WO2018236161A2 - 스크러버 - Google Patents

스크러버 Download PDF

Info

Publication number
WO2018236161A2
WO2018236161A2 PCT/KR2018/007021 KR2018007021W WO2018236161A2 WO 2018236161 A2 WO2018236161 A2 WO 2018236161A2 KR 2018007021 W KR2018007021 W KR 2018007021W WO 2018236161 A2 WO2018236161 A2 WO 2018236161A2
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
housing
scrubber
unit
stack
Prior art date
Application number
PCT/KR2018/007021
Other languages
English (en)
French (fr)
Other versions
WO2018236161A3 (ko
Inventor
성삼경
엄형식
민병수
정몽규
김대희
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180000390A external-priority patent/KR102104423B1/ko
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to CN201880042104.5A priority Critical patent/CN110785218A/zh
Priority to EP18820050.5A priority patent/EP3643391A4/en
Priority to SG11201912812RA priority patent/SG11201912812RA/en
Priority to JP2019571358A priority patent/JP7198783B2/ja
Publication of WO2018236161A2 publication Critical patent/WO2018236161A2/ko
Publication of WO2018236161A3 publication Critical patent/WO2018236161A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/14Packed scrubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids

Definitions

  • the present invention relates to a scrubber.
  • the scrubber functions to treat the exhaust gas such as purifying or cooling the exhaust gas discharged from the engine or the boiler.
  • the scrubber is connected to the engine or the boiler by an exhaust pipe in order to purify or cool the exhaust gas and the like.
  • the treatment liquid such as seawater is supplied to the exhaust gas flowing into the scrubber through the exhaust pipe to absorb the sulfur oxide or dust from the exhaust gas to purify the exhaust gas or cool the exhaust gas , So that the exhaust gas is treated by the treatment liquid.
  • a pretreatment unit for pretreating the exhaust gas is provided outside the scrubber.
  • the scrubber can be installed in the stack by increasing the cross-sectional area of the stack.
  • the pre-treatment unit since the pre-treatment unit is provided outside the scrubber, the cross-sectional area of the stack must be increased for installing the scrubber.
  • the sulfur oxide condensed from the exhaust gas corrodes the scrubber while the incoming exhaust gas is being treated, so that the scrubber has to be made of a relatively expensive material which is not corroded. As a result, the manufacturing cost of the scrubber is relatively high.
  • the present invention is realized by recognizing at least any one of the above-mentioned conventional needs or problems.
  • a pretreatment unit for pretreating an exhaust gas is provided in a scrubber so as to reduce the cross-sectional area of an increased stack for installing a scrubber inside the stack.
  • Another aspect of the object of the present invention is to allow the exhaust gas to flow smoothly into the scrubber without being disturbed by the treatment liquid or the like.
  • Another aspect of the object of the present invention is to improve the exhaust gas treatment efficiency of the scrubber.
  • Another aspect of the object of the present invention is to reduce the manufacturing cost of the scrubber.
  • Another aspect of the object of the present invention is to minimize the corrosion of the scrubber.
  • a scrubber associated with an embodiment for realizing at least one of the above problems may include the following features.
  • a scrubber installed in a stack, the scrubber comprising: a housing; And a pretreatment unit for pretreating the exhaust gas; And the preprocessing unit is provided inside the housing to reduce the cross-sectional area of the stack which is increased for installation in the stack.
  • the stack is provided on the ship, and the cross-sectional area of the stack can be increased in the forward or aft direction of the ship for installation of the scrubber.
  • cross-sectional area of the stack may not increase in the line width direction of the ship.
  • the cross section of the stack may be a rectangular shape.
  • the cross-section may be a rectangular cross-section so as to minimize the dead space that can not be used in the inside of the stack and to reduce the cross-sectional area of the stack which is increased for installation inside the stack.
  • the housing is provided inside the stack to allow exhaust gas flowing from an exhaust pipe installed in the stack to flow and be discharged.
  • the exhaust gas purifier is provided in a processing space formed inside the housing to pre-process the exhaust gas flowing into the processing space.
  • the housing may be provided with an inlet duct connected to the processing space and the exhaust pipe, through which the exhaust gas to be processed flows, and a discharge duct connected to the processing space and through which the processed exhaust gas is discharged.
  • the pre-treatment unit supplies the treatment liquid to the exhaust gas flowing through the inlet duct to perform pre-treatment
  • the post-treatment unit supplies the treatment liquid to the exhaust gas pretreated by the pre-treatment unit to post-treat the exhaust gas .
  • the inner surface of the portion of the housing through which the exhaust gas flows through the inlet duct may be coated with a coating agent.
  • the coating agent may be a polyvinyl ester.
  • the pre-processing unit can cool the temperature of the exhaust gas flowing into the chamber to a temperature lower than a predetermined temperature at which the coating agent is not damaged.
  • the pre-treatment unit can cool the temperature of the exhaust gas flowing into the pre-treatment unit to 120 ° C or lower.
  • the pre-treatment unit can cool the temperature of the exhaust gas flowing into the pre-treatment unit to 80 ⁇ or lower.
  • the inlet duct may be provided at a lower portion of the housing, and the outlet duct may be provided at an upper portion of the housing.
  • the inlet duct may be provided at a lower side of the housing at a predetermined height from the bottom of the housing.
  • the inlet duct may be inclined at a predetermined angle toward the bottom of the housing.
  • the housing may be provided with a flow guide extending from the inlet duct to the processing space by a predetermined length in the longitudinal direction of the housing.
  • the length of the flow guide may be less than half the length of the housing.
  • both sides of the flow guide may be spaced apart from the inner surface of the housing by a predetermined distance.
  • each of both sides of the flow guide may be inclined toward the inside of the housing from the inflow duct toward the processing space in the longitudinal direction of the housing.
  • the pretreatment unit for pretreating the exhaust gas is provided inside the scrubber, the sectional area of the increased stack can be reduced in order to install the scrubber inside the stack.
  • the exhaust gas can be smoothly introduced into the scrubber without being disturbed by the treatment liquid or the like.
  • the exhaust gas treatment efficiency of the scrubber can be improved.
  • FIG. 1 is a view showing an embodiment of a scrubber according to the present invention.
  • FIG. 2 is a view showing a processing unit and a processing liquid supply unit included in an embodiment of the scrubber according to the present invention.
  • FIG. 3 is a plan view of Fig.
  • Figure 4 is a partial cutaway side view of Figure 1;
  • FIG. 5 is a sectional view taken along a line I-I 'in Fig.
  • FIG. 6 is a sectional view taken along a line II-II 'in FIG.
  • FIG. 7 is a cross-sectional view showing a first injection unit included in a pretreatment unit included in a treatment unit of an embodiment of the scrubber according to the present invention.
  • FIG 8 is a sectional view showing a second injection unit included in the pretreatment unit included in the treatment unit of one embodiment of the scrubber according to the present invention.
  • FIG. 9 is a view showing an embodiment of a scrubber according to the present invention installed in a stack and connected to an engine or the like.
  • FIG. 10 is a view showing that an embodiment of a scrubber according to the present invention is installed in a stack of a ship.
  • FIG. 11 is a view showing a comparison between a temporal example of a scrubber according to the present invention and a case where a conventional scrubber is installed in a stack of a ship, respectively.
  • FIG. 12 is a view showing a comparison between a case where an embodiment of a scrubber according to the present invention is integrated with a stack and a case where a conventional scrubber is installed in a stack of a ship, respectively.
  • FIG. 13 and 14 are conceptual diagrams showing embodiments of an inert gas supply device including an embodiment of a scrubber according to the present invention.
  • FIG. 1 A block diagram illustrating an embodiment of the present invention.
  • FIG. 1 is a view showing an embodiment of a scrubber according to the present invention
  • FIG. 2 is a view showing a processing unit and a process liquid supply unit included in an embodiment of a scrubber according to the present invention.
  • FIG. 1 is a cross-sectional view taken along a line I-I 'in FIG. 1
  • FIG. 6 is a cross-sectional view taken along line II-II' in FIG. 1 Fig.
  • Fig. 7 is a cross-sectional view showing the first injection unit included in the pretreatment unit included in the treatment unit of one embodiment of the scrubber according to the present invention
  • Fig. 8 is a cross- Sectional view showing a second injection unit included in the pre-processing unit.
  • FIG. 9 is a view showing an embodiment of a scrubber according to the present invention, which is installed in a stack and connected to an engine or the like
  • FIG. 10 is a view showing that an embodiment of a scrubber according to the present invention is installed in a stack of a ship
  • FIG. 12 is a view showing a case where an embodiment of the scrubber according to the present invention is integrally formed with the stack
  • FIG. 12 is a view showing a case where the scrubber according to the present invention is integrally formed with the stack.
  • the scrubber are installed in the stack of the ship, respectively.
  • An embodiment of the scrubber 100 according to the present invention may have a rectangular cross section as shown in FIGS. 1, 3, 5 and 6.
  • An embodiment of the scrubber 100 according to the present invention may be installed inside a stack FN equipped with an exhaust pipe PE as shown in FIG.
  • one embodiment of the scrubber 100 according to the present invention may be installed inside a stack FN having a rectangular cross section.
  • the cross-sectional area of the stack FN can be increased in a predetermined direction.
  • one embodiment of the scrubber 100 according to the present invention may be installed in a stack FN provided on the ship SP as shown in FIG.
  • the cross-sectional area of the stack FN can be increased in the forward or aft direction of the ship SP, as indicated by arrows and hatching in Fig.
  • the cross-sectional area of the stack FN may not increase in the line width direction of the ship SP. That is, the cross-sectional area of the stack FN can be increased only in the forward or aft direction of the ship SP.
  • one embodiment of the scrubber 100 according to the present invention has a rectangular cross-section. Therefore, as can be seen from FIG. 11, the scrubber 100 can not be used in the stack (FN) It is possible to minimize the dead zone. Further, when the scrubber 100 is installed in the stack FN of a conventional scrubber having a circular section, the installation area can be reduced in the case of the same treatment capacity. 11, an embodiment of the scrubber 100 according to the present invention can reduce the cross-sectional area of the stack FN that is increased for installation inside the stack FN.
  • an embodiment of the scrubber 100 can reduce the cross-sectional area of the stack FN that is increased for installation inside the stack FN by half, compared with the conventional scrubber.
  • an embodiment of the scrubber 100 according to the present invention when the embodiment of the scrubber 100 according to the present invention is integrally formed with the stack FN, the stack FN is installed inside the stack FN even if the stack FN is extended by 1 m in the forward direction. . Therefore, in this case, an embodiment of the scrubber 100 according to the present invention can reduce the cross-sectional area of the stacked column FN to be increased for installation inside the stacking column FN to 1/4 of that of the conventional scrubber.
  • One embodiment of a scrubber according to the present invention may include a housing 200 and a processing unit 300 as shown in FIG.
  • the exhaust gas may be introduced into the housing 200 to be processed and exhausted.
  • the housing 200 includes a stacked structure including an engine EG such as a main engine ME or power generation engines GE1 and GE2 or an exhaust pipe PE connected to a boiler BL as shown in Fig. FN).
  • the housing 200 may be connected to an exhaust pipe PE and the passage switching valve VR may be provided at a portion where the housing 200 and the exhaust pipe PE are connected.
  • the exhaust gas discharged from the engine EG or the boiler BL or the like can be introduced into the housing 200 by the operation of the flow path switching valve VR.
  • the housing 200 may have a rectangular cross section.
  • the processing space ST may be formed in the housing 200 as shown in FIG.
  • the exhaust gas may flow into the housing 200, flow through the processing space ST, and be discharged.
  • a processing unit 300 may be provided in the processing space ST of the housing 200. The exhaust gas flowing into the housing 200 and flowing through the processing space ST can be processed by the processing unit 300.
  • the housing 200 may include an inlet duct 210 and a discharge duct 220.
  • the inlet duct 210 may be connected to the process space ST. 9, the inlet duct 210 is connected to an exhaust gas pipe PE such as an engine EG, a boiler BL, etc., such as a main engine ME and power generation engines GE1 and GE2, May be connected to the device from which it is withdrawn.
  • the exhaust gas to be treated discharged from the engine EG or the boiler BL or the like of the main engine ME or the power generation engines GE1 and GE2 is exhausted through the exhaust pipe PE and the inlet duct 210 to the housing 200 to flow into the processing space ST.
  • the inlet duct 210 may be provided under the housing 200.
  • the inlet duct 210 may be provided on the lower side of the housing 200 at a predetermined height from the bottom of the housing 200, as shown in FIGS.
  • the inlet duct 210 may be provided at a lower portion of the housing 200 with a predetermined angle inclined toward the bottom of the housing 200.
  • the exhaust gas discharged from the engine EG or the boiler BL such as the main engine ME or the power generation engines GE1 and GE2 and the exhaust pipe PE flows through the inlet duct 210, (ST) of the housing 200 so as to be inclined toward the bottom of the housing 200.
  • the exhaust gas flows smoothly into the processing space ST of the housing 200 without being disturbed by the treatment liquid such as seawater supplied from the pretreatment unit 310 included in the treatment unit 300 . Then, the exhaust gas treatment efficiency of the scrubber 100 can be improved.
  • the height and inclination angle of the inflow duct 210 from the bottom of the housing 200 are not particularly limited and the exhaust gas may flow into the housing 200 without being disturbed by the processing liquid supplied from the pretreatment unit 310 of the processing unit 300, It is possible to have any height and inclination angle as long as it is a height and an inclination angle that can flow smoothly into the processing space ST of the display device.
  • the housing 200 has a flow guide 230 extending from the inlet duct 210 to the processing space ST of the housing 200 by a predetermined length in the longitudinal direction of the housing 200 .
  • the flow guide 230 may extend a predetermined length in the longitudinal direction of the housing 200 from the upper end of the inlet duct 210 to the processing space ST of the housing 200, for example.
  • the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210 is supplied to the processing space 300 by the processing liquid supplied from the preprocessing unit 310 of the processing unit 300 It can be guided smoothly into the processing space ST of the housing 200 without interruption. Accordingly, the exhaust gas treatment efficiency of the scrubber 100 can be improved.
  • the length of the flow guide 230 may be less than half the length of the housing 200. If the length of the flow guide 230 is greater than half the length of the housing 200, the flow guide 230 may interfere with the flow of the exhaust gas in the processing space ST of the housing 200.
  • the exhaust gas can be prevented from flowing into the housing 200 (i.e., without being disturbed by the processing liquid supplied from the pretreatment unit 310 of the processing unit 300) without interfering with the flow of the exhaust gas in the processing space ST of the housing 200.
  • the length of the flow guide 230 which flows smoothly into the processing space ST of the housing 200 is less than half of the length of the housing 200.
  • Both sides of the flow guide 230 may be spaced apart from the inner surface of the housing 200 by a predetermined distance, as shown in FIG.
  • the pre-processing unit 310 of the processing unit 300 is connected to the exhaust gas flowing into the processing space ST of the housing 200 through the space between each of both sides of the flow guide 230 and the inner surface of the housing 200 It is possible to supply the treatment liquid.
  • Each of the side surfaces of the flow guide 230 may be inclined toward the inside of the housing 200 toward the process space ST in the longitudinal direction of the housing 200 from the inflow duct 210 as shown in FIG. That is, the width of the flow guide 230 can be reduced from the inlet duct 210 toward the processing space ST in the longitudinal direction of the housing 200. Thereby, the influence of the flow guide 230 on the flow of the exhaust gas can be minimized.
  • the inner surface of the portion of the housing 200 through which the exhaust gas flows through the inlet duct 210 for example, the inner surface of the lower side of the housing 200, can be coated with a coating agent.
  • the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210 is pretreated by the pretreatment unit 310 of the processing unit 300 so that the sulfur oxides condensed from the exhaust gas,
  • the housing 200 may not be corroded by the coating agent even if it contacts the inner surface of the housing 200. Accordingly, since the housing 200 can be made of a low-cost material that is not corroded by sulfur oxides and is relatively expensive, the manufacturing cost of the scrubber 100 can be reduced.
  • an embodiment of the scrubber 100 according to the present invention may be integrally formed with the stack FN.
  • the housing 200 is made of a stack (FN), and the stack 200 and the stack FN may be made of the same or similar material.
  • the housing 200 must be made of expensive material, since it must withstand high temperatures and have high corrosion resistance.
  • the construction of the pretreatment unit 310 included in the processing unit 300 as described below and the construction of the low cost Material are described below and the construction of the low cost Material.
  • the housing 200 was made of a relatively expensive special metal called '254SMO'.
  • the housing 200 is made of stainless steel, which is the same or similar to a stack (FN) It can be made of carbon steel.
  • the coating agent may be, for example, a polyvinyl ester.
  • the coating agent is not particularly limited and may be coated on the inner surface of the housing 200 so that the inner surface of the housing 200 is coated with the sulfuric acid condensed from the exhaust gas by the pretreatment unit 310 of the treatment unit 300, Any coating can be used as long as it is a coating that does not corrode by cargo.
  • the discharge duct 220 may be connected to the processing space ST.
  • the exhaust gas that has been introduced into the housing 200 and processed by the processing unit 300 while flowing in the processing space ST can be discharged through the exhaust duct 220.
  • the discharge duct 220 may be provided on the upper portion of the housing 200.
  • the position of the exhaust duct 220 in the housing 200 is not particularly limited. Exhaust gas processed by the processing unit 300 while flowing into the processing space ST flows into the housing 200, It may be provided at any portion of the housing 200.
  • the processing unit 300 can be disposed in the processing space ST of the housing 200 and can process the exhaust gas flowing into the housing 200 and flowing in the processing space ST.
  • the processing unit 300 may include a preprocessing unit 310 and a post-processing unit 320 as shown in FIGS. 1, 2 and 4.
  • the pretreatment unit 310 can pre-treat the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210.
  • the preprocessing unit 310 may be provided in a portion of the processing space ST on the side of the inlet duct 210.
  • the pretreatment unit 310 may be provided at a portion of the processing space ST on the inflow duct 210 as shown in FIG.
  • the scrubber of the present invention (the pretreatment unit of the scrubber of the present invention) 100 may reduce the cross-sectional area of the stack FN to be installed inside the stack FN.
  • the pretreatment unit 310 can pre-treat the exhaust gas by supplying the treatment liquid to the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210.
  • the pretreatment unit 310 may cool the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210 to a predetermined temperature or lower, for example, 160 ° C or less, which is the condensation temperature of sulfur oxides, A portion of the sulfur oxides can be removed.
  • the treatment liquid supplied by the pretreatment unit 310 to the exhaust gas flowing into the processing space ST of the housing 200 may be, for example, seawater.
  • the treatment liquid is not particularly limited, and any treatment liquid can be used as long as it can pretreat the exhaust gas.
  • the pretreatment unit 310 can cool the temperature of the exhaust gas flowing into the processing space ST of the housing 200 to a temperature below the predetermined temperature at which the coating agent coated on the inner surface of the housing 200 is not damaged .
  • the temperature of the exhaust gas flowing into the processing space ST of the housing 200 can be cooled to 120 ° C or lower, more preferably 80 ° C or lower, by the treatment liquid.
  • the cooling temperature of the exhaust gas by the processing liquid supplied from the preprocessing unit 310 is 160 ° C or less, which is the condensation temperature of sulfur oxides, but is larger than 120 ° C
  • the exhaust gas flows through the inlet duct 210 as described above
  • the coated coating on the inner surface of the portion of the housing 200 may be damaged.
  • the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210 is subjected to pretreatment such as cooling by the treatment liquid supplied from the pretreatment unit 310 to remove sulfur oxides condensed from the exhaust gas
  • the inner surface of the housing 200 can be corroded.
  • the cooling temperature of the exhaust gas by the treatment liquid supplied from the pretreatment unit 310 which will not damage the coating agent coated on the inner surface of the portion of the housing 200 through which the exhaust gas flows through the inlet duct 210, Or less.
  • the coating material coated on the inner surface of the portion of the housing 200 through which the exhaust gas flows through the inlet duct 210 Can be minimized.
  • the preprocessing unit 310 may include a first injection unit 311 as shown in FIG.
  • the first injection unit 311 can inject the treatment liquid into the exhaust gas flowing inside the housing 200. That is, the first injection unit 311 can inject the processing liquid into the processing space ST of the housing 200 through the inlet duct 210 and into the exhaust gas flowing through the processing space ST.
  • the first injection unit 311 injects the processing liquid into the housing 200, that is, the processing space ST of the housing 200 to form a curtain for guiding the flow of exhaust gas flowing in the processing space ST can do.
  • the housing 200 is not made of a relatively expensive material which is not corroded by sulfur oxides, the manufacturing cost of the scrubber 100 can be reduced.
  • the first injection unit 311 may include a first pre-processing pipe 311a and a first pre-processing nozzle 311b.
  • the first pretreatment supply pipe 311 a flows through the treatment liquid supply unit 400 to be described later and may be provided in a portion of the housing 200 on the inflow duct 210 side.
  • a plurality of first pre-processing flow tubes 311a may be provided at a predetermined distance from each other in the processing space ST on the flow guide 230 of the housing 200 as shown in FIGS. 1 and 5 .
  • the first pretreatment nozzle 311b is provided in the first pretreatment flowtube 311a to inject the treatment liquid into the exhaust gas.
  • the first pretreatment nozzle 311b may be provided in the first pretreatment flow pipe 311a to spray the treatment liquid through the space between the flow guide 230 of the housing 200 and the inner surface of the housing 200, have.
  • the preprocessing unit 310 may further include a second injection unit 312.
  • the second injection unit 312 can inject the processing liquid into the exhaust gas flowing through the inlet duct 210 of the housing 200.
  • the second injection unit 312 can inject the treatment liquid into the exhaust gas flowing through the inflow duct 210 from at least a part of the periphery of the inflow duct 210.
  • the exhaust gas flowing through the inlet duct 210 of the housing 200 can be made to flow while minimally contacting the inner surface of the inlet duct 210, so that the exhaust gas condensed from the exhaust gas pretreated by the supply of the processing liquid It is possible to minimize the contact of sulfur oxides to the inner surface of the inlet duct 210. Accordingly, it is possible to minimize the corrosion of the inner surface of the inlet duct 210 by the condensed sulfur oxide.
  • the exhaust gas flowing into the processing space ST of the housing 200 through the inlet duct 210 can be made to flow while minimally contacting the inner surface of the housing 200, It is possible to minimize the contact of the sulfur oxides condensed from the pretreated exhaust gas with the inner surface of the housing 200. This minimizes the corrosion of the inner surface of the housing 200 by the condensed sulfur oxides.
  • the housing 200 is not made of a relatively expensive material which is not corroded by sulfur oxides, the manufacturing cost of the scrubber 100 can be reduced.
  • the second injection unit 312 may include a plurality of second pre-treatment flow tubes 312a and a second pre-treatment nozzle 312b.
  • the plurality of second pre-treatment flow tubes 312a may be connected to the periphery of the inflow duct 210 by flowing the treatment liquid supplied from the treatment liquid supply unit 400 as shown in FIG. Also, the second pre-treatment nozzle 312b is provided in the second pre-treatment flow pipe 312a to inject the treatment liquid into the exhaust gas flowing through the inflow duct 210.
  • the first process liquid supply pipe 411 included in the process liquid supply unit 400 for supplying the process liquid to the preprocessing unit 310 may be connected to the preprocessing unit 310 outside the housing 200 .
  • the first process liquid supply pipe 411 is provided to surround at least a part of the periphery of the housing 200 as shown in FIGS. 1, 3 and 5, 411 may be connected to the first pretreatment flow tube 311a and the second pretreatment flow tube 312a of the pretreatment unit 310.
  • the flow of the exhaust gas flowing through the processing space ST of the housing 200 by the first processing liquid supply pipe 411 having a diameter larger than that of the first pre-processing flow tube 311a and the second pre- It may not be disturbed. Then, the exhaust gas treatment efficiency of the scrubber 100 can be improved.
  • the post-treatment unit 320 may post-treat the exhaust gas pretreated in the pretreatment unit 310.
  • the post-processing unit 320 may be provided in a portion of the processing space ST of the housing 200 after the preprocessing unit 310 in the flow direction of the exhaust gas.
  • the post-processing unit 320 may be provided in a portion of the processing space ST of the housing 200 on the preprocessing unit 310 as shown in FIG.
  • the post-processing unit 320 may be provided at a predetermined height above the preprocessing unit 310 in the processing space ST of the housing 200.
  • This post-processing unit 320 may be a plurality of.
  • the number of the post-processing units 320 is not particularly limited, and any number can be used as long as it can post-process the exhaust gas pretreated in the pre-processing unit 310.
  • the post-treatment unit 320 can post-process the exhaust gas by supplying the treatment liquid to the pretreatment exhaust gas in the pretreatment unit 310.
  • the post-treatment unit 320 can remove the sulfur oxides from the exhaust gas by supplying the treatment liquid to the pretreatment exhaust gas in the pretreatment unit 310.
  • the treatment liquid supplied to the exhaust gas pretreated in the pretreatment unit 310 may be, for example, seawater.
  • the treatment liquid is not particularly limited, and any treatment capable of post-treating the exhaust gas pretreated in the pretreatment unit 310 is possible.
  • the post-treatment unit 320 may include a post-treatment flow tube 321 as shown in FIG.
  • the post-treatment flow tube 321 may be provided in a portion of the processing space ST of the housing 200 after the pretreatment unit 310 in the flow direction of the exhaust gas.
  • the post-treatment flow tube 321 may be connected to a treatment liquid supply unit 400 for supplying treatment liquid such as seawater.
  • the post-treatment flow tube 321 may be connected to the second treatment liquid supply pipe 412 of the treatment liquid supply pipe 410 of the treatment liquid supply unit 400. Accordingly, the process liquid supplied from the process liquid supply unit 400 flows through the post-treatment flow pipe 321 and can be supplied to the pretreated exhaust gas in the pretreatment unit 310.
  • the post-treatment flow tube 321 may be plural. 6, a part of the second process liquid supply pipe 412 of the process liquid supply pipe 410 of the process liquid supply unit 400 penetrates through the housing 200 and flows into the processing space of the housing 200 (ST).
  • the plurality of post-treatment flow tubes 321 may be connected in a plurality of rows on both sides of a part of the second process liquid supply pipe 412 of the process liquid supply pipe 410 provided in the process space ST of the housing 200 have.
  • the number and arrangement of the post-treatment flow tubes 321 are not particularly limited and may be provided in a portion of the processing space ST of the housing 200 next to the pretreatment unit 310 in the flow direction of the exhaust gas, Any number or arrangement of the processing liquid supplied from the supply unit 400 can be used as long as it is capable of supplying the processing liquid to the pretreatment exhaust gas in the pretreatment unit 310.
  • the post-treatment unit 320 may further include a post-treatment nozzle 322 as shown in FIG.
  • the post-treatment nozzle 322 is provided in the post-treatment flow tube 321 to inject the treatment liquid flowing through the post-treatment flow tube 321 into the pretreated exhaust gas in the pretreatment unit 310.
  • the post-treatment nozzle 322 may be a plurality of nozzles. In this case, the post-treatment nozzle 322 may be provided in each of a plurality of post-treatment flow tubes 321, for example, one or more.
  • the number and arrangement of the post-treatment nozzles 322 are not particularly limited.
  • the treatment liquid which is provided in the post-treatment flow pipe 321 and flows in the post-treatment flow pipe 321 is supplied to the pretreatment exhaust gas Any number or arrangement can be used as long as the number and arrangement of the nozzles can be varied.
  • the processing unit 300 may further include a packing unit 330.
  • the packing unit 330 is provided in a portion of the processing space ST of the housing 200 between the preprocessing unit 310 and the postprocessing unit 320 so as to increase the contact area between the post- .
  • the packing unit 330 is provided in a part of the processing space ST after the preprocessing unit 310 in the flow direction of the exhaust gas, and the post-processing unit 320 is connected to the packing unit 330 ) In the next process space (ST). 1 and 4, the packing unit 330 is provided in a portion of the processing space ST on the preprocessing unit 320 and the post-processing unit 320 is provided in the portion of the processing space ST on the packing unit 330. [ And may be provided in a portion of the processing space ST.
  • the construction of the packing unit 330 is not particularly limited, and any known structure may be employed as long as the contact area between the exhaust gas and the processing liquid is increased.
  • a treatment liquid such as seawater may be supplied to the pretreatment unit 310 and the post-treatment unit 320 from the same treatment liquid supply unit 400.
  • the treatment liquid supply pipe 410 included in the treatment liquid supply unit 400 is connected to the pretreatment unit 310 and includes a first treatment liquid supply pipe 411 for supplying treatment liquid to the pretreatment unit 310, And a second processing liquid supply pipe 412 connected to the unit 320 to supply the processing liquid to the post-processing unit 320.
  • the first treatment liquid supply pipe 411 is connected to the first pretreatment flow pipe 311a and the second pretreatment flow pipe 312a of the pretreatment unit 310, and the second treatment liquid supply pipe 412 is connected to the post treatment unit 320 To the post-treatment flow tube 321 of FIG.
  • the first process liquid supply pipe 411 is provided so as to surround at least part of the periphery of the housing 200, and is connected to the first pretreatment flow pipe 311a of the pretreatment unit 310 outside the housing 200 And may be connected to the second pre-treatment flow tube 312a.
  • the second processing liquid supply pipe 412 can be connected to the post-processing flow tube 321 of the post-processing unit 320 in the housing 200, that is, the processing space ST of the housing 200.
  • the first treatment liquid supply pipe 411 and the second treatment liquid supply pipe 412 share a pump unit 420 included in the treatment liquid supply unit 400 and connected to a treatment liquid supply source can do.
  • the second processing liquid supply pipe 412 is connected to the pump unit 420 and the first processing liquid supply pipe 411 is branched from the second processing liquid supply pipe 412 have.
  • the first process liquid supply pipe 411 may be connected to the pump unit 420 and the second process liquid supply pipe 412 may be branched from the first process liquid supply pipe 411.
  • the treatment liquid supply unit 400 Processing unit 320 and the preprocessing unit 320 in the processing space ST of the housing 200 as shown in FIG. It is possible to supply the processing liquid to the exhaust gas at the pressure required by each of the processing units 310.
  • the pump unit 420 may include a plurality of pumps 421, 422, 423. Some of the plurality of pumps 421, 422, 423 may or may not be driven depending on the supply amount of the processing liquid. Of the plurality of pumps 421, 422, 423, the remaining pumps 421, 422, 423 other than the pumps 421, 422, 423 which are driven or not driven according to the supply amount of the processing liquid as described above are not driven or driven 422, and 423 of the pumps 421, 422, and 423 of FIG.
  • the treatment liquid supply unit 400 may include, for example, three pumps 421, 422, and 423 as shown in FIG.
  • the two pumps 421, 422, 423 of the three pumps 421, 422, 423 drive only one pump 421, 422, 423 in accordance with the supply amount of the process liquid to supply the process liquid or both of the pumps 421, .
  • the remaining one pump 421, 422, 423 of the three pumps 421, 422, 423 can replace the failed pump 421, 422, 423 among the two pumps 421, 422, 423 described above.
  • the pump unit 420 can be driven at a 100% output regardless of the load of the engine EG.
  • the scrubber 100 is installed in the stack FN of the ship SP as described above and the inlet duct 210 of the housing 200 is connected to the engine EG of the ship by the exhaust duct PE, Lt; / RTI >
  • the load on the engine EG becomes large, so that the amount of exhaust gas to be treated in the scrubber 100 is large, and the pumps 421, 422, and 423 can be driven with 100% output.
  • the load on the engine EG is small, but the salinity of the seawater used as the treatment liquid in the scrubber 100 is low. Therefore, The exhaust gas can be treated. At this time, the pumps 421, 422, and 423 can be driven with a 100% output.
  • the exhaust gas treatment efficiency of the scrubber 100 can be improved.
  • FIG. 13 the inert gas supply device according to the present invention will be described with reference to FIGS. 13 and 14.
  • FIG. 13 is a diagrammatic representation of the inert gas supply device according to the present invention.
  • FIG. 13 and 14 are conceptual diagrams showing embodiments of an inert gas supply device including an embodiment of a scrubber according to the present invention.
  • the inert gas supply device (IG) may include a scrubber 100 for treating an exhaust gas and an inert gas production unit as shown in Figs.
  • the exhaust gas treating scrubber 100 can treat the exhaust gas discharged from the engine EG or the boiler BL.
  • the scrubber 100 for exhaust gas treatment can remove and discharge sulfur oxides from the exhaust gas discharged from the engine EG or the boiler BL as described above.
  • the scrubber 100 for exhaust gas treatment may be connected to the engine EG or the boiler BL by an exhaust duct PE as shown in Figs.
  • the exhaust gas discharged from the engine EG or the boiler BL by the operation of the flow path switching valve VR provided at the portion where the exhaust duct PE and the scrubber 100 for exhaust gas treatment are connected is supplied to the scrubber 100 And can be processed while flowing.
  • the exhaust gas treated and discharged in the exhaust gas treatment scrubber 100 satisfies the predetermined inert gas condition, it can be supplied as an inert gas.
  • a gas composition detection sensor (not shown) or the like is provided in the exhaust duct 220 of the scrubber 100 for exhaust gas treatment, etc., and the scrubber 100 for exhaust gas treatment is provided as shown in Figs. 13 and 14 And can be connected to an oil tank OT in which oil such as crude oil is stored by a connection line LC.
  • the gas composition detection sensor can detect whether the exhaust gas processed and discharged by the exhaust gas treatment scrubber 100 meets a predetermined inert gas condition.
  • the gas composition detection sensor When the gas composition detection sensor senses that the exhaust gas processed and exhausted from the scrubber 100 for exhaust gas treatment meets a predetermined inert gas condition, it operates the opening / closing valve VC provided in the connection line LC, The exhaust gas satisfying the predetermined inert gas condition processed by the scrubber 100 for the exhaust gas treatment can be supplied to the oil tank OT as the inert gas.
  • the exhaust gas supplied to the oil tank OT as an inert gas is filled in the oil tank OT to prevent the oil tank OT from exploding.
  • the exhaust gas treatment scrubber 100 may be a scrubber 100 including the above-described structures described with reference to Figs.
  • the structure of the scrubber 100 for exhaust gas treatment is not particularly limited, and any well-known structure can be used as long as it is capable of treating the exhaust gas discharged from the engine EG or the boiler BL.
  • the inert gas production unit may process the exhaust gas treated in the exhaust gas treatment scrub 100 so as to satisfy the inert gas condition and supply it as inert gas if the exhaust gas does not satisfy the predetermined inert gas condition.
  • the inert gas production unit may be connected to the exhaust gas treatment scrubber 100 by a connection line LC, as shown in Figs. 13 and 14.
  • Fig. the inert gas production unit may be connected to the oil tank OT by a connection line LC.
  • the opening / closing valve VC provided in the connection line LC is operated So that the exhaust gas that does not satisfy the predetermined inert gas condition processed by the exhaust gas treating scrubber 100 can be supplied to the inert gas producing unit.
  • the exhaust gas supplied to the inert gas producing unit can be treated in the inert gas producing unit to satisfy the inert gas condition.
  • the exhaust gas processed to satisfy the predetermined inert gas condition in the inert gas production unit can be supplied to the oil tank OT as an inert gas by operating an on-off valve (VC) or the like provided on the connection line (LC).
  • VC on-off valve
  • LC connection line
  • the inert gas production unit may be, for example, a scrubber (IS) for producing an inert gas as shown in FIG.
  • the constitution of the scrubber IS for producing an inert gas is not particularly limited and if the exhaust gas which does not satisfy the predetermined inert gas condition supplied from the exhaust gas treating scrubber 100 can be treated to satisfy the inert gas condition Any known structure is possible.
  • the exhaust gas treated in the exhaust gas treating scrubber 100 is used as an inert gas for filling the oil tank OT, even if a boiler BL uses a low-sulfur, It is possible to reduce the production cost of the inert gas.
  • the particulate matter removal device PM may be used as the inert gas production unit so that the exhaust gas processed in the exhaust gas treatment scrubber 100 satisfies predetermined inert gas conditions .
  • the constitution of the particulate matter removal device PM is not particularly limited and may be any configuration as long as it can remove the particulate matter from the exhaust gas processed in the exhaust gas treatment scrubber 100 to satisfy a predetermined inert gas condition It is possible.
  • the preprocessing unit for pretreating the exhaust gas can be provided inside the scrubber, thereby reducing the cross-sectional area of the increased stack for installing the scrubber inside the stack,
  • the exhaust gas treatment efficiency of the scrubber can be improved, the manufacturing cost of the scrubber can be reduced, and the corrosion of the scrubber can be minimized.

Abstract

스크러버를 개시한다. 본 발명의 일실시예에 따른 스크러버는 연돌 내부에 설치되는 스크러버에 있어서, 하우징; 및, 배기가스를 전처리하는 전처리유닛; 을 포함하고, 상기 전처리유닛이 상기 하우징 내부에 구비되어, 상기 연돌 내부에의 설치를 위해서 증가되는 상기 연돌의 단면적을 줄일 수 있는 것을 특징으로 한다.

Description

스크러버
본 발명은 스크러버에 관한 것이다.
스크러버는 엔진 또는 보일러에서 배출되는 배기가스를 정제하거나 냉각하는 등 배기가스를 처리하는 기능을 한다.
배기가스를 정제하거나 냉각하는 등 처리하기 위해서, 스크러버는 엔진 또는 보일러에 배기관에 의해서 연결된다. 그리고, 스크러버에서는 배기관을 통해서 스크러버에 유입되는 배기가스에, 해수 등의 처리액을 공급함으로써, 처리액이 배기가스로부터 황산화물이나 분진을 흡수하여 배기가스가 정제되도록 하거나 배기가스가 냉각되도록 하는 등, 처리액에 의해서 배기가스가 처리되도록 한다.
종래, 스크러버에서는 배기가스를 전처리하는 전처리유닛이 스크러버 외부에 구비되었다. 스크러버는 연돌의 단면적을 증가시켜서 연돌 내에 설치될 수 있는데, 종래에는 전술한 바와 같이 전처리유닛이 스크러버 외부에 구비되어 있어서, 스크러버의 설치를 위해서 증가시켜야만 하는 연돌의 단면적이 비교적 컸다.
한편, 스크러버에서는 유입되는 배기가스가 처리되면서 배기가스로부터 응축된 황산화물이 스크러버를 부식시키기 때문에, 부식되지 않는 비교적 고가인 소재로 스크러버를 만들어야만 하였다. 이에 의해서, 스크러버의 제작비용이 비교적 많이 소요되었다.
또한, 배기가스가 스크러버에 원활하게 유입되지 않아서 스크러버의 처리효율이 저하되었다.
본 발명은 상기와 같은 종래에서 발생하는 요구 또는 문제들 중 적어도 어느 하나를 인식하여 이루어진 것이다.
본 발명의 목적의 일 측면은 배기가스를 전처리하는 전처리유닛이 스크러버 내부에 구비되도록 하여 스크러버를 연돌 내부에 설치하기 위해서 증가되는 연돌의 단면적을 줄일 수 있도록 하는 것이다.
본 발명의 목적의 다른 측면은 배기가스가 처리액 등에 의해서 방해받지 않고 원활하게 스크러버에 유입되도록 하는 것이다.
본 발명의 목적의 또 다른 측면은 스크러버의 배기가스 처리효율이 향상되도록 하는 것이다.
본 발명의 목적의 또 다른 측면은 스크러버의 제작비용이 절감되도록 하는 것이다.
본 발명의 목적의 또 다른 측면은 스크러버의 부식이 최소화되도록 하는 것이다.
상기 과제들 중 적어도 하나의 과제를 실현하기 위한 일실시 형태와 관련된 스크러버는 다음과 같은 특징을 포함할 수 있다.
본 발명의 일실시예에 따른 스크러버는 연돌 내부에 설치되는 스크러버에 있어서, 하우징; 및, 배기가스를 전처리하는 전처리유닛; 을 포함하고, 상기 전처리유닛이 상기 하우징 내부에 구비되어, 상기 연돌 내부에의 설치를 위해서 증가되는 상기 연돌의 단면적을 줄일 수 있다.
이 경우, 상기 연돌은 선박에 구비되며, 상기 스크러버의 설치를 위해서 상기 연돌은 선박의 선수 또는 선미방향으로 단면적이 증가될 수 있다.
또한, 상기 연돌은 선박의 선폭방향으로는 단면적이 증가되지 않을 수 있다.
그리고, 상기 연돌의 단면은 사각 형상일 수 있다.
또한, 상기 연돌 내부에 사용하지 못하는 사영역을 최소화하고 상기 연돌 내부에의 설치를 위해서 증가되는 상기 연돌의 단면적을 줄일 수 있도록 단면이 사각 형상일 수 있다.
그리고, 상기 연돌 내부에 설치되는 배기관으로부터 유입된 배기가스가 유동하여 배출되도록 상기 연돌 내부에 설치되는 상기 하우징, 상기 하우징 내부에 형성된 처리공간에 구비되어 상기 처리공간에 유입되는 배기가스를 전처리하는 상기 전처리유닛, 상기 전처리유닛에 의해서 전처리된 배기가스를 후처리하도록 상기 처리공간에 구비되는 후처리유닛 및, 상기 전처리유닛과 후처리유닛 사이의 상기 처리공간의 부분에 구비되어 후처리되는 배기가스와 처리액의 접촉면적이 커지도록 하는 패킹유닛을 포함할 수 있다.
또한, 상기 하우징에는 상기 처리공간과 배기관에 연결되며 처리될 배기가스가 유입되는 유입덕트와 상기 처리공간에 연결되며 처리된 배기가스가 배출되는 배출덕트가 구비될 수 있다.
그리고, 상기 전처리유닛은 상기 유입덕트를 통해 유입되는 배기가스에 처리액을 공급하여 전처리하며, 상기 후처리유닛은 상기 전처리유닛에 의해서 전처리된 배기가스에 처리액을 공급하여 배기가스를 후처리할 수 있다.
또한, 상기 유입덕트를 통해 배기가스가 유입되는 하우징의 부분의 내면은 코팅제에 의해서 코팅될 수 있다.
그리고, 상기 코팅제는 폴리비닐에스터(Poly Vinyl Ester)일 수 있다.
또한, 상기 전처리유닛은 유입되는 배기가스의 온도를 코팅제가 손상되지 않는 소정 온도 이하로 냉각할 수 있다.
그리고, 상기 전처리유닛은 유입되는 배기가스의 온도를 120℃ 이하로 냉각할 수 있다.
또한, 상기 전처리유닛은 유입되는 배기가스의 온도를 80℃이하로 냉각할 수 있다.
그리고, 상기 유입덕트는 상기 하우징의 하부에 구비되고, 상기 배출덕트는 상기 하우징의 상부에 구비될 수 있다.
또한, 상기 유입덕트는 상기 하우징의 바닥으로부터 소정 높이의 상기 하우징의 하부 측면에 구비될 수 있다.
그리고, 상기 유입덕트는 상기 하우징의 바닥 방향으로 소정 각도 경사지게 구비될 수 있다.
또한, 상기 하우징에는 상기 유입덕트로부터 상기 처리공간으로 상기 하우징의 길이방향으로 소정 길이 연장되는 유동가이드가 구비될 수 있다.
그리고, 상기 유동가이드의 길이는 상기 하우징의 길이의 반 이하일 수 있다.
또한, 상기 유동가이드의 양 측면은 상기 하우징의 내면으로부터 소정 거리 이격될 수 있다.
그리고, 상기 유동가이드의 양 측면 각각은 상기 유입덕트로부터 상기 하우징의 길이방향으로 상기 처리공간으로 갈수록 상기 하우징 내측으로 경사질 수 있다.
이상에서와 같이 본 발명의 실시예에 따르면, 배기가스를 전처리하는 전처리유닛이 스크러버 내부에 구비되도록 하여 스크러버를 연돌 내부에 설치하기 위해서 증가되는 연돌의 단면적을 줄일 수 있다.
또한, 본 발명의 실시예에 따르면, 배기가스가 처리액 등에 의해서 방해받지 않고 원활하게 스크러버에 유입되도록 할 수 있다.
그리고 또한, 본 발명의 실시예에 따르면, 스크러버의 배기가스 처리효율이 향상되도록 할 수 있다.
그리고 또한, 본 발명의 실시예에 따르면, 스크러버의 제작비용이 절감되도록 할 수 있다.
그리고 또한, 본 발명의 실시예에 따르면, 스크러버의 부식이 최소화되도록 할 수 있다.
도1은 본 발명에 따른 스크러버의 일실시예를 나타내는 도면이다.
도2는 본 발명에 따른 스크러버의 일실시예에 포함되는 처리유닛과 처리액공급유닛을 나타내는 도면이다.
도3은 도1의 평면도이다.
도4는 도1의 일부 절개 측면도이다.
도5는 도1의 Ⅰ-Ⅰ'선에 따른 단면도이다.
도6은 도1의 Ⅱ-Ⅱ'선에 따른 단면도이다.
도7은 본 발명에 따른 스크러버의 일실시예의 처리유닛에 포함되는 전처리유닛에 포함되는 제1분사유닛을 나타내는 단면도이다.
도8은 본 발명에 따른 스크러버의 일실시예의 처리유닛에 포함되는 전처리유닛에 포함되는 제2분사유닛을 나타내는 단면도이다.
도9는 본 발명에 따른 스크러버의 일실시예가 연돌 내에 설치되어 엔진 등에 연결된 것을 나타내는 도면이다.
도10은 본 발명에 따른 스크러버의 일실시예가 선박의 연돌 내에 설치된 것을 나타내는 도면이다.
도11은 본 발명에 따른 스크러버의 일시예와 종래의 스크러버가 각각 선박의 연돌 내에 설치되는 경우를 비교하여 나타내는 도면이다.
도12는 본 발명에 따른 스크러버의 일실시예가 연돌과 일체로 되는 경우와 종래의 스크러버가 각각 선박의 연돌 내에 설치되는 경우를 비교하여 나타내는 도면이다.
도13과 도14는 본 발명에 따른 스크러버의 일실시예를 포함하는 불활성가스 공급장치의 실시예들을 나타내는 개념도이다.
상기와 같은 본 발명의 특징들에 대한 이해를 돕기 위하여, 이하 본 발명의 실시예와 관련된 스크러버에 대하여 보다 상세하게 설명하도록 하겠다.
이하, 설명되는 실시예들은 본 발명의 기술적인 특징을 이해시키기에 가장 적합한 실시예들을 기초로 하여 설명될 것이며, 설명되는 실시예들에 의해 본 발명의 기술적인 특징이 제한되는 것이 아니라, 이하 설명되는 실시예들과 같이 본 발명이 구현될 수 있다는 것을 예시하는 것이다. 따라서, 본 발명은 아래 설명된 실시예들을 통해 본 발명의 기술 범위 내에서 다양한 변형 실시가 가능하며, 이러한 변형 실시예는 본 발명의 기술 범위 내에 속한다 할 것이다. 그리고, 이하 설명되는 실시예의 이해를 돕기 위하여 첨부된 도면에 기재된 부호에 있어서, 각 실시예에서 동일한 작용을 하게 되는 구성요소 중 관련된 구성요소는 동일 또는 연장 선상의 숫자로 표기하였다.
스크러버
이하, 도1 내지 도12를 참조로 하여 본 발명에 따른 스크러버의 일실시예에 대하여 설명한다.
도1은 본 발명에 따른 스크러버의 일실시예를 나타내는 도면이며, 도2는 본 발명에 따른 스크러버의 일실시예에 포함되는 처리유닛과 처리액공급유닛을 나타내는 도면이다.
또한, 도3은 도1의 평면도이고, 도4는 도1의 일부 절개 측면도이며, 도5는 도1의 Ⅰ-Ⅰ'선에 따른 단면도이고, 도6은 도1의 Ⅱ-Ⅱ'선에 따른 단면도이다.
그리고, 도7은 본 발명에 따른 스크러버의 일실시예의 처리유닛에 포함되는 전처리유닛에 포함되는 제1분사유닛을 나타내는 단면도이며, 도8은 본 발명에 따른 스크러버의 일실시예의 처리유닛에 포함되는 전처리유닛에 포함되는 제2분사유닛을 나타내는 단면도이다.
또한, 도9는 본 발명에 따른 스크러버의 일실시예가 연돌 내에 설치되어 엔진 등에 연결된 것을 나타내는 도면이고, 도10은 본 발명에 따른 스크러버의 일실시예가 선박의 연돌 내에 설치된 것을 나타내는 도면이며, 도11은 본 발명에 따른 스크러버의 일시예와 종래의 스크러버가 각각 선박의 연돌 내에 설치되는 경우를 비교하여 나타내는 도면이고, 도12는 본 발명에 따른 스크러버의 일실시예가 연돌과 일체로 되는 경우와 종래의 스크러버가 각각 선박의 연돌 내에 설치되는 경우를 비교하여 나타내는 도면이다.
본 발명에 따른 스크러버(100)의 일실시예는 도1과 도3 및 도5와 도6에 도시된 바와 같이 단면이 사각 형상일 수 있다.
본 발명에 따른 스크러버(100)의 일실시예는 도9에 도시된 바와 같이 배기관(PE)이 설치된 연돌(FN) 내부에 설치될 수 있다. 예컨대, 본 발명에 따른 스크러버(100)의 일실시예는 단면이 사각형상인 연돌(FN) 내부에 설치될 수 있다.
연돌(FN) 내부에 본 발명에 따른 스크러버(100)의 일실시예를 설치하기 위해서, 연돌(FN)의 단면적을 소정방향으로 증가시킬 수 있다.
예컨대, 본 발명에 따른 스크러버(100)의 일실시예는 도10에 도시된 바와 같이 선박(SP)에 구비된 연돌(FN)에 설치될 수 있다. 그리고, 본 발명에 따른 스크러버(100)의 일실시예의 설치를 위해서, 연돌(FN)은 도11에 화살표와 빗금으로 표시된 바와 같이 선박(SP)의 선수 또는 선미방향으로 단면적이 증가될 수 있다. 이 경우, 연돌(FN)은 선박(SP)의 선폭방향으로는 단면적이 증가되지 않을 수 있다. 즉, 연돌(FN)은 선박(SP)의 선수 또는 선미방향으로만 단면적이 증가될 수 있다.
전술한 바와 같이, 본 발명에 따른 스크러버(100)의 일실시예는 단면이 사각 형상이기 때문에, 도11에서 알 수 있는 바와 같이 단면이 원형인 종래의 스크러버보다 연돌(FN) 내부에 사용하지 못하는 사영역을 최소화할 수 있다. 또한, 단면이 원형인 종래의 스크러버보다 연돌(FN)에 스크러버(100)를 설치할 때, 같은 처리용량의 경우 설치면적이 작아질 수 있다. 이에 의해서, 도11에서 알 수 있듯이, 본 발명에 따른 스크러버(100)의 일실시예는 연돌(FN) 내부에의 설치를 위해서 증가되는 연돌(FN)의 단면적을 줄일 수 있다.
예컨대, 도11에 도시된 바와 같이, 종래의 스크러버의 경우에는 연돌(FN) 내부에의 설치를 위해서 연돌(FN)을 선폭방향으로는 늘리지 않고 선수방향으로 4m 늘려야만 한다면, 본 발명에 따른 스크러버(100)의 일실시예는 연돌(FN)을 선수방향으로 2m만 늘려도 된다. 그러므로, 이 경우에는 본 발명에 따른 스크러버(100)의 일실시예는 종래의 스크러버보다 연돌(FN) 내부에의 설치를 위해서 증가되는 연돌(FN)의 단면적을 반으로 줄일 수 있다.
한편, 도12에 도시된 바와 같이, 본 발명에 따른 스크러버(100)의 일실시예가 연돌(FN)과 일체로 이루어지는 경우에는 연돌(FN)을 선수방향으로 1m만 늘려도 연돌(FN) 내부에 설치될 수 있다. 그러므로, 이 경우에는 본 발명에 따른 스크러버(100)의 일실시예는 종래의 스크러버보다 연돌(FN) 내부에의 설치를 위해서 증가되는 연돌(FN)의 단면적을 1/4로 줄일 수 있다.
본 발명에 따른 스크러버의 일실시예는 도1에 도시된 바와 같이 하우징(200)과 처리유닛(300)을 포함할 수 있다.
하우징(200)에는 배기가스가 유입되어 처리되며 처리된 배기가스가 배출될 수 있다. 하우징(200)은, 예컨대 도9에 도시된 바와 같이 메인엔진(ME)이나 발전용 엔진(GE1, GE2) 등의 엔진(EG)이나 보일러(BL) 등에 연결되는 배기관(PE)이 설치된 연돌(FN) 내부에 설치될 수 있다. 또한, 하우징(200)은 배기관(PE)에 연결되고 하우징(200)과 배기관(PE)이 연결되는 부분에는 유로전환밸브(VR)가 구비될 수 있다. 그리고, 유로전환밸브(VR)의 조작으로 엔진(EG)이나 보일러(BL) 등으로부터 배출되는 배기가스가 하우징(200)에 유입되도록 할 수 있다.
한편, 본 발명에 따른 스크러버(100)의 일실시예가 전술한 바와 같이 단면이 사각형상이기 때문에, 하우징(200)은 단면이 사각형상일 수 있다.
하우징(200)에는 도4에 도시된 바와 같이 처리공간(ST)이 형성될 수 있다. 배기가스는 하우징(200)에 유입되어 처리공간(ST)을 유동하고 배출될 수 있다. 하우징(200)의 처리공간(ST)에는 처리유닛(300)이 구비될 수 있다. 그리고, 하우징(200)에 유입되고 처리공간(ST)을 유동하는 배기가스는 처리유닛(300)에 의해서 처리될 수 있다.
하우징(200)에는 유입덕트(210)와 배출덕트(220)가 구비될 수 있다.
유입덕트(210)는 처리공간(ST)에 연결될 수 있다. 또한, 유입덕트(210)는 도9에 도시된 바와 같이 배기관(PE)에 의해서 메인엔진(ME)이나 발전용 엔진(GE1, GE2) 등의 엔진(EG)이나 보일러(BL) 등 등 배기가스가 배출되는 장치에 연결될 수 있다. 이에 의해서, 메인엔진(ME)이나 발전용 엔진(GE1,GE2) 등의 엔진(EG)이나 보일러(BL) 등에서 배출되는 처리될 배기가스가 배기관(PE)과 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되어 처리공간(ST)을 유동할 수 있다.
유입덕트(210)는 하우징(200) 하부에 구비될 수 있다. 유입덕트(210)는 도1과 도4에 도시된 바와 같이 하우징(200)의 바닥으로부터 소정 높이의 하우징(200)의 하부 측면에 구비될 수 있다. 또한, 유입덕트(210)는 하우징(200)의 바닥 방향으로 소정 각도 경사지게 하우징(200) 하부에 구비될 수 있다.
이에 의해서, 메인엔진(ME)이나 발전용 엔진(GE1, GE2) 등의 엔진(EG)이나 보일러(BL) 등으로부터 배출되어 배기관(PE)을 유동한 배기가스는 유입덕트(210)를 통해 하우징(200)의 바닥을 향하여 경사지게 하우징(200)의 처리공간(ST)에 유입될 수 있다. 이에 따라, 배기가스가 후술할 바와 같이 처리유닛(300)에 포함되는 전처리유닛(310)에서 공급되는 해수 등의 처리액에 의해서 방해받지 않고 하우징(200)의 처리공간(ST)에 원활하게 유입될 수 있다. 그리고, 스크러버(100)의 배기가스 처리효율이 향상될 수 있다.
유입덕트(210)의 하우징(200) 바닥으로부터의 높이와 경사각은 특별히 한정되지 않고, 배기가스가 처리유닛(300)의 전처리유닛(310)에서 공급되는 처리액에 의해서 방해받지 않고 하우징(200)의 처리공간(ST)에 원활하게 유입될 수 있는 높이와 경사각이라면 어떠한 높이와 경사각이라도 가능하다.
하우징(200)에는 도4와 도5에 도시된 바와 같이 유입덕트(210)로부터 하우징(200)의 처리공간(ST)으로 하우징(200)의 길이방향으로 소정 길이 연장되는 유동가이드(230)가 구비될 수 있다. 유동가이드(230)는, 예컨대 유입덕트(210)의 상단부로부터 하우징(200)의 처리공간(ST)으로 하우징(200)의 길이방향으로 소정 길이 연장될 수 있다.
유동가이드(230)에 의해서, 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스가, 처리유닛(300)의 전처리유닛(310)에서 공급되는 처리액에 의해서 방해받지 않고 하우징(200)의 처리공간(ST)에 원활하게 유입되도록 가이드될 수 있다. 이에 따라, 스크러버(100)의 배기가스 처리효율이 향상될 수 있다.
유동가이드(230)의 길이는 하우징(200)의 길이의 반 이하일 수 있다. 유동가이드(230)의 길이가 하우징(200)의 길이의 반보다 크면, 유동가이드(230)가 배기가스의 하우징(200)의 처리공간(ST)에서의 유동을 방해할 수 있다.
그러므로, 배기가스의 하우징(200)의 처리공간(ST)에서의 유동을 방해하지 않으면서 처리유닛(300)의 전처리유닛(310)에서 공급되는 처리액에 의해서 방해받지 않고 배기가스가 하우징(200)의 처리공간(ST)에 원활하게 유입되어 유동하도록 하는 유동가이드(230)의 길이는 하우징(200)의 길이의 반 이하가 바람직하다.
유동가이드(230)의 양 측면은 각각 도5에 도시된 바와 같이 각각 하우징(200)의 내면으로부터 소정 거리 이격될 수 있다. 이에 따라, 유동가이드(230)의 양 측면 각각과 하우징(200)의 내면 사이를 통해, 처리유닛(300)의 전처리유닛(310)이 하우징(200)의 처리공간(ST)에 유입되는 배기가스에 처리액을 공급할 수 있다.
유동가이드(230)의 양 측면 각각은 도5에 도시된 바와 같이 유입덕트(210)로부터 하우징(200)의 길이방향으로 처리공간(ST)으로 갈수록 하우징(200) 내측으로 경사질 수 있다. 즉, 유동가이드(230)의 폭은 유입덕트(210)로부터 하우징(200)의 길이방향으로 처리공간(ST)으로 갈수록 작아질 수 있다. 이에 의해서, 유동가이드(230)가 배기가스의 유동에 영향을 주는 것을 최소화할 수 있다.
유입덕트(210)를 통해 배기가스가 유입되는 하우징(200)의 부분의 내면, 예컨대 하우징(200)의 하측의 내면은 코팅제에 의해서 코팅될 수 있다.
이에 의해서, 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스가 처리유닛(300)의 전처리유닛(310)에 의해서 전처리되어 배기가스로부터 응축된 황산화물이 하우징(200) 내면에 접촉된다고 하더라도, 코팅제에 의해서 하우징(200)이 부식되지 않을 수 있다. 이에 따라, 황산화물에 의해서 부식되지 않은 비교적 고가의 소재가 아닌 저가의 소재로도 하우징(200)을 만들 수 있기 때문에, 스크러버(100)의 제작비용이 절감될 수 있다.
또한, 도12에 도시된 바와 같이, 본 발명에 따른 스크러버(100)의 일실시예는 연돌(FN)과 일체로 이루질 수 있다. 이를 위해서 하우징(200)의 적어도 일부분은 연돌(FN)에 의해서 이루어지며, 하우징(200)과 연돌(FN)은 동일 또는 유사한 소재로 이루어질 수 있다.
일반적으로, 하우징(200)은 고온에 견뎌야 하고 내부식성이 커야만 하므로, 고가의 소재로 이루어져야만 한다. 그러나, 본 발명에 따른 스크러버(100)의 일실시예에서는 후술할 바와 같은 처리유닛(300)에 포함되는 전처리유닛(310)의 구성과 전술한 코팅제에 의해서 연돌(FN)과 동일 또는 유사한 저가의 소재로 이루어질 수 있다.
예컨대, 종래에는 하우징(200)을 '254SMO'라 불리우는 비교적 고가인 특수금속으로 제조하였으나, 본 발명에서는 하우징(200)을 연돌(FN)과 동일 또는 유사하게 비교적 저가인 스테인리스강(Stainless Steel)이나 탄소강(Carbon Steel)으로 제조할 수 있다.
코팅제는, 예컨대 폴리비닐에스터(Poly Vinyl Ester)일 수 있다. 그러나, 코팅제는 특별히 한정되지 않고, 하우징(200)의 내면에 코팅되어 하우징(200)의 내면이, 처리유닛(300)의 전처리유닛(310)에 의해서 배기가스가 전처리되어 배기가스로부터 응축된 황산화물에 의해서 부식되지 않도록 하는 코팅제라면 어떠한 코팅제라도 가능하다.
배출덕트(220)는 처리공간(ST)에 연결될 수 있다. 하우징(200)에 유입되고 처리공간(ST)을 유동하면서 처리유닛(300)에 의해서 처리된 배기가스는 배출덕트(220)를 통해 배출될 수 있다.
배출덕트(220)는 하우징(200)의 상부에 구비될 수 있다. 그러나, 배출덕트(220)의 하우징(200)에서의 구비위치는 특별히 한정되지 않고, 하우징(200)에 유입되고 처리공간(ST)을 유동하면서 처리유닛(300)에 의해서 처리된 배기가스가 배출될 수 있는 위치라면 하우징(200)의 어느 부분에도 구비될 수 있다.
처리유닛(300)은 하우징(200)의 처리공간(ST)에 구비되어 하우징(200)에 유입되고 처리공간(ST)을 유동하는 배기가스를 처리할 수 있다.
처리유닛(300)은 도1과 도2 및 도4에 도시된 바와 같이 전처리유닛(310)과 후처리유닛(320)을 포함할 수 있다.
전처리유닛(310)은 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스를 전처리할 수 있다.
전처리유닛(310)은 유입덕트(210) 측의 처리공간(ST)의 부분에 구비될 수 있다. 예컨대, 전처리유닛(310)은 도4에 도시된 바와 같이 유입덕트(210) 위의 처리공간(ST)의 부분에 구비될 수 있다.
이와 같이, 전처리유닛(310)이 하우징(200)의 처리공간(ST)에 구비되기 때문에, 도11에 도시된 바와 같이 전처리유닛이 스크러버 외부에 구비되는 종래의 스크러버보다, 본 발명에 따른 스크러버(100)의 일실시예는 연돌(FN) 내부에 설치하기 위해서 증가되는 연돌(FN)의 단면적을 줄일 수 있다.
전처리유닛(310)은 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스에 처리액을 공급하여 배기가스를 전처리할 수 있다. 예컨대, 전처리유닛(310)은 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스를 소정 온도 이하, 예컨대 황산화물의 응축온도인 160℃ 이하로 냉각하고 배기가스로부터 황산화물 일부를 제거할 수 있다.
전처리유닛(310)이 하우징(200)의 처리공간(ST)에 유입되는 배기가스에 공급하는 처리액은, 예컨대 해수일 수 있다. 그러나, 처리액은 특별히 한정되지 않고, 배기가스를 전처리할 수 있는 것이라면 어떠한 것이라도 가능하다.
전처리유닛(310)은 하우징(200)의 처리공간(ST)에 유입되는 배기가스의 온도를 하우징(200)의 내면에 코팅된 코팅제가 손상되지 않는 소정 온도 이하로 처리액에 의해서 냉각할 수 있다.
예컨대, 전처리유닛(310)에서는 하우징(200)의 처리공간(ST)에 유입되는 배기가스의 온도를 처리액에 의해서 120℃ 이하, 더 바람직하게는 80℃ 이하로 냉각할 수 있다.
전처리유닛(310)으로부터 공급되는 처리액에 의한 배기가스의 냉각온도가 황산화물의 응축온도인 160℃ 이하이기는 하나 120℃ 보다 크면, 전술한 바와 같이 유입덕트(210)를 통해 배기가스가 유입되는 하우징(200)의 부분의 내면에 코팅된 코팅제가 손상될 수 있다. 이에 따라, 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스가 전처리유닛(310)에서 공급된 처리액에 의해서 냉각 등 전처리되면서 배기가스로부터 응축된 황산화물에 의해서 하우징(200)의 내면이 부식될 수 있다.
그러므로, 유입덕트(210)를 통해 배기가스가 유입되는 하우징(200)의 부분의 내면에 코팅된 코팅제가 손상되지 않을 전처리유닛(310)으로부터 공급되는 처리액에 의한 배기가스의 냉각온도는 120℃ 이하가 바람직하다.
이 경우, 전처리유닛(310)으로부터 공급되는 처리액에 의한 배기가스의 냉각온도가 80℃ 이하이면, 유입덕트(210)를 통해 배기가스가 유입되는 하우징(200)의 부분의 내면에 코팅된 코팅제가 손상되는 것이 최소화될 수 있어서 바람직하다.
전처리유닛(310)은 도2에 도시된 바와 같이 제1분사유닛(311)을 포함할 수 있다. 제1분사유닛(311)은 하우징(200) 내부를 유동하는 배기가스에 처리액을 분사할 수 있다. 즉, 제1분사유닛(311)은 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되어 처리공간(ST)을 유동하는 배기가스에 처리액을 분사할 수 있다.
제1분사유닛(311)은 하우징(200) 내부, 즉 하우징(200)의 처리공간(ST)에 유입되어 처리공간(ST)을 유동하는 배기가스 유동을 가이드하는 커튼이 형성되도록 처리액을 분사할 수 있다.
이에 의해서, 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스가 하우징(200)의 내면에 최소로 접촉하면서 유동하도록 할 수 있기 때문에, 처리액의 공급으로 전처리되는 배기가스로부터 응축된 황산화물이 하우징(200)의 내면에 접촉되는 것을 최소화할 수 있다. 이에 따라, 하우징(200)의 내면이 응축된 황산화물에 의해서 부식되는 것을 최소화할 수 있다.
그러므로, 황산화물에 의해서 부식되지 않는 비교적 고가인 소재로 하우징(200)을 만들지 않아도 되기 때문에, 스크러버(100)의 제작비용이 절감될 수 있다.
이를 위해서, 제1분사유닛(311)은 제1전처리공급관(311a)과 제1전처리노즐(311b)을 포함할 수 있다.
제1전처리공급관(311a)은 후술할 처리액공급유닛(400)으로부터 공급된 처리액이 유동하며, 유입덕트(210) 측의 하우징(200)의 부분에 구비될 수 있다. 복수개의 제1전처리유동관(311a)이 도1과 도5에 도시된 바와 같이 하우징(200)의 유동가이드(230) 위의 처리공간(ST) 내부의 부분에 서로 소정 거리 이격되게 구비될 수 있다.
제1전처리노즐(311b)은 제1전처리유동관(311a)에 구비되어 배기가스에 처리액을 분사할 수 있다. 제1전처리노즐(311b)은 도7에 도시된 바와 같이 하우징(200)의 유동가이드(230)와 하우징(200) 내면 사이를 통해 처리액을 분사하도록 제1전처리유동관(311a)에 구비될 수 있다.
전처리유닛(310)은 제2분사유닛(312)을 더 포함할 수 있다. 제2분사유닛(312)은 하우징(200)의 유입덕트(210)를 유동하는 배기가스에 처리액을 분사할 수 있다. 제2분사유닛(312)은 유입덕트(210)의 둘레의 적어도 일부로부터 유입덕트(210)를 유동하는 배기가스에 처리액을 분사할 수 있다.
이에 의해서, 하우징(200)의 유입덕트(210)를 유동하는 배기가스가 유입덕트(210)의 내면에 최소로 접촉하면서 유동하도록 할 수 있기 때문에, 처리액의 공급으로 전처리되는 배기가스로부터 응축된 황산화물이 유입덕트(210) 내면에 접촉되는 것을 최소화할 수 있다. 이에 따라, 유입덕트(210) 내면이 응축된 황산화물에 의해서 부식되는 것을 최소화할 수 있다.
더불어, 이에 의해서도 유입덕트(210)를 통해 하우징(200)의 처리공간(ST)에 유입되는 배기가스가 하우징(200)의 내면에 최소로 접촉하면서 유동하도록 할 수 있기 때문에, 처리액의 공급으로 전처리되는 배기가스로부터 응축된 황산화물이 하우징(200)의 내면에 접촉되는 것을 최소화할 수 있다. 이에 따라, 하우징(200)의 내면이 응축된 황산화물에 의해서 부식되는 것을 최소화할 수 있다.
그러므로, 황산화물에 의해서 부식되지 않는 비교적 고가인 소재로 하우징(200)을 만들지 않아도 되기 때문에, 스크러버(100)의 제작비용이 절감될 수 있다.
이를 위해서, 제2분사유닛(312)은 복수개의 제2전처리유동관(312a)과 제2전처리노즐(312b)을 포함할 수 있다.
복수개의 제2전처리유동관(312a)은 도8에 도시된 바와 같이 처리액공급유닛(400)으로부터 공급된 처리액이 유동하며 유입덕트(210)의 둘레에 연결될 수 있다. 또한, 제2전처리노즐(312b)은 제2전처리유동관(312a)에 구비되어 유입덕트(210)를 유동하는 배기가스에 처리액을 분사할 수 있다.
한편, 전처리유닛(310)에 처리액을 공급하는, 처리액공급유닛(400)에 포함되는 후술할 제1처리액공급관(411)은 하우징(200) 외부에서 전처리유닛(310)과 연결될 수 있다. 예컨대, 제1처리액공급관(411)은 도1과 도3과 도5에 도시된 바와 같이 하우징(200) 둘레의 적어도 일부를 감싸도록 구비되고, 하우징(200) 외부에서 제1처리액공급관(411)이 전처리유닛(310)의 제1전처리유동관(311a)과 제2전처리유동관(312a)과 연결될 수 있다. 이에 따라, 제1전처리유동관(311a)과 제2전처리유동관(312a) 보다 직경이 큰 제1처리액공급관(411)에 의해서 하우징(200)의 처리공간(ST)을 유동하는 배기가스의 유동이 방해받지 않을 수 있다. 그리고, 스크러버(100)의 배기가스 처리효율이 향상될 수 있다.
후처리유닛(320)은 전처리유닛(310)에서 전처리된 배기가스를 후처리할 수 있다. 이를 위해서, 후처리유닛(320)은 배기가스의 유동방향으로 전처리유닛(310) 다음의 하우징(200)의 처리공간(ST)의 부분에 구비될 수 있다. 예컨대, 후처리유닛(320)은 도4에 도시된 바와 같이 전처리유닛(310) 위의 하우징(200)의 처리공간(ST)의 부분에 구비될 수 있다. 이 경우, 후처리유닛(320)은 하우징(200)의 처리공간(ST)에서 전처리유닛(310) 보다 소정 높이 위에 구비될 수 있다.
이러한 후처리유닛(320)은 복수개일 수 있다. 후처리유닛(320)의 개수는 특별히 한정되지 않고, 전처리유닛(310)에서 전처리된 배기가스를 후처리할 수 있는 개수라면 어떠한 개수라도 가능하다.
후처리유닛(320)은 전처리유닛(310)에서 전처리된 배기가스에 처리액을 공급하여 배기가스를 후처리할 수 있다. 예컨대, 후처리유닛(320)은 전처리유닛(310)에서 전처리된 배기가스에 처리액을 공급하여 배기가스로부터 황산화물을 제거할 수 있다. 후처리유닛(320)에서, 전처리유닛(310)에서 전처리된 배기가스에 공급되는 처리액은, 예컨대 해수일 수 있다. 그러나, 처리액은 특별히 한정되지 않고, 전처리유닛(310)에서 전처리된 배기가스를 후처리할 수 있는 것이라면 어떠한 것이라도 가능하다.
후처리유닛(320)은 도2에 도시된 바와 같이 후처리유동관(321)을 포함할 수 있다. 후처리유동관(321)은 배기가스의 유동방향으로 전처리유닛(310) 다음의 하우징(200)의 처리공간(ST)의 부분에 구비될 수 있다. 또한, 후처리유동관(321)은 해수 등의 처리액을 공급하는 처리액공급유닛(400)에 연결될 수 있다. 예컨대, 후처리유동관(321)은 처리액공급유닛(400)의 처리액공급관(410)의 제2처리액공급관(412)에 연결될 수 있다. 이에 따라, 처리액공급유닛(400)으로부터 공급된 처리액은 후처리유동관(321)을 유동하여, 전처리유닛(310)에서 전처리된 배기가스에 공급될 수 있다.
후처리유동관(321)은 복수개일 수 있다. 이 경우, 처리액공급유닛(400)의 처리액공급관(410)의 제2처리액공급관(412)의 일부가 도6에 도시된 바와 같이 하우징(200)을 관통하여 하우징(200)의 처리공간(ST)에 구비될 수 있다. 그리고, 복수개의 후처리유동관(321)은 하우징(200)의 처리공간(ST)에 구비된 처리액공급관(410)의 제2처리액공급관(412)의 일부의 양측에 각각 복수열로 연결될 수 있다.
그러나, 후처리유동관(321)의 개수나 배치형태는 특별히 한정되지 않고, 배기가스의 유동방향으로 전처리유닛(310) 다음의 하우징(200)의 처리공간(ST)의 부분에 구비되어, 처리액공급유닛(400)으로부터 공급된 처리액을 전처리유닛(310)에서 전처리된 배기가스에 공급할 수 있는 개수나 배치형태라면 어떠한 개수나 배치형태라도 가능하다.
후처리유닛(320)은 도2에 도시된 바와 같이 후처리노즐(322)을 더 포함할 수 있다. 후처리노즐(322)은 후처리유동관(321)에 구비되어, 후처리유동관(321)을 유동하는 처리액을 전처리유닛(310)에서 전처리된 배기가스에 분사할 수 있다.
후처리노즐(322)은 복수개일 수 있다. 이 경우, 후처리노즐(322)은, 예컨대 복수개의 후처리유동관(321) 각각에 한 개 또는 복수개 구비될 수 있다.
그러나, 후처리노즐(322)의 개수나 배치형태는 특별히 한정되지 않고, 후처리유동관(321)에 구비되어 후처리유동관(321)을 유동하는 처리액을 전처리유닛(310)에서 전처리된 배기가스에 분사할 수 있는 개수나 배치형태라면 어떠한 개수나 배치형태라도 가능하다.
처리유닛(300)은 패킹유닛(330)을 더 포함할 수 있다. 패킹유닛(330)은 전처리유닛(310)과 후처리유닛(320) 사이의 하우징(200)의 처리공간(ST)의 부분에 구비되어 후처리되는 배기가스와 처리액의 접촉면적이 커지도록 할 수 있다.
이 경우, 패킹유닛(330)은 배기가스의 유동방향으로 전처리유닛(310) 다음의 처리공간(ST)의 부분에 구비되며, 후처리유닛(320)은 배기가스의 유동방향으로 패킹유닛(330) 다음의 처리공간(ST)의 부분에 구비될 수 있다. 예컨대, 도1과 도4에 도시된 바와 같이 패킹유닛(330)은 전처리유닛(320) 위의 처리공간(ST)의 부분에 구비되며, 후처리유닛(320)은 패킹유닛(330) 위의 처리공간(ST)의 부분에 구비될 수 있다.
패킹유닛(330)의 구성은 특별히 한정되지 않고, 배기가스와 처리액의 접촉면적이 커지도록 하는 구성이라면 주지의 어떠한 구성이라도 가능하다.
한편, 도1에 도시된 바와 같이 동일한 처리액공급유닛(400)으로부터 전처리유닛(310)과 후처리유닛(320)에 해수 등의 처리액이 공급될 수 있다.
이를 위해서, 처리액공급유닛(400)에 포함되는 처리액공급관(410)은 전처리유닛(310)에 연결되어 전처리유닛(310)에 처리액을 공급하는 제1처리액공급관(411)과 후처리유닛(320)에 연결되어 후처리유닛(320)에 처리액을 공급하는 제2처리액공급관(412)을 포함할 수 있다.
예컨대, 제1처리액공급관(411)은 전처리유닛(310)의 제1전처리유동관(311a)과 제2전처리유동관(312a)에 연결되고, 제2처리액공급관(412)은 후처리유닛(320)의 후처리유동관(321)에 연결될 수 있다.
이 경우, 전술한 바와 같이, 제1처리액공급관(411)은 하우징(200) 둘레의 적어도 일부를 감싸도록 구비되어 하우징(200) 외부에서 전처리유닛(310)의 제1전처리유동관(311a)과 제2전처리유동관(312a)에 연결될 수 있다. 또한, 제2처리액공급관(412)은 하우징(200) 내부, 즉 하우징(200)의 처리공간(ST)에서 후처리유닛(320)의 후처리유동관(321)에 연결될 수 있다.
또한, 제1처리액공급관(411)과 제2처리액급관(412)은 처리액공급유닛(400)에 포함되며 처리액공급원(도시되지 않음)에 연결되는 하나의 펌프유닛(420)을 공유할 수 있다.
예컨대, 도1과 도2에 도시된 바와 같이 제2처리액공급관(412)이 펌프유닛(420)과 연결되고 제1처리액공급관(411)이 제2처리액공급관(412)에서 분기될 수 있다. 그러나, 제1처리액공급관(411)이 펌프유닛(420)과 연결되고 제2처리액공급관(412)이 제1처리액공급관(411)에서 분기될 수도 있다.
후처리유닛(320)에서 배기가스에 공급하도록 요구되는 처리액의 압력은 전처리유닛(310)에서 배기가스에 공급하도록 요구되는 처리액의 압력보다 낮기 때문에, 전술한 구성의 처리액공급유닛(400)과 함께 도4에 도시된 바와 같이 하우징(200)의 처리공간(ST)에서 후처리유닛(320)이 전처리유닛(310) 보다 소정 높이 위에 구비되도록 함으로써, 후처리유닛(320)과 전처리유닛(310)에서 각각 요구되는 압력으로 배기가스에 처리액을 공급하도록 할 수 있다.
펌프유닛(420)은 복수개의 펌프(421,422,423)를 포함할 수 있다. 복수개의 펌프(421,422,423) 중 일부는 처리액의 공급량에 따라 구동되거나 구동되지 않을 수 있다. 또한, 복수개의 펌프(421,422,423) 중 전술한 바와 같이 처리액의 공급량에 따라 구동되거나 구동되지 않는 일부의 펌프(421,422,423) 이외의 나머지 펌프(421,422,423)는 처리액의 공급량에 따라 구동되거나 구동되지 않는 일부의 펌프(421,422,423) 중 고장난 펌프(421,422,423)를 대체할 수 있다.
처리액공급유닛(400)은, 예컨대 도1에 도시된 바와 같이 3개의 펌프(421,422,423)를 포함할 수 있다. 그리고, 3개의 펌프(421,422,423) 중 2개의 펌프(421,422,423)는 처리액의 공급량에 따라 1개의 펌프(421,422,423)만을 구동하여 처리액을 공급하거나 2개의 펌프(421,422,423) 모두를 구동하여 처리액을 공급할 수 있다. 또한, 3개의 펌프(421,422,423) 중 나머지 1개의 펌프(421,422,423)는 전술한 2개의 펌프(421,422,423) 중 고장난 펌프(421,422,423)를 대체할 수 있다.
한편, 펌프유닛(420)은 엔진(EG)의 부하에 관계 없이 100% 출력으로 구동될 수 있다.
본 발명에 따른 스크러버(100)는 전술한 바와 같이 선박(SP)의 연돌(FN) 내에 설치되며, 하우징(200)의 유입덕트(210)가 배기덕트(PE)에 의해서 선박의 엔진(EG)에 연결될 수 있다. 이 경우, 선박(SP)이 해상을 운행하는 경우에는 엔진(EG)의 부하가 커지기 때문에 스크러버(100)에서 처리해야할 배기가스량이 많아서 펌프(421,422,423)를 100% 출력으로 구동할 수 있다. 또한, 선박(SP)이 연안을 운행하는 경우에는 엔진(EG)의 부하는 작으나 스크러버(100)에서 처리액으로 사용되는 해수의 염도가 낮기 때문에, 염도가 높은 경우보다 많은 양의 해수를 처리액으로 공급하여야만 배기가스를 처리할 수 있다. 이때, 펌프(421,422,423)는 100% 출력으로 구동할 수 있다.
따라서, 펌프유닛(420)이 선박(SP)의 운항에 따른 엔진(EG)의 부하에 관계 없이 100% 출력으로 구동하도록 하면, 스크러버(100)의 배기가스 처리효율이 향상될 수 있다.
불활성가스 공급장치
이하, 도13과 도14를 참조로 하여 본 발명에 따른 불활성가스 공급장치에 대하여 설명한다.
도13과 도14는 본 발명에 따른 스크러버의 일실시예를 포함하는 불활성가스 공급장치의 실시예들을 나타내는 개념도이다.
본 발명에 따른 불활성가스 공급장치(IG)는 도13과 도14에 도시된 바와 같이 배기가스처리용 스크러버(100)와, 불활성가스 제조유닛를 포함할 수 있다.
배기가스처리용 스크러버(100)는 엔진(EG) 또는 보일러(BL)로부터 배출되는 배기가스를 처리할 수 있다. 배기가스처리용 스크러버(100)는 전술한 바와 같이 엔진(EG) 또는 보일러(BL)로부터 배출되는 배기가스로부터 황산화물을 제거하고 배출할 수 있다. 이를 위해서, 배기가스처리용 스크러버(100)는 도13과 도14에 도시된 바와 같이 엔진(EG) 또는 보일러(BL)에 배기덕트(PE)에 의해서 연결될 수 있다. 또한, 배기덕트(PE)와 배기가스처리용 스크러버(100)가 연결되는 부분에 구비되는 유로전환밸브(VR)의 조작으로 엔진(EG) 또는 보일러(BL)로부터 배출되는 배기가스가 스크러버(100)에 유입되어 유동하면서 처리될 수 있다.
한편, 배기가스처리용 스크러버(100)에서 처리되어 배출되는 배기가스가 소정의 불활성가스 조건에 만족하면, 불활성가스로 공급할 수 있다.
예컨대, 배기가스처리용 스크러버(100)의 배출덕트(220) 등에는 가스조성감지센서(도시되지 않음) 등이 구비되고, 배기가스처리용 스크러버(100)는 도13과 도14에 도시된 바와 같이 연결라인(LC)에 의해서 원유 등의 오일이 저장된 오일탱크(OT)에 연결될 수 있다. 그리고, 가스조성감지센서는 배기가스처리용 스크러버(100)에서 처리되어 배출되는 배기가스가 소정의 불활성가스 조건을 만족하는지 감지할 수 있다.
가스조성감지센서가 배기가스처리용 스크러버(100)에서 처리되어 배출되는 배기가스가 소정의 불활성가스 조건을 만족함을 감지하면, 연결라인(LC)에 구비되는 개폐밸브(VC) 등을 조작하여, 배기가스처리용 스크러버(100)에서 처리된 소정의 불활성가스 조건에 만족하는 배기가스를 오일탱크(OT)에 불활성가스로 공급할 수 있다. 오일탱크(OT)에 불활성가스로 공급된 배기가스는 오일탱크(OT)에 충진되어 오일탱크(OT)가 폭발하는 것을 방지할 수 있다.
배기가스처리용 스크러버(100)는 도1 내지 도12를 참조로 하여 설명한 전술한 구성들을 포함하는 스크러버(100)일 수 있다. 그러나, 배기가스처리용 스크러버(100)의 구성은 특별히 한정되지 않고, 엔진(EG) 또는 보일러(BL)로부터 배출되는 배기가스를 처리할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.
불활성가스 제조유닛은 배기가스처리용 스크러버(100)에서 처리된 배기가스가 소정의 불활성가스 조건에 만족하지 않으면 불활성가스 조건에 만족하도록 처리하여 불활성가스로 공급할 수 있다. 이를 위해서, 불활성가스 제조유닛은 도13과 도14에 도시된 바와 같이 배기가스처리용 스크러버(100)에 연결라인(LC)에 의해서 연결될 수 있다. 또한, 불활성가스 제조유닛은 연결라인(LC)에 의해서 오일탱크(OT)에 연결될 수 있다.
가스조성감지센서가 배기가스처리용 스크러버(100)에서 처리되어 배출되는 배기가스가 소정의 불활성가스 조건을 만족하지 않음을 감지하면, 연결라인(LC)에 구비되는 개폐밸브(VC) 등을 조작하여, 배기가스처리용 스크러버(100)에서 처리된 소정의 불활성가스 조건에 만족하지 않은 배기가스를 불활성가스 제조유닛으로 공급할 수 있다. 불활성가스 제조유닛으로 공급된 배기가스는 불활성가스 조건에 만족하도록 불활성가스 제조유닛에서 처리될 수 있다.
불활성가스 제조유닛에서 소정의 불활성가스 조건에 만족하도록 처리된 배기가스는 연결라인(LC)에 구비되는 개폐밸브(VC) 등을 조작하여, 오일탱크(OT)에 불활성가스로 공급할 수 있다. 오일탱크(OT)에 불활성가스로 공급된 배기가스는 오일탱크(OT)에 충진되어 오일탱크(OT)가 폭발하는 것을 방지할 수 있으며, 오일 하역시 오일탱크(OT) 내부가 일정한 압력을 유지하도록 할 수 있다.
불활성가스 제조유닛은, 예컨대 도13에 도시된 바와 같이 불활성가스 제조용 스크러버(IS)일 수 있다. 불활성가스 제조용 스크러버(IS)의 구성은 특별히 한정되지 않고, 배기가스처리용 스크러버(100)로부터 공급된 소정의 불활성가스 조건에 만족하지 않은 배기가스를 불활성가스 조건에 만족하도록 처리할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.
이와 같이, 배기가스처리용 스크러버(100)에서 처리된 배기가스를 오일탱크(OT)를 충진하는 불활성가스로 사용하면, 보일러(BL)에서 연료로 저가인 고유황 함유 연료를 사용하여도 불활성가스를 만들 수 있기 때문에, 불활성가스 제조비용이 절감될 수 있다.
한편, 배기가스처리용 스크러버(100)에서 처리된 배기가스는 황산화물이 어느 정도 제거된 상태이므로, 배기가스처리용 스크러버(100)에서 처리된 배기가스로부터 입자상물질만 제거하면 불활성가스 조건을 만족시킬 수 있다.
그러므로, 도14에 도시된 바와 같이 불활성가스 제조유닛으로 입자상물질 제거장치(PM)를 사용하여, 배기가스처리용 스크러버(100)에서 처리된 배기가스가 소정의 불활성가스 조건에 만족하도록 할 수도 있다.
입자상물질 제거장치(PM)의 구성은 특별히 한정되지 않고, 배기가스처리용 스크러버(100)에서 처리된 배기가스로부터 입자상물질을 제거하여 소정의 불활성가스 조건을 만족시킬 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.
이상에서와 같이 본 발명에 따른 스크러버를 사용하면, 배기가스를 전처리하는 전처리유닛이 스크러버 내부에 구비되도록 하여 스크러버를 연돌 내부에 설치하기 위해서 증가되는 연돌의 단면적을 줄일 수 있으며, 배기가스가 처리액 등에 의해서 방해받지 않고 원활하게 스크러버에 유입되도록 할 수 있고, 스크러버의 배기가스 처리효율이 향상되도록 할 수 있으며, 스크러버의 제작비용이 절감되도록 할 수 있고, 스크러버의 부식이 최소화되도록 할 수 있다.
상기와 같이 설명된 스크러버는 상기 설명된 실시예의 구성이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (20)

  1. 연돌 내부에 설치되는 스크러버에 있어서,
    하우징; 및,
    배기가스를 전처리하는 전처리유닛; 을 포함하고,
    상기 전처리유닛이 상기 하우징 내부에 구비되어, 상기 연돌 내부에의 설치를 위해서 증가되는 상기 연돌의 단면적을 줄일 수 있는 것을 특징으로 하는 스크러버.
  2. 제1항에 있어서, 상기 연돌은 선박에 구비되며, 상기 스크러버의 설치를 위해서 상기 연돌은 선박의 선수 또는 선미방향으로 단면적이 증가되는 것을 특징으로 하는 스크러버.
  3. 제2항에 있어서, 상기 연돌은 선박의 선폭방향으로는 단면적이 증가되지 않는 것을 특징으로 하는 스크러버.
  4. 제1항에 있어서, 상기 연돌의 단면은 사각 형상인 것을 특징으로 하는 스크러버.
  5. 제4항에 있어서, 상기 연돌 내부에 사용하지 못하는 사영역을 최소화하고 상기 연돌 내부에의 설치를 위해서 증가되는 상기 연돌의 단면적을 줄일 수 있도록 단면이 사각 형상인 것을 특징으로 하는 스크러버.
  6. 제1항에 있어서, 상기 연돌 내부에 설치되는 배기관으로부터 유입된 배기가스가 유동하여 배출되도록 상기 연돌 내부에 설치되는 상기 하우징,
    상기 하우징 내부에 형성된 처리공간에 구비되어 상기 처리공간에 유입되는 배기가스를 전처리하는 상기 전처리유닛,
    상기 전처리유닛에 의해서 전처리된 배기가스를 후처리하도록 상기 처리공간에 구비되는 후처리유닛 및,
    상기 전처리유닛과 후처리유닛 사이의 상기 처리공간의 부분에 구비되어 후처리되는 배기가스와 처리액의 접촉면적이 커지도록 하는 패킹유닛을 포함하는 것을 특징으로 하는 스크러버.
  7. 제6항에 있어서, 상기 하우징에는 상기 처리공간과 배기관에 연결되며 처리될 배기가스가 유입되는 유입덕트와 상기 처리공간에 연결되며 처리된 배기가스가 배출되는 배출덕트가 구비되는 것을 특징으로 하는 스크러버.
  8. 제7항에 있어서, 상기 전처리유닛은 상기 유입덕트를 통해 유입되는 배기가스에 처리액을 공급하여 전처리하며,
    상기 후처리유닛은 상기 전처리유닛에 의해서 전처리된 배기가스에 처리액을 공급하여 배기가스를 후처리하는 것을 특징으로 하는 스크러버.
  9. 제8항에 있어서, 상기 유입덕트를 통해 배기가스가 유입되는 하우징의 부분의 내면은 코팅제에 의해서 코팅되는 것을 특징으로 하는 스크러버.
  10. 제9항에 있어서, 상기 코팅제는 폴리비닐에스터(Poly Vinyl Ester)인 것을 특징으로 하는 스크러버.
  11. 제9항에 있어서, 상기 전처리유닛은 유입되는 배기가스의 온도를 코팅제가 손상되지 않는 소정 온도 이하로 냉각하는 것을 특징으로 하는 스크러버.
  12. 제11항에 있어서, 상기 전처리유닛은 유입되는 배기가스의 온도를 120℃ 이하로 냉각하는 것을 특징으로 하는 스크러버.
  13. 제11항에 있어서, 상기 전처리유닛은 유입되는 배기가스의 온도를 80℃이하로 냉각하는 것을 특징으로 하는 스크러버.
  14. 제8항에 있어서, 상기 유입덕트는 상기 하우징의 하부에 구비되고, 상기 배출덕트는 상기 하우징의 상부에 구비되는 것을 특징으로 하는 스크러버.
  15. 제14항에 있어서, 상기 유입덕트는 상기 하우징의 바닥으로부터 소정 높이의 상기 하우징의 하부 측면에 구비되는 것을 특징으로 하는 스크러버.
  16. 제15항에 있어서, 상기 유입덕트는 상기 하우징의 바닥 방향으로 소정 각도 경사지게 구비되는 것을 특징으로 하는 스크러버.
  17. 제16항에 있어서, 상기 하우징에는 상기 유입덕트로부터 상기 처리공간으로 상기 하우징의 길이방향으로 소정 길이 연장되는 유동가이드가 구비되는 것을 특징으로 하는 스크러버.
  18. 제17항에 있어서, 상기 유동가이드의 길이는 상기 하우징의 길이의 반 이하인 것을 특징으로 하는 스크러버.
  19. 제18항에 있어서, 상기 유동가이드의 양 측면은 상기 하우징의 내면으로부터 소정 거리 이격되는 것을 특징으로 하는 스크러버.
  20. 제19항에 있어서, 상기 유동가이드의 양 측면 각각은 상기 유입덕트로부터 상기 하우징의 길이방향으로 상기 처리공간으로 갈수록 상기 하우징 내측으로 경사지는 것을 특징으로 하는 스크러버.
PCT/KR2018/007021 2017-06-22 2018-06-21 스크러버 WO2018236161A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880042104.5A CN110785218A (zh) 2017-06-22 2018-06-21 洗涤器
EP18820050.5A EP3643391A4 (en) 2017-06-22 2018-06-21 PURIFIER
SG11201912812RA SG11201912812RA (en) 2017-06-22 2018-06-21 Scrubber
JP2019571358A JP7198783B2 (ja) 2017-06-22 2018-06-21 スクラバー

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0079339 2017-06-22
KR20170079339 2017-06-22
KR20170095668 2017-07-27
KR10-2017-0095668 2017-07-27
KR1020180000390A KR102104423B1 (ko) 2017-06-22 2018-01-02 선박용 스크러버
KR10-2018-0000390 2018-01-02

Publications (2)

Publication Number Publication Date
WO2018236161A2 true WO2018236161A2 (ko) 2018-12-27
WO2018236161A3 WO2018236161A3 (ko) 2019-04-11

Family

ID=64735782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007021 WO2018236161A2 (ko) 2017-06-22 2018-06-21 스크러버

Country Status (1)

Country Link
WO (1) WO2018236161A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022516630A (ja) * 2019-01-02 2022-03-01 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド 排気ガス処理装置及びこれを含む船舶

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094976A (ko) * 2013-01-23 2014-07-31 주식회사에스티엑스종합기술원 배가스 유입속도 조절이 가능한 선박용 습식 세정설비
KR20160128308A (ko) * 2014-01-17 2016-11-07 마린 이그조스트 솔루션 인코포레이티드 선박 배기가스 정화 시스템
KR20160049782A (ko) * 2014-10-28 2016-05-10 김용섭 선박용 스크러버
KR101630074B1 (ko) * 2014-10-28 2016-06-14 한국기계연구원 선박용 배기가스 탈황장치
JP6104491B1 (ja) * 2017-01-20 2017-03-29 三菱日立パワーシステムズ株式会社 船舶用脱硫装置および該船舶用脱硫装置を搭載した船舶

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022516630A (ja) * 2019-01-02 2022-03-01 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド 排気ガス処理装置及びこれを含む船舶
JP7394859B2 (ja) 2019-01-02 2023-12-08 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド 排気ガス処理装置及びこれを含む船舶

Also Published As

Publication number Publication date
WO2018236161A3 (ko) 2019-04-11

Similar Documents

Publication Publication Date Title
KR102232060B1 (ko) 스크러버
WO2017030221A1 (ko) 열전발전모듈, 이를 포함하는 열전발전장치와 결빙방지 기화장치 및 기화연료가스 액화공정 장치
WO2018236161A2 (ko) 스크러버
WO2021230495A1 (ko) 암모니아 생성 시스템 및 방법
WO2018135771A1 (en) Plasma generating apparatus and gas treating apparatus
WO2020180082A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2015160058A1 (ko) 공정설비에서 발생되는 배기가스 처리 플라즈마 반응기
WO2020197120A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2018124785A2 (ko) 연료전지 장치 및 이의 제어방법
WO2023068454A1 (ko) 바이오매스 가스화 시스템
WO2020153685A1 (ko) 열플라즈마 처리장치
WO2022107947A1 (ko) 선박
WO2019225811A1 (ko) 벤튜리 일체형 스크러버 장치
WO2018012752A1 (ko) 맨홀구멍이 형성된 도류벽이 내,외벽 또는 양쪽 측벽과 일체형 구조로 되어 내구성이 향상된 물탱크
WO2019142967A1 (ko) 선박용 황산화물 저감장치 및 선박용 황산화물 저감장치의 운전방법
WO2021020642A1 (ko) 열교환기 세정 시스템 및 열교환기 세정 방법
WO2024058627A1 (ko) 전기 히팅되는 촉매 코팅 매연 여과 필터를 포함하는 배출 가스 저감 장치
WO2018147614A1 (ko) 전해질의 전기분해장치
WO2016064091A1 (ko) 추진효율 향상장치
WO2020141867A1 (ko) 배기가스 처리장치 및 이를 포함하는 선박
WO2018043948A1 (ko) 선택적 촉매 환원 시스템
WO2014010953A1 (ko) 부식억제 이온 수처리장치용 아연판 및 이의 제조 방법
WO2020116734A1 (ko) 강판 냉각 장치
WO2019151564A1 (ko) 배출가스의 입자상 물질 저감 시스템
WO2019004648A1 (ko) 연소실 내벽에 생성되는 슬래그 제거를 위해 별도의 유체 저장부를 포함하는 슬래그 제거 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2019571358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2018820050

Country of ref document: EP

Effective date: 20200122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820050

Country of ref document: EP

Kind code of ref document: A2