WO2016192538A1 - 高负落差空调 - Google Patents

高负落差空调 Download PDF

Info

Publication number
WO2016192538A1
WO2016192538A1 PCT/CN2016/082804 CN2016082804W WO2016192538A1 WO 2016192538 A1 WO2016192538 A1 WO 2016192538A1 CN 2016082804 W CN2016082804 W CN 2016082804W WO 2016192538 A1 WO2016192538 A1 WO 2016192538A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative drop
air conditioner
module
indoor unit
outdoor unit
Prior art date
Application number
PCT/CN2016/082804
Other languages
English (en)
French (fr)
Inventor
曹维兵
黄志超
黄桂良
高亮
Original Assignee
深圳市艾特网能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市艾特网能有限公司 filed Critical 深圳市艾特网能有限公司
Publication of WO2016192538A1 publication Critical patent/WO2016192538A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to the field of refrigeration and air conditioning, and more particularly to a high negative drop air conditioner.
  • Air-cooled air conditioners account for the majority of computer room air conditioners.
  • Air-cooled engine room air conditioners generally include indoor units and outdoor units, and compressors and throttling units are placed in the indoor unit.
  • the position where the outdoor unit is installed below the indoor unit is called the negative drop difference (hereinafter referred to as the negative drop difference application); the position where the outdoor unit is installed above the indoor unit is called the positive drop (hereinafter referred to as the positive drop application).
  • the application of the negative drop of the ordinary air conditioner needs to be less than or equal to 5 m.
  • the main factor is the static pressure loss caused by the negative drop, and the subcooling degree of the refrigerant before the throttle unit of the indoor unit cannot be guaranteed.
  • the refrigerant liquid in front of the throttling component must have a certain degree of subcooling to avoid the flashing of the refrigerant due to pressure loss, thereby ensuring normal and stable operation of the throttling component.
  • the technical problem to be solved by the present invention is to provide a high negative drop air conditioner.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a high negative drop air conditioner, including an indoor unit and an outdoor unit connected through a pipeline; the outdoor unit includes a condenser, and the indoor unit includes a throttling a component; further comprising a negative drop module connected between the indoor unit and the outdoor unit;
  • the negative drop module includes:
  • a liquid storage tank is respectively connected to the indoor unit and the outdoor unit for recycling, storing and providing a liquid refrigerant
  • a refrigerant pump is connected between the liquid storage tank and the indoor unit to provide a corresponding lift for the liquid refrigerant at the outlet of the condenser.
  • the negative drop module further includes a pressure sensor and a temperature sensor disposed at a front end of the throttle member for providing a control signal to the refrigerant pump. [0010] In the high negative drop air conditioner of the present invention, the negative drop module further includes an electric control box;
  • the electric control box includes a box body, and a PID control module disposed in the box body; the input end of the PID control module is electrically connected to the pressure sensor and the temperature sensor, and the PID control module is The output is electrically connected to the refrigerant pump.
  • the electric control box further includes a manual control module disposed in the casing, and the manual control module is electrically connected to the refrigerant pump.
  • the negative drop module further includes a negative drop check valve disposed in parallel on the circuit of the refrigerant pump.
  • the negative drop module is disposed outside the indoor unit and the outdoor unit
  • the negative drop module includes a casing; the liquid storage tank, the refrigerant pump, the electric control box, and the one-way valve are all disposed in the casing, and the electric control box is located in the Above the reservoir and the refrigerant pump.
  • the negative drop module is placed at the same vertical height as the outdoor unit.
  • the negative drop module is integrated in the outdoor unit.
  • a ball valve is provided at a connection between the negative drop module and the indoor unit and the outdoor unit.
  • a dry filter is disposed at a junction of the negative drop module and the outdoor unit, and the dry filter is located at a rear end of the ball valve.
  • the refrigerant pump added in the negative drop module between the indoor unit and the outdoor unit can provide a corresponding lift for the liquid refrigerant at the outlet of the condenser, Therefore, the corresponding drop can be overcome, and the liquid refrigerant at the inlet of the throttle unit of the indoor unit can be ensured to have sufficient subcooling and sufficient pressure to ensure sufficient refrigerant circulation and refrigerant reliability of the refrigeration system.
  • FIG. 1 is a block diagram showing the structure of a high negative drop air conditioner in an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of an electrical control box of a negative drop module according to an embodiment of the present invention
  • FIG. 3 is a perspective structural view of a negative drop module according to an embodiment of the present invention.
  • FIG. 4 is a front elevational structural view of the negative drop module of FIG. 3; [0024] FIG.
  • FIG. 4 shows a high negative drop air conditioner in the present invention, which adds a negative drop module between the indoor unit and the outdoor unit of the conventional computer room air conditioner, in the negative drop application, outdoor
  • the machine is placed below the indoor unit, and the negative drop module is placed at the same height as the outdoor unit.
  • the high-negative drop air conditioner is also applicable to the common air-cooled air conditioner.
  • FIG. 1 is a block diagram showing the structure of a high negative drop air conditioner in an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the construction of an electric control box of a negative drop module in an embodiment of the present invention.
  • the high negative drop air conditioner includes an indoor unit 1, an outdoor unit 2, and a negative drop module 3.
  • the indoor unit 1 and the outdoor unit 2 are connected by a pipe, and the negative drop module 3 is connected between the indoor unit 1 and the outdoor unit 2.
  • the indoor unit 1 includes a throttle unit 11, a vaporizer 12, a low pressure sensor 13, and a compressor 14 which are sequentially connected
  • the outdoor unit 2 includes a check valve 21, a high pressure sensor 22, a condenser 23, and the like which are sequentially connected.
  • the negative drop module 3 includes a liquid storage tank 31 connected to the indoor unit 1 and the outdoor unit 2, and a refrigerant pump 32 connected between the liquid storage tank 31 and the indoor unit 1.
  • the liquid storage tank 31 is mainly used for recovering, storing and supplying liquid refrigerant.
  • the refrigerant pump 32 is primarily used to provide a corresponding lift for the liquid refrigerant exiting the condenser 23. Because the refrigerant liquid in front of the throttling device of the indoor unit 1 must have a certain degree of subcooling In order to avoid the flashing of the refrigerant due to the pressure loss, the normal and stable operation of the expansion valve can be ensured.
  • the refrigerant pump 32 added to the negative drop module 3 between the indoor unit 1 and the outdoor unit 2 can provide a corresponding lift for the liquid refrigerant at the outlet of the condenser 23, thereby overcoming the corresponding drop and ensuring
  • the liquid refrigerant at the inlet of the throttle unit 11 of the indoor unit 1 has sufficient subcooling and sufficient pressure to ensure sufficient refrigerant circulation and refrigerant reliability of the refrigeration system.
  • the negative drop module 3 further includes a pressure sensor 5 and a temperature sensor 4 disposed at the front end of the throttle member 11.
  • the pressure sensor 5 and temperature sensor 4 are primarily used to provide a control signal to the refrigerant pump 32.
  • the negative drop module 3 further includes an electrical control box 34.
  • the electric control box 3 4 includes a box body, and a PID control module 341 disposed in the box body; the input end of the PID control module 341 is electrically connected to the pressure sensor 5 and the temperature sensor 4, and the output of the PID control module 341 is The end is electrically connected to the refrigerant pump 32.
  • the pressure sensor 5, the temperature sensor 4 and the PID control module 341 are all arranged to realize automatic control of the refrigerant pump 32 in the negative drop module 3 of the present invention, that is, the refrigerant pump is automatically controlled by PID control.
  • the output mode of 32 is as follows:
  • the pressure sensor 5 disposed before the throttle unit 11 of the indoor unit 1 feeds back the pressure value P 1 ; the temperature sensor 4 disposed before the throttle unit 11 of the indoor unit 1 feeds back the temperature value T 1 ;
  • a target degree of subcooling Ts is preset in the PID control module 341 with an accuracy of 1 degree.
  • Ta does not operate in the range of [+1, -1] of Ts
  • Ta exceeds this accuracy range, it is detected every 10s, Ta> Ts ⁇ , and the output of the refrigerant pump 32 is lowered by the PID control module 341, so that It enters the accuracy range; Ta ⁇ Ts ⁇ , the output of the refrigerant pump 32 is increased by the PI D control module 341 to be within the accuracy range.
  • the automatic control of the output mode of the refrigerant pump 32 in the present invention can also adopt other common feedback control methods.
  • the feedback variable of the above PID control method is the temperature and pressure of the front end of the throttle unit 11, but the possibility of adopting other feedback variables is not excluded.
  • the electrical control box 34 further includes a manual control module 342 disposed in the housing.
  • the manual control module 342 is electrically connected to the refrigerant pump 32.
  • the main function of the manual control module 342 is to realize the manual control of the output mode of the refrigerant pump 32, and the specific principle is as follows:
  • the refrigerant pump 32 head is manually set by the manual control module 342, such as 4
  • the Om negative drop installation site can set the lift of the refrigerant pump 32 to 400 kPa.
  • the selection of the above-described refrigerant pump 32 is diverse, and the refrigerant pump 32 of the present invention preferably uses a geared pump, which can provide a higher lift at a lower power, thereby Achieve higher negative drop applications.
  • the high negative drop air conditioner can also control the range of the negative drop by controlling the refrigerant pump 32 to adapt to the situation where the negative drop and the low outdoor temperature cooling are present.
  • the high negative drop air conditioner can increase the energy efficiency ratio of the lower ambient temperature ⁇ refrigeration system.
  • the negative drop module 3 further includes a negative drop check valve 33 disposed in parallel on the circuit of the refrigerant pump 32.
  • the main function of the negative drop check valve 33 is to ensure that the refrigeration system can operate normally without the need for a pump output.
  • the negative drop module 3 when the negative drop module 3 is disposed outside the indoor unit 1 and the outdoor unit 2, the negative drop module 3 includes a casing 35; the liquid storage tank 31, the refrigerant The pump 32, the electric control box 34 and the check valve 21 are both disposed in the housing 35, and the electric control box 34 is located above the liquid storage tank 31 and the refrigerant pump 32. And the negative drop module 3 further includes an inlet pipe 36 and an outlet pipe 37 extending from the casing 35.
  • the inlet pipe 36 is provided with two inlets extending from the casing 35, and the outlet and the inlet of the inlet pipe 36
  • the liquid pipe is connected;
  • the liquid discharge pipe 37 is provided with two outlets extending from the casing 35, and the inlet of the liquid discharge pipe 37 is in communication with the refrigerant pump 32.
  • the two sides of the housing 35 of the negative drop module 3 are respectively provided with a set of inlet and outlet, and the field installation ⁇ can flexibly select and use the inlet and outlet of either side to connect with the indoor unit 1 and the outdoor unit 2 according to the actual installation environment. .
  • a set of inlets and outlets that are not in use are sealed with a seal.
  • the negative drop module 3 is integrated in a cabinet-type structural member, and can be sent as a single accessory to the indoor unit 1 and the outdoor unit 2 of the conventional computer room air conditioner to the installation site, so that the present invention is high.
  • the transportation and installation of negative drop air conditioners is more convenient and quicker.
  • independent negative drop module 3 and the outdoor unit 2 should be placed at the same vertical height to improve the reliability of use.
  • the negative drop module 3 can also be integrated in the outdoor unit 2, so that the high negative drop air conditioner of the present invention
  • the overall footprint is smaller. After the specific installation, the existing installation methods and steps can be used, thereby further saving installation time and learning costs.
  • the negative drop module 3 and the indoor unit 1 and the outdoor unit 2 are each provided with a ball valve 6
  • a ball valve 6 is also provided at the junction of the indoor unit 1 and the outdoor unit 2.
  • connection between the negative drop module 3 and the outdoor unit 2 is further provided with a drying filter 7, which is located at the rear end of the ball valve 6.
  • a drying filter 7 which is located at the rear end of the ball valve 6.
  • the throttling member 11 of the indoor unit 1 is also provided with a dry filter.
  • a solenoid valve 8 and a sight glass 9 are provided in front of the throttle member 11 of the indoor unit 1.
  • the indoor unit 1 and the outdoor unit 2 of the common air-cooled air conditioner and the computer room air conditioner have various structures, but one or more of the above-described arbitrary structures are added between the indoor unit 1 and the outdoor unit 2
  • the negative drop module 3, to constitute a high negative drop air conditioner, is within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种高负落差空调,其包括通过管道连接的室内机(1)和室外机(2);该室外机(2)包括冷凝器(23),该室内机(1)包括节流部件(11);其还包括连接在该室内机(1)与该室外机(2)之间的负落差模块(3);该负落差模块(3)包括:储液罐(31),分别与该室内机(1)与该室外机(2)连接,用于回收、存储并提供液态制冷剂;制冷剂泵(32),连接在该储液罐(31)与该室内机(1)之间,用于为该冷凝器(23)出口的液态制冷剂提供相应扬程。该负落差模块中的制冷剂泵就能够为冷凝器出口的液态制冷剂提供相应扬程,从而可以克服相应落差,保证室内机的节流部件入口的液态制冷剂有足够的过冷度和足够的压力,确保制冷系统有足够的制冷剂循环量和制冷剂可靠性。

Description

高负落差空调
技术领域
[0001] 本发明涉及制冷空调领域, 尤其是涉及一种高负落差空调。
背景技术
[0002] 风冷型空调在机房空调中占了绝大部分的比例, 风冷机房空调一般包含室内机 和室外机, 压缩机和节流部件置于室内机中。 室外机安装在室内机以下的位置 称之为负落差 (下称负落差应用) ; 室外机安装在室内机以上的位置称之为正 落差 (下称正落差应用) 。
[0003] 目前, 普通空调的负落差应用需要小于等于 5m, 主要因素由于负落差带来的 静压压力损失, 不能保证室内机的节流部件前制冷剂的过冷度。 但是, 节流部 件前制冷剂液体必须要有一定的过冷度, 才能避免由于压力损失带来的制冷剂 闪发, 从而保证节流部件的正常、 稳定的工作。
技术问题
[0004] 本发明要解决的技术问题在于, 提供一种高负落差空调。
问题的解决方案
技术解决方案
[0005] 本发明解决其技术问题所采用的技术方案是: 构造一种高负落差空调, 包括通 过管道连接的室内机和室外机; 所述室外机包括冷凝器, 所述室内机包括节流 部件; 还包括连接在所述室内机与所述室外机之间的负落差模块;
[0006] 所述负落差模块包括:
[0007] 储液罐, 分别与所述室内机与所述室外机连接, 用于回收、 存储并提供液态制 冷剂;
[0008] 制冷剂泵, 连接在所述储液罐与所述室内机之间, 用于为所述冷凝器出口的液 态制冷剂提供相应扬程。
[0009] 本发明的高负落差空调中, 所述负落差模块还包括设置在所述节流部件前端、 用于为制冷剂泵提供控制信号的压力传感器和温度传感器。 [0010] 本发明的高负落差空调中, 所述负落差模块还包括电控箱;
[0011] 所述电控箱包括箱体, 以及设置在所述箱体内的 PID控制模块; 所述 PID控制模 块的输入端与所述压力传感器和温度传感器电性连接, 所述 PID控制模块的输出 端与所述制冷剂泵电性连接。
[0012] 本发明的高负落差空调中, 所述电控箱还包括设置在所述箱体内的手动控制模 块, 所述手动控制模块与所述制冷剂泵电性连接。
[0013] 本发明的高负落差空调中, 所述负落差模块还包括并联设置在所述制冷剂泵的 回路上的负落差单向阀。
[0014] 本发明的高负落差空调中, 所述负落差模块设置在所述室内机和室外机的外部
, 所述负落差模块包括壳体; 所述储液罐、 所述制冷剂泵、 所述电控箱和所述 单向阀均设置在所述壳体内, 且所述电控箱位于所述储液罐和所述制冷剂泵的 上方。
[0015] 本发明的高负落差空调中, 所述负落差模块与所述室外机在相同的垂直高度放 置。
[0016] 本发明的高负落差空调中, 所述负落差模块集成在所述室外机内。
[0017] 本发明的高负落差空调中, 所述负落差模块与所述室内机和所述室外机的连接 处均设置有球阀。
[0018] 本发明的高负落差空调中, 所述负落差模块与所述室外机的连接处还设置有干 燥过滤器, 所述干燥过滤器位于所述球阀的后端。
发明的有益效果
有益效果
[0019] 实施本发明的技术方案, 至少具有以下的有益效果: 加设在室内机与室外机之 间的负落差模块中的制冷剂泵就能够为冷凝器出口的液态制冷剂提供相应扬程 , 从而可以克服相应落差, 保证室内机的节流部件入口的液态制冷剂有足够的 过冷度和足够的压力, 确保制冷系统有足够的制冷剂循环量和制冷剂可靠性。 对附图的简要说明
附图说明
[0020] 下面将结合附图及实施例对本发明作进一步说明, 附图中: [0021] 图 1是本发明的一实施例中的高负落差空调的结构框图;
[0022] 图 2是本发明的一实施例中的负落差模块的电控箱的结构框图;
[0023] 图 3是本发明的一实施例中的负落差模块的立体结构示意图;
[0024] 图 4是图 3中的负落差模块的正视结构示意图;
[0025] 其中, 1、 室内机; 11、 节流部件; 12、 蒸发器; 13、 低压传感器; 14、 压缩 机; 2、 室外机; 21、 单向阀; 22、 高压传感器; 23、 冷凝器; 3、 负落差模块 ; 31、 储液罐; 32、 制冷剂泵; 33、 负落差单向阀; 34、 电控箱; 341、 PID控 制模块; 342、 手动控制模块; 35、 壳体; 36、 进液管; 37、 出液管; 4、 温度 传感器; 5、 压力传感器; 6、 球阀; 7、 干燥过滤器; 8、 电磁阀; 9、 视液镜。 实施该发明的最佳实施例
本发明的最佳实施方式
[0026] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0027] 图 1至图 4示出了本发明中的一种高负落差空调, 该空调是在传统机房空调的室 内机和室外机之间增加了负落差模块, 在负落差应用吋, 室外机低于室内机放 置, 负落差模块与室外机在相同高度放置。 且该高负落差空调除了适用于传统 机房空调外, 常见的风冷型空调也同样适用。
[0028] 图 1是本发明的一实施例中的高负落差空调的结构框图。 图 2是本发明的一实施 例中的负落差模块的电控箱的结构框图。 图 3是本发明的一实施例中的负落差模 块的立体结构示意图。 图 4是图 3中的负落差模块的正视结构示意图。
[0029] 如图 1所示, 该高负落差空调包括室内机 1、 室外机 2和负落差模块 3。 该室内机 1和室外机 2通过管道连接, 该负落差模块 3连接在该室内机 1与该室外机 2之间。 一般情况下, 室内机 1包括依次连接的节流部件 11、 蒸发器 12、 低压传感器 13和 压缩机 14等, 室外机 2包括依次连接的单向阀 21、 高压传感器 22和冷凝器 23等。
[0030] 该负落差模块 3包括分别与该室内机 1与该室外机 2连接的储液罐 31, 以及连接 在该储液罐 31与该室内机 1之间的制冷剂泵 32。 该储液罐 31主要用于回收、 存储 并提供液态制冷剂。 而该制冷剂泵 32主要用于为为冷凝器 23出口的液态制冷剂 提供相应扬程。 因为室内机 1的节流装置前的制冷剂液体必须要有一定的过冷度 , 才能避免由于压力损失带来的制冷剂闪发, 从而保证膨胀阀的正常、 稳定的 工作。
[0031] 因此, 加设在室内机 1与室外机 2之间的负落差模块 3中的制冷剂泵 32就能够为 冷凝器 23出口的液态制冷剂提供相应扬程, 从而可以克服相应落差, 保证室内 机 1节流部件 11入口的液态制冷剂有足够的过冷度和足够的压力, 确保制冷系统 有足够的制冷剂循环量和制冷剂可靠性。
[0032] 再参阅图 1至图 2, 该负落差模块 3还包括设置在该节流部件 11前端的压力传感 器 5和温度传感器 4。 该压力传感器 5和温度传感器 4主要用于为制冷剂泵 32提供 控制信号。 进一步地, 如图 2所示, 该负落差模块 3还包括电控箱 34。 该电控箱 3 4包括箱体, 以及设置在该箱体内的 PID控制模块 341 ; 该 PID控制模块 341的输入 端与该压力传感器 5和温度传感器 4电性连接, 该 PID控制模块 341的输出端与该 制冷剂泵 32电性连接。
[0033] 该压力传感器 5、 温度传感器 4和 PID控制模块 341的设置均是为了实现本发明的 负落差模块 3中的制冷剂泵 32的自动控制, 即通过 PID控制自动的控制该制冷剂 泵 32的输出方式, 其具体原理如下:
[0034] 设置在室内机 1节流部件 11之前的压力传感器 5反馈压力值 P 1 ; 设置在室内机 1 节流部件 11之前的温度传感器 4反馈温度值 T 1 ;
[0035] PID控制模块 341可通过预先输入的制冷剂属性表査询出 对应的制冷剂饱和温 度 T 0 , 并计算实际过冷度 Ta=T o-T 1
[0036] PID控制模块 341中会预先设定一个目标过冷度 Ts, 精度为 1度。 当 Ta在 Ts的 [+1 ,-1]范围内不做动作, 当 Ta超过此精度范围, 每 10s检测一次, Ta〉 Ts吋, 通过 PI D控制模块 341降低制冷剂泵 32的输出, 使其进入精度范围内; Ta<Ts吋, 通过 PI D控制模块 341提高制冷剂泵 32的输出, 使其进入精度范围内。
[0037] 当然, 除了采用上述的 PID控制的自动控制方法外, 本发明中的制冷剂泵 32的 输出方式的自动控制还可以采用其他的常见的反馈控制的方法。 且上述 PID控制 方法的反馈变量为节流部件 11前端的温度和压力, 但不排除采用其他反馈变量 的可能性。
[0038] 再参阅图 1至图 2, 该电控箱 34还包括设置在该箱体内的手动控制模块 342, 该 手动控制模块 342与该制冷剂泵 32电性连接。 该手动控制模块 342的主要作用在 于实现手动控制制冷剂泵 32的输出方式, 其具体原理如下:
[0039] 在现场安装的过程中, 通过该手动控制模块 342手动设置制冷剂泵 32扬程, 如 4
Om负落差安装现场, 可以设定制冷剂泵 32的扬程为 400kpa。
[0040] 需要说明的是, 上述制冷剂泵 32的选择具有多样性, 本发明中的制冷剂泵 32优 选的使用齿轮传动泵, 其在更小的功率情况下能提供更高的扬程, 从而达到更 高负落差应用。
[0041] 综上, 该高负落差空调还可通过控制制冷剂泵 32来控制负落差的范围, 以适应 于负落差和低室外温度制冷同吋存在的情况。 具体的, 该高负落差空调可以提 高较低环境温度吋制冷系统的能效比。
[0042] 再参阅图 1, 该负落差模块 3还包括并联设置在该制冷剂泵 32的回路上的负落差 单向阀 33。 该负落差单向阀 33的主要作用在于保证在无需泵输出吋, 制冷系统 还能够正常运转。
[0043] 如图 3至图 4所示, 当该负落差模块 3设置在该室内机 1和室外机 2的外部, 该负 落差模块 3包括壳体 35 ; 该储液罐 31、 该制冷剂泵 32、 该电控箱 34和该单向阀 21 均设置在该壳体 35内, 且该电控箱 34位于该储液罐 31和该制冷剂泵 32的上方。 且该负落差模块 3还包括伸出该壳体 35的进液管 36和出液管 37, 该进液管 36设置 有伸出壳体 35的两个入口, 进液管 36的出口与储液管连通; 该出液管 37设置有 伸出壳体 35的两个出口, 出液管 37的入口与制冷剂泵 32连通。 则该负落差模块 3 的壳体 35的两侧分别设置有一组进出口, 现场安装吋, 能够根据实际的安装环 境, 灵活的选择使用任意一侧的进出口与室内机 1和室外机 2连接。 不使用的一 组进出口使用密封件密封即可。
[0044] 而且, 将负落差模块 3集成在一个柜型结构件内, 可以作为一个单独的附件与 传统机房空调的室内机 1和室外机 2分幵发送至安装地点, 使得本发明中的高负 落差空调的运输和安装更加的方便快捷。
[0045] 需要说明的是, 独立的负落差模块 3与该室外机 2应在相同的垂直高度放置, 以 提高使用的可靠性。
[0046] 当然, 该负落差模块 3还可以集成在该室外机 2内, 使得本发明的高负落差空调 的整体占用空间更小。 具体安装吋, 能沿用现有的安装方法和步骤, 从而进一 步地节省安装吋间和学习成本。
[0047] 再参阅图 1, 该负落差模块 3与该室内机 1和该室外机 2的连接处均设置有球阀 6
。 且室内机 1与室外机 2的连接处也设置有球阀 6。
[0048] 进一步地, 该负落差模块 3与该室外机 2的连接处还设置有干燥过滤器 7, 该干 燥过滤器 7位于该球阀 6的后端。 且室内机 1的节流部件 11前也设置有干燥过滤器
7, 另外, 室内机 1的节流部件 11前还设置有电磁阀 8和视液镜 9等。
[0049] 常见的风冷型空调和机房空调的室内机 1和室外机 2的结构多种多样, 但通过在 室内机 1和室外机 2之间增加包含上述任意结构中的一种或几种的负落差模块 3, 以构成的高负落差空调均在本发明的保护范围内。
[0050] 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说, 本发明可以有各种更改、 组合和变化。 凡在本发明的精神和原 则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。

Claims

权利要求书
一种高负落差空调, 包括通过管道连接的室内机 (1) 和室外机 (2) ; 所述室外机 (2) 包括冷凝器 (23) , 所述室内机 (1) 包括节流部 件 (11) ; 其特征在于, 还包括连接在所述室内机 (1) 与所述室外 机 (2) 之间的负落差模块 (3) ;
所述负落差模块 (3) 包括:
储液罐 (31) , 分别与所述室内机 (1) 与所述室外机 (2) 连接, 用 于回收、 存储并提供液态制冷剂;
制冷剂泵 (32) , 连接在所述储液罐 (31) 与所述室内机 (1) 之间 , 用于为所述冷凝器 (23) 出口的液态制冷剂提供相应扬程。
根据权利要求 1所述的高负落差空调, 其特征在于, 所述负落差模块
(3) 还包括设置在所述节流部件 (11) 前端、 用于为制冷剂泵 (32 ) 提供控制信号的压力传感器 (5) 和温度传感器 (4) 。
根据权利要求 2所述的高负落差空调, 其特征在于, 所述负落差模块
(3) 还包括电控箱 (34) ;
所述电控箱 (34) 包括箱体, 以及设置在所述箱体内的 PID控制模块
(341) ; 所述 PID控制模块 (341) 的输入端与所述压力传感器 (5 ) 和温度传感器 (4) 电性连接, 所述 PID控制模块 (341) 的输出端 与所述制冷剂泵 (32) 电性连接。
根据权利要求 3所述的高负落差空调, 其特征在于, 所述电控箱 (34 ) 还包括设置在所述箱体内的手动控制模块 (342) , 所述手动控制 模块 (342) 与所述制冷剂泵 (32) 电性连接。
根据权利要求 3所述的高负落差空调, 其特征在于, 所述负落差模块 (3) 还包括并联设置在所述制冷剂泵 (32) 的回路上的负落差单向 阀 (33) 。
根据权利要求 5所述的高负落差空调, 其特征在于, 所述负落差模块 (3) 设置在所述室内机 (1) 和室外机 (2) 的外部, 所述负落差模 块 (3) 包括壳体 (35) ; 所述储液罐 (31) 、 所述制冷剂泵 (32) 、 所述电控箱 (34) 和所述单向阀 (21) 均设置在所述壳体 (35) 内 , 且所述电控箱 (34) 位于所述储液罐 (31) 和所述制冷剂泵 (32) 的上方。
[权利要求 7] 根据权利要求 6所述的高负落差空调, 其特征在于, 所述负落差模块
(3) 与所述室外机 (2) 在相同的垂直高度放置。
[权利要求 8] 根据权利要求 5所述的高负落差空调, 其特征在于, 所述负落差模块
(3) 集成在所述室外机 (2) 内。
[权利要求 9] 根据权利要求 1至 8任一项所述的高负落差空调, 其特征在于, 所述负 落差模块 (3) 与所述室内机 (1) 和所述室外机 (2) 的连接处均设 置有球阀 (6) 。
[权利要求 10] 根据权利要求 8所述的高负落差空调, 其特征在于, 所述负落差模块
(3) 与所述室外机 (2) 的连接处还设置有干燥过滤器 (7) , 所述 干燥过滤器 (7) 位于所述球阀 (6) 的后端。
PCT/CN2016/082804 2015-06-02 2016-05-20 高负落差空调 WO2016192538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510296473.5 2015-06-02
CN201510296473.5A CN104964342A (zh) 2015-06-02 2015-06-02 高负落差空调

Publications (1)

Publication Number Publication Date
WO2016192538A1 true WO2016192538A1 (zh) 2016-12-08

Family

ID=54218396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082804 WO2016192538A1 (zh) 2015-06-02 2016-05-20 高负落差空调

Country Status (2)

Country Link
CN (1) CN104964342A (zh)
WO (1) WO2016192538A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964342A (zh) * 2015-06-02 2015-10-07 深圳市艾特网能有限公司 高负落差空调
CN106016541A (zh) * 2016-06-30 2016-10-12 深圳市艾特网能技术有限公司 自然冷机房空调及其过冷度控制方法
CN107421173B (zh) * 2017-03-21 2020-09-22 深圳市艾特网能技术有限公司 应急制冷装置及机房空调连续制冷系统
CN107883442A (zh) * 2017-11-01 2018-04-06 中山市艾特网能技术有限公司 一种空调节能单元柜
CN107894112B (zh) * 2017-11-09 2020-02-07 珠海格力电器股份有限公司 高落差安全控制方法及空调系统
CN117968198A (zh) * 2022-10-26 2024-05-03 青岛海尔空调电子有限公司 具有冷媒回收功能的空调机组及其冷媒回收控制方法
CN117404823B (zh) * 2023-12-15 2024-03-29 北京环都拓普空调有限公司 一种高落差直膨机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419083A (zh) * 2002-12-12 2003-05-21 梁嘉麟 无需水介质的超高层建筑冷暖空调设计方案及其调控方法
CN1435602A (zh) * 2002-12-12 2003-08-13 梁嘉麟 一种无需冷媒介质(水)的超高层建筑制冷空调设计方案
CN1633576A (zh) * 2000-11-28 2005-06-29 朴贞鲁 供热和空调装置的压力分配和调节系统和方法及应用该系统和方法的超高层建筑物
CN102095229A (zh) * 2011-01-13 2011-06-15 深圳市雅尔典科技有限公司 蒸发器直接对房间空气制冷的超高层建筑空调系统
CN102135300A (zh) * 2011-03-04 2011-07-27 张小军 无需作为中间介质水主导输能的超高层建筑冷暖空调系统
CN201944952U (zh) * 2010-11-30 2011-08-24 深圳市英维克科技有限公司 一种带过冷装置的空调
CN102654332A (zh) * 2011-03-04 2012-09-05 蒋辉华 由液泵或气泵取代水泵输能的超高层建筑冷暖空调系统
CN104964342A (zh) * 2015-06-02 2015-10-07 深圳市艾特网能有限公司 高负落差空调
CN204853675U (zh) * 2015-06-02 2015-12-09 深圳市艾特网能有限公司 高负落差空调

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633576A (zh) * 2000-11-28 2005-06-29 朴贞鲁 供热和空调装置的压力分配和调节系统和方法及应用该系统和方法的超高层建筑物
CN1419083A (zh) * 2002-12-12 2003-05-21 梁嘉麟 无需水介质的超高层建筑冷暖空调设计方案及其调控方法
CN1435602A (zh) * 2002-12-12 2003-08-13 梁嘉麟 一种无需冷媒介质(水)的超高层建筑制冷空调设计方案
CN201944952U (zh) * 2010-11-30 2011-08-24 深圳市英维克科技有限公司 一种带过冷装置的空调
CN102095229A (zh) * 2011-01-13 2011-06-15 深圳市雅尔典科技有限公司 蒸发器直接对房间空气制冷的超高层建筑空调系统
CN102135300A (zh) * 2011-03-04 2011-07-27 张小军 无需作为中间介质水主导输能的超高层建筑冷暖空调系统
CN102654332A (zh) * 2011-03-04 2012-09-05 蒋辉华 由液泵或气泵取代水泵输能的超高层建筑冷暖空调系统
CN104964342A (zh) * 2015-06-02 2015-10-07 深圳市艾特网能有限公司 高负落差空调
CN204853675U (zh) * 2015-06-02 2015-12-09 深圳市艾特网能有限公司 高负落差空调

Also Published As

Publication number Publication date
CN104964342A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2016192538A1 (zh) 高负落差空调
WO2018094844A1 (zh) 一种空调系统及控制方法
CN105987535A (zh) 一种超远距离输送制冷剂的大容量多联式空调热泵机组
CN211290648U (zh) 泵送相变制冷系统
JP6606053B2 (ja) 空気調和装置
CN208108560U (zh) 一种氟泵的管路系统
KR20110092147A (ko) 공기조화기 및 그 제어방법
WO2021008331A1 (zh) 热泵机组
CN204853675U (zh) 高负落差空调
KR101390989B1 (ko) 하이브리드 냉각시스템
CN209744618U (zh) 一种机房空调的节能改造系统
CN111678198A (zh) 一种高能效比机房空调系统
CN217685941U (zh) 一种双工况冷水机组
CN108007005B (zh) 闪发器制冷系统、具有该制冷系统的冰箱及其控制方法
CN105352211A (zh) 一种直接膨胀式机房节能空调系统及其控制方法
CN102338521A (zh) 一种风冷热泵空调过冷防液击装置
CN206787100U (zh) 低压直流式双电子膨胀阀的制冷空调系统
CN111435045A (zh) 一种空调热泵系统
CN213238035U (zh) 一种集成氟泵的机房冷却机组
CN115143658A (zh) 一种双工况冷水机组及其控制方法
CN112923594B (zh) 磁悬浮蒸发冷直膨机组及其控制方法
CN209165583U (zh) 一种高负落差工业空调系统
CN204593946U (zh) 空调热水系统
CN109682105B (zh) 空调系统
CN202648229U (zh) 节能型风冷冷水机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802461

Country of ref document: EP

Kind code of ref document: A1