WO2021230319A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2021230319A1
WO2021230319A1 PCT/JP2021/018226 JP2021018226W WO2021230319A1 WO 2021230319 A1 WO2021230319 A1 WO 2021230319A1 JP 2021018226 W JP2021018226 W JP 2021018226W WO 2021230319 A1 WO2021230319 A1 WO 2021230319A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier film
layer
base material
film according
Prior art date
Application number
PCT/JP2021/018226
Other languages
French (fr)
Japanese (ja)
Inventor
健太 大沢
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2022522197A priority Critical patent/JPWO2021230319A1/ja
Publication of WO2021230319A1 publication Critical patent/WO2021230319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a gas barrier film and a method for producing a gas barrier film.
  • a gas barrier property that blocks water vapor may be required.
  • a packaging material having a gas barrier property a gas barrier film using a metal foil such as aluminum, which is less affected by temperature, humidity, etc., as a gas barrier layer is known.
  • the gas barrier film As another configuration of the gas barrier film, a film in which a vapor-deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on a base film made of a polymer material by vacuum vapor deposition or sputtering is known (). For example, refer to Patent Document 1). These gas barrier films have transparency and gas barrier properties such as oxygen and water vapor.
  • a film made of polyethylene terephthalate (PET) is often used as the base film.
  • Patent Document 1 also describes that a PP base film can be used.
  • the inventor's study has revealed that a gas barrier film in which a barrier layer is simply formed on a PP base film does not actually have sufficient resistance to hot water treatment such as boiling and retort.
  • the present invention has been made in view of the above circumstances, and provides a gas barrier film having high resistance to hot water treatment and suppressed environmental load.
  • the first aspect of the present invention is a substrate containing propylene as a main component and having a surface hardness of 150 MPa or less on the first surface, a gas barrier layer formed on the first surface, and a coating formed on the gas barrier layer. It is a gas barrier film provided with a layer.
  • FIG. 1 is a schematic cross-sectional view of the gas barrier film 1 according to the present embodiment.
  • the gas barrier film 1 includes a base material 10, a pretreatment layer 10a, a gas barrier layer 30, a coating layer 40, an adhesive layer 50, and a sealant layer 60.
  • the base material 10 is a resin film containing propylene as a main component.
  • the base material 10 may be either an unstretched film or a stretched film. When a stretched film is used, the stretch ratio is not particularly limited.
  • the thickness of the base material 10 is not particularly limited.
  • the base material 10 can be a single-layer film or a multilayer film in which films having different properties are laminated in consideration of the use of the packaging material and the like. Considering the processability when forming the gas barrier layer 30, the coating layer 40 and the like, the thickness of the base material 10 is practically preferably in the range of 3 to 200 ⁇ m, particularly preferably 6 to 30 ⁇ m.
  • Each layer formed on the base material 10 may be formed on both sides of the base material 10.
  • the base material 10 has a core layer 12 formed of a propylene homopolymer, and a first skin layer 11 and a second skin layer 13 sandwiching the core layer 12.
  • the first skin layer 11 constitutes the first surface of the base material 10.
  • the second skin layer 13 constitutes the second surface (the surface opposite to the first surface) of the base material 10.
  • the hardness of the first surface on the side where the gas barrier layer 30 is formed is 150 MPa or less. Hardness can be measured with a nano indenter.
  • the nano indenter can simultaneously measure the load (force) and displacement (pushing distance) when the sample is pushed by the indenter, obtain the load displacement curve, and measure the composite elastic modulus and hardness.
  • the surface hardness of the base material 10 exceeds 150 MPa, the high crystallinity of propylene makes it easy to peel off inside the base material after hot water treatment, and the adhesion tends to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense barrier layer.
  • the melting point (surface melting point) of the first surface is preferably 155 ° C. or lower.
  • Propylene having a surface melting point of more than 155 ° C. has high crystallinity, so that it is easily peeled off inside the base material after hot water treatment, and the adhesion is apt to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense gas barrier layer.
  • the surface melting point can be measured by a differential scanning calorimeter (DSC measurement) using a sample obtained by cutting the surface layer. DSC measurement is a method of measuring the temperature difference between the sample and the reference material as a function of temperature while changing the temperature of the sample part and the reference material by a constant program. The glass transition temperature, melting point, and crystallization of the sample. The temperature, the amount of heat of fusion, etc. can be obtained.
  • the softening temperature (surface softening temperature) of the first surface is preferably 160 ° C. or lower.
  • Propylene having a softening temperature of more than 160 ° C. has high crystallinity, so that it is easy to peel off inside the base material after hot water treatment, and the adhesion is apt to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense gas barrier layer.
  • the surface softening temperature can be measured by nanothermal analysis (nano TA).
  • the nano TA is a device that raises the temperature of the sample surface by heating the cantilever of a scanning probe microscope (SPM), detects the height displacement of the cantilever due to the expansion and softening of the sample, and obtains the softening temperature.
  • SPM scanning probe microscope
  • Polypropylene or polyethylene can be used for the base material 10, and it can be a single layer or a multilayer.
  • adhesiveness and slipperiness are applied to the surface layer of at least one of the first surface (the surface on the side forming the gas barrier layer) and the second surface (the opposite surface on the side forming the gas barrier layer) of the base material 10.
  • Blocking resistance, heat sealability and other functionality can be imparted.
  • the thickness of the surface layer can be several tens of nm to several ⁇ m, and is appropriately selected depending on the function.
  • a propylene homopolymer may be used for the first surface of the base material 10.
  • the composition of the surface layer on the first surface is HDPE (high density polyethylene) at a ratio of 0.1 to several tens of percent with respect to propylene. ), MDPE (medium density polyethylene) LDPE (low density polyethylene), LLDPE (linear low density polyethylene) and other polyethylene copolymers may be used. Further, it is possible to obtain a multimer obtained by copolymerizing at least one of an ⁇ -olefin resin such as 1-butene and a rubber component such as an elastomer at a ratio of 0.1 to several tens of percent with respect to propylene or ethylene. ..
  • each resin may be mixed and dispersed instead of copolymerization.
  • PVA polyvinyl alcohol
  • EVOH ethylene vinyl alcohol copolymer
  • the base material 10 has a multi-layer structure, the material can be co-extruded using a plurality of screws to form a multi-layer film.
  • the substrate 10 formed as described above cannot clearly confirm the boundary between the core layer and each skin layer even when observed with an optical microscope, but after appropriately dyeing, the cross section is subjected to a transmission electron microscope (TEM). The boundary of each layer can be confirmed by observing with.
  • TEM transmission electron microscope
  • the second skin layer 13 may be the same propylene homopolymer resin layer as the core layer 12, or the parameters may be controlled in the same manner as the first skin layer 11.
  • the base material 10 is substantially composed of the core layer 12 and the first skin layer 11, and the core layer constitutes the second surface.
  • the surface hardness of the second surface is 150 MPa or less
  • the surface softening temperature is 160 ° C or less
  • the surface melting point is 155 ° C or less
  • the second base material 20 is not particularly limited as long as it is polyolefin-based, and a known film can be used. Since the boundary between the core layer and each skin layer cannot be clearly confirmed even when the substrate 10 formed as described above is observed with an optical microscope, the cross section is subjected to a transmission electron microscope (TEM) after being appropriately stained. The boundary of each layer can be confirmed by observing with.
  • TEM transmission electron microscope
  • the skin layers 11 and 13 may contain additives that are not resin components.
  • the additive can be appropriately selected from various known additives.
  • additives include anti-blocking agents (AB agents), heat-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, lubricants, slip agents, nucleating agents, antistatic agents, anti-fog agents, pigments, dyes and the like. ..
  • the AB agent may be either organic or inorganic. Any one of these additives may be used alone, or two or more thereof may be used in combination. Of the above, lubricants and slip agents are preferable from the viewpoint of processing suitability.
  • the content of the additive in the base material 10 can be appropriately adjusted as long as the effect of the present invention is not impaired.
  • the fine particles made of a material other than polypropylene protruding on the first surface have a smaller average particle size, and the smaller the number, the better the barrier property.
  • An example of a predetermined value is 30 or less per 1 mm 2 for fine particles having an average particle diameter of 1 ⁇ m or more. If the average particle size of the fine particles is 1 ⁇ m or more and the number of the fine particles exceeds 30, the barrier property may be deteriorated. Therefore, it is preferable that the average particle size is small and the number is small.
  • the protruding height of the fine particles on the surface of the base material 10 is 1 ⁇ m or less, a barrier film with few defects can be formed, which is preferable.
  • the number and height of the protruding fine particles can be adjusted by adjusting the composition of the skin layer and the processing conditions of the base material.
  • the pretreatment layer 10a is a coating layer made of any one of a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin and the like, or a treatment of any one of corona treatment, plasma treatment, ion beam treatment, ozone treatment, flame treatment and the like. Can be a layer.
  • a pretreatment layer By forming the pretreatment layer, it is possible to improve the barrier property by surface smoothness and impart adhesion. If the surface smoothness is high, a dense film can be formed, so that sufficient barrier properties can be obtained even if the film thickness of the gas barrier layer 30 is thin.
  • the pretreatment layer 10a has an effect of enhancing the adhesion between the base material 10 and the gas barrier layer 30, but may be omitted if the adhesion, the barrier property, etc. are sufficient.
  • the parameters of the first surface of the base material 10 can be measured by removing the pretreatment layer.
  • the gas barrier layer 30 is a composite component containing metallic aluminum, aluminum oxide, silicon oxide, silicon nitride, silicon carbide or any of them as a main component, and exhibits a barrier property against a predetermined gas such as oxygen and water vapor. Is.
  • the gas barrier layer 30 may be transparent or opaque.
  • the thickness of the gas barrier layer 30 varies depending on the type, composition, and film forming method of the inorganic compound used, but is generally set appropriately within the range of 3 to 300 nm. If the thickness of the gas barrier layer 30 is less than 3 nm, a uniform film may not be obtained or the film thickness may not be sufficient, and the function as a gas barrier layer may not be sufficiently exhibited. If the thickness of the gas barrier layer 30 exceeds 300 nm, the gas barrier layer 30 becomes hard, and there is a possibility that the gas barrier layer 30 may be cracked and lose its barrier property due to external factors such as bending and pulling after film formation.
  • the thickness of the gas barrier layer 30 is preferably in the range of 6 to 150 nm.
  • the method for forming the gas barrier layer 30 is not limited, and for example, a vacuum vapor deposition method, a plasma activated vapor deposition method, a sputtering method, an ion plating method, an ion beam vapor deposition method, a plasma vapor deposition (CVD) method, or the like can be used.
  • the coating layer 40 further enhances the barrier property of the gas barrier layer 30.
  • a coating layer such as a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, a metal alkoxide, or a water-soluble polymer can be used.
  • metal alkoxides having excellent oxygen barrier properties and water-soluble polymers are preferable. It is formed using an aqueous solution containing a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, or a coating agent containing a mixed solution of water and an alcohol as a main component.
  • a coating agent is prepared by dissolving a water-soluble polymer in an aqueous (water or a mixture of water and alcohol) solvent and directly or preliminarily hydrolyzing the metal alkoxide.
  • the coating layer 40 can be formed by applying this coating agent on the gas barrier layer 30 and then drying it.
  • the water-soluble polymer used for the coating agent examples include polyvinyl alcohol (PVA), polyvinylpyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate and the like.
  • PVA is preferable because excellent gas barrier properties can be obtained.
  • PVA is generally obtained by saponifying polyvinyl acetate. As the PVA, either a so-called partially saponified PVA in which several tens of percent of acetic acid groups remain, or a complete PVA in which only a few percent of acetic acid groups remain can be used. PVA in between the two may be used.
  • the metal alkoxide used in the coating agent is a compound represented by a general formula, M (OR) n (metal of M: Si, Al, alkyl group such as R: CH 3, C 2 H 5). Specific examples thereof include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxyaluminum Al [OCH (CH 3 ) 2 ] 3 .
  • the silane coupling agent include those having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, those having an amino group such as 3-aminopropyltrimethoxysilane, and mercapto groups such as 3-mercaptopropyltrimethoxysilane. Examples thereof include those having an isocyanate group such as 3-isocyanapropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate and the like.
  • the polycarboxylic acid-based polymer is a polymer having two or more carboxy groups in the molecule.
  • the polycarboxylic acid-based polymer include (co) polymers of ethylenically unsaturated carboxylic acids; copolymers of ethylenically unsaturated carboxylic acids and other ethylenically unsaturated monomers; alginic acid and carboxymethyl cellulose. , Pectin and the like, acidic polysaccharides having a carboxyl group in the molecule can be mentioned.
  • Examples of the ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Examples of the ethylenically unsaturated monomer copolymerizable with the ethylenically unsaturated carboxylic acid include saturated carboxylic acid vinyl esters such as ethylene, propylene and vinyl acetate, alkyl acrylates, alkyl methacrylates and alkyl itaconates. kind, vinyl chloride, vinylidene chloride, styrene, acrylamide, acrylonitrile and the like. These polycarboxylic acid-based polymers may be used alone or in combination of two or more.
  • Polymers containing structural units derived from merits are preferred, and weights comprising structural units derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid. Coalescence is particularly preferred.
  • the proportion of the structural unit derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid is 80 mol% or more.
  • the polymer may be a homopolymer or a copolymer.
  • the other structural unit may be, for example, an ethylenically unsaturated monomer copolymerizable with the above-mentioned ethylenically unsaturated carboxylic acid. Examples include structural units derived from.
  • the number average molecular weight of the polycarboxylic acid-based polymer is preferably in the range of 2,000 to 10,000,000, more preferably 5,000 to 1,000,000. If the number average molecular weight is less than 2,000, the obtained gas barrier film cannot achieve sufficient water resistance, and moisture may deteriorate the gas barrier property and transparency, or whitening may occur. On the other hand, if the number average molecular weight exceeds 10,000,000, the viscosity of the coating agent when forming the film 25 becomes high, and the coatability may be impaired.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight determined by gel permeation chromatography (GPC).
  • the polycarboxylic acid polymer is one of the carboxy groups.
  • the portion may be neutralized with a basic compound in advance.
  • the basic compound at least one basic compound selected from the group consisting of a polyvalent metal compound, a monovalent metal compound and ammonia is preferable.
  • the polyvalent metal compound the compound exemplified in the description of the polyvalent metal compound (B) described later can be used.
  • the monovalent metal compound include sodium hydroxide, potassium hydroxide and the like.
  • additives can be added to the coating agent containing the polycarboxylic acid polymer (A) as the main component, and a cross-linking agent, a curing agent, a leveling agent, a defoaming agent, and an anti-blocking agent can be added as long as the barrier performance is not impaired.
  • the solvent used for the coating agent containing the polycarboxylic acid-based polymer (A) as a main component is preferably an aqueous medium.
  • Aqueous media include water, water-soluble or hydrophilic organic solvents, or mixtures thereof.
  • Aqueous media usually contain water or water as the main component.
  • the content of water in the aqueous medium is preferably 70% by mass or more, more preferably 80% by mass or more.
  • water-soluble or hydrophilic organic solvent examples include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, cellosolves, carbitols, and ditrils of acetonitrile. Can be mentioned.
  • the polyvalent metal compound is not particularly limited as long as it is a compound that reacts with the carboxyl group of the polycarboxylic acid-based polymer to form a polyvalent metal salt of the polycarboxylic acid.
  • zinc oxide particles, magnesium oxide particles, magnesium methoxydo, copper oxide, calcium carbonate and the like can be mentioned. These may be used alone or in admixture of a plurality.
  • Zinc oxide is preferable from the viewpoint of the oxygen barrier property of the oxygen barrier film.
  • Zinc oxide is an inorganic material capable of absorbing ultraviolet rays, and the average particle size of zinc oxide particles is not particularly limited. However, from the viewpoint of gas barrier property, transparency, and coating suitability, the average particle size is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • additives include resins that are soluble or dispersible in the solvent used for the coating agent, dispersants that are soluble or dispersible in the solvent used for the coating agent, surfactants, softeners, stabilizers, and film-forming agents. , Thickener and the like may be contained. Among the above, it is preferable to contain a resin that is soluble or dispersible in the solvent used for the coating agent. This improves the coatability and film-forming property of the coating agent.
  • Such resins include alkyd resins, melamine resins, acrylic resins, urethane resins, polyester resins, phenol resins, amino resins, fluororesins, epoxy resins, isocyanate resins and the like. Further, it is preferable to contain a dispersant that is soluble or dispersible in the solvent used for the coating agent. This improves the dispersibility of the polyvalent metal compound. As such a dispersant, an anionic surfactant or a nonionic surfactant can be used.
  • Examples of the surface active agent include (poly) carboxylate, alkyl sulfate ester salt, alkylbenzene sulfonate, alkylnaphthalene sulfonate, alkyl sulphosuccinate, alkyldiphenyl ether disulfonate, alkyl phosphate, aromatic phosphorus.
  • Acid ester polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, alkylallyl sulfate ester salt, polyoxyethylene alkyl phosphate ester, sorbitan alkyl ester, glycerin fatty acid ester, sorbitan fatty acid ester, citrus fatty acid ester , Polyethylene glycol fatty acid ester, polyoxyethylene sorbitan alkyl ester, polyoxyethylene alkyl allyl ether, polyoxyethylene derivative, polyoxyethylene sorbitol fatty acid ester, polyoxy fatty acid ester, polyoxyethylene alkylamine and other various surfactants. .. These surfactants may be used alone or in combination of two or more.
  • the mass ratio of the polyvalent metal compound to the additive is 30 :. It is preferably in the range of 70 to 99: 1, and preferably in the range of 50:50 to 98: 2.
  • Examples of the solvent used for the coating agent containing the polyvalent metal compound (B) as a main component include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol and dimethylsul.
  • Examples thereof include foxide, dimethylformamide, dimethylacetamide, toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate and butyl acetate.
  • these solvents may be used alone or in combination of two or more.
  • methyl alcohol, ethyl alcohol, isopropyl alcohol, toluene, ethyl acetate, methyl ethyl ketone and water are preferable from the viewpoint of coatability. Further, from the viewpoint of manufacturability, methyl alcohol, ethyl alcohol, isopropyl alcohol and water are preferable.
  • a coating agent in which a polycarboxylic acid-based polymer (A) and a polyvalent metal compound (B) are mixed is applied and dried to form a polyvalent metal salt film of the polycarboxylic acid
  • the above-mentioned polycarboxylic acid-based Using the polymer (A), the above-mentioned polyvalent metal compound (B), and water or alcohol as a solvent, a resin or dispersant that can be dissolved or dispersed in the solvent, and an additive if necessary are mixed.
  • a polycarboxylic acid polyvalent metal salt film can be formed by applying and drying the mixture as a coating agent by a known coating method.
  • coating agent application method there are no restrictions on the coating agent application method, and conventionally known methods such as a commonly used dipping method, roll coating method, screen printing method, spray method, and gravure printing method can be appropriately selected.
  • the thickness of the coating layer 40 varies depending on the composition of the coating agent, the coating conditions, and the like, and is not particularly limited. However, if the film thickness of the coating layer 40 after drying is 0.01 ⁇ m or less, a uniform coating film may not be obtained and sufficient gas barrier properties may not be obtained. If the film thickness after drying exceeds 50 ⁇ m, cracks are likely to occur in the coating film 40. Therefore, the suitable thickness of the coating layer 40 is, for example, in the range of 0.01 to 50 ⁇ m. The optimum thickness of the coating layer 40 is, for example, in the range of 0.1 to 10 ⁇ m.
  • the sealant layer 60 is a layer bonded by heat fusion when forming a bag-shaped package or the like using the gas barrier film 1.
  • the material of the sealant layer 60 polyethylene, polypropylene, an ethylene-vinyl acetate copolymer, an ethylene-methacrylate copolymer, an ethylene-methacrylate copolymer, an ethylene-acrylic acid copolymer, and an ethylene-acrylic acid ester can be used.
  • resin materials such as polymers and their metal crosslinked products can be exemplified.
  • the thickness of the sealant layer 60 is appropriately determined, and is, for example, in the range of 15 to 200 ⁇ m.
  • the adhesive layer 50 joins the sealant layer 60 and the coating layer 40.
  • the resin film to be the sealant layer 60 and the base material 10 on which the gas barrier layer 30 and the coating layer 40 are formed can be bonded by dry lamination.
  • a two-component curable polyurethane-based adhesive can be exemplified.
  • a printing layer, an intervening film, a sealant layer, or the like can be laminated on the coating layer 4 to form a packaging material.
  • the gas barrier layer 30 is formed on one surface of the base material 10 (first step).
  • the pretreatment layer 10a may be formed on the base material 10 as needed.
  • the above-mentioned coating agent is applied onto the gas barrier layer 30 and dried to form a coating layer 40 on the gas barrier layer (second step). Further, when an adhesive is applied on the coating layer 40 and the resin film to be the sealant layer 60 is attached (third step), the gas barrier film 1 is completed.
  • the gas barrier film of this embodiment will be further described with reference to Examples and Comparative Examples.
  • the present invention is not limited to the specific contents of Examples and Comparative Examples.
  • Example 1 As the base material 10, a polypropylene film (thickness 20 ⁇ m) having a core layer 12 and a first skin layer 11 was used.
  • the first skin layer 11 is formed of a resin made of a copolymer of polyethylene and propylene.
  • the first surface has a surface hardness of 96.3 MPa, a surface melting point of 135 ° C., and a surface softening temperature of 125.8 ° C., and fine particles do not protrude (0 pieces / mm 2 ).
  • the core layer 12 is made of a resin made of propylene homopolymer.
  • the second surface has a surface hardness of 218.2 MPa, a surface melting point of 165 ° C., and a surface softening temperature of 231.8 ° C.
  • a mixture of silicon and silicon oxide was sublimated in a vacuum apparatus, and a gas barrier layer 30 (thickness 30 nm) made of silicon oxide (SiOx) was formed on the first skin layer 11 by an electron beam vapor deposition method.
  • a coating agent obtained by mixing the following liquids (1) and (2) at a mass ratio of 6: 4 was applied onto the gas barrier layer 30 by a gravure coating method and dried to form a coating layer 40 having a thickness of 0.4 ⁇ m.
  • Liquid (1) Hydrolyzed solution (2) with a solid content of 3 wt% (SiO 2 equivalent) obtained by adding 89.6 g of hydrochloric acid (0.1N) to 10.4 g of tetraethoxysilane and stirring for 30 minutes to hydrolyze. 3 wt% water / isopropyl alcohol solution of polyvinyl alcohol (water: isopropyl alcohol weight ratio 90:10)
  • an unstretched polypropylene film (thickness 70 ⁇ m) is bonded onto the coating layer 40 by dry laminating to provide a sealant layer 60, and the gas barrier film of Example 1 is obtained. Obtained.
  • Example 2 As the substrate 10, the parameters of the first skin layer 11, the surface hardness 87.5MPa, surface melting 130 ° C., the surface softening temperature 114.5 ° C., polypropylene film silica fine particles are projected two / mm 2 (thick A gas barrier film of Example 2 was prepared in the same manner as in Example 1 except that 20 ⁇ m) was used.
  • Example 3 As the substrate 10, the parameters of the first skin layer 11, the surface hardness 130.5MPa, surface melting 125 ° C., the surface softening temperature 104.0 ° C., polypropylene film silica fine particles are projected two / mm 2 (thick A gas barrier film of Example 3 was prepared in the same manner as in Example 1 except that 20 ⁇ m) was used.
  • the parameters of the first skin layer 11 are a polypropylene film having a surface hardness of 108.6 MPa, a surface melting point of 146 ° C., a surface softening temperature of 141.0 ° C., and 3 silica fine particles / mm 2 protruding (thickness).
  • a gas barrier film of Example 4 was prepared in the same manner as in Example 1 except that 20 ⁇ m) was used.
  • the parameters of the first skin layer 11 are a polypropylene film having a surface hardness of 121.4 MPa, a surface melting point of 146 ° C., a surface softening temperature of 151.0 ° C., and 3 silica fine particles / mm 2 protruding (thickness).
  • a gas barrier film of Example 5 was prepared in the same manner as in Example 1 except that 20 ⁇ m) was used.
  • Example 6 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 2 / mm 2.
  • the gas barrier film of Example 6 was produced in the same manner as in Example 1.
  • Example 7 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 5 / mm 2.
  • the gas barrier film of Example 7 was produced in the same manner as in Example 1.
  • Example 8 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 12 / mm 2.
  • the gas barrier film of Example 8 was produced in the same manner as in Example 1. On the surface of the skin layer, 12 silica fine particles / mm 2 were observed.
  • Example 9 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 23 / mm 2.
  • the gas barrier film of Example 9 was produced in the same manner as in Example 1.
  • Example 10 A pretreatment layer made of an acrylic urethane resin having a thickness of 50 nm adjusted so that the NCO / OH ratio of the hydroxyl group-containing acrylic resin and the isocyanate curing agent is 1.0 is provided on the first skin layer 11.
  • the gas barrier film of Example 10 was prepared in the same manner as in Example 1 except that the thickness of the gas barrier layer 30 was 15 nm.
  • Example 11 The gas barrier film of Example 11 was produced in the same manner as in Example 1 except that the first skin layer 11 was subjected to glow discharge with Ar gas to provide a pretreatment layer having a modified surface chemical bond state.
  • Example 12 The same as in Example 1 except that HMDSO (hexamethyldisiloxane) was introduced into the vacuum apparatus instead of the gas barrier layer 30 described above to form a gas barrier layer (thickness 30 nm) made of SiOxCy by the plasma CVD method.
  • the gas barrier film of Example 12 was prepared.
  • Example 13 Except for the fact that SiH 4 , NH 3 , and N 2 were introduced into the vacuum apparatus in place of the gas barrier layer 30 described above to form a gas barrier layer (thickness 30 nm) made of SiNx by the plasma CVD method.
  • the gas barrier film of Example 13 was prepared in the same manner.
  • Example 14 is an example having a second skin layer 13.
  • the parameters of the second skin layer 13 were the same as those of the first skin layer 11 of Example 1. That is, the parameters on the second surface are the same as the parameters on the first surface.
  • the same as in Example 1 except that a biaxially stretched polypropylene film (thickness 20 ⁇ m) was bonded to the second skin layer side as a base material 20 by dry laminating using a two-component curable polyurethane adhesive.
  • a gas barrier film of Example 14 was obtained (see FIG. 2).
  • Example 15 The gas barrier film of Example 15 was produced in the same manner as in Example 1 except that the thickness of the gas barrier layer 30 made of SiOx was 20 nm.
  • Example 16 The gas barrier film of Example 16 is the same as in Example 1 except that the gas barrier layer 30 is a gas barrier layer (thickness: 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. Was produced.
  • the gas barrier layer 30 is a gas barrier layer (thickness: 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. Was produced.
  • Example 17 The gas barrier film of Example 16 is the same as that of Example 10, except that the gas barrier layer 30 is a gas barrier layer (thickness: 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. Was produced.
  • Example 18 The gas barrier film of Example 17 was prepared in the same manner as in Example 11 except that the gas barrier layer 30 was a gas barrier layer (thickness 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. bottom.
  • the gas barrier layer 30 was a gas barrier layer (thickness 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. bottom.
  • Example 19 The same as in Example 1 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method.
  • the gas barrier film of Example 17 was prepared.
  • Example 20 The same procedure as in Example 10 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method.
  • the gas barrier film of Example 17 was prepared.
  • Example 21 The same as in Example 11 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method.
  • the gas barrier film of Example 17 was prepared.
  • Comparative Example 1 As the base material, a polypropylene film (thickness 20 ⁇ m) in which the material of the first skin layer 11 was the same as that of the core layer 12 was used. As a result, the parameters of the first skin layer 11 were a surface hardness of 218.2 MPa, a surface melting point of 165 ° C., and a surface softening temperature of 231.5 ° C., which were the same as those of the second surface. In other respects, a gas barrier film of Comparative Example was prepared in the same manner as in Example 1.
  • Comparative Example 2 A gas barrier film of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that an AlOx film having a film density of 2.4 g / cm 3 and a hydrogen concentration of 26.5 at% was formed as the gas barrier layer 30.
  • Comparative Example 3 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 35 / mm 2.
  • a gas barrier film of Comparative Example 3 was prepared in the same manner as in Example 1.
  • Comparative Example 4 Except for the fact that a polypropylene film (thickness 20 ⁇ m) having the same parameters as in Example 16 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 35 / mm 2.
  • a gas barrier film of Comparative Example 4 was prepared in the same manner as in Example 16.
  • the surface hardness of the base material according to each example was measured by "TI Premier” manufactured by Bruker. The hardness was calculated by applying a load and unloading an indenter to the outermost layer of the substrate of each example at 20 ° C. at a speed of 100 nm / sec.
  • the softening temperature of the base material according to each example was measured using SPM (MPF-3D-SA) manufactured by Oxford Instruments.
  • SPM MPF-3D-SA
  • the cantilever was brought into contact with the substrate and heated, and the cantilever was lifted by thermal expansion of the surface accompanying the temperature rise, and then the peak of the displacement in which the cantilever was lowered by softening was determined as the softening temperature.
  • Example and Comparative Example The evaluation items and measurement methods in each Example and Comparative Example are shown below.
  • evaluation of gas barrier layer adhesion after hot water treatment Two gas barrier films of each example were laminated with the sealant layers facing each other, and the three sides were joined by heat fusion to prepare a pouch (packaging container) of each example. After filling the pouches of each example with water as a content, one open side was sealed by heat fusion. Then, as hot water treatment, retort sterilization treatment (121 ° C. for 30 minutes) was performed.
  • OTR oxygen permeability
  • WVTR water vapor transmission rate
  • the density of the AlOx film of the gas barrier layer 30 was calculated from the measurement by RBS (Rutherford backscattering analysis) -ERDA (recoil particle detection).
  • the element composition ratio in the depth direction was measured from RBS for elements other than hydrogen and ERDA for hydrogen, and the film density was calculated by dividing the mass of each element ratio by the AlOx film thickness.
  • the gas barrier film according to each embodiment by using a base material having a surface hardness of 150 MPa or less, the decrease in oxygen permeability and water vapor permeability due to hot water treatment is suppressed, and oxygen after hot water treatment is suppressed. And the barrier property of water vapor was excellent. The adhesion between the base material and the sealant after the hot water treatment was also good. Further, the effect was better when the melting point was 155 ° C. or lower, the softening temperature was 160 ° C. or lower, and the number of fine particles having an average particle diameter of 1 ⁇ m or more was 30 particles / mm 2 or less.
  • the gas barrier film of the comparative example used a base material having a surface hardness of the first surface exceeding 150 MPa, a softening temperature of more than 160 ° C., and a melting point of more than 155 ° C., and therefore was treated with hot water as compared with the examples. Later adhesion was inferior.
  • a print layer may be provided at an appropriate position.
  • an intervening film may be attached on the coating layer to impart desired physical properties such as pinhole resistance, cold resistance, heat resistance, bag drop resistance, and tear resistance to the gas barrier film.
  • the adhesive layer and the sealant layer are not essential. That is, the adhesive layer and the sealant layer may be provided as necessary in consideration of the specific use of the gas barrier film and the like.
  • the gas barrier film of the present invention is particularly suitable for packaging foods, pharmaceuticals, precision electronic components, etc., but is not limited thereto.
  • Gas barrier film 10 Base material 10a Pretreatment layer 11 First skin layer 12 Core layer 13 Second skin layer 20 Second base material 30 Gas barrier layer 40 Coating layer 50 Adhesive layer 60 Sealant layer

Abstract

This gas barrier film comprises: a substrate the main component of which is propylene and a first surface of which has a surface hardness of 150 Mpa or less; a gas barrier layer formed on the first surface; and a coating layer formed on the gas barrier layer.

Description

ガスバリアフィルムGas barrier film
 本発明は、ガスバリアフィルムおよびガスバリアフィルムの製造方法に関する。
 本願は、2020年5月14日に日本に出願された特願2020-085435号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a gas barrier film and a method for producing a gas barrier film.
This application claims priority based on Japanese Patent Application No. 2020-0854335 filed in Japan on May 14, 2020, the contents of which are incorporated herein by reference.
 食品、非食品、医薬品等の包装に用いられる包装材料において、内容物の変質を抑制しそれらの機能や性質を保持する観点から、包装材料を透過する酸素、水蒸気、その他内容物を変質させる気体を遮断するガスバリア性が求められることがある。
 ガスバリア性を有する包装材料として、温度、湿度等の影響が少ないアルミ等の金属箔をガスバリア層として用いたガスバリアフィルムが知られている。
In packaging materials used for packaging foods, non-foods, pharmaceuticals, etc., from the viewpoint of suppressing deterioration of the contents and maintaining their functions and properties, oxygen, water vapor, and other gases that change the contents that permeate the packaging materials. A gas barrier property that blocks water vapor may be required.
As a packaging material having a gas barrier property, a gas barrier film using a metal foil such as aluminum, which is less affected by temperature, humidity, etc., as a gas barrier layer is known.
 ガスバリアフィルムの他の構成として、高分子材料で形成された基材フィルム上に、真空蒸着やスパッタ等により酸化珪素、酸化アルミニウム等の無機酸化物の蒸着膜を形成したフィルムが知られている(例えば特許文献1参照。)。これらのガスバリアフィルムは、透明性および酸素、水蒸気等のガス遮断性を有する。
 基材フィルムとしては、ポリエチレンテレフタレート(PET)製のものがよく用いられている。
As another configuration of the gas barrier film, a film in which a vapor-deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on a base film made of a polymer material by vacuum vapor deposition or sputtering is known (). For example, refer to Patent Document 1). These gas barrier films have transparency and gas barrier properties such as oxygen and water vapor.
As the base film, a film made of polyethylene terephthalate (PET) is often used.
日本国特開昭60-49934号公報Japanese Patent Application Laid-Open No. 60-49934
 近年、環境への負荷を抑制する観点から、ポリプロピレン(PP)やポリエチレン(PE)製の基材フィルムを使用したガスバリアフィルムの要請が高まっている。特許文献1にもPP製の基材フィルムを使用できることが記載されている。
 しかし、発明者の検討により、PP製の基材フィルムに単にバリア層を形成しただけのガスバリアフィルムは、実際にはボイルやレトルト等熱水処理に対する耐性が十分でないことが明らかになった。
In recent years, there has been an increasing demand for gas barrier films using polypropylene (PP) or polyethylene (PE) base films from the viewpoint of suppressing the burden on the environment. Patent Document 1 also describes that a PP base film can be used.
However, the inventor's study has revealed that a gas barrier film in which a barrier layer is simply formed on a PP base film does not actually have sufficient resistance to hot water treatment such as boiling and retort.
 本発明は、上記事情を鑑みてなされたものであって、熱水処理に対する耐性が高く、環境負荷も抑制されたガスバリアフィルムを提供する。 The present invention has been made in view of the above circumstances, and provides a gas barrier film having high resistance to hot water treatment and suppressed environmental load.
 本発明の第一の態様は、プロピレンを主成分とし、第一面の表面硬度が150MPa以下である基材と、第一面上に形成されたガスバリア層と、ガスバリア層上に形成された被覆層とを備えるガスバリアフィルムである。 The first aspect of the present invention is a substrate containing propylene as a main component and having a surface hardness of 150 MPa or less on the first surface, a gas barrier layer formed on the first surface, and a coating formed on the gas barrier layer. It is a gas barrier film provided with a layer.
 上記本発明の態様によれば、熱水処理に対する耐性が高く、環境負荷も抑制されたガスバリアフィルムを提供できる。 According to the above aspect of the present invention, it is possible to provide a gas barrier film having high resistance to hot water treatment and suppressing environmental load.
本発明の一実施形態に係るガスバリアフィルムの模式断面図である。It is a schematic sectional drawing of the gas barrier film which concerns on one Embodiment of this invention. 本発明の実施例に係るガスバリアフィルムの模式断面図である。It is a schematic cross-sectional view of the gas barrier film which concerns on embodiment of this invention.
 以下、本発明の一実施形態について、図1を参照して説明する。
 図1は、本実施形態に係るガスバリアフィルム1の模式断面図である。ガスバリアフィルム1は、基材10と、前処理層10aと、ガスバリア層30と、被覆層40と、接着剤層50と、シーラント層60とを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of the gas barrier film 1 according to the present embodiment. The gas barrier film 1 includes a base material 10, a pretreatment layer 10a, a gas barrier layer 30, a coating layer 40, an adhesive layer 50, and a sealant layer 60.
 基材10は、プロピレンを主成分とする樹脂フィルムである。基材10は、未延伸フィルム、延伸フィルムのいずれでもよい。延伸フィルムを用いる場合、延伸倍率に特に制限はない。
 基材10の厚さに特に制限はない。基材10は、包装材料の用途等を考慮して単層フィルムや、異なる性質のフィルムを積層した多層フィルムとできる。ガスバリア層30、被覆層40等を形成する場合の加工性を考慮すると、基材10の厚さは、実用的には3~200μmの範囲が好ましく、特に6~30μmが好ましい。
 基材10上に形成される各層は、基材10の両面に形成されてもよい。
The base material 10 is a resin film containing propylene as a main component. The base material 10 may be either an unstretched film or a stretched film. When a stretched film is used, the stretch ratio is not particularly limited.
The thickness of the base material 10 is not particularly limited. The base material 10 can be a single-layer film or a multilayer film in which films having different properties are laminated in consideration of the use of the packaging material and the like. Considering the processability when forming the gas barrier layer 30, the coating layer 40 and the like, the thickness of the base material 10 is practically preferably in the range of 3 to 200 μm, particularly preferably 6 to 30 μm.
Each layer formed on the base material 10 may be formed on both sides of the base material 10.
 基材10は、プロピレンホモポリマーで形成されたコア層12と、コア層12を挟む第一スキン層11および第二スキン層13とを有する。第一スキン層11は、基材10の第一面を構成する。第二スキン層13は、基材10の第二面(第一面の反対側の面)を構成する。
 基材10において、ガスバリア層30が形成される側である第一面の硬度は150MPa以下である。硬度はナノインデンターで測定できる。ナノインデンターは圧子で試料を押し込んだ時の荷重(力)と変位(押込み距離)を同時測定し、荷重変位曲線を得て、複合弾性率・硬さを計測することができる。基材10の表面硬度が150MPaを超える場合、プロピレンの結晶性が高いことで熱水処理後に基材内部で剥離しやすくなり、密着性が低下しやすい。また、結晶性が高いと表面形状は粗くなりやすく、緻密なバリア層を形成しにくい。
The base material 10 has a core layer 12 formed of a propylene homopolymer, and a first skin layer 11 and a second skin layer 13 sandwiching the core layer 12. The first skin layer 11 constitutes the first surface of the base material 10. The second skin layer 13 constitutes the second surface (the surface opposite to the first surface) of the base material 10.
In the base material 10, the hardness of the first surface on the side where the gas barrier layer 30 is formed is 150 MPa or less. Hardness can be measured with a nano indenter. The nano indenter can simultaneously measure the load (force) and displacement (pushing distance) when the sample is pushed by the indenter, obtain the load displacement curve, and measure the composite elastic modulus and hardness. When the surface hardness of the base material 10 exceeds 150 MPa, the high crystallinity of propylene makes it easy to peel off inside the base material after hot water treatment, and the adhesion tends to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense barrier layer.
 第一面の融点(表面融点)は、155℃以下であることが好ましい。表面融点が155℃を超えるプロピレンは結晶性が高いことで熱水処理後に基材内部で剥離しやすくなり、密着性が低下しやすい。また、結晶性が高いと表面形状は粗くなりやすく、緻密なガスバリア層を形成しにくい。
 表面融点は、表層を切削したサンプルを用いて示差走査熱量計(DSC測定)で測定できる。DSC測定は試料部と基準物質の温度を一定のプログラムによって変化させながら、その試料と基準物質との温度差を、温度の関数として測定する方法であり、試料のガラス転移温度、融点、結晶化温度、融解熱量等を求めることができる。
The melting point (surface melting point) of the first surface is preferably 155 ° C. or lower. Propylene having a surface melting point of more than 155 ° C. has high crystallinity, so that it is easily peeled off inside the base material after hot water treatment, and the adhesion is apt to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense gas barrier layer.
The surface melting point can be measured by a differential scanning calorimeter (DSC measurement) using a sample obtained by cutting the surface layer. DSC measurement is a method of measuring the temperature difference between the sample and the reference material as a function of temperature while changing the temperature of the sample part and the reference material by a constant program. The glass transition temperature, melting point, and crystallization of the sample. The temperature, the amount of heat of fusion, etc. can be obtained.
 第一面の軟化温度(表面軟化温度)は、160℃以下であることが好ましい。軟化温度が160℃を超えるプロピレンは結晶性が高いことで熱水処理後に基材内部で剥離しやすくなり、密着性が低下しやすい。また、結晶性が高いと表面形状は粗くなりやすく、緻密なガスバリア層を形成しにくい。
 表面軟化温度は、ナノサーマルアナリシス(ナノTA)により測定できる。ナノTAは、走査型プローブ顕微鏡(SPM)のカンチレバーを加熱することによって試料表面を昇温させ、試料の膨張や軟化に伴うカンチレバーの高さ変位を検出して軟化温度を求める装置である。
The softening temperature (surface softening temperature) of the first surface is preferably 160 ° C. or lower. Propylene having a softening temperature of more than 160 ° C. has high crystallinity, so that it is easy to peel off inside the base material after hot water treatment, and the adhesion is apt to decrease. Further, when the crystallinity is high, the surface shape tends to be rough, and it is difficult to form a dense gas barrier layer.
The surface softening temperature can be measured by nanothermal analysis (nano TA). The nano TA is a device that raises the temperature of the sample surface by heating the cantilever of a scanning probe microscope (SPM), detects the height displacement of the cantilever due to the expansion and softening of the sample, and obtains the softening temperature.
 基材10はポリプロピレンやポリエチレンを使用でき、単層もしくは多層とすることができる。多層とする場合、基材10の第一面(ガスバリア層を形成する側の面)および第二面(ガスバリア層を形成する側の反対面)の少なくとも一方の面の表層に接着性、滑り性、耐ブロッキング性、ヒートシール性等機能性を付与することができる。表層の厚みは数十nm~数μmとすることができ、機能によって適宜選択される。基材10にポリプロピレンを使用する場合、基材10の第一面にプロピレンホモポリマーを使用してもよい。しかし、ガスバリア層を形成した際のガスバリア性や基材との接着性を高めるために、第一面の表層の組成はプロピレンに対して0.1~数十%の割合でHDPE(高密度ポリエチレン)、MDPE(中密度ポリエチレン)LDPE(低密度ポリエチレン)、LLDPE(線状低密度ポリエチレン)等のポリエチレンと共重合させたコポリマーを使用してもよい。さらに、プロピレンやエチレンに対して、0.1~数十%の割合で1-ブテン等のαオレフィン系の樹脂およびエラストマー等のゴム成分の少なくとも一方等を共重合した多量体とすることができる。また、共重合ではなく各樹脂を混合分散してもよい。さらにガスバリア性を高めるため第一面または/および第二面の表層にPVA(ポリビニルアルコール)やEVOH(エチレンビニルアルコール共重合体)を使用してもよい。基材10を多層とする場合、複数のスクリューを使用して材料を共押出することで多層からなるフィルムとすることができる。上記の様に形成された基材10は、光学顕微鏡で観察してもコア層と各スキン層との境界を明確には確認できないが、適宜染色した上で、断面を透過電子顕微鏡(TEM)で観察すると各層の境界を確認できる。 Polypropylene or polyethylene can be used for the base material 10, and it can be a single layer or a multilayer. In the case of a multi-layer structure, adhesiveness and slipperiness are applied to the surface layer of at least one of the first surface (the surface on the side forming the gas barrier layer) and the second surface (the opposite surface on the side forming the gas barrier layer) of the base material 10. , Blocking resistance, heat sealability and other functionality can be imparted. The thickness of the surface layer can be several tens of nm to several μm, and is appropriately selected depending on the function. When polypropylene is used for the base material 10, a propylene homopolymer may be used for the first surface of the base material 10. However, in order to improve the gas barrier property when the gas barrier layer is formed and the adhesiveness to the base material, the composition of the surface layer on the first surface is HDPE (high density polyethylene) at a ratio of 0.1 to several tens of percent with respect to propylene. ), MDPE (medium density polyethylene) LDPE (low density polyethylene), LLDPE (linear low density polyethylene) and other polyethylene copolymers may be used. Further, it is possible to obtain a multimer obtained by copolymerizing at least one of an α-olefin resin such as 1-butene and a rubber component such as an elastomer at a ratio of 0.1 to several tens of percent with respect to propylene or ethylene. .. Further, each resin may be mixed and dispersed instead of copolymerization. PVA (polyvinyl alcohol) or EVOH (ethylene vinyl alcohol copolymer) may be used for the surface layer of the first surface and / or the second surface in order to further enhance the gas barrier property. When the base material 10 has a multi-layer structure, the material can be co-extruded using a plurality of screws to form a multi-layer film. The substrate 10 formed as described above cannot clearly confirm the boundary between the core layer and each skin layer even when observed with an optical microscope, but after appropriately dyeing, the cross section is subjected to a transmission electron microscope (TEM). The boundary of each layer can be confirmed by observing with.
 第二スキン層13は、コア層12と同じプロピレンホモポリマー樹脂層であってもよいし、第一スキン層11と同じようにパラメータを制御してもよい。第二スキン層13の材質がコア層12と同一である場合、基材10は、実質的にコア層12と第一スキン層11とで構成され、コア層が第二面を構成する。
 第二面の表面硬度が150MPa以下、表面軟化温度が160℃以下、表面融点が155℃以下であると、第二面側にガスバリア層、印刷層等を形成する際や、ドライラミネートや押し出しラミネートにより第二の基材20を貼り合わせる際に高い密着性が得られる(図2参照)。第二の基材20は、ポリオレフィン系であれば特に限定されず、公知のフィルムを使用することができる。
 上記の様に形成された基材10は、光学顕微鏡で観察してもコア層と各スキン層との境界を明確には確認できないため、適宜染色した上で、断面を透過電子顕微鏡(TEM)で観察すると各層の境界を確認できる。
The second skin layer 13 may be the same propylene homopolymer resin layer as the core layer 12, or the parameters may be controlled in the same manner as the first skin layer 11. When the material of the second skin layer 13 is the same as that of the core layer 12, the base material 10 is substantially composed of the core layer 12 and the first skin layer 11, and the core layer constitutes the second surface.
When the surface hardness of the second surface is 150 MPa or less, the surface softening temperature is 160 ° C or less, and the surface melting point is 155 ° C or less, when forming a gas barrier layer, a printing layer, etc. on the second surface side, dry laminating or extruded laminating Therefore, high adhesion can be obtained when the second base material 20 is bonded (see FIG. 2). The second base material 20 is not particularly limited as long as it is polyolefin-based, and a known film can be used.
Since the boundary between the core layer and each skin layer cannot be clearly confirmed even when the substrate 10 formed as described above is observed with an optical microscope, the cross section is subjected to a transmission electron microscope (TEM) after being appropriately stained. The boundary of each layer can be confirmed by observing with.
 各スキン層11、13は、樹脂成分でない添加剤を含んでいてもよい。添加剤としては、公知の各種の添加剤から適宜選定できる。添加剤の例としては、アンチブロッキング剤(AB剤)、耐熱安定剤、耐候安定剤、紫外線吸収剤、滑剤、スリップ剤、核剤、帯電防止剤、防曇剤、顔料、染料等が挙げられる。AB剤は、有機、無機のいずれでもよい。これらの添加剤はいずれか1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記のうち滑剤、スリップ剤は、加工適正の観点から好ましい。基材10における添加剤の含有量は、本発明の効果を妨げない範囲で適宜調整できる。
 これらの添加剤が基材10内で粒状の状態を保持する場合、基材10上に過度に突出すると、ガスバリア層30や被覆層40に微小な欠陥が生じる。発明者の検討では、第一面上に突出するポリプロピレン以外の材料からなる微粒子は、平均粒子径が小さく、個数が少ないほどバリア性が良好となることが分かった。所定値の一例を示すと、平均粒子径1μm以上の微粒子について、1mmあたり30個以下である。
 微粒子の平均粒子径が1μm以上、個数が30個を超えるとバリア性が低下する恐れがあるため、平均粒子径は小さく、個数は少ない方が好ましい。
 基材10の表面における微粒子の突出高さが1μm以下であると、欠陥が少ないバリア膜を形成でき、好ましい。突出する微粒子の個数や突出高さは、スキン層の組成や基材の加工条件によって調節できる。
The skin layers 11 and 13 may contain additives that are not resin components. The additive can be appropriately selected from various known additives. Examples of additives include anti-blocking agents (AB agents), heat-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, lubricants, slip agents, nucleating agents, antistatic agents, anti-fog agents, pigments, dyes and the like. .. The AB agent may be either organic or inorganic. Any one of these additives may be used alone, or two or more thereof may be used in combination. Of the above, lubricants and slip agents are preferable from the viewpoint of processing suitability. The content of the additive in the base material 10 can be appropriately adjusted as long as the effect of the present invention is not impaired.
When these additives maintain a granular state in the base material 10, excessive protrusion onto the base material 10 causes minute defects in the gas barrier layer 30 and the coating layer 40. In the study of the inventor, it was found that the fine particles made of a material other than polypropylene protruding on the first surface have a smaller average particle size, and the smaller the number, the better the barrier property. An example of a predetermined value is 30 or less per 1 mm 2 for fine particles having an average particle diameter of 1 μm or more.
If the average particle size of the fine particles is 1 μm or more and the number of the fine particles exceeds 30, the barrier property may be deteriorated. Therefore, it is preferable that the average particle size is small and the number is small.
When the protruding height of the fine particles on the surface of the base material 10 is 1 μm or less, a barrier film with few defects can be formed, which is preferable. The number and height of the protruding fine particles can be adjusted by adjusting the composition of the skin layer and the processing conditions of the base material.
 前処理層10aは、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂等のいずれかからなるコーティング層、または、コロナ処理、プラズマ処理、イオンビーム処理、オゾン処理、火炎処理等のいずれかの処理層とすることができる。前処理層を形成することで表面平滑性によるバリア性の向上や密着性を付与することができる。表面の平滑性が高いと緻密な膜が形成できるため、ガスバリア層30の膜厚が薄くても十分なバリア性が得られる。
 前処理層10aは基材10とガスバリア層30との密着性を高める効果を奏するが、密着性やバリア性等が十分である等の場合は省略されてもよい。
 前処理層10aが設けられている場合は、前処理層を除去することにより基材10の第一面のパラメータを計測できる。
The pretreatment layer 10a is a coating layer made of any one of a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin and the like, or a treatment of any one of corona treatment, plasma treatment, ion beam treatment, ozone treatment, flame treatment and the like. Can be a layer. By forming the pretreatment layer, it is possible to improve the barrier property by surface smoothness and impart adhesion. If the surface smoothness is high, a dense film can be formed, so that sufficient barrier properties can be obtained even if the film thickness of the gas barrier layer 30 is thin.
The pretreatment layer 10a has an effect of enhancing the adhesion between the base material 10 and the gas barrier layer 30, but may be omitted if the adhesion, the barrier property, etc. are sufficient.
When the pretreatment layer 10a is provided, the parameters of the first surface of the base material 10 can be measured by removing the pretreatment layer.
 ガスバリア層30は、金属アルミニウム、酸化アルミニウム、酸化珪素、窒化珪素、炭化珪素もしくはいずれかを主成分とする複合成分であり、酸素、水蒸気等の、所定の気体に対してバリア性を発揮する層である。ガスバリア層30は、透明でも、不透明でもいずれでもよい。 The gas barrier layer 30 is a composite component containing metallic aluminum, aluminum oxide, silicon oxide, silicon nitride, silicon carbide or any of them as a main component, and exhibits a barrier property against a predetermined gas such as oxygen and water vapor. Is. The gas barrier layer 30 may be transparent or opaque.
 ガスバリア層30の厚さは、用いられる無機化合物の種類・構成・成膜方法により異なるが、一般的には3~300nmの範囲内で適宜設定できる。ガスバリア層30の厚さが3nm未満であると、均一な膜が得られないことや膜厚が十分ではないことがあり、ガスバリア層としての機能を十分に発揮しない場合がある。ガスバリア層30の厚さが300nmを越えると、ガスバリア層30が硬くなり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア層30に亀裂を生じてバリア性を失う可能性がある。ガスバリア層30の厚さは、6~150nmの範囲内が好ましい。 The thickness of the gas barrier layer 30 varies depending on the type, composition, and film forming method of the inorganic compound used, but is generally set appropriately within the range of 3 to 300 nm. If the thickness of the gas barrier layer 30 is less than 3 nm, a uniform film may not be obtained or the film thickness may not be sufficient, and the function as a gas barrier layer may not be sufficiently exhibited. If the thickness of the gas barrier layer 30 exceeds 300 nm, the gas barrier layer 30 becomes hard, and there is a possibility that the gas barrier layer 30 may be cracked and lose its barrier property due to external factors such as bending and pulling after film formation. The thickness of the gas barrier layer 30 is preferably in the range of 6 to 150 nm.
 ガスバリア層30の形成方法に制限はなく、例えば真空蒸着法、プラズマ活性化蒸着法、スパッタリング法、イオンプレーティング法、イオンビーム蒸着法、プラズマ気相成長(CVD)法等を使用できる。 The method for forming the gas barrier layer 30 is not limited, and for example, a vacuum vapor deposition method, a plasma activated vapor deposition method, a sputtering method, an ion plating method, an ion beam vapor deposition method, a plasma vapor deposition (CVD) method, or the like can be used.
 被覆層40は、ガスバリア層30のバリア性をさらに高める。被覆層40は、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂、金属アルコキシド、水溶性高分子等のコーティング層を用いることができる。特に酸素バリア性に優れる金属アルコキシドと水溶性高分子が好ましい。これは水溶性高分子と1種以上の金属アルコキシドまたはその加水分解物を含む水溶液、或いは、水およびアルコール混合溶液を主剤とするコーティング剤を用いて形成される。例えば、水溶性高分子を水系(水或いは水およびアルコール混合)溶媒で溶解させたものに金属アルコキシドを直接、或いは予め加水分解させる等処理を行ったものを混合してコーティング剤を調製する。このコーティング剤をガスバリア層30上に塗布した後、乾燥することで、被覆層40を形成できる。 The coating layer 40 further enhances the barrier property of the gas barrier layer 30. As the coating layer 40, a coating layer such as a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, a metal alkoxide, or a water-soluble polymer can be used. In particular, metal alkoxides having excellent oxygen barrier properties and water-soluble polymers are preferable. It is formed using an aqueous solution containing a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, or a coating agent containing a mixed solution of water and an alcohol as a main component. For example, a coating agent is prepared by dissolving a water-soluble polymer in an aqueous (water or a mixture of water and alcohol) solvent and directly or preliminarily hydrolyzing the metal alkoxide. The coating layer 40 can be formed by applying this coating agent on the gas barrier layer 30 and then drying it.
 被覆層40を形成するためのコーティング剤に含まれる各成分について更に詳細に説明する。コーティング剤に用いられる水溶性高分子として、ポリビニルアルコール(PVA)、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等を例示できる。特に、PVAを用いると、優れたガスバリア性が得られるため好ましい。PVAは、一般にポリ酢酸ビニルをけん化することで得られる。PVAとして、酢酸基が数十%残存している、いわゆる部分けん化PVA、酢酸基が数%しか残存していない完全PVAのいずれも用いることができる。両者の中間のPVAを用いてもよい。 Each component contained in the coating agent for forming the coating layer 40 will be described in more detail. Examples of the water-soluble polymer used for the coating agent include polyvinyl alcohol (PVA), polyvinylpyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate and the like. In particular, PVA is preferable because excellent gas barrier properties can be obtained. PVA is generally obtained by saponifying polyvinyl acetate. As the PVA, either a so-called partially saponified PVA in which several tens of percent of acetic acid groups remain, or a complete PVA in which only a few percent of acetic acid groups remain can be used. PVA in between the two may be used.
 コーティング剤に用いられる金属アルコキシドは、一般式、M(OR)n(M:Si、Alの金属、R:CH3、等のアルキル基)で表せる化合物である。具体的にはテトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウムAl[OCH(CH等を例示できる。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン等のエポキシ基を有するもの、3-アミノプロピルトリメトキシシラン等のアミノ基を有するもの、3-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するもの、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するもの、トリス‐(3‐トリメトキシシリルプロピル)イソシアヌレート等を例示できる。 The metal alkoxide used in the coating agent is a compound represented by a general formula, M (OR) n (metal of M: Si, Al, alkyl group such as R: CH 3, C 2 H 5). Specific examples thereof include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxyaluminum Al [OCH (CH 3 ) 2 ] 3 . Examples of the silane coupling agent include those having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, those having an amino group such as 3-aminopropyltrimethoxysilane, and mercapto groups such as 3-mercaptopropyltrimethoxysilane. Examples thereof include those having an isocyanate group such as 3-isocyanapropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate and the like.
(ポリカルボン酸系重合体(A))
 ポリカルボン酸系重合体とは、分子内に2個以上のカルボキシ基を有する重合体である。ポリカルボン酸系重合体としては、たとえば、エチレン性不飽和カルボン酸の(共)重合体;エチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体;アルギン酸、カルボキシメチルセルロース、ペクチン等の分子内にカルボキシル基を有する酸性多糖類が挙げられる。 
 上記エチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。 
 上記エチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体としては、例えば、エチレン、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、塩化ビニル、塩化ビニリデン、スチレン、アクリルアミド、アクリロニトリル等が挙げられる。 
 これらのポリカルボン酸系重合体は1種を単独で用いても、2種以上を混合して用いてもよい。 
(Polycarboxylic acid polymer (A))
The polycarboxylic acid-based polymer is a polymer having two or more carboxy groups in the molecule. Examples of the polycarboxylic acid-based polymer include (co) polymers of ethylenically unsaturated carboxylic acids; copolymers of ethylenically unsaturated carboxylic acids and other ethylenically unsaturated monomers; alginic acid and carboxymethyl cellulose. , Pectin and the like, acidic polysaccharides having a carboxyl group in the molecule can be mentioned.
Examples of the ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
Examples of the ethylenically unsaturated monomer copolymerizable with the ethylenically unsaturated carboxylic acid include saturated carboxylic acid vinyl esters such as ethylene, propylene and vinyl acetate, alkyl acrylates, alkyl methacrylates and alkyl itaconates. Kind, vinyl chloride, vinylidene chloride, styrene, acrylamide, acrylonitrile and the like.
These polycarboxylic acid-based polymers may be used alone or in combination of two or more.
 成分としては、上記の中でも、得られるガスバリア性フィルムのガスバリア性の観点から、アクリル酸、マレイン酸、メタクリル酸、イタコン酸、フマル酸およびクロトン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位を含む重合体が好ましく、アクリル酸、マレイン酸、メタクリル酸およびイタコン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位を含む重合体が特に好ましい。 
 このような重合体において、上記アクリル酸、マレイン酸、メタクリル酸およびイタコン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位の割合は、80mol%以上であることが好ましく、90mol%以上であることがより好ましい(ただし、重合体を構成する全構成単位の合計を100mol%とする)。 
 重合体は、単独重合体でも、共重合体でもよい。 
 重合体が、上記構成単位以外の他の構成単位を含む共重合体である場合、他の構成単位としては、例えば前述のエチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体から誘導される構成単位等が挙げられる。 
Among the above, at least one polymerizable simple substance selected from the group consisting of acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid and crotonic acid from the viewpoint of the gas barrier property of the obtained gas barrier film. Polymers containing structural units derived from merits are preferred, and weights comprising structural units derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid. Coalescence is particularly preferred.
In such a polymer, the proportion of the structural unit derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid is 80 mol% or more. Is preferable, and 90 mol% or more is more preferable (however, the total of all the constituent units constituting the polymer is 100 mol%).
The polymer may be a homopolymer or a copolymer.
When the polymer is a copolymer containing a structural unit other than the above-mentioned structural unit, the other structural unit may be, for example, an ethylenically unsaturated monomer copolymerizable with the above-mentioned ethylenically unsaturated carboxylic acid. Examples include structural units derived from.
 ポリカルボン酸系重合体の数平均分子量は、2,000~10,000,000の範囲内が好ましく、5,000~1,000,000がより好ましい。数平均分子量が2,000未満では、得られるガスバリア性フィルムは充分な耐水性を達成できず、水分によってガスバリア性や透明性が悪化する場合や、白化の発生が起こる場合がある。一方で、数平均分子量が10,000,000を超えると、皮膜25を形成する際のコーティング剤の粘度が高くなり、塗工性が損なわれる場合がある。
 なお、上記数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めた、ポリスチレン換算の数平均分子量である。 
The number average molecular weight of the polycarboxylic acid-based polymer is preferably in the range of 2,000 to 10,000,000, more preferably 5,000 to 1,000,000. If the number average molecular weight is less than 2,000, the obtained gas barrier film cannot achieve sufficient water resistance, and moisture may deteriorate the gas barrier property and transparency, or whitening may occur. On the other hand, if the number average molecular weight exceeds 10,000,000, the viscosity of the coating agent when forming the film 25 becomes high, and the coatability may be impaired.
The number average molecular weight is a polystyrene-equivalent number average molecular weight determined by gel permeation chromatography (GPC).
 ポリカルボン酸系重合体(A)を主成分とするコーティング剤を塗布、乾燥してA皮膜を形成した後に上記B皮膜を形成する場合には、ポリカルボン酸系重合体は、カルボキシ基の一部が予め塩基性化合物で中和されていてもよい。ポリカルボン酸系重合体の有するカルボキシ基の一部を予め中和することにより、A皮膜の耐水性や耐熱性をさらに向上させることができる。
 塩基性化合物としては、多価金属化合物、一価金属化合物およびアンモニアからなる群から選択される少なくとも1種の塩基性化合物が好ましい。
 多価金属化合物としては、後述する多価金属化合物(B)の説明で例示する化合物を用いることができる。一価金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられる。
When the coating agent containing the polycarboxylic acid polymer (A) as a main component is applied and dried to form the A film and then the B film is formed, the polycarboxylic acid polymer is one of the carboxy groups. The portion may be neutralized with a basic compound in advance. By neutralizing a part of the carboxy group of the polycarboxylic acid polymer in advance, the water resistance and heat resistance of the A film can be further improved.
As the basic compound, at least one basic compound selected from the group consisting of a polyvalent metal compound, a monovalent metal compound and ammonia is preferable.
As the polyvalent metal compound, the compound exemplified in the description of the polyvalent metal compound (B) described later can be used. Examples of the monovalent metal compound include sodium hydroxide, potassium hydroxide and the like.
 ポリカルボン酸系重合体(A)を主成分とするコーティング剤には各種添加剤を加えることができ、バリア性能を損なわない範囲で架橋剤、硬化剤、レベリング剤、消泡剤、アンチブロッキング剤、静電防止剤、分散剤、界面活性剤、柔軟剤、安定剤、膜形成剤、増粘剤等があげられる。 Various additives can be added to the coating agent containing the polycarboxylic acid polymer (A) as the main component, and a cross-linking agent, a curing agent, a leveling agent, a defoaming agent, and an anti-blocking agent can be added as long as the barrier performance is not impaired. , Antistatic agents, dispersants, surfactants, softeners, stabilizers, film-forming agents, thickeners and the like.
 ポリカルボン酸系重合体(A)を主成分とするコーティング剤に用いる溶媒は水性媒体が好ましい。水性媒体としては、水、水溶性または親水性有機溶剤、またはこれらの混合物が挙げられる。水性媒体は通常、水または水を主成分として含むものである。
 水性媒体中の水の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。
 水溶性または親水性有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、セロソルブ類、カルビトール類、アセトニトリル類の二トリル類等が挙げられる。
The solvent used for the coating agent containing the polycarboxylic acid-based polymer (A) as a main component is preferably an aqueous medium. Aqueous media include water, water-soluble or hydrophilic organic solvents, or mixtures thereof. Aqueous media usually contain water or water as the main component.
The content of water in the aqueous medium is preferably 70% by mass or more, more preferably 80% by mass or more.
Examples of the water-soluble or hydrophilic organic solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, cellosolves, carbitols, and ditrils of acetonitrile. Can be mentioned.
(多価金属化合物(B))
 多価金属化合物は、ポリカルボン酸系重合体のカルボキシル基と反応してポリカルボン酸の多価金属塩を形成する化合物であれば特に限定されない。例えば、酸化亜鉛粒子、酸化マグネシウム粒子、マグネシウムメトキシド、酸化銅、炭酸カルシウム等が挙げられる。これらを単独或いは複数を混合して用いてもよい。酸素バリア性皮膜の酸素バリア性の観点から酸化亜鉛が好ましい。
(Multivalent metal compound (B))
The polyvalent metal compound is not particularly limited as long as it is a compound that reacts with the carboxyl group of the polycarboxylic acid-based polymer to form a polyvalent metal salt of the polycarboxylic acid. For example, zinc oxide particles, magnesium oxide particles, magnesium methoxydo, copper oxide, calcium carbonate and the like can be mentioned. These may be used alone or in admixture of a plurality. Zinc oxide is preferable from the viewpoint of the oxygen barrier property of the oxygen barrier film.
 酸化亜鉛は紫外線吸収能を有す無機材料であり、酸化亜鉛粒子の平均粒子径は特に限定されない。しかし、ガスバリア性、透明性、コーティング適性の観点から、平均粒子径が5μm以下であることが好ましく、1μm以下であることがより好ましく、0.1μm以下であることが特に好ましい。  Zinc oxide is an inorganic material capable of absorbing ultraviolet rays, and the average particle size of zinc oxide particles is not particularly limited. However, from the viewpoint of gas barrier property, transparency, and coating suitability, the average particle size is preferably 5 μm or less, more preferably 1 μm or less, and particularly preferably 0.1 μm or less. The
 多価金属化合物(B)を主成分とするコーティング剤を塗布、乾燥してB皮膜を形成する場合は、必要に応じて、本発明の効果を損なわない範囲で、酸化亜鉛粒子のほかに、各種添加剤を含有してもよい。このような添加剤としては、コーティング剤に用いる溶媒に可溶又は分散可能な樹脂、コーティング剤に用いる溶媒に可溶又は分散可能な分散剤、界面活性剤、柔軟剤、安定剤、膜形成剤、増粘剤等を含有してもよい。
 上記の中でも、コーティング剤に用いる溶媒に可溶または分散可能な樹脂を含有することが好ましい。これにより、コーティング剤の塗工性、製膜性が向上する。このような樹脂としては、例えば、アルキッド樹脂、メラミン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、エポキシ樹脂、イソシアネート樹脂等が挙げられる。
 また、コーティング剤に用いる溶媒に可溶又は分散可能な分散剤を含有することが好ましい。これにより、多価金属化合物の分散性が向上する。このような分散剤としては、アニオン系界面活性剤や、ノニオン系界面活性剤を用いることができる。界面活性剤としては、(ポリ)カルボン酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルフォコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルリン酸塩、芳香族リン酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、アルキルアリル硫酸エステル塩、ポリオキシエチレンアルキルリン酸エステル、ソルビタンアルキルエステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンソルビタンアルキルエステル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシ脂肪酸エステル、ポリオキシエチレンアルキルアミン等の各種界面活性剤が挙げられる。これらの界面活性剤は単独で用いても、二種以上を混合して用いてもよい。 
When a coating agent containing the polyvalent metal compound (B) as a main component is applied and dried to form a B film, if necessary, in addition to the zinc oxide particles, as long as the effect of the present invention is not impaired, Various additives may be contained. Examples of such additives include resins that are soluble or dispersible in the solvent used for the coating agent, dispersants that are soluble or dispersible in the solvent used for the coating agent, surfactants, softeners, stabilizers, and film-forming agents. , Thickener and the like may be contained.
Among the above, it is preferable to contain a resin that is soluble or dispersible in the solvent used for the coating agent. This improves the coatability and film-forming property of the coating agent. Examples of such resins include alkyd resins, melamine resins, acrylic resins, urethane resins, polyester resins, phenol resins, amino resins, fluororesins, epoxy resins, isocyanate resins and the like.
Further, it is preferable to contain a dispersant that is soluble or dispersible in the solvent used for the coating agent. This improves the dispersibility of the polyvalent metal compound. As such a dispersant, an anionic surfactant or a nonionic surfactant can be used. Examples of the surface active agent include (poly) carboxylate, alkyl sulfate ester salt, alkylbenzene sulfonate, alkylnaphthalene sulfonate, alkyl sulphosuccinate, alkyldiphenyl ether disulfonate, alkyl phosphate, aromatic phosphorus. Acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, alkylallyl sulfate ester salt, polyoxyethylene alkyl phosphate ester, sorbitan alkyl ester, glycerin fatty acid ester, sorbitan fatty acid ester, citrus fatty acid ester , Polyethylene glycol fatty acid ester, polyoxyethylene sorbitan alkyl ester, polyoxyethylene alkyl allyl ether, polyoxyethylene derivative, polyoxyethylene sorbitol fatty acid ester, polyoxy fatty acid ester, polyoxyethylene alkylamine and other various surfactants. .. These surfactants may be used alone or in combination of two or more.
 多価金属化合物(B)を主成分とするコーティング剤に添加剤が含まれている場合には、多価金属化合物と添加剤との質量比(多価金属化合物:添加剤)は、30:70~99:1の範囲内であることが好ましく、50:50~98:2の範囲内であることが好ましい。  When the coating agent containing the polyvalent metal compound (B) as a main component contains an additive, the mass ratio of the polyvalent metal compound to the additive (polyvalent metal compound: additive) is 30 :. It is preferably in the range of 70 to 99: 1, and preferably in the range of 50:50 to 98: 2. The
 多価金属化合物(B)を主成分とするコーティング剤に用いる溶媒としては、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、ジメチルスルフォキシド、ジメチルフォルムアミド、ジメチルアセトアミド、トルエン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、メチルエチルケトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、酢酸エチル、酢酸ブチルが挙げられる。また、これらの溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 これらの中でも、塗工性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、トルエン、酢酸エチル、メチルエチルケトン、水が好ましい。また製造性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、水が好ましい。 
Examples of the solvent used for the coating agent containing the polyvalent metal compound (B) as a main component include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol and dimethylsul. Examples thereof include foxide, dimethylformamide, dimethylacetamide, toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate and butyl acetate. In addition, these solvents may be used alone or in combination of two or more.
Among these, methyl alcohol, ethyl alcohol, isopropyl alcohol, toluene, ethyl acetate, methyl ethyl ketone and water are preferable from the viewpoint of coatability. Further, from the viewpoint of manufacturability, methyl alcohol, ethyl alcohol, isopropyl alcohol and water are preferable.
 ポリカルボン酸系重合体(A)と多価金属化合物(B)を混合したコーティング剤を塗布、乾燥してポリカルボン酸の多価金属塩皮膜を形成する場合には、上記したポリカルボン酸系重合体(A)と上記した多価金属化合物(B)と、水またはアルコール類を溶媒として、溶媒に溶解或いは分散可能な樹脂や分散剤、および必要に応じて添加剤を混合する。混合物をコーティング剤として、公知のコーティング方法にて塗布、乾燥することで、ポリカルボン酸の多価金属塩皮膜を形成することができる。 When a coating agent in which a polycarboxylic acid-based polymer (A) and a polyvalent metal compound (B) are mixed is applied and dried to form a polyvalent metal salt film of the polycarboxylic acid, the above-mentioned polycarboxylic acid-based Using the polymer (A), the above-mentioned polyvalent metal compound (B), and water or alcohol as a solvent, a resin or dispersant that can be dissolved or dispersed in the solvent, and an additive if necessary are mixed. A polycarboxylic acid polyvalent metal salt film can be formed by applying and drying the mixture as a coating agent by a known coating method.
 コーティング剤の塗布方法に制限はなく、通常用いられるディッピング法、ロールコーティング法、スクリーン印刷法、スプレー法、グラビア印刷法等の従来公知の方法を適宜選択できる。 There are no restrictions on the coating agent application method, and conventionally known methods such as a commonly used dipping method, roll coating method, screen printing method, spray method, and gravure printing method can be appropriately selected.
 被覆層40の厚さは、コーティング剤の組成や塗工条件等によって異なり、特に制限はない。ただし、被覆層40の乾燥後膜厚が0.01μm以下の場合は、均一な塗膜にならず十分なガスバリア性を得られない場合がある。乾燥後膜厚が50μmを超える場合は被覆層40にクラックが生じ易くなる。したがって、被覆層40の好適な厚さは、例えば0.01~50μmの範囲である。被覆層40の最適な厚さは、例えば0.1~10μmの範囲である。 The thickness of the coating layer 40 varies depending on the composition of the coating agent, the coating conditions, and the like, and is not particularly limited. However, if the film thickness of the coating layer 40 after drying is 0.01 μm or less, a uniform coating film may not be obtained and sufficient gas barrier properties may not be obtained. If the film thickness after drying exceeds 50 μm, cracks are likely to occur in the coating film 40. Therefore, the suitable thickness of the coating layer 40 is, for example, in the range of 0.01 to 50 μm. The optimum thickness of the coating layer 40 is, for example, in the range of 0.1 to 10 μm.
 シーラント層60は、ガスバリアフィルム1を用いて袋状包装体等を形成する際に熱融着により接合される層である。シーラント層60の材料として、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体およびそれらの金属架橋物等の樹脂材料を例示できる。シーラント層60厚さは適宜決められるが、例えば15~200μmの範囲である。 The sealant layer 60 is a layer bonded by heat fusion when forming a bag-shaped package or the like using the gas barrier film 1. As the material of the sealant layer 60, polyethylene, polypropylene, an ethylene-vinyl acetate copolymer, an ethylene-methacrylate copolymer, an ethylene-methacrylate copolymer, an ethylene-acrylic acid copolymer, and an ethylene-acrylic acid ester can be used. Examples of resin materials such as polymers and their metal crosslinked products can be exemplified. The thickness of the sealant layer 60 is appropriately determined, and is, for example, in the range of 15 to 200 μm.
 接着剤層50は、シーラント層60と被覆層40とを接合する。接着剤層50を用いることで、シーラント層60となる樹脂フィルムと、ガスバリア層30および被覆層40を形成した基材10とを、ドライラミネーションにより貼り合わせることができる。接着剤層50の材料としては、二液硬化型ポリウレタン系接着剤を例示できる。
 被膜層4の上に印刷層、介在フィルム、シーラント層等を積層させて、包装材料とすることができる。
The adhesive layer 50 joins the sealant layer 60 and the coating layer 40. By using the adhesive layer 50, the resin film to be the sealant layer 60 and the base material 10 on which the gas barrier layer 30 and the coating layer 40 are formed can be bonded by dry lamination. As the material of the adhesive layer 50, a two-component curable polyurethane-based adhesive can be exemplified.
A printing layer, an intervening film, a sealant layer, or the like can be laminated on the coating layer 4 to form a packaging material.
 上記の構成を有する本実施形態のガスバリアフィルム1の製造方法について説明する。
 まず、基材10の一方の面にガスバリア層30を形成する(第一工程)。このとき、必要に応じて基材10に前処理層10aを形成してよい。
 次に、上述したコーティング剤をガスバリア層30上に塗布、乾燥して、ガスバリア層上に被覆層40を形成する(第二工程)。
 さらに、被覆層40上に接着剤を塗布し、シーラント層60となる樹脂フィルムを貼り合わせる(第三工程)と、ガスバリアフィルム1が完成する。
A method for producing the gas barrier film 1 of the present embodiment having the above configuration will be described.
First, the gas barrier layer 30 is formed on one surface of the base material 10 (first step). At this time, the pretreatment layer 10a may be formed on the base material 10 as needed.
Next, the above-mentioned coating agent is applied onto the gas barrier layer 30 and dried to form a coating layer 40 on the gas barrier layer (second step).
Further, when an adhesive is applied on the coating layer 40 and the resin film to be the sealant layer 60 is attached (third step), the gas barrier film 1 is completed.
 本実施形態のガスバリアフィルムについて、実施例および比較例を用いてさらに説明する。本発明は実施例および比較例の具体的内容により、何ら限定されない。 The gas barrier film of this embodiment will be further described with reference to Examples and Comparative Examples. The present invention is not limited to the specific contents of Examples and Comparative Examples.
(実施例1)
 基材10として、コア層12と第一スキン層11とを有するポリプロピレンフィルム(厚さ20μm)を用いた。
 第一スキン層11は、ポリエチレンとプロピレンの共重合体からなる樹脂で形成されている。第一面は、表面硬度96.3MPa、表面融点135℃、表面軟化温度125.8℃であり、微粒子は突出していない(0個/mm)。
 コア層12は、プロピレンホモポリマーからなる樹脂で形成されている。第二面は、表面硬度218.2MPa、表面融点165℃、表面軟化温度231.8℃である。
 真空装置内において珪素と酸化珪素との混合物を昇華させ、第一スキン層11に対し電子ビーム蒸着法により酸化珪素(SiOx)からなるガスバリア層30(厚さ30nm)を形成した。
(Example 1)
As the base material 10, a polypropylene film (thickness 20 μm) having a core layer 12 and a first skin layer 11 was used.
The first skin layer 11 is formed of a resin made of a copolymer of polyethylene and propylene. The first surface has a surface hardness of 96.3 MPa, a surface melting point of 135 ° C., and a surface softening temperature of 125.8 ° C., and fine particles do not protrude (0 pieces / mm 2 ).
The core layer 12 is made of a resin made of propylene homopolymer. The second surface has a surface hardness of 218.2 MPa, a surface melting point of 165 ° C., and a surface softening temperature of 231.8 ° C.
A mixture of silicon and silicon oxide was sublimated in a vacuum apparatus, and a gas barrier layer 30 (thickness 30 nm) made of silicon oxide (SiOx) was formed on the first skin layer 11 by an electron beam vapor deposition method.
 ガスバリア層30上に、下記(1)液と(2)液とを質量比6:4で混合したコーティング剤をグラビアコート法により塗布、乾燥し、厚さ0.4μmの被覆層40を形成した。
(1)液:テトラエトキシシラン10.4gに塩酸(0.1N)89.6gを加え、30分間撹拌し加水分解させた固形分3wt%(SiO換算)の加水分解溶液
(2)液:ポリビニルアルコールの3wt%水/イソプロピルアルコール溶液(水:イソプロピルアルコール重量比 90:10)
A coating agent obtained by mixing the following liquids (1) and (2) at a mass ratio of 6: 4 was applied onto the gas barrier layer 30 by a gravure coating method and dried to form a coating layer 40 having a thickness of 0.4 μm. ..
Liquid (1): Hydrolyzed solution (2) with a solid content of 3 wt% (SiO 2 equivalent) obtained by adding 89.6 g of hydrochloric acid (0.1N) to 10.4 g of tetraethoxysilane and stirring for 30 minutes to hydrolyze. 3 wt% water / isopropyl alcohol solution of polyvinyl alcohol (water: isopropyl alcohol weight ratio 90:10)
 最後に、二液硬化型ポリウレタン系接着剤を用いて、ドライラミネートにより、被覆層40上に未延伸ポリプロピレンフィルム(厚さ70μm)を貼り合わせてシーラント層60を設け、実施例1のガスバリアフィルムを得た。 Finally, using a two-component curable polyurethane adhesive, an unstretched polypropylene film (thickness 70 μm) is bonded onto the coating layer 40 by dry laminating to provide a sealant layer 60, and the gas barrier film of Example 1 is obtained. Obtained.
(実施例2)
 基材10として、第一スキン層11のパラメータが、表面硬度87.5MPa、表面融点130℃、表面軟化温度114.5℃、シリカの微粒子が2個/mm突出しているポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例2のガスバリアフィルムを作製した。
(Example 2)
As the substrate 10, the parameters of the first skin layer 11, the surface hardness 87.5MPa, surface melting 130 ° C., the surface softening temperature 114.5 ° C., polypropylene film silica fine particles are projected two / mm 2 (thick A gas barrier film of Example 2 was prepared in the same manner as in Example 1 except that 20 μm) was used.
(実施例3)
 基材10として、第一スキン層11のパラメータが、表面硬度130.5MPa、表面融点125℃、表面軟化温度104.0℃、シリカの微粒子が2個/mm突出しているポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例3のガスバリアフィルムを作製した。
(Example 3)
As the substrate 10, the parameters of the first skin layer 11, the surface hardness 130.5MPa, surface melting 125 ° C., the surface softening temperature 104.0 ° C., polypropylene film silica fine particles are projected two / mm 2 (thick A gas barrier film of Example 3 was prepared in the same manner as in Example 1 except that 20 μm) was used.
(実施例4)
 基材10として、第一スキン層11のパラメータが、表面硬度108.6MPa、表面融点146℃、表面軟化温度141.0℃、シリカの微粒子が3個/mm突出しているポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例4のガスバリアフィルムを作製した。
(Example 4)
As the base material 10, the parameters of the first skin layer 11 are a polypropylene film having a surface hardness of 108.6 MPa, a surface melting point of 146 ° C., a surface softening temperature of 141.0 ° C., and 3 silica fine particles / mm 2 protruding (thickness). A gas barrier film of Example 4 was prepared in the same manner as in Example 1 except that 20 μm) was used.
(実施例5)
 基材10として、第一スキン層11のパラメータが、表面硬度121.4MPa、表面融点146℃、表面軟化温度151.0℃、シリカの微粒子が3個/mm突出しているポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例5のガスバリアフィルムを作製した。
(Example 5)
As the base material 10, the parameters of the first skin layer 11 are a polypropylene film having a surface hardness of 121.4 MPa, a surface melting point of 146 ° C., a surface softening temperature of 151.0 ° C., and 3 silica fine particles / mm 2 protruding (thickness). A gas barrier film of Example 5 was prepared in the same manner as in Example 1 except that 20 μm) was used.
(実施例6)
 基材10として、シリカ微粒子の突出数が2個/mmである点を除き第一スキン層11のパラメータが実施例1と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例6のガスバリアフィルムを作製した。
(Example 6)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 2 / mm 2. The gas barrier film of Example 6 was produced in the same manner as in Example 1.
(実施例7)
 基材10として、シリカ微粒子の突出数が5個/mmである点を除き第一スキン層11のパラメータが実施例1と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例7のガスバリアフィルムを作製した。
(Example 7)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 5 / mm 2. The gas barrier film of Example 7 was produced in the same manner as in Example 1.
(実施例8)
 基材10として、シリカ微粒子の突出数が12個/mmである点を除き第一スキン層11のパラメータが実施例1と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例8のガスバリアフィルムを作製した。スキン層表面には、シリカの微粒子が12個/mm観察された。
(Example 8)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 12 / mm 2. The gas barrier film of Example 8 was produced in the same manner as in Example 1. On the surface of the skin layer, 12 silica fine particles / mm 2 were observed.
(実施例9)
 基材10として、シリカ微粒子の突出数が23個/mmである点を除き第一スキン層11のパラメータが実施例1と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして実施例9のガスバリアフィルムを作製した。
(Example 9)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 23 / mm 2. The gas barrier film of Example 9 was produced in the same manner as in Example 1.
(実施例10)
 第一スキン層11上に、水酸基を含有するアクリル樹脂とイソシアネート硬化剤のNCO/OH比が1.0になるように調整した厚み50nmのアクリルウレタン樹脂からなる前処理層を設けた点、およびガスバリア層30の厚み15nmとした点を除き、実施例1と同様にして実施例10のガスバリアフィルムを作製した。
(Example 10)
A pretreatment layer made of an acrylic urethane resin having a thickness of 50 nm adjusted so that the NCO / OH ratio of the hydroxyl group-containing acrylic resin and the isocyanate curing agent is 1.0 is provided on the first skin layer 11. The gas barrier film of Example 10 was prepared in the same manner as in Example 1 except that the thickness of the gas barrier layer 30 was 15 nm.
(実施例11)
 第一スキン層11にArガスによるグロー放電を行い、表面の化学結合状態を改質した前処理層を設けた点を除き、実施例1と同様にして実施例11のガスバリアフィルムを作製した。
(Example 11)
The gas barrier film of Example 11 was produced in the same manner as in Example 1 except that the first skin layer 11 was subjected to glow discharge with Ar gas to provide a pretreatment layer having a modified surface chemical bond state.
(実施例12)
 上述のガスバリア層30に代えて、真空装置内にHMDSO(ヘキサメチルジシロキサン)を導入し、プラズマCVD法によりSiOxCyからなるガスバリア層(厚み30nm)を形成した点を除き、実施例1と同様にして実施例12のガスバリアフィルムを作製した。
(Example 12)
The same as in Example 1 except that HMDSO (hexamethyldisiloxane) was introduced into the vacuum apparatus instead of the gas barrier layer 30 described above to form a gas barrier layer (thickness 30 nm) made of SiOxCy by the plasma CVD method. The gas barrier film of Example 12 was prepared.
(実施例13)
 上述のガスバリア層30に代えて、真空装置内にSiH、NH、およびNを導入し、プラズマCVD法によりSiNxからなるガスバリア層(厚み30nm)を形成した点を除き、実施例1と同様にして実施例13のガスバリアフィルムを作製した。
(Example 13)
Except for the fact that SiH 4 , NH 3 , and N 2 were introduced into the vacuum apparatus in place of the gas barrier layer 30 described above to form a gas barrier layer (thickness 30 nm) made of SiNx by the plasma CVD method. The gas barrier film of Example 13 was prepared in the same manner.
(実施例14)
 実施例14は、第二スキン層13を有する実施例である。第二スキン層13のパラメータは、実施例1の第一スキン層11と同一とした。すなわち、第二面のパラメータは、第一面のパラメータと同一である。
 二液硬化型ポリウレタン系接着剤を用いて、ドライラミネートにより第二スキン層側に基材20として2軸延伸ポリプロピレンフィルム(厚さ20μm)を貼り合わせた点を除き、実施例1と同様にして実施例14のガスバリアフィルムを得た(図2参照)。
(Example 14)
Example 14 is an example having a second skin layer 13. The parameters of the second skin layer 13 were the same as those of the first skin layer 11 of Example 1. That is, the parameters on the second surface are the same as the parameters on the first surface.
The same as in Example 1 except that a biaxially stretched polypropylene film (thickness 20 μm) was bonded to the second skin layer side as a base material 20 by dry laminating using a two-component curable polyurethane adhesive. A gas barrier film of Example 14 was obtained (see FIG. 2).
 (実施例15)
 SiOxからなるガスバリア層30の厚みを20nmとした点を除き、実施例1と同様にして実施例15のガスバリアフィルムを作製した。
(Example 15)
The gas barrier film of Example 15 was produced in the same manner as in Example 1 except that the thickness of the gas barrier layer 30 made of SiOx was 20 nm.
 (実施例16)
 ガスバリア層30として、膜密度1.8g/cm、水素濃度29.7at%のAlOxからなるガスバリア層(厚みを10nm)とした点を除き、実施例1と同様にして実施例16のガスバリアフィルムを作製した。
(Example 16)
The gas barrier film of Example 16 is the same as in Example 1 except that the gas barrier layer 30 is a gas barrier layer (thickness: 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. Was produced.
 (実施例17)
 ガスバリア層30として、膜密度1.8g/cm、水素濃度29.7at%のAlOxからなるガスバリア層(厚みを10nm)とした点を除き、実施例10と同様にして実施例16のガスバリアフィルムを作製した。
(Example 17)
The gas barrier film of Example 16 is the same as that of Example 10, except that the gas barrier layer 30 is a gas barrier layer (thickness: 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. Was produced.
 (実施例18)
 ガスバリア層30として膜密度1.8g/cm、水素濃度29.7at%のAlOxからなるガスバリア層(厚み10nm)とした点を除き、実施例11と同様にして実施例17のガスバリアフィルムを作製した。
(Example 18)
The gas barrier film of Example 17 was prepared in the same manner as in Example 11 except that the gas barrier layer 30 was a gas barrier layer (thickness 10 nm) made of AlOx having a film density of 1.8 g / cm 3 and a hydrogen concentration of 29.7 at%. bottom.
 (実施例19)
 ガスバリア層30としてプラズマ活性化蒸着法により形成した膜密度2.6g/cm、水素濃度17.5at%のAlOxからなるガスバリア層(厚み6nm)とした点を除き、実施例1と同様にして実施例17のガスバリアフィルムを作製した。
(Example 19)
The same as in Example 1 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method. The gas barrier film of Example 17 was prepared.
 (実施例20)
 ガスバリア層30としてプラズマ活性化蒸着法により形成した膜密度2.6g/cm、水素濃度17.5at%のAlOxからなるガスバリア層(厚み6nm)とした点を除き、実施例10と同様にして実施例17のガスバリアフィルムを作製した。
(Example 20)
The same procedure as in Example 10 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method. The gas barrier film of Example 17 was prepared.
 (実施例21)
 ガスバリア層30としてプラズマ活性化蒸着法により形成した膜密度2.6g/cm、水素濃度17.5at%のAlOxからなるガスバリア層(厚み6nm)とした点を除き、実施例11と同様にして実施例17のガスバリアフィルムを作製した。
(Example 21)
The same as in Example 11 except that the gas barrier layer 30 is a gas barrier layer (thickness 6 nm) made of AlOx having a film density of 2.6 g / cm 3 and a hydrogen concentration of 17.5 at% formed by a plasma activated vapor deposition method. The gas barrier film of Example 17 was prepared.
(比較例1)
 基材として、第一スキン層11の材料をコア層12と同一としたポリプロピレンフィルム(厚さ20μm)を用いた。これにより、第一スキン層11のパラメータは、表面硬度218.2MPa、表面融点165℃、表面軟化温度231.5℃となり、第二面と同一となった。
 その他の点は実施例1と同様にして比較例のガスバリアフィルムを作製した。
(Comparative Example 1)
As the base material, a polypropylene film (thickness 20 μm) in which the material of the first skin layer 11 was the same as that of the core layer 12 was used. As a result, the parameters of the first skin layer 11 were a surface hardness of 218.2 MPa, a surface melting point of 165 ° C., and a surface softening temperature of 231.5 ° C., which were the same as those of the second surface.
In other respects, a gas barrier film of Comparative Example was prepared in the same manner as in Example 1.
(比較例2)
 ガスバリア層30として膜密度2.4g/cm、水素濃度26.5at%のAlOx膜を形成した点を除き比較例1と同様にして比較例2のガスバリアフィルムを作製した。
(Comparative Example 2)
A gas barrier film of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that an AlOx film having a film density of 2.4 g / cm 3 and a hydrogen concentration of 26.5 at% was formed as the gas barrier layer 30.
(比較例3)
 基材10として、シリカ微粒子の突出数が35個/mmである点を除き第一スキン層11のパラメータが実施例1と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例1と同様にして比較例3のガスバリアフィルムを作製した。
(Comparative Example 3)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 1 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 35 / mm 2. A gas barrier film of Comparative Example 3 was prepared in the same manner as in Example 1.
(比較例4)
 基材10として、シリカ微粒子の突出数が35個/mmである点を除き第一スキン層11のパラメータが実施例16と同一であるポリプロピレンフィルム(厚さ20μm)を用いた点を除き、実施例16と同様にして比較例4のガスバリアフィルムを作製した。
(Comparative Example 4)
Except for the fact that a polypropylene film (thickness 20 μm) having the same parameters as in Example 16 of the first skin layer 11 was used as the base material 10 except that the number of protrusions of the silica fine particles was 35 / mm 2. A gas barrier film of Comparative Example 4 was prepared in the same manner as in Example 16.
 各例に係る基材の表面硬度は、ブルカー社製「TI Premier」による測定を行った。20℃における各例の基材の最表層に圧子を100nm/1秒の速度にて荷重印加および除荷を行い、硬度を算出した。 The surface hardness of the base material according to each example was measured by "TI Premier" manufactured by Bruker. The hardness was calculated by applying a load and unloading an indenter to the outermost layer of the substrate of each example at 20 ° C. at a speed of 100 nm / sec.
 各例に係る基材の軟化温度は、オックスフォード・インストゥルメンツ社製SPM(MPF-3D-SA)を使用して測定した。カンチレバーを基材に接触させ加熱し、昇温に伴う表面の熱膨張によってカンチレバーが持ち上げられたのち、軟化によってカンチレバーが下がる変位のピークを軟化温度として求めた。 The softening temperature of the base material according to each example was measured using SPM (MPF-3D-SA) manufactured by Oxford Instruments. The cantilever was brought into contact with the substrate and heated, and the cantilever was lifted by thermal expansion of the surface accompanying the temperature rise, and then the peak of the displacement in which the cantilever was lowered by softening was determined as the softening temperature.
 各実施例および比較例における評価項目および測定方法について、以下に示す。
(熱水処理後のガスバリア層密着性評価)
 各例のガスバリアフィルム2枚を、シーラント層を対向させて重ね、三辺を熱融着により接合して、各例のパウチ(包装容器)を作製した。各例のパウチに内容物として水を充填した後、開放している一辺を熱融着により封止した。その後、熱水処理として、レトルト殺菌処理(121℃30分)を行った。
 熱水処理後、JIS K 6854-2、およびJIS K 6854-3に準拠して各例のパウチの内容物と接していた部位から試験片を切り出し、オリエンテック社テンシロン万能試験機RTC-1250を用いて測定したガスバリア層30の剥離強度を密着性の指標として測定した。測定は、T形剥離と180°剥離の2種類を、それぞれ常態(Dry)および測定部位湿潤(Wet)で行った。剥離する前に基材が破断された場合は、「基材切れ」とした。「基材切れ」は、基材とガスバリア層とが十分に密着していることを意味する。
The evaluation items and measurement methods in each Example and Comparative Example are shown below.
(Evaluation of gas barrier layer adhesion after hot water treatment)
Two gas barrier films of each example were laminated with the sealant layers facing each other, and the three sides were joined by heat fusion to prepare a pouch (packaging container) of each example. After filling the pouches of each example with water as a content, one open side was sealed by heat fusion. Then, as hot water treatment, retort sterilization treatment (121 ° C. for 30 minutes) was performed.
After hot water treatment, a test piece was cut out from the part that was in contact with the contents of the pouch of each example in accordance with JIS K 6854-2 and JIS K 6854-3, and the Orientech Tencilon universal testing machine RTC-1250 was used. The peel strength of the gas barrier layer 30 measured using the above was measured as an index of adhesion. Two types of measurement, T-shaped peeling and 180 ° peeling, were performed under normal conditions (Dry) and measurement site wetness (Wet), respectively. If the base material was broken before peeling, it was regarded as "base material cut". "Out of base material" means that the base material and the gas barrier layer are sufficiently in close contact with each other.
(作製直後および熱水処理後のガスバリア性能評価)
 上記手順で作製した各例のパウチを作製直後および熱水処理した後、パウチを開封してガスバリアフィルムの酸素透過度(OTR)(単位:cc/m・day・atm、測定条件:30℃-70%RH)、および水蒸気透過度(WVTR)(単位:g/m・day、測定条件:40℃-90%RH)を評価した。
 OTRはmocon社製OX-TRAN2/22を用いて、WVTRはmocon社製PERMATRAN-W3/34を用いて、それぞれ測定した。
 結果を表1および表2に示す。
(Evaluation of gas barrier performance immediately after production and after hot water treatment)
Immediately after the pouches of each example prepared by the above procedure and after hot water treatment, the pouches are opened and the oxygen permeability (OTR) of the gas barrier film (unit: cc / m 2 · day · atm, measurement conditions: 30 ° C. -70% RH), and water vapor transmission rate (WVTR) (unit: g / m 2 · day, measurement conditions: 40 ℃ -90% RH) were evaluated.
The OTR was measured using OX-TRAN2 / 22 manufactured by mocon, and the WVTR was measured using PERMATRAN-W3 / 34 manufactured by mocon.
The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(ガスバリア層の膜密度、水素濃度評価)
 ガスバリア層30のAlOx膜の密度はRBS(ラザフォード後方散乱分析)-ERDA(反跳粒子検出)による測定から算出した。水素以外の元素はRBS、水素はERDAより深さ方向の元素構成比を測定し、各元素比率の質量をAlOx膜厚で除すことで膜密度を算出した。
(Evaluation of film density and hydrogen concentration of gas barrier layer)
The density of the AlOx film of the gas barrier layer 30 was calculated from the measurement by RBS (Rutherford backscattering analysis) -ERDA (recoil particle detection). The element composition ratio in the depth direction was measured from RBS for elements other than hydrogen and ERDA for hydrogen, and the film density was calculated by dividing the mass of each element ratio by the AlOx film thickness.
 各実施例に係るガスバリアフィルムは、基材の表面硬度が150MPa以下である基材を用いたことにより、熱水処理による酸素透過率および水蒸気透過率の低下が抑制され、熱水処理後の酸素および水蒸気のバリア性に優れていた。熱水処理後の基材とシーラントとの密着性も良好であった。また、融点が155℃以下、軟化温度が160℃以下、平均粒子径が1μm以上の微粒子が30個/mm以下であると、その効果はより良好であった。 As the gas barrier film according to each embodiment, by using a base material having a surface hardness of 150 MPa or less, the decrease in oxygen permeability and water vapor permeability due to hot water treatment is suppressed, and oxygen after hot water treatment is suppressed. And the barrier property of water vapor was excellent. The adhesion between the base material and the sealant after the hot water treatment was also good. Further, the effect was better when the melting point was 155 ° C. or lower, the softening temperature was 160 ° C. or lower, and the number of fine particles having an average particle diameter of 1 μm or more was 30 particles / mm 2 or less.
 一方、比較例のガスバリアフィルムは、第一面の表面硬度が150MPaを超え、軟化温度が160℃を超え、融点が155℃を超えた基材を用いたため、実施例と比べて、熱水処理後の密着性が劣っていた。 On the other hand, the gas barrier film of the comparative example used a base material having a surface hardness of the first surface exceeding 150 MPa, a softening temperature of more than 160 ° C., and a melting point of more than 155 ° C., and therefore was treated with hot water as compared with the examples. Later adhesion was inferior.
 以上、本発明の一実施形態、および実施例について説明したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ等も含まれる。 Although one embodiment and the examples of the present invention have been described above, the specific configuration is not limited to this embodiment, and changes and combinations of configurations within a range not deviating from the gist of the present invention are also included. ..
 また、本発明のガスバリアフィルムにおいては、適宜の位置に印刷層が設けられてもよい。また、被覆層上に介在フィルムを取り付けて、耐ピンホール性、耐寒性、耐熱性、耐落袋性、引き裂き耐性等の所望の物性をガスバリアフィルムに付与してもよい。 Further, in the gas barrier film of the present invention, a print layer may be provided at an appropriate position. Further, an intervening film may be attached on the coating layer to impart desired physical properties such as pinhole resistance, cold resistance, heat resistance, bag drop resistance, and tear resistance to the gas barrier film.
 さらに、本発明のガスバリアフィルムにおいて、接着層やシーラント層は必須ではない。すなわち、接着層やシーラント層は、ガスバリアフィルムの具体的用途等を考慮して、必要に応じて設ければよい。
 本発明のガスバリアフィルムは、特に食品、医薬品、精密電子部品等の包装に適しているが、これらに限定されるものではない。
Further, in the gas barrier film of the present invention, the adhesive layer and the sealant layer are not essential. That is, the adhesive layer and the sealant layer may be provided as necessary in consideration of the specific use of the gas barrier film and the like.
The gas barrier film of the present invention is particularly suitable for packaging foods, pharmaceuticals, precision electronic components, etc., but is not limited thereto.
1 ガスバリアフィルム
10 基材
10a 前処理層
11 第一スキン層
12 コア層
13 第二スキン層
20 第二の基材
30 ガスバリア層
40 被覆層
50 接着剤層
60 シーラント層
1 Gas barrier film 10 Base material 10a Pretreatment layer 11 First skin layer 12 Core layer 13 Second skin layer 20 Second base material 30 Gas barrier layer 40 Coating layer 50 Adhesive layer 60 Sealant layer

Claims (16)

  1.  プロピレンを主成分とし、第一面の表面硬度が150MPa以下である基材と、
     前記第一面上に形成されたガスバリア層と、
     前記ガスバリア層上に形成された被覆層と、
     を備える、
     ガスバリアフィルム。
    A base material containing propylene as a main component and having a surface hardness of 150 MPa or less on the first surface,
    The gas barrier layer formed on the first surface and
    The coating layer formed on the gas barrier layer and
    To prepare
    Gas barrier film.
  2.  前記基材において、前記第一面と反対側の第二面の表面硬度が150MPa以下である、
     請求項1に記載のガスバリアフィルム。
    In the base material, the surface hardness of the second surface opposite to the first surface is 150 MPa or less.
    The gas barrier film according to claim 1.
  3.  プロピレンを主成分とし、第一面の表面軟化温度が160℃以下である基材と、
     前記第一面上に形成されたガスバリア層と、
     前記ガスバリア層上に形成された被覆層と、
     を備える、
     ガスバリアフィルム。
    A base material containing propylene as the main component and having a surface softening temperature of 160 ° C or lower on the first surface,
    The gas barrier layer formed on the first surface and
    The coating layer formed on the gas barrier layer and
    To prepare
    Gas barrier film.
  4.  前記基材において、前記第一面と反対側の第二面の表面軟化温度が160℃以下である、
     請求項3に記載のガスバリアフィルム。
    In the base material, the surface softening temperature of the second surface opposite to the first surface is 160 ° C. or lower.
    The gas barrier film according to claim 3.
  5.  プロピレンを主成分とし、第一面の表面融点が155℃以下である基材と、
     前記第一面上に形成されたガスバリア層と、
     前記ガスバリア層上に形成された被覆層と、
     を備える、
     ガスバリアフィルム。
    A base material containing propylene as a main component and having a surface melting point of 155 ° C. or lower on the first surface,
    The gas barrier layer formed on the first surface and
    The coating layer formed on the gas barrier layer and
    To prepare
    Gas barrier film.
  6.  前記基材において、前記第一面と反対側の第二面の表面融点が155℃以下である、
     請求項5に記載のガスバリアフィルム。
    In the base material, the surface melting point of the second surface opposite to the first surface is 155 ° C. or lower.
    The gas barrier film according to claim 5.
  7.  30℃70%RH下における酸素透過率が2cc/m・day・atm以下、40℃90%RH下における水蒸気透過度が2g/m・day以下である、
     請求項1から6のいずれか一項に記載のガスバリアフィルム。
    The oxygen permeability at 30 ° C. and 70% RH is 2 cc / m 2 · day or less, and the water vapor transmission rate at 40 ° C. 90% RH is 2 g / m 2 · day or less.
    The gas barrier film according to any one of claims 1 to 6.
  8.  前記基材は、平均粒子径1μm以上の微粒子を含有し、
     前記第一面に突出する前記微粒子の数が1mmあたり30個以下である、
     請求項1から7のいずれか一項に記載のガスバリアフィルム。
    The base material contains fine particles having an average particle diameter of 1 μm or more, and has an average particle diameter of 1 μm or more.
    The number of the fine particles protruding from the first surface is 30 or less per 1 mm 2.
    The gas barrier film according to any one of claims 1 to 7.
  9.  前記第一面と前記ガスバリア層との間に、熱可塑性樹脂、熱硬化性樹脂、および、紫外線硬化性樹脂のいずれかからなる前処理層を有する、
     請求項1から8のいずれか一項に記載のガスバリアフィルム。
    A pretreatment layer made of any of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin is provided between the first surface and the gas barrier layer.
    The gas barrier film according to any one of claims 1 to 8.
  10.  前記ガスバリア層は、アルミニウム、酸化アルミニウム、酸化珪素、炭素を含む酸化珪素、および、窒化珪素のいずれかを主成分とする、
     請求項1から9のいずれか一項に記載のガスバリアフィルム。
    The gas barrier layer contains any one of aluminum, aluminum oxide, silicon oxide, silicon oxide containing carbon, and silicon nitride as a main component.
    The gas barrier film according to any one of claims 1 to 9.
  11.  前記被覆層は、1種以上のアルコキシドまたはその加水分解物、水溶性高分子、多価金属化合物、および、カルボン酸の多価金属塩のいずれかを含む、
     請求項1から10のいずれか一項に記載のガスバリアフィルム。
    The coating layer comprises one or more alkoxides or hydrolysates thereof, water-soluble polymers, polyvalent metal compounds, and polyvalent metal salts of carboxylic acids.
    The gas barrier film according to any one of claims 1 to 10.
  12.  熱融着可能なシーラント層をさらに備え、前記シーラント層が接着剤層により前記被覆層に接合されている、
     請求項1に記載のガスバリアフィルム。
    Further comprising a heat-sealable sealant layer, the sealant layer is bonded to the coating layer by an adhesive layer.
    The gas barrier film according to claim 1.
  13.  前記基材の前記第二面側に第二の基材が接合されている、
     請求項2、4、6のいずれか一項に記載のガスバリアフィルム。
    A second base material is bonded to the second surface side of the base material.
    The gas barrier film according to any one of claims 2, 4 and 6.
  14.  121℃、30分の熱水処理後において、
     前記基材と前記ガスバリア層とのJIS K 6854-2、JIS K 6854-3に準拠した剥離強度が1.0N/15mm以上である、
     請求項1から13のいずれか一項に記載のガスバリアフィルム。
    After hot water treatment at 121 ° C for 30 minutes,
    The peel strength of the base material and the gas barrier layer in accordance with JIS K 6854-2 and JIS K 6854-3 is 1.0 N / 15 mm or more.
    The gas barrier film according to any one of claims 1 to 13.
  15.  121℃、30分の熱水処理後において、
     30℃70%RH下における酸素透過率が2cc/m・day・atm以下、40℃90%RH下における水蒸気透過度が2g/m・day以下である、
     請求項1から13のいずれか一項に記載のガスバリアフィルム。
    After hot water treatment at 121 ° C for 30 minutes,
    The oxygen permeability at 30 ° C. and 70% RH is 2 cc / m 2 · day or less, and the water vapor transmission rate at 40 ° C. 90% RH is 2 g / m 2 · day or less.
    The gas barrier film according to any one of claims 1 to 13.
  16.  前記基材の前記第一面に形成した前記ガスバリア層の酸化アルミニウムの膜密度が2.0g/cm以上、および、膜内に含まれる水素濃度が29at%以下、の少なくとも一方である、
     請求項1から15にいずれか一項に記載のガスバリアフィルム。
    At least one of the aluminum oxide film density of the gas barrier layer formed on the first surface of the base material is 2.0 g / cm 3 or more and the hydrogen concentration contained in the film is 29 at% or less.
    The gas barrier film according to any one of claims 1 to 15.
PCT/JP2021/018226 2020-05-14 2021-05-13 Gas barrier film WO2021230319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522197A JPWO2021230319A1 (en) 2020-05-14 2021-05-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020085435 2020-05-14
JP2020-085435 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230319A1 true WO2021230319A1 (en) 2021-11-18

Family

ID=78524494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018226 WO2021230319A1 (en) 2020-05-14 2021-05-13 Gas barrier film

Country Status (2)

Country Link
JP (1) JPWO2021230319A1 (en)
WO (1) WO2021230319A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095915A1 (en) * 2021-11-29 2023-06-01 凸版印刷株式会社 Barrier film, laminate, and packaging bag
WO2023219141A1 (en) * 2022-05-12 2023-11-16 凸版印刷株式会社 Gas barrier film, packaging film, and packaging bag
JP7473088B2 (ja) 2022-05-12 2024-04-23 Toppanホールディングス株式会社 ガスバリアフィルム、包装フィルム及び包装袋

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329258A (en) * 1994-06-06 1995-12-19 Toray Ind Inc Biaxially oriented polypropylene composite film and metal oxide vapor-deposited biaxially oriented polypropylene composite film
JPH09290477A (en) * 1996-03-01 1997-11-11 Toppan Printing Co Ltd Film of barrier properties and packaging material using the film
JPH11300911A (en) * 1998-04-23 1999-11-02 Daicel Chem Ind Ltd Barrier film and its production
US6033786A (en) * 1995-09-27 2000-03-07 Applied Extrusion Technologies, Inc. Metallized films
JP2000202959A (en) * 1999-01-19 2000-07-25 Dainippon Printing Co Ltd Barrier film and laminate using it
JP2000233476A (en) * 1999-02-16 2000-08-29 Dainippon Printing Co Ltd Transparent barrier film
JP2001047552A (en) * 1999-06-03 2001-02-20 Toray Ind Inc Metallized biaxially oriented polypropylene film and laminate using the film
JP2016010889A (en) * 2014-06-27 2016-01-21 富士フイルム株式会社 Gas barrier film and production method of functional film
WO2019087960A1 (en) * 2017-10-30 2019-05-09 大日本印刷株式会社 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329258A (en) * 1994-06-06 1995-12-19 Toray Ind Inc Biaxially oriented polypropylene composite film and metal oxide vapor-deposited biaxially oriented polypropylene composite film
US6033786A (en) * 1995-09-27 2000-03-07 Applied Extrusion Technologies, Inc. Metallized films
JPH09290477A (en) * 1996-03-01 1997-11-11 Toppan Printing Co Ltd Film of barrier properties and packaging material using the film
JPH11300911A (en) * 1998-04-23 1999-11-02 Daicel Chem Ind Ltd Barrier film and its production
JP2000202959A (en) * 1999-01-19 2000-07-25 Dainippon Printing Co Ltd Barrier film and laminate using it
JP2000233476A (en) * 1999-02-16 2000-08-29 Dainippon Printing Co Ltd Transparent barrier film
JP2001047552A (en) * 1999-06-03 2001-02-20 Toray Ind Inc Metallized biaxially oriented polypropylene film and laminate using the film
JP2016010889A (en) * 2014-06-27 2016-01-21 富士フイルム株式会社 Gas barrier film and production method of functional film
WO2019087960A1 (en) * 2017-10-30 2019-05-09 大日本印刷株式会社 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095915A1 (en) * 2021-11-29 2023-06-01 凸版印刷株式会社 Barrier film, laminate, and packaging bag
JP7377425B2 (en) 2021-11-29 2023-11-10 Toppanホールディングス株式会社 Barrier films, laminates and packaging bags
WO2023219141A1 (en) * 2022-05-12 2023-11-16 凸版印刷株式会社 Gas barrier film, packaging film, and packaging bag
JP7473088B2 (ja) 2022-05-12 2024-04-23 Toppanホールディングス株式会社 ガスバリアフィルム、包装フィルム及び包装袋

Also Published As

Publication number Publication date
JPWO2021230319A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2021020400A1 (en) Laminated body and wrapping bag
JP4200972B2 (en) Gas barrier laminated film
JP6251970B2 (en) GAS BARRIER FILM, PROCESS FOR PRODUCING THE SAME, AND GAS BARRIER LAMINATE
WO2021230319A1 (en) Gas barrier film
JP4812552B2 (en) Gas barrier laminated film
JP2000233478A (en) Laminated film
WO2021020401A1 (en) Gas barrier laminate and packaging material using same
JP4924806B2 (en) Gas barrier laminate
WO2022168976A1 (en) Gas barrier film
JP4978066B2 (en) Method for evaluating manufacturing conditions of gas barrier film laminate
WO2021112243A1 (en) Gas barrier film
JP2001138457A (en) Laminate
JP2011051277A (en) Gas barrier laminated film
JP2021109381A (en) Gas barrier film, laminate using the same, and method for producing gas barrier film
JP4984702B2 (en) High moisture barrier film
JP2001138446A (en) Laminate
JP2020131676A (en) High interlaminar adhesive gas barrier vapor-deposited film
JP2020040221A (en) Laminate
WO2024014451A1 (en) Gas barrier film and barrier laminate
JP2021091202A (en) Gas barrier film
WO2024024780A1 (en) Laminate, packaging material, and package
WO2021024873A1 (en) Gas barrier film and method for manufacturing gas barrier film
JP2023085732A (en) Gas barrier film and laminate
JP2023132672A (en) gas barrier film
JP2023049126A (en) Gas barrier film, laminate and packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803892

Country of ref document: EP

Kind code of ref document: A1