WO2021230495A1 - 암모니아 생성 시스템 및 방법 - Google Patents

암모니아 생성 시스템 및 방법 Download PDF

Info

Publication number
WO2021230495A1
WO2021230495A1 PCT/KR2021/004036 KR2021004036W WO2021230495A1 WO 2021230495 A1 WO2021230495 A1 WO 2021230495A1 KR 2021004036 W KR2021004036 W KR 2021004036W WO 2021230495 A1 WO2021230495 A1 WO 2021230495A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea water
steam
pipe
level
reaction chamber
Prior art date
Application number
PCT/KR2021/004036
Other languages
English (en)
French (fr)
Inventor
권찬용
Original Assignee
주식회사 성산기업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성산기업 filed Critical 주식회사 성산기업
Publication of WO2021230495A1 publication Critical patent/WO2021230495A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • C01C1/086Preparation of ammonia from nitrogenous organic substances from urea

Definitions

  • the present invention relates to a system and method for producing ammonia through a hydrolysis reaction of urea water.
  • NO x nitrogen oxides
  • nitrogen oxide (NO x ) reacts with ammonia (NH 3 ) on the SCR catalyst to convert it into N 2 and H 2 O harmless to the human body (refer to Formulas (1) and (2) below) by Nitrogen oxides can be removed.
  • FIG. 1 is a block diagram of a conventional ammonia production system.
  • the conventional ammonia generating system 1 includes a housing 10 , a urea water supply unit 20 , a heat source supply unit 30 , a heat transfer unit 40 , a discharge pipe 50 , and a heating cable 60 . and a control unit 70 .
  • the housing 10 stores the urea number U supplied from the urea water supply unit 20 , and the heat transfer unit 40 inserted and installed in the housing 10 uses the heat supplied from the heat source supply unit 30 . Heat exchanges with urea water, and through this, urea water is heated to generate ammonia gas (NH 3 ). The operation of each component for generating such ammonia is controlled by the control unit 70 .
  • the urea water (U) has to maintain a certain level in the housing.
  • the level (h) of the urea water was sensed through the level sensor 16 directly attached to the housing 10 in the prior art. .
  • a pressure sensor P and a temperature sensor T are installed in the discharge pipe 50 through which ammonia gas is discharged, so that only the pressure and temperature of the ammonia gas flowing along the discharge pipe 50 can be checked, and the ammonia gas It was difficult to check the flow rate. Accordingly, there was a problem in that it is difficult to precisely control the production amount because it is difficult to control the supply amount of urea water or heat source according to the amount of ammonia production.
  • ammonia gas generated due to latent heat flows along the discharge pipe 50 in the housing 10 filled with a certain amount of urea water even if a heat source is not supplied.
  • the ammonia gas cannot be maintained at a high temperature, so the temperature inside the discharge pipe 50 is lowered and ammonia crystallization occurs.
  • 60) has been wound a plurality of times, and the temperature inside the discharge pipe 50 has been maintained by using the heat of the heating cable 60 .
  • this heating cable 60 method did not maintain the temperature inside the discharge pipe 50 above a certain temperature (about 120 ° C.), and thus crystallized ammonia is deposited on the inner wall of the discharge pipe 50, and the system Since the operation of removing the deposited ammonia crystals had to be performed during the restart, there was a problem in that the production efficiency was lowered.
  • One aspect of the present invention is to provide an ammonia generating system and method capable of efficient operation by reducing unnecessary input amount by checking the production flow rate of ammonia gas and adjusting the amount of urea and heat source supplied according to the production amount of ammonia gas.
  • One aspect of the present invention provides an ammonia generating system and method capable of accurately detecting the urea water level without a hunting phenomenon by indirectly detecting the urea water level by providing a sensor for detecting the urea water level separately from the reaction chamber.
  • One aspect of the present invention is to provide a system and method for generating ammonia that can reduce the size of the reaction chamber by disposing a heat transfer unit having an increased heat transfer efficiency compared to the amount of heat inside the reaction chamber.
  • One aspect of the present invention is to provide a system and method for generating ammonia that increase production efficiency by preventing the crystallization of ammonia gas that may occur when the operation of the system is stopped.
  • Ammonia generating system is a urea water supply unit, a reaction chamber that receives urea water from the urea water supply unit and generates ammonia gas, is connected to the side of the reaction chamber, and urea supplied to the reaction chamber A part of the water is introduced into the inside to have the same water level as the urea water stored in the reaction chamber, a level chamber equipped with a level sensor for detecting the level of the introduced urea water, is inserted and installed in the reaction chamber and ammonia gas
  • a heat transfer unit for heating the urea water stored in the reaction chamber to generate
  • a double pipe including an external pipe, a sensor unit for measuring the temperature and pressure inside the internal pipe, and a flow rate of ammonia gas, a second supplying second steam to the external pipe to keep the internal temperature of the internal pipe constant
  • a steam supply unit and a control unit for receiving the urea water supply amount, the first and second steam supply amounts, the level of the urea water and the measured values of the sensor unit, and controlling the
  • the controller may adjust the first steam supply amount, the second steam supply amount, or the urea water supply amount based on the measured value of the sensor unit.
  • the urea water supply unit is a urea water storage tank in which the urea water is stored, a urea water supply pump for pumping the urea water of the urea water storage tank into the reaction chamber, and the supply path of the urea water It provides and may include a urea water supply pipe provided with a urea water flow meter (M0) for measuring the flow rate of the supplied urea water and a urea water control valve for controlling the flow rate of the urea water.
  • M0 urea water flow meter
  • the urea water supply amount may be adjusted based on the flow rate of the urea water measured by the urea water flow meter (M0), or the measured value of the sensor unit.
  • the first steam supply unit includes a first steam generator for producing the first steam, a first steam supply pump for pumping the first steam of the first steam generator to the heat transfer unit, and the second steam generator.
  • 1 may include a first steam supply pipe that provides a supply path of steam and includes a first flow meter M1 for measuring the flow rate of the supplied first steam and a first control valve for controlling the flow rate of the first steam have.
  • the first steam supply amount may be adjusted based on a flow rate of the first steam measured by the first flow meter M1 or a measurement value of the sensor unit.
  • the heat transfer unit includes a plurality of heat transfer tubes, each of the heat transfer tubes includes a main pipe through which the first steam moves and an inner fin disposed inside the main pipe, and the inside
  • the outer surface of the pin may have a structure in which the protrusion and the depression are formed, and the protrusion is in contact with the inner surface of the main pipe.
  • the second steam supply unit includes a second steam generator for producing the second steam, a second steam supply pump for pumping the second steam of the second steam generator to an external pipe, and the second steam generator. It may include a second steam supply pipe that provides a supply path of the second steam and is provided with a second control valve for controlling a flow rate of the supplied second steam.
  • the supply amount of the second steam supply may be adjusted based on the temperature measured by the sensor unit so that the internal temperature of the internal pipe may be constantly maintained.
  • the level chamber is connected in communication with the inside of the reaction chamber, a first level chamber in which the urea number is stored, and a second level chamber surrounding the outside of the first level chamber.
  • the present invention further includes a method for generating ammonia using the ammonia generating system.
  • Ammonia generating method using an ammonia generating system comprises the steps of: (a) supplying urea water to a reaction chamber, (b) indirectly detecting the level of urea water stored in the reaction chamber; (c) supplying the first steam to the heat transfer unit when the urea water level reaches within the set range to heat the urea water and generate ammonia gas, (d) the temperature and pressure inside the internal pipe, and the flow rate of ammonia gas Measuring the, (e) may include the step of controlling the ammonia production system based on the measured value of the urea water supply amount, the first steam supply amount, and step (d).
  • the method for generating ammonia may further include supplying a second steam to the external pipe to maintain the internal temperature of the internal pipe at a predetermined temperature or higher.
  • the amount of the second steam supplied to the external pipe may be adjusted based on the temperature measurement value of the internal pipe measured in step (d).
  • the production of ammonia gas is checked through the sensor unit provided on the ammonia gas discharge path and input to the control unit to control the operation process of the system, thereby reducing unnecessary resources or manpower input This enables optimal operation for ammonia production.
  • the number of urea introduced into the level chamber is stored to have the same level as the number of urea in the reaction chamber, and the urea by detecting the water level in the level chamber It prevents level hunting that occurs during the heating process of water and can accurately detect the level of urea water.
  • the heat transfer unit for heating urea water is made of a plurality of heat transfer tubes, each heat transfer tube includes a tubular main pipe and an inner fin disposed inside the main pipe, in particular, the protrusion of the inner fin Since the heat transfer area can be increased by making contact with the main pipe, the heat transfer efficiency can be increased compared to the same amount of heat.
  • the ammonia gas discharge pipe with a double pipe structure of the internal pipe and the external pipe, it is possible to prevent the crystallization of ammonia that may occur when the operation of the system is stopped, thereby increasing the production efficiency. have.
  • FIG. 1 is a block diagram of a conventional ammonia production system.
  • FIG. 2 is a block diagram of an ammonia generating system according to an embodiment of the present invention.
  • Figure 3 is a block diagram showing the relationship between the input and output of the control unit of the ammonia generation system according to an embodiment of the present invention.
  • FIG. 4 is a partially cut-away perspective view of the heat transfer unit taken along line A-A of FIG. 2 .
  • FIG. 5 is a cross-sectional view of the heat transfer tube taken along line A-A of FIG. 2 .
  • FIG. 6 is a cutaway perspective view of the double pipe cut along the line B-B of FIG. 2 .
  • FIG. 7 is a transparent perspective view of a level chamber according to another embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for generating ammonia using an ammonia generating system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an ammonia generating system according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the relationship between input and output of the control unit of the ammonia generating system according to an embodiment of the present invention.
  • the ammonia generating system includes a reaction chamber 100, a urea water supply unit 200, a level chamber 150, a first steam supply unit 300, It includes a heat transfer unit 400 , a double pipe 500 , a second steam supply unit 600 , and a control unit 700 .
  • Ammonia generating system in manufacturing ammonia from urea water, ammonia gas in the discharge path by calculating the flow rate of ammonia gas compared to the input amount of urea water and a heat source (first steam of the present specification) In addition to checking for leaks, the system can be controlled according to the ammonia requirement.
  • the reaction chamber 100 may be formed in a housing shape having a storage space therein, and may be designed to withstand the temperature and pressure of the hydrolysis process of urea water.
  • the urea water (U) supplied from the urea water supply unit 200 may be stored with a water level h1, and the urea water stored in the reaction chamber 100 is heated to ammonia gas can be produced.
  • the ammonia gas generated in the reaction chamber 100 may be discharged through the double pipe 500, and a flow control valve (not shown) that is opened or closed to control the flow of such ammonia gas is installed in the reaction chamber ( 100) may be provided.
  • urea water supply unit 200 for supplying the urea water to the reaction chamber 100 will be described.
  • the urea water supply unit 200 is a urea water storage tank 210 in which liquid urea water is stored, and the urea water stored in the urea water storage tank 210 of the reaction chamber 100 . It may include a urea water supply pipe 230 for connecting the urea water supply pump 220 and the urea water storage tank 210 and the reaction chamber 100 for pumping to the inside.
  • the urea solution stored in the urea water storage tank 210 may be an aqueous solution of urea in a liquid state in which urea is diluted in water or a mixture of urea.
  • the urea water supply pump 220 may be configured to pump the urea water in the urea water storage tank 210 and supply it to the reaction chamber 100, depending on the driving speed (rotational speed) of the urea water supply pump 220 . Depending on the amount of urea water supply may vary.
  • the urea water supply pipe 230 is connected to one side of the reaction chamber 100 to provide a supply path of the urea water that is pumped by the urea water supply pump 220 and moves.
  • the urea water supply pipe 230 may be provided with a urea water flow meter (MO) for measuring the flow rate of the urea water moving along the inside of the pipe, and the flow rate of the urea water measured by the urea water flow meter (MO) is a control unit (700) may be input.
  • a urea water flow meter MO
  • control unit 700
  • the urea water supply pipe 230 may be provided with a urea water control valve 231 capable of opening or closing the urea water supply pipe 230 in order to control the flow rate of the urea water, and control the urea number.
  • the amount of urea water supplied may vary according to the degree of opening (degree of opening) of the valve 231 .
  • control unit 700 may control the operation of the urea water supply unit 200 .
  • the control unit 700 may control the driving of the urea water supply pump 220 or adjust the opening degree of the urea water control valve 231 according to the flow rate of the urea water measured by the urea water flow meter (MO), and through this The amount of urea water supply can be adjusted.
  • MO urea water flow meter
  • control unit 700 may adjust the amount of urea water supply according to the measurement value of the sensor unit 550 to be described later.
  • the level chamber 150 for detecting the level of the urea water stored in the reaction chamber 100 will be described.
  • the level chamber 150 is provided outside the reaction chamber 100 and may be connected to the side of the reaction chamber 100 .
  • the level chamber 150 may be connected to the reaction chamber 100 through a pair of connecting pipes 151 and 152 , for example, the reaction chamber 100 through the lower pipe 151 and the upper pipe 152 . ) may be communicatively connected, and urea water may be introduced through the lower pipe 151 .
  • the level chamber 150 has a storage space capable of storing the urea water therein, and some of the urea water supplied to and stored in the reaction chamber 100 is internally stored in the level chamber 150 through the lower pipe 151 . can be introduced into
  • the level of the urea water introduced into the level chamber 150 and stored may be stored at the same level as the urea number of the reaction chamber 100 .
  • the second water level h2 is It may be the same as the first water level h1.
  • the level chamber 150 may include a level sensor 160 capable of detecting the level h2 of the number of urea stored therein.
  • the level sensor 160 may sense the second water level h2 of the level chamber 150 stored in equilibrium with the first water level h1 of the reaction chamber 100, and the detected urea water level h2 ) may be input to the control unit 700 .
  • the level chamber 150 some of the urea water supplied to the reaction chamber 100 through a structure communicatively connected to the side of the reaction chamber 100 may be introduced into the level chamber 150 , and the level The sensor 160 may indirectly check the urea water level h1 of the reaction chamber 100 by detecting the level h2 of the urea water stored in the level chamber 150 .
  • control unit 700 may receive an input of the urea water level measured by the level sensor 160, and when the received urea water level reaches a set water level, to heat the urea water will be described later. An operation start of the first steam supply unit 300 may be commanded.
  • the set water level at which the operation of the first steam supply unit 300 starts may be a water level that fills 45% or more and 55% or less of the level chamber 150, but preferably 50%.
  • control unit 700 may control the operation of the urea water supply unit 200 or the first steam supply unit 300 so that the urea water level is maintained at a set water level.
  • the first steam supply unit 300 for supplying a heat source to heat the urea water stored in the reaction chamber 100 and the heat transfer unit 400 for heating the urea water through a heat exchange process by the heat source will be described.
  • the first steam supply unit 300 is provided outside the reaction chamber 100 , and may supply the first steam to the heat transfer unit 400 .
  • the first steam may be understood as a gaseous heat source having a saturation temperature of about 175°C or higher and 185°C or lower, and preferably 180°C.
  • the first steam supply unit 300 includes a first steam generator 310 for producing first steam, and a first steam supply pump for pumping the first steam produced by the first steam generator 310 to the heat transfer unit 400 . It may include a first steam supply pipe 330 connecting the 320 and the first steam generator 310 to the heat transfer unit 400 .
  • the first steam supply pump 320 may be configured to pump the first steam produced by the first steam generator 310 and supply it to the reaction chamber 100, and may be configured to supply steam according to the driving speed (rotational speed) of the pump. Supply may vary.
  • the first steam supply pipe 330 may be connected to one side of the heat transfer unit 400 to provide a supply path of the first steam pumped and moved by the first steam supply pump 320 .
  • the first steam supply pipe 330 may be provided with a first flow meter M1 for measuring the flow rate of the first steam moving along the inside of the pipe, and The flow rate may be input to the control unit 700 .
  • first steam supply pipe 330 may be provided with a first control valve 331 capable of opening or closing the first steam supply pipe 330 in order to control the flow rate of the supplied first steam.
  • first steam supply amount may vary according to the opening degree of the first control valve 331 .
  • control unit 700 may control the operation of the first steam supply unit 300 .
  • the control unit 700 adjusts the first steam production amount of the first steam generator 310 or controls the driving of the first steam supply pump 320 according to the flow rate of the first steam measured by the first flow meter M1 .
  • the first steam supply amount may be adjusted by adjusting the opening degree of the first control valve 431 .
  • FIG. 4 is a partially cut-away perspective view of the heat transfer unit cut along line AA of FIG. 2
  • FIG. 5 is a cross-sectional view of the heat transfer tube cut along line AA of FIG. .
  • the heat transfer unit 400 may be inserted and installed inside the reaction chamber 100 .
  • the heat transfer unit 400 may be installed on the lower side inside the reaction chamber 100 so as to be sufficiently submerged in the urea water U stored in the reaction chamber 100 .
  • the heat transfer unit 400 may include a bundle of heat pipes made of a plurality of heat pipes 410 , and each heat pipe 410 has a main tube shape through which the first steam can move. It may include a pipe 411 and an inner pin 412 disposed inside the main pipe 411 .
  • An outer surface of the inner pin 412 may form a protrusion 412a and a depression 412b, and the protrusion 412a may contact the inner surface of the main pipe 411 .
  • the heat transfer unit 400 may heat the urea water U through heat exchange using the first steam supplied from the first steam supply unit 300 .
  • the heat transfer tube 410 enables efficient heat exchange by increasing the heat exchange area by installing the inner fin 412 inside the main pipe 411, and furthermore, collecting the heat transfer tubes 410 of this structure to form a bundle Because of the structure, heat transfer efficiency can be improved compared to the same amount of heat.
  • the size of the reaction chamber is larger than that of the conventional ammonia generating system that produces the same amount of ammonia. can be reduced
  • the inner fin 412 is disposed inside the main pipe 411, solid crystals or corrosive materials generated as the urea water is exposed to high temperatures are deposited on the inner fin 412 to reduce durability or , it is possible to prevent a problem in which the passage of the first steam, which is a heat source, is blocked.
  • the double pipe 500 providing a discharge path of ammonia gas and the second steam supply unit 600 capable of preventing the crystallization of ammonia that may occur due to a temperature drop on the discharge path will be described.
  • FIG. 6 is a cutaway perspective view of the double pipe cut along the line B-B of FIG. 2 .
  • the double pipe 500 may include an internal pipe 510 through which ammonia gas is discharged and moves, and an external pipe 520 surrounding the internal pipe.
  • the inner pipe 510 provides a movement path of the ammonia gas discharged from the reaction chamber 100, and preferably, can deliver the ammonia gas to the SCR device.
  • the SCR (selective catalytic reduction) device is a device for removing nitrogen oxides (NO x ), and since it is known to those of ordinary skill in the art to which the present invention pertains, a detailed description thereof will be omitted.
  • the outer pipe 520 may be formed in a shape surrounding the outer surface of the inner pipe 510, and a passage 525 may be formed between the outer surface of the inner pipe 510 and the inner surface of the outer pipe 520, In the passage 525 , a second steam supplied from a second steam supply unit 600 to be described later may flow in a circulating manner.
  • the second steam supply unit 600 is a second steam generator 610 for producing a second steam, and the second steam produced by the second steam generator 610 to an external pipe 520 . It may include a second steam supply pump 620 for pumping the second steam generator 610 and a second steam supply pipe 630 connecting the external pipe 520 .
  • the second steam may be understood as a gaseous heat source having a temperature equivalent to that of the first steam, that is, a saturation temperature of about 175°C or higher and 185°C or lower, and preferably 180°C.
  • the second steam supply pump 620 may be configured to pump the second steam and supply it to the external pipe 520 , and the second steam supply amount may vary according to the driving speed of the pump.
  • the second steam supply pipe 630 may be communicatively connected to one side of the external pipe 520 to provide a second steam supply path.
  • the second steam supply pipe 630 may be provided with a second control valve 631 capable of opening and closing the second steam supply pipe 630 in order to adjust the flow rate of the supplied second steam, and the second control The second steam supply amount may vary according to the opening degree of the valve 631 .
  • the double pipe 500 may be provided with a sensor unit 550 for measuring the internal temperature and pressure of the internal pipe 510 and the flow rate of ammonia gas passing through the inside, and the sensor unit 550 is the flow rate of the ammonia gas. It may include a second flow meter (M2), a temperature sensor 551 and a pressure sensor 552 for measuring.
  • M2 second flow meter
  • the second flow meter M2 of the sensor unit 550 measures the flow rate of ammonia gas, and the temperature sensor 551 and the pressure sensor 552 can measure the temperature and pressure inside the internal pipe 510, respectively. and the measured value may be input to the control unit 700 .
  • control unit 700 may adjust the amount of ammonia gas produced according to the user's requirements, for this purpose, control the operation of the urea water supply unit 200 or the first steam supply unit 300 . can do.
  • the control unit 700 can check the ammonia gas flow rate through the second flow meter (M2), can check the first steam supply amount through the first flow meter (M1), urea water supply amount through the urea water flow meter (M0) can confirm.
  • control unit 700 controls the operation of the urea water supply unit 200 and the first steam supply unit 300 to match the ammonia gas production set by the user, or the production amount changed from the preset value, so that the urea water supply amount or The first steam supply amount may be adjusted to a level necessary for production.
  • control unit 700 may control the operation of the second steam supply unit 600 to keep the internal temperature and pressure of the internal pipe 510 constant to adjust the second steam supply amount.
  • the configuration for maintaining a constant temperature of the internal pipe 510 through the above-described double pipe 500, the second steam supply unit 600, and the control unit 700 is due to the temperature drop when the operation of the system is stopped. It is possible to prevent the crystallization phenomenon that may occur.
  • ammonia gas generated by converting urea water is affected by temperature, and has a property of crystallization when the temperature of the path (pipe) through which ammonia gas is discharged is lowered to 110° C. or less.
  • This crystallization phenomenon does not occur because the temperature of the discharge path is not lowered by the ammonia gas maintaining a high temperature state when the ammonia generating system is in operation.
  • ammonia gas may crystallize and affect productivity, and the reason will be described below.
  • ammonia gas is still generated by latent heat in the reaction chamber filled with 50% of urea water, and the ammonia gas flows along the pipe.
  • the inner pipe 510 according to an embodiment of the present invention, the outer pipe 520 surrounds the outer surface, and the passage 525 between the inner pipe 510 and the external pipe 520 at a high temperature (about 180). °C) by maintaining the internal temperature of the inner pipe 510 at 120° C. or higher while the second steam circulates, thereby preventing the crystallization of ammonia gas.
  • FIG. 7 is a transparent perspective view of a level chamber according to another embodiment of the present invention.
  • the level chamber 1150 is connected to the inside of the reaction chamber 100 in communication with the first level chamber 1155 in which the number of urea is stored, and the second A second level chamber 1156 surrounding the outside of the first level chamber 1155 may be included.
  • the first level chamber 1155 may be communicatively connected to the reaction chamber 100 by a lower pipe 1151 and an upper pipe 1152, and the number of urea is the first level chamber ( 1155) can be introduced.
  • the second level chamber 1156 has a space separated from the first level chamber 1155, and the internal space can receive a heat source from the outside so that the internal temperature of the first level chamber 1155 can be maintained at a constant temperature. have.
  • FIG. 8 is a flowchart illustrating a method for generating ammonia according to an embodiment of the present invention.
  • urea water supply step (S1) urea water level sensing step (S2), urea water heating step (S3), state quantity measurement step (S4) and a system control step (S5).
  • the urea water supply unit 200 may supply the urea water to the reaction chamber 100 .
  • control unit 700 may adjust the amount of urea water supplied to the reaction chamber 100 .
  • the level of the urea water stored in the reaction chamber 100 may be detected.
  • the urea number detection step S2 Before heating the urea water, since a certain amount of urea water must be filled in the reaction chamber 100, in the urea number detection step S2, it can be detected whether the level of the urea water level in the reaction chamber 100 has reached within a set range. have.
  • the number of urea introduced into the level chamber 150 has the same water level as the urea number of the reaction chamber 100 and is stored can be
  • the level sensor 160 may detect the urea water level h2 of the level chamber 150 to indirectly check the urea water level h1 of the reaction chamber 100, and the urea number detection signal is the control unit 700 ) can be entered.
  • the urea water in the reaction chamber 100 may be heated to generate ammonia gas.
  • the urea water heating step (S3) may be a step that proceeds when the reaction chamber 100 is filled with about 50% of the urea water (reaching a set range).
  • the first steam supply unit 300 may supply the first steam (heat source) to the heat transfer unit 400 , and the heat transfer unit 400 is the reaction chamber 100 .
  • the urea water is heated through heat exchange inside, and ammonia gas may be generated as a result of the hydrolysis reaction.
  • control unit 700 may adjust the amount of first steam supplied to the heat transfer unit 400 .
  • the ammonia gas may be discharged through the internal pipe 510 of the double pipe 500, and the sensor unit 550 installed in the internal pipe 510 is the flow rate of the discharged ammonia gas, the internal pipe 510 inside. temperature and pressure can be measured.
  • the control unit 700 generates ammonia based on the urea water supply amount, the first steam supply amount, and the measured values (ammonia gas flow rate, internal pipe temperature, pressure) of the sensor unit 550 ). You can control the system.
  • the control unit 700 controls the pressure and temperature of the internal pipe 510 while maintaining the urea water level in the reaction chamber 100 at 50% according to the flow rate, temperature, and pressure of the ammonia gas measured by the sensor unit 550 , respectively.
  • the control unit 700 controls the operations of the urea water supply unit 200 and the first steam supply unit 300 to be 5 bar and 150 °C, it is possible to adjust the urea water supply amount and the first steam supply amount.
  • control unit 700 controls the operation of the second steam supply unit 600 so that the internal temperature of the internal pipe 510 can be maintained at a predetermined temperature (about 120 ° C.) or higher to be supplied to the external pipe 520 . Steam supply can be adjusted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은 요소수를 이용한 암모니아 생성 시스템 및 방법에 관한 것으로서, 요소수와 열원의 투입량 대비 암모니아의 생성 유량을 확인하고, 요구량 조건에 맞도록 시스템을 제어함으로써 효율적으로 암모니아를 생성할 수 있는 시스템 및 방법에 관한 것이다.

Description

암모니아 생성 시스템 및 방법
본 출원은 2020.05.12.자 한국 특허출원 제10-2020-0056395호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 요소수의 가수분해 반응을 통한 암모니아 생성 시스템 및 방법에 관한 것이다.
일반적으로 자동차 및 발전소의 배기가스에 포함된 질소산화물(NO x)은 대기오염의 주요 원인으로 지목되고 있으며, 질소산화물의 배출을 줄이기 위해 선택적 촉매환원(SCR, Selective Catalytic Reduction)을 적용한 배기가스 후처리용 촉매장치가 사용되고 있다.
선택적 촉매환원 방식은, SCR 촉매 상에서 질소산화물(NO x)을 암모니아(NH 3)와 반응시켜 인체에 무해한 N 2 및 H 2O로 변환(아래의 식(1)과 식(2) 참조)시킴으로써 질소산화물을 제거할 수 있다.
4NO + 4NH 3+ O 2 → 4N 2 + 6H 2O (1)
2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2O (2)
그러나, 고농도의 암모니아수는 폭발 및 부식의 위험성이 있어 이동 운반 및 저장시 안전상 취약한 문제점을 가지고 있기 때문에, 이러한 문제점을 해결하기 위해 암모니아 공급을 위한 전구체(precursor)로 요소수(urea solution)을 이용하고 있다.
요소수를 암모니아로 전환하기 위해서는 고온의 분위기가 요구되며, 요소수는 아래의 식(3)의 열분해와 (4)의 가수분해를 통해 암모니아로 전환된다.
CO(NH 2) 2 → NH 3 + HNCO (3)
HNCO + H 2O → NH 3 + CO 2 (4)
이와 관련하여, 도 1에는 종래의 암모니아 생성 시스템의 블록도가 도시되어 있다.
도 1을 참조하면, 종래의 암모니아 생성 시스템(1)은, 하우징(10), 요소수 공급부(20), 열원 공급부(30), 전열부(40), 배출관(50), 히팅 케이블(60)과 제어부(70)를 포함한다.
하우징(10)에는 요소수 공급부(20)로부터 공급받은 요소수(U)가 저장되며, 하우징(10)의 내부에 삽입 설치된 전열부(40)는 열원 공급부(30)로부터 공급받은 열을 이용하여 요소수와 열교환하며, 이를 통해 요소수를 가열하여 암모니아 가스(NH 3)를 생성한다. 이러한 암모니아 생성을 위한 각 구성부의 작동은 제어부(70)에 의해 조절된다.
먼저, 가열과정에서 요소수(U)는 하우징 내에서 일정 수위를 유지해야 하는데, 이를 위해 종래에는 하우징(10)에 직접 부착된 레벨센서(16)를 통해 요소수의 수위(h)를 감지하였다.
그러나, 요소수의 가수분해 과정에서 하우징(10) 내부에는 고온 기체 상태의 암모니아 가스로 인해 레벨센서(16)가 진동하는 헌팅(hunting) 현상이 발생하였으며, 요소수 수위(h)를 정확하게 감지하기 어려운 문제점이 존재하였다.
또한, 종래에는 암모니아 가스가 배출되는 배출관(50)에는 압력센서(P)와 온도센서(T)가 설치되어 배출관(50)을 따라 흐르는 암모니아 가스의 압력과 온도 만을 확인할 수 있을 뿐, 암모니아 가스의 유량을 확인하기 어려웠다. 이에 따라, 암모니아 생성량에 따른 요소수나 열원의 공급량을 조절하기 어려워 생산량을 정밀하게 조절하기 어려운 문제점이 존재하였다.
한편, 암모니아 가스가 배출될 때, 배출관(50)의 온도가 일정 온도 이하로 낮아지면 결정화되는 성질을 가지고 있다. 이러한 결정화 현상은 시스템 운전 중일 경우에는 암모니아 가스 자체가 고온 상태로 유지되기 때문에 문제되지 않으나, 시스템 운전 중단 시에는 아래와 같은 문제가 발생하게 된다.
일 예로서, 시스템 운전이 중단되면 열원이 공급되지 않더라도 일정량의 요소수가 채워진 하우징(10)에서는 잠열로 인해 생성된 암모니아 가스가 배출관(50)을 따라 흐르게 된다. 이때, 시스템 운전 중일 경우와는 달리, 암모니아 가스가 고온 상태로 유지되지 못해 배출관(50) 내부의 온도가 낮아져 암모니아 결정화 현상이 발생하게 되며, 이를 방지하기 위해 배출관(50)의 외면을 히팅 케이블(60)로 복수 회 둘러감고, 히팅 케이블(60)의 열을 이용하여 배출관(50) 내부의 온도를 유지시켜 왔다.
그러나, 이러한 히팅 케이블(60) 방식은, 배출관(50) 내부의 온도를 일정 온도(약 120℃) 이상으로 유지시키지 못하였으며, 이에 따라 결정화된 암모니아가 배출관(50)의 내벽에 침착되고, 시스템의 재가동시 침착된 암모니아 결정을 제거하는 작업을 수행하여야 했으므로, 생산 효율성이 떨어지는 문제점이 존재하였다.
본 발명의 일 측면은, 암모니아 가스의 생성 유량을 확인하고 암모니아 가스의 생산량에 따라 투입되는 요소수량, 열원 공급량을 조절함으로써, 불필요한 투입량을 줄여 효율적인 운전이 가능한 암모니아 생성 시스템 및 방법을 제공하는 것이다.
본 발명의 일 측면은, 요소수 수위를 감지하는 센서를 반응챔버와 별도로 마련하여 간접적으로 요소수 수위를 감지함으로써, 헌팅현상 없이 요소수 수위를 정확하게 감지할 수 있는 암모니아 생성 시스템 및 방법을 제공하는 것이다.
본 발명의 일 측면은, 열량 대비 전열효율을 높인 전열부를 반응챔버 내부에 배치함으로써, 반응챔버의 크기를 줄일 수 있는 암모니아 생성 시스템 및 방법을 제공하는 것이다.
본 발명의 일 측면은, 시스템의 운전을 중단할 경우 발생할 수 있는 암모니아 가스의 결정화 현상을 방지하여 생산 효율성을 높인 암모니아 생성 시스템 및 방법을 제공하는 것이다.
본 발명의 일 실시 예에 따른 암모니아 생성 시스템은, 요소수 공급부, 상기 요소수 공급부로부터 요소수를 공급받고 암모니아 가스를 생성하는 반응챔버, 상기 반응챔버의 측부에 연결되고, 반응챔버에 공급된 요소수 중 일부가 반응챔버에 저장된 요소수와 동일 수위를 가지도록 내부로 유입되며, 상기 유입된 요소수의 수위를 감지하는 레벨센서가 구비된 레벨챔버, 상기 반응챔버의 내부에 삽입 설치되고 암모니아 가스를 생성하기 위해 반응챔버에 저장된 요소수를 가열하는 전열부, 상기 반응챔버의 외부에서 전열부로 제1 스팀을 공급하는 제1 스팀 공급부, 상기 암모니아 가스가 배출되는 내부배관과 상기 내부배관을 둘러싸는 외부배관을 포함하는 이중배관, 상기 내부배관 내부의 온도와 압력, 암모니아 가스의 유량을 측정하는 센서부, 상기 내부배관의 내부 온도를 일정하게 유지시키기 위해 외부배관으로 제2 스팀을 공급하는 제2 스팀 공급부 및 상기 요소수 공급량, 제1, 2 스팀 공급량, 요소수의 수위 및 센서부의 측정값을 수신하고, 요소수 공급부, 제1 스팀 공급부, 또는 제2 스팀 공급부의 작동을 제어하는 제어부를 포함한다.
이때, 상기 제어부는 센서부의 측정값을 기반으로 제1 스팀 공급량, 제2 스팀 공급량 또는 요소수 공급량을 조절할 수 있다.
본 발명의 일 실시 예에 따르면, 상기 요소수 공급부는 상기 요소수가 저장되는 요소수 저장탱크, 상기 요소수 저장탱크의 요소수를 반응챔버 내부로 펌핑하는 요소수 공급펌프 및 상기 요소수의 공급경로를 제공하고, 공급되는 요소수의 유량을 측정하는 요소수 유량계(M0)와 요소수의 유량을 조절하는 요소수 제어밸브가 구비되는 요소수 공급배관을 포함할 수 있다.
이때, 상기 요소수 공급량은 요소수 유량계(M0)에서 측정된 요소수의 유량, 또는 센서부의 측정값을 기반으로 조절될 수 있다.
본 발명의 일 실시 예에 따르면, 상기 제1 스팀 공급부는, 상기 제1 스팀을 생산하는 제1 스팀 발생기, 상기 제1 스팀 발생기의 제1 스팀을 전열부로 펌핑하는 제1 스팀 공급펌프 및 상기 제1 스팀의 공급경로를 제공하고, 공급되는 제1 스팀의 유량을 측정하는 제1 유량계(M1)와 제1 스팀의 유량을 조절하는 제1 제어밸브가 구비되는 제1 스팀 공급배관을 포함할 수 있다.
이때, 상기 제1 스팀 공급량은 제1 유량계(M1)에서 측정된 제1 스팀의 유량, 또는 센서부의 측정값을 기반으로 조절될 수 있다.
본 발명의 일 실시 예에 따르면, 상기 전열부는 복수 개의 전열관들을 포함하고, 상기 각 전열관은, 상기 제1 스팀이 이동하는 메인배관과 상기 메인배관의 내부에 배치되는 내부핀을 포함하고, 상기 내부핀의 외면은 돌출부와 함몰부를 형성하며 돌출부가 메인배관의 내면에 맞닿는 구조로 이루어질 수 있다.
본 발명의 일 실시 예에 따르면, 상기 제2 스팀 공급부는 상기 제2 스팀을 생산하는 제2 스팀 발생기, 상기 제2 스팀 발생기의 제2 스팀을 외부배관으로 펌핑하는 제2 스팀 공급펌프 및 상기 제2 스팀의 공급경로를 제공하고, 공급되는 제2 스팀의 유량을 조절하는 제2 제어밸브가 구비되는 제2 스팀 공급배관을 포함할 수 있다.
이때, 상기 제2 스팀 공급 공급량은, 내부배관의 내부 온도가 일정하게 유지될 수 있도록 센서부에서 측정된 온도를 기반으로 조절될 수 있다.
본 발명의 일 실시 예에 따르면, 상기 레벨챔버는 상기 반응챔버의 내부와 연통 가능하게 연결되고, 요소수가 저장되는 제1 레벨챔버와, 상기 제1 레벨챔버의 외부를 둘러싸는 제2 레벨챔버를 포함할 수 있다.
한편, 본 발명은, 상기 암모니아 생성 시스템을 이용한 암모니아 생성 방법을 더 포함한다.
본 발명의 일 실시 예에 따른 암모니아 생성 시스템을 이용한 암모니아 생성 방법은, (a) 반응챔버에 요소수를 공급하는 단계, (b) 상기 반응챔버에 저장된 요소수의 수위를 간접적으로 감지하는 단계, (c) 상기 요소수 수위가 설정범위 내에 도달하면 전열부에 제1 스팀을 공급하여 요소수를 가열하고 암모니아 가스를 생성하는 단계, (d) 상기 내부배관 내부의 온도와 압력, 암모니아 가스의 유량을 측정하는 단계, (e) 상기 요소수 공급량, 제1 스팀 공급량 및 단계(d)의 측정값을 기반으로 암모니아 생성 시스템을 제어하는 단계를 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 암모니아 생성 방법은, 외부배관에 제2 스팀을 공급하여 내부배관의 내부 온도를 일정 온도 이상으로 유지시키는 단계를 더 포함할 수 있다.
이때, 단계(d)에서 측정된 내부배관의 온도 측정값을 기반으로 외부배관으로 공급되는 제2 스팀 공급량을 조절할 수 있다.
본 발명의 일 실시 예에 따르면, 암모니아 가스의 배출경로 상에 구비된 센서부를 통해 암모니아 가스의 생산량을 확인하고, 이를 제어부로 입력하여 시스템의 작동 과정을 제어함으로써, 불필요한 자원, 또는 인력 투입을 절감하여 암모니아 생성을 위한 최적의 운영을 가능하게 한다.
본 발명의 일 실시 예에 따르면, 반응챔버의 측부에 레벨챔버를 연통 가능하게 연결하여 레벨챔버로 유입된 요소수가 반응챔버의 요소수와 동일 수위를 갖도록 저장하고, 레벨챔버의 수위를 감지함으로써 요소수의 가열과정에서 발생하는 레벨헌팅을 방지하고, 요소수 수위를 정확하게 감지할 수 있다.
본 발명의 일 실시 예에 따르면, 요소수 가열을 위한 전열부는 복수 개의 전열관들로 이루어지고, 각 전열관은 관 형상의 메인배관과 메인배관 내부에 배치된 내부핀을 포함하며, 특히 내부핀의 돌출부가 메인배관과 맞닿아 전열면적을 늘릴 수 있게 되므로 동일 열량대비 전열효율을 높일 수 있다.
본 발명의 일 실시 예에 따르면, 암모니아 가스의 배출관을 내부배관과 외부배관의 이중배관 구조로 마련함으로써, 시스템의 운전 중단 시 발생할 수 있는 암모니아의 결정화 현상을 방지하고, 이를 통해 생산 효율성을 높일 수 있다.
도 1은 종래의 암모니아 생성 시스템의 블록도이다.
도 2는 본 발명의 일 실시 예에 따른 암모니아 생성 시스템의 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 암모니아 생성 시스템의 제어부의 입력과 출력 관계를 나타낸 블록도이다.
도 4는 도 2의 A-A선을 따라 자른 전열부의 일부 절개 사시도이다.
도 5는 도 2의 A-A선을 따라 자른 전열관의 단면도이다.
도 6은 도 2의 B-B선을 따라 자른 이중배관의 절개 사시도이다.
도 7은 본 발명의 또 다른 실시 예에 따른 레벨챔버의 투명 사시도이다.
도 8은 본 발명의 일 실시 예에 따른 암모니아 생성 시스템을 이용한 암모니아 생성 방법을 도시한 순서도이다.
이하에서는 첨부한 도면을 참조하면서 본 발명의 실시 예에 대한 구성 및 작용을 상세하게 설명하기로 한다.
*그러나, 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지칭하려는 것이며, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명의 일 실시 예에 따른 암모니아 생성 시스템의 블록도이며, 도 3은 본 발명의 일 실시 예에 따른 암모니아 생성 시스템의 제어부의 입력과 출력 관계를 나타낸 블록도이다.
도 2 및 도 3을 함께 참조하면, 본 발명의 일 실시 예에 따른 암모니아 생성 시스템은, 반응챔버(100), 요소수 공급부(200), 레벨챔버(150), 제1 스팀 공급부(300), 전열부(400), 이중배관(500), 제2 스팀 공급부(600)와 제어부(700)를 포함한다.
본 발명의 일 실시 예에 따른 암모니아 생성 시스템은, 요소수로부터 암모니아를 제조함에 있어, 요소수와 열원(본 명세서의 제1 스팀)의 투입량 대비 암모니아 가스의 생성 유량을 계산함으로써 배출경로에서 암모니아 가스의 누출 여부를 확인할 수 있을 뿐만 아니라, 암모니아 요구량 조건에 맞추어 시스템을 제어할 수 있다.
본 발명의 일 실시 예에 따르면, 반응챔버(100)는 내부에 저장공간을 갖는 하우징 형상으로 형성될 수 있으며, 요소수의 가수분해 과정의 온도와 압력을 견딜 수 있도록 설계될 수 있다.
상기 반응챔버(100)의 내부 저장공간에는 요소수 공급부(200)로부터 공급받은 요소수(U)가 수위(h1)를 가지며 저장될 수 있으며, 반응챔버(100)에 저장된 요소수를 가열하여 암모니아 가스를 생성할 수 있다.
상기 반응챔버(100)에서 생성된 암모니아 가스는 이중배관(500)을 통해 배출될 수 있으며, 이러한 암모니아 가스의 흐름을 제어하기 위해 개방, 또는 폐쇄되는 유량조절 밸브(도시하지 않음)가 반응챔버(100)에 구비될 수 있다.
다음으로, 상기 반응챔버(100)로 요소수를 공급하는 요소수 공급부(200)를 설명한다.
본 발명의 일 실시 예에 따르면, 요소수 공급부(200)는, 액상의 요소수가 저장되는 요소수 저장탱크(210), 상기 요소수 저장탱크(210)에 저장된 요소수를 반응챔버(100)의 내부로 펌핑하는 요소수 공급펌프(220)와 요소수 저장탱크(210)와 반응챔버(100)를 연결시키는 요소수 공급배관(230)을 포함할 수 있다.
상기 요소수 저장탱크(210)에 저장되는 요소수(urea solution)는, 요소가 물에 희석된 액체 상태의 요소의 수성 요액 또는 요소의 혼합물일 수 있다.
상기 요소수 공급펌프(220)는 요소수 저장탱크(210) 내의 요소수를 펌핑하여 반응챔버(100)로 공급하도록 구성될 수 있고, 요소수 공급펌프(220)의 구동속도(회전수)에 따라 요소수 공급량이 가변될 수 있다.
상기 요소수 공급배관(230)은 반응챔버(100)의 일측에 연결되어 요소수 공급펌프(220)에 의해 펌핑되어 이동하는 요소수의 공급경로를 제공할 수 있다.
상기 요소수 공급배관(230)에는 배관 내부를 따라 이동하는 요소수의 유량을 측정하는 요소수 유량계(MO)가 구비될 수 있고, 상기 요소수 유량계(MO)에서 측정된 요소수의 유량은 제어부(700)로 입력될 수 있다.
또한, 상기 요소수 공급배관(230)에는 요소수의 유량을 조절하기 위해 요소수 공급배관(230)을 개방, 또는 폐쇄시킬 수 있는 요소수 제어밸브(231)가 구비될 수 있으며, 요소수 제어밸브(231)의 개도(개방 정도)에 따라 요소수 공급량이 가변될 수 있다.
본 발명의 일 실시 예에 따르면, 제어부(700)는 요소수 공급부(200)의 작동을 제어할 수 있다.
상기 제어부(700)는 요소수 유량계(MO)에서 측정된 요소수의 유량에 따라 요소수 공급펌프(220)의 구동을 제어하거나, 요소수 제어밸브(231)의 개도를 조절할 수 있고, 이를 통해 요소수 공급량을 조절할 수 있다.
한편, 제어부(700)는 후술하는 센서부(550)의 측정값에 따라 요소수 공급량을 조절할 수 있다.
다음으로, 반응챔버(100)에 저장된 요소수의 수위를 감지하는 레벨챔버(150)를 설명한다.
본 발명의 일 실시 예에 따르면, 레벨챔버(150)는 반응챔버(100)의 외부에 마련된 구성으로서, 반응챔버(100)의 측부에 연결될 수 있다.
상기 레벨챔버(150)는 한 쌍의 연결배관(151, 152)을 통해 반응챔버(100)에 연결될 수 있으며, 예를 들면, 하부배관(151)과 상부배관(152)에 의해 반응챔버(100)에 연통 가능하게 연결될 수 있고, 하부배관(151)을 통해서는 요소수가 유입될 수 있다.
상기 레벨챔버(150)는 내부에 요소수를 저장할 수 있는 저장공간을 가지며, 반응챔버(100)로 공급되어 저장된 요소수 중 일부는 하부배관(151)을 통해 레벨챔버(150)의 내부 저장공간으로 유입될 수 있다.
이때, 레벨챔버(150)로 유입되어 저장되는 요소수의 수위는 반응챔버(100)의 요소수와 동일 수위를 가지며 저장될 수 있다.
즉, 반응챔버(100)의 요소수의 수위를 제1 수위(h1)라 하고, 레벨챔버(150)의 요소수의 수위를 제2 수위(h2)라 할 때, 제2 수위(h2)는 제1 수위(h1)와 동일할 수 있다.
본 발명의 일 실시 예에 따르면, 레벨챔버(150)는 내부에 저장된 요소수의 수위(h2)를 감지할 수 있는 레벨센서(160)를 구비할 수 있다.
상기 레벨센서(160)는 반응챔버(100)의 제1 수위(h1)와 평형상태를 이루며 저장된 레벨챔버(150)의 제2 수위(h2)를 감지할 수 있으며, 감지된 요소수 수위(h2)는 제어부(700)로 입력될 수 있다.
정리하면, 레벨챔버(150)는 반응챔버(100)의 측부에 연통 가능하게 연결된 구조를 통해 반응챔버(100)로 공급된 요소수 중 일부가 레벨챔버(150) 내부로 유입될 수 있고, 레벨센서(160)가 레벨챔버(150)에 저장된 요소수의 수위(h2)를 감지함으로써 반응챔버(100)의 요소수 수위(h1)를 간접적으로 확인할 수 있다.
이에 따라, 요소수 수위 감지 과정에서 발생할 수 있는 레벨헌팅을 방지하고 요소수 수위 측정값의 정확도를 높일 수 있다.
본 발명의 일 실시 예에 따르면, 제어부(700)는 레벨센서(160)에서 측정된 요소수 수위를 입력받을 수 있고, 입력받은 요소수 수위가 설정수위에 도달하게 되면 요소수를 가열하기 위해 후술하게 되는 제1 스팀 공급부(300)의 작동개시를 명령할 수 있다.
여기서, 제1 스팀 공급부(300)의 작동이 개시되는 설정수위는 레벨챔버(150)의 45% 이상 55% 이하를 채우는 수위일 수 있으나, 바람직하게는 50% 일 수 있다.
또한, 제어부(700)는 요소수 수위가 설정수위로 유지될 수 있도록 요소수 공급부(200), 또는 제1 스팀 공급부(300)의 작동을 제어할 수 있다.
다음으로, 반응챔버(100)에 저장된 요소수를 가열하기 위해 열원을 공급하는 제1 스팀 공급부(300)와, 상기 열원에 의한 열교환 과정을 통해 요소수를 가열하는 전열부(400)를 설명한다.
본 발명의 일 실시 예에 따르면, 제1 스팀 공급부(300)는 반응챔버(100)의 외부에 마련된 구성으로서, 전열부(400)로 제1 스팀을 공급할 수 있다.
여기서, 제1 스팀은 약 175℃ 이상 185℃ 이하의 포화온도를 갖는 기체 상태의 열원으로 이해할 수 있으며, 바람직하게는 180℃일 수 있다.
상기 제1 스팀 공급부(300)는 제1 스팀을 생산하는 제1 스팀 발생기(310), 제1 스팀 발생기(310)에서 생산한 제1 스팀을 전열부(400)로 펌핑하는 제1 스팀 공급펌프(320)와 제1 스팀 발생기(310)와 전열부(400)를 연결시키는 제1 스팀 공급배관(330)을 포함할 수 있다.
상기 제1 스팀 공급펌프(320)는 제1 스팀 발생기(310)에서 생산한 제1 스팀을 펌핑하여 반응챔버(100)로 공급하도록 구성될 수 있고, 펌프의 구동속도(회전수)에 따라 스팀 공급량이 가변될 수 있다.
상기 제1 스팀 공급배관(330)은 전열부(400)의 일측에 연결되어 제1 스팀 공급펌프(320)에 의해 펌핑되어 이동하는 제1 스팀의 공급경로를 제공할 수 있다.
상기 제1 스팀 공급배관(330)에는 배관 내부를 따라 이동하는 제1 스팀의 유량을 측정하는 제1 유량계(M1)가 구비될 수 있고, 상기 제1 유량계(M1)에서 측정된 제1 스팀의 유량은 제어부(700)로 입력될 수 있다.
또한, 상기 제1 스팀 공급배관(330)에는 공급되는 제1 스팀의 유량을 조절하기 위해 제1 스팀 공급배관(330)을 개방, 또는 폐쇄시킬 수 있는 제1 제어밸브(331)가 구비될 수 있으며, 제1 제어밸브(331)의 개도에 따라 제1 스팀 공급량이 가변될 수 있다.
본 발명의 일 실시 예에 따르면, 제어부(700)는 제1 스팀 공급부(300)의 작동을 제어할 수 있다.
상기 제어부(700)는 제1 유량계(M1)에서 측정된 제1 스팀의 유량에 따라 제1 스팀 발생기(310)의 제1 스팀 생산량을 조절하거나, 제1 스팀 공급펌프(320)의 구동을 제어하거나, 또는 제1 제어밸브(431)의 개도를 조절함으로써 제1 스팀 공급량을 조절할 수 있다.
다음으로, 전열부(400)를 설명한다.
전열부 구조를 보다 상세하게 설명하기 위해, 도 4에는 도 2의 A-A선을 따라 자른 전열부의 일부 절개 사시도가 도시되어 있고, 도 5에는 도 2의 A-A선을 따라 자른 전열관의 단면도가 도시되어 있다.
본 발명의 일 실시 예에 따르면, 전열부(400)는 반응챔버(100)의 내부에 삽입 설치될 수 있다.
예를 들면, 상기 전열부(400)는 반응챔버(100)에 저장된 요소수(U)에 충분히 잠길 수 있도록 반응챔버(100)의 내부에서 하부 측에 설치될 수 있다.
도 4 및 도 5를 함께 참조하면, 전열부(400)는 복수 개의 전열관들(410)로 이루어진 전열관 다발을 포함할 수 있으며, 각 전열관(410)은 제1 스팀이 이동할 수 있는 관 형상의 메인배관(411)과, 메인배관(411)의 내부에 배치되는 내부핀(412)을 포함할 수 있다.
상기 내부핀(412)은 외면이 돌출부(412a)와 함몰부(412b)를 형성할 수 있으며, 돌출부(412a)는 메인배관(411)의 내면에 맞닿을 수 있다.
상기 전열부(400)는 제1 스팀 공급부(300)로부터 공급받은 제1 스팀을 이용하여 열교환을 통해 요소수(U)를 가열할 수 있다.
즉, 상기 전열관(410)은 메인배관(411)의 내부에 내부핀(412)을 설치하여 열교환 면적을 증가시킴으로써, 효율적인 열교환을 가능하게 하며, 더욱이 이러한 구조의 전열관(410)들을 모아 다발을 이루는 구조이므로, 동일 열량대비 전열효율을 향상시킬 수 있다.
또한, 전열부(400)의 전열효율을 높임으로써 요소수의 가열을 위해 투입해야 하는 제1 스팀의 공급량을 줄일 수 있으므로 설비의 운영비용을 절감할 수 있다.
또한, 내부핀(412)의 돌출부(412a)가 메인배관(411)의 내면과 접촉하여 동일면적 대비 열전달 효율을 높일 수 있으므로 같은 양의 암모니아를 생산하는 종래의 암모니아 생성 시스템보다 반응챔버의 크기를 줄일 수 있다.
또한, 내부핀(412)은 메인배관(411)의 내부에 배치되어 있기 때문에, 요소수가 고온에 노출됨에 따라 발생하게 되는 고체 결정이나 부식성 물질이 내부핀(412)에 침착되어 내구성을 저하시키거나, 열원인 제1 스팀의 이동 통로가 막히는 문제를 방지할 수 있다.
다음으로, 암모니아 가스의 배출경로를 제공하는 이중배관(500)과 배출경로 상의 온도저하로 인해 발생할 수 있는 암모니아의 결정화 현상을 방지할 수 있는 제2 스팀 공급부(600)를 설명한다.
이중배관의 구조를 보다 상세하게 설명하기 위해 도 6에는 도 2의 B-B선을 따라 자른 이중배관의 절개 사시도가 도시되어 있다.
본 발명의 일 실시 예에 따르면, 이중배관(500)은 암모니아 가스가 배출되어 이동하는 내부배관(510)과 내부배관을 둘러싸는 외부배관(520)을 포함할 수 있다.
상기 내부배관(510)은 반응챔버(100)에서 배출된 암모니아 가스의 이동경로를 제공하며, 바람직하게는, SCR장치로 암모니아 가스를 전달할 수 있다.
여기서, SCR(selective catalytic reduction)장치는 질소산화물(NO x) 제거를 위한 장치이며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 알 수 있는 내용이므로, 이에 대한 자세한 설명은 생략한다.
상기 외부배관(520)은 내부배관(510)의 외면을 둘러싸는 형태로 형성될 수 있고 내부배관(510)의 외면과 외부배관(520)의 내면 사이에 통로(525)를 형성할 수 있으며, 상기 통로(525)에는 후술하는 제2 스팀 공급부(600)에서 공급된 제2 스팀이 순환 가능하게 흐를 수 있다.
본 발명의 일 실시 예에 따르면, 제2 스팀 공급부(600)는 제2 스팀을 생산하는 제2 스팀 발생기(610), 제2 스팀 발생기(610)에서 생산한 제2 스팀을 외부배관(520)으로 펌핑하는 제2 스팀 공급펌프(620)와 제2 스팀 발생기(610)와 외부배관(520)을 연결시키는 제2 스팀 공급배관(630)을 포함할 수 있다.
여기서, 제2 스팀은 제1 스팀과 동등한 조건의 온도, 즉, 약 175℃ 이상 185℃ 이하의 포화온도를 갖는 기체 상태의 열원으로 이해할 수 있으며, 바람직하게는 180℃일 수 있다.
상기 제2 스팀 공급펌프(620)는 제2 스팀을 펌핑하여 외부배관(520)으로 공급하도록 구성될 수 있고, 펌프의 구동속도에 따라 제2 스팀 공급량이 가변될 수 있다.
상기 제2 스팀 공급배관(630)은 외부배관(520)의 일측에 연통 가능하게 연결되어 제2 스팀의 공급경로를 제공할 수 있다.
상기 제2 스팀 공급배관(630)에는 공급되는 제2 스팀의 유량을 조절하기 위해 제2 스팀 공급배관(630)을 개폐시킬 수 있는 제2 제어밸브(631)가 구비될 수 있으며, 제2 제어밸브(631)의 개도에 따라 제2 스팀 공급량이 가변될 수 있다.
상기 이중배관(500)에는 내부배관(510)의 내부 온도, 압력과 내부를 통과하는 암모니아 가스의 유량을 측정하는 센서부(550)가 구비될 수 있으며, 센서부(550)는 암모니아 가스의 유량을 측정하는 제2 유량계(M2)와 온도센서(551) 및 압력센서(552)를 포함할 수 있다.
따라서, 센서부(550)의 제2 유량계(M2)는 암모니아 가스의 유량을 측정하고, 온도센서(551)와 압력센서(552)는 각각 내부배관(510) 내부의 온도와 압력을 측정할 수 있으며, 측정값은 제어부(700)로 입력될 수 있다.
본 발명의 일 실시 예에 따르면, 제어부(700)는 사용자의 요구 조건에 따라 암모니아 가스의 생산량을 조절할 수 있으며, 이를 위해 요소수 공급부(200), 또는 제1 스팀 공급부(300)의 작동을 제어할 수 있다.
상기 제어부(700)는 제2 유량계(M2)를 통해 암모니아 가스 유량을 확인할 수 있고, 제1 유량계(M1)를 통해 제1 스팀 공급량을 확인할 수 있으며, 요소수 유량계(M0)를 통해 요소수 공급량을 확인할 수 있다.
이에 따라, 상기 제어부(700)는 사용자에 의해 설정된 암모니아 가스 생산량, 또는 기 설정값에서 변경된 생산량을 맞추기 위해 요소수 공급부(200)와 제1 스팀 공급부(300)의 작동을 제어함으로써 요소수 공급량이나 제1 스팀 공급량을 생산에 필요한 정도로 조절할 수 있다.
이와 함께, 상기 제어부(700)는 내부배관(510)의 내부 온도, 압력을 일정하게 유지시키기 위해 제2 스팀 공급부(600)의 작동을 제어하여 제2 스팀 공급량을 조절할 수 있다.
전술한 이중배관(500)과 제2 스팀 공급부(600), 그리고 제어부(700)를 통해 내부배관(510)의 온도를 일정하게 유지시키는 구성은, 시스템의 운전이 중단된 경우에 온도저하로 인해 발생할 수 있는 결정화 현상을 방지할 수 있다.
일반적으로, 요소수를 전환시켜 발생되는 암모니아 가스는 온도의 영향을 받게 되며, 암모니아 가스가 배출되는 경로(배관)의 온도가 110℃ 이하로 낮아지면 결정화되는 성질을 지니고 있다.
이러한 결정화 현상은, 암모니아 생성 시스템이 가동 중인 경우에는 고온 상태를 유지하는 암모니아 가스에 의해 배출경로의 온도가 낮아지지 않으므로 결정화 현상이 발생하지 않게 된다.
그러나, 시스템의 운전이 중단되는 경우에는 암모니아 가스가 결정화되어 생산성에 영향을 미칠 수 있으며, 아래에서 그 이유를 설명한다.
시스템 운전이 중단되어 반응챔버 내로 열원이 공급되지 않는 경우에도, 요소수가 50% 채워진 반응챔버 내에서는 잠열에 의해 여전히 암모니아 가스가 생성되고, 암모니아 가스는 배관을 따라 흐르게 된다.
이러한 경우, 종래에는 배관의 외면을 히팅 케이블로 복수 회 둘러감는 방식으로 배관 내부의 온도를 유지하여 왔으나, 이러한 방식은 배관 내부의 온도를 70 내지 75 ℃ 수준으로 유지하는 수준이었기 때문에 암모니아의 결정화 현상을 방지하기 어려운 문제점이 있었다.
따라서, 본 발명의 일 실시 예에 따른 내부배관(510)은, 그 외면을 외부배관(520)이 둘러싸고, 내부배관(510)과 외부배관(520) 사이의 통로(525)로 고온(약 180℃)의 제2 스팀이 순환 이동하면서 내부배관(510)의 내부 온도를 120℃ 이상으로 유지시킴으로써 암모니아 가스의 결정화 현상을 방지할 수 있다.
이와 같이 시스템 가동 중단 시 암모니아 가스의 결정화 방지하게 되면, 시스템이 재가동되었을 때, 암모니아 가스 배출경로 상에 침착된 암모니아 결정을 제거하기 위해 120℃ 이상의 유체를 흘려보내야 하는 번거로움을 덜 수 있다.
즉, 시스템의 가동 중단 시간을 없앰으로써 암모니아 가스의 생산 효율성을 높일 수 있다.
한편, 도 7에는 본 발명의 또 다른 실시 예에 따른 레벨챔버의 투명 사시도가 도시되어 있다.
도 7을 참조하면, 본 발명의 또 다른 실시 예에 따른 레벨챔버(1150)는, 반응챔버(100)의 내부와 연통 가능하게 연결되고 요소수가 저장되는 제1 레벨챔버(1155)와, 상기 제1 레벨챔버(1155)의 외부를 둘러싸는 제2 레벨챔버(1156)를 포함할 수 있다.
상기 제1 레벨챔버(1155)는 하부배관(1151)과 상부배관(1152)에 의해 반응챔버(100)에 연통 가능하게 연결될 수 있으며, 요소수는 하부배관(1151)을 통해 제1 레벨챔버(1155)로 유입될 수 있다.
상기 제2 레벨챔버(1156)는 제1 레벨챔버(1155)와 분리된 공간을 가지며, 내부 공간에는 제1 레벨챔버(1155)의 내부 온도가 일정 온도를 유지할 수 있도록 외부로부터 열원을 공급받을 수 있다.
도 8은 본 발명의 일 실시 예에 따른 암모니아 생성방법을 도시한 순서도이다.
도 8을 참조하면, 본 발명의 일 실시 예에 따른 암모니아 생성방법은, 요소수 공급단계(S1), 요소수 수위 감지단계(S2), 요소수 가열단계(S3), 상태량 측정단계(S4) 및 시스템 제어단계(S5)를 포함한다.
먼저, 요소수 공급단계(S1)에서 요소수 공급부(200)는 반응챔버(100)로 요소수를 공급할 수 있다.
이때, 제어부(700)는 반응챔버(100)로 공급되는 요소수 공급량을 조절할 수 있다.
다음으로, 요소수 감지단계(S2)에서, 반응챔버(100)에 저장된 요소수의 수위를 감지할 수 있다.
요소수를 가열하기 전, 반응챔버(100) 내에 일정량의 요소수가 채워져야 하기 때문에 요소수 감지단계(S2)에서는 반응챔버(100)의 요소수의 수위가 설정범위 내에 도달했는지 여부를 감지할 수 있다.
구체적으로, 반응챔버(100)로 공급된 요소수 중 일부는 레벨챔버(150)로 유입되고, 레벨챔버(150)로 유입된 요소수는 반응챔버(100)의 요소수와 동일 수위를 가지며 저장될 수 있다.
이때, 레벨센서(160)는 레벨챔버(150)의 요소수 수위(h2)를 감지하여 반응챔버(100)의 요소수 수위(h1)를 간접적으로 확인할 수 있고, 요소수 감지신호는 제어부(700)로 입력될 수 있다.
다음으로, 요소수 가열단계(S3)에서는, 반응챔버(100)의 요소수를 가열하여 암모니아 가스를 생성할 수 있다.
요소수 가열단계(S3)는, 반응챔버(100)에 요소수가 약 50% 채워지면(설정범위 도달) 진행되는 단계일 수 있다.
구체적으로, 요소수 수위가 설정범위에 도달하면, 제1 스팀 공급부(300)는 전열부(400)로 제1 스팀(열원)을 공급할 수 있으며, 전열부(400)는 반응챔버(100)의 내부에서 열교환을 통해 요소수를 가열하고, 가수분해 반응결과 암모니아 가스가 생성될 수 있다.
이때, 제어부(700)는 전열부(400)로 공급되는 제1 스팀 공급량을 조절할 수 있다.
다음으로, 상태량 측정단계(S4)에서 암모니아 가스의 배출 유량, 내부배관의 온도 및 압력을 측정할 수 있다.
구체적으로, 암모니아 가스는 이중배관(500)의 내부배관(510)을 통해 배출될 수 있고, 내부배관(510)에 설치된 센서부(550)는 배출되는 암모니아 가스의 유량, 내부배관(510) 내부의 온도 및 압력을 측정할 수 있다.
다음으로, 시스템 제어단계(S5)에서, 제어부(700)는 요소수 공급량, 제1 스팀 공급량, 센서부(550)의 측정값(암모니아 가스 유량, 내부배관의 온도, 압력)을 기반으로 암모니아 생성 시스템을 제어할 수 있다.
제어부(700)는, 센서부(550)에서 측정한 암모니아 가스의 유량, 온도, 압력에 따라 반응챔버(100)의 요소수 수위를 50% 로 유지하면서 내부배관(510)의 압력과 온도를 각각 5 bar와 150 ℃가 될 수 있도록 요소수 공급부(200)와 제1 스팀 공급부(300)의 작동을 제어하여 요소수 공급량과 제1 스팀 공급량을 조절할 수 있다.
또한, 제어부(700)는 내부배관(510)의 내부 온도가 일정 온도(약 120 ℃) 이상을 유지할 수 있도록 제2 스팀 공급부(600)의 작동을 제어하여 외부배관(520)으로 공급되는 제2 스팀 공급량을 조절할 수 있다.
상기 본 발명의 내용은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
<부호의 설명>
100: 반응챔버
150: 레벨챔버 160: 레벨센서
151: 하부배관 152: 상부배관
200: 요소수 공급부 300: 제1 스팀 공급부
400: 전열부 410: 전열관
411: 메인배관 412: 내부핀
500: 이중배관 510: 내부배관
520: 외부배관 550: 센서부
600: 제2 스팀 공급부 700: 제어부

Claims (7)

  1. 요소수 공급부;
    상기 요소수 공급부로부터 요소수를 공급받고 암모니아 가스를 생성하는 반응챔버;
    상기 반응챔버의 측부에 연결되고, 반응챔버에 공급된 요소수 중 일부가 반응챔버에 저장된 요소수와 동일 수위를 가지도록 내부로 유입되며, 상기 유입된 요소수의 수위를 감지하는 레벨센서가 구비된 레벨챔버;
    상기 반응챔버의 내부에 삽입 설치되고 암모니아 가스를 생성하기 위해 반응챔버에 저장된 요소수를 가열하는 전열부;
    상기 반응챔버의 외부에서 전열부로 제1 스팀을 공급하는 제1 스팀 공급부;
    상기 암모니아 가스가 배출되는 내부배관과 상기 내부배관을 둘러싸는 외부배관을 포함하는 이중배관;
    상기 내부배관 내부의 온도와 압력, 암모니아 가스의 유량을 측정하는 센서부;
    상기 내부배관의 내부 온도를 일정하게 유지시키기 위해 외부배관으로 제2 스팀을 공급하는 제2 스팀 공급부; 및
    상기 요소수 공급량, 제1, 2 스팀 공급량, 요소수의 수위 및 센서부의 측정값을 수신하고, 요소수 공급부, 제1 스팀 공급부, 또는 제2 스팀 공급부의 작동을 제어하는 제어부;
    를 포함하고,
    상기 제어부는, 센서부의 측정값을 기반으로 제1 스팀 공급량, 제2 스팀 공급량 또는 요소수 공급량을 조절하는 암모니아 생성 시스템.
  2. 제1항에 있어서,
    상기 요소수 공급부는,
    상기 요소수가 저장되는 요소수 저장탱크;
    상기 요소수 저장탱크의 요소수를 반응챔버 내부로 펌핑하는 요소수 공급펌프; 및
    상기 요소수의 공급경로를 제공하고, 공급되는 요소수의 유량을 측정하는 요소수 유량계(M0)와 요소수의 유량을 조절하는 요소수 제어밸브가 구비되는 요소수 공급배관;
    을 포함하고,
    상기 요소수 공급량은 요소수 유량계(M0)에서 측정된 요소수의 유량, 또는 센서부의 측정값을 기반으로 조절되는 암모니아 생성 시스템.
  3. 제1항에 있어서,
    상기 제1 스팀 공급부는,
    상기 제1 스팀을 생산하는 제1 스팀 발생기;
    상기 제1 스팀 발생기의 제1 스팀을 전열부로 펌핑하는 제1 스팀 공급펌프; 및
    상기 제1 스팀의 공급경로를 제공하고, 공급되는 제1 스팀의 유량을 측정하는 제1 유량계(M1)와 제1 스팀의 유량을 조절하는 제1 제어밸브가 구비되는 제1 스팀 공급배관;
    을 포함하고,
    상기 제1 스팀 공급량은 제1 유량계(M1)에서 측정된 제1 스팀의 유량, 또는 센서부의 측정값을 기반으로 조절되는 암모니아 생성 시스템.
  4. 제1항에 있어서,
    상기 전열부는,
    복수 개의 전열관들을 포함하고,
    상기 각 전열관은,
    상기 제1 스팀이 이동하는 메인배관과 상기 메인배관의 내부에 배치되는 내부핀을 포함하고,
    상기 내부핀의 외면은 돌출부와 함몰부를 형성하며 돌출부가 메인배관의 내면에 맞닿는 구조로 이루어지는 암모니아 생성 시스템.
  5. 제1항에 있어서,
    상기 제2 스팀 공급부는,
    상기 제2 스팀을 생산하는 제2 스팀 발생기;
    상기 제2 스팀 발생기의 제2 스팀을 외부배관으로 펌핑하는 제2 스팀 공급펌프; 및
    상기 제2 스팀의 공급경로를 제공하고, 공급되는 제2 스팀의 유량을 조절하는 제2 제어밸브가 구비되는 제2 스팀 공급배관;
    을 포함하고,
    상기 제2 스팀 공급 공급량은, 내부배관의 내부 온도가 일정하게 유지될 수 있도록 센서부에서 측정된 온도를 기반으로 조절되는 암모니아 생성 시스템.
  6. 제1항에 있어서,
    상기 레벨챔버는,
    상기 반응챔버의 내부와 연통 가능하게 연결되고 요소수가 저장되는 제1 레벨챔버와, 상기 제1 레벨챔버의 외부를 둘러싸는 제2 레벨챔버를 포함하는 암모니아 생성 시스템.
  7. 제1항에 따른 암모니아 생성 시스템을 이용한 암모니아 생성 방법으로서,
    (a) 반응챔버에 요소수를 공급하는 단계;
    (b) 상기 반응챔버에 저장된 요소수의 수위를 간접적으로 감지하는 단계;
    (c) 상기 요소수 수위가 설정범위 내에 도달하면 전열부에 제1 스팀을 공급하여 요소수를 가열하고 암모니아 가스를 생성하는 단계;
    (d) 상기 내부배관 내부의 온도와 압력, 암모니아 가스의 유량을 측정하는 단계;
    (e) 상기 요소수 공급량, 제1 스팀 공급량 및 단계(d)의 측정값을 기반으로 암모니아 생성 시스템을 제어하는 단계;
    를 포함하는 암모니아 생성 방법.
PCT/KR2021/004036 2020-05-12 2021-04-01 암모니아 생성 시스템 및 방법 WO2021230495A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0056395 2020-05-12
KR1020200056395A KR102182472B1 (ko) 2020-05-12 2020-05-12 암모니아 생성 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2021230495A1 true WO2021230495A1 (ko) 2021-11-18

Family

ID=73679818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004036 WO2021230495A1 (ko) 2020-05-12 2021-04-01 암모니아 생성 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR102182472B1 (ko)
WO (1) WO2021230495A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505044A (zh) * 2022-02-23 2022-05-17 西安热工研究院有限公司 一种填料式的尿素催化水解系统及方法
CN115650252A (zh) * 2022-09-16 2023-01-31 华电电力科学研究院有限公司 一种脱硝尿素水解制氨的热量梯阶利用系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182472B1 (ko) * 2020-05-12 2020-11-24 (주)성산기업 암모니아 생성 시스템 및 방법
KR102519806B1 (ko) 2021-04-10 2023-04-10 강해문 암모니아 변환 시스템
KR102384194B1 (ko) 2021-10-07 2022-04-08 박수경 모듈화가 가능한 암모니아 생성 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009332A (ko) * 2010-07-23 2012-02-01 현대중공업 주식회사 촉매 분해반응을 이용한 우레아 용액 공급장치
KR101230499B1 (ko) * 2012-08-28 2013-02-07 주식회사 성산 내부핀을 구비한 전열관
KR20150043003A (ko) * 2013-10-14 2015-04-22 두산엔진주식회사 환원제 공급 시스템
JP6504613B2 (ja) * 2016-08-02 2019-04-24 株式会社タクマ 尿素加水分解装置
KR102079540B1 (ko) * 2019-08-06 2020-02-20 주식회사 현대기전 선택적환원촉매 탈질 설비용 고상 우레아 기반의 암모니아 환원제 공급 설비 시스템 및 그의 운용 방법
KR102182472B1 (ko) * 2020-05-12 2020-11-24 (주)성산기업 암모니아 생성 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068734A (ja) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd アンモニアの発生方法及び燃焼排ガスの処理方法
KR100737799B1 (ko) * 2001-08-01 2007-07-10 주식회사 포스코 암모니아 포집액 가열장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009332A (ko) * 2010-07-23 2012-02-01 현대중공업 주식회사 촉매 분해반응을 이용한 우레아 용액 공급장치
KR101230499B1 (ko) * 2012-08-28 2013-02-07 주식회사 성산 내부핀을 구비한 전열관
KR20150043003A (ko) * 2013-10-14 2015-04-22 두산엔진주식회사 환원제 공급 시스템
JP6504613B2 (ja) * 2016-08-02 2019-04-24 株式会社タクマ 尿素加水分解装置
KR102079540B1 (ko) * 2019-08-06 2020-02-20 주식회사 현대기전 선택적환원촉매 탈질 설비용 고상 우레아 기반의 암모니아 환원제 공급 설비 시스템 및 그의 운용 방법
KR102182472B1 (ko) * 2020-05-12 2020-11-24 (주)성산기업 암모니아 생성 시스템 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505044A (zh) * 2022-02-23 2022-05-17 西安热工研究院有限公司 一种填料式的尿素催化水解系统及方法
CN114505044B (zh) * 2022-02-23 2023-10-20 西安热工研究院有限公司 一种填料式的尿素催化水解系统及方法
CN115650252A (zh) * 2022-09-16 2023-01-31 华电电力科学研究院有限公司 一种脱硝尿素水解制氨的热量梯阶利用系统及方法

Also Published As

Publication number Publication date
KR102182472B1 (ko) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2021230495A1 (ko) 암모니아 생성 시스템 및 방법
US6524650B1 (en) Substrate processing apparatus and method
WO2020122619A1 (ko) 농도 정밀제어 가능한 다공성 구조체 삽입형 희석 요소수 분무장치
WO2020242013A1 (en) Apparatus for treating exhaust gas of thermal plant
WO2013073889A1 (ko) 보조가스공급포트를 포함하는 기판 처리 장치
WO2015102386A1 (ko) 중소형 선박에서의 유해물질 제거를 위한 스크러버 모듈 시스템 및 이를 이용한 유해물질 제거 방법
JP2004531079A (ja) 酸化剤の分圧の制御による熱酸化プロセス制御
WO2021251630A1 (ko) 복합화력발전소 배가스 처리장치
WO2020180082A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2014196705A1 (ko) 고체 암모늄염 반응기, 그 제어방법 및 고체 암모늄염과 선택적 환원촉매를 이용한 질소산화물 정화시스템
WO2016004660A1 (zh) 一种操作平台
WO2016171481A1 (ko) 환원제 공급 제어 시스템을 포함한 동력 장치 및 환원제 공급 제어 방법
WO2020197120A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
JP5838034B2 (ja) 脱硝制御方法及び排ガス処理設備
US5883919A (en) Diffusion furnace system for preventing gas leakage
WO2024043400A1 (ko) 기판처리장치 및 가스공급방법
WO2019078414A1 (ko) 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법
JP2521463Y2 (ja) 炉内温度測定装置
KR0185049B1 (ko) Lp cvd 확산로의 압력 센서 열화 방지 장치
WO2018043948A1 (ko) 선택적 촉매 환원 시스템
JPH11200053A (ja) 気相成長装置及びクリーニング方法
WO2021020642A1 (ko) 열교환기 세정 시스템 및 열교환기 세정 방법
WO2018236161A2 (ko) 스크러버
WO2017116060A1 (ko) 환원제 공급 시스템 및 이의 제어방법
JPH11197440A (ja) ガス除害装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803895

Country of ref document: EP

Kind code of ref document: A1