WO2019078414A1 - 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법 - Google Patents

유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법 Download PDF

Info

Publication number
WO2019078414A1
WO2019078414A1 PCT/KR2018/000293 KR2018000293W WO2019078414A1 WO 2019078414 A1 WO2019078414 A1 WO 2019078414A1 KR 2018000293 W KR2018000293 W KR 2018000293W WO 2019078414 A1 WO2019078414 A1 WO 2019078414A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion
combustion chamber
refractory
gas
Prior art date
Application number
PCT/KR2018/000293
Other languages
English (en)
French (fr)
Inventor
박경일
이종민
김동원
Original Assignee
한국전력공사
한국남동발전(주)
한국남부발전(주)
한국동서발전(주)
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 한국남동발전(주), 한국남부발전(주), 한국동서발전(주), 두산중공업 주식회사 filed Critical 한국전력공사
Publication of WO2019078414A1 publication Critical patent/WO2019078414A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present invention relates to an apparatus for evaluating the combustion of a fuel for a fluidized bed boiler and a method of evaluating the combustion of the fuel using the apparatus. More particularly, the present invention relates to an apparatus for evaluating the combustion of a fuel for a fluidized bed boiler, which is capable of evaluating the combustibility and environmental performance of a fuel for a fluidized bed boiler, and a method for evaluating the combustion of a fuel using the apparatus.
  • the circulating fluidized bed combustion is a method in which fuel such as coal and solid fuel is injected into a combustion furnace filled with a fluid medium such as sand or the like and flows together and combusted.
  • the circulating fluidized bed combustion has a fast combustion reaction and a relatively low operating temperature as compared with the conventional coal-fired power combustion method, thereby generating a small amount of nitrogen oxides.
  • FIG. 1 shows an apparatus for evaluating the combustion of a fuel for a general fluidized bed boiler.
  • the combustion evaluation apparatus 100 is configured such that the solid fuel stored in the fuel storage unit 10 is charged into the combustion chamber 20 through the fuel feeder 11, and the solid fuel is supplied into the combustion chamber 20 (Such as sand, asbestos, unburned carbon, etc.) and combustion gases (such as carbon dioxide, oxygen, nitrogen oxides, sulfur oxides, and carbon monoxide) are mixed with the fluidized medium (sand)
  • combustion gases such as carbon dioxide, oxygen, nitrogen oxides, sulfur oxides, and carbon monoxide
  • the solid component and the gaseous component are separated from each other in the cyclone 30 and the gaseous component is transferred to the rear end through the back path 24 and the solid component is loop- Flows into the combustion furnace 20 through the transfer pipe 26,
  • the combustion air is divided into primary air 1 and secondary air 2 and is supplied to the combustion chamber 20.
  • An external heater 50 provided outside the combustion chamber 20 for maintaining the temperature of the combustion furnace ) Is
  • the external heater 50 is used as a heat source for maintaining the temperature of the combustion furnace, so that the heat loss is large and the economy is low. (Not shown) provided in the fuel tank 11, it is difficult to uniformly supply the fuel.
  • the pressure fluctuation of the combustion chamber 20 due to the pressure fluctuation of the combustion chamber 20, reverse flow of the gas occurs to the feeder 11, resulting in a fire in the fuel storage unit 10, low stability of the apparatus, limited sampling of gas and solid components, There is a problem in that it is difficult to measure the combustion fraction and the real-time solid circulation amount by the position of the combustion chamber 20, and thus the combustibility of the fuel and the reliability of the environmental evaluation result are low.
  • Another object of the present invention is to provide an apparatus for evaluating the combustion of a fuel for a fluidized bed boiler which is excellent in stability.
  • the combustion test apparatus includes a combustion chamber for combusting fuel and a fluid medium; A fuel supply unit provided at one side of the lower portion of the combustion chamber to supply fuel to the combustion chamber; A cyclone connected to an upper portion of the combustion chamber to separate the solid particles and the exhaust gas discharged from the combustion chamber; A downcomer connected to a lower portion of the cyclone through a connection line to collect the solid particles; And a group chamber connected to a lower portion of the downcomer to store the solid particles, wherein the fuel supply unit includes a fuel storage tank in which fuel is stored, a weight provided in the upper portion of the fuel storage tank for measuring the weight of the fuel, And a fuel feeder provided at a lower portion of the fuel storage tank and configured to rotate a screw provided therein to supply fuel to the combustion chamber, wherein at least a part of the lower sidewall is made of a first refractory material, Wherein the first refractory is formed
  • the second refractory may comprise Inconel material.
  • the height H of the first refractory may be about 0.1 m to about 1.0 m, based on the position where the dispersion plate is formed.
  • the outer diameter A1 of the region where the second refractory is formed may satisfy the following formula 1:
  • B1 is the inner diameter of the region where the first refractory is formed
  • B2 is the outer diameter of the region where the first refractory is formed
  • the first inlet pipe may be formed at an angle of about 135 degrees or more with the sidewall of the combustion chamber.
  • At least one air-cooled solid particle layer may be further formed on the side wall of the combustion chamber where the second refractory is formed.
  • a purging gas inlet may be further formed in the connecting portion of the fuel feeder and the first inflow pipe.
  • the first pressure measuring unit and the second pressure measuring unit may be respectively provided at a connecting portion between the cyclone and the connecting line and below the downcomer.
  • the height difference between the first pressure measuring unit and the second pressure measuring unit may be about 2 m or less.
  • Another aspect of the present invention is to provide a method for evaluating the combustion of fuel using the apparatus for evaluating the combustion of the fuel for the fluidized bed boiler.
  • a method for evaluating the combustion of a fuel using a combustion evaluation apparatus for a fuel for a fluidized bed boiler comprising: setting a fuel input amount and setting a screw revolution number of a fuel feeder corresponding to the fuel input amount; And injecting fuel into the combustion chamber by rotating the screw according to the set number of revolutions and injecting primary air, secondary air, and tracking gas into the combustion chamber and burning the combustion chamber, The combustion fraction of each position is measured.
  • the step of setting the screw rotation speed of the fuel feeder includes the steps of: setting a fuel input amount; Determining a screw rotation speed of a fuel feeder for injecting the set fuel amount into the combustion chamber; Calculating a fuel injection amount measurement value by averaging the fuel injection amount a plurality of times using a change in weight of the fuel storage part in a weight measuring part by applying fuel to the combustion chamber by applying the screw rotation speed; Calculating an error rate between the fuel input set value and the measured value; And resetting the number of revolutions of the screw of the fuel feeder when the error rate is about 2% or less, and if the error rate is about 2% or more, resetting the number of revolutions of the screw of the fuel feeder.
  • the step of measuring the combustion fraction for each position of the combustion evaluation apparatus may include dividing the combustion furnace into a plurality of sections with respect to the height direction, and using the oxygen meter and the trace gas meter, Measuring the concentration of oxygen and the trace gas at the outlet location; Correcting the measured trace gas concentration value; Calculating an amount of combustion gas at an inlet and an outlet position of each section by using the input flow rate of the oxygen and the trace gas, and the corrected trace gas concentration value; And measuring the combustion fraction for each section using the amount of combustion gas at the outlet position.
  • the combustion evaluation method further measures a circulation amount of the solid particles discharged from the combustion chamber of the combustion evaluation apparatus during the combustion, wherein the solid particle circulation amount is a sum of a circulation amount of the solid particles, Measuring a pressure difference between a first pressure measuring unit and a second pressure measuring unit provided below the downcomer, wherein the solid particle circulation amount can be derived by the following equation 1:
  • Solid particle flow rate (m / s) 0.0531 x downcomer diameter (inch) + 0.029.
  • the present invention relates to a test apparatus and a test method for evaluating the flammability and the environment of a fuel used in a circulating fluidized bed boiler, and is a technology that can be used for practical commercial fluidized bed power plants because mutual comparison of fuel is possible.
  • the existing test equipment supplies the heat source with the external heater to maintain the temperature of the combustion chamber, which is large in heat loss and uneconomical.
  • it is difficult to uniformly supply solid fuel and there is a high risk that a back flow of gas to the fuel supply equipment occurs due to the pressure fluctuation in the combustion chamber and combustion occurs before the fuel is injected into the combustion chamber, It was difficult to trust the combustion performance and the environmental evaluation results of the fuel.
  • the present invention solves the existing problems and also effectively analyzes the combustion properties and the environmental properties of the fuel at each stage of the combustion chamber, and can also measure important scale-up factors that can not be measured in conventional devices such as combustion fraction and solid circulation amount have.
  • FIG. 1 shows an apparatus for evaluating the combustion of a fuel for a general fluidized bed boiler.
  • FIG. 2 shows an apparatus for testing the combustion of fuel for a fluidized bed boiler according to one embodiment of the present invention.
  • FIG 3 shows a fuel supply unit of a combustion test apparatus according to one embodiment of the present invention.
  • FIG. 4 shows a cyclone and a downcomer of a combustion test apparatus according to one embodiment of the present invention.
  • FIG. 5 is a graph showing the He concentration distribution according to the combustion furnace height of the combustion evaluation device of the present invention.
  • FIG. 6 is a graph showing the temperature and pressure profile according to the height of the combustion chamber of the combustion test apparatus according to the present invention.
  • FIG. 2 shows an apparatus for testing the combustion of fuel for a fluidized bed boiler according to an embodiment of the present invention
  • FIG. 3 shows a fuel supply unit of the combustion testing apparatus.
  • the combustion test apparatus 1000 includes a combustion chamber 200 for combusting fuel and a fluid medium; A fuel supply unit provided at one side of the lower portion of the combustion chamber to supply fuel to the combustion chamber; A cyclone 220 connected to the combustion chamber upper part 202 to separate solid particles and exhaust gas discharged from the combustion chamber 200; A downcomer 230 connected to the lower portion of the cyclone 220 through a connection line to collect the solid particles;
  • the fuel supply unit includes a fuel storage tank (101a, 101b) in which fuel is stored, a fuel storage tank (210) provided in an upper portion of the fuel storage tank And a fuel feeder 110 provided at a lower portion of the fuel storage tank for rotating the screw 112 to supply fuel to the combustion chamber.
  • the exhaust gas separated in the cyclone 220 is discharged to the outside through the back path 210 and the solid particles stored in the group chamber 240 are introduced into the combustion chamber 200 through the transfer pipe 242.
  • the tracking gas 5 may comprise helium (He) gas.
  • He helium
  • the first refractory may be any conventional one.
  • the first refractory may comprise at least one of alumina, silica, clay and silicon carbide.
  • the second refractory may comprise Inconel material.
  • the inconel material may be a heat resistant alloy comprising nickel (Ni).
  • Ni nickel
  • Cr chromium
  • Fe iron
  • Ti titanium
  • Al aluminum
  • Mn manganese
  • Si silicon
  • the first refractory 300 is formed at a position spaced apart from a position where the dispersion plate 330 is formed.
  • the height (H) of the first refractory may be about 0.1 m to about 1.0 m.
  • the refractory height H is formed at a position less than about 0.1 m based on the position of the dispersion plate, the dispersion effect of the primary air by the dispersion plate may be deteriorated.
  • a first inflow pipe 114 connected to the fuel feeder 110 is formed at one side of the first refractory 300 to allow the fuel to flow into the combustion chamber and the second refractory 310 at the side wall of the combustion chamber
  • An air supply pipe (not shown) is formed and the secondary air 6 flows.
  • the outer diameter A1 of the region where the second refractory is formed may be formed by satisfying the following formula 1:
  • B1 is the inner diameter of the region where the first refractory is formed
  • B2 is the outer diameter of the region where the first refractory is formed
  • the first inlet tube 114 may be formed at an angle of about 135 degrees or more with the side wall of the combustion chamber 200. Under the above conditions, the fuel is not stagnated in the first inflow pipe 114, so that the working efficiency can be excellent. For example from about 135 [deg.] To about 170 [deg.].
  • At least one air-cooled solid particle layer 310 may be formed on the sidewall of the second refractory of the combustion chamber.
  • it may be provided at the upper and lower portions of the combustion chamber 200 as shown in FIG. Under the above conditions, accurate temperature control of the combustion furnace may be possible.
  • the solid particle layer may comprise at least one of alumina and silica. When these components are included, temperature control with accurate burning may be possible.
  • a purging gas inlet 116 is further formed at a connection portion between the fuel feeder 110 and the first inlet pipe 114, so that a purging gas can be introduced.
  • the purging gas may comprise one or more of air and nitrogen. For example nitrogen.
  • weight measuring units 102a and 102b are provided on top of the fuel storage units 101a and 101b to measure the weight of the fuel, and the fuel storage unit and the fuel feeder are connected to each other through joint pipes 103a and 103b ). Under the above conditions, the accuracy of the fuel weight measurement value can be excellent.
  • the screw 112 of the fuel feeder 110 is provided so as not to be in contact with the first refractory 300, so that the metal material can be in contact with the first refractory 300 to prevent heat conduction.
  • connection line 236 may be formed of a flexible metal material.
  • the solid particles and the exhaust gas discharged from the combustion chamber 200 are separated from the cyclone 220, the exhaust gas is discharged to the back path 210, and the solid particles are moved to the group room 240 through the downcomer 230 do.
  • the solid particles may include, but are not limited to, fluidized media and ash.
  • a plurality of cyclones can be applied.
  • the pressure difference between specific positions of the downcomer 230 can be measured and used to measure the circulation amount of the solid particles of the present invention.
  • the pressure difference value between the downcomer specific positions has a close relationship with the solid particle circulation amount, and the solid circulation amount tends to rise constantly according to the operating condition change of the fuel evaluation device of the present invention. And it is shown that the solid circulation amount can be predicted by the downcomer specific pressure differential pressure measurement.
  • a first pressure measuring part 232 and a second pressure measuring part 234 may be provided on the connection part between the cyclone 220 and the connecting line 236 and the lower part of the downcomer 240 have.
  • the difference in height D between the first pressure measuring unit 232 and the second pressure measuring unit 234 is about 2 m or less.
  • the accuracy of the predicted value of the solid particle circulation amount Can be excellent. For example from about 0.5 m to about 2 m.
  • a method for evaluating the combustion of a fuel using a combustion evaluation apparatus for a fuel for a fluidized bed boiler comprising: setting a fuel input amount and setting a screw revolution number of a fuel feeder corresponding to the fuel input amount; And injecting fuel into the combustion chamber by rotating the screw according to the set number of revolutions and injecting primary air, secondary air, and tracking gas into the combustion chamber and burning the combustion chamber, The combustion fraction of each position is measured.
  • the step of setting the screw rotation speed of the fuel feeder includes the steps of: setting a fuel input amount; Determining a screw rotation speed of a fuel feeder for injecting the set fuel amount into the combustion chamber; Calculating a fuel injection amount measurement value by averaging the fuel injection amount a plurality of times using a change in weight of the fuel storage part in a weight measuring part by applying fuel to the combustion chamber by applying the screw rotation speed; Calculating an error rate between the fuel input set value and the measured value; And resetting the number of revolutions of the screw of the fuel feeder when the error rate is about 2% or less, and if the error rate is about 2% or more, resetting the number of revolutions of the screw of the fuel feeder.
  • the fuel injection amount may be measured and measured a plurality of times by increasing or decreasing the number of revolutions (+ 1 Hz or -1 Hz).
  • the step of measuring the combustion fraction for each position of the combustion evaluation apparatus may include dividing the combustion furnace into a plurality of sections with respect to the height direction, and using the oxygen meter and the trace gas meter, Measuring the concentration of oxygen and the trace gas at the outlet location; Correcting the measured trace gas concentration value; Calculating an amount of combustion gas at an inlet and an outlet position of each section by using the input flow rate of the oxygen and the trace gas, and the corrected trace gas concentration value; And measuring the combustion fraction for each section using the amount of combustion gas at the outlet position.
  • the oxygen concentration for each section can be easily found by measuring the oxygen concentration by installing a gas sampling line at each inlet (outlet).
  • the amount of combustion gas at each inlet (outlet) is very difficult to measure.
  • helium (He) gas was used as a tracking gas in the present invention, which was mixed with primary air and injected into a combustion furnace. Since He gas is not produced in the solid fuel combustion reaction, the flow rate of He (L / min) should be constant at any position. Therefore, the amount of combustion gas generated can be obtained from the above equation (c).
  • He input amount is a known value
  • the He concentration can be measured by using a He concentration analyzer at the same position when measuring the oxygen concentration.
  • FIG. 5 is a graph showing the He concentration distribution according to the combustion furnace height of the combustion evaluation device of the present invention. Referring to FIG. 5, it can be seen that there is a difference in the He gas concentration depending on the height of the combustion evaluation apparatus of the present invention, and the degree of combustion varies depending on the position of the combustion furnace. In addition, since the He gas can partially interfere with the carbon dioxide contained in a large amount of the combustion gas, the correction of the carbon dioxide concentration must be performed in real time when using the He analyzer.
  • the combustion evaluation method further measures a circulation amount of the solid particles discharged from the combustion chamber of the combustion evaluation apparatus during the combustion, wherein the solid particle circulation amount is a sum of a circulation amount of the solid particles, Measuring a pressure difference between a first pressure measuring unit and a second pressure measuring unit provided below the downcomer, wherein the solid particle circulation amount can be derived by the following equation 1:
  • Solid particle flow rate (m / s) 0.0531 x downcomer diameter (inch) + 0.029.
  • the present invention relates to a test apparatus and a test method for evaluating the flammability and the environment of a fuel used in a circulating fluidized bed boiler, and is a technology that can be used for practical commercial fluidized bed power plants because mutual comparison of fuel is possible.
  • the existing test equipment supplies the heat source with the external heater to maintain the temperature of the combustion chamber, which is large in heat loss and uneconomical.
  • it is difficult to uniformly supply solid fuel and there is a high risk that a back flow of gas to the fuel supply equipment occurs due to the pressure fluctuation in the combustion chamber and combustion occurs before the fuel is injected into the combustion chamber, It was difficult to trust the combustion performance and the environmental evaluation results of the fuel.
  • the present invention solves the existing problems and also effectively analyzes the combustion properties and the environmental properties of the fuel at each stage of the combustion chamber, and can also measure important scale-up factors that can not be measured in conventional devices such as combustion fraction and solid circulation amount have.
  • the combustion evaluation of the fuel was carried out using the combustion evaluation apparatus shown in Figs. 2 to 4.
  • the combustion evaluation apparatus 1000 includes a combustion chamber 200 for combusting fuel and a fluid medium; A fuel supply unit provided at one side of the lower portion of the combustion chamber 200 to supply fuel to the combustion chamber 200; A cyclone 220 connected to the upper portion of the combustion chamber 200 to separate the solid particles and the exhaust gas discharged from the combustion chamber 200; A downcomer 230 connected to the lower portion of the cyclone 220 through a connection line to collect the solid particles; And a group chamber 240 connected to a lower portion of the downcomer 230 and storing the solid particles.
  • two cyclones are connected to each other.
  • the fuel supply unit includes fuel storage vessels 101a and 101b in which fuel is stored and weight measurement units 102a and 102b and fuel storage vessels 101a and 101b disposed above the fuel storage vessels 101a and 101b to measure the weight of the fuel, And a fuel feeder 110 connected to the fuel reservoir through a flexible plastic and rotating the screw 112 provided inside the fuel feeder 110 to supply fuel to the combustion chamber.
  • At least a part of the lower sidewall of the combustion chamber 200 is formed of the first refractory 300 and a region of the refractory 300 excluding the first refractory 300 is formed of the second refractory 320 of Inconel.
  • the dispersion plate 330 is disposed under the combustion chamber 200 to introduce the first air and the trace gas.
  • the first refractory 300 is spaced apart by a height of 0.85 m from the position where the dispersion plate 330 is formed Respectively.
  • Two air-cooled solid particle layers 310 were formed apart from each other between the first refractory of the combustion chamber 200 and the combustion chamber upper portion 202 and along the outer peripheral surface of the side wall of the second refractory.
  • a first inflow pipe 114 connected to the fuel feeder 110 is formed at one side of the first refractory so that the fuel flows into the first inflow pipe 114 and the purging gas inlet (Nitrogen gas) was introduced into the combustion chamber 200 through the combustion chamber 116.
  • the first inflow pipe 114 is formed at an angle of 140 ° with the side wall of the combustion chamber 200.
  • a secondary air supply pipe (not shown) is formed in the region where the second refractory of the combustion chamber side wall is formed, so that the secondary air flows into the combustion chamber.
  • the exhaust gas separated from the cyclone 220 is discharged to the outside through the back pass 210.
  • the solid particles stored in the group chamber are passed through the transfer pipe 242 formed through the other side of the first refractory 300, 200).
  • the first pressure measuring unit 232 and the second pressure measuring unit 234 are connected to the connecting portion between the cyclone 220 and the connecting line 236 and the lower portion of the downcomer 230, And the height difference D between the first pressure measuring unit 232 and the second pressure measuring unit 234 was set to be 2 m.
  • the combustion evaluation of the fuel for the fluidized bed boiler was performed using the above combustion evaluation device. Specifically, a fuel injection amount is set, a screw rotation speed of a fuel feeder corresponding to the fuel injection amount is set, a screw is rotated according to the set rotation speed to inject fuel into the combustion chamber, And the amount of circulation of the solid particles discharged from the combustion chamber was measured at the time of the combustion.
  • the screw rotation speed setting of the fuel feeder sets the amount of fuel (coal) to be charged into the combustion chamber, and determines the screw rotation speed of the fuel feeder to inject the set amount of fuel into the combustion chamber. Then, fuel is injected into the combustion chamber by applying the screw rotation speed, and the fuel amount is measured a plurality of times by using the weight change of the fuel storage part in the weight measuring part, and then the average fuel amount measurement value is calculated. The error rate between the set value and the measured value was calculated. And resetting the number of revolutions of the screw of the fuel feeder when the error rate is 2% or less, while maintaining the screw revolution number when the error rate is 2% or less.
  • the screw was rotated according to the set number of revolutions to inject fuel into the combustion chamber, and the primary air, the secondary air, and the tracking gas were injected into the combustion chamber and burned. During the combustion, the combustion fraction and the solid particle circulation amount for each position of the combustion evaluation apparatus were measured.
  • the flow rate of the primary air was 500 L / min
  • the secondary air was 300 L / min
  • the trace gas (He) was 40 L / min.
  • the oxygen concentration at the first stage outlet was 3% and the He concentration was 8%
  • the combustion fraction at each stage can be calculated as follows.
  • the solid particle circulation amount is measured by measuring a pressure difference between the first pressure measuring unit and the second pressure measuring unit provided at the connecting portion between the cyclone and the connecting line and under the downcomer during the combustion,
  • the solid particle circulation amount was derived from the following equation:
  • Solid particle flow rate (m / s) 0.0531 x downcomer diameter (inch) + 0.029.
  • FIG. 6 is a graph showing temperature and pressure profiles according to the height of the combustion chamber of the combustion testing apparatus. Referring to FIG. 7, it can be seen that both the temperature and the pressure exhibit typical behavior of the fluidized bed boiler during the combustion test apparatus of the present invention. Especially, it was confirmed that the upper temperature of the combustion furnace can be controlled according to the operating condition of the combustion test apparatus, and it was confirmed that the pressure of the combustion furnace changes corresponding to the operating conditions.
  • Fig. 7 shows the results of the change in the amount of fuel input measured during the combustion evaluation test using the above combustion test apparatus. Referring to FIG. 7, when the method of evaluating the combustion of fuel using the combustion testing apparatus according to the present invention is applied, it can be seen that the amount of fuel input varies with time, and the correlation is more than 99% could know.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

본 발명은 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법에 관한 것이다. 한 구체예에서 상기 유동층 보일러용 연료의 연소평가장치는 연료 및 유동매체를 유동 연소시키는 연소실; 상기 연소실 하부의 일측에 구비되어, 상기 연소실에 연료를 공급하는 연료공급부; 상기 연소실의 상부와 연결되어, 상기 연소실에서 배출된 고체 입자 및 배가스를 분리하는 사이클론; 상기 사이클론의 하부와 연결라인을 통해 연결되어, 상기 고체 입자를 포집하는 다운커머; 및 상기 다운커머의 하부와 연결되어, 상기 고체 입자가 저장되는 룹실;을 포함한다.

Description

유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법
본 발명은 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법에 관한 것이다. 더욱 상세하게는, 유동층 보일러용 연료의 연소성 및 환경성을 평가할 수 있는 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법에 관한 것이다.
순환 유동층 연소는 고온의 모래 등의 유동매체가 충전된 연소로 내부에 석탄 및 고체 연료 등의 연료를 주입하고 함께 유동시켜 연소시키는 방식이다. 상기 순환 유동층 연소는 연소 반응이 빠르고, 일반 석탄 화력 연소 방식에 비해 조업 온도가 상대적으로 낮아 질소산화물의 발생량이 적다.
도 1은 일반적인 유동층 보일러용 연료의 연소평가장치를 나타낸 것이다. 상기 도 1을 참조하면, 연소평가장치(100)는 연료 저장부(10)에 저장된 고체연료가 연료 피더(11)를 통해 연소실(20) 내부에 장입되고, 고체연료는 연소실(20) 내부에 충전된 유동매체(모래)와 혼합되어 연소가 시작되며, 이때 발생하는 고체 혼합물(모래, 회재, 미연탄소 등)과 연소가스(이산화탄소, 산소, 질소산화물, 황산화물 및 일산화탄소 등)는 연소실 상부(22)를 거쳐, 사이클론(30)으로 이송되며, 사이클론(30)에서 고체 및 기체 성분이 분리되어, 기체 성분은 백패스(24)를 통해 후단으로 이송되고, 고체 성분은 룹실(loop-seal)(40)을 거쳐, 이송관(26)을 통해 연소로(20)에 유입된다. 이때, 연소용 공기는 1차 공기(1) 및 2차 공기(2) 등으로 구분되어 연소실(20)에 공급되며, 연소로의 온도 유지를 위해 연소실(20) 외부에 구비되는 외부히터(50)가 사용된다.
그러나 이러한 연소평가장치(100)를 사용하여 연료의 연소평가시험을 진행하는 경우, 연소로 온도유지를 위해 외부히터(50)를 열원으로 사용하여 열손실이 크고 경제성이 낮으며, 연료 투입이 피더(11)에 구비된 스크류(미도시)의 회전수에 의해 제어되는 점에서, 연료의 균일한 공급이 어려운 문제가 있었다. 또한 연소실(20)의 압력 변동에 따라 피더(11)로 기체의 역흐름이 발생하여 연료 저장부(10)에 화재가 발생하는 등 장치의 안정성이 낮고, 기체 및 고체 성분의 샘플링이 제한적이었으며, 연소실(20)의 위치별 연소 분율 측정과 실시간 고체 순환량 측정이 어려워 연료의 연소성 및 환경성 평가 결과의 신뢰성이 낮은 문제점이 있었다.
본 발명과 관련한 선행기술로는 일본 공개특허공보 제1998-227412호(1998.08.25 공개, 발명의 명칭: 유동층 보일러의 평가 장치 및 그 평가 방법)가 있다. 상기 문헌에는 고체 입자를 충전하는 케이스; 상기 케이스의 하방 내부에 배치되는 가스 분출 수단; 상기 가스 분출 수단에서 케이스 내부로 연료가스 및 지연가스를 불어넣는 가스공급수단; 상기 케이스 내부의 연소 가스를 채취하는 연소 가스 채취 수단; 및 상기 연소 가스 채취 수단에 의해 채취된 연소 가스의 산소 농도를 계측하는 계측 수단을 구비하는 것을 특징으로 하는 유동층 보일러의 평가 장치 및 평가 방법이 개시되어 있다.
본 발명의 하나의 목적은 연료의 연소성 및 환경성 평가결과의 정확성 및 신뢰성이 우수한 유동층 보일러용 연료의 연소평가장치를 제공하는 것이다.
본 발명의 다른 목적은 안정성이 우수한 유동층 보일러용 연료의 연소평가장치를 제공하는 것이다.
본 발명의 또 다른 목적은 연료의 위치별 연소 분율 및 실시간 고체 순환량의 측정이 가능한 유동층 보일러용 연료의 연소평가장치를 제공하는 것이다.
본 발명의 또 다른 목적은 외부 히터 없이 연료 연소열로 연소실의 온도유지가 가능하여 경제적인 유동층 보일러용 연료의 연소평가장치를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법을 제공하는 것이다.
본 발명의 하나의 관점은 유동층 보일러용 연료의 연소시험장치에 관한 것이다. 상기 연소시험장치는 연료 및 유동매체를 유동 연소시키는 연소실; 상기 연소실 하부의 일측에 구비되어, 상기 연소실에 연료를 공급하는 연료공급부; 상기 연소실의 상부와 연결되어, 상기 연소실에서 배출된 고체 입자 및 배가스를 분리하는 사이클론; 상기 사이클론의 하부와 연결라인을 통해 연결되어, 상기 고체 입자를 포집하는 다운커머; 및 상기 다운커머의 하부와 연결되어, 상기 고체 입자가 저장되는 룹실;을 포함하며, 상기 연료공급부는, 연료가 저장되는 연료저장조, 상기 연료저장조의 상부에 구비되어 상기 연료의 중량을 측정하는 중량측정부 및 상기 연료저장조 하부에 구비되며, 내부에 구비된 스크류를 회전하여 상기 연소실에 연료를 공급하는 연료 피더를 포함하고, 상기 연소실은, 하부 측벽의 적어도 일부가 제1 내화물로 이루어지고, 상기 제1 내화물을 제외한 영역은 제2 내화물로 이루어지는 것이며, 상기 연소실 하부에는 분산판이 배치되어 제1 공기 및 추적가스가 유입되고, 상기 제1 내화물은 상기 분산판이 형성된 위치를 기준으로 이격 형성되며, 상기 사이클론에서 분리된 배가스는 백패스를 통해 외부로 배출되고, 상기 제1 내화물의 일측에는 상기 연료 피더와 연결되는 제1 유입관이 형성되어 상기 연료가 상기 연소실로 유입되며, 상기 룹실에 저장된 고체 입자는 상기 제1 내화물의 타측을 관통하여 형성된 이송관을 통해 상기 연소실로 유입되고, 상기 연소실 측벽의 제2 내화물에는 2차 공기 공급관이 형성되어 2차 공기가 유입된다.
한 구체예에서 상기 제2 내화물은 인코넬(Inconel) 재질을 포함할 수 있다.
한 구체예에서 상기 제1 내화물의 높이(H)는, 상기 분산판이 형성된 위치를 기준으로 약 0.1m 내지 약 1.0m의 높이로 형성될 수 있다.
한 구체예에서 상기 제2 내화물이 형성된 영역의 외경(A1)은, 하기 식 1을 만족할 수 있다:
[식 1]
B1 ≤ A1 < B2
(상기 식 1에서, 상기 B1은 상기 제1 내화물이 형성된 영역의 내경이며, B2는 상기 제1 내화물이 형성된 영역의 외경이다).
한 구체예에서 상기 제1 유입관은 상기 연소실 측벽과 약 135° 이상의 각도를 이루며 형성될 수 있다.
한 구체예에서 상기 연소실의 제2 내화물이 형성된 측벽에는 하나 이상의 공기 냉각식 고체입자층이 더 형성될 수 있다.
한 구체예에서 상기 연료 피더 및 제1 유입관의 연결 부위에는 퍼징 가스 유입구가 더 형성될 수 있다.
한 구체예에서 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에는, 제1 압력 측정부 및 제2 압력 측정부가 각각 구비될 수 있다.
한 구체예에서 상기 제1 압력 측정부 및 제2 압력 측정부 사이의 높이차는 약 2m 이하일 수 있다.
본 발명의 다른 관점은 상기 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법을 제공하는 것이다. 상기 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법에 있어서, 연료 투입량을 설정하고, 상기 연료 투입량에 대응하는 연료 피더의 스크류 회전수를 설정하는 단계; 및 상기 설정된 회전수에 따라 스크류를 회전하여 연소실에 연료를 투입하고, 상기 연소실에 1차 공기, 2차 공기 및 추적 가스를 투입하여 연소하는 단계;를 포함하며, 상기 연소시, 상기 연소평가장치의 위치별 연소 분율을 측정한다.
한 구체예에서 상기 연료 피더의 스크류 회전수를 설정하는 단계는, 연료 투입량을 설정하는 단계; 상기 설정된 연료 투입량을 연소실에 투입하기 위한 연료피더의 스크류 회전수를 결정하는 단계; 상기 스크류 회전수를 적용하여 연소실에 연료를 투입하고, 중량측정부에서 연료저장부의 중량 변화를 이용하여 연료 투입량을 복수 회 측정 후, 평균하여 연료 투입량 측정값을 계산하는 단계; 연료 투입량 설정값과 측정값의 오차율을 계산하는 단계; 및 상기 오차율이 약 2% 이하인 경우 상기 스크류 회전수를 유지하되, 상기 오차율이 약 2%를 초과하는 경우, 상기 연료피더의 스크류의 회전수를 재설정하는 단계;를 포함하여 설정될 수 있다.
한 구체예에서 상기 연소평가장치의 위치별 연소 분율을 측정하는 단계는, 상기 연소로를 높이 방향을 기준으로 복수 개의 구간으로 분할하고, 산소 측정기 및 추적가스 측정기를 이용하여, 각 구간의 입구 및 출구 위치의 산소 및 추적가스의 농도를 측정하는 단계; 상기 측정된 추적가스 농도값을 보정하는 단계; 상기 산소와 추적가스의 투입 유량과, 상기 보정된 추적가스 농도값을 이용하여, 각 구간의 입구 및 출구 위치의 연소가스량을 계산하는 단계; 및 상기 출구 위치의 연소가스량을 이용하여 각 구간별 연소 분율을 측정하는 단계;를 포함하여 도출된다.
한 구체예에서 상기 연소평가방법은, 상기 연소시 상기 연소평가장치의 연소실에서 배출된 고체 입자의 순환량을 더 측정하며, 상기 고체 입자 순환량은, 상기 연소시, 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에 구비된 제1 압력 측정부 및 제2 압력 측정부 사이의 압력차를 측정하는 단계;를 포함하며, 상기 고체 입자 순환량은 하기 식 1을 통해 도출될 수 있다:
[식 1]
고체 입자 순환량(kg/m2·s) = 고체 입자 분율 x 고체 입자 밀도(kg/m3) x 고체 입자 유속(m/s)
(상기 수식 1에서, 상기 고체 입자 분율 및 고체 입자 유속은 각각 하기 수식 2 및 수식 3을 통해 도출된다)
[수식 2]
고체 입자 분율 = (제1 및 제2 압력 측정부의 압력차(mmH2O))/(고체 입자 밀도(kg/m3)) X (제1 및 제2 압력 측정부 사이의 높이차(m))
[수식 3]
고체 입자 유속(m/s) = 0.0531 x 다운커머 직경(inch) + 0.029.
본 발명은 순환유동층보일러에서 사용하는 연료의 연소성 및 환경성을 평가할 수 있는 시험장치 및 시험방법에 관한 것으로 연료에 대한 상호비교가 가능하여 실제 상용유동층 발전소에 활용될 수 있는 기술이다. 기존 시험장치는 연소실의 온도유지를 위해 외부히터로 열원을 공급하여 열손실이 크며 비경제적이다. 또한 고체 연료의 균일한 공급이 어렵고, 연소실의 압력변동에 따라 연료공급설비로 기체의 역흐름이 발생하여 연료가 연소실로 투입되기 전에 연소가 발생하여 연료저장조에서 화재가 발생하는 등의 위험성이 높아 연료에 대한 연소성 및 환경성 평가 결과를 신뢰하기 어려웠다. 본 발명에서는 기존의 문제점을 해결함과 동시에 또한 연소실 각 단에서 연료의 연소성과 환경성을 효과적으로 분석하여 각 위치별 연소분율과 고체 순환량 등 기존 장치에서는 측정할 수 없었던 중요한 Scale-up 인자도 측정할 수 있다.
도 1은 일반적인 유동층 보일러용 연료의 연소평가장치를 나타낸 것이다.
도 2는 본 발명의 한 구체예에 따른 유동층 보일러용 연료의 연소시험장치를 나타낸 것이다.
도 3은 본 발명의 한 구체예에 따른 연소시험장치의 연료공급부를 나타낸 것이다.
도 4는 본 발명의 한 구체예에 따른 연소시험장치의 사이클론 및 다운커머를 나타낸 것이다.
도 5는 본 발명의 연소평가장치의 연소로 높이에 따른 He 농도 분포를 도시한 그래프이다.
도 6은 본 발명에 따른 연소시험장치의 연소실의 높이에 따른 온도 및 압력 프로파일을 도시한 그래프이다.
도 7은 본 발명에 따른 연소시험장치를 이용한 연소 평가 시험 중 측정한 연료 투입량의 변화결과를 도시한 것이다.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하도록 한다.
유동층 보일러용 연료의 연소시험장치
본 발명의 하나의 관점은 유동층 보일러용 연료의 연소시험장치에 관한 것이다. 도 2은 본 발명의 한 구체예에 따른 유동층 보일러용 연료의 연소시험장치를 나타낸 것이며, 도 3은 상기 연소시험장치의 연료공급부를 나타낸 것이다.
상기 도 2 및 도 3을 참조하면, 연소시험장치(1000)는 연료 및 유동매체를 유동 연소시키는 연소실(200); 상기 연소실 하부의 일측에 구비되어, 상기 연소실에 연료를 공급하는 연료공급부; 연소실 상부(202)와 연결되어, 연소실(200)에서 배출된 고체 입자 및 배가스를 분리하는 사이클론(220); 사이클론(220)의 하부와 연결라인을 통해 연결되어, 상기 고체 입자를 포집하는 다운커머(230); 및 다운커머(230)의 하부와 연결되어, 상기 고체 입자가 저장되는 룹실(240);을 포함하며, 상기 연료공급부는, 연료가 저장되는 연료저장조(101a, 101b), 연료저장조의 상부에 구비되어 상기 연료의 중량을 측정하는 중량측정부(102a, 102b) 및 상기 연료저장조 하부에 구비되며, 내부에 구비된 스크류(112)를 회전하여 상기 연소실에 연료를 공급하는 연료 피더(110)를 포함하고, 사이클론(220)에서 분리된 배가스는 백패스(210)를 통해 외부로 배출되며, 룹실(240)에 저장된 고체 입자는 이송관(242)을 통해 연소실(200)로 유입된다.
상기 도 2 및 도 3을 참조하면 연소실(200)은, 하부 측벽의 적어도 일부가 제1 내화물(300)로 이루어지고, 제1 내화물(300)을 제외한 영역은 제2 내화물(320)로 이루어지며, 연소실(200) 하부에는 분산판(330)이 배치되어 제1 공기(4) 및 추적가스(5)가 유입된다. 한 구체예에서 추적가스(5)는 헬륨(He) 가스를 포함할 수 있다. 상기 헬륨 가스를 적용시, 연소 반응에 의한 간섭을 최소화할 수 있어, 연소시험장치(1000)의 위치별 연소 분율 측정 및 분석이 용이할 수 있다.
한 구체예에서 상기 제1 내화물은 통상적인 것을 사용할 수 있다. 예를 들면 상기 제1 내화물은 알루미나, 실리카, 점토질 및 탄화규소질 중 하나 이상을 포함할 수 있다.
한 구체예에서 상기 제2 내화물은 인코넬(Inconel) 재질을 포함할 수 있다. 한 구체예에서 상기 인코넬 재질은, 니켈(Ni)을 포함하는 내열합금일 수 있다. 예를 들면, 니켈 약 100 중량부, 크롬(Cr) 약 5 중량부 내지 약 20 중량부, 철(Fe) 약 5 중량부 내지 약 7 중량부, 티타늄(Ti) 약 2 중량부 내지 약 5 중량부, 및 알루미늄(Al), 망간(Mn) 및 실리콘(Si) 약 0 중량부 초과 약 5 중량부 이하를 포함할 수 있다. 상기 인코넬 재질로 제2 내화물을 형성시, 내부식성이 우수하여 본 발명의 연소시험장치의 내구성이 우수할 수 있다.
상기 도 3을 참조하면, 제1 내화물(300)은 분산판(330)이 형성된 위치를 기준으로 일정 거리 이격된 위치에 형성된다. 한 구체예에서 제1 내화물의 높이(H)는 약 0.1m 내지 약 1.0m 일 수 있다. 상기 조건에서 제1 내화물을 형성시, 분산판에 의한 1차 공기의 확산을 저해하지 않으면서, 내화성이 우수하여, 연소시험시, 열전도로 인하여 연료공급부에 열이 전달되어 화재 및 폭발이 발생하는 현상을 방지하여 작업안정성이 우수할 수 있다.
상기 내화물 높이(H)가 분산판 위치를 기준으로 약 0.1m 미만의 위치에서 형성시, 분산판에 의한 1차 공기의 분산효과가 저하될 수 있다.
제1 내화물(300)의 일측에는, 연료 피더(110)와 연결되는 제1 유입관(114)이 형성되어 상기 연료가 상기 연소실로 유입되며, 상기 연소실 측벽의 제2 내화물(310)에는 2차 공기 공급관(미도시)이 형성되어 2차 공기(6)가 유입된다.
한 구체예에서 상기 제2 내화물이 형성된 영역의 외경(A1)은, 하기 식 1을 만족하여 형성될 수 있다:
[식 1]
B1 ≤ A1 < B2
(상기 식 1에서, 상기 B1은 상기 제1 내화물이 형성된 영역의 내경이며, B2는 상기 제1 내화물이 형성된 영역의 외경이다).
상기 조건에서 연소실 내부에서 연소 시험시, 연소시 연료 및 유동매체 등에 의해 제1 내화물의 마모되어 파손되는 현상을 방지할 수 있다.
한 구체예에서 제1 유입관(114)은 연소실(200) 측벽과 약 135° 이상의 각도를 이루며 형성될 수 있다. 상기 조건에서 제1 유입관(114) 내부에서 연료가 정체되지 않아 작업 효율이 우수할 수 있다. 예를 들면 약 135° 내지 약 170°일 수 있다.
한 구체예에서 상기 연소실의 제2 내화물이 형성된 측벽에는 하나 이상의 공기 냉각식 고체입자층(310)이 더 형성될 수 있다. 예를 들면, 상기 도 2와 같이 연소실(200)의 상부 및 하부에 구비될 수 있다. 상기 조건에서 정확한 연소로 온도 제어가 가능할 수 있다.
한 구체예에서 상기 고체입자층은, 알루미나 및 실리카 중 하나 이상을 포함할 수 있다. 상기 성분을 포함시, 정확한 연소로 온도 제어가 가능할 수 있다.
상기 도 3을 참조하면, 연료 피더(110) 및 제1 유입관(114)의 연결 부위에는 퍼징 가스 유입구(116)가 더 형성되어, 퍼징 가스가 유입될 수 있다. 한 구체예에서 퍼징 가스는 공기 및 질소 중 하나 이상 포함할 수 있다. 예를 들면 질소를 포함할 수 있다. 상기 퍼징 가스를 주입시, 상기 연료 공급부와, 연소실 내부의 압력을 용이하게 조절하여 연료 무게 측정값의 정확성이 우수할 수 있다.
또한, 연료저장부(101a, 101b)의 하부에서 연료의 중량을 측정하는 경우, 연료공급계통 전체 중량을 측정하여야 하므로 실제 연료의 중량 측정에 어려움이 발생한다. 따라서, 본 발명에서는 연료저장부(101a, 101b)의 상부에 중량측정부(102a, 102b)를 구비하여 연료 중량을 측정하며, 연료저장부와 연료피더는 플렉서블 플라스틱 소재의 연결관(103a, 103b)을 통해 연결할 수 있다. 상기 조건에서, 연료 중량 측정값의 정확성이 우수할 수 있다.
한 구체예에서 연료 피더(110)의 스크류(112)는 제1 내화물(300)과 접촉하지 않도록 구비되어, 금속 소재가 접촉하여 열전도를 방지할 수 있다.
도 4는 본 발명의 한 구체예에 따른 사이클론 및 다운커머를 나타낸 것이다. 상기 도 4를 참조하면 사이클론(220)과 다운커머(230)의 열적 변형을 방지하기 위하여, 연결라인(236)은 플렉서블한 금속 소재로 형성될 수 있다.
본 발명에서 연소실(200)에서 배출된 고체 입자 및 배가스는 사이클론(220)에서 분리되어 배가스는 백패스(210)로 배출되며, 고체 입자는 다운커머(230)를 통해 룹실(240)로 이동하게 된다. 한 구체예에서 상기 고체 입자는 유동매체 및 회분 등을 포함할 수 있으나, 이에 제한되지 않는다. 본 발명의 한 구체예에서 복수 개의 사이클론을 적용할 수 있다.
한 구체예에서는 다운커머(230) 특정 위치 사이의 압력차를 측정하고, 이를 이용하여 본 발명의 고체 입자 순환량을 측정할 수 있다. 특히 다운커머 특정 위치 사이의 압력차 값은, 고체 입자 순환량과 밀접한 관계를 가지며, 본 발명의 연료평가장치의 운전조건 변화에 따라 고체 순환량이 일정하게 상승하는 경향을 보였는데, 연료의 변화보다는 운전 조건에 강한 상관관계를 보였으며, 이를 통해 다운커머 특정위치 차압측정을 통해 고체 순환량을 예측할 수 있음을 알 수 있다.
한 구체예에서 사이클론(220)과 연결라인(236)의 연결 부위 및 상기 다운커머(240)의 하부에는, 제1 압력 측정부(232) 및 제2 압력 측정부(234)가 각각 구비될 수 있다. 한 구체예에서 제1 압력 측정부(232) 및 제2 압력 측정부(234) 사이의 높이(D)차는 약 2m 이하이며, 상기 조건의 위치에서 압력 차이를 측정시, 고체 입자 순환량 예측값의 정확성이 우수할 수 있다. 예를 들면 약 0.5m 내지 약 2m일 수 있다.
유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법
본 발명의 다른 관점은 상기 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법에 관한 것이다. 상기 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법에 있어서, 연료 투입량을 설정하고, 상기 연료 투입량에 대응하는 연료 피더의 스크류 회전수를 설정하는 단계; 및 상기 설정된 회전수에 따라 스크류를 회전하여 연소실에 연료를 투입하고, 상기 연소실에 1차 공기, 2차 공기 및 추적 가스를 투입하여 연소하는 단계;를 포함하며, 상기 연소시, 상기 연소평가장치의 위치별 연소 분율을 측정한다.
한 구체예에서 상기 연료 피더의 스크류 회전수를 설정하는 단계는, 연료 투입량을 설정하는 단계; 상기 설정된 연료 투입량을 연소실에 투입하기 위한 연료피더의 스크류 회전수를 결정하는 단계; 상기 스크류 회전수를 적용하여 연소실에 연료를 투입하고, 중량측정부에서 연료저장부의 중량 변화를 이용하여 연료 투입량을 복수 회 측정 후, 평균하여 연료 투입량 측정값을 계산하는 단계; 연료 투입량 설정값과 측정값의 오차율을 계산하는 단계; 및 상기 오차율이 약 2% 이하인 경우 상기 스크류 회전수를 유지하되, 상기 오차율이 약 2%를 초과하는 경우, 상기 연료피더의 스크류의 회전수를 재설정하는 단계;를 포함하여 설정될 수 있다. 예를 들면, 상기 회전수를 증감(+1Hz 또는 -1Hz)하여 연료 투입량을 복수 회 측정하여 구할 수 있다.
한 구체예에서 상기 연소평가장치의 위치별 연소 분율을 측정하는 단계는, 상기 연소로를 높이 방향을 기준으로 복수 개의 구간으로 분할하고, 산소 측정기 및 추적가스 측정기를 이용하여, 각 구간의 입구 및 출구 위치의 산소 및 추적가스의 농도를 측정하는 단계; 상기 측정된 추적가스 농도값을 보정하는 단계; 상기 산소와 추적가스의 투입 유량과, 상기 보정된 추적가스 농도값을 이용하여, 각 구간의 입구 및 출구 위치의 연소가스량을 계산하는 단계; 및 상기 출구 위치의 연소가스량을 이용하여 각 구간별 연소 분율을 측정하는 단계;를 포함하여 도출될 수 있다.
예를 들면, 하기 식 a에 따라 각 구간별 연소분율을 도출하여 측정할 수 있다:
[식 a]
Figure PCTKR2018000293-appb-I000001
(상기 식 a에서, 상기 각 구간의 입구(출구) 산소 유량(L/min)은, 하기 식 b를 만족한다)
[식 b]
각 구간 입구(출구) 산소 유량(L/min) = 각 구간 입구(출구)의 연소가스 유량(L/min) x 산소 농도(%)/100
(상기 식 b에서 상기 각 구간 입구(출구) 연소 가스 유량은 하기 식 c를 만족한다)
[식 c]
각 구간 입구(출구) 연소 가스 유량(L/min) = (추적가스 투입량(L/min) x 100/(추적가스 농도(%))
각 구간별 산소농도는 각 입구(출구)에 가스 샘플링라인을 설치하여 산소분석기로 측정하면 쉽게 알 수 있다. 그러나 각 입구(출구)의 연소가스량은 측정하기 매우 어렵다. 본 발명에서는 이를 해결하기 위해서 추적 가스로 헬륨(He) 가스를 사용하였으며, 이를 1차 공기와 혼합하여 연소로에 주입하였다. 고체 연료 연소반응에서 He 가스는 생성되지 않으므로, 어느 위치에서나 He의 유량(L/min)은 일정하여야 한다. 따라서 발생한 연소가스량은 상기 식 c로부터 구할 수 있다.
여기서 He 투입량은 이미 알고 있는 값이며, He 농도는 산소농도 측정시 같은 위치에서 He 농도 분석기를 사용하여 측정하면 된다.
도 5는 본 발명의 연소평가장치의 연소로 높이에 따른 He 농도 분포를 도시한 그래프이다. 상기 도 5를 참조하면, 본 발명의 연소평가장치의 높이에 따라, He 가스 농도의 차이가 있음을 알 수 있으며, 연소로 위치에 따라 연소 정도가 상이함을 알 수 있다. 또한, He 가스는 연소배가스 중 다량 포함된 이산화탄소와 일정부분 간섭이 가능하므로 He 분석기 사용시에는 반드시 실시간으로 이산화탄소 농도에 대한 보정이 진행되어야 한다.
한 구체예에서 상기 연소평가방법은, 상기 연소시 상기 연소평가장치의 연소실에서 배출된 고체 입자의 순환량을 더 측정하며, 상기 고체 입자 순환량은, 상기 연소시, 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에 구비된 제1 압력 측정부 및 제2 압력 측정부 사이의 압력차를 측정하는 단계;를 포함하며, 상기 고체 입자 순환량은 하기 식 1을 통해 도출될 수 있다:
[수식 1]
고체 입자 순환량(kg/m2·s) = 고체 입자 분율 x 고체 입자 밀도(kg/m3) x 고체 입자 유속(m/s)
(상기 식 1에서, 상기 고체 입자 분율 및 고체 입자 유속은 각각 하기 식 2 및 도 3을 통해 도출된다)
[수식 2]
고체 입자 분율 = (제1 및 제2 압력 측정부의 압력차(mmH2O))/(고체 입자 밀도(kg/m3)) X (제1 및 제2 압력 측정부 사이의 높이차(m))
[수식 3]
고체 입자 유속(m/s) = 0.0531 x 다운커머 직경(inch) + 0.029.
본 발명은 순환유동층보일러에서 사용하는 연료의 연소성 및 환경성을 평가할 수 있는 시험장치 및 시험방법에 관한 것으로 연료에 대한 상호비교가 가능하여 실제 상용유동층 발전소에 활용될 수 있는 기술이다. 기존 시험장치는 연소실의 온도유지를 위해 외부히터로 열원을 공급하여 열손실이 크며 비경제적이다. 또한 고체 연료의 균일한 공급이 어렵고, 연소실의 압력변동에 따라 연료공급설비로 기체의 역흐름이 발생하여 연료가 연소실로 투입되기 전에 연소가 발생하여 연료저장조에서 화재가 발생하는 등의 위험성이 높아 연료에 대한 연소성 및 환경성 평가 결과를 신뢰하기 어려웠다. 본 발명에서는 기존의 문제점을 해결함과 동시에 또한 연소실 각 단에서 연료의 연소성과 환경성을 효과적으로 분석하여 각 위치별 연소분율과 고체 순환량 등 기존 장치에서는 측정할 수 없었던 중요한 Scale-up 인자도 측정할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예 비교예
실시예
도 2 내지 도 4와 같은 연소평가장치를 이용하여 연료의 연소평가를 실시하였다. 상기 연소평가장치(1000)는, 연료 및 유동매체를 유동 연소시키는 연소실(200); 연소실(200) 하부의 일측에 구비되어, 연소실(200)에 연료를 공급하는 연료공급부; 연소실(200)의 상부와 연결되어, 연소실(200)에서 배출된 고체 입자 및 배가스를 분리하는 사이클론(220); 사이클론(220)의 하부와 연결라인을 통해 연결되어, 상기 고체 입자를 포집하는 다운커머(230); 및 다운커머(230)의 하부와 연결되어, 상기 고체 입자가 저장되는 룹실(240);을 포함하며, 이때 도 2에는 도시되지 않았으나 사이클론은, 2개를 연결하여 사용하였다.
상기 연료공급부는, 연료가 저장되는 연료저장조(101a, 101b), 연료저장조(101a, 101b)의 상부에 구비되어 상기 연료의 중량을 측정하는 중량측정부(102a, 102b) 및 연료저장조(101a, 101b) 하부에 구비되고, 플렉서블 플라스틱을 통해 연료저장조와 연결되며, 내부에 구비된 스크류(112)를 회전하여 상기 연소실에 연료를 공급하는 연료 피더(110)를 포함하였다.
연소실(200)은, 하부 측벽의 적어도 일부가 제1 내화물(300)로 형성되고, 제1 내화물(300)을 제외한 영역은 인코넬(Inconel) 재질의 제2 내화물(320)로 형성하였다. 이때, 연소실(200) 하부에는 분산판(330)이 배치되어 제1 공기 및 추적가스가 유입되었으며, 제1 내화물(300)은 분산판(330)이 형성된 위치를 기준으로 0.85m의 높이로 이격되어 형성하였다. 또한, 연소실(200)의 제1 내화물과 연소실 상부(202) 사이, 제2 내화물이 형성된 측벽 외주면을 따라, 2개의 공기 냉각식 고체입자층(310)을 이격하여 형성하였다.
제1 내화물의 일측에는 연료 피더(110)와 연결되는 제1 유입관(114)이 형성되어 연료가 유입되고, 제1 유입관(114)과 연료 피더(110)의 연결부위에 형성된 퍼징 가스 유입구(116)를 통해, 퍼징 가스(질소 가스)가 연소실(200)로 유입되었다. 이때 제1 유입관(114)은, 연소실(200)의 측벽과 140°의 각도를 이루며 형성되었다. 또한, 연소실 측벽의 제2 내화물이 형성된 영역에는 2차 공기 공급관(미도시)이 형성되어 2차 공기가 연소실 내부로 유입되었다. 사이클론(220)에서 분리된 배가스는 백패스(210)를 통해 외부로 배출되며, 상기 룹실에 저장된 고체 입자는 제1 내화물(300)의 타측을 관통하여 형성된 이송관(242)을 통해, 연소실(200)로 유입되었다.
상기 도 4와 같이, 사이클론(220)과 연결라인(236)의 연결 부위 및 다운커머(230) 하부에는 내부 압력을 측정하기 위해 제1 압력 측정부(232) 및 제2 압력 측정부(234)를 각각 구비하였으며, 제1 압력 측정부(232) 및 제2 압력 측정부(234) 사이의 높이차(D)는 2m 가 되도록 설정하였다.
상기 연소평가장치를 이용하여 유동층 보일러용 연료의 연소평가를 실시하였다. 구체적으로, 연료 투입량을 설정하고, 상기 연료 투입량에 대응하는 연료 피더의 스크류 회전수를 설정하고, 상기 설정된 회전수에 따라 스크류를 회전하여 연소실에 연료를 투입하고, 상기 연소실에 1차 공기, 2차 공기 및 추적 가스를 투입하여 연소하였으며, 상기 연소시, 상기 연소평가장치의 위치별 연소 분율과 연소실에서 배출된 고체 입자의 순환량을 측정하였다.
구체적으로 상기 연료 피더의 스크류 회전수 설정은, 연소실에 투입할 연료(석탄)의 투입량을 설정하고, 상기 설정된 연료 투입량을 연소실에 투입하기 위한 연료피더의 스크류 회전수를 결정하였다. 그 다음에, 상기 스크류 회전수를 적용하여 연소실에 연료를 투입하고, 중량측정부에서 연료저장부의 중량 변화를 이용하여 연료 투입량을 복수 회 측정 후, 평균하여 연료 투입량 측정값을 계산하고, 연료 투입량 설정값과 측정값의 오차율을 계산하였다. 상기 오차율이 2% 이하인 경우 상기 스크류 회전수를 유지하되, 상기 오차율이 2%를 초과하는 경우, 상기 연료피더의 스크류의 회전수를 재설정하는 단계;를 포함하여 설정하였다.
상기와 같이 설정된 회전수에 따라 스크류를 회전하여 연소실에 연료를 투입하고, 상기 연소실에 1차 공기, 2차 공기 및 추적 가스를 투입하여 연소하였다. 상기 연소시, 상기 연소평가장치의 위치별 연소 분율과 고체 입자 순환량을 측정하였다.
이때, 1차 공기는 500L/min, 2차 공기는 300L/min 및 추적가스(He)는 40L/min의 유량을 사용하였고, 1단 출구에서의 산소농도가 3%, He 농도가 8%였으며 2단 출구에서의 산소농도가 9%, He 농도가 6%, 최종단에서의 산소농도가 4%, He 농도가 4% 인 경우, 각 단에서의 연소분율은 아래와 같이 계산할 수 있다.
산소 투입총량 = 800 * 0.21 =168 L/min
산소 배출총량 = 출구 연소가스유량 * 출구 산소농도 = 40*100/4 * 4/100 = 40 L/min
산소 총 소모량 = 168 - 40 = 128 L/min
1단에서 산소 투입량 = 500 * 0.21 = 105 L/min
1단에서 산소 배출량 = 출구 연소가스유량 * 출구 산소농도 = 40*100/8*3/100 = 15L/min
1단에서 산소 소모량 = 105 - 15 = 90 L/min
1단에서 연소 분율 = 90/128 *100 = 70%
2단에서 산소 투입량 = (300 * 0.21) + 15 = 78 L/min
2단에서 산소 배출량 = 출구 연소가스유량 * 출구 산소농도 = 40*100/6*9/100 = 60L/min
2단에서 산소 소모량 = 78 - 60 = 18 L/min
2단에서 연소 분율 = 18/128 * 100 = 14%
상기 고체 입자 순환량은, 상기 연소시, 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에 구비된 제1 압력 측정부 및 제2 압력 측정부 사이의 압력차를 측정하는 단계;를 포함하며, 상기 고체 입자 순환량은 하기 수식 1을 통해 도출하였다:
[수식 1]
고체 입자 순환량(kg/m2·s) = 고체 입자 분율 x 고체 입자 밀도(kg/m3) x 고체 입자 유속(m/s)
(상기 식 1에서, 상기 고체 입자 분율 및 고체 입자 유속은 각각 하기 수식 2 및 수식 3을 통해 도출된다)
[수식 2]
고체 입자 분율 = (제1 및 제2 압력 측정부의 압력차(mmH2O))/(고체 입자 밀도(kg/m3)) X (제1 및 제2 압력 측정부 사이의 높이차(m))
[수식 3]
고체 입자 유속(m/s) = 0.0531 x 다운커머 직경(inch) + 0.029.
한편, 도 6은 상기 연소시험장치의 연소실의 높이에 따른 온도 및 압력 프로파일을 도시한 그래프이다. 상기 도 7을 참조하면, 본 발명의 연소시험장치 연소시, 온도와 압력 모두 전형적인 유동층 보일러의 거동을 보임을 알 수 있다. 특히, 연소시험장치의 운전 조건에 따라 연소로 상부온도를 제어할 수 있음을 확인하였으며, 운전조건에 따라 연소로 하부압력도 이에 상응하게 변화함을 확인할 수 있었다.
도 7은 상기 연소시험장치를 이용한 연소 평가 시험 중 측정한 연료 투입량의 변화결과를 도시한 것이다. 상기 도 7을 참조하면, 본 발명에 따른 연소시험장치를 이용한 연료의 연소 평가 방법을 적용시, 연료 투입량은 시간의 경과에 따라 일정하게 변화함을 알 수 있으며, 그 상관관계가 99% 이상임을 알 수 있었다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (13)

  1. 연료 및 유동매체를 유동 연소시키는 연소실;
    상기 연소실 하부의 일측에 구비되어, 상기 연소실에 연료를 공급하는 연료공급부;
    상기 연소실의 상부와 연결되어, 상기 연소실에서 배출된 고체 입자 및 배가스를 분리하는 사이클론;
    상기 사이클론의 하부와 연결라인을 통해 연결되어, 상기 고체 입자를 포집하는 다운커머; 및
    상기 다운커머의 하부와 연결되어, 상기 고체 입자가 저장되는 룹실;을 포함하며,
    상기 연료공급부는, 연료가 저장되는 연료저장조, 상기 연료저장조의 상부에 구비되어 상기 연료의 중량을 측정하는 중량측정부 및 상기 연료저장조 하부에 구비되며, 내부에 구비된 스크류를 회전하여 상기 연소실에 연료를 공급하는 연료 피더를 포함하고,
    상기 연소실은, 하부 측벽의 적어도 일부가 제1 내화물로 이루어지고, 상기 제1 내화물을 제외한 영역은 제2 내화물로 이루어지는 것이며,
    상기 연소실 하부에는 분산판이 배치되어 제1 공기 및 추적가스가 유입되고,
    상기 제1 내화물은 상기 분산판이 형성된 위치를 기준으로 이격 형성되며,
    상기 사이클론에서 분리된 배가스는 백패스를 통해 외부로 배출되고,
    상기 제1 내화물의 일측에는 상기 연료 피더와 연결되는 제1 유입관이 형성되어 상기 연료가 상기 연소실로 유입되며,
    상기 룹실에 저장된 고체 입자는 상기 제1 내화물의 타측을 관통하여 형성된 이송관을 통해 상기 연소실로 유입되고,
    상기 연소실 측벽의 제2 내화물에는 2차 공기 공급관이 형성되어 2차 공기가 유입되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  2. 제1항에 있어서, 상기 제2 내화물은 인코넬(Inconel) 재질을 포함하는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  3. 제1항에 있어서, 상기 제1 내화물의 높이는, 상기 분산판이 형성된 위치를 기준으로 약 0.1m 내지 약 1.0m의 높이로 형성되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  4. 제1항에 있어서, 상기 제2 내화물이 형성된 영역의 외경(A1)은, 하기 식 1을 만족하는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치:
    [식 1]
    B1 ≤ A1 < B2
    (상기 식 1에서, 상기 B1은 상기 제1 내화물이 형성된 영역의 내경이며, B2는 상기 제1 내화물이 형성된 영역의 외경이다).
  5. 제1항에 있어서, 상기 제1 유입관은 상기 연소실 측벽과 약 135° 이상의 각도를 이루며 형성되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  6. 제1항에 있어서, 상기 연소실의 제2 내화물이 형성된 측벽에는 하나 이상의 공기 냉각식 고체입자층이 더 형성되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  7. 제1항에 있어서, 상기 연료 피더 및 제1 유입관의 연결 부위에는 퍼징 가스 유입구가 더 형성되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  8. 제1항에 있어서, 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에는 제1 압력 측정부 및 제2 압력 측정부가 각각 구비되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  9. 제8항에 있어서, 상기 제1 압력 측정부 및 제2 압력 측정부 사이의 높이차는 약 2m 이하인 것을 특징으로 하는 유동층 보일러용 연료의 연소평가장치.
  10. 제1항 내지 제9항중 어느 한 항의 유동층 보일러용 연료의 연소평가장치를 이용한 연료의 연소평가방법에 있어서,
    연료 투입량을 설정하고, 상기 연료 투입량에 대응하는 연료 피더의 스크류 회전수를 설정하는 단계; 및
    상기 설정된 회전수에 따라 스크류를 회전하여 연소실에 연료를 투입하고, 상기 연소실에 1차 공기, 2차 공기 및 추적 가스를 투입하여 연소하는 단계;를 포함하며,
    상기 연소시, 상기 연소평가장치의 위치별 연소 분율을 측정하는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가방법.
  11. 제10항에 있어서, 상기 연료 피더의 스크류 회전수를 설정하는 단계는, 연료 투입량을 설정하는 단계;
    상기 설정된 연료 투입량을 연소실에 투입하기 위한 연료피더의 스크류 회전수를 결정하는 단계;
    상기 스크류 회전수를 적용하여 연소실에 연료를 투입하고, 중량측정부에서 연료저장부의 중량 변화를 이용하여 연료 투입량을 복수 회 측정 후, 평균하여 연료 투입량 측정값을 계산하는 단계;
    연료 투입량 설정값과 측정값의 오차율을 계산하는 단계; 및
    상기 오차율이 약 2% 이하인 경우 상기 스크류 회전수를 유지하되, 상기 오차율이 약 2%를 초과하는 경우, 상기 연료피더의 스크류의 회전수를 재설정하는 단계;를 포함하여 설정되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가방법.
  12. 제10항에 있어서, 상기 연소평가장치의 위치별 연소 분율을 측정하는 단계는,
    상기 연소로를 높이 방향을 기준으로 복수 개의 구간으로 분할하고, 산소 측정기 및 추적가스 측정기를 이용하여, 각 구간의 입구 및 출구 위치의 산소 및 추적가스의 농도를 측정하는 단계;
    상기 측정된 추적가스 농도값을 보정하는 단계;
    상기 산소와 추적가스의 투입 유량과, 상기 보정된 추적가스 농도값을 이용하여, 각 구간의 입구 및 출구 위치의 연소가스량을 계산하는 단계; 및
    상기 출구 위치의 연소가스량을 이용하여 각 구간별 연소 분율을 측정하는 단계;를 포함하여 도출되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가방법.
  13. 제10항에 있어서, 상기 연소평가방법은, 상기 연소시 상기 연소평가장치의 연소실에서 배출된 고체 입자의 순환량을 더 측정하며,
    상기 고체 입자 순환량은, 상기 연소시, 상기 사이클론과 연결라인의 연결 부위 및 상기 다운커머 하부에 구비된 제1 압력 측정부 및 제2 압력 측정부 사이의 압력차를 측정하는 단계;를 포함하여 도출되며,
    상기 고체 입자 순환량은 하기 수식 1을 통해 도출되는 것을 특징으로 하는 유동층 보일러용 연료의 연소평가방법:
    [수식 1]
    고체 입자 순환량(kg/m2·s) = 고체 입자 분율 x 고체 입자 밀도(kg/m3) x 고체 입자 유속(m/s)
    (상기 수식 1에서, 상기 고체 입자 분율 및 고체 입자 유속은 각각 하기 수식 2 및 수식 3을 통해 도출된다)
    [수식 2]
    고체 입자 분율 = (제1 및 제2 압력 측정부의 압력차(mmH2O))/(고체 입자 밀도(kg/m3)) X (제1 및 제2 압력 측정부 사이의 높이차(m))
    [수식 3]
    고체 입자 유속(m/s) = 0.0531 x 다운커머 직경(inch) + 0.029.
PCT/KR2018/000293 2017-10-20 2018-01-05 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법 WO2019078414A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0136534 2017-10-20
KR1020170136534A KR101981926B1 (ko) 2017-10-20 2017-10-20 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법

Publications (1)

Publication Number Publication Date
WO2019078414A1 true WO2019078414A1 (ko) 2019-04-25

Family

ID=66173762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000293 WO2019078414A1 (ko) 2017-10-20 2018-01-05 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법

Country Status (2)

Country Link
KR (1) KR101981926B1 (ko)
WO (1) WO2019078414A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345684A (zh) * 2020-10-31 2021-02-09 西北工业大学 燃烧气氛可调燃烧器及实验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362450B1 (ko) * 2020-10-20 2022-02-15 한국전력공사 유동층 반응기의 비유동화 방지 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127818A (ja) * 2009-12-17 2011-06-30 Ihi Corp 流動層ボイラの炉壁構造
KR20120075081A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 유동층 연소형 보일러
KR20140028806A (ko) * 2012-08-30 2014-03-10 한국전력공사 유동층 보일러 및 이를 이용한 연소 제어방법
KR20150029435A (ko) * 2013-09-10 2015-03-18 한국전력공사 열 교환기를 구비한 순환 유동층 보일러
KR20170025509A (ko) * 2015-08-28 2017-03-08 한국전력공사 유동층 보일러를 이용한 발전장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127818A (ja) * 2009-12-17 2011-06-30 Ihi Corp 流動層ボイラの炉壁構造
KR20120075081A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 유동층 연소형 보일러
KR20140028806A (ko) * 2012-08-30 2014-03-10 한국전력공사 유동층 보일러 및 이를 이용한 연소 제어방법
KR20150029435A (ko) * 2013-09-10 2015-03-18 한국전력공사 열 교환기를 구비한 순환 유동층 보일러
KR20170025509A (ko) * 2015-08-28 2017-03-08 한국전력공사 유동층 보일러를 이용한 발전장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345684A (zh) * 2020-10-31 2021-02-09 西北工业大学 燃烧气氛可调燃烧器及实验方法

Also Published As

Publication number Publication date
KR101981926B1 (ko) 2019-05-28
KR20190044285A (ko) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2019078414A1 (ko) 유동층 보일러용 연료의 연소평가장치 및 이를 이용한 연료의 연소평가방법
WO2018097568A1 (ko) 슬래깅 층의 모니터링을 통한 연소로 제어 시스템
WO2015012523A1 (ko) 축열식 가열로의 연소 배기 제어장치 및 제어방법
JP3498973B2 (ja) 焼結機の漏風検知方法
US20030183537A1 (en) Method of spatial monitoring and controlling corrosion of superheater and reheater tubes
WO2019088368A1 (ko) 발전용 보일러 튜브의 마모 예측 시스템 및 방법
CN208488177U (zh) 一种焚烧炉高温烟气温度红外测量装置
JP3763963B2 (ja) ごみ焼却炉におけるストーカ温度制御装置及びこれを備えたごみ焼却炉の燃焼制御装置
JP5124844B2 (ja) コークス炉の燃焼状態監視方法
Nakayama et al. Progress of emission control system in electric arc furnace melt-shops
WO2011065605A1 (ko) 발전소 보일러의 최적 운전 방법 및 그 시스템
CN112648611A (zh) 一种对冲燃煤锅炉侧墙结焦和还原性气氛综合治理方法
Motta et al. Hot blast flow measurement in blast furnace in straight pipe
US4338117A (en) Atmosphere sensing device for a furnace
JP2004203966A (ja) コークス炉炉壁状況の評価方法
KR100376926B1 (ko) 고로열풍로용열교환설비의바이패스밸브제어방법
WO2020149599A1 (ko) 플로우 미터와 플로우 미터를 이용한 유량 측정방법, 플로우 미터 교정장치 및 이 장치에 의한 플로우 미터 교정방법.
JPH10160601A (ja) 圧力検出方法
JP4930961B2 (ja) コークス炉ダクトのガス漏れ防止方法およびその装置
JP2710778B2 (ja) 燃焼状態監視装置
JP2526000B2 (ja) コ―クス炉炭化室群の気密性の測定方法及び炭化室の補修方法
KR20040088703A (ko) 고로의 장입레벨 측정용 마이크로 웨이브 센서 보호장치
JP2002157023A (ja) 炉内圧力制御装置
SU1254270A1 (ru) Устройство дл удалени газов из дуговой печи
KR200150656Y1 (ko) 환원가스내의 미분함유량 측정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867481

Country of ref document: EP

Kind code of ref document: A1