WO2020116734A1 - 강판 냉각 장치 - Google Patents

강판 냉각 장치 Download PDF

Info

Publication number
WO2020116734A1
WO2020116734A1 PCT/KR2019/007027 KR2019007027W WO2020116734A1 WO 2020116734 A1 WO2020116734 A1 WO 2020116734A1 KR 2019007027 W KR2019007027 W KR 2019007027W WO 2020116734 A1 WO2020116734 A1 WO 2020116734A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
cooling
steel sheet
edge
width direction
Prior art date
Application number
PCT/KR2019/007027
Other languages
English (en)
French (fr)
Inventor
정해권
이재화
최원석
주교하
이상원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/295,260 priority Critical patent/US20220008977A1/en
Priority to CN201980075063.4A priority patent/CN113015819B/zh
Priority to EP19891746.0A priority patent/EP3892747B1/en
Priority to JP2021529027A priority patent/JP7266678B2/ja
Publication of WO2020116734A1 publication Critical patent/WO2020116734A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
    • B05B1/205Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor characterised by the longitudinal shape of the elongated body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0207Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the work being an elongated body, e.g. wire or pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/035Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material to several spraying apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/30Arrangements for collecting, re-using or eliminating excess spraying material comprising enclosures close to, or in contact with, the object to be sprayed and surrounding or confining the discharged spray or jet but not the object to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants

Definitions

  • the present invention relates to a steel plate cooling device.
  • this cooling operation may be performed during a process in which a steel sheet is transferred to a post-process or a post-process, and a section in which the cooling operation is performed can be said to be very limited.
  • a'cooling fluid' water or air
  • An object of the present invention is to improve the cooling efficiency of the steel sheet and suppress the occurrence of defects on the surface of the steel sheet.
  • the present invention relates to a steel plate cooling device.
  • An apparatus for cooling a steel sheet includes a device body provided to be spaced apart from the steel sheet in a transport path of the steel sheet; And a cooling unit provided in the device body to supply a cooling fluid; the device body comprising: a first edge facing a first edge portion from one end of the steel plate to a predetermined distance in the center direction of the steel plate Body; And a second edge body facing the second edge portion which is a predetermined distance from the other end of the steel plate to the center direction of the steel plate, wherein the first and second edge bodies are perpendicular to the conveying direction of the steel plate.
  • the cross section in the direction may be provided with a step.
  • a cross section in a direction perpendicular to the conveying direction of the steel sheet is provided with a step in the width direction of the steel sheet, from the surface to the thickness direction of the steel sheet to the surface of the steel sheet
  • the shortest distance may be provided to vary in the width direction of the steel sheet.
  • the device body is provided to be spaced apart from the steel plate in the transport path of the steel plate; And a cooling unit provided in the device body to supply a cooling fluid; the device body comprising: a first edge facing a first edge portion from one end of the steel plate to a predetermined distance in the center direction of the steel plate Body; And a second edge body facing the second edge portion which is a predetermined distance from the other end of the steel plate to the center direction of the steel plate, wherein the first and second edge bodies are perpendicular to the conveying direction of the steel plate.
  • the cross section of the direction is provided to be inclined linearly, the end portions may be provided to be inclined in a direction away from the steel plate, so that the end portion is the farthest from the steel plate in the thickness direction of the steel plate.
  • the device body may include the first edge body and the second edge.
  • Absolute values of a plurality of first inclination angles formed by the extension lines in the width direction of the steel plate and the first and second edge bodies of the symmetrical points where the bodies meet may be 1° or more and 10° or less.
  • first and second edge bodies form a first inclined section which forms an area of symmetry and the first inclined angle and is inclined in a direction away from the steel sheet; and, following the first inclined section, of the steel sheet A non-inclined section in which the shortest distance to the steel sheet in the thickness direction is constantly provided in the width direction of the steel sheet; And a second inclined section, which is an area extending from the non-inclined section and inclined in a direction close to the steel sheet.
  • first and second edge bodies are provided to form a second inclination angle in the second inclination section and an extension line in the width direction of the steel sheet in the non-inclination section, wherein the absolute value of the second inclination angle is at least 3°.
  • the length in the width direction of the steel sheet in the first inclined section is at least 900 mm
  • the length in the width direction of the steel sheet in the non-inclined section is at least 50 mm
  • in the width direction of the steel sheet in the second slope section is at least 50 mm.
  • the device body may include at least one dimple region formed concave in the opposite direction of the steel plate from a surface facing the steel plate.
  • first edge body and the second edge body may extend out of the outer periphery of the steel plate in the width direction of the steel plate.
  • first and second edge bodies may be symmetrical to each other in the width direction of the steel sheet based on a symmetry point where the first edge body and the second edge body meet.
  • the dimple region may have a diameter of more than 0 mm and a value of 15 mm or less, a depth of more than 0 mm and a value of 0.5 mm or less, and a maximum value of the pitch may be 25 mm.
  • the cooling unit includes a plurality of cooling means spaced apart from each other in the conveying direction of the steel plate from the apparatus body, and the cooling means comprises: a plurality of cooling nozzles supplying a cooling fluid facing the steel plate; and , A slot for receiving the cooling nozzle; And it is connected to the cooling nozzle supply means for supplying a cooling fluid at a constant pressure; may include.
  • the device body facing the center in the width direction of the steel plate, the center body that is present between the first edge body and the second edge body; further comprising, the center body, the thickness direction of the steel plate
  • the shortest distance to the steel sheet may be uniformly provided in the width direction of the steel sheet.
  • the first edge body and the second edge body the first inclined section is formed to face the edge portion of the steel plate, the outer circumferentially provided in a direction away from the surface of the steel plate; And, the first slope A non-inclined section that is formed by connecting the section and having an outer circumferentially inclined portion; And a second inclined section formed by being inclined in a direction in which the outer circumference is adjacent to the surface of the steel sheet, and is connected to the non-inclined section.
  • the length in the width direction of the steel sheet in the non-slope section may be any value of 1/5 or less of the length of the center body in the width direction of the steel sheet while exceeding 0.
  • first and second inclined sections may be provided to be inclined linearly.
  • the device body includes a plurality of partition walls which are arranged to be spaced apart from each other in the width direction of the steel plate inside the device body, and the separation distance between the plurality of the partition walls is the width direction of the steel plate of the center body. It may be at least the same value as the length of.
  • the absolute value of the third inclination angle formed by the extension line of the center body and the first inclined section may be any value of 1° or more and 5° or less.
  • the length in the width direction of the steel sheet in the second inclined section may be any one of a range exceeding 0 and less than the length in the width direction of the steel sheet in the non-slope section.
  • the absolute value of the second inclination angle formed by the extension line in the width direction of the steel sheet and the second inclined section in the non-inclined section may exceed 0° and be equal to or less than the absolute value of the inclined angle in the first inclined section.
  • the device body includes a plurality of dimple regions concavely formed in the opposite direction of the steel plate from a surface facing the steel plate, and the plurality of dimple regions may be disposed along the width direction of the steel plate.
  • the cooling unit includes a plurality of cooling means spaced apart from each other in the conveying direction of the steel plate from the apparatus body, and the cooling means comprises: a plurality of cooling nozzles supplying a cooling fluid facing the steel plate; and , A slot for receiving the cooling nozzle; And It is connected to the cooling nozzle supply means for supplying a cooling fluid at a constant pressure; including, a plurality of the cooling nozzle, the plurality of the cooling device is provided in the width direction of the steel plate from the device body, than the outer periphery of the device body It may be provided on the device body to supply the cooling fluid at a position close to the steel plate.
  • the plurality of cooling nozzles may be spaced apart from the steel plate by the same distance from each other in the thickness direction of the steel plate.
  • the cooling efficiency of the steel sheet is improved, and the surface quality of the steel sheet is improved.
  • FIG. 1 schematically shows a plating facility to which a steel sheet cooling apparatus according to the present invention is applied.
  • Figure 2 schematically shows the cooling flow rate of the steel sheet.
  • FIG. 3 schematically illustrates a steel plate cooling apparatus according to an embodiment of the present invention.
  • Figure 4 schematically shows a steel plate cooling apparatus according to another embodiment of the present invention.
  • FIG. 7 shows a cross section of the second edge body to which the dimple region is applied.
  • FIG. 10 is a cross-sectional view of a second edge body according to another embodiment.
  • FIG. 11 schematically shows a steel plate cooling apparatus according to another embodiment of the present invention.
  • Figure 12 shows a part of the cross section of the device body
  • 13 is a cross-sectional view of the second edge body.
  • 16 is a partial cross-sectional view of a device body to which a dimple region is applied according to another embodiment of the present invention.
  • FIG. 18 shows the specifications of the device body of FIG. 17 for each case.
  • FIG. 19 is an area of a cooling fluid discharge space according to FIG. 18.
  • FIG. 20 is a volume of a space formed between the surface of the apparatus body and the surface of the steel sheet according to FIG. 18.
  • 21 is a cooling flow rate according to FIG. 18.
  • case 24 is a case where the maximum shear stress on the surface of the steel sheet in the discharge direction of the cooling fluid according to the supply pressure of the cooling fluid is applied to case 6, case 7 and case 7 together, respectively.
  • the X-axis in the accompanying drawings refers to the thickness direction of the steel sheet
  • the Y-axis refers to the width direction of the steel sheet
  • the Z-axis refers to the length direction of the steel sheet.
  • cooling fluid described below may be at least one of water, air, and nitrogen, and water, air, and nitrogen may be appropriately mixed, and the type of cooling fluid may be appropriately determined by characteristics of a steel sheet, characteristics of a plating process, and the like. It can be selected and applied.
  • the steel sheet described below may be a galvanized steel sheet or a zinc alloy galvanized steel sheet containing 1% or more of magnesium.
  • the steel sheet is a hot rolled or cold rolled steel sheet
  • the width of the steel sheet may be 700mm ⁇ 1800mm.
  • the shortest distance from the nozzle of the cooling nozzle supplying the cooling fluid to the surface of the steel plate is 80 mm to 150 mm, and the cooling nozzle may be provided in a plurality in the width direction and the length direction of the steel plate, in which case the cooling nozzle is It may be spaced apart at least 200 mm in the width direction of the steel sheet.
  • cooling nozzle may be applied in various types such as straight slit (Slit), round (Round).
  • the heat-treated steel sheet 1 is introduced into the plating bath 20 through the snout 10 of the annealing furnace, and the direction is changed by the sink roll 21, and by the guide roll 22 It is guided vertically and sent to the air knife 14.
  • the air knife 14 supplies fluid at high speed to control the thickness of the plating layer on the surface of the steel sheet, and the steel sheet 1 that has passed through the air knife 14 is supplied to the steel sheet cooling apparatus 100 according to the present invention.
  • the steel sheet 1 in which the plating layer is cooled, solidified, and cured while passing through the steel sheet cooling device 100 is then transferred to a post process while the direction is changed by the upper roll 24.
  • the steel plate cooling apparatus 100 disposed in the plating facility of the steel sheet includes the device body 110 facing the steel sheet, and the device body 110 has one surface of the steel sheet 1 It may include a first device body (110a) facing the other surface of the first device body (110a) and the first device body (110a) facing the other surface of the steel plate (1).
  • a cooling fluid supply line 101a is connected to the first device body 110a and the second device body 110b, and the first device body and the second device are connected through the cooling fluid supply line 101a. Cooling fluid can be continuously supplied to the body.
  • first device body and the second device body may be connected with suction means (not shown) that provides a constant suction pressure to suck the supplied cooling fluid, which is not necessarily limited by the present invention, It is a matter that can be appropriately selected and applied by those skilled in the art.
  • a cooling means 120 for supplying the cooling fluid to the steel sheet 1 may be provided on the surface of the device body 110 facing the steel sheet 1.
  • the cooling means may include a plurality of cooling nozzles 121, and the plurality of cooling nozzles 121 may be provided on the device body to be spaced apart in the width direction of the steel plate.
  • the cooling nozzle 121 may be applied in a slit type, a round pipe type, etc., but the type of cooling nozzle is not necessarily limited by the present invention.
  • the flow rate of the cooling fluid passing near the steel sheet 1 increases, which is the accumulation of the cooling fluid sprayed from the cooling nozzle 121, thereby increasing the amount of cooling fluid passing near the steel sheet. Because.
  • This increased flow rate is a major cause of surface defects such as blowing marks in the first edge portion 1a, which is one edge of the steel sheet, and the surface defects occur in the other edge of the steel sheet.
  • the steel plate cooling apparatus includes a first edge body 111 and the steel plate facing the first edge portion 1a, which is a predetermined distance from one end of the steel plate to the center direction of the steel plate. It includes a second edge body 112 facing the second edge portion (1b) that is a predetermined distance in the center direction of the steel plate from the other end of the.
  • first and second edge bodies 111 and 112 are provided with a cross section in a direction perpendicular to the Z-axis direction, that is, a direction perpendicular to the conveying direction of the steel plate 1, the ends of the first edge bodies 111 ( 111a) and the end portions 112a of the second edge body 112 are located in the X-axis direction, that is, in the thickness direction of the steel plate, so that each end portion 111a, 112a is away from the steel plate. It is provided with a slope.
  • the time that the cooling fluid stays in the first edge portion 1a and the second edge portion 1b of the steel sheet is reduced, and the cooling fluid stays in the first edge portion 1a and the second edge portion 1b of the steel plate. It also has an effect of preventing the surface defects of the steel sheet due to an increase in the flow rate of the cooling fluid.
  • the space where the cooling fluid can be discharged can be widened, so that the surface quality of the steel sheet can be improved without enlargement of equipment. There is an effect that can be improved. This effect can be equally applied to the device bodies 110 in another embodiment of the present invention described below.
  • first and second edge bodies 111 and 112 are in the width direction of the steel plate, that is, in the Y-axis direction, based on the symmetry point C where the first edge body 111 and the second edge body 112 meet. It can be mutually symmetric.
  • cooling surfaces 120 are provided on the surfaces of the first and second edge bodies 111 and 112, and the cooling means 120 include a plurality of cooling nozzles arranged in the Y-axis direction along the surface of the device body 110.
  • the cooling fluid supplied from the cooling nozzle 121 flows along the slot 122 to contact the surface of the steel sheet, and these slots 122 serve to increase the supply pressure of the cooling fluid and are supplied by the cooling nozzle 121
  • the useful cooling fluid is supplied to the steel sheet, and serves to reduce the loss of cooling fluid.
  • a plurality of cooling means 120 may be provided in the conveying direction of the steel plate from the device body 110, that is, in the Z-axis direction, to form a cooling unit 120a on the device body 110.
  • the plurality of cooling means 120 may be spaced apart from each other by a certain distance in the direction of transport of the steel sheet, that is, the Z-axis direction.
  • cooling nozzle 121 may be a slot (open hole) formed on the surface of the device body 110.
  • the type and shape of the cooling nozzle 121 are not necessarily limited by the present invention.
  • the steel plate cooling apparatus includes a first edge body 111 facing the first edge portion 1a, which is a distance from one end of the steel plate 1 to the center of the steel plate. ) And a second edge body 112 facing the second edge portion 1b which is a predetermined distance from the other end of the steel plate to the center direction of the steel plate.
  • cross-sections of the first edge body 111 and the second edge body 112 that is, cross-sections in the X-Y plane, which is a direction perpendicular to the Z-axis direction, may be provided with a step.
  • the first edge body 111 and the second edge body 112 in the XY plane cross-section means that the end is provided with the first edge body 111 and the second edge body 112 is the This means that the surface facing the steel sheet 1 may be nonlinear in the Y-axis direction.
  • the non-linear surface in the Y-axis direction in the device body faces the steel plate.
  • Cooling means 120 are provided on the non-linear surface of the apparatus body 110, and the cooling means includes a plurality of cooling nozzles 121 arranged in the Y-axis direction along the non-linear surface of the apparatus body and the cooling therein.
  • the nozzle 121 may be accommodated, and may include a slot 122 opened in the steel plate 1 direction.
  • the cooling fluid supplied from the cooling nozzle 121 flows along the slot 122 to contact the surface of the steel sheet, and these slots 122 serve to increase the supply pressure of the cooling fluid and are supplied from the cooling nozzle 121
  • the useful cooling fluid is supplied to the steel sheet, and serves to reduce the loss of cooling fluid.
  • a plurality of cooling means 120 may be provided in the conveying direction of the steel plate from the device body 110, that is, in the Z-axis direction, to form a cooling unit 120a on the device body 110.
  • the plurality of cooling means 120 may be spaced apart from each other by a certain distance in the direction of transport of the steel sheet, that is, the Z-axis direction.
  • the cooling nozzle 121 may be a slot (open hole) formed on the surface of the device body 110.
  • the type and shape of the cooling nozzle 121 are not necessarily limited by the present invention.
  • the first edge body 111 may have a shape symmetrical to the second edge body (112 of FIG. 4) based on the symmetry point C.
  • the first edge body 111 has a cross section in the XY plane, which is a direction perpendicular to the conveying direction of the steel plate, and is provided with steps in the width direction of the steel plate, that is, in the Y-axis direction, so that the thickness thereof increases in the Y-axis direction. It is provided irregularly.
  • the first edge body 111 is provided with a step so that the shortest distance from the surface of the first edge body 111 to the surface of the steel plate in the X-axis direction changes along the Y axis.
  • the thickness of the first edge body 111 is not constant in the Y-axis direction, and the thickness thereof is changed.
  • the angle of the surface facing the steel plate 1 and the extension line of the symmetry point C is a first inclination angle ⁇ 1 , and an absolute value of the first inclination angle is 1° or more and 10 It can be any value below °.
  • the first edge body 111 has a first inclination section 113 whose outer circumference is formed by forming the symmetry point and a first inclination angle, and an outer circumference of the first edge body 111 continues to the first inclination section.
  • the It may include a second inclined section 115 that is farther than the non-inclined section 114 in the width direction of the steel sheet from the point of symmetry.
  • first inclined section 113, the non-inclined section 114 and the second inclined section 115 may be said to be regions formed by bending the outer circumference of the first edge body 111, which The same applies to the second edge body (112 in FIG. 4).
  • the first inclined section 113 is a surface facing the first edge portion 1a of the steel sheet and continues to the outside of the end of the steel sheet.
  • non-slope section 114 is a surface parallel to the surface of the steel sheet, and is present outside the first edge portion 1a in the Y-axis direction, and the thickness of the non-slope section 114 in the X-axis direction is It is constant as it goes in the Y-axis direction.
  • the second inclined section 115 extending from the non-inclined section 114 and including the end of the first edge body 111 is provided to be inclined in a direction close to the surface of the steel sheet.
  • the second inclined section 115 is a section inclined in a direction close to the surface of the steel sheet, and the thickness of the second inclined section 115 in the X-axis direction is the thickness of the non-inclined section 114 in the X-axis direction. Same as or more.
  • the thickness of the second inclined section 115 in the X-axis direction is linearly changed in the Y-axis direction, and the extension line in the Y-axis direction of the non-inclined section 114 and the second inclined section 115 ) Is the second angle of inclination ⁇ 2 , and the absolute value of the second angle of inclination ⁇ 2 is at least 3°.
  • the second inclination angle ⁇ 2 is present in the edge region of the first edge body 111, and when the second inclination section 115 is inclined by the second inclination angle ⁇ 2 , the cooling fluid is the first edge body 111 ) Just before being discharged to the outside, the flow rate of the cooling fluid increases and the pressure decreases, so that the cooling fluid can be rapidly discharged immediately before the discharge outlet of the cooling fluid of the first edge body 111.
  • the width direction of the steel plate of the first inclined section 113 that is, the length of the straight line in the Y-axis direction is at least 900 mm, and the straight line in the Y-axis direction of the non-inclined section 114 The length is at least 50 mm, and the straight length of the second inclined section 115 in the Y-axis direction of the steel sheet may be at least 50 mm.
  • the thickness of the first edge body 111 in the X-axis direction may be appropriately adjusted so that the absolute values of the first inclination angle ⁇ 1 and the second inclination angle ⁇ 2 are respectively within the above ranges. .
  • the cooling nozzle 121 may be provided in an area corresponding to the first inclined section 113 of the first edge body 111, the first inclined section 113 that does not face the first edge portion of the steel sheet It can be provided in the region to supply the cooling fluid to the steel sheet.
  • the supply pressure of the cooling fluid is increased to prevent excessive use of the cooling fluid.
  • the second edge body 112 is symmetrical in the width direction of the first edge body (111 in FIG. 5) and the steel plate 1 with respect to the symmetry point (C).
  • the absolute value of the first inclination angle ⁇ 1 is also any value between 1° and 10°, and the absolute value of the second inclination angle ⁇ 2 is at least 3°.
  • the cooling nozzle 121 is provided in the region of the first inclined section 113 that does not face the second edge portion of the steel sheet to supply the cooling fluid to the steel sheet.
  • the first edge body (111 in FIG. 5) and the second edge body 112 described above the first edge portion (1a in FIG. 5) and the steel plate from the end of the steel plate to a certain distance in the center direction of the steel plate
  • the first edge body (111 in FIG. 5) and the second edge body 112 are spaced apart from the steel plate 1 from the other end toward the region corresponding to the second edge portion, which is a predetermined distance from the other end to the center direction of the steel plate. As the interval between them gradually increases, the space where the cooling fluid can be discharged increases.
  • the time for the cooling fluid to stay in the first edge portion (1a in FIG. 5) and the second edge portion of the steel sheet is reduced, and the cooling fluid remaining in the first edge portion (1a in FIG. 5) and the second edge portion of the steel plate. It also has an effect of preventing the surface defects of the steel sheet due to an increase in the flow rate of the cooling fluid.
  • the second edge body 112 may include a dimple region 116 in the form of a groove formed concave in the opposite direction of the steel plate.
  • This may also be formed on the first edge body (111 in FIG. 5), and a plurality of first edge bodies (111 in FIG. 5) and the second edge body 112 may be formed along the Y-axis direction.
  • the dimple region 116 also extends to the outside of the end of the steel plate. It may be formed on the first edge body (111 of FIG. 5) and the second edge body 112 to exist.
  • the dimple region 116 serves to reduce the maximum shear stress formed on the surface of the steel plate, thereby reducing the amount of cooling fluid in the first edge portion (1a in FIG. 5) and the second edge portion of the steel plate, It is effective to prevent surface defects at the first edge portion (1a in FIG. 5) and the second edge portion.
  • the dimple region 116 serves to promote the formation of a turbulent boundary layer on the surfaces of the first edge body (111 of FIG. 5) and the second edge body 112.
  • the first edge body (111 in FIG. 5) and the dimple area 116 disposed in the width direction of the steel plate on the surfaces of the second edge body 112 are the first edge body (111 in FIG. 5) and the second edge body.
  • the shear stress formed between the surface of (112) and the cooling fluid is reduced, and thus the flow rate of the cooling fluid is increased, so that the cooling fluid can be smoothly discharged.
  • the cooling fluid can be smoothly and quickly discharged in the direction of the first edge portion (1a in FIG. 5) and the second edge portion of the steel sheet.
  • Such a phenomenon serves to suppress the formation of a blow mark, which is a kind of defect, on the surface of the steel sheet.
  • the dimple region 116 formed in the second edge body (112 of FIG. 9) has a diameter D of any value greater than 0 mm and 15 mm or less, and depth (E of FIG. 9). Is a value greater than 0mm and less than or equal to 0.5mm, and the maximum value of the pitch P may be 25mm.
  • Such a specification may include a second edge body (112 in FIG. 9) as well as a first edge body (111 in FIG. 5). ).
  • the cooling means 120 faces the steel plate, a plurality of cooling nozzles 121 for supplying a cooling fluid to the surface of the steel plate, the cooling nozzle therein It may include a supply means 123 that is connected to the slot 122 and the cooling nozzle 121 for receiving the cooling fluid at a constant pressure.
  • the supply means 123 is connected to each cooling nozzle 121, a supply pump or the like providing a constant supply pressure may be applied, but the type of the supply means is not necessarily limited by the present invention.
  • FIG. 11 illustrates a steel plate cooling apparatus according to another embodiment of the present invention.
  • the device body faces the center of the steel sheet in the width direction, and further includes a center body 117 existing between the first edge body 111 and the second edge body 112. It can contain.
  • the center body 117 is provided with a constant shortest distance to the steel plate in the X-axis direction, that is, the thickness direction of the steel plate in the width direction of the steel plate.
  • the surface of the center body 117 facing the steel sheet is placed parallel to the surface of the steel sheet.
  • the center body 117 does not face the first edge portion 1a and the second edge portion 1b of the steel plate, and the first edge portion 1a of the steel plate faces the first edge body 111 See, the second edge portion 1b of the steel sheet faces the second edge body 112.
  • the cooling means 120 may include a plurality of cooling nozzles 121 formed in the Y-axis direction on the device body and a slot 122 accommodating the cooling nozzles 121 therein.
  • FIG. 12 shows half of the device body 110, and the device body 110 has a symmetrical structure of left and right based on a center line in the X-axis direction of FIG. 12.
  • FIG. 12 the cross section in the XY plane of the second edge body 112 leading to one side of the center body 117 and one half of the center body 117 is illustrated, and the second described below
  • the matter about the edge body 112 is the same that can be applied to the first edge body (111 of FIG. 11).
  • the center body 117 faces a predetermined distance from the center of the steel plate to the second edge portion 1b of the steel plate.
  • the second edge portion is provided to face the second edge portion of the steel sheet.
  • the cooling nozzle 121 is provided only in the center body 117 to supply the cooling fluid to the steel sheet.
  • the second edge body 112 faces the second edge portion 1b and is provided with an outer circumferential slope in a direction away from the surface of the steel plate to form a first slope section ( 113), the non-inclined section 114 and the non-inclined section 114, which are connected to the first inclined section 113, and have an outer circumferentially inclined direction in the Y-axis direction, and are provided parallel to the second edge portion 1b. ), the outer circumference may be provided inclined in a direction close to the surface of the steel plate to include a second slope section 115.
  • the length of the non-inclined section 114 in the Y-axis direction may be any value of 1/5 or less of the total length of the center body (117 in FIG. 11) in the width direction of the steel sheet while exceeding 0. Can be.
  • the length of the center body (117 in FIG. 11) in the width direction of the steel sheet is at least 450 mm, and the length of the first inclined section 113 in the width direction of the steel sheet is at least 450 mm.
  • the length of the non-slope section 114 in the width direction of the steel sheet may be at least 50 mm, and the length of the second slope section 115 in the width direction of the steel sheet may be at least 50 mm.
  • first slope section 113 and the second slope section 115 may be provided to be inclined linearly.
  • first inclined section 113 is formed so that the outer periphery of the second edge body 112 forms an extension line and a third inclination angle ⁇ 3 in the Y-axis direction of the center body (117 in FIG. 11 ). It can be formed by inclining in a direction away from the edge portion.
  • the non-inclined section 114 continues at the end of the first inclined section 113, and the second inclined section 115 has an outer circumference of the second edge body 112 in the non-inclined section 114 again. It may be formed by inclining in the direction closer to the second edge portion.
  • the above can be applied to the first edge body (111 of FIG. 11) in the same principle by reflecting that the first edge body (111 of FIG. 11) is symmetric to the second edge body 112.
  • the absolute value of the third inclination angle ⁇ 3 may be any value of 1 ° or more and 5 ° or less.
  • the device body 110 does not have a first inclination angle ( ⁇ 1 in FIG. 8 ).
  • one partition wall 118 separating the center body 117 and the second edge body 112, and the center body 117 and the first edge body 111 to distinguish Another partition wall 118 may be provided inside the device body 110.
  • a pair of partition walls 118 are present in the Y-axis direction inside the device body (110 of FIG. 11), and the distance between the partition walls 118 is the whole of the center body 117 in the Y-axis direction. It becomes equal to the length.
  • This may serve to prevent the spray pressure from being unnecessarily dispersed within the device body (111 of FIG. 11) when providing the spray pressure of the cooling fluid to the cooling nozzle 121.
  • the length of the second inclined section 115 in the Y-axis direction may be any one of a range of less than the length in the Y-axis direction of the non-inclined section 114 while exceeding zero.
  • the length of the second inclined section 115 in the Y-axis direction may be equal to or shorter than the length of the non-inclined section 114 in the Y-axis direction.
  • the dimple region 116 may also be formed in the center body 117 and the second edge body 112.
  • a plurality of dimple areas 116 may be provided on the device body (110 in FIG. 14) in the Y-axis direction, and details thereof may be applied in the same manner as described above with respect to the dimple areas 116.
  • a supply means 123 may be connected to the cooling nozzle 121 provided on the center body 117.
  • the supply means may be provided with a supply pump or the like that provides the supply pressure of the cooling fluid, but this is not necessarily limited by the present invention.
  • the cooling nozzle 121 may supply the cooling fluid to the steel sheet in a state where it is disposed closer to the surface of the steel sheet 1 than the outer periphery of the center body 117 in the X-axis direction.
  • an open supply hole of the slot 122 accommodating the cooling nozzle 121 is disposed closer to the surface of the steel plate in the X-axis direction than the cooling nozzle 121.
  • the plurality of cooling nozzles 121 may be provided to be uniformly spaced from the surface of the steel plate by the same distance in the X-axis direction to supply the cooling fluid uniformly.
  • the device body 110 shown in Figure 17 is a left and right symmetrical structure with respect to the center line (C 1 ), Figure 17 shows only the right area of the device body 110 for convenience.
  • the half of the device body 110 is divided in the Y-axis direction, and the first section Lc, the second section Li, the third section Le, and the fourth section Lei will be described.
  • the boundary between the first section (Lc) and the second section (Li) becomes a partition wall (118 in FIG. 15), and the first section (Lc) may be an area corresponding to the center body (117 in FIG. 15). have.
  • FIG. 18 shows values of the first section Lc, the second section Li, the third section Le, and the fourth section Lei and the first , second , and third inclination angles ⁇ 1 and ⁇ shown in FIG. 17. 2 , ⁇ 3 ) is applied in a total of eight cases.
  • FIG. 19 shows the area (B) of the cooling fluid discharge space of the device body (110 of FIG. 16) for each case, using seven cases among the eight cases of FIG. 18 as the embodiment (A). .
  • FIG. 19 is a space formed between the surface of the apparatus body (110 of FIG. 17) and the surface of the steel plate (1 of FIG. 17) for each case, using the seven cases of FIG. 17 as Example (A).
  • the volume (C 2 ) of FIG. 21 shows the cooling flow rate (F) for each case using the seven cases (A) of FIG. 18 as an example (A), and FIG.
  • the maximum shear stress (G) on the surface of the steel sheet in the discharge direction of the cooling fluid for each case is shown as Example (A) in seven cases, and FIG. 23 illustrates Case 6 and Case 7 in FIG. When applied, the output (H) of the supply means (123 in FIG. 10 and 123 in FIG.
  • the maximum shear stress (G) on the surface of the steel sheet in the discharge direction of the cooling fluid was also reduced by about 26% in Example 7 (A) of Case 6 compared to Example (A) of Case 6.
  • the maximum shear at the surface of the steel sheet in the discharge direction of the cooling fluid compared to the case (A) in case 7 It can be seen that the stress G is further reduced by 5.5%.
  • the specification of the apparatus body (110 of FIG. 17) of the steel plate cooling apparatus can be selected according to the characteristics of each steel plate and the characteristics of the process.
  • the apparatus for cooling a steel sheet according to the present invention described above can significantly reduce surface defects of a steel sheet when manufacturing a corrosion-resistant magnesium-aluminum alloy hot-dip steel sheet and an aluminum hot-dip galvanized steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명에 따른 강판 냉각 장치는 강판의 이송경로에서 상기 강판과 이격되게 구비되는 장치몸체; 및 상기 장치몸체에 구비되어 냉각유체를 공급하는 냉각유닛;을 포함하고, 상기 장치몸체는, 상기 강판의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부에 대면하는 제1 에지몸체; 및 상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부에 대면하는 제2 에지몸체;를 포함하고, 상기 제1,2 에지몸체는, 상기 강판의 이송방향에 수직한 방향의 단면이 단이 지게 구비될 수 있다.

Description

강판 냉각 장치
본 발명은 강판 냉각 장치에 관한 것이다.
알루미늄 또는 강으로 된 강판의 표면을 아연 또는 아연합금으로 도금하면 강판의 표면의 도금층을 응고시키는 냉각 공정이 수행된다.
통상 강판이 후공정으로 이송되는 과정 또는 후공정 중에 이 냉각 작업이 수행될 수 있는데 이 냉각 작업이 수행되는 구간은 매우 한정적이라고 할 수 있다.
따라서, 허용된 냉각 작업 구간 내에서 강판에 물 또는 공기(이하, '냉각유체'라 함)를 공급하여 강력한 냉각을 수행하게 되는데 이 과정에서 많은 양의 냉각유체가 사용된다.
강판의 표면에 충돌한 냉각유체는 강판의 폭 방향 가장자리를 따라 배출되므로 냉각유체의 유량은 강판의 가장자리로 갈수록 증가하는 경향이 있고, 강판의 가장자리로 갈수록 증가하는 냉각유체의 유량으로 인하여 강판의 가장자리에는 블로잉 마크(Blowing mark)와 같은 표면 결함이 발생하게 된다는 문제가 있다.
본 발명은 강판의 냉각 효율성을 향상시키고, 강판의 표면에 결함이 발생하는 것을 억제함을 일 목적으로 한다.
또한, 강판의 생산 효율성을 향상시키는 것을 일 목적으로 한다.
본 발명은 강판 냉각 장치에 관한 것이다.
본 발명의 일 실시 예에 따른 강판 냉각 장치는 강판의 이송경로에서 상기 강판과 이격되게 구비되는 장치몸체; 및 상기 장치몸체에 구비되어 냉각유체를 공급하는 냉각유닛;을 포함하고, 상기 장치몸체는, 상기 강판의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부에 대면하는 제1 에지몸체; 및 상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부에 대면하는 제2 에지몸체;를 포함하고, 상기 제1,2 에지몸체는, 상기 강판의 이송방향에 수직한 방향의 단면이 단이 지게 구비될 수 있다.
또한, 상기 제1,2 에지몸체는, 상기 강판의 이송방향에 수직한 방향의 단면이 상기 강판의 폭 방향으로 단이 지게 구비되어, 그 표면에서 상기 강판의 두께방향으로 상기 강판의 표면까지의 최단거리가 상기 강판의 폭 방향으로 변하게 제공될 수 있다.
또한, 일 실시 예에서 강판의 이송경로에서 상기 강판과 이격되게 구비되는 장치몸체; 및 상기 장치몸체에 구비되어 냉각유체를 공급하는 냉각유닛;을 포함하고, 상기 장치몸체는, 상기 강판의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부에 대면하는 제1 에지몸체; 및 상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부에 대면하는 제2 에지몸체;를 포함하고, 상기 제1,2 에지몸체는, 상기 강판의 이송방향에 수직한 방향의 단면이 선형적으로 경사지게 구비되되, 그 단부들이 상기 강판의 두께방향으로 상기 강판으로부터 가장 멀리 존재하도록, 그 단부들이 상기 강판에 대하여 멀어지는 방향으로 경사지게 구비될 수 있다.
또한, 상기 제1,2 에지몸체가 상기 강판의 이송방향에 수직한 방향의 단면이 상기 강판의 폭 방향으로 단이 지게 구비된 경우, 상기 장치몸체는, 상기 제1 에지몸체와 상기 제2 에지몸체가 만나는 대칭점의 상기 강판 폭 방향으로의 연장선과 상기 제1,2 에지몸체가 각각 형성하는 복수 개의 제1 경사각의 절대값은 1 °이상 10 °이하일 수 있다.
또한, 상기 제1,2 에지몸체는, 상기 대칭점과 상기 제1 경사각을 형성하며, 상기 강판으로부터 멀어지는 방향으로 경사진 영역인 제1 경사구간;과, 상기 제1 경사구간에 이어지고, 상기 강판의 두께방향으로 상기 강판까지의 최단거리가 상기 강판의 폭 방향으로 일정하게 구비되는 비경사구간; 및 상기 비경사구간에 이어지고, 상기 강판에 가까워지는 방향으로 경사진 영역인 제2 경사구간;을 포함할 수 있다.
또한, 상기 제1,2 에지몸체는, 상기 비경사구간의 상기 강판의 폭 방향으로의 연장선과 상기 제2 경사구간에서 제2 경사각을 형성하도록 구비되되, 상기 제2 경사각의 절대값은 적어도 3°일 수 있다.
또한, 상기 제1 경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 900mm이고, 상기 비경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 50mm이고, 상기 제2 경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 50mm일 수 있다.
또한, 상기 장치몸체는, 상기 강판과 대면하는 면에서 상기 강판의 반대방향으로 오목하게 형성된 적어도 하나의 딤플영역;을 포함할 수 있다.
또한, 상기 제1 에지몸체 및 상기 제2 에지몸체는, 상기 강판의 폭 방향으로 상기 강판의 외주 바깥으로 연장될 수 있다.
또한, 상기 제1,2 에지몸체는, 상기 제1 에지몸체와 상기 제2 에지몸체가 만나는 대칭점을 기준으로 상기 강판의 폭 방향으로 상호 대칭일 수 있다.
또한, 상기 딤플영역은, 직경이 0mm 초과 15mm 이하의 값이고, 깊이가 0mm 초과 0.5mm 이하의 값이고, 피치의 최대값은 25mm일 수 있다.
또한, 상기 냉각유닛은, 상기 장치몸체에서 상기 강판의 이송방향으로 상호 이격된 복수 개의 냉각수단;을 포함하고, 상기 냉각수단은, 상기 강판과 대면하여 냉각유체를 공급하는 복수 개의 냉각노즐;과, 상기 냉각노즐을 수용하는 슬롯; 및 상기 냉각노즐에 연결되어 냉각유체를 일정 압력으로 공급하는 공급수단;을 포함할 수 있다.
또한, 상기 장치몸체는, 상기 강판의 폭 방향 중심에 대면하고, 상기 제1 에지몸체 및 상기 제2 에지몸체 사이에 존재하는 센터몸체;를 더 포함하고, 상기 센터몸체는, 상기 강판의 두께방향으로 상기 강판까지의 최단거리가 상기 강판의 폭 방향으로 일정하게 구비될 수 있다.
또한, 상기 제1 에지몸체 및 상기 제2 에지몸체는, 상기 강판의 에지부에 대면하고, 외주가 상기 강판의 표면으로부터 멀어지는 방향으로 경사지게 구비되어 형성하는 제1 경사구간;과, 상기 제1 경사구간에 이어지고, 외주가 비경사지게 구비되어 형성하는 비경사구간; 및 상기 비경사구간에 이어지고, 외주가 상기 강판의 표면에 가까워지는 방향으로 경사지게 구비되어 형성하는 제2 경사구간;을 포함할 수 있다.
또한, 상기 비경사구간의 상기 강판의 폭 방향으로의 길이는, 0을 초과하면서 상기 센터몸체의 상기 강판의 폭 방향으로의 길이의 1/5 이하의 어느 하나의 값일 수 있다.
또한, 상기 제1,2 경사구간은, 선형적으로 경사지게 구비될 수 있다.
또한, 상기 장치몸체는, 상기 장치몸체의 내부에서 상기 강판의 폭 방향으로 상호 이격되게 배치되는 복수 개의 격벽;을 포함하고, 복수 개의 상기 격벽의 이격거리는, 상기 센터몸체의 상기 강판의 폭 방향으로의 길이와 적어도 동일한 값일 수 있다.
또한, 상기 센터몸체의 연장선과 상기 제1 경사구간이 형성하는 제3 경사각의 절대값은 1 °이상 5 °이하의 어느 하나의 값일 수 있다.
또한, 상기 제2 경사구간의 상기 강판의 폭 방향으로의 길이는, 0을 초과하면서 상기 비경사구간의 상기 강판의 폭 방향으로의 길이 이하의 범위 중 어느 하나의 값일 수 있다.
또한, 상기 비경사구간의 상기 강판의 폭 방향으로의 연장선과 상기 제2 경사구간이 형성하는 제2 경사각의 절대값은, 0°를 초과하면서 상기 제1 경사구간의 경사각의 절대값 이하의 값일 수 있다.
또한, 상기 장치몸체는, 상기 강판과 대면하는 면에서 상기 강판의 반대방향으로 오목하게 형성된 복수 개의 딤플영역;을 포함하고, 복수 개의 상기 딤플영역은, 상기 강판의 폭 방향을 따라 배치될 수 있다.
또한, 상기 냉각유닛은, 상기 장치몸체에서 상기 강판의 이송방향으로 상호 이격된 복수 개의 냉각수단;을 포함하고, 상기 냉각수단은, 상기 강판과 대면하여 냉각유체를 공급하는 복수 개의 냉각노즐;과, 상기 냉각노즐을 수용하는 슬롯; 및 상기 냉각노즐에 연결되어 냉각유체를 일정 압력으로 공급하는 공급수단;을 포함하고, 복수 개의 상기 냉각노즐은, 상기 장치몸체에서 상기 강판의 폭 방향으로 복수 개가 구비되되, 상기 장치몸체의 외주보다 상기 강판에 가까운 위치에서 냉각유체를 공급하도록 상기 장치몸체에 구비될 수 있다.
또한, 복수 개의 상기 냉각노즐은, 상기 강판의 두께 방향으로 상호 동일한 간격만큼 상기 강판으로부터 이격될 수 있다.
본 발명에 따르면 강판의 냉각 효율성이 향상되고, 강판의 표면 품질이 향상된다.
또한, 강판의 생산 효율성이 향상된다.
도 1은 본 발명에 따른 강판 냉각 장치가 적용된 도금설비를 개략적으로 도시한 것이다.
도 2는 강판의 냉각유량을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시 예에 따른 강판 냉각 장치를 개략적으로 도시한 것이다.
도 4는 본 발명의 또 다른 일 실시 예에 따른 강판 냉각 장치를 개략적으로 도시한 것이다.
도 5는 제1 에지몸체의 단면을 도시한 것이다.
도 6은 제2 에지몸체의 단면을 도시한 것이다.
도 7은 딤플영역이 적용된 제2 에지몸체의 단면을 도시한 것이다.
도 8은 딤플영역을 개략적으로 도시한 것이다.
도 9는 딤플영역을 개략적으로 도시한 것이다.
도 10은 또 다른 실시 예의 제2 에지몸체의 단면을 도시한 것이다.
도 11은 본 발명의 또 다른 일 실시 예에 따른 강판 냉각 장치를 개략적으로 도시한 것이다.
도 12는 장치몸체의 단면 일부를 도시한 것이다
도 13은 제2 에지몸체의 단면을 도시한 것이다.
도 14는 장치몸체의 단면을 개략적으로 도시한 것이다.
도 15는 딤플영역이 적용된 장치몸체의 일부 단면을 도시한 것이다.
도 16은 본 발명의 또 다른 일 실시 예에 따른 딤플영역이 적용된 장치몸체의 일부 단면을 도시한 것이다.
도 17은 장치몸체의 일부를 도시한 것이다.
도 18은 도 17의 장치몸체의 규격을 케이스별로 나타낸 것이다.
도 19는 도 18에 따른 냉각유체 배출공간의 면적이다.
도 20은 도 18에 따른 장치몸체의 표면과 강판의 표면 사이에 형성되는 공간의 부피이다.
도 21은 도 18에 따른 냉각유량이다.
도 22는 도 18에 따른 냉각유체 배출방향으로의 강판의 최대 전단 응력이다.
도 23은 케이스 6 및 케이스 7의 냉각유체 공급 압력에 따른 냉각유체의 배출 방향으로의 강판 표면에서의 최대 전단 응력이다.
도 24는 냉각유체 공급 압력에 따른 냉각유체의 배출 방향으로의 강판 표면에서의 최대 전단 응력을 케이스 6, 케이스 7 및 케이스 7에 딤플영역을 함께 적용한 경우 별로 각각 나타낸 것이다.
본 발명의 실시 예에 관한 설명의 이해를 돕기 위하여 첨부된 도면에 동일한 부호로 기재된 요소는 동일한 요소이고, 각 실시 예에서 동일한 작용을 하게 되는 구성요소 중 관련된 구성요소는 동일 또는 연장 선상의 숫자로 표기하였다.
또한, 본 발명의 요지를 명확히 하기 위하여 종래의 기술에 의해 익히 알려진 요소와 기술에 대한 설명은 생략하며, 이하에서는, 첨부된 도면을 참고로 하여 본 발명에 관하여 상세히 설명하도록 한다.
다만, 본 발명의 사상은 제시되는 실시 예에 제한되지 아니하고, 당업자에 의해 특정 구성요소가 추가, 변경, 삭제된 다른 형태로도 제안될 수 있을 것이나, 이 또한 본 발명과 동일한 사상의 범위 내에 포함됨을 밝혀 둔다.
또한, 첨부된 도면에 기재된 X축은 강판의 두께 방향, Y축은 강판의 폭 방향, Z축은 강판의 길이 방향을 의미한다.
또한, 이하에서 설명하는 냉각유체는 물, 공기 및 질소 중 적어도 어느 하나일 수 있고, 물, 공기 및 질소를 적절히 혼합하여 사용할 수도 있는데 냉각유체의 종류는 강판의 특성, 도금 공정의 특성 등에 의해 적절히 선택되어 적용될 수 있다.
이하에서 설명하는 강판은 아연도금강판이거나 또는 마그네슘이 1% 이상 포함된 아연합금도금 강판일 수 있다.
또한 상기의 강판은 열간압연 또는 냉간압연 된 강판이고, 상기 강판의 폭은 700mm~1800mm일 수 있다.
또한, 냉각유체를 공급하는 냉각노즐의 분사구에서부터 상기 강판의 표면까지의 최단거리는 80mm~150mm이고, 상기 냉각노즐은 강판의 폭 방향 및 길이 방향으로 복수 개가 구비될 수 있으며, 이러한 경우 상기 냉각노즐은 상기 강판의 폭 방향으로 적어도 200mm 이격될 수 있다.
또한, 상기 냉각노즐은 스트레이트 슬릿(Straight slit), 라운드(Round) 등 다양한 타입으로 적용될 수 있다.
또한, 이하에서 설명하는 각도의 단위는 °이다.
도 1에서 보이듯이, 열처리 된 강판(1)은 소둔로의 스나우트(10)를 통해 도금욕조(20)로 유입되어 싱크롤(21)에 의해 방향이 전환되고, 안내롤(22)에 의해 수직으로 안내되어 에어나이프(14)로 보내진다.
에어나이프(14)는 고속으로 유체를 공급하여 강판 표면의 도금층의 두께를 제어하며, 에어나이프(14)를 통과한 강판(1)은 본 발명에 따른 강판 냉각 장치(100)로 공급된다.
강판 냉각 장치(100)를 통과하면서 도금층이 냉각, 응고 및 경화된 강판(1)은 이어 상부롤(24)에 의해 방향이 전환되면서 후공정으로 이송되게 된다.
상기와 같은 강판의 도금 설비에 배치된 본 발명에 따른 강판 냉각 장치(100)는 상기 강판에 대면하는 장치몸체(110)를 포함하며, 상기 장치몸체(110)는 상기 강판(1)의 일측 표면과 대면하는 제1 장치몸체(110a) 및 상기 강판(1)의 타측 표면과 대면하여 상기 제1 장치몸체(110a)와 이격된 제2 장치몸체(110b)를 포함할 수 있다.
그리고 상기 제1 장치몸체(110a) 및 상기 제2 장치몸체(110b)에는 냉각유체 공급라인(101a)이 연결되며, 상기 냉각유체 공급라인(101a)을 통해 상기 제1 장치몸체 및 상기 제2 장치몸체로 냉각유체가 지속적으로 공급될 수 있다.
다만, 상기 제1 장치몸체 및 상기 제2 장치몸체에는 공급된 냉각유체를 흡입할 수 있도록 일정한 흡입압력을 제공하는 흡입수단(미도시)이 연결될 수도 있는데 이는 반드시 본 발명에 의해 한정되는 것은 아니며, 당업자에 의해 적절히 선택되어 적용될 수 있는 사항이다.
도 2에서 보이듯, 장치몸체(110)에서 강판(1)과 마주보는 면에는 상기 냉각유체를 강판(1)에 공급하는 냉각수단(120)이 마련될 수 있다.
상기 냉각수단은 복수 개의 냉각노즐(121)을 포함할 수 있으며, 복수 개의 상기 냉각노즐(121)은 강판의 폭 방향으로 이격되도록 상기 장치몸체에 구비될 수 있다.
상기 냉각노즐(121)은 슬릿타입, 라운드 파이프 타입 등으로 적용될 수 있으나, 냉각노즐의 종류는 반드시 본 발명에 의해 한정되지 않는다.
한편, 강판(1)의 가장자리로 갈수록, 강판(1) 인근을 지나는 냉각유체의 유속이 증가되는데 이는 냉각노즐(121)에서 분사된 냉각유체의 누적으로 강판 인근을 지나는 냉각유체의 양이 증가되기 때문이다.
이처럼 증가된 유속은 강판의 일측 가장자리인 제1 에지부(1a)에서 블로잉 마크(Blowing mark)와 같은 표면 결함을 일으키는 주요 원인이 되며, 이러한 표면 결함은 강판의 타측 가장자리에서도 동일하게 일어난다.
이에, 도 3에서 보이듯, 본 발명에 따른 강판 냉각 장치는 상기 강판의 일측 끝단에서부터 강판의 중심방향으로 일정거리까지인 제1 에지부(1a)에 대면하는 제1 에지몸체(111) 및 상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부(1b)에 대면하는 제2 에지몸체(112)를 포함한다.
그리고, 상기 제1,2 에지몸체(111,112)는, Z축 방향 즉, 강판(1)의 이송방향에 수직한 방향의 단면이 선형적으로 경사지게 구비되되, 제1 에지몸체(111)의 단부(111a) 및 제2 에지몸체(112)의 단부(112a)가 X축 방향 즉, 상기 강판의 두께 방향으로 상기 강판으로부터 가장 멀리 존재하도록, 각각의 단부(111a, 112a)가 상기 강판에 대하여 멀어지는 방향으로 경사지게 구비된다.
이에 따르면 상기 제1 에지몸체(111) 및 제2 에지몸체(112)가 강판(1)과 상호 이격되는 간격이 점차 멀어지므로 그만큼 냉각유체가 배출될 수 있는 공간이 넓어진다.
따라서, 냉각유체가 강판의 제1 에지부(1a) 및 제2 에지부(1b)에 머무르는 시간이 줄어들고, 강판의 제1 에지부(1a) 및 제2 에지부(1b)에 체류하는 냉각유체의 양도 적어져 냉각유체의 유량 증가로 인한 강판의 표면 결함을 방지할 수 있는 효과가 있다.
또한, 제1 에지몸체(111) 및 제2 에지몸체(112)가 강판(1)의 폭 방향으로 길어지지 않아도 냉각유체가 배출될 수 있는 공간을 넓힐 수 있으므로 설비의 대형화 없이도 강판의 표면 품질을 향상시킬 수 있는 효과가 있다. 이와 같은 효과는 아래에서 설명하는 본 발명의 또 다른 실시 예에서의 장치몸체(110)들에도 동일하게 적용될 수 있는 것이다.
한편, 상기 제1,2 에지몸체(111,112)는 상기 제1 에지몸체(111)와 상기 제2 에지몸체(112)가 만나는 대칭점(C)을 기준으로 상기 강판의 폭 방향 즉, Y축 방향으로 상호 대칭일 수 있다.
그리고, 상기 제1,2 에지몸체(111,112)의 표면에는 냉각수단(120)이 마련되고, 상기 냉각수단(120)은 장치몸체(110)의 표면을 따라 Y축 방향으로 배치된 복수 개의 냉각노즐(121) 및 그 내부에 상기 냉각노즐(121)을 수용하고, 상기 강판(1) 방향으로 개방된 슬롯(122)을 포함할 수 있다.
냉각노즐(121)에서 공급된 냉각유체는 슬롯(122)을 따라 유동되어 강판의 표면에 닿게 되고, 이러한 슬롯(122)은 냉각유체의 공급 압력을 상승시키는 역할을 하여 냉각노즐(121)에서 공급된 냉각유체가 강판에 공급되는 것을 유용하게 하고, 냉각유체의 손실량을 줄이는 역할을 한다.
이러한 냉각수단(120)은 상기 장치몸체(110)에서 강판의 이송 방향 즉, Z축 방향으로 복수 개가 마련되어 상기 장치몸체(110) 상에서 냉각유닛(120a)을 이룰 수 있다.
이때, 복수 개의 상기 냉각수단(120)은 강판의 이송 방향 즉, Z축 방향으로 상호 일정거리 이격될 수 있다.
이외에도, 상기 냉각노즐(121)은 상기 장치몸체(110)의 표면에 형성된 슬롯(개방된 구멍)일 수도 있다. 냉각노즐(121)의 종류 및 형상은 반드시 본 발명에 의해 한정되는 바가 아니다.
또한, 도 4에서 보이듯, 또 다른 실시 예의 강판 냉각 장치는 상기 강판(1)의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부(1a)에 대면하는 제1 에지몸체(111) 및 상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부(1b)에 대면하는 제2 에지몸체(112)를 포함한다.
그리고 상기 제1 에지몸체(111) 및 상기 제2 에지몸체(112)의 단면 즉, Z축 방향에 수직한 방향인 X-Y 평면에서의 단면은 단이 지게 구비될 수 있다.
상기 제1 에지몸체(111) 및 상기 제2 에지몸체(112)의 X-Y 평면에서의 단면이 단이 지게 구비된다는 의미는 상기 제1 에지몸체(111) 및 상기 제2 에지몸체(112)가 상기 강판(1)과 마주보는 면이 Y축 방향으로 비선형일 수 있다는 의미이다.
이처럼 상기 제1 에지몸체(111) 및 상기 제2 에지몸체(112)에 Y축 방향으로 비선형인 면이 구비됨에 따라, 상기 장치몸체에서 Y축 방향으로 비선형인 면이 상기 강판과 마주보게 된다.
이러한 장치몸체(110)의 비선형 표면에는 냉각수단(120)이 마련되고, 상기 냉각수단은 장치몸체의 비선형인 표면을 따라 Y축 방향으로 배치된 복수 개의 냉각노즐(121) 및 그 내부에 상기 냉각노즐(121)을 수용하고, 상기 강판(1) 방향으로 개방된 슬롯(122)을 포함할 수 있다.
냉각노즐(121)에서 공급된 냉각유체는 슬롯(122)을 따라 유동되어 강판의 표면에 닿게 되고, 이러한 슬롯(122)은 냉각유체의 공급 압력을 상승시키는 역할을 하여 냉각노즐(121)에서 공급된 냉각유체가 강판에 공급되는 것을 유용하게 하고, 냉각유체의 손실량을 줄이는 역할을 한다.
이러한 냉각수단(120)은 상기 장치몸체(110)에서 강판의 이송 방향 즉, Z축 방향으로 복수 개가 마련되어 상기 장치몸체(110) 상에서 냉각유닛(120a)을 이룰 수 있다.
이때, 복수 개의 상기 냉각수단(120)은 강판의 이송 방향 즉, Z축 방향으로 상호 일정거리 이격될 수 있다.
이외에도, 상기 냉각노즐(121)은 상기 장치몸체(110)의 표면에 형성된 슬롯(개방된 구멍)일 수도 있다. 다만, 냉각노즐(121)의 종류 및 형상은 반드시 본 발명에 의해 한정되는 바가 아니다.
도 5에서 보이듯, 제1 에지몸체(111)는 대칭점(C)을 기준으로 제2 에지몸체(도 4의 112)와 대칭인 형태를 가질 수 있다.
그리고 상기 제1 에지몸체(111)는 상기 강판의 이송방향에 수직한 방향인 X-Y 평면에서의 단면이 상기 강판의 폭 방향 즉, Y축 방향으로 단이 지게 구비되어 Y축 방향으로 갈수록 그 두께가 일정하지 않게 구비된다.
즉, 상기 제1 에지몸체(111)는, 상기 제1 에지몸체(111)의 표면에서 X축 방향으로 상기 강판의 표면까지의 최단거리가 Y축을 따라 변하게 되도록 단이 지게 구비된다.
이에, 상기 제1 에지몸체(111)의 두께는 Y축 방향으로 일정하지 않고, 그 두께가 변하게 된다.
제1 에지몸체(111)에서 상기 강판(1)과 마주보는 면이 상기 대칭점(C)의 연장선과 형성하는 각도는 제1 경사각(θ 1)이고, 제1 경사각의 절대값은 1°이상 10°이하의 어느 하나의 값일 수 있다.
제1 에지몸체(111)는 그 외주가 상기 대칭점과 제1 경사각을 형성함으로써 구비되는 제1 경사구간(113)과, 상기 제1 에지몸체(111)의 외주가 상기 제1 경사구간에 이어지면서 상기 대칭점으로부터 상기 강판의 폭 방향으로 상기 제1 경사구간(113)보다 멀리 존재하는 비경사구간(114) 및 상기 제1 에지몸체(111)의 외주가 상기 비경사구간(114)에 이어지면서 상기 대칭점으로부터 상기 강판의 폭 방향으로 상기 비경사구간(114) 보다 멀리 존재하는 제2 경사구간(115)을 포함할 수 있다.
즉, 상기 제1 경사구간(113), 비경사구간(114) 및 상기 제2 경사구간(115)은 상기 제1 에지몸체(111)의 외주가 굴곡짐으로써 형성되는 영역이라 할 수 있으며, 이는 제2 에지몸체(도 4의 112)의 경우에도 동일하게 적용된다.
제1 경사구간(113)은 강판의 제1 에지부(1a)와 마주보는 면이고, 강판의 단부 바깥까지 연속된다.
그리고 상기 비경사구간(114)은 상기 강판의 표면과 평행한 면으로서 Y축 방향으로 제1 에지부(1a)의 바깥에 존재하고, 상기 비경사구간(114)의 X축 방향으로의 두께는 Y축 방향으로 갈수록 변하지 않고 일정하다.
그리고 상기 비경사구간(114)에 이어지며, 상기 제1 에지몸체(111)의 단부를 포함하는 제2 경사구간(115)은 상기 강판의 표면에 가까워지는 방향으로 경사지게 구비된다.
상기 제2 경사구간(115)은 상기 강판의 표면에 가까워지는 방향으로 경사진 구간으로서 X축 방향으로 상기 제2 경사구간(115)의 두께는 상기 비경사구간(114)의 X축 방향의 두께와 같거나 그 이상이다.
이때, 상기 제2 경사구간(115)의 X축 방향으로의 두께는 Y축 방향으로 선형적으로 변화되며, 상기 비경사구간(114)의 Y축 방향으로의 연장선과 상기 제2 경사구간(115)이 형성하는 각도는 제2 경사각(θ 2)이고, 상기 제2 경사각(θ 2)의 절대값은 적어도 3°이다.
제2 경사각(θ 2)은 제1 에지몸체(111)의 가장자리 영역에 존재하며, 제2 경사구간(115)이 제2 경사각(θ 2)만큼 경사지게 구비되면 냉각유체가 제1 에지몸체(111)의 외부로 배출되기 직전에 냉각유체의 유속은 증가시키고, 압력은 감소시키기 때문에 제1 에지몸체(111)의 냉각유체의 배출출구 직전에서 냉각유체의 신속한 배출을 도모할 수 있다.
이는 제2 에지몸체(도 8의 112)에 형성된 제2 경사각(θ 2)에도 동일하게 적용되는 사항이다.
그리고 본 발명의 일 실시 예에서 상기 제1 경사구간(113)의 상기 강판의 폭 방향 즉, Y축 방향으로의 직선 길이는 적어도 900mm이고, 상기 비경사구간(114)의 Y축 방향으로의 직선길이는 적어도 50mm이며, 상기 제2 경사구간(115)의 상기 강판의 Y축 방향으로의 직선길이는 적어도 50mm일 수 있다.
다만, 상기 제1 경사각(θ 1) 및 상기 제2 경사각(θ 2)의 절대값을 각각 상기의 범위 내에서 하기 위해 제1 에지몸체(111)의 X축 방향으로의 두께를 적절히 조절할 수 있다. 이는 후술되는 제3 경사각(도 12의 θ 3)의 경우에도 동일하게 적용될 수 있는 사항이다.
그리고 상기 냉각노즐(121)은 제1 에지몸체(111)의 제1 경사구간(113)에 해당하는 영역에 마련될 수 있는데, 강판의 제1 에지부에는 대면하지 않는 제1 경사구간(113)의 영역에 마련되어 상기 강판에 냉각유체를 공급할 수 있다.
이때, 상기 제1 에지몸체(111)에 슬롯(122)을 마련하여 냉각노즐(121)을 수용하게 하면 냉각유체의 공급 압력을 증가시켜 주어 냉각유체의 과다 사용을 방지할 수 있다.
한편, 도 6에서 보이듯, 상기 제2 에지몸체(112)는 대칭점(C)을 기준으로 상기 제1 에지몸체(도 5의 111)와 강판(1)의 폭 방향으로 대칭이다.
따라서 제1 경사각(θ 1)의 절대값도 1°이상 10°이하의 어느 하나의 값이고, 상기 제2 경사각(θ 2)의 절대값은 적어도 3°이다.
또한 냉각노즐(121)은 강판의 제2 에지부에는 대면하지 않는 제1 경사구간(113)의 영역에 마련되어 상기 강판에 냉각유체를 공급할 수 있다.
이상에서 설명한 제1 에지몸체(도 5의 111) 및 제2 에지몸체(112)에 따르면 강판의 단부에서부터 상기 강판의 중심 방향으로 일정거리까지인 제1 에지부(도 5의 1a) 및 강판의 또 다른 단부에서부터 상기 강판의 중심 방향으로 일정거리까지인 제2 에지부에 해당하는 영역으로 갈수록 제1 에지몸체(도 5의 111) 및 제2 에지몸체(112)가 강판(1)과 상호 이격되는 간격이 점차 멀어지므로 그만큼 냉각유체가 배출될 수 있는 공간이 넓어진다.
따라서, 냉각유체가 강판의 제1 에지부(도 5의 1a) 및 제2 에지부에 머무르는 시간이 줄어들고, 강판의 제1 에지부(도 5의 1a) 및 제2 에지부에 체류하는 냉각유체의 양도 적어져 냉각유체의 유량 증가로 인한 강판의 표면 결함을 방지할 수 있는 효과가 있다.
한편, 도 7에서 보이듯, 본 발명의 일 실시 예에서 상기 제2 에지몸체(112)는 상기 강판의 반대 방향으로 오목하게 형성된 홈의 형태인 딤플영역(116)을 포함할 수 있다.
이는 제1 에지몸체(도 5의 111)에도 형성될 수 있으며, 제1 에지몸체(도 5의 111) 및 상기 제2 에지몸체(112)에서 Y축 방향을 따라 복수 개가 형성될 수 있다.
또한, 상기 제1 에지몸체(도 5의 111) 및 상기 제2 에지몸체(112)의 단부는 상기 강판(1)의 외주 바깥으로 연장되므로, 딤플영역(116) 또한 상기 강판의 단부의 바깥까지 존재하도록 상기 제1 에지몸체(도 5의 111) 및 상기 제2 에지몸체(112)에 형성될 수 있다.
이러한 딤플영역(116)은 강판의 표면에 형성되는 최대 전단응력을 감소시키는 역할을 하여 강판의 제1 에지부(도 5의 1a) 및 제2 에지부에서의 냉각유체의 양을 감소시키고, 강판의 제1 에지부(도 5의 1a) 및 제2 에지부에서의 표면 결함을 방지할 수 있는 효과가 있다.
또한 상기 딤플영역(116)은 제1 에지몸체(도 5의 111) 및 제2 에지몸체(112)의 표면에 난류 경계층이 형성되는 것을 촉진하는 역할을 한다.
제1 에지몸체(도 5의 111) 및 제2 에지몸체(112)의 표면에서 강판의 폭 방향으로 배치된 딤플영역(116)은 상기 제1 에지몸체(도 5의 111) 및 제2 에지몸체(112)의 표면과 냉각유체 사이에 형성되는 전단 응력을 감소시키고, 이에 따라 냉각유체의 유속을 증가시켜 냉각유체가 원활하게 배출될 수 있게 하는 역할을 한다.
따라서, 냉각유체가 강판의 제1 에지부(도 5의 1a) 및 제2 에지부 방향으로 원활하게 그리고, 신속하게 배출될 수 있게 된다.
이와 같은 현상은 강판 표면에 결함의 일종인 블로잉 마크(Blowing mark) 등이 형성되는 것을 억제하는 역할을 한다.
도 8 및 도 9에서 보이듯, 제2 에지몸체(도 9의 112)에 형성된 상기 딤플영역(116)은 직경(D)이 0mm 초과 15mm 이하의 어느 하나의 값이고, 깊이(도 9의 E)가 0mm 초과 0.5mm 이하의 어느 하나의 값이며, 피치(P)의 최대값은 25mm일 수 있는데 이와 같은 규격은 제2 에지몸체(도 9의 112) 뿐만 아니라 제1 에지몸체(도 5의 111)에도 동일하게 적용될 수 있는 사항이다.
한편, 도 10에서 보이듯, 본 발명의 일 실시 예에 따른 냉각수단(120)은 상기 강판과 대면하여 상기 강판의 표면에 냉각유체를 공급하는 복수 개의 냉각노즐(121), 그 내부에 상기 냉각노즐을 수용하는 상기 슬롯(122) 및 상기 냉각노즐(121)에 연결되어 냉각유체를 일정 압력으로 공급하는 공급수단(123)을 포함할 수 있다.
공급수단(123)은 각각의 냉각노즐(121)에 연결되어 일정 공급 압력을 제공하는 공급 펌프 등이 적용될 수 있으나 공급수단의 종류는 반드시 본 발명에 의해 한정되는 것은 아니다.
한편, 도 11에는 본 발명의 또 다른 일 실시 예에 따른 강판 냉각 장치가 도시되어 있다.
본 발명의 또 다른 일 실시 예에 따르면 장치몸체는 강판의 폭 방향 중심에 대면하고, 상기 제1 에지몸체(111) 및 상기 제2 에지몸체(112) 사이에 존재하는 센터몸체(117)를 더 포함할 수 있다.
상기 센터몸체(117)는 X축 방향 즉, 상기 강판의 두께방향으로 상기 강판까지의 최단거리가 상기 강판의 폭 방향으로 일정하게 구비되며. 센터몸체(117)가 상기 강판과 마주보는 면은 상기 강판의 표면과 평행하게 놓인다.
그리고 상기 센터몸체(117)는 강판의 제1 에지부(1a) 및 제2 에지부(1b)와 마주보지 않으며, 상기 강판의 제1 에지부(1a)는 제1 에지몸체(111)와 마주보고, 상기 강판의 제2 에지부(1b)는 제2 에지몸체(112)와 마주본다.
그리고 상기 강판의 이송 방향 즉, Z축 방향으로 상호 이격된 복수 개의 냉각수단(120)이 마련되어 상기 장치몸체 상에 냉각유닛(120a)을 형성한다.
냉각수단(120)은 장치몸체에 Y축 방향으로 형성된 복수 개의 냉각노즐(121) 및 상기 냉각노즐(121)을 그 내부에 수용하는 슬롯(122)을 포함할 수 있다.
도 12는 상기 장치몸체(110)의 절반을 도시한 것으로서, 상기 장치몸체(110)는 도 12의 X축 방향 중심선을 기준으로 좌, 우 대칭 구조이다.
그러므로 도 12에는 센터몸체(117)의 절반과 상기 센터몸체(117)의 일측으로 이어지는 제2 에지몸체(112)의 X-Y 평면에서의 단면이 도시되어 있음을 알 수 있고, 이하에서 설명하는 제2 에지몸체(112)에 관한 사항은 제1 에지몸체(도 11의 111)에도 동일하게 적용될 수 있는 사항이다.
먼저 센터몸체(117)는 강판의 중심에서부터 강판의 제2 에지부(1b) 방향으로 일정 거리까지에 마주본다. 그리고 상기 제2 에지부는 강판의 제2 에지부와 마주보게 구비된다.
이때, 센터몸체(117)에만 냉각노즐(121)이 구비되어 상기 강판에 냉각유체를 공급할 수 있다.
한편, 도 13 및 도 14에서 보이듯, 상기 제2 에지몸체(112)는 제2 에지부(1b)에 대면하고, 외주가 상기 강판의 표면으로부터 멀어지는 방향으로 경사지게 구비되어 형성하는 제1 경사구간(113), 상기 제1 경사구간(113)에 이어지고, 외주가 Y축 방향으로 비경사지게 구비되어 상기 제2 에지부(1b)와 평행하게 마련되는 비경사구간(114) 및 상기 비경사구간(114)에 이어지고, 외주가 상기 강판의 표면에 가까워지는 방향으로 경사지게 구비되어 형성하는 제2 경사구간(115)을 포함할 수 있다.
이때, 상기 비경사구간(114)의 Y축 방향으로의 길이는 0을 초과하면서 상기 센터몸체(도 11의 117)의 상기 강판의 폭 방향으로의 전체 길이의 1/5 이하의 어느 하나의 값일 수 있다.
본 발명의 일 실시 예에서 상기 센터몸체(도 11의 117)의 상기 강판의 폭 방향으로의 길이는 적어도 450mm이고, 상기 제1 경사구간(113)의 강판의 폭 방향으로의 길이는 적어도 450mm이고, 상기 비경사구간(114)의 상기 강판의 폭 방향으로의 길이는 적어도 50mm이고, 상기 제2 경사구간(115)의 상기 강판의 폭 방향으로의 길이는 적어도 50mm일 수 있다.
또한 상기 제1 경사구간(113) 및 상기 제2 경사구간(115)은 선형적으로 경사지게 구비될 수 있다.
그리고 상기 제1 경사구간(113)은 제2 에지몸체(112)의 외주가 상기 센터몸체(도 11의 117)의 Y축 방향으로의 연장선과 제3 경사각(θ 3)을 형성하도록 상기 제2 에지부에서 멀어지는 방향으로 경사짐으로써 형성될 수 있다.
상기 비경사구간(114)은 상기 제1 경사구간(113)의 단부에서 이어지며 상기 제2 경사구간(115)은 상기 제2 에지몸체(112)의 외주가 상기 비경사구간(114)에서 다시 제2 에지부에 가까워지는 방향으로 경사짐으로써 형성될 수 있다.
이상의 내용은 제1 에지몸체(도 11의 111)가 제2 에지몸체(112)와 대칭인 것을 반영하여 상기 제1 에지몸체(도 11의 111)에도 동일한 원리로 적용될 수 있다.
이때, 상기 제3 경사각(θ 3)의 절대값은 1 °이상 5 °이하의 어느 하나의 값일 수 있다.
즉, 본 발명의 또 다른 일 실시 예에서 상기 장치몸체(110)에는 제1 경사각(도 8의 θ 1)이 존재하지 않는다.
그리고 상기 장치몸체(110)의 내부에는 센터몸체(117)와 제2 에지몸체(112)를 분리하는 하나의 격벽(118) 및 상기 센터몸체(117)와 제1 에지몸체(111)를 구분하는 또 다른 격벽(118)이 마련될 수 있다.
따라서, 상기 장치몸체(도 11의 110)의 내부에는 Y축 방향으로 한 쌍의 격벽(118)이 존재하게 되며, 이 격벽(118) 간의 간격은 센터몸체(117)의 Y축 방향으로의 전체 길이와 동일하게 된다.
이는 냉각노즐(121)에 냉각유체의 분사 압력을 제공할 때, 분사 압력이 장치몸체(도 11의 111) 내에서 불필요하게 분산되는 것을 방지하는 역할을 할 수 있다.
또한, 상기 제2 경사구간(115)의 Y축 방향으로의 길이는 0을 초과하면서 상기 비경사구간(114)의 Y축 방향으로의 길이 이하의 범위 중 어느 하나의 값일 수 있다.
따라서, 제2 경사구간(115)의 Y축 방향으로의 길이는 비경사구간(114)의 Y축 방향으로의 길이와 동일하거나 그보다 짧을 수 있다.
또한, 도 15에서 보이듯, 상기 센터몸체(117) 및 상기 제2 에지몸체(112)에도 상기 딤플영역(116)이 형성될 수 있다.
상기 딤플영역(116)은 Y축 방향으로 상기 장치몸체(도 14의 110)에 복수개가 마련될 수 있으며, 그 상세한 사항은 전술한 딤플영역(116)에 관한 내용과 동일하게 적용될 수 있다.
또한, 도 16에서 보이듯, 상기 센터몸체(117)에 마련된 냉각노즐(121)에도 공급수단(123)이 연결될 수 있다.
공급수단은 냉각유체의 공급 압력을 제공하는 공급 펌프 등으로 구비될 수 있으나 이는 반드시 본 발명에 의해 한정되는 것은 아니다.
그리고 상기 냉각노즐(121)은 X축 방향으로 상기 센터몸체(117)의 외주보다 상기 강판(1)의 표면에 더욱 가깝게 배치된 상태에서 상기 강판에 냉각유체를 공급하게 할 수 있다.
이러한 경우, 그 내부에 냉각노즐(121)을 수용하는 슬롯(122)의 개방된 공급구멍이 상기 강판의 표면에 상기 냉각노즐(121)보다 X축 방향으로 가깝게 배치된다.
이에 따라 냉각유체의 공급 압력이 손실되는 현상 및 냉각유체의 손실량을 줄일 수 있다.
그리고 복수 개의 상기 냉각노즐(121)은 상기 강판의 표면으로부터 X축 방향으로 동일한 간격 만큼 이격되어 냉각유체를 균일하게 공급하도록 제공될 수 있다.
한편, 도 17에 도시된 장치몸체(110)는 센터선(C 1)을 기준으로 좌, 우 대칭구조이며, 도 17에서는 편의를 위해 장치몸체(110)의 우측 영역만 도시한 것이다.
이하에서는 장치몸체(110)의 절반을 Y축 방향으로 나누되, 제1 구간(Lc), 제2 구간(Li), 제3 구간(Le) 및 제4 구간(Lei)으로 설명하도록 한다.
이때, 제1 구간(Lc) 및 제2 구간(Li)의 경계는 격벽(도 15의 118)이 되고, 제1 구간(Lc)은 센터몸체(도 15의 117)에 해당하는 영역이 될 수 있다.
도 18은 도 17에 도시된 제1 구간(Lc), 제2 구간(Li), 제3 구간(Le), 제4 구간(Lei)의 값 및 제1,2,3 경사각(θ 123)을 총 8개의 케이스(case)로 적용한 것이다.
도 19는 도 18의 8개의 케이스 중, 7개의 케이스(case)를 실시 예(A)로 하여 각 케이스 별로 장치몸체(도 16의 110)의 냉각유체 배출공간의 면적(B)을 도시한 것이다.
또한, 도 19는 도 17의 7개의 케이스(case)를 실시 예(A)로 하여 각 케이스 별로 장치몸체(도 17의 110)의 표면과 강판(도 17의 1)의 표면 사이에 형성되는 공간의 부피(C 2)를 도시한 것이고, 도 21은 도 18의 7개의 케이스(case)를 실시 예(A)로 하여 각 케이스 별로 냉각유량(F)을 도시한 것이며, 도 22는 도 18의 7개의 케이스(case)를 실시 예(A)로 하여 각 케이스 별로 냉각유체의 배출방향으로 강판 표면에서의 최대 전단 응력(G)을 도시한 것이며, 도 23은 도 18의 케이스 6 및 케이스 7을 적용한 경우, 그러한 장치몸체(도 17의 110)에서 냉각유체를 일정 압력으로 공급하는 공급수단(도 10의 123 및 도 16의 123)의 출력(H) 즉, 냉각유체를 공급하는 공급 압력에 따른 냉각유체의 배출방향으로 강판 표면에서의 최대 전단 응력(G)을 도시한 것이다.
도 19의 결과를 통해 케이스 1 내지 5 및 케이스 7이 케이스 6에 비해 약 150% 정도 냉각유체 배출공간의 면적(B)이 넓어진 것을 알 수 있고,
도 20의 결과를 통해 케이스 1 내지 5 및 케이스 7이 케이스 6에 비해 장치몸체(도 17의 110)의 표면과 강판(도 17의 1)의 표면 사이에 형성되는 공간의 부피(C 2)가 약 25% 큰 것을 알 수 있으며,
도 21의 결과를 통해 케이스 1 내지 5 및 케이스 7이 케이스 6에 비해 냉각유량(F)이 약 23% 정도 증가하여 냉각효율이 향상되었음을 알 수 있으며,
도 22의 결과를 통해 케이스 1 내지 5 및 케이스 7이 케이스 6에 비해 냉각유체의 배출방향으로 강판 표면에서의 최대 전단 응력(G)이 약 26% 정도 작아진 것을 알 수 있다.
또한, 도 23을 참조하면 냉각유체를 공급하는 공급수단(도 10의 123 및 도 16의 123)의 출력(H)이 케이스 6에 비해 증가한 케이스 7의 경우에도 강판 표면에서의 최대 전단 응력(G)이 케이스 6에 비해 증가되지 않았음을 알 수 있고, 이에 따라 케이스 7의 경우에는 냉각유체의 유량이 증가되어도 강판 표면의 최대 전단 응력(G)은 증가되지 않으며, 강판 냉각 효율은 향상되면서도 강판 표면에 결함이 발생하는 것은 억제되는 것이다.
또한, 도 24에서 보이듯, 냉각유체의 배출방향으로 강판 표면에서의 최대 전단 응력(G)도 케이스 7의 실시 예(A)가 케이스 6의 실시 예(A)에 비해 26% 정도 감소하였고, 케이스 7의 실시 예에 딤플영역(α, 도 8의 116)을 더한 실시 예(case 7 + α)의 경우에는 케이스 7의 실시 예(A)에 비해 냉각유체의 배출방향으로 강판 표면에서의 최대 전단 응력(G)이 5.5% 정도 더 줄어듦을 알 수 있다.
따라서, 이러한 수치들을 활용하여 각각의 강판의 특성 및 공정의 특성에 맞게 강판 냉각 장치의 장치몸체(도 17의 110)의 규격을 선택할 수 있다.
위에서 설명한 본 발명에 따른 강판 냉각 장치는 내식성이 강한 마그네슘-알루미늄합금 용융도금 강판 및 알루미늄 용융도금 강판의 제조시 강판 표면 결함을 현저하게 줄일 수 있다.
이상에서 설명한 사항은 본 발명의 일 실시예에 관하여 설명한 것이며, 본 발명의 권리범위는 이에 한정되는 것이 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (23)

  1. 강판의 이송경로에서 상기 강판과 이격되게 구비되는 장치몸체; 및
    상기 장치몸체에 구비되어 냉각유체를 공급하는 냉각유닛;을 포함하고,
    상기 장치몸체는,
    상기 강판의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부에 대면하는 제1 에지몸체; 및
    상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부에 대면하는 제2 에지몸체;를 포함하고,
    상기 제1,2 에지몸체는,
    상기 강판의 이송방향에 수직한 방향의 단면이 단이 지게 구비된 강판 냉각 장치.
  2. 제1항에 있어서,
    상기 제1,2 에지몸체는,
    상기 강판의 이송방향에 수직한 방향의 단면이 상기 강판의 폭 방향으로 단이 지게 구비되어, 그 표면에서 상기 강판의 두께방향으로 상기 강판의 표면까지의 최단거리가 상기 강판의 폭 방향으로 변하게 제공되는 것을 특징으로 하는 강판 냉각 장치.
  3. 강판의 이송경로에서 상기 강판과 이격되게 구비되는 장치몸체; 및
    상기 장치몸체에 구비되어 냉각유체를 공급하는 냉각유닛;을 포함하고,
    상기 장치몸체는,
    상기 강판의 일측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제1 에지부에 대면하는 제1 에지몸체; 및
    상기 강판의 타측 끝단에서부터 상기 강판의 중심방향으로 일정거리까지인 제2 에지부에 대면하는 제2 에지몸체;를 포함하고,
    상기 제1,2 에지몸체는,
    상기 강판의 이송방향에 수직한 방향의 단면이 선형적으로 경사지게 구비되되, 그 단부들이 상기 강판의 두께방향으로 상기 강판으로부터 가장 멀리 존재하도록, 그 단부들이 상기 강판에 대하여 멀어지는 방향으로 경사지게 구비된 것을 특징으로 하는 강판 냉각 장치.
  4. 제2항에 있어서,
    상기 장치몸체는,
    상기 제1 에지몸체와 상기 제2 에지몸체가 만나는 대칭점의 상기 강판 폭 방향으로의 연장선과 상기 제1,2 에지몸체가 각각 형성하는 복수 개의 제1 경사각의 절대값은 1 °이상 10 °이하인 것을 특징으로 하는 강판 냉각 장치.
  5. 제4항에 있어서,
    상기 제1,2 에지몸체는,
    상기 대칭점과 상기 제1 경사각을 형성하며, 상기 강판으로부터 멀어지는 방향으로 경사진 영역인 제1 경사구간;
    상기 제1 경사구간에 이어지고, 상기 강판의 두께방향으로 상기 강판까지의 최단거리가 상기 강판의 폭 방향으로 일정하게 구비되는 비경사구간; 및
    상기 비경사구간에 이어지고, 상기 강판에 가까워지는 방향으로 경사진 영역인 제2 경사구간;을 포함하는 것을 특징으로 하는 강판 냉각 장치.
  6. 제5항에 있어서,
    상기 제1,2 에지몸체는,
    상기 비경사구간의 상기 강판의 폭 방향으로의 연장선과 상기 제2 경사구간에서 제2 경사각을 형성하도록 구비되되,
    상기 제2 경사각의 절대값은 적어도 3°인 것을 특징으로 하는 강판 냉각 장치.
  7. 제6항에 있어서,
    상기 제1 경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 900mm이고,
    상기 비경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 50mm이고,
    상기 제2 경사구간의 상기 강판의 폭 방향으로의 길이는 적어도 50mm인 것을 특징으로 하는 강판 냉각 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 장치몸체는,
    상기 강판과 대면하는 면에서 상기 강판의 반대방향으로 오목하게 형성된 적어도 하나의 딤플영역;
    을 포함하는 것을 특징으로 하는 강판 냉각 장치.
  9. 제8항에 있어서,
    상기 제1 에지몸체 및 상기 제2 에지몸체는,
    상기 강판의 폭 방향으로 상기 강판의 외주 바깥으로 연장된 것을 특징으로 하는 강판 냉각 장치.
  10. 제9항에 있어서,
    상기 제1,2 에지몸체는,
    상기 제1 에지몸체와 상기 제2 에지몸체가 만나는 대칭점을 기준으로 상기 강판의 폭 방향으로 상호 대칭인 것을 특징으로 하는 강판 냉각 장치.
  11. 제10항에 있어서,
    상기 딤플영역은,
    직경이 0mm 초과 15mm 이하의 값이고,
    깊이가 0mm 초과 0.5mm 이하의 값이고,
    피치의 최대값은 25mm인 것을 특징으로 하는 강판 냉각 장치.
  12. 제11항에 있어서,
    상기 냉각유닛은,
    상기 장치몸체에서 상기 강판의 이송방향으로 상호 이격된 복수 개의 냉각수단;을 포함하고,
    상기 냉각수단은,
    상기 강판과 대면하여 냉각유체를 공급하는 복수 개의 냉각노즐;
    상기 냉각노즐을 수용하는 슬롯; 및
    상기 냉각노즐에 연결되어 냉각유체를 일정 압력으로 공급하는 공급수단;
    을 포함하는 것을 특징으로 하는 강판 냉각 장치.
  13. 제4항에 있어서,
    상기 장치몸체는,
    상기 강판의 폭 방향 중심에 대면하고, 상기 제1 에지몸체 및 상기 제2 에지몸체 사이에 존재하는 센터몸체;를 더 포함하고,
    상기 센터몸체는,
    상기 강판의 두께방향으로 상기 강판까지의 최단거리가 상기 강판의 폭 방향으로 일정하게 구비되는 것을 특징으로 하는 강판 냉각 장치.
  14. 제13항에 있어서,
    상기 제1 에지몸체 및 상기 제2 에지몸체는,
    상기 강판의 에지부에 대면하고, 외주가 상기 강판의 표면으로부터 멀어지는 방향으로 경사지게 구비되어 형성하는 제1 경사구간;
    상기 제1 경사구간에 이어지고, 외주가 비경사지게 구비되어 형성하는 비경사구간; 및
    상기 비경사구간에 이어지고, 외주가 상기 강판의 표면에 가까워지는 방향으로 경사지게 구비되어 형성하는 제2 경사구간;
    을 포함하는 것을 특징으로 하는 강판 냉각 장치.
  15. 제14항에 있어서,
    상기 비경사구간의 상기 강판의 폭 방향으로의 길이는,
    0을 초과하면서 상기 센터몸체의 상기 강판의 폭 방향으로의 길이의 1/5 이하의 어느 하나의 값인 것을 특징으로 하는 강판 냉각 장치.
  16. 제5항 또는 제14항에 있어서,
    상기 제1,2 경사구간은,
    선형적으로 경사지게 구비된 것을 특징으로 하는 강판 냉각 장치.
  17. 제13항 내지 제15항 중 어느 한 항에 있어서,
    상기 장치몸체는,
    상기 장치몸체의 내부에서 상기 강판의 폭 방향으로 상호 이격되게 배치되는 복수 개의 격벽;을 포함하고,
    복수 개의 상기 격벽의 이격거리는,
    상기 센터몸체의 상기 강판의 폭 방향으로의 길이와 적어도 동일한 값인 것을 특징으로 하는 강판 냉각 장치.
  18. 제14항에 있어서,
    상기 센터몸체의 연장선과 상기 제1 경사구간이 형성하는 제3 경사각의 절대값은 1 °이상 5 °이하의 어느 하나의 값인 것을 특징으로 하는 강판 냉각 장치.
  19. 제15항에 있어서,
    상기 제2 경사구간의 상기 강판의 폭 방향으로의 길이는,
    0을 초과하면서 상기 비경사구간의 상기 강판의 폭 방향으로의 길이 이하의 범위 중 어느 하나의 값인 것을 특징으로 하는 강판 냉각 장치.
  20. 제19항에 있어서,
    상기 비경사구간의 상기 강판의 폭 방향으로의 연장선과 상기 제2 경사구간이 형성하는 제2 경사각의 절대값은,
    0°를 초과하면서 상기 제1 경사구간의 경사각의 절대값 이하의 값인 것을 특징으로 하는 강판 냉각 장치.
  21. 제20항에 있어서,
    상기 장치몸체는,
    상기 강판과 대면하는 면에서 상기 강판의 반대방향으로 오목하게 형성된 복수 개의 딤플영역;을 포함하고,
    복수 개의 상기 딤플영역은,
    상기 강판의 폭 방향을 따라 배치된 것을 특징으로 하는 강판 냉각 장치.
  22. 제12항에 있어서,
    상기 냉각유닛은,
    상기 장치몸체에서 상기 강판의 이송방향으로 상호 이격된 복수 개의 냉각수단;을 포함하고,
    상기 냉각수단은,
    상기 강판과 대면하여 냉각유체를 공급하는 복수 개의 냉각노즐;
    상기 냉각노즐을 수용하는 슬롯; 및
    상기 냉각노즐에 연결되어 냉각유체를 일정 압력으로 공급하는 공급수단;을 포함하고,
    복수 개의 상기 냉각노즐은,
    상기 장치몸체에서 상기 강판의 폭 방향으로 복수 개가 구비되되, 상기 장치몸체의 외주보다 상기 강판에 가까운 위치에서 냉각유체를 공급하도록 상기 장치몸체에 구비된 것을 특징으로 하는 강판 냉각 장치.
  23. 제22항에 있어서,
    복수 개의 상기 냉각노즐은,
    상기 강판의 두께 방향으로 상호 동일한 간격만큼 상기 강판으로부터 이격된 것을 특징으로 하는 강판 냉각 장치.
PCT/KR2019/007027 2018-12-07 2019-06-11 강판 냉각 장치 WO2020116734A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/295,260 US20220008977A1 (en) 2018-12-07 2019-06-11 Apparatus for cooling steel sheet
CN201980075063.4A CN113015819B (zh) 2018-12-07 2019-06-11 钢板冷却装置
EP19891746.0A EP3892747B1 (en) 2018-12-07 2019-06-11 Apparatus for cooling steel sheet
JP2021529027A JP7266678B2 (ja) 2018-12-07 2019-06-11 鋼板冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0157002 2018-12-07
KR1020180157002A KR102209602B1 (ko) 2018-12-07 2018-12-07 강판 냉각 장치

Publications (1)

Publication Number Publication Date
WO2020116734A1 true WO2020116734A1 (ko) 2020-06-11

Family

ID=70975131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007027 WO2020116734A1 (ko) 2018-12-07 2019-06-11 강판 냉각 장치

Country Status (6)

Country Link
US (1) US20220008977A1 (ko)
EP (1) EP3892747B1 (ko)
JP (1) JP7266678B2 (ko)
KR (1) KR102209602B1 (ko)
CN (1) CN113015819B (ko)
WO (1) WO2020116734A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2866518Y (zh) * 2006-01-18 2007-02-07 宝山钢铁股份有限公司 抑制带钢振动的连续退火用快速冷却喷箱
US20110042041A1 (en) * 2009-08-20 2011-02-24 Ecologence, LLC Interlocked jets cooling method and apparatus
KR20130075016A (ko) * 2011-12-27 2013-07-05 주식회사 포스코 도금강판 냉각장치
KR101819386B1 (ko) * 2016-12-02 2018-01-17 주식회사 포스코 금속소재냉각장치
KR101867682B1 (ko) * 2016-08-05 2018-06-15 주식회사 포스코 냉각장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424969B2 (ko) * 1972-04-26 1979-08-24
FR2802552B1 (fr) * 1999-12-17 2002-03-29 Stein Heurtey Procede et dispositif de reduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
KR100928980B1 (ko) 2002-12-23 2009-11-26 주식회사 포스코 냉각능이 향상된 용융아연도금강판의 냉각장치
JP4593976B2 (ja) * 2004-05-31 2010-12-08 株式会社神戸製鋼所 連続焼鈍炉での鋼板のガスジェット冷却装置
FR2931165B1 (fr) * 2008-05-13 2010-11-26 Cmi Thermline Services Dispositif de soufflage de gaz sur une face d'un materiau en bande en defilement
KR101568567B1 (ko) * 2014-01-27 2015-11-11 주식회사 포스코 도금강판 냉각장치
EP3156512B1 (en) * 2014-07-24 2022-01-12 Nippon Steel Corporation Method for cooling steel strip and cooling installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2866518Y (zh) * 2006-01-18 2007-02-07 宝山钢铁股份有限公司 抑制带钢振动的连续退火用快速冷却喷箱
US20110042041A1 (en) * 2009-08-20 2011-02-24 Ecologence, LLC Interlocked jets cooling method and apparatus
KR20130075016A (ko) * 2011-12-27 2013-07-05 주식회사 포스코 도금강판 냉각장치
KR101867682B1 (ko) * 2016-08-05 2018-06-15 주식회사 포스코 냉각장치
KR101819386B1 (ko) * 2016-12-02 2018-01-17 주식회사 포스코 금속소재냉각장치

Also Published As

Publication number Publication date
KR102209602B1 (ko) 2021-01-28
US20220008977A1 (en) 2022-01-13
EP3892747B1 (en) 2024-09-25
EP3892747A1 (en) 2021-10-13
JP2022507933A (ja) 2022-01-18
CN113015819B (zh) 2023-09-08
CN113015819A (zh) 2021-06-22
EP3892747A4 (en) 2022-01-26
JP7266678B2 (ja) 2023-04-28
KR20200069681A (ko) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2017171309A1 (ko) 증착용 마스크 및 이를 이용한 oled 패널
WO2018101636A1 (ko) 금속소재냉각장치
WO2016153291A1 (en) Wafer storage container
WO2011155768A2 (ko) 스케일 제거장치
WO2017126810A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2020213836A1 (ko) Sic 엣지 링
WO2019221469A1 (ko) 주형
WO2017052208A1 (ko) 절삭 인서트
WO2014182088A9 (ko) 가스 공급 장치
WO2015099213A1 (ko) 이강종의 연속주조 방법
WO2017111523A1 (ko) 도금 장치 및 도금 방법
WO2016105062A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2019194327A1 (ko) 웨이퍼 수납용기
WO2020116734A1 (ko) 강판 냉각 장치
WO2013012224A2 (ko) 공작기계 구조물의 열변위 저감구조
WO2011034290A2 (ko) 간접 압출기용 냉각장치 및 냉각방법
WO2021025460A1 (ko) 엘이디 스핀척
WO2011152587A1 (ko) 진공패드를 이용한 비접촉 이송장치
WO2018110944A1 (ko) 표면 처리 장치
WO2013129762A1 (ko) 사출 성형품 제조장치 및 이를 사용한 사출 성형품 제조방법
WO2020067714A1 (ko) 주조 모사 장치 및 주조 모사 방법
WO2020085772A1 (ko) 주조 설비 및 주조 방법
WO2018143616A1 (ko) 피가열부재 통합관리 시스템과 이의 제어방법
WO2014010953A1 (ko) 부식억제 이온 수처리장치용 아연판 및 이의 제조 방법
WO2020138880A1 (ko) 도포 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891746

Country of ref document: EP

Effective date: 20210707