以位于液面以下,也可以位于液面上方,只要从进液口611流入第一空间R1的制冷剂可以经过过滤网66即可。图8所示的实施方式中,液位传感器65固定至外壳61的内壁,可以理解的,液位传感器65也可以固定至过滤网66上,或者液位传感器65也可以固定至外壳61内壁朝向第一空间R1内伸出的支架上。
参阅图9,一种可能的实现方式中,所述外壳61包括沿重力方向上下排布的顶壁613和底壁614,所述第一空间R1和所述第二空间R2均形成在所述顶壁613和所述底壁614之间,部分所述底壁614位于所述第一空间R1的底部,部分所述底壁614位于所述第二空间R2的底部。本实施方式中的第一空间R1和第二空间R2在水平方向上左右并排设置,可以理解为,通过将隔板616竖直放置,即隔板616所在的平面近似垂直于水平面的方向,隔板616的左右两侧分别为第一空间R1和第二空间R2,隔板616的顶部边缘连接至外壳61的顶壁613,隔板616的底部边缘连接至外壳61的底部。本实施方式中,泵头62安装在隔板616上,且靠近底壁614的位置。具体而言,单向阀64可以位于泵头62和底壁614之间,单向阀64也可以位于泵头62背离底壁614的一侧,只要保证单向阀64的位置在第一空间R1内的液面以下即可。
图9所示的实施方式中,进液口611和出液口612均设在侧壁615上,进液口611靠近顶壁613,出液口612靠近底壁614,当然进液口611和出液口612的位置也可以设置外壳61的其它的位置,本申请不做限制,只要能满足制冷剂的输入和输出即可。
如图5所示,一种可能的实现方式中,所述制冷剂泵60还包括设置在所述外壳61上的第一电接头617和第二电接头618。所述第一电接头617与所述这液位传感器65电连接,第一电接头617可以通过线缆与控制中心电连接,以使液位传感器65传输信号至控制中心。第二电接头618与电机63电连接,同样,第二电接头618也可以通过线缆与控制中心电连接。第一电接头617和第二电接头618位于外壳61的同侧,这样的架构方便接线。
图10和图11所示的实施例中,制冷剂泵60的外壳61上还设置支路开口P,支路开口P连通第一空间R1和外壳61的外部,用于连接单向阀支路(如图2所示的单向阀支路70)。支路开口P的结构形态可以与进液口611和出液口612的形态相同,其连接的单向阀支路70与泵主体之间的工作原理,参照前面对图2的描述,不再赘述。
以上对本申请实施例所提供的制冷剂泵60和数据中心制冷系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (19)

  1. 一种制冷剂泵,其特征在于,包括外壳和泵头,所述外壳设进液口和出液口,所述外壳内并排设置且相互隔离的第一空间和第二空间,所述第一空间用于储存制冷系统的制冷剂,所述进液口用于通过管路直接连接至所述制冷系统的冷凝器,所述泵头进口位于所述第一空间的重力方向的底部,所述泵头用于将所述第一空间的所述制冷剂输送至所述第二空间,所述第二空间的制冷剂通过所述出液口输出。
  2. 如权利要求1所述的制冷剂泵,其特征在于,所述第一空间和所述第二空间沿重力方向上下排布。
  3. 如权利要求1所述的制冷剂泵,其特征在于,所述外壳包括沿重力方向上下排布的顶壁和底壁,所述第一空间和所述第二空间均形成在所述顶壁和所述底壁之间,部分所述底壁位于所述第一空间的底部,部分所述底壁位于所述第二空间的底部。
  4. 如权利要求1-3任一项所述的制冷剂泵,其特征在于,所述制冷剂泵还包括单向阀,所述单向阀与所述泵头并联设置在所述第一空间和所述第二空间之间,所述单向阀进口位于所述第一空间的重力方向的底部。
  5. 如权利要求1-4任一项所述的制冷剂泵,其特征在于,所述制冷剂泵还包括液位传感器,所述液位传感器位于所述第一空间内。
  6. 如权利要求5所述的制冷剂泵,其特征在于,所述液位传感器所在的水平面高于所述泵头的入口位置所在的水平面。
  7. 如权利要求5或6所述的制冷剂泵,其特征在于,所述制冷剂泵还包括设置在所述外壳上的第一电接头,所述第一电接头与所述这液位传感器电连接。
  8. 如权利要求1-7任一项所述的制冷剂泵,其特征在于,所述制冷剂泵还包括过滤网,所述过滤网位于所述第一空间内,且位于所述进液口与所述泵头进口之间。
  9. 如权利要求1-8任一项所述的制冷剂泵,其特征在于,所述第一空间的储液量大于等于10升。
  10. 如权利要求1-9任一项所述的制冷剂泵,其特征在于,所述制冷剂泵还包括用于驱动所述泵头的电机,所述电机设于所述第二空间内。
  11. 一种数据中心制冷系统,其特征在于,包括冷凝器、蒸发器和连接在二者之间的如权利要求1至10任一项所述的制冷剂泵。
  12. 一种数据中心制冷系统,其特征在于,包括连接在冷凝器和蒸发器之间的制冷器泵,所述制冷器泵包括外壳、隔板和泵头,所述外壳设进液口和出液口,所述隔板设于所述外壳内部且与所述外壳共同形成并排设置且相互隔离的第一空间和第二空间,所述进液口连通所述第一空间,所述出液口连通所述第二空间,所述泵头连接至所述隔板且位于所述第一空间的重力方向的底部,所述泵头用于将所述第一空间的制冷剂输送至所述第二空间,所述进液口通过管路直接连接至所述冷凝器,所述第一空间用于储存所述数据中心制冷系统的制冷剂,以使所述数据中心制冷系统不额外设置储液器。
  13. 如权利要求12所述的数据中心制冷系统,其特征在于,所述隔板上设有单向阀,所述单向阀与所述泵头并联设置在所述第一空间和所述第二空间之间,所述单向阀位于所述第 一空间的重力方向的底部。
  14. 如权利要求12或13所述的数据中心制冷系统,其特征在于,所述制冷剂泵还包括过滤网,所述过滤网连接至所述隔板且遮罩所述泵头。
  15. 如权利要求14所述的数据中心制冷系统,其特征在于,所述制冷剂泵还包括液位传感器,所述液位传感器位于所述第一空间内。
  16. 如权利要求15所述的数据中心制冷系统,其特征在于,所述液位传感器位于所述过滤网的遮罩空间内,且位于所述泵头的入口位置处。
  17. 如权利要求15所述的数据中心制冷系统,其特征在于,所述液位传感器位于所述过滤网的遮罩空间的外部,且靠近所述过滤网。
  18. 如权利要求13-17任一项所述的数据中心制冷系统,其特征在于,所述制冷剂泵还包括用于驱动所述泵头的电机,所述电机设于所述第二空间内。
  19. 如权利要求13-18任一项所述的数据中心制冷系统,其特征在于,所述数据中心制冷系统还包括压缩机和旁路,所述压缩机和所述旁路并联连接在所述冷凝器和所述蒸发器之间,所述冷凝器、所述制冷剂泵的所述泵头、所述蒸发器和所述旁路共同构成第一循环路径,所述冷凝器、所述制冷剂泵的所述单向阀、所述蒸发器和所述压缩机共同构成第二循环路径。
PCT/CN2020/091111 2020-05-19 2020-05-19 制冷剂泵和数据中心制冷系统 WO2021232254A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080012421.XA CN113454339B (zh) 2020-05-19 2020-05-19 制冷剂泵和数据中心制冷系统
EP20920762.0A EP3934398B1 (en) 2020-05-19 2020-05-19 Refrigerant pump and data center refrigeration system
PCT/CN2020/091111 WO2021232254A1 (zh) 2020-05-19 2020-05-19 制冷剂泵和数据中心制冷系统
EP22213129.4A EP4219949A1 (en) 2020-05-19 2020-05-19 Refrigerant pump and data center cooling system
US17/990,076 US20230083147A1 (en) 2020-05-19 2022-11-18 Refrigerant pump and data center cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091111 WO2021232254A1 (zh) 2020-05-19 2020-05-19 制冷剂泵和数据中心制冷系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/990,076 Continuation US20230083147A1 (en) 2020-05-19 2022-11-18 Refrigerant pump and data center cooling system

Publications (1)

Publication Number Publication Date
WO2021232254A1 true WO2021232254A1 (zh) 2021-11-25

Family

ID=77808702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091111 WO2021232254A1 (zh) 2020-05-19 2020-05-19 制冷剂泵和数据中心制冷系统

Country Status (4)

Country Link
US (1) US20230083147A1 (zh)
EP (2) EP4219949A1 (zh)
CN (1) CN113454339B (zh)
WO (1) WO2021232254A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468945A1 (en) * 2010-12-27 2012-06-27 Electrolux Home Products Corporation N.V. Home laundry dryer with heat pump assembly
CN102721309A (zh) * 2012-07-18 2012-10-10 北京德能恒信科技有限公司 一种动力热管系统
CN102984924A (zh) * 2012-11-26 2013-03-20 北京德能恒信科技有限公司 一种数据中心散热方案
CN103261801A (zh) * 2010-12-28 2013-08-21 富士电机株式会社 利用外气的空调系统、其内气单元、外气单元、层积体
CN210202332U (zh) * 2019-06-05 2020-03-27 苏州浪潮智能科技有限公司 一种节能冷却机组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221661A (en) * 1961-12-18 1965-12-07 Electronic Specialty Co Low-suction head pumps
US6145332A (en) * 1999-06-16 2000-11-14 Dte Energy Technologies, Inc. Apparatus for protecting pumps against cavitation
JP5505356B2 (ja) * 2011-03-31 2014-05-28 株式会社豊田自動織機 電動圧縮機
DE102011121745A1 (de) * 2011-12-20 2013-06-20 Airbus Operations Gmbh Speicheranordnung mit einer in einen Speicherbehälter integrierten Fördereinrichtung
CN103032338B (zh) * 2012-10-30 2015-05-27 西安交通大学 一种制冷剂泵
CN104976112B (zh) * 2014-04-01 2018-12-18 松下知识产权经营株式会社 液体用泵和兰金循环装置
CN206377872U (zh) * 2016-11-24 2017-08-04 南京佳力图机房环境技术股份有限公司 一种新型自然冷源制冷系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468945A1 (en) * 2010-12-27 2012-06-27 Electrolux Home Products Corporation N.V. Home laundry dryer with heat pump assembly
CN103261801A (zh) * 2010-12-28 2013-08-21 富士电机株式会社 利用外气的空调系统、其内气单元、外气单元、层积体
CN102721309A (zh) * 2012-07-18 2012-10-10 北京德能恒信科技有限公司 一种动力热管系统
CN102984924A (zh) * 2012-11-26 2013-03-20 北京德能恒信科技有限公司 一种数据中心散热方案
CN210202332U (zh) * 2019-06-05 2020-03-27 苏州浪潮智能科技有限公司 一种节能冷却机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3934398A4 *

Also Published As

Publication number Publication date
EP3934398A1 (en) 2022-01-05
CN113454339B (zh) 2023-02-03
EP3934398B1 (en) 2023-03-01
US20230083147A1 (en) 2023-03-16
EP3934398A4 (en) 2022-03-16
CN113454339A (zh) 2021-09-28
EP4219949A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2016192538A1 (zh) 高负落差空调
CN116683093A (zh) 浸没式液冷系统及储能系统
WO2021232254A1 (zh) 制冷剂泵和数据中心制冷系统
US20230152017A1 (en) Refrigeration System and Control Method of Refrigeration System
CN208804790U (zh) 散热器和具有其的电控组件、空调器
CN216814659U (zh) 制冷系统
CN116461284A (zh) 热管理模块
CN114370674A (zh) 一种空调机组
JP3702218B2 (ja) ヒートポンプ式給湯装置
KR101893846B1 (ko) 복합 대공화기 냉방용 실외기 장치
JP2002310458A (ja) 空気調和装置
JP2003097881A (ja) コンテナ用冷凍装置
CN216844921U (zh) 一种空调机组
CN207006613U (zh) 一种高度降低的制冷机组的底部换热机构
CN220062203U (zh) 暖通设备
CN219919577U (zh) 空调制冷机房机组
CN210593471U (zh) 罐式集装箱
CN217785527U (zh) 一种具备冷凝器端后管路防液封结构的空调系统
CN220053440U (zh) 水壶、水侧组件、热管理模块和车辆
WO2023134505A1 (zh) 冷媒存储装置和空气调节设备
CN220601666U (zh) 一种储能制冷机组
CN112432258B (zh) 冷媒截断装置和空调系统
CN112074164B (zh) 冷却装置及制冷系统
CN220253336U (zh) 浸没式液冷系统及储能系统
CN220017928U (zh) 一种实验室用食品调质机的冷却系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020920762

Country of ref document: EP

Effective date: 20210901

NENP Non-entry into the national phase

Ref country code: DE