WO2019087960A1 - Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film - Google Patents

Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film Download PDF

Info

Publication number
WO2019087960A1
WO2019087960A1 PCT/JP2018/039877 JP2018039877W WO2019087960A1 WO 2019087960 A1 WO2019087960 A1 WO 2019087960A1 JP 2018039877 W JP2018039877 W JP 2018039877W WO 2019087960 A1 WO2019087960 A1 WO 2019087960A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
barrier
aluminum oxide
laminated
vapor deposition
Prior art date
Application number
PCT/JP2018/039877
Other languages
French (fr)
Japanese (ja)
Inventor
岸本 好弘
鈴木 梓
可成 青野
雄一郎 浅井
翔平 伊丹
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019550319A priority Critical patent/JP7192781B2/en
Publication of WO2019087960A1 publication Critical patent/WO2019087960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention has excellent barrier properties against oxygen and water vapor, which can be suitably used as packaging materials for retort treatment such as food, medicine, pet food, etc., and improves the adhesion between the plastic substrate after retort treatment and the aluminum oxide deposited film.
  • the present invention relates to a laminated film having the above-mentioned barrier property, and a barrier film and a packaging material using the laminated film having resistance to retort.
  • the higher barrier property which is not affected by temperature and humidity, is stabilized so that deterioration of contents can be prevented and the function and properties can be maintained.
  • a barrier laminate film that can be exhibited, and a barrier laminate film having a multilayer structure in which a barrier layer consisting of a thin film of a deposited film of silicon oxide, aluminum oxide or the like and a barrier coating layer are laminated has also been developed.
  • the plastic substrate of a laminated film having a vapor-deposited film with excellent barrier properties susceptible to temperature, humidity, etc. is prone to dimensional change, and therefore, corresponds to expansion and contraction accompanying dimensional change of the plastic substrate.
  • a vapor deposition film such as a silicon oxide vapor deposition film or an aluminum oxide vapor deposition film provided thereon. Therefore, delamination often occurs in the severe environment of high temperature and humidity, etc. between the plastic substrate and the deposited film such as silicon oxide deposited film or aluminum oxide deposited film, and cracks, pinholes, etc. are also generated. Occur. As a result, there is a problem that the original barrier performance is significantly lost and it is extremely difficult to maintain the barrier performance.
  • the in-line plasma treatment method using the generally used parallel plate type device of Patent Document 1 introduces functional groups such as hydroxyl groups and carbonyl groups on the plastic surface, and interposes the same functional groups between the deposited films. Adhesion is expressed. However, if the adhesion is expressed by the hydrogen bond due to the hydroxyl group, the adhesion is remarkable because the hydrogen bond is broken in the high temperature and high humidity environment required for the application such as electronic paper such as electronic paper and retort packaging material There is a problem that falls. In addition, since the film only passes through the plasma atmosphere generated in the air in the above-mentioned plasma treatment, sufficient adhesion between the substrate and the deposited film in a severe environment with high temperature and humidity can not be obtained. Is the reality.
  • the technology to improve adhesion is implemented by performing pretreatment on the surface of the plastic substrate using a reactive ion etching (RIE) method that generates plasma with the electrode for plasma generation on the substrate side.
  • RIE reactive ion etching
  • Patent Document 3 two effects of chemical effect, such as giving a functional group to the surface of a substrate, and physical effect, such as ion etching of the surface to fly away impurities and the like and smoothing, are obtained simultaneously. It develops adhesion.
  • the adhesion is not exhibited by the hydrogen bond, and therefore, the decrease in the adhesion under a high temperature and high humidity environment is not observed.
  • a functional group is provided on a plastic substrate, the water resistance and the hot water resistance which cause hydrolysis and the like at the interface are still insufficient.
  • a barrier laminate film capable of stably exhibiting higher barrier properties is required, and has a multilayer structure in which a barrier layer composed of a thin film of aluminum oxide such as silicon oxide or aluminum oxide is laminated with a barrier coating layer.
  • a barrier laminate film excellent in retort resistance is desired.
  • retort treatment by hot water treatment gives great mechanical and chemical stress to the interface between the plastic substrate and the aluminum oxide vapor deposition film. This stress degrades the barrier property. This site is stressed because this site is the most vulnerable in the stack configuration. Therefore, in order to obtain retort resistance, it is important to firmly coat the deposited film at the interface with the substrate.
  • aluminum hydroxide has high water vapor barrier properties because it has good adhesion to a plastic substrate due to its chemical structure, and itself forms a network and is compact.
  • the bonding structure based on hydrogen bonding between aluminum hydroxide and the substrate is easily microscopically broken. In addition, it also easily penetrates into the film due to the affinity of the water particle / aluminum hydroxide particle interface to the aluminum hydroxide network.
  • the present invention has been made in view of the above problems and findings, and the object of the present invention is that adhesion between a plastic substrate and a deposited aluminum oxide film is good even after hot water treatment, And, a laminated film having a vapor deposited film excellent in barrier property, a barrier film laminated film including the laminated film and a so-called aluminum oxide vapor deposited film excellent in retort resistance, and the barrier film laminated film It is providing the gas-barrier packaging material excellent in barrier property excellent in retort resistance, and a gas-barrier package.
  • the laminate film of the present invention is a laminate film having a barrier property in which an aluminum oxide deposited film mainly composed of aluminum oxide is formed on the surface of a plastic substrate, and is formed with the substrate film surface.
  • a transition region of the deposited film is formed which defines adhesion strength with the deposited film mainly comprising the deposited aluminum oxide film, and the transition region is formed using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • Secondary ion mass spectrometry is an analysis method of an elemental concentration distribution in which a primary ion beam is irradiated to the surface of a sample to be analyzed, and secondary ions emitted by being sputtered from the sample surface are mass analyzed It is.
  • secondary ion mass spectrometry secondary ion intensity is detected while advancing sputtering. Therefore, by converting the transition time into the depth with respect to the data of the time transition of the ion intensity of the secondary ion, that is, the ion ion of the to-be-detected element ion or the to-be-detected element
  • concentration distribution of the element to be detected can be known.
  • conversion of transition time to depth is carried out by measuring the depth of a depression formed on the sample surface by irradiation of primary ions using a surface roughness meter, and averaging the depth of this depression and the transition time.
  • the sputtering rate is calculated, and the irradiation time (i.e., the transition time) is converted to the depth (sputtering amount) under the assumption that the sputtering rate is constant.
  • time-of-flight secondary ion mass spectrometry is performed on the aluminum oxide vapor deposited film of the laminated film while repeating soft etching at a constant speed as described above with a Cs (cesium) ion gun.
  • the transition region includes an element-bound Al 2 O 4 H that is transformed into aluminum hydroxide, which is detected by performing etching using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • Ratio of the transformed transition area defined using time-of-flight secondary ion mass spectrometry to an aluminum oxide vapor deposition film defined by performing etching using secondary ion mass spectrometry It is based on the finding that it is possible to specify a laminated film having a barrier property with improved adhesion strength by defining the transformation ratio of the transition region that is transformed to aluminum hydroxide as defined by the above.
  • the present invention performs etching from the outermost surface of a deposited aluminum oxide film by Cs using a time-of-flight secondary ion mass spectrometer, and combines elements at the interface between the deposited aluminum oxide film and the plastic substrate. And measurement of the elemental bonds of the deposited film, and the obtained measurement graphs of the measured elements and elemental bonds (FIG.
  • a barrier coating layer is further formed on the laminated film by setting the conversion ratio of the transition region of the aluminum oxide vapor-deposited film to 45% or less, and the plastic base of the barrier laminated film and the aluminum oxide vapor-deposited film
  • the adhesion strength at the interface should be 2.1 N / 15 mm or more after hot water treatment (high retort treatment) for 40 minutes at 135 ° C., or after 40 minutes of hot water treatment (semi retort treatment) at 121 ° C. It is possible to produce a barrier film having resistance to retort, which is improved in adhesion without the occurrence of delamination during molding or retorting of the retort pouch.
  • the oxygen permeability after high retort treatment and semi retort and the water vapor permeability are 0.2 cc / m 2 ⁇ 24 hr respectively.
  • a barrier laminate film exhibiting sufficient barrier properties to such an extent that deterioration of contents after storage and deterioration of storage life do not occur at 0.9 g / m 2 ⁇ 24 hours or less Can.
  • the aluminum oxide vapor deposition film of the present invention not only can improve the adhesion at the interface with the plastic substrate, but also has excellent heat and moisture resistance after retort treatment and can improve retort resistance after retort treatment also in barrier performance. It is.
  • the present invention is characterized by the following points. 1.
  • a laminated film having a barrier property in which an aluminum oxide vapor deposition film mainly composed of aluminum oxide is formed on the surface of a plastic substrate, adhesion strength between the substrate film surface and the vapor deposition film mainly comprising the aluminum oxide vapor deposition film formed
  • a transition region of the deposited film to be defined is formed, and the transition region is transformed into aluminum hydroxide detected by performing etching using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the above laminated film Defined by the ratio of the denatured transition region defined using TOF-SIMS to the aluminum oxide deposited film that contains elemental bound Al 2 O 4 H and is defined by performing etching using TOF-SIMS
  • the above laminated film wherein the transformation ratio of the transition region is 45% or less.
  • the plastic substrate is a polyethylene terephthalate film.
  • the plastic substrate comprises a recycled polyethylene terephthalate film.
  • the laminated film according to the above 1, wherein the plastic substrate is a polybutylene terephthalate film.
  • the laminated film according to the above 1, wherein the plastic substrate is a biomass-derived polyester film. 6.
  • a gas barrier packaging material comprising a thermoplastic resin having heat sealability laminated on the barrier laminate film according to any one of the above 9 to 11.
  • the gas barrier packaging material according to the above 12 which is used for packaging for retort sterilization.
  • the gas-barrier packaging body produced from the gas-barrier packaging material as described in said 12 or 13.
  • the transition region of the interface between the aluminum oxide vapor-deposited film and the plastic base on which aluminum hydroxide is formed in order to narrow as much as possible the transition region of the interface between the aluminum oxide vapor-deposited film and the plastic base on which aluminum hydroxide is formed, and optimize the ratio of modification to aluminum hydroxide, elemental bonded Al 2 O 4 Focusing on H, making the conversion ratio of the transition region of the aluminum oxide vapor deposition film in the laminated film 45% or less, increasing the ratio of the aluminum oxide film relatively less aluminum hydroxide, the fineness by the water molecules by retort treatment It is a thing which suppresses a vapor deposition film visual observation visually and an interface destruction with a plastic base material greatly.
  • the adhesion strength at the interface between the plastic substrate and the aluminum oxide vapor-deposited film is 2.1 N / 15 mm or more even after high retort treatment and semi retort treatment, and high retort treatment.
  • the oxygen permeability and the water vapor permeability after semi-retort have barrier properties of 0.2 cc / m 2 ⁇ 24 hr or less and 0.9 g / m 2 ⁇ 24 hr or less, respectively, and are excellent in retort resistance.
  • FIG. 1 b Cross-sectional view showing an example of a barrier laminate film B (FIG. 1 b) in which the laminate film A of the present invention (FIG. 1 a) and the barrier coating layer are laminated, and another embodiment laminate film A (FIG.
  • FIG. 1 a is a cross-sectional view showing an example of the laminated film of the present invention
  • FIG. 1 b is a cross-sectional view showing an example of a barrier laminate film including the laminate film and having a barrier coating layer laminated on the surface
  • FIG. 1 c is a cross-sectional view showing an example of a laminated film in which the base material layer is constituted of multiple layers
  • FIG. 1 a is a cross-sectional view showing an example of the laminated film of the present invention
  • FIG. 1 b is a cross-sectional view showing an example of a barrier laminate film including the laminate film and having a barrier coating layer laminated on the surface
  • FIG. 1 c is a cross-sectional view showing an example of a laminated film in which the base material layer is constituted of multiple layers
  • FIG. 2 is a roller suitable for forming the aluminum oxide vapor deposition film of the laminated film having barrier properties of the present invention. It is a figure which shows typically the structure of Formula continuous vapor deposition film-forming apparatus.
  • a barrier coating agent coating apparatus is arrange
  • the laminated film A having an aluminum oxide vapor deposition film having a barrier property with improved adhesion according to the present invention has a barrier property with improved adhesion to one surface of the plastic substrate 1, as shown in FIG. 1a.
  • the barrier coating layer 3 is further formed on the deposited film 2 of the laminated film A. It is set as the laminated structure which is laminated
  • the plastic substrate is not particularly limited, and known plastic films or sheets can be used.
  • polyethylene terephthalate polyester derived from biomass, polybutylene terephthalate, polyethylene naphthalate, recycled polyethylene terephthalate, polyester resin such as polyethylene furanoate, polyamide resin 6, polyamide resin 66, polyamide resin 610, polyamide resin 612, polyamide resin 11
  • a film made of a polyamide resin such as polyamide resin 12 or a polyolefin resin such as a polymer of ⁇ -olefin such as polyethylene or polypropylene can be used.
  • Polyester-based resins known as polyethylene terephthalate films are particularly preferably used.
  • a polybutylene terephthalate film has a high heat distortion temperature, is excellent in mechanical strength and electrical characteristics, and has good molding processability, etc., and therefore, when it is used for a packaging bag for containing contents such as food, when subjected to retort treatment It is possible to prevent the packaging bag from being deformed or its strength being reduced.
  • Polybutylene terephthalate film has high strength. For this reason, when a polybutylene terephthalate film is used, the packaging bag can have puncture resistance similarly to the case where the packaging material constituting the packaging bag contains a nylon film.
  • polybutylene terephthalate film is degraded in adhesion strength after retort treatment and in barrier property because it is hydrolyzed under high temperature and high humidity environment, it has a characteristic of being less likely to absorb water than nylon. For this reason, even when the polybutylene terephthalate film is disposed on the outer surface of the packaging material, it is possible to suppress the reduction in the laminate strength between the packaging materials of the packaging bag.
  • a polybutylene terephthalate film when used for a retort packaging bag, it can be preferably used because it can be replaced with a conventional polyethylene terephthalate film and nylon film laminated packaging material.
  • the polybutylene terephthalate film is a film containing polybutylene terephthalate (hereinafter also referred to as PBT) as a main component, and is preferably a resin film containing 60 mass% or more of PBT. And a polybutylene terephthalate film is divided into two aspects from the structure.
  • PBT polybutylene terephthalate
  • the content of PBT in the polybutylene terephthalate film according to the first aspect is preferably 60% by mass or more, more preferably 70% by mass or more, particularly preferably 75% by mass or more, and most preferably 80% by mass or more .
  • the PBT used as the main component preferably contains 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component. It is mol%.
  • 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 97 mol% or more.
  • the polybutylene terephthalate film may contain polyester resins other than PBT.
  • polyester resins other than PBT polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polypropylene terephthalate (PPT), and isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid , PBT resin in which dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid is copolymerized, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol
  • the addition amount of polyester resins other than these PBT is preferably 40% by mass or less. If the amount of the polyester resin other than PBT exceeds 40% by mass, the mechanical properties of the PBT may be impaired, and the impact strength, the pinhole resistance, and the drawability may be insufficient.
  • the layer configuration of the polybutylene terephthalate film according to the first aspect is produced by casting the resin in multiple layers by a casting method, and comprises a multilayer structure including a plurality of unit layers.
  • Each of the plurality of unit layers contains PBT as a main component.
  • each of the plurality of unit layers contains 60% by mass or more of PBT.
  • the n + 1-th unit layer is directly stacked on the n-th unit layer. That is, no adhesive layer or adhesive layer is interposed between the plurality of unit layers.
  • Such a polybutylene terephthalate film is composed of a multilayer structure including at least 10 or more, preferably 60 or more, more preferably 250 or more, more preferably 1000 or more unit layers.
  • the polybutylene terephthalate film according to the second aspect is constituted by a single layer containing a polyester having PBT as a main repeating unit.
  • a polyester having PBT as a main repeating unit has, for example, 1,4-butanediol as a glycol component, or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component, or an ester-forming derivative thereof.
  • polyesters of the homo or copolymer type obtained by condensing them 70 mass% or more is preferable, as for the content rate of PBT which concerns on a 2nd structure, 80 mass% or more is preferable, Most preferably, it is 90 mass% or more.
  • the polybutylene terephthalate film according to the second aspect may contain a polyester resin other than PBT in a range of 30% by mass or less.
  • polyester resin By including the polyester resin, PBT crystallization can be suppressed, and the stretchability of the polybutylene terephthalate film can be improved.
  • polyester resin compounded with PBT polyester which has ethylene terephthalate as a main repeating unit can be used.
  • the polybutylene terephthalate film according to the second configuration can be produced by a tubular method or a tenter method.
  • the unstretched raw fabric may be simultaneously stretched in the machine direction and the transverse direction by the tubular method or the tenter method, or may be sequentially stretched in the machine direction and the transverse direction.
  • the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
  • the biomass-derived polyester film is composed of a resin composition comprising, as a main component, a polyester comprising a diol unit and a dicarboxylic acid unit, wherein the resin composition is ethylene glycol having a diol unit derived from biomass, and a dicarboxylic acid unit 50 to 95% by mass, preferably 50 to 90% by mass, of a polyester which is a dicarboxylic acid derived from fossil fuel, with respect to the entire resin composition.
  • biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol
  • polyester films synthesized using biomass-derived ethylene glycol are the same as conventional fossil fuel-derived polyester films and machines
  • Ethylene glycol derived from biomass is obtained by using ethanol (biomass ethanol) produced from biomass such as sugar cane and corn as a raw material.
  • biomass ethylene glycol can be obtained from biomass ethanol by a method known in the prior art, such as a method of producing ethylene glycol via ethylene oxide.
  • commercially available biomass ethylene glycol may be used, and, for example, biomass ethylene glycol commercially available from Indyaglikol can be suitably used.
  • the dicarboxylic acid unit of polyester uses dicarboxylic acid derived from fossil fuel.
  • dicarboxylic acids aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and derivatives thereof can be used.
  • aromatic dicarboxylic acids include terephthalic acid and isophthalic acid.
  • Derivatives of aromatic dicarboxylic acids include lower alkyl esters of aromatic dicarboxylic acids, specifically methyl ester, ethyl ester, propyl ester and butyl ester. Ester etc. are mentioned.
  • terephthalic acid is preferable, and as a derivative of aromatic dicarboxylic acid, dimethyl terephthalate is preferable.
  • the polyester which may be contained in a proportion of 5 to 45% by mass in the resin composition forming the polyester film derived from biomass is a polyester derived from fossil fuel, a recycled polyester from polyester products derived from fossil fuel, a polyester product derived from biomass Is recycled polyester.
  • the content of carbon derived from biomass as measured by radioactive carbon is preferably 10 to 19% of the total carbon in the polyester. Since carbon dioxide in the atmosphere contains 14 C at a constant rate (105.5 pMC), plants that grow by incorporating carbon dioxide in the atmosphere, such as corn, also have a 14 C content of around 105.5 pMC It is known to be. It is also known that 14 C is hardly contained in fossil fuels. Therefore, the proportion of carbon derived from biomass can be calculated by measuring the proportion of 14 C contained in all the carbon atoms in the polyester.
  • the content Pbio of carbon derived from biomass is defined as follows.
  • Pbio (%) P 14 C / 10 5.5 ⁇ 100
  • polyethylene terephthalate is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms at a molar ratio of 1: 1.
  • the content Pbio of biomass-derived carbon in the polyester is 20%.
  • the content of carbon derived from biomass as measured by radioactive carbon ( 14 C) relative to total carbon in the resin composition is preferably 10 to 19%.
  • the carbon content derived from biomass in the resin composition is less than 10%, the effect as a carbon offset material becomes poor.
  • the carbon content derived from biomass in the resin composition is preferably as close to 20% as possible, but from the viewpoint of problems in the film production process and physical properties, the recycled polyester as described above Since it is preferable to include an additive, the actual upper limit is 18%.
  • the resin base material of the present invention one containing polyethylene terephthalate recycled by mechanical recycling (hereinafter, polyethylene terephthalate is also described as PET) can be used.
  • the resin base material includes PET obtained by mechanical recycling of a PET bottle, and in this PET, the diol component is ethylene glycol and the dicarboxylic acid component includes terephthalic acid and isophthalic acid.
  • polyethylene terephthalate resin products such as recovered PET bottles are crushed and washed with alkali to remove dirt and foreign matter on the surface of the PET resin products, and then dried for a fixed time under high temperature and reduced pressure. Then, the contaminants remaining in the inside of the PET resin are diffused and decontaminated to remove the stains of the resin product made of the PET resin, and it is returned to the PET resin again.
  • polyethylene terephthalate obtained by recycling PET bottles is referred to as “recycled polyethylene terephthalate (hereinafter, also referred to as recycled PET)”, and non-recycled polyethylene terephthalate is referred to as “virgin polyethylene terephthalate (hereinafter, also referred to as virgin PET).
  • recycled PET recycled polyethylene terephthalate
  • virgin PET virgin PET
  • the content of the isophthalic acid component in the PET contained in the resin base material is preferably 0.5 mol% or more and 5 mol% or less in all the dicarboxylic acid components constituting the PET, and 1.0 mol% More preferably, it is at least 2.5 mol%. If the content of the isophthalic acid component is less than 0.5 mol%, the flexibility may not be improved, while if it is more than 5 mol%, the melting point of PET may decrease and the heat resistance may be insufficient.
  • PET may be biomass PET other than PET derived from normal fossil fuel.
  • biomass PET is one that contains ethylene glycol derived from biomass as a diol component, and contains dicarboxylic acid derived from a fossil fuel as a dicarboxylic acid component.
  • This biomass PET may be formed only of PET comprising ethylene glycol derived from biomass as a diol component and dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component, or ethylene glycol derived from biomass and diol derived from fossil fuel It may be formed of PET, which is a diol component and a dicarboxylic acid component derived from a fossil fuel.
  • PET used for a PET bottle can be obtained by the conventionally well-known method of polycondensing the diol component and dicarboxylic acid component which were mentioned above.
  • a general method of melt polymerization in which an esterification reaction and / or an ester exchange reaction of the diol component and the dicarboxylic acid component is performed, and then a polycondensation reaction under reduced pressure is performed, or an organic solvent It can be produced by a known solution heat dehydration condensation method using
  • the amount of the diol component used in producing the PET is substantially equimolar to 100 moles of the dicarboxylic acid or its derivative, but in general, the esterification and / or transesterification reaction and / or polycondensation Since there is distillation during the reaction, it is used in excess of 0.1 mol% or more and 20 mol% or less.
  • the polycondensation reaction is preferably carried out in the presence of a polymerization catalyst.
  • the timing of addition of the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and may be added at the time of feeding the raw materials, or may be added at the start of pressure reduction.
  • the PET obtained by recycling the PET bottle is polymerized and solidified as described above, and then the degree of polymerization is further increased, and oligomers such as cyclic trimers are removed, so solid phase polymerization is carried out as necessary. You may go. Specifically, in solid-phase polymerization, after PET is chipped and dried, it is heated at a temperature of 100 ° C. or more and 180 ° C. or less for about 1 hour to 8 hours to pre-crystallize PET, and subsequently, 190 ° C. It is carried out by heating at a temperature of at least 230 ° C. and under an inert gas atmosphere or under reduced pressure for 1 hour to several tens of hours.
  • the intrinsic viscosity of PET contained in recycled PET is preferably 0.58 dl / g or more and 0.80 dl / g or less. If the intrinsic viscosity is less than 0.58 dl / g, mechanical properties required for a PET film as a resin substrate may be insufficient. On the other hand, when the intrinsic viscosity exceeds 0.80 dl / g, the productivity in the film forming step may be impaired. The intrinsic viscosity is measured at 35 ° C. with an orthochlorophenol solution.
  • Recycled PET preferably contains recycled PET at a ratio of 50% by weight to 95% by weight, and may contain virgin PET in addition to recycled PET.
  • the virgin PET may be a PET in which the diol component as described above is ethylene glycol, the dicarboxylic acid component is terephthalic acid and isophthalic acid, and the dicarboxylic acid component is PET in which isophthalic acid is not contained. It is also good.
  • the resin base material layer may contain polyester other than PET.
  • the dicarboxylic acid component aliphatic dicarboxylic acids and the like may be contained in addition to aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • aliphatic dicarboxylic acids include chains having a carbon number of usually 2 or more and 40 or less, such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid and cyclohexanedicarboxylic acid.
  • cyclic or alicyclic dicarboxylic acids examples include lower alkyl esters such as methyl, ethyl, propyl and butyl esters of the above aliphatic dicarboxylic acids, and cyclic acid anhydrides of the above aliphatic dicarboxylic acids such as succinic anhydride, etc.
  • aliphatic dicarboxylic acid adipic acid, succinic acid, dimer acid or a mixture thereof is preferable, and one containing succinic acid as a main component is particularly preferable.
  • succinic acid methyl esters of adipic acid and succinic acid, or mixtures thereof are more preferred.
  • the resin base composed of such PET may be a single layer or a multilayer.
  • the resin substrate in the case of using recycled PET as described above for the resin substrate, it may be a resin substrate provided with three layers of a first layer 1a, a second layer 1b, and a third layer 1c.
  • the second layer 1b should be a layer composed only of recycled PET or a mixed layer of recycled PET and virgin PET
  • the first layer 1a and the third layer 1c should be a layer composed only of virgin PET Is preferred.
  • the resin base layer may be a resin base layer provided with two layers of the second layer 1 b and the third layer 1 c without providing the first layer 1 a shown in FIG. 1 c.
  • the resin base material layer may be a resin base material layer provided with two layers of the first layer 1a and the second layer 1b without providing the third layer 1c shown in FIG. 1c.
  • the second layer 1b is a layer composed only of recycled PET or a mixed layer of recycled PET and virgin PET
  • the first layer 1a and the third layer 1c are layers composed only of virgin PET It is preferable to
  • PET which comprises a resin base material can contain various additives in the range which the characteristic does not impair in the manufacturing process, or after its manufacture.
  • Additives include, for example, plasticizers, UV stabilizers, coloring inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, mold release agents, antioxidants, ions Exchangers, color pigments and the like can be mentioned.
  • the additive is preferably contained in the range of 5% by mass to 50% by mass, preferably 5% by mass to 20% by mass, in the entire resin composition containing PET.
  • the resin substrate can be formed, for example, by film formation by the T-die method using the above-mentioned PET. Specifically, the above-described PET is dried and then supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. higher than the melting point of PET to melt the resin composition, for example, T-die
  • Tm temperature
  • T-die temperature
  • the film can be formed by extruding the die into a sheet shape and rapidly solidifying the extruded sheet material with a rotating cooling drum or the like.
  • a melt extruder a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder etc. can be used according to the objective.
  • the film obtained as described above is preferably biaxially stretched.
  • Biaxial stretching can be performed by a conventionally known method.
  • the film extruded on the cooling drum as described above is subsequently heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to form a longitudinally stretched film. It is preferable to perform this stretching using the circumferential speed difference of two or more rolls.
  • the longitudinal stretching is usually performed in a temperature range of 50 ° C. or more and 100 ° C. or less.
  • the magnification of longitudinal stretch is based also on the required characteristic of a film use, it is preferable to set it as 2.5 times or more and 4.2 times or less. When the draw ratio is less than 2.5 times, the thickness unevenness of the PET film becomes large, and it is difficult to obtain a good film.
  • Transverse stretching is usually performed in a temperature range of 50 ° C. or more and 100 ° C. or less.
  • magnification of transverse stretching depends on the required characteristics of this application, it is preferably 2.5 times or more and 5.0 times or less. When it is less than 2.5 times, thickness unevenness of the film becomes large and a good film is difficult to be obtained. When it exceeds 5.0 times, breakage easily occurs during film formation.
  • a heat setting treatment is subsequently performed, but a preferable heat setting temperature range is Tg + 70 to Tm-10 ° C. of PET.
  • the heat setting time is preferably 1 second to 60 seconds. Furthermore, for applications requiring a reduction in heat shrinkage rate, a heat relaxation treatment may be performed as necessary.
  • the thickness of the PET film obtained as described above is arbitrary according to the application, but is usually about 5 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m. Further, the breaking strength of the PET film in the MD direction 5 kg / mm 2 or more 40 kg / mm 2 or less, in TD direction 5 kg / mm 2 or more 35 kg / mm 2 or less, also elongation at break 50 in the MD direction % And 350% or less, and 50% or more and 300% or less in the TD direction. In addition, the shrinkage rate when left for 30 minutes in a temperature environment of 150 ° C. is 0.1% or more and 5% or less.
  • the virgin PET may be fossil fuel polyethylene terephthalate (hereinafter also referred to as fossil fuel PET), or may be biomass PET.
  • fossil fuel PET refers to a diol derived from fossil fuel as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component.
  • recycled PET may be obtained by recycling a PET resin product formed using fossil fuel PET, and obtained by recycling a PET resin product formed using biomass PET. It may be.
  • the high-stiffness polyester film is a stretched plastic film having a loop stiffness of 0.0017 N / 15 mm or more in the machine direction (MD) and the vertical direction (TD) and containing 51% by mass or more of polyester. Loop stiffness is a parameter that represents the strength of the film.
  • MD machine direction
  • TD vertical direction
  • Loop stiffness is a parameter that represents the strength of the film.
  • the film is cut into strips having long sides and short sides to prepare test pieces. Subsequently, the short side of each end of the strip in the long side direction is fixed in a state in which the strip is curved so that the strip draws a loop to form a circular loop having a predetermined diameter. Thereafter, the circular loop is pushed from the outside over a predetermined distance. Then, the load required for pushing is recorded as loop stiffness.
  • the length of the short side of the strip is 15 mm, and the length of the long side is 150 mm. Further, the diameter of the circular loop was 60 mm, and the pressing distance of the circular loop was 40 mm.
  • the above-mentioned "0.0017 N / 15 mm" loop stiffness means that the load required to push 40 mm of the circular loop of a short strip having a short side length of 15 mm is 0.0017 N.
  • a test piece When measuring the loop stiffness in the flow direction, a test piece is produced so that the flow direction of the film coincides with the long side direction of the strip.
  • a test piece When measuring the loop stiffness in the vertical direction, a test piece is produced so that the vertical direction of the film coincides with the long side direction of the strip.
  • LOOP STIFFNESS TESTER manufactured by Toyo Seiki Co., Ltd. can be used.
  • the puncture strength of the high-stiffness polyester film is preferably 9.5 N or more, more preferably 10.0 N or more.
  • the tensile strength of the high stiffness polyester film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile strength of the high stiffness polyester film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile elongation of the high stiffness polyester film in the flow direction is preferably 130% or less, more preferably 120% or less.
  • the tensile elongation of the high stiffness polyester film in the vertical direction is preferably 120% or less, more preferably 110% or less.
  • a value obtained by dividing the tensile strength of the high-stiffness polyester film by the tensile elongation in at least one direction is 2.0 MPa /% or more.
  • the tensile strength of the high stiffness film in the vertical direction (TD) divided by the tensile elongation is preferably 2.0 MPa /% or more, more preferably 2.2 MPa /% or more.
  • the value obtained by dividing the tensile strength of the high stiffness film in the flow direction (MD) by the tensile elongation is preferably 1.8 MPa /% or more, and more preferably 2.0 MPa /% or more.
  • Tensile strength and tensile elongation can be measured in accordance with JIS K7127.
  • a measuring instrument a tensile tester STA-1150 manufactured by Orientec Co., Ltd. can be used.
  • As a test piece what cut out the film into the rectangular film of width 15 mm and length 150 mm can be used.
  • the distance between the pair of chucks holding the test piece at the start of measurement is 100 mm, and the pulling speed is 300 mm / min.
  • the environmental temperature during the test is 25 ° C.
  • the heat shrinkage of the high stiffness polyester film in the flow direction is preferably 0.7% or less, more preferably 0.5% or less.
  • the thermal contraction rate of the high stiffness polyester film in the vertical direction is preferably 0.7% or less, and more preferably 0.5% or less.
  • the heating temperature at the time of measuring the thermal contraction rate is 100 ° C., and the heating time is 40 minutes.
  • the Young's modulus of the high stiffness polyester film in the flow direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more. And, the Young's modulus of the high stiffness polyester film in the vertical direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more.
  • the polyester film obtained by melting and forming the polyester first is 3 to 4.5 times at 90 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively.
  • the polyester film is subjected to a second stretching step of stretching 1.1 times to 3.0 times at 100 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively.
  • heat setting is performed at a temperature of 190 ° C. to 220 ° C.
  • a relaxation treatment is performed at a temperature of 100 ° C. to 190 ° C. in the flow direction and the vertical direction to reduce the width of the polyester film by about 0.2% to 2.5%.
  • a high stiffness polyester film having the above-mentioned mechanical properties.
  • a kind of polyester used for the high stiffness polyester film Is preferably polyethylene terephthalate.
  • the thickness of the plastic film as the plastic substrate of the present invention as described above is not particularly limited, and the pretreatment and formation when depositing a deposited film by a roller type continuous deposited film deposition apparatus described later Any film can be used, and from the viewpoint of flexibility and shape retention, a range of 6 to 400 ⁇ m, preferably 9 to 200 ⁇ m is desirable.
  • the thickness is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, further preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the continuous film is used for producing a laminated film having an aluminum oxide vapor deposition film provided with a barrier property with improved adhesion without bending and being broken during transportation. Easy to handle with a deposited film deposition system.
  • a high-stiffness polyester film is used as the plastic substrate, it is possible to obtain a laminated film having the same or higher rigidity, tensile strength and piercing strength after reducing the thickness and weight of the laminated film.
  • the deposition of the aluminum oxide vapor deposition film is performed on the surface of the plastic substrate film in order to improve the adhesion between the plastic substrate and the aluminum oxide vapor deposition film, and the like. It is preferable to perform special oxygen plasma pretreatment using The special oxygen plasma pretreatment is a pretreatment for strengthening and improving the adhesion between a film or sheet of various resins and an aluminum oxide vapor deposition film in the present invention, as compared with the conventional method. It is implemented in an apparatus.
  • the roller-type continuous vapor deposition film deposition apparatus 10 suitably used for the production of a laminated film having an aluminum oxide vapor deposition film having a barrier property with improved adhesion according to the present invention is, as shown in FIG.
  • the partition walls 35a to 35c are formed on the The base material transfer chamber 12A, the plasma pretreatment chamber 12B, and the film formation chamber 12C are formed by the partition walls 35a to 35c, and in particular, the plasma pretreatment chamber 12B and the film formation chamber are spaces surrounded by the partition walls and the partition walls 35a to 35c. 12C is formed, and each chamber is further internally formed with an exhaust chamber as required. (Special oxygen plasma pretreatment)
  • a plastic substrate S to be subjected to pretreatment is conveyed, and a part of the plasma pretreatment roller 20 that enables plasma treatment is provided so as to be exposed to the substrate conveyance chamber 12A.
  • the plastic substrate S is moved to the plasma pretreatment chamber 12B while being wound up.
  • the plasma pretreatment chamber 12B and the film forming chamber 12C are provided in contact with the substrate transfer chamber 12A, and can move the plastic substrate S without being exposed to the atmosphere. Further, the pretreatment chamber 12B and the substrate transfer chamber 12A are connected by a rectangular hole, and a part of the plasma pretreatment roller 20 protrudes to the substrate transfer chamber 12A through the rectangular hole, A gap is opened between the wall of the transfer chamber and the pretreatment roller 20, and the substrate S can be moved from the substrate transfer chamber 12A to the film forming chamber 12C through the gap. The same structure is also provided between the substrate transfer chamber 12A and the film forming chamber 12C, and the plastic substrate S can be moved without being exposed to the atmosphere.
  • the base material transfer chamber 12A is moved to the base material transfer chamber 12A again by the film forming roller 23, and rolls up the plastic base material S on which the vapor deposition film is formed on one side.
  • a take-up roller is provided to enable take-up of the plastic substrate S on which the deposited film is formed.
  • the plasma pretreatment chamber 12B divides the space generated by plasma from the other region, and the opposing space By being configured to be able to evacuate efficiently, control of plasma gas concentration becomes easy, and productivity is improved.
  • the pretreatment pressure to be formed by reducing the pressure can be set and maintained at about 0.1 Pa to 100 Pa, and in particular, special oxygen plasma pretreatment to achieve the transformation rate of the preferable transition region of the aluminum oxide vapor deposition film of the present invention.
  • the processing pressure of is preferably 1 to 20 Pa.
  • the transport speed of the plastic substrate S is not particularly limited, but can be at least 200 to 1000 m / min from the viewpoint of production efficiency, and in particular, to set the conversion rate of the transition region of the aluminum oxide vapor deposition film of the present invention.
  • the transport speed of the special oxygen plasma pretreatment is preferably 300 to 800 m / min.
  • the plasma pretreatment roller 20 constituting the plasma pretreatment apparatus prevents the plastic substrate S from shrinking or breaking of the substrate due to heat during plasma treatment by the plasma pretreatment means, oxygen plasma P to the plastic substrate S It is intended to be applied uniformly and widely. It is preferable that the pretreatment roller 20 can be adjusted to a constant temperature between -20 ° C. and 100 ° C. by adjusting the temperature of the temperature control medium circulated in the pretreatment roller.
  • the plasma pretreatment means includes plasma supply means and magnetic formation means.
  • the plasma pretreatment means cooperates with the plasma pretreatment roller 20 to confine the oxygen plasma P near the surface of the plastic substrate S.
  • the plasma pretreatment means is provided so as to cover a part of the pretreatment roller 20.
  • the plasma supply means and the magnetic forming means constituting the plasma pretreatment means are disposed along the surface in the vicinity of the outer periphery of the pretreatment roller 20 to supply the pretreatment roller 20 and the plasma raw material gas and the plasma P Are formed so as to form an air gap sandwiched between the plasma supply nozzles 22a to 22c, which also serve as electrodes for generating the magnetic field, and the magnetic forming means having the magnet 21 etc., to promote the generation of the plasma P.
  • the plasma supply nozzles 22a to 22c are opened in the space of the gap, and plasma is jetted toward the surface of the substrate to make the inside of the gap a plasma forming region.
  • the plasma supply means of the plasma pretreatment means includes a raw material volatilization supply device 18 connected to a plasma supply nozzle provided outside the decompression chamber 12, and a raw material gas supply line for supplying the raw material gas from the device.
  • the supplied plasma source gas is a mixture gas of oxygen alone or a mixture of oxygen gas with argon, helium, nitrogen and one or more of those gases, and the flow rate of the gas is measured from the gas storage unit via a flow controller. While being supplied.
  • These supplied gases are mixed at a predetermined ratio as needed, formed into a plasma source gas alone or a mixed gas for plasma formation, and supplied to the plasma supply means.
  • the single or mixed gas is supplied to the plasma supply nozzles 22a to 22c of the plasma supply means, and is supplied near the outer periphery of the pretreatment roller 20 where the supply ports of the plasma supply nozzles 22a to 22c are opened.
  • the nozzle opening is directed to the plastic substrate S on the pretreatment roller 20, and is arranged and configured to be able to diffuse and supply the oxygen plasma P uniformly over the entire surface of the plastic substrate S, the plastic substrate A uniform plasma pretreatment can be performed on the large-area portion of the material S.
  • the mixing ratio of oxygen gas and argon or helium is 5: 1, preferably 2: 1.
  • the mixing ratio is 5: 1, the film formation energy of the deposited aluminum on the plastic film substrate is increased, and by further setting it to 2: 1, the formation of aluminum hydroxide is formed in the vicinity of the interface of the substrate That is, the transformation rate of the transition region is reduced.
  • the plasma supply nozzles 22 a to 22 c function as counter electrodes of the pretreatment roller 20 and are made to have an electrode function, and the high frequency voltage supplied between the pretreatment roller 20 and the plasma supply nozzles 22 a to 22 c is low.
  • the plasma source gas supplied by the potential difference due to the frequency voltage or the like is in the excited state, and the plasma P is generated and supplied.
  • the plasma supply means of the plasma pretreatment means installs a plasma pretreatment roller as a plasma power source, applies an AC voltage with a frequency of 10 Hz to 2.5 GHz to the counter electrode, and controls input power or And impedance control etc., and an arbitrary voltage can be applied between the substrate and the plasma pretreatment roller 20, so that the surface physical properties of the substrate can be physically or chemically modified.
  • a power supply 32 is provided that can apply a bias voltage that makes the oxygen plasma P a positive potential.
  • the plasma intensity of the special oxygen plasma pretreatment is preferably 100 to 1000 W ⁇ sec / m 2 in order to obtain the transformation ratio of the transition region of the aluminum oxide vapor deposition film of the present invention.
  • the plasma pretreatment means comprises magnetism forming means.
  • a magnetic formation means an insulating spacer and a base plate are provided in the magnet case, and the magnet 21 is provided on the base plate.
  • An insulating shield plate is provided on the magnet case, and an electrode is attached to the insulating shield plate. Therefore, the magnet case and the electrode are electrically insulated, and even if the magnet case is installed and fixed in the decompression chamber 12, the electrode can be made to have an electrically floating level.
  • a power supply wiring 31 is connected to the electrode, and the power supply wiring 31 is connected to a power supply 32. Further, a temperature control medium pipe for cooling the electrode and the magnet 21 is provided inside the electrode. The magnet 21 is provided in order to apply the oxygen plasma P from the plasma supply nozzles 22a to 22c, which are electrode and plasma supply means, to the substrate S in a concentrated manner. By providing the magnet 21, the reactivity in the vicinity of the surface of the substrate becomes high, and it becomes possible to form a good plasma pretreatment surface at high speed.
  • the magnet 21 has a magnetic flux density at the surface position of the plastic substrate S of 10 gauss to 10000 gauss. If the magnetic flux density on the surface of the plastic substrate S is 10 gauss or more, the reactivity near the surface of the substrate can be sufficiently enhanced, and a good pretreatment surface can be formed at high speed.
  • the ions and electrons formed at the time of plasma pretreatment are moved according to the arrangement structure of the electrode 21 due to the arrangement structure of the magnets 21, for example, in the case of performing the plasma pretreatment on a large area plastic substrate S of 1 m 2 or more Also, electrons, ions, and decomposition products of the substrate are uniformly diffused over the entire surface of the electrode, and even when the plastic substrate S has a large area, uniform and stable target pretreatment can be performed with desired plasma strength. It is a thing.
  • the special oxidation plasma-treated plastic substrate S is moved from the substrate transfer chamber 12A to the film forming chamber 12C by the guide rolls 14a to 14d for leading to the next film forming chamber 12C, and the aluminum oxide deposited film is formed in the film forming section. Is formed.
  • the aluminum oxide vapor deposition film is a thin film of an inorganic oxide containing aluminum oxide as a main component, which can contain an aluminum compound such as aluminum oxide or aluminum nitride such as aluminum nitride, carbide or hydroxide alone or a mixture thereof It is a layer containing aluminum as a main component. Furthermore, the aluminum oxide vapor deposition film contains the above-mentioned aluminum compound as a main component, and silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, indium oxide, zinc oxide, zirconium oxide Etc., or metal nitrides thereof, carbides, and mixtures thereof.
  • the aluminum oxide vapor deposition film of the present invention has a conversion ratio of 45% or less of the transition region of the aluminum oxide vapor deposition film.
  • the transformation ratio of the transition region of the aluminum oxide vapor deposition film is a time-of-flight type secondary while repeating soft etching at a constant speed with a Cs (cesium) ion gun to the aluminum oxide vapor deposition film 2 of the laminated film A having a barrier property.
  • a graph analysis diagram as shown in FIG. 3 can be obtained by measuring the ions derived from the aluminum vapor deposition film and the ions derived from the plastic substrate using ion mass spectrometry (TOF-SIMS).
  • etching is performed from the outermost surface of a deposited aluminum oxide film under a constant condition using Cs using a time-of-flight secondary ion mass spectrometer, and element bonding at the interface between the deposited aluminum oxide film and the plastic base material And measure the elemental bonds of the vapor deposited aluminum oxide film, and obtain the respective graphs for the measured elements and elemental bonds (Fig.
  • the transformation ratio of the transition region of the aluminum oxide vapor deposition film layer of the present invention is preferably 45% or less. If it exceeds 45%, the adhesion between the plastic substrate and the deposited film after hot water treatment (high retort) at 135 ° C. for 40 minutes or after hot water treatment (semi retort) at 121 ° C. for 40 minutes decreases In addition, the barrier performance against water vapor is reduced.
  • Hydrothermal treatment exerts a large mechanical and chemical stress on the interface between the plastic substrate and the deposited aluminum oxide film. This stress degrades the barrier property. This site is stressed because this site is the most vulnerable in the stack configuration. Therefore, in order to obtain retort resistance, it is important to cover the deposited film firmly at the interface with the substrate.
  • Aluminum hydroxide has high water vapor barrier properties because it has good adhesion to a plastic substrate due to its chemical structure, and itself forms a network and is compact.
  • the bonding structure based on hydrogen bonding between aluminum hydroxide and the substrate is easily broken microscopically. In addition, it also easily penetrates into the film due to the affinity of the water particle / aluminum hydroxide particle interface to the aluminum hydroxide network.
  • the aluminum oxide vapor deposition film of the present invention can be formed by depositing a vapor deposition film on the surface of a special oxygen plasma pretreated plastic substrate.
  • a vapor deposition method for forming a vapor deposition film various vapor deposition methods can be applied from physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, cluster ion beam method, and as chemical vapor deposition method, plasma CVD method, plasma polymerization method, thermal It can be selected from the group consisting of CVD method and catalytic reaction type CVD method.
  • a physical vapor deposition method is preferred.
  • the film formation of the aluminum oxide vapor deposition film will be described below using the roller type continuous vapor deposition film deposition apparatus 10 shown in FIG. 2 which can perform vapor deposition by a physical vapor deposition method suitable for the present invention.
  • the vapor deposition film forming apparatus is disposed in the film forming chamber 12C under reduced pressure, and transports the plastic substrate S by winding the plastic substrate S with the treated surface of the plastic substrate S pretreated by the plasma pretreatment apparatus outside.
  • a deposition film is formed on the surface of the plastic substrate by evaporating a film forming roller 23 for film formation processing and a target of a film forming source 24 disposed opposite to the film forming roller.
  • the vapor deposition film forming means 24 is a resistance heating method, using a metal wire of aluminum with aluminum as an evaporation source, supplying oxygen to oxidize aluminum vapor, depositing an aluminum oxide vapor deposition film on the surface of the plastic substrate S. Form a film.
  • a plurality of aluminum metal wires are arranged in the axial direction of the roller 23 in a boat (“boat type”) vapor deposition vessel, and heating is performed by resistance heating.
  • the metal material of aluminum can be evaporated by suppressing the supplied heat and heat amount, and the aluminum oxide vapor deposition film can be formed while suppressing the thermal deformability of the plastic substrate S as much as possible. it can.
  • the thickness of the aluminum oxide vapor deposition film formed as described above is 3 to 50 nm, preferably 8 to 30 nm. Within this range, barrier properties can be maintained.
  • the barrier coating layer laminated on the surface of the aluminum oxide deposited film of the laminated film of the present invention protects the aluminum oxide deposited film mechanically and chemically and improves the barrier performance of the laminated film having the barrier property. It is a thing.
  • a barrier coating layer to be coated to form a barrier laminate film having retort resistance excellent in barrier properties will be described.
  • the barrier coating layer is formed by applying a barrier coating agent on a deposited aluminum oxide film and solidifying it.
  • the barrier coating agent is composed of a metal alkoxide, a water-soluble polymer, a silane coupling agent optionally added, a sol-gel method catalyst, an acid and the like.
  • a metal alkoxide As a metal alkoxide, a general formula R 1 n M (OR 2 ) m (wherein, R 1 and R 2 each represents an organic group having 1 to 8 carbon atoms, M represents a metal atom, and n represents n) , M represents an integer of 1 or more, and n + m represents a valence of M) at least one metal alkoxide represented by M), a metal represented by M of a metal alkoxide Examples of the atom include silicon, zirconium, titanium, aluminum, and the like. For example, it is preferable to use an alkoxysilane in which M is Si.
  • the above alkoxysilane is, for example, one represented by the general formula Si (ORa) 4 (wherein, Ra represents a lower alkyl group).
  • Ra represents a lower alkyl group
  • Specific examples of the above alkoxysilane include, for example, tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4, tetrapropoxysilane Si (OC 3 H 7 ) 4 , tetrabutoxysilane Si (OC 4 H 9 ) 4 , others, etc. can be used.
  • the above alkoxide may be used in combination of two or more.
  • silane coupling agent what has reactive groups, such as a vinyl group, an epoxy group, methacryl group, and an amino group, can be used.
  • organoalkoxysilanes having an epoxy group are suitable, for example, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyldimethylmethoxysilane, ⁇ -glycidoxy Propyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyldimethylethoxysilane, or ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane can be used.
  • the silane coupling agents as described above may be used alone or in combination of two or more.
  • polyvinyl alcohol resins or ethylene / vinyl alcohol copolymers can be used alone, or polyvinyl alcohol resins and ethylene / vinyl alcohol copolymers are used in combination. can do. In the present invention, polyvinyl alcohol resins are preferred.
  • a polyvinyl alcohol-type resin what is obtained by saponifying polyvinyl acetate can be used.
  • a polyvinyl alcohol-based resin a partially saponified polyvinyl alcohol-based resin in which several tens of acetic acid groups remain, a completely saponified polyvinyl alcohol in which no acetic acid groups remain, or a modified polyvinyl alcohol-based resin in which OH groups are modified Good.
  • the polyvinyl alcohol-based resin with respect to the degree of saponification, it is necessary to use at least one that is subjected to crystallization to improve the film hardness of the gas barrier coating, and preferably the degree of saponification is 70% or more.
  • the polymerization degree is in the range (about 100 to 5000) used in the conventional sol-gel method, it can be used.
  • ethylene-vinyl alcohol copolymer a saponified copolymer of ethylene and vinyl acetate, that is, one obtained by saponifying an ethylene-vinyl acetate random copolymer can be used.
  • the partial saponification product in which several tens mol% of acetic acid groups remain, to completely saponified products in which only several mol% of acetic acid groups remain or no acetic acid groups remain is not particularly limited.
  • the barrier coating layer can be produced by the following method. First, the above metal alkoxide, a silane coupling agent added as necessary, a water-soluble polymer, a sol-gel method catalyst, an acid, water as a solvent, and an organic solvent such as alcohol such as methyl alcohol, ethyl alcohol and isopropanol are mixed. And prepare a barrier coating agent. Then, the above-mentioned barrier coating agent is applied onto the aluminum oxide vapor-deposited film by a conventional method and dried. By the drying step, polycondensation of the metal alkoxide, the silane coupling agent and the water-soluble polymer further proceeds to form a coating film.
  • the above coating operation may be further repeated on the first coating film to form a plurality of coating films composed of two or more layers. Furthermore, heat treatment is carried out at a temperature of 20 to 200 ° C. and a temperature below the melting point of the plastic substrate, preferably at a temperature in the range of 50 to 180 ° C., for 3 seconds to 10 minutes. Thereby, a barrier coating layer of the above-mentioned barrier coating agent can be formed on the aluminum oxide vapor deposition film.
  • the composition of the barrier coating agent is 100 to 500 parts by weight of a water-soluble polymer such as polyvinyl alcohol resin and 100 to 20 parts by weight of a silane coupling agent based on 100 parts by weight of alkoxysilane can do.
  • a silane coupling agent based on 100 parts by weight of alkoxysilane can do.
  • the barrier coating layer formed as described above has a layer thickness of 100 to 500 nm. Within this range, it is preferable because the coating film does not break and the surface of the deposited film is sufficiently covered.
  • the barrier laminate film of the present invention has good adhesion between the plastic substrate and the aluminum oxide deposited film even after retorting treatment with hot water, particularly high temperature hot water, and is also excellent in gas barrier property. It can be suitably used as a packaging material for retort packaging materials for food, high temperature hot water treatment packaging materials for medical use, and contents for performing retort processing such as pet food.
  • the gas barrier packaging material of the present invention is obtained by laminating at least one heat sealable layer on a barrier laminate film, and the heat sealable thermoplastic resin does not pass through or through the adhesive layer. It is laminated as the innermost layer and is provided with heat sealability.
  • the function to be added as a packaging material for example, a light shielding layer for giving a light shielding property, a decorative layer, a printing layer for giving a print, a pattern layer, a laser printing
  • a functional layer such as a layer, an absorbent / adsorbent layer that absorbs or adsorbs an odor as a layer configuration to make a gas barrier packaging material.
  • the functional film according to a use can further be laminated
  • a gas barrier packaging material for retort a gas barrier packaging material of a multilayer film in which a nylon film is laminated as a pinhole resistant structure and a heat resistant sealant CPP as a heat resistant structure, or a gas barrier for liquid paper containers If it is an elastic packaging material, the packaging material of the laminated body which laminated
  • the heat-sealable thermoplastic resin may be a resin layer or film or sheet which can be melted by heat and fused to each other, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear Shape) Low-density fat film or sheet may be used.
  • low density polyethylene medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, polymethylpentene, polystyrene, ethylene-vinyl acetate copolymer, ⁇ -olefin copolymer, Resin consisting of one or more resins such as ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, elastomer, etc.
  • resins such as ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, elastomer, etc.
  • a sheet formed into a film, and among them, as a layer in contact with contents such as food it is a type of olefin resin such as polyethylene, polypropylene, etc. having hygienicity, heat resistance, chemical resistance and aroma retention. Or resin consisting of them or films of these It is more preferable to use the sheets.
  • the thickness thereof is preferably about 3 to 100 ⁇ m, and more preferably about 15 to 70 ⁇ m.
  • the gas barrier package of the present invention is a package produced from the gas barrier packaging material of the present invention.
  • a gas barrier package in the form of a pillow packaging bag, a three-way seal, a four-way seal, a gusset type or the like can be produced by heat sealing such that the sealant layer of the gas barrier packaging material made of a multilayer film is heat-sealed.
  • a gas-barrier packaging material which consists of a laminated film which laminated
  • Measurement of a laminated film having a deposited aluminum oxide film having a barrier property with improved adhesion produced under the conditions shown in the respective examples or comparative examples or a barrier laminate film having a barrier coating layer on the laminated film As a sample for use, the transformation rate, the oxygen permeability, the water vapor permeability, and the adhesion strength of the transition region of the deposited film were measured using the following methods.
  • the transformation rate of the transition region of the deposited film is time-of-flight secondary ion mass spectrometry (while repeating the soft etching at a constant speed with a Cs (cesium) ion gun on the aluminum oxide deposited film surface of the laminated film)
  • the graph analysis diagram of FIG. 3 is obtained by measuring the ions derived from the aluminum oxide vapor deposition film and the ions derived from the plastic substrate using TOF-SIMS).
  • the unit (intensity) of the vertical axis of the graph is the measured ion intensity
  • the unit (cycle) of the horizontal axis is the number of times of etching.
  • ION TOF company TOF As a time-of-flight secondary ion mass spectrometer used for the above TOF-SIMS, ION TOF company TOF. The measurement was performed using SIMS 5 under the following measurement conditions.
  • Etching was performed from the outermost surface of the aluminum oxide vapor deposition film using Cs, and analysis of elemental bonding of the interface between the aluminum oxide vapor deposition film and the film substrate such as polyester film and elemental bonding of the vapor deposition film was carried out and measured. Graphs 1 of elemental and elemental bonds were obtained. The graph is the measured mass number of 118.93 were in Al 2 O 4 H, the Al 2 O 3 and 101.94, etc. 72.00 to C6, elemental and elemental coupled mass number measured Were identified and created. The position where the strength of the element C6 is half of the plastic base layer portion in the graph is the interface between the film base and the aluminum oxide, and the aluminum oxide vapor deposition film is from the surface to the interface.
  • a peak in the graph representing the measured elemental bond Al 2 O 4 H can be determined, and the range from the peak to the interface can be determined as a transition region.
  • the transformation ratio of the transition region of the aluminum oxide deposition film ⁇ 100 (%) Asked as.
  • adhesion strength between substrate and deposited aluminum oxide film ⁇ Measurement of adhesion strength (1); adhesion strength before high retort / semi-retort treatment>
  • a two-component curable polyurethane adhesive is applied to the barrier coating layer side of the barrier laminate film, dried and treated, and a two-component curable polyurethane adhesive and thickness on a 70 ⁇ m-thick non-oriented polypropylene film
  • a laminated composite film was produced by dry laminating a 15 ⁇ m stretched nylon film and a film bonded to each other.
  • the above-mentioned laminated composite film was subjected to aging treatment for 48 hours, and then cut into a strip of 15 mm width using a tensile tester (Model name: Tensilon universal material tester made by ORIENTEC Co., Ltd.) JIS K6854- In accordance with 2, the strength of the barrier laminate film substrate and the aluminum oxide vapor deposition film was measured.
  • the polypropylene film side and the barrier laminate film side that were peeled off in advance for measurement are held by the clamp of the measuring instrument, and in the surface direction of the part where the polypropylene film and the barrier laminate film are still laminated
  • the film was pulled at a speed of 50 mm / min in directions opposite to each other in the direction orthogonal to each other (180 ° peeling: T-shaped peeling method), and the average value of tensile stress in the stable region was measured. Peeling occurs between the plastic base material of the barrier laminate film and the aluminum oxide deposited film having the weakest adhesive strength in the laminate composite film, and the measured values described above are the plastic substrate of the barrier laminate film and aluminum oxide It was taken as the adhesion strength of the vapor deposition film.
  • adhesion strength (2); adhesion strength after high retort treatment> A two-component curable polyurethane adhesive is applied to the barrier coating layer side of the barrier laminate film, dried and treated, and a two-component curable polyurethane adhesive and thickness on a 70 ⁇ m-thick non-oriented polypropylene film
  • a film laminated with a 15 ⁇ m stretched nylon film was dry laminated to produce a laminated composite film. 100 mL of water was injected into a four-way pouch made of B5 size using the above laminated composite film, and a hot water retort treatment was performed at 135 ° C. for 40 minutes. After the retort treatment, a sample cut into strips of 15 mm width was made from the four-way pouch from which the water content was drained. The adhesion strength was measured in the same manner as in the adhesion strength measurement (1) using this sample.
  • a laminated composite film was manufactured by setting the thickness of a polypropylene film to 70 ⁇ m without using a nylon film. 100 mL of water was injected into a four-way pouch made of B5 size using the above laminated composite film, and a hot water retort treatment was performed at 121 ° C. for 40 minutes. After the retort treatment, a sample cut into strips of 15 mm width was made from the four-way pouch from which the water content was drained. The adhesion strength was measured in the same manner as in the adhesion strength measurement (1) using this sample.
  • Example 1 ⁇ Aluminum oxide vapor deposition film> First, a roll was prepared by winding a 12 ⁇ m thick polyester film (hereinafter referred to as a PET film) as a substrate. Next, using the continuous vapor deposition film deposition apparatus in which the pretreatment section in which the plasma pretreatment apparatus is disposed and the deposition section are separated on the surface of the PET film on which the deposition film is to be provided, the pretreatment section under the following plasma conditions The plasma is introduced from the plasma supply nozzle, special oxygen plasma pretreatment is performed at a transfer speed of 400 m / min, and in the film forming section continuously transferred, reactive resistance as a heating means of vacuum deposition under the following conditions A 12 nm thick aluminum oxide vapor deposition film was formed on a PET film by a heating method.
  • a PET film polyester film
  • Plasma strength 150 W ⁇ sec / m 2
  • Plasma forming gas argon 1200 (sccm), oxygen 3000 (sccm)
  • Magnetic forming means permanent magnet of 1000 gauss Applied voltage between pretreatment drum and plasma supply nozzle: 340 V -Degree of vacuum in the pretreatment compartment: 3.8 Pa
  • Alluminaum oxide film formation conditions -Degree of vacuum: 8.1 ⁇ 10-2 Pa ⁇
  • Conveying speed 400 m / min -Light transmittance of wavelength 366 nm: 92%
  • ⁇ Barrier coating layer> A solution prepared by mixing 385 g of water, 67 g of isopropyl alcohol and 9.1 g of 0.5 N hydrochloric acid and adjusting the pH to 2.2 was cooled to 10 ° C. with 175 g of tetraethoxysilane and 9.2 g of glycidoxypropyltrimethoxysilane.
  • Solution A was prepared by mixing.
  • a solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of saponification of 99% or more and a degree of polymerization of 2400, 324 g of water, and 17 g of isopropyl alcohol.
  • a solution obtained by mixing solution A and solution B so that the weight ratio was 6.5: 3.5 was used as a barrier coating agent.
  • the barrier coating agent prepared above was coated by spin coating on the aluminum oxide deposited film of the PET film described above. Thereafter, the resultant was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on the aluminum oxide vapor deposition film, to obtain a barrier laminate film.
  • Example 2 A barrier laminate film was obtained in the same manner as in Example 1 except that the thickness of the aluminum oxide vapor deposition film thickness was changed to 14 nm. (Aluminum oxide film formation conditions) -Degree of vacuum: 8.1 ⁇ 10-2 Pa ⁇ Conveying speed: 340 m / min -Light transmittance of wavelength 366 nm: 92%
  • Example 3 A barrier laminate film was obtained in the same manner as in Example 1 except that a biomass-derived polyester film with a thickness of 12 ⁇ m was used as a substrate. (Aluminum oxide film formation conditions) -Degree of vacuum: 8.1 ⁇ 10-2 Pa ⁇ Conveying speed: 400 m / min -Light transmittance of wavelength 366 nm: 92%
  • Example 4 A barrier laminate film was obtained in the same manner as in Example 1 except that a polybutylene terephthalate film having a thickness of 12 ⁇ m was used as a substrate and the thickness of the aluminum oxide vapor deposition film thickness was changed to 10 nm. (Aluminum oxide film formation conditions) -Degree of vacuum: 8.1 ⁇ 10-2 Pa ⁇ Conveying speed: 400 m / min -Light transmittance of wavelength 366 nm: 92%
  • Example 5 A barrier laminate film was obtained in the same manner as in Example 1 except that XP-55 (thickness 16 ⁇ m) manufactured by Toray Industries, Inc., which is a high stiffness polyester film, was used as a substrate.
  • Comparative Example 1 A barrier laminate film was obtained in the same manner as in Example 1 except that the plasma pretreatment was not performed.
  • a roll was prepared by winding a 12 ⁇ m thick PET film as a substrate.
  • the surface of the PET film on which the vapor deposition layer is to be formed was plasma-treated under the following conditions using a direct plasma system to obtain a roll-up roll of plasma-treated PET film.
  • a 12 nm-thick aluminum oxide vapor deposition film was formed on the plasma-treated surface of this PET film by the reactive resistance heating method under the following conditions.
  • Example 2 a barrier coating layer was formed on the aluminum oxide vapor deposition film to obtain a barrier laminate film.
  • the peel strength is sufficiently maintained such that the peel strength is 2.1 N / 15 mm or more, and a significant decrease in the adhesion strength due to the retort treatment is not observed, and the deterioration is suppressed.
  • Comparative Example 1 and the water vapor transmission rate of the retort pretreatment at 2 be substantially the same as in Example, after the high retort treatment showed deterioration becomes 1.2 g / m 2/24 hr or a high value, also for even oxygen permeability, 0.5 cc / m 2/24 hr or more and a high value of more than 2 times, degradation of barrier performance is occurring due to retort treatment.
  • the laminated film in which the transformation ratio of the transition region of the aluminum oxide of the present invention is controlled one showing excellent retort resistance is obtained.
  • the adhesion is improved by appropriately setting the transformation ratio of the transition region of the aluminum oxide vapor deposition film between the vapor deposition film and the plastic substrate, and the aluminum oxide vapor deposition film having a barrier property is provided.
  • a laminate film and a barrier laminate film can be obtained.
  • Foods that require laminated materials that can withstand processing accompanying processing such as retort processing, sterilization processing, packaging materials such as pharmaceuticals, and packaging of electric and electronic parts, uses that require durability and barrier properties such as protective sheets It can be applied to industrial materials in fields where the environment is severe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

Provided are: a laminate film in which the adhesion between a plastic base member and an aluminum oxide-deposited film is good even after a hot water treatment, and which is provided with an aluminum oxide-deposited film having high barrier performance, i.e., excellent retort resistance; a barrier laminate film including the laminate film; and a gas barrier packaging material and a gas barrier packaged body, in each of which the barrier laminate film is used. A laminate film having improved adhesion strength and barrier performance is specified as follows: an aluminum oxide-deposited film in the laminate film is subjected to a time-of-flight secondary ion mass spectrometry (TOF-SIMS) method using a Cs (cesium) ion gun to form a transition region, which specifies adhesion strength, between the surface of a base film and a deposited film mainly composed of the formed aluminum oxide-deposited film; the transition region contains an elemental bond Al2O4H which can be modified into aluminum hydroxide that can be detected by carrying out etching employing TOF-SIMS; and the modification rate of the transition region that is modified into aluminum hydroxide, which is defined by the ratio of the modified transition region to the aluminum oxide-deposited film specified by carrying out etching employing TOF-SIMS, is specified to 45% or less.

Description

積層フィルム、バリア性積層フィルム及び該バリア性積層フィルムを用いたガスバリア性包装材料、ガスバリア性包装体Laminated film, barrier laminate film, gas barrier packaging material using the barrier laminate film, gas barrier package
 本発明は、食品、医薬品、ペットフードなどレトルト処理を行う包装材料として好適に使用できる、酸素および水蒸気に対するバリア性に優れ、レトルト処理後のプラスチック基材と酸化アルミニウム蒸着膜との密着性が改善されたバリア性を備える積層フィルム及び耐レトルト性を有する該積層フィルムを用いたバリア性積層フィルム並びに包装材料に関する。 INDUSTRIAL APPLICABILITY The present invention has excellent barrier properties against oxygen and water vapor, which can be suitably used as packaging materials for retort treatment such as food, medicine, pet food, etc., and improves the adhesion between the plastic substrate after retort treatment and the aluminum oxide deposited film. The present invention relates to a laminated film having the above-mentioned barrier property, and a barrier film and a packaging material using the laminated film having resistance to retort.
 食品、医薬品等のレトルト処理を必要とする分野では、内容物の変質を防止し、かつ機能や性質を維持できるように、温度、湿度などの影響を受けない、より高いバリア性を、安定して発揮し得るバリア性積層フィルムが求められ、酸化ケイ素、酸化アルミニウム等の蒸着膜の薄膜からなるバリア層とバリア性の塗膜層を積層した多層構造のバリア性積層フィルムも開発されている。 In fields requiring retort treatment of food and pharmaceuticals, etc., the higher barrier property, which is not affected by temperature and humidity, is stabilized so that deterioration of contents can be prevented and the function and properties can be maintained. There is a demand for a barrier laminate film that can be exhibited, and a barrier laminate film having a multilayer structure in which a barrier layer consisting of a thin film of a deposited film of silicon oxide, aluminum oxide or the like and a barrier coating layer are laminated has also been developed.
 しかしながら、温度、湿度などの影響を受けやすいバリア性に優れた蒸着膜を有する積層フィルムのプラスチック基材は、寸法変化を起こし易く、このため、プラスチック基材の寸法変化に伴う伸縮に対応して、その上に設けた、酸化ケイ素蒸着膜、あるいは酸化アルミニウム蒸着膜等の蒸着膜の追従が困難である。
 そのため、プラスチック基材と、酸化ケイ素蒸着膜あるいは酸化アルミニウム蒸着膜等の蒸着膜との層間において、高温多湿の厳しい環境下等において、しばしば層間剥離現象が生じ、更に、クラックやピンホ-ル等も発生する。
 その結果、本来のバリア性能を著しく棄損し、そのバリア性能を保持することが極めて困難であるという問題がある。
However, the plastic substrate of a laminated film having a vapor-deposited film with excellent barrier properties susceptible to temperature, humidity, etc. is prone to dimensional change, and therefore, corresponds to expansion and contraction accompanying dimensional change of the plastic substrate. It is difficult to follow a vapor deposition film such as a silicon oxide vapor deposition film or an aluminum oxide vapor deposition film provided thereon.
Therefore, delamination often occurs in the severe environment of high temperature and humidity, etc. between the plastic substrate and the deposited film such as silicon oxide deposited film or aluminum oxide deposited film, and cracks, pinholes, etc. are also generated. Occur.
As a result, there is a problem that the original barrier performance is significantly lost and it is extremely difficult to maintain the barrier performance.
 上記の蒸着膜を用いる方法で、プラスチック基材上に酸化アルミニウム等の無機酸化物の蒸着膜を形成する場合において、プラスチック基材と形成した蒸着膜との間で高い密着性を得るために、平行平板型装置によるインラインプラズマ前処理や、アンダーコート処理層の形成といったプラスチック基材表面を改質する方法が実施されている(例えば、特許文献1、特許文献2参照)。 In the case of forming a vapor deposited film of an inorganic oxide such as aluminum oxide on a plastic substrate by the method using the vapor deposited film, in order to obtain high adhesion between the plastic substrate and the vapor deposited film formed, Methods for modifying the surface of a plastic substrate such as in-line plasma pretreatment with a parallel plate type device and formation of an undercoat treated layer have been carried out (see, for example, Patent Documents 1 and 2).
 しかしながら、特許文献1の、一般的に用いられる平行平板型装置によるインラインプラズマ処理法は、プラスチック表面に水酸基やカルボニル基などの官能基を導入し、同官能基を介在して蒸着膜間との密着性を発現させている。しかし、水酸基による水素結合で密着性を発現させたものは、電子ペーパーなどの電子デバイス、レトルト包装材料などの用途に必要とされる高温多湿環境下では水素結合が破壊されるため密着性が著しく低下する問題がある。
 また、上記プラズマ処理は空気中で発生させたプラズマ雰囲気下をフィルムが通過するだけであることから基材と蒸着膜間で十分な高温多湿の厳しい環境下等における密着性が得られていないのが実情である。
However, the in-line plasma treatment method using the generally used parallel plate type device of Patent Document 1 introduces functional groups such as hydroxyl groups and carbonyl groups on the plastic surface, and interposes the same functional groups between the deposited films. Adhesion is expressed. However, if the adhesion is expressed by the hydrogen bond due to the hydroxyl group, the adhesion is remarkable because the hydrogen bond is broken in the high temperature and high humidity environment required for the application such as electronic paper such as electronic paper and retort packaging material There is a problem that falls.
In addition, since the film only passes through the plasma atmosphere generated in the air in the above-mentioned plasma treatment, sufficient adhesion between the substrate and the deposited film in a severe environment with high temperature and humidity can not be obtained. Is the reality.
 また、特許文献2に記載のアンダーコート処理法は、プラスチックフィルム表面に接着層としてアンダーコート層を設けるもので、一般的に実施されているが、製造法として工程が増えるためコストアップとなる。 Moreover, although the undercoat processing method of patent document 2 provides an undercoat layer as a contact bonding layer on a plastic film surface and is generally implemented, since the number of processes is increased as a manufacturing method, the cost increases.
 そこで、プラズマ発生のための電極を基材側にしてプラズマを発生させるリアクティブイオンエッチング(RIE)方式を用いてプラスチック基材表面に前処理を施すことにより、密着性を向上する技術が実施されている(特許文献3)。
 前記プラズマRIE法は、基材の表面に官能基を持たせるなどの化学的効果と、表面をイオンエッチングして不純物等を飛ばし平滑化するという物理的効果の、2つの効果を同時に得ることで密着性を発現するものである。
Therefore, the technology to improve adhesion is implemented by performing pretreatment on the surface of the plastic substrate using a reactive ion etching (RIE) method that generates plasma with the electrode for plasma generation on the substrate side. (Patent Document 3).
In the plasma RIE method, two effects of chemical effect, such as giving a functional group to the surface of a substrate, and physical effect, such as ion etching of the surface to fly away impurities and the like and smoothing, are obtained simultaneously. It develops adhesion.
 RIE法では、上記インラインプラズマ処理と異なり、水素結合で密着性を発現していないことから、高温多湿環境下での密着性の低下は見られない。
 しかし、RIE法では、プラスチック基材上に官能基を持たせるため、界面での加水分解等を生じる耐水、耐熱水性が依然として不十分である。また、RIE法で十分な密着性を得るためには、一定値以上のEd値(=プラズマ密度×処理時間)が必要である。
 同法で一定値以上のEd値を得るためにはプラズマ密度を高くする方法と、処理時間を長くする方法が考えられるが、プラズマ密度を高くする場合は、高出力の電源が必要であり、基材のダメージが大きくなる問題があり、処理時間を長くする場合は、生産性の低下が問題となる(特許文献4、特許文献5参照)。
In the RIE method, unlike the in-line plasma treatment described above, the adhesion is not exhibited by the hydrogen bond, and therefore, the decrease in the adhesion under a high temperature and high humidity environment is not observed.
However, in the RIE method, since a functional group is provided on a plastic substrate, the water resistance and the hot water resistance which cause hydrolysis and the like at the interface are still insufficient. Further, in order to obtain sufficient adhesion by the RIE method, an Ed value (= plasma density × processing time) equal to or more than a predetermined value is required.
In order to obtain the Ed value of a certain value or more by the same method, a method of increasing the plasma density and a method of lengthening the processing time can be considered, but in the case of increasing the plasma density, a high output power source is required. There is a problem that the damage to the base material becomes large, and in the case of prolonging the treatment time, the decrease in productivity becomes a problem (see Patent Document 4 and Patent Document 5).
 そのため、上記のような搬送されるプラスチック基材表面に無機酸化物の蒸着膜を形成する上での問題を解決し、レトルト処理後においても、プラスチック基材と蒸着膜との密着性が良好で、バリア性に優れた積層フィルムが望まれている。 Therefore, the problem in forming the deposited film of the inorganic oxide on the surface of the transported plastic substrate as described above is solved, and the adhesion between the plastic substrate and the deposited film is good even after the retort treatment. A laminated film having excellent barrier properties is desired.
 特に、食品、医薬品等の高温高圧でのレトルト処理、殺菌処理を必要とする分野では、内容物の変質を防止し、かつ機能や性質を維持できるように、温度、湿度などの影響を受けない、より高いバリア性を、安定して発揮し得るバリア性積層フィルムが求められ、酸化ケイ素、酸化アルミニウム等の酸化アルミニウムの薄膜からなるバリア層とバリア性の塗膜層を積層した多層構造を有する耐レトルト性に優れたバリア性積層フィルムが望まれている。 In particular, in fields requiring retort treatment and sterilization treatment at high temperature and high pressure such as food and medicine, it is not affected by temperature, humidity, etc. so that deterioration of contents can be prevented and function and properties can be maintained. A barrier laminate film capable of stably exhibiting higher barrier properties is required, and has a multilayer structure in which a barrier layer composed of a thin film of aluminum oxide such as silicon oxide or aluminum oxide is laminated with a barrier coating layer. A barrier laminate film excellent in retort resistance is desired.
特開平7-233463号公報Unexamined-Japanese-Patent No. 7-233463 特開2000-43182号公報JP 2000-43182 A 特開2005-335109号公報JP, 2005-335109, A 特許第4461737号公報Patent No. 4461737 特許第4135496号公報Patent 4135496 gazette
 従来技術の問題点において、熱水処理によるレトルト処理は、プラスチック基材と酸化アルミニウム蒸着膜の界面に大きな機械的及び化学的なストレスを与える。このストレスによりバリア性が劣化してしまう。この部位にストレスがかかるのは、この部位が積層構成の中で一番脆弱だからである。従って、レトルト耐性を得るためには、基材との界面に強固に蒸着膜を被覆することが重要である。
 一方で、水酸化アルミニウムは、その化学構造によりプラスチック基材との密着性がよく、またそれ自体がネットワークを作り緻密なため、高い水蒸気バリア性を有する。しかし、レトルト処理のような強力な環境に対して、水酸化アルミニウムと基材との水素結合に基づく結合構造は微視的に崩れやすい。また、水酸化アルミニウムのネットワークに対しても、水分子と水酸化アルミニウムの粒界面の親和性から膜中に浸透しやすい。
In the problems of the prior art, retort treatment by hot water treatment gives great mechanical and chemical stress to the interface between the plastic substrate and the aluminum oxide vapor deposition film. This stress degrades the barrier property. This site is stressed because this site is the most vulnerable in the stack configuration. Therefore, in order to obtain retort resistance, it is important to firmly coat the deposited film at the interface with the substrate.
On the other hand, aluminum hydroxide has high water vapor barrier properties because it has good adhesion to a plastic substrate due to its chemical structure, and itself forms a network and is compact. However, in a strong environment such as retort treatment, the bonding structure based on hydrogen bonding between aluminum hydroxide and the substrate is easily microscopically broken. In addition, it also easily penetrates into the film due to the affinity of the water particle / aluminum hydroxide particle interface to the aluminum hydroxide network.
 本発明は、上記の課題及び知見に鑑みてなされたものであり、その目的とするところは、熱水処理後であっても、プラスチック基材と酸化アルミニウム蒸着膜との密着性が良好で、かつバリア性に優れた蒸着膜を有する積層フィルム、さらには該積層フィルムを含み、いわゆる耐レトルト性に優れた酸化アルミニウム蒸着膜を備えるバリア性積層フィルム並びに該バリア性積層フィルムを用い、密着性及びバリア性に優れた耐レトルト性に優れたガスバリア性包装材料、ガスバリア性包装体を提供することである。 The present invention has been made in view of the above problems and findings, and the object of the present invention is that adhesion between a plastic substrate and a deposited aluminum oxide film is good even after hot water treatment, And, a laminated film having a vapor deposited film excellent in barrier property, a barrier film laminated film including the laminated film and a so-called aluminum oxide vapor deposited film excellent in retort resistance, and the barrier film laminated film It is providing the gas-barrier packaging material excellent in barrier property excellent in retort resistance, and a gas-barrier package.
 これらの目的を達成するため、本発明の積層フィルムは、プラスチック基材の表面に酸化アルミニウムを主成分とする酸化アルミニウム蒸着膜を形成したバリア性を備える積層フィルムにおいて、基材フィルム表面と形成された酸化アルミニウム蒸着膜を主体する蒸着膜との密着強度を規定する該蒸着膜の遷移領域が形成されており、該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、TOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される該変成される遷移領域の割合により定義される遷移領域の変成率が45%以下とするものである。 In order to achieve these objects, the laminate film of the present invention is a laminate film having a barrier property in which an aluminum oxide deposited film mainly composed of aluminum oxide is formed on the surface of a plastic substrate, and is formed with the substrate film surface. A transition region of the deposited film is formed which defines adhesion strength with the deposited film mainly comprising the deposited aluminum oxide film, and the transition region is formed using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Using TOF-SIMS to an aluminum oxide vapor deposition film defined by performing etching using TOF-SIMS, containing an element-bound Al 2 O 4 H that is transformed into aluminum hydroxide detected by performing etching The transition rate of the transition zone defined by the percentage of the transition zone to be transformed being 45% or less. is there.
 二次イオン質量分析(SIMS:secondary Ion Mass Spectrometry)は、一次イオンビームを被分析試料表面に照射して、試料表面からスパッタリングされて放出される二次イオンを質量分析する元素濃度分布の分析方法である。この二次イオン質量分析法では、スパッタリングを進行させつつ二次イオン強度を検出する。従って、二次イオン、即ち被検出元素イオン又は被検出元素と結合した分子イオンのイオン強度の時間推移のデータに対して、推移時間を深さに換算することで、試料表面の深さ方向の被検出元素の濃度分布を知ることができる。 Secondary ion mass spectrometry (SIMS) is an analysis method of an elemental concentration distribution in which a primary ion beam is irradiated to the surface of a sample to be analyzed, and secondary ions emitted by being sputtered from the sample surface are mass analyzed It is. In this secondary ion mass spectrometry, secondary ion intensity is detected while advancing sputtering. Therefore, by converting the transition time into the depth with respect to the data of the time transition of the ion intensity of the secondary ion, that is, the ion ion of the to-be-detected element ion or the to-be-detected element The concentration distribution of the element to be detected can be known.
 本発明において、推移時間の深さへの換算は、一次イオンの照射により試料表面に形成された窪みの深さを表面粗さ計を用いて測定し、この窪みの深さと推移時間とから平均スパッタ速度を算出し、スパッタ速度が一定であるとの仮定の下に、照射時間(即ち、推移時間)を深さ(スパッタ量)に換算することでなされている。 In the present invention, conversion of transition time to depth is carried out by measuring the depth of a depression formed on the sample surface by irradiation of primary ions using a surface roughness meter, and averaging the depth of this depression and the transition time. The sputtering rate is calculated, and the irradiation time (i.e., the transition time) is converted to the depth (sputtering amount) under the assumption that the sputtering rate is constant.
 本発明では、積層フィルムの酸化アルミニウム蒸着膜に対し、Cs(セシウム)イオン銃により上記した一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、酸化アルミニウム蒸着膜由来のイオンと、プラスチック基材に由来するイオンを測定することにより、基材フィルム表面と形成された酸化アルミニウム蒸着膜を主体する蒸着膜との間に密着強度を規定する遷移領域が形成されている。該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、飛行時間型二次イオン質量分析法を用いて規定される該変成される遷移領域の割合により定義される水酸化アルミニウムに変成する遷移領域の変成率を規定することで密着強度が改善されたバリア性を備える積層フィルムを特定できるとの知見に基づくものである。 In the present invention, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is performed on the aluminum oxide vapor deposited film of the laminated film while repeating soft etching at a constant speed as described above with a Cs (cesium) ion gun. A transition defining an adhesion strength between the substrate film surface and the vapor deposition film mainly comprising the aluminum oxide vapor deposition film formed by measuring the ions derived from the aluminum oxide vapor deposition film and the ions derived from the plastic substrate An area is formed. The transition region includes an element-bound Al 2 O 4 H that is transformed into aluminum hydroxide, which is detected by performing etching using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Ratio of the transformed transition area defined using time-of-flight secondary ion mass spectrometry to an aluminum oxide vapor deposition film defined by performing etching using secondary ion mass spectrometry (TOF-SIMS) It is based on the finding that it is possible to specify a laminated film having a barrier property with improved adhesion strength by defining the transformation ratio of the transition region that is transformed to aluminum hydroxide as defined by the above.
 本発明は、具体的には、飛行時間型二次イオン質量分析計を用いてCsにより、酸化アルミニウム蒸着膜の最表面からエッチングを行い、酸化アルミニウム蒸着膜とプラスチック基材との界面の元素結合及び蒸着膜の元素結合を測定し、測定された元素および元素結合について、それぞれの実測グラフを得(図3 グラフ解析図)、酸化アルミニウム蒸着膜における水酸化アルミニウムが形成するプラスチック基材と蒸着膜の界面の遷移領域を極力狭くするために、元素結合AlHに注目し、1)元素C6のグラフの強度が半分になる位置を、プラスチック基材と酸化アルミニウムの界面として、表面から界面までを酸化アルミニウム蒸着膜として求め、2)元素結合AlHを表すグラフにおけるピークを求め、そのピークから界面までを遷移領域とし、求め、3)(元素結合AlHのピークから界面までの遷移領域/酸化アルミニウム蒸着膜)×100(%)として遷移領域の水酸化アルミニウムへの変成率を求めるものである。 Specifically, the present invention performs etching from the outermost surface of a deposited aluminum oxide film by Cs using a time-of-flight secondary ion mass spectrometer, and combines elements at the interface between the deposited aluminum oxide film and the plastic substrate. And measurement of the elemental bonds of the deposited film, and the obtained measurement graphs of the measured elements and elemental bonds (FIG. 3 graph analysis diagram), and the plastic substrate and the deposited film formed by aluminum hydroxide in the deposited aluminum oxide film In order to narrow the transition region of the interface as much as possible, attention is paid to element-bound Al 2 O 4 H, and 1) the position where the strength of the graph of element C6 is half is taken as the interface between the plastic substrate and aluminum oxide from the surface up to the interface determined as aluminum oxide deposited film, the peak in the graph representing two) elements bonded Al 2 O 4 H, peak Until Luo interface and transition region, determined, 3) (element binding Al 2 O 4 transition region / aluminum oxide vapor deposited film from the peak of H to the interface) × 100 (%) modified rate to aluminum hydroxide of the transition region as Seeks
 本発明は、酸化アルミニウム蒸着膜の遷移領域の変成率を45%以下としたことにより、積層フィルムに更にバリア性被覆層を形成し、バリア性積層フィルムのプラスチック基材と酸化アルミニウム蒸着膜との界面における密着強度が、135℃、40分間の熱水処理(ハイレトルト処理)後、又は121℃、40分間の熱水処理(セミレトルト処理)後においても、2.1N/15mm以上とすることができ、レトルトパウチを成形時またレトルト加工時においてデラミネーションが発生せず、密着性が改善され、耐レトルト性を有するバリア性積層フィルムを製造することができる。 In the present invention, a barrier coating layer is further formed on the laminated film by setting the conversion ratio of the transition region of the aluminum oxide vapor-deposited film to 45% or less, and the plastic base of the barrier laminated film and the aluminum oxide vapor-deposited film The adhesion strength at the interface should be 2.1 N / 15 mm or more after hot water treatment (high retort treatment) for 40 minutes at 135 ° C., or after 40 minutes of hot water treatment (semi retort treatment) at 121 ° C. It is possible to produce a barrier film having resistance to retort, which is improved in adhesion without the occurrence of delamination during molding or retorting of the retort pouch.
 本発明は、酸化アルミニウム蒸着膜の遷移領域の変成率を45%以下としたことにより、ハイレトルト処理、セミレトルト後の酸素透過度、水蒸気透過度が、それぞれ、0.2cc/m・24hr以下、0.9g/m・24hr以下で、レトルト処理後の内容分の品質劣化や保存寿命の劣化を起こしたりすることのない程度に十分なバリア性を示すバリア性積層フィルムを製造することができる。
 したがって、本発明の酸化アルミニウム蒸着膜は、プラスチック基材との界面における密着性を改善できるだけでなく、バリア性能においてもレトルト処理後の耐湿熱性、耐熱水性に優れており耐レトルト性を改善できるものである。
In the present invention, by setting the conversion ratio of the transition region of the aluminum oxide vapor deposition film to 45% or less, the oxygen permeability after high retort treatment and semi retort and the water vapor permeability are 0.2 cc / m 2 · 24 hr respectively. Hereinafter, a barrier laminate film exhibiting sufficient barrier properties to such an extent that deterioration of contents after storage and deterioration of storage life do not occur at 0.9 g / m 2 · 24 hours or less Can.
Therefore, the aluminum oxide vapor deposition film of the present invention not only can improve the adhesion at the interface with the plastic substrate, but also has excellent heat and moisture resistance after retort treatment and can improve retort resistance after retort treatment also in barrier performance. It is.
 本発明は、以下の点を特徴とする。
1.プラスチック基材の表面に酸化アルミニウムを主成分とする酸化アルミニウム蒸着膜を形成したバリア性を備える積層フィルムにおいて、基材フィルム表面と形成された酸化アルミニウム蒸着膜を主体する蒸着膜との密着強度を規定する該蒸着膜の遷移領域が形成されており、該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、TOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される該変成される遷移領域の割合により定義される遷移領域の変成率が45%以下とする、上記積層フィルム。
2.プラスチック基材が、ポリエチレンテレフタレートフィルムである、上記1に記載の積層フィルム。
3.プラスチック基材が、リサイクルポリエチレンテレフタレートフィルムを含む、上記1に記載の積層フィルム。
4.プラスチック基材が、ポリブチレンテレフタレートフィルムである、上記1に記載の積層フィルム。
5.プラスチック基材が、バイオマス由来のポリエステルフィルムである、上記1に記載の積層フィルム。
6.プラスチック基材が、高スティフネスポリエステルフィルムである、上記1に記載の積層フィルム。
7.プラスチック基材表面が酸素プラズマ処理面である、上記1~6のいずれかに記載の積層フィルム。
8.酸素プラズマ処理面にインラインで酸化アルミニウム蒸着膜が積層された、上記7に記載の積層フィルム。
9.上記1~8のいずれかに記載の積層フィルムの酸化アルミニウム蒸着膜表面上にバリア性被覆層が積層されてなる、バリア性積層フィルム。
10.バリア性被覆層が、金属アルコキシドと水溶性高分子の混合溶液を塗布し、加熱乾燥してなる層である、上記9に記載のバリア性積層フィルム。
11.バリア性被覆層が、金属アルコキシドとシランカップリング剤と水溶性高分子の混合溶液を塗布し、加熱乾燥してなる層である、上記9に記載のバリア性積層フィルム。
12.上記9~11のいずれかに記載のバリア性積層フィルムにヒートシール性を有する熱可塑性樹脂が積層されてなる、ガスバリア性包装材料。
13.レトルト殺菌用包装に用いられる、上記12に記載のガスバリア性包装材料。
14.上記12または13に記載のガスバリア性包装材料から作製された、ガスバリア性包装体。
The present invention is characterized by the following points.
1. In a laminated film having a barrier property in which an aluminum oxide vapor deposition film mainly composed of aluminum oxide is formed on the surface of a plastic substrate, adhesion strength between the substrate film surface and the vapor deposition film mainly comprising the aluminum oxide vapor deposition film formed A transition region of the deposited film to be defined is formed, and the transition region is transformed into aluminum hydroxide detected by performing etching using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Defined by the ratio of the denatured transition region defined using TOF-SIMS to the aluminum oxide deposited film that contains elemental bound Al 2 O 4 H and is defined by performing etching using TOF-SIMS The above laminated film, wherein the transformation ratio of the transition region is 45% or less.
2. The laminated film according to the above 1, wherein the plastic substrate is a polyethylene terephthalate film.
3. The laminated film according to the above 1, wherein the plastic substrate comprises a recycled polyethylene terephthalate film.
4. The laminated film according to the above 1, wherein the plastic substrate is a polybutylene terephthalate film.
5. The laminated film according to the above 1, wherein the plastic substrate is a biomass-derived polyester film.
6. A laminated film according to the above 1, wherein the plastic substrate is a high stiffness polyester film.
7. The laminated film according to any one of the above 1 to 6, wherein the plastic substrate surface is an oxygen plasma treated surface.
8. 7. The laminated film as described in 7 above, wherein an aluminum oxide vapor deposition film is laminated inline on an oxygen plasma treated surface.
9. 8. A barrier laminate film comprising a barrier coating layer laminated on the surface of the aluminum oxide deposited film of the laminate film according to any one of 1 to 8 above.
10. 10. The barrier laminate film as described in 9 above, wherein the barrier coating layer is a layer formed by applying a mixed solution of a metal alkoxide and a water-soluble polymer, and drying by heating.
11. 10. The barrier laminate film as described in 9 above, wherein the barrier coating layer is a layer formed by applying a mixed solution of a metal alkoxide, a silane coupling agent and a water-soluble polymer, and drying by heating.
12. A gas barrier packaging material comprising a thermoplastic resin having heat sealability laminated on the barrier laminate film according to any one of the above 9 to 11.
13. The gas barrier packaging material according to the above 12 which is used for packaging for retort sterilization.
14. The gas-barrier packaging body produced from the gas-barrier packaging material as described in said 12 or 13.
 本発明では、酸化アルミニウム蒸着膜における水酸化アルミニウムが形成されるプラスチック基材との界面の遷移領域を極力狭くし、水酸化アルミニウムに変性する割合を適正化するために、元素結合AlHに注目し、積層フィルムにおける酸化アルミニウム蒸着膜の遷移領域の変成率を45%以下として、相対的に水酸化アルミニウムが少ない、酸化アルミニウム膜の比率を上げることにより、レトルト処理による水分子による微視的な蒸着膜破壊、プラスチック基材との界面破壊を大きく抑制するものである。それにより、密着性が改善され、従来にないレトルト耐性を有する積層フィルム及び該性層フィルムを含むバリア性積層フィルムを提供することができる。
 本発明のバリア性積層フィルムは、プラスチック基材と酸化アルミニウム蒸着膜との界面における密着強度が、ハイレトルト処理、セミレトルト処理後においても、2.1N/15mm以上で、かつ、ハイレトルト処理、セミレトルト後の酸素透過度、水蒸気透過度が、それぞれ、0.2cc/m・24hr以下、0.9g/m・24hr以下のバリア性能を有し、耐レトルト性に優れている。
In the present invention, in order to narrow as much as possible the transition region of the interface between the aluminum oxide vapor-deposited film and the plastic base on which aluminum hydroxide is formed, and optimize the ratio of modification to aluminum hydroxide, elemental bonded Al 2 O 4 Focusing on H, making the conversion ratio of the transition region of the aluminum oxide vapor deposition film in the laminated film 45% or less, increasing the ratio of the aluminum oxide film relatively less aluminum hydroxide, the fineness by the water molecules by retort treatment It is a thing which suppresses a vapor deposition film visual observation visually and an interface destruction with a plastic base material greatly. As a result, it is possible to provide a laminated film having improved adhesion and having unconventional retort resistance, and a barrier laminated film including the above-mentioned layer film.
In the barrier laminate film of the present invention, the adhesion strength at the interface between the plastic substrate and the aluminum oxide vapor-deposited film is 2.1 N / 15 mm or more even after high retort treatment and semi retort treatment, and high retort treatment. The oxygen permeability and the water vapor permeability after semi-retort have barrier properties of 0.2 cc / m 2 · 24 hr or less and 0.9 g / m 2 · 24 hr or less, respectively, and are excellent in retort resistance.
本発明の積層フィルムA(図1a)及びバリア性被覆層が積層されたバリア性積層フィルムB(図1b)、別態様の積層フィルムA(図1c)の一例を示す断面図Cross-sectional view showing an example of a barrier laminate film B (FIG. 1 b) in which the laminate film A of the present invention (FIG. 1 a) and the barrier coating layer are laminated, and another embodiment laminate film A (FIG. 本発明の酸化アルミニウム蒸着膜を成膜する装置の一例を示す図The figure which shows an example of the apparatus which forms the aluminum oxide vapor deposition film | membrane of this invention 本発明の酸化アルミニウム蒸着膜積層フィルムの飛行時間型二次イオン質量分析法による分析結果のグラフ解析図の一例Example of analysis of graph of analysis result by time of flight type secondary ion mass spectrometry of aluminum oxide vapor deposition film laminated film of the present invention
 以下、図面を参照しながら本発明の実施の形態に係る密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルム及び該積層フィルムを含むバリア性積層フィルムについて詳しく説明する。なお、この実施例は、単なる例示にすぎず、本発明を何ら限定するものではない。
 図1aは、本発明の積層フィルムの一例を示す断面図であり、図1bは、該積層フィルムを含み、表面にバリア性被覆層を積層したバリア性積層フィルムの一例を示す断面図であり、図1cは基材層が多層で構成されている積層フィルムの一例を示す断面図であり、図2は、本発明のバリア性を有する積層フィルムの酸化アルミニウム蒸着膜を成膜するに好適なローラー式連続蒸着成膜装置の構成を模式的に示す図である。なお、バリア性被覆層を積層したバリア性積層フィルムを形成するために、バリアコート剤塗布装置が蒸着膜成膜装置に連続して配置されるが、公知のローラー塗布装置を連設するものであり、ここでは図示するのを省略した。
Hereinafter, a laminated film having a deposited aluminum oxide film having a barrier property with improved adhesion according to an embodiment of the present invention and a barrier laminate film including the laminated film according to the embodiment of the present invention will be described in detail. Note that this embodiment is merely an example and does not limit the present invention.
FIG. 1 a is a cross-sectional view showing an example of the laminated film of the present invention, and FIG. 1 b is a cross-sectional view showing an example of a barrier laminate film including the laminate film and having a barrier coating layer laminated on the surface. FIG. 1 c is a cross-sectional view showing an example of a laminated film in which the base material layer is constituted of multiple layers, and FIG. 2 is a roller suitable for forming the aluminum oxide vapor deposition film of the laminated film having barrier properties of the present invention. It is a figure which shows typically the structure of Formula continuous vapor deposition film-forming apparatus. In addition, in order to form the barriering laminated film which laminated | stacked the barriering coating layer, although a barrier coating agent coating apparatus is arrange | positioned continuously with vapor deposition film film-forming apparatus, a well-known roller coating apparatus is provided in a row. Yes, I have omitted to illustrate here.
 本発明に係る密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルムAは、図1aに示すように、プラスチック基材1の一方の面に、密着性が改善されたバリア性を備える酸化アルミ二ウム蒸着膜2が積層されてなる層構成を基本構成とし、本発明では、さらに図1bに示すように、該積層フィルムAの蒸着膜2上にバリア性被覆層3がさらに積層されてなる積層構成とし、密着性及びバリア性に優れ、耐レトルト性に優れたバリア性積層フィルムBとしたものである。 The laminated film A having an aluminum oxide vapor deposition film having a barrier property with improved adhesion according to the present invention has a barrier property with improved adhesion to one surface of the plastic substrate 1, as shown in FIG. 1a. In the present invention, further, as shown in FIG. 1b, the barrier coating layer 3 is further formed on the deposited film 2 of the laminated film A. It is set as the laminated structure which is laminated | stacked, was excellent in adhesiveness and barrier property, and was set as the barrier property laminated film B excellent in retort resistance.
 プラスチック基材は、特に制限されるものではなく、公知のプラスチックのフィルム又はシートを使用することができる。例えば、ポリエチレンテレフタレート、バイオマス由来のポリエステル、ポリブチレンテレフタレート、ポリエチレンナフタレート、リサイクルポリエチレンテレフタレート、ポリエチレンフラノエートなどのポリエステル系樹脂、ポリアミド樹脂6、ポリアミド樹脂66、ポリアミド樹脂610、ポリアミド樹脂612、ポリアミド樹脂11、ポリアミド樹脂12などのポリアミド系樹脂、ポリエチレン、ポリプロピレンなどのα-オレフィンの重合体などのポリオレフィン系樹脂等、からなるフィルムを使用することができる。ポリエチレンテレフタレートフィルムとして知られているポリエステル系樹脂は、特に好ましく用いられる。 The plastic substrate is not particularly limited, and known plastic films or sheets can be used. For example, polyethylene terephthalate, polyester derived from biomass, polybutylene terephthalate, polyethylene naphthalate, recycled polyethylene terephthalate, polyester resin such as polyethylene furanoate, polyamide resin 6, polyamide resin 66, polyamide resin 610, polyamide resin 612, polyamide resin 11 A film made of a polyamide resin such as polyamide resin 12 or a polyolefin resin such as a polymer of α-olefin such as polyethylene or polypropylene can be used. Polyester-based resins known as polyethylene terephthalate films are particularly preferably used.
(ポリブチレンテレフタレートフィルム(PBT))
 ポリブチレンテレフタレートフィルムは、熱変形温度が高く、機械的強度、電気的特性にすぐれ、成型加工性も良いことなどから、食品などの内容物を収容する包装袋に用いると、レトルト処理を施す際に包装袋が変形したり、その強度が低下したりすることを抑制することができる。
(Polybutylene terephthalate film (PBT))
A polybutylene terephthalate film has a high heat distortion temperature, is excellent in mechanical strength and electrical characteristics, and has good molding processability, etc., and therefore, when it is used for a packaging bag for containing contents such as food, when subjected to retort treatment It is possible to prevent the packaging bag from being deformed or its strength being reduced.
 ポリブチレンテレフタレートフィルムは、高い強度を有する。このため、ポリブチレンテレフタレートフィルムを用いると、包装袋を構成する包装用材料がナイロンフィルムを含む場合と同様に、包装袋に耐突き刺し性を持たせることができる。
 また、ポリブチレンテレフタレートフィルムは、高温高湿度環境下で加水分解するためレトルト処理後の密着強度、バリア性の低下がみられるが、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、ポリブチレンテレフタレートフィルムを包装用材料の外面に配置した場合であっても、包装袋の包装用材料間のラミネート強度が低下してしまうことを抑制することができる。このような性質を持つので、ポリブチレンテレフタレートフィルムをレトルト包装袋に用いると、従来のポリエチレンテレフタレートフィルムとナイロンフィルムの貼り合せ包装材に置き換えることができることから、好ましく用いられる。
Polybutylene terephthalate film has high strength. For this reason, when a polybutylene terephthalate film is used, the packaging bag can have puncture resistance similarly to the case where the packaging material constituting the packaging bag contains a nylon film.
In addition, although polybutylene terephthalate film is degraded in adhesion strength after retort treatment and in barrier property because it is hydrolyzed under high temperature and high humidity environment, it has a characteristic of being less likely to absorb water than nylon. For this reason, even when the polybutylene terephthalate film is disposed on the outer surface of the packaging material, it is possible to suppress the reduction in the laminate strength between the packaging materials of the packaging bag. Since it has such a property, when a polybutylene terephthalate film is used for a retort packaging bag, it can be preferably used because it can be replaced with a conventional polyethylene terephthalate film and nylon film laminated packaging material.
 ポリブチレンテレフタレートフィルムは、主成分としてポリブチレンテレフタレート(以下、PBTとも記す)を含むフィルムであり、好ましく、60質量%以上のPBTを含む樹脂フィルムである。そして、ポリブチレンテレフタレートフィルムはその構造から2つの態様に分けられる。 The polybutylene terephthalate film is a film containing polybutylene terephthalate (hereinafter also referred to as PBT) as a main component, and is preferably a resin film containing 60 mass% or more of PBT. And a polybutylene terephthalate film is divided into two aspects from the structure.
 第1の態様に係るポリブチレンテレフタレートフィルムフィルムにおけるPBTの含有率は、60質量%以上が好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。
 主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり、最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上である。
The content of PBT in the polybutylene terephthalate film according to the first aspect is preferably 60% by mass or more, more preferably 70% by mass or more, particularly preferably 75% by mass or more, and most preferably 80% by mass or more .
The PBT used as the main component preferably contains 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component. It is mol%. As a glycol component, 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 97 mol% or more.
 ポリブチレンテレフタレートフィルムは、PBT以外のポリエステル樹脂を含んでいてもよい。PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂を挙げることができる。 The polybutylene terephthalate film may contain polyester resins other than PBT. As polyester resins other than PBT, polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polypropylene terephthalate (PPT), and isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid , PBT resin in which dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid is copolymerized, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate diol Min can be mentioned copolymerized PBT resin.
 これらPBT以外のポリエステル樹脂の添加量は、40質量%以下が好ましい。PBT以外のポリエステル樹脂の添加量が40質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることが考えられる。 The addition amount of polyester resins other than these PBT is preferably 40% by mass or less. If the amount of the polyester resin other than PBT exceeds 40% by mass, the mechanical properties of the PBT may be impaired, and the impact strength, the pinhole resistance, and the drawability may be insufficient.
 第1の態様に係るポリブチレンテレフタレートフィルムの層構成は、キャスト法によって、樹脂を多層化してキャストすることによって作製されたもので、複数の単位層を含む多層構造部からなる。複数の単位層はそれぞれ、主成分としてPBTを含む。例えば、複数の単位層は、それぞれ、60質量%以上のPBTを含む。なお、複数の単位層においては、n番目の単位層の上にn+1番目の単位層が直接積層されている。すなわち、複数の単位層の間には、接着剤層や接着層が介在されていない。このようなポリブチレンテレフタレートフィルムは、少なくとも10層以上、好ましくは60層以上、より好ましくは250層以上、更に好ましくは1000層以上の単位層を含む多層構造部からなる。 The layer configuration of the polybutylene terephthalate film according to the first aspect is produced by casting the resin in multiple layers by a casting method, and comprises a multilayer structure including a plurality of unit layers. Each of the plurality of unit layers contains PBT as a main component. For example, each of the plurality of unit layers contains 60% by mass or more of PBT. In the plurality of unit layers, the n + 1-th unit layer is directly stacked on the n-th unit layer. That is, no adhesive layer or adhesive layer is interposed between the plurality of unit layers. Such a polybutylene terephthalate film is composed of a multilayer structure including at least 10 or more, preferably 60 or more, more preferably 250 or more, more preferably 1000 or more unit layers.
 第2の態様に係るポリブチレンテレフタレートフィルムは、PBTを主たる繰返し単位とするポリエステルを含む単一の層によって構成されている。PBTを主たる繰返し単位とするポリエステルは、例えば、グリコール成分としての1,4-ブタンジオール、又はそのエステル形成性誘導体と、二塩基酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルを含む。第2の構成に係るPBTの含有率は、70質量%以上が好ましく、さらには80質量%以上が好ましく、最も好ましくは90質量%以上である。 The polybutylene terephthalate film according to the second aspect is constituted by a single layer containing a polyester having PBT as a main repeating unit. A polyester having PBT as a main repeating unit has, for example, 1,4-butanediol as a glycol component, or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component, or an ester-forming derivative thereof. And polyesters of the homo or copolymer type obtained by condensing them. 70 mass% or more is preferable, as for the content rate of PBT which concerns on a 2nd structure, 80 mass% or more is preferable, Most preferably, it is 90 mass% or more.
 第2の態様に係るポリブチレンテレフタレートフィルムは、PBT以外のポリエステル樹脂を30質量%以下の範囲で含んでいてもよい。ポリエステル樹脂を含むことにより、PBT結晶化を抑制することができ、ポリブチレンテレフタレートフィルムの延伸加工性を向上させることができる。PBTと配合するポリエステル樹脂としては、エチレンテレフタレートを主たる繰返し単位とするポリエステルを用いることができる。例えば、グリコール成分としてのエチレングリコール、二塩基酸成分としてのテレフタル酸を主成分としたホモタイプを好ましく用いることができる。 The polybutylene terephthalate film according to the second aspect may contain a polyester resin other than PBT in a range of 30% by mass or less. By including the polyester resin, PBT crystallization can be suppressed, and the stretchability of the polybutylene terephthalate film can be improved. As polyester resin compounded with PBT, polyester which has ethylene terephthalate as a main repeating unit can be used. For example, it is preferable to preferably use ethylene glycol as a glycol component and a homotype mainly composed of terephthalic acid as a dibasic acid component.
 第2の構成に係るポリブチレンテレフタレートフィルムは、チューブラー法又はテンター法により製造することができる。チューブラー法又はテンター法により、未延伸原反を縦方向及び横方向を同時に延伸してもよく、若しくは、縦方向及び横方向を逐次延伸してもよい。このうち、チューブラー法は、周方向の物性バランスが良好な延伸フィルムを得ることができ、特に好ましく採用される。 The polybutylene terephthalate film according to the second configuration can be produced by a tubular method or a tenter method. The unstretched raw fabric may be simultaneously stretched in the machine direction and the transverse direction by the tubular method or the tenter method, or may be sequentially stretched in the machine direction and the transverse direction. Among them, the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
(バイオマス由来のポリエステルフィルム)
 バイオマス由来のポリエステルフィルムは、ジオール単位とジカルボン酸単位とからなるポリエステルを主成分として含んでなる樹脂組成物からなり、前記樹脂組成物が、ジオール単位がバイオマス由来のエチレングリコールであり、ジカルボン酸単位が化石燃料由来のジカルボン酸であるポリエステルを、樹脂組成物全体に対して、50~95質量%、好ましくは50~90質量%含んでなるものである。
(Polyester film derived from biomass)
The biomass-derived polyester film is composed of a resin composition comprising, as a main component, a polyester comprising a diol unit and a dicarboxylic acid unit, wherein the resin composition is ethylene glycol having a diol unit derived from biomass, and a dicarboxylic acid unit 50 to 95% by mass, preferably 50 to 90% by mass, of a polyester which is a dicarboxylic acid derived from fossil fuel, with respect to the entire resin composition.
 バイオマス由来のエチレングリコールは、従来の化石燃料由来のエチレングリコールと化学構造が同じであるため、バイオマス由来のエチレングリコールを用いて合成されたポリエステルのフィルムは、従来の化石燃料由来のポリエステルフィルムと機械的特性等の物性面で遜色がない。したがって、本発明の積層フィルムおよびそれを用いたバリア性積層フィルムは、カーボンニュートラルな材料からなる層を有するため、従来の化石燃料から得られる原料から製造された積層フィルムおよびそれを用いたバリア性積層フィルムに比べて、化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。 Because biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol, polyester films synthesized using biomass-derived ethylene glycol are the same as conventional fossil fuel-derived polyester films and machines There is no inferiority in physical properties such as chemical characteristics. Therefore, since the laminated film of the present invention and the barrier laminated film using the same have a layer made of a carbon neutral material, the laminated film manufactured from the raw material obtained from the conventional fossil fuel and the barrier property using the same Compared to laminated films, the amount of fossil fuel used can be significantly reduced, and the environmental impact can be reduced.
 バイオマス由来のエチレングリコールは、サトウキビ、トウモロコシ等のバイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。また、市販のバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から市販されているバイオマスエチレングリコールを好適に使用することができる。 Ethylene glycol derived from biomass is obtained by using ethanol (biomass ethanol) produced from biomass such as sugar cane and corn as a raw material. For example, biomass ethylene glycol can be obtained from biomass ethanol by a method known in the prior art, such as a method of producing ethylene glycol via ethylene oxide. Alternatively, commercially available biomass ethylene glycol may be used, and, for example, biomass ethylene glycol commercially available from Indyaglikol can be suitably used.
 ポリエステルのジカルボン酸単位は、化石燃料由来のジカルボン酸を使用する。ジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、およびそれらの誘導体を使用することができる。芳香族ジカルボン酸としては、テレフタル酸及びイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステル及びブチルエステル等が挙げられる。これらの中でも、テレフタル酸が好ましく、芳香族ジカルボン酸の誘導体としては、ジメチルテレフタレートが好ましい。 The dicarboxylic acid unit of polyester uses dicarboxylic acid derived from fossil fuel. As dicarboxylic acids, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and derivatives thereof can be used. Examples of aromatic dicarboxylic acids include terephthalic acid and isophthalic acid. Derivatives of aromatic dicarboxylic acids include lower alkyl esters of aromatic dicarboxylic acids, specifically methyl ester, ethyl ester, propyl ester and butyl ester. Ester etc. are mentioned. Among these, terephthalic acid is preferable, and as a derivative of aromatic dicarboxylic acid, dimethyl terephthalate is preferable.
 バイオマス由来のポリエステルフィルムを形成する樹脂組成物中に5~45質量%の割合で含まれてもよいポリエステルは、化石燃料由来のポリエステル、化石燃料由来のポリエステル製品のリサイクルポリエステル、バイオマス由来のポリエステル製品のリサイクルポリエステルである。 The polyester which may be contained in a proportion of 5 to 45% by mass in the resin composition forming the polyester film derived from biomass is a polyester derived from fossil fuel, a recycled polyester from polyester products derived from fossil fuel, a polyester product derived from biomass Is recycled polyester.
 上記のようにして得られるポリエステルを含む樹脂組成物は、放射性炭素(14C)測定によるバイオマス由来の炭素の含有量が、ポリエステル中の全炭素に対して10~19%含まれることが好ましい。大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。 In the resin composition containing a polyester obtained as described above, the content of carbon derived from biomass as measured by radioactive carbon ( 14 C) is preferably 10 to 19% of the total carbon in the polyester. Since carbon dioxide in the atmosphere contains 14 C at a constant rate (105.5 pMC), plants that grow by incorporating carbon dioxide in the atmosphere, such as corn, also have a 14 C content of around 105.5 pMC It is known to be. It is also known that 14 C is hardly contained in fossil fuels. Therefore, the proportion of carbon derived from biomass can be calculated by measuring the proportion of 14 C contained in all the carbon atoms in the polyester.
 本発明においては、ポリエステル中の14Cの含有量をP14Cとした場合の、バイオマス由来の炭素の含有量Pbioを、以下のように定義する。
   Pbio(%)=P14C/105.5×100
 ポリエチレンテレフタレートを例にとると、ポリエチレンテレフタレートは、2炭素原子を含むエチレングリコールと8炭素原子を含むテレフタル酸とがモル比1:1で重合したものであるため、エチレングリコールとしてバイオマス由来のもののみを使用した場合、ポリエステル中のバイオマス由来の炭素の含有量Pbioは20%となる。本発明においては、樹脂組成物中の全炭素に対して、放射性炭素(14C)測定によるバイオマス由来の炭素の含有量が、10~19%であることが好ましい。樹脂組成物中のバイオマス由来の炭素含有量が10%未満であると、カーボンオフセット材料としての効果が乏しくなる。一方、上記したように、樹脂組成物中のバイオマス由来の炭素含有量は20%に近いほど好ましいが、フィルムの製造工程上の問題や物性面から、樹脂中には上記したようなリサイクルポリエステルや添加剤を含む方が好ましいため、実際の上限は18%となる。
In the present invention, when the content of 14 C in the polyester is P 14 C, the content Pbio of carbon derived from biomass is defined as follows.
Pbio (%) = P 14 C / 10 5.5 × 100
Taking polyethylene terephthalate as an example, polyethylene terephthalate is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms at a molar ratio of 1: 1. When P is used, the content Pbio of biomass-derived carbon in the polyester is 20%. In the present invention, the content of carbon derived from biomass as measured by radioactive carbon ( 14 C) relative to total carbon in the resin composition is preferably 10 to 19%. If the carbon content derived from biomass in the resin composition is less than 10%, the effect as a carbon offset material becomes poor. On the other hand, as described above, the carbon content derived from biomass in the resin composition is preferably as close to 20% as possible, but from the viewpoint of problems in the film production process and physical properties, the recycled polyester as described above Since it is preferable to include an additive, the actual upper limit is 18%.
(リサイクルポリエチレンテレフタレート)
 本発明の樹脂基材として、メカニカルリサイクルによりリサイクルされたポリエチレンテレフタレート(以下、ポリエチレンテレフタレートをPETとも記す)を含むものを使用できる。
 具体的には、樹脂基材は、PETボトルをメカニカルリサイクルによりリサイクルしたPETを含み、このPETは、ジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸およびイソフタル酸を含む。
(Recycled polyethylene terephthalate)
As the resin base material of the present invention, one containing polyethylene terephthalate recycled by mechanical recycling (hereinafter, polyethylene terephthalate is also described as PET) can be used.
Specifically, the resin base material includes PET obtained by mechanical recycling of a PET bottle, and in this PET, the diol component is ethylene glycol and the dicarboxylic acid component includes terephthalic acid and isophthalic acid.
 ここで、メカニカルリサイクルとは、一般に、回収されたPETボトル等のポリエチレンテレフタレート樹脂製品を粉砕、アルカリ洗浄してPET樹脂製品の表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してPET樹脂の内部に留まっている汚染物質を拡散させ除染を行い、PET樹脂からなる樹脂製品の汚れを取り除き、再びPET樹脂に戻す方法である。 Here, with mechanical recycling, generally, polyethylene terephthalate resin products such as recovered PET bottles are crushed and washed with alkali to remove dirt and foreign matter on the surface of the PET resin products, and then dried for a fixed time under high temperature and reduced pressure. Then, the contaminants remaining in the inside of the PET resin are diffused and decontaminated to remove the stains of the resin product made of the PET resin, and it is returned to the PET resin again.
 以下、本明細書においては、PETボトルをリサイクルしたポリエチレンテレフタレートを「リサイクルポリエチレンテレフタレート(以下、リサイクルPETとも記す)」といい、リサイクルされていないポリエチレンテレフタレートを「ヴァージンポリエチレンテレフタレート(以下、ヴァージンPETとも記す)」というものとする。 Hereinafter, in the present specification, polyethylene terephthalate obtained by recycling PET bottles is referred to as “recycled polyethylene terephthalate (hereinafter, also referred to as recycled PET)”, and non-recycled polyethylene terephthalate is referred to as “virgin polyethylene terephthalate (hereinafter, also referred to as virgin PET). Shall be
 樹脂基材に含まれるPETのうち、イソフタル酸成分の含有量は、PETを構成する全ジカルボン酸成分中に、0.5モル%以上5モル%以下であることが好ましく、1.0モル%以上2.5モル%以下であることがより好ましい。
 イソフタル酸成分の含有量が0.5モル%未満であると柔軟性が向上しない場合があり、一方、5モル%を超えるとPETの融点が下がり耐熱性が不十分となる場合がある。
The content of the isophthalic acid component in the PET contained in the resin base material is preferably 0.5 mol% or more and 5 mol% or less in all the dicarboxylic acid components constituting the PET, and 1.0 mol% More preferably, it is at least 2.5 mol%.
If the content of the isophthalic acid component is less than 0.5 mol%, the flexibility may not be improved, while if it is more than 5 mol%, the melting point of PET may decrease and the heat resistance may be insufficient.
 なお、PETは、通常の化石燃料由来のPETの他、バイオマスPETであっても良い。「バイオマスPET」とは、ジオール成分としてバイオマス由来のエチレングリコールを含み、ジカルボン酸成分として化石燃料由来のジカルボン酸を含むものである。このバイオマスPETは、バイオマス由来のエチレングリコールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするPETのみで形成されていてもよいし、バイオマス由来のエチレングリコールおよび化石燃料由来のジオールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするPETで形成されていてもよい。 In addition, PET may be biomass PET other than PET derived from normal fossil fuel. The “biomass PET” is one that contains ethylene glycol derived from biomass as a diol component, and contains dicarboxylic acid derived from a fossil fuel as a dicarboxylic acid component. This biomass PET may be formed only of PET comprising ethylene glycol derived from biomass as a diol component and dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component, or ethylene glycol derived from biomass and diol derived from fossil fuel It may be formed of PET, which is a diol component and a dicarboxylic acid component derived from a fossil fuel.
 PETボトルに用いられるPETは、上記したジオール成分とジカルボン酸成分とを重縮合させる従来公知の方法により得ることができる。 PET used for a PET bottle can be obtained by the conventionally well-known method of polycondensing the diol component and dicarboxylic acid component which were mentioned above.
 具体的には、上記のジオール成分とジカルボン酸成分とのエステル化反応および/またはエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法、または有機溶媒を用いた公知の溶液加熱脱水縮合方法などによって製造することができる。 Specifically, a general method of melt polymerization in which an esterification reaction and / or an ester exchange reaction of the diol component and the dicarboxylic acid component is performed, and then a polycondensation reaction under reduced pressure is performed, or an organic solvent It can be produced by a known solution heat dehydration condensation method using
 上記PETを製造する際に用いるジオール成分の使用量は、ジカルボン酸またはその誘導体100モルに対し、実質的に等モルであるが、一般には、エステル化および/またはエステル交換反応および/または縮重合反応中の留出があることから、0.1モル%以上20モル%以下過剰に用いられる。
 また、重縮合反応は、重合触媒の存在下で行うことが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。
The amount of the diol component used in producing the PET is substantially equimolar to 100 moles of the dicarboxylic acid or its derivative, but in general, the esterification and / or transesterification reaction and / or polycondensation Since there is distillation during the reaction, it is used in excess of 0.1 mol% or more and 20 mol% or less.
The polycondensation reaction is preferably carried out in the presence of a polymerization catalyst. The timing of addition of the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and may be added at the time of feeding the raw materials, or may be added at the start of pressure reduction.
 PETボトルをリサイクルしたPETは、上記のようにして重合して固化させた後、さらに重合度を高めたり、環状三量体などのオリゴマーを除去したりするため、必要に応じて固相重合を行ってもよい。
 具体的には、固相重合は、PETをチップ化して乾燥させた後、100℃以上180℃以下の温度で1時間から8時間程度加熱してPETを予備結晶化させ、続いて、190℃以上230℃以下の温度で、不活性ガス雰囲気下または減圧下において1時間~数十時間加熱することにより行われる。
The PET obtained by recycling the PET bottle is polymerized and solidified as described above, and then the degree of polymerization is further increased, and oligomers such as cyclic trimers are removed, so solid phase polymerization is carried out as necessary. You may go.
Specifically, in solid-phase polymerization, after PET is chipped and dried, it is heated at a temperature of 100 ° C. or more and 180 ° C. or less for about 1 hour to 8 hours to pre-crystallize PET, and subsequently, 190 ° C. It is carried out by heating at a temperature of at least 230 ° C. and under an inert gas atmosphere or under reduced pressure for 1 hour to several tens of hours.
 リサイクルPETに含まれるPETの極限粘度は、0.58dl/g以上0.80dl/g以下であることが好ましい。極限粘度が0.58dl/g未満の場合は、樹脂基材としてPETフィルムに要求される機械特性が不足する可能性がある。他方、極限粘度が0.80dl/gを超えると、フィルム製膜工程における生産性が損なわれる場合がある。なお、極限粘度は、オルトクロロフェノール溶液で、35℃において測定される。 The intrinsic viscosity of PET contained in recycled PET is preferably 0.58 dl / g or more and 0.80 dl / g or less. If the intrinsic viscosity is less than 0.58 dl / g, mechanical properties required for a PET film as a resin substrate may be insufficient. On the other hand, when the intrinsic viscosity exceeds 0.80 dl / g, the productivity in the film forming step may be impaired. The intrinsic viscosity is measured at 35 ° C. with an orthochlorophenol solution.
 リサイクルPETは、リサイクルPETを50重量%以上95重量%以下の割合で含むことが好ましく、リサイクルPETの他、ヴァージンPETを含んでいてもよい。
ヴァージンPETとしては、上記したようなジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸およびイソフタル酸を含むPETであってもよく、また、ジカルボン酸成分がイソフタル酸を含まないPETであってもよい。また、樹脂基材層は、PET以外のポリエステルを含んでいてもよい。例えば、ジカルボン酸成分として、テレフタル酸およびイソフタル酸などの芳香族ジカルボン酸以外にも、脂肪族ジカルボン酸等が含まれていてもよい。
Recycled PET preferably contains recycled PET at a ratio of 50% by weight to 95% by weight, and may contain virgin PET in addition to recycled PET.
The virgin PET may be a PET in which the diol component as described above is ethylene glycol, the dicarboxylic acid component is terephthalic acid and isophthalic acid, and the dicarboxylic acid component is PET in which isophthalic acid is not contained. It is also good. Moreover, the resin base material layer may contain polyester other than PET. For example, as the dicarboxylic acid component, aliphatic dicarboxylic acids and the like may be contained in addition to aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
 脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸ならびにシクロヘキサンジカルボン酸などの、通常炭素数が2以上40以下の鎖状または脂環式ジカルボン酸が挙げられる。脂肪族ジカルボン酸の誘導体としては、上記脂肪族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステルおよびブチルエステルなどの低級アルキルエステル、無水コハク酸などの上記脂肪族ジカルボン酸の環状酸無水物が挙げられる。これらの中でも、脂肪族ジカルボン酸としては、アジピン酸、コハク酸、ダイマー酸またはこれらの混合物が好ましく、コハク酸を主成分とするものが特に好ましい。脂肪族ジカルボン酸の誘導体としては、アジピン酸およびコハク酸のメチルエステル、またはこれらの混合物がより好ましい。 Specific examples of aliphatic dicarboxylic acids include chains having a carbon number of usually 2 or more and 40 or less, such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid and cyclohexanedicarboxylic acid. And cyclic or alicyclic dicarboxylic acids. Examples of derivatives of aliphatic dicarboxylic acids include lower alkyl esters such as methyl, ethyl, propyl and butyl esters of the above aliphatic dicarboxylic acids, and cyclic acid anhydrides of the above aliphatic dicarboxylic acids such as succinic anhydride, etc. . Among these, as the aliphatic dicarboxylic acid, adipic acid, succinic acid, dimer acid or a mixture thereof is preferable, and one containing succinic acid as a main component is particularly preferable. As derivatives of aliphatic dicarboxylic acids, methyl esters of adipic acid and succinic acid, or mixtures thereof are more preferred.
 このようなPETから構成される樹脂基材は、単層であってもよく、多層であってもよい。
図1cに示すように、樹脂基材に上記したようなリサイクルPETを用いる場合は、第1層1a、第2層1b、および第3層1cの3層を備えた樹脂基材としてもよい。
 この場合、第2層1bをリサイクルPETのみから構成される層またはリサイクルPETとヴァージンPETとの混合層とし、第1層1aおよび第3層1cは、ヴァージンPETのみから構成される層とすることが好ましい。
The resin base composed of such PET may be a single layer or a multilayer.
As shown in FIG. 1c, in the case of using recycled PET as described above for the resin substrate, it may be a resin substrate provided with three layers of a first layer 1a, a second layer 1b, and a third layer 1c.
In this case, the second layer 1b should be a layer composed only of recycled PET or a mixed layer of recycled PET and virgin PET, and the first layer 1a and the third layer 1c should be a layer composed only of virgin PET Is preferred.
 このように、第1層1aおよび第3層1cにヴァージンPETのみを用いることにより、リサイクルPETが樹脂基材層の表面または裏面から表出することを防止することができる。このため、積層体の衛生性を確保することができる。
 また、樹脂基材層は、図1cに示す第1層1aを設けることなく、第2層1bおよび第3層1cの2層を備えた樹脂基材層としてもよい。さらに、樹脂基材層は、図1cに示す第3層1cを設けることなく、第1層1aおよび第2層1bの2層を備えた樹脂基材層としてもよい。これらの場合においても、第2層1bをリサイクルPETのみから構成される層またはリサイクルPETとヴァージンPETとの混合層とし、第1層1aおよび第3層1cは、ヴァージンPETのみから構成される層とすることが好ましい。
Thus, by using only virgin PET for the first layer 1a and the third layer 1c, it is possible to prevent the recycled PET from being exposed from the surface or the back surface of the resin base layer. For this reason, the hygiene of a layered product is securable.
Further, the resin base layer may be a resin base layer provided with two layers of the second layer 1 b and the third layer 1 c without providing the first layer 1 a shown in FIG. 1 c. Furthermore, the resin base material layer may be a resin base material layer provided with two layers of the first layer 1a and the second layer 1b without providing the third layer 1c shown in FIG. 1c. Also in these cases, the second layer 1b is a layer composed only of recycled PET or a mixed layer of recycled PET and virgin PET, and the first layer 1a and the third layer 1c are layers composed only of virgin PET It is preferable to
 リサイクルPETとヴァージンPETとを混合して一つの層を成形する場合には、別々に成形機に供給する方法、ドライブレンド等で混合した後に供給する方法などがある。中でも、操作が簡便であるという観点から、ドライブレンドで混合する方法が好ましい。 When mixing recycled PET and virgin PET and forming one layer, there are a method of separately supplying to a molding machine, a method of mixing after dry blending and the like, and the like. Among them, the method of mixing by dry blending is preferable from the viewpoint that the operation is simple.
 樹脂基材を構成するPETは、その製造工程において、またはその製造後に、その特性が損なわれない範囲において各種の添加剤を含有することができる。添加剤として、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料などが挙げられる。添加剤は、PETを含む樹脂組成物全体中に、5質量%以上50質量%以下、好ましくは5質量%以上20質量%以下の範囲で含有されることが好ましい。 PET which comprises a resin base material can contain various additives in the range which the characteristic does not impair in the manufacturing process, or after its manufacture. Additives include, for example, plasticizers, UV stabilizers, coloring inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, mold release agents, antioxidants, ions Exchangers, color pigments and the like can be mentioned. The additive is preferably contained in the range of 5% by mass to 50% by mass, preferably 5% by mass to 20% by mass, in the entire resin composition containing PET.
 樹脂基材は、上記したPETを用いて、例えば、Tダイ法によってフィルム化することにより形成することができる。具体的には、上記したPETを乾燥させた後、PETの融点以上の温度(Tm)~Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイなどのダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。 The resin substrate can be formed, for example, by film formation by the T-die method using the above-mentioned PET. Specifically, the above-described PET is dried and then supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. higher than the melting point of PET to melt the resin composition, for example, T-die The film can be formed by extruding the die into a sheet shape and rapidly solidifying the extruded sheet material with a rotating cooling drum or the like. As a melt extruder, a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder etc. can be used according to the objective.
 上記のようにして得られたフィルムは2軸延伸されていることが好ましい。2軸延伸は従来公知の方法で行うことができる。例えば、上記のようにして冷却ドラム上に押し出されたフィルムを、続いて、ロール加熱、赤外線加熱などで加熱し、縦方向に延伸して縦延伸フィルムとする。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸は、通常、50℃以上100℃以下の温度範囲で行われる。また、縦延伸の倍率は、フィルム用途の要求特性にもよるが、2.5倍以上4.2倍以下とするのが好ましい。延伸倍率が2.5倍未満の場合は、PETフィルムの厚み斑が大きくなり良好なフィルムを得ることが難しい。 The film obtained as described above is preferably biaxially stretched. Biaxial stretching can be performed by a conventionally known method. For example, the film extruded on the cooling drum as described above is subsequently heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to form a longitudinally stretched film. It is preferable to perform this stretching using the circumferential speed difference of two or more rolls. The longitudinal stretching is usually performed in a temperature range of 50 ° C. or more and 100 ° C. or less. Moreover, although the magnification of longitudinal stretch is based also on the required characteristic of a film use, it is preferable to set it as 2.5 times or more and 4.2 times or less. When the draw ratio is less than 2.5 times, the thickness unevenness of the PET film becomes large, and it is difficult to obtain a good film.
 縦延伸されたフィルムは、続いて横延伸、熱固定、熱弛緩の各処理工程を順次施して2軸延伸フィルムとなる。横延伸は、通常、50℃以上100℃以下の温度範囲で行われる。横延伸の倍率は、この用途の要求特性にもよるが、2.5倍以上5.0倍以下が好ましい。2.5倍未満の場合はフィルムの厚み斑が大きくなり良好なフィルムが得られにくく、5.0倍を超える場合は製膜中に破断が発生しやすくなる。 Subsequently, the longitudinally stretched film is sequentially subjected to each processing step of transverse stretching, heat setting and heat relaxation to form a biaxially stretched film. Transverse stretching is usually performed in a temperature range of 50 ° C. or more and 100 ° C. or less. Although the magnification of transverse stretching depends on the required characteristics of this application, it is preferably 2.5 times or more and 5.0 times or less. When it is less than 2.5 times, thickness unevenness of the film becomes large and a good film is difficult to be obtained. When it exceeds 5.0 times, breakage easily occurs during film formation.
 横延伸のあと、続いて熱固定処理を行うが、好ましい熱固定の温度範囲は、PETのTg+70~Tm-10℃である。また、熱固定時間は1秒以上60秒以下が好ましい。さらに熱収縮率の低滅が必要な用途については、必要に応じて熱弛緩処理を行ってもよい。 After the transverse stretching, a heat setting treatment is subsequently performed, but a preferable heat setting temperature range is Tg + 70 to Tm-10 ° C. of PET. The heat setting time is preferably 1 second to 60 seconds. Furthermore, for applications requiring a reduction in heat shrinkage rate, a heat relaxation treatment may be performed as necessary.
 上記のようにして得られるPETフィルムの厚さは、その用途に応じて任意であるが、通常、5μm以上100μm以下程度であり、好ましくは5μm以上25μm以下である。また、PETフィルムの破断強度は、MD方向で5kg/mm以上40kg/mm以下、TD方向で5kg/mm以上35kg/mm以下であり、また、破断伸度は、MD方向で50%以上350%以下、TD方向で50%以上300%以下である。また、150℃の温度環境下に30分放置した時の収縮率は、0.1%以上5%以下である。 The thickness of the PET film obtained as described above is arbitrary according to the application, but is usually about 5 μm to 100 μm, preferably 5 μm to 25 μm. Further, the breaking strength of the PET film in the MD direction 5 kg / mm 2 or more 40 kg / mm 2 or less, in TD direction 5 kg / mm 2 or more 35 kg / mm 2 or less, also elongation at break 50 in the MD direction % And 350% or less, and 50% or more and 300% or less in the TD direction. In addition, the shrinkage rate when left for 30 minutes in a temperature environment of 150 ° C. is 0.1% or more and 5% or less.
 なお、ヴァージンPETは、化石燃料ポリエチレンテレフタレート(以下化石燃料PETとも記す)であってもよく、バイオマスPETであってもよい。ここで、「化石燃料PET」とは、化石燃料由来のジオールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするものである。また、リサイクルPETは、化石燃料PETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよく、バイオマスPETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよい。 The virgin PET may be fossil fuel polyethylene terephthalate (hereinafter also referred to as fossil fuel PET), or may be biomass PET. Here, "fossil fuel PET" refers to a diol derived from fossil fuel as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component. In addition, recycled PET may be obtained by recycling a PET resin product formed using fossil fuel PET, and obtained by recycling a PET resin product formed using biomass PET. It may be.
(高スティフネスポリエステルフィルム)
 高スティフネスポリエステルフィルムとは、流れ方向(MD)及び垂直方向(TD)において0.0017N/15mm以上のループスティフネスを有し、且つ51質量%以上のポリエステルを含む延伸プラスチックフィルムである。
 ループスティフネスとは、フィルムのこしの強さを表すパラメータである。以下、フィルムのループスティフネスの測定方法を説明する。
(High stiffness polyester film)
The high-stiffness polyester film is a stretched plastic film having a loop stiffness of 0.0017 N / 15 mm or more in the machine direction (MD) and the vertical direction (TD) and containing 51% by mass or more of polyester.
Loop stiffness is a parameter that represents the strength of the film. Hereinafter, the method of measuring the loop stiffness of the film will be described.
 まず、フィルムを、長辺及び短辺を有する短冊に切断して試験片を作製する。続いて、短冊の試験片を、長片がループを描くように湾曲させて所定の直径の円形ループを作成した状態で、長辺方向における短冊の両端の短辺を固定する。その後、円形ループを外側から所定の距離にわたって押し込む。そして、押し込みに要する荷重をループスティフネスとして記録する。 First, the film is cut into strips having long sides and short sides to prepare test pieces. Subsequently, the short side of each end of the strip in the long side direction is fixed in a state in which the strip is curved so that the strip draws a loop to form a circular loop having a predetermined diameter. Thereafter, the circular loop is pushed from the outside over a predetermined distance. Then, the load required for pushing is recorded as loop stiffness.
 本実施の形態においては、短冊の短辺の長さを15mmとし、長辺の長さを150mmとした。また、円形ループの直径を60mmとし、円形ループの押し込み距離を40mmとした。上記の「0.0017N/15mm」というループスティフネスは、短辺の長さが15mmの短冊の試験片の円形ループを40mm押し込むことに要する荷重が0.0017Nであることを意味している。 In the present embodiment, the length of the short side of the strip is 15 mm, and the length of the long side is 150 mm. Further, the diameter of the circular loop was 60 mm, and the pressing distance of the circular loop was 40 mm. The above-mentioned "0.0017 N / 15 mm" loop stiffness means that the load required to push 40 mm of the circular loop of a short strip having a short side length of 15 mm is 0.0017 N.
 流れ方向におけるループスティフネスを測定する場合、フィルムの流れ方向が短冊の長辺方向に一致するよう、試験片を作製する。垂直方向におけるループスティフネスを測定する場合、フィルムの垂直方向が短冊の長辺方向に一致するよう、試験片を作製する。ループスティフネスの測定器としては、例えば、東洋精機社製のLOOP STIFFNESS TESTERを用いることができる。 When measuring the loop stiffness in the flow direction, a test piece is produced so that the flow direction of the film coincides with the long side direction of the strip. When measuring the loop stiffness in the vertical direction, a test piece is produced so that the vertical direction of the film coincides with the long side direction of the strip. As a measuring device of loop stiffness, for example, LOOP STIFFNESS TESTER manufactured by Toyo Seiki Co., Ltd. can be used.
 高スティフネスポリエステルフィルムの好ましい機械特性について更に説明する。
 高スティフネスポリエステルフィルムの突き刺し強度は、好ましくは9.5N以上であり、より好ましくは10.0N以上である。
The preferred mechanical properties of high stiffness polyester films are further described.
The puncture strength of the high-stiffness polyester film is preferably 9.5 N or more, more preferably 10.0 N or more.
 流れ方向における高スティフネスポリエステルフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。垂直方向における高スティフネスポリエステルフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。 The tensile strength of the high stiffness polyester film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more. The tensile strength of the high stiffness polyester film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more.
 流れ方向における高スティフネスポリエステルフィルムの引張伸度は、好ましくは130%以下であり、より好ましくは120%以下である。垂直方向における高スティフネスポリエステルフィルムの引張伸度は、好ましくは120%以下であり、より好ましくは110%以下である。 The tensile elongation of the high stiffness polyester film in the flow direction is preferably 130% or less, more preferably 120% or less. The tensile elongation of the high stiffness polyester film in the vertical direction is preferably 120% or less, more preferably 110% or less.
 さらに、少なくとも1つの方向において、高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値が2.0MPa/%以上であることが好ましい。
 例えば、垂直方向(TD)における高スティフネスフィルムの引張強度を引張伸度で割った値は、好ましくは2.0MPa/%以上であり、より好ましくは2.2MPa/%以上である。そして、流れ方向(MD)における高スティフネスフィルムの引張強度を引張伸度で割った値は、好ましくは1.8MPa/%以上であり、より好ましくは2.0MPa/%以上である。
Furthermore, it is preferable that a value obtained by dividing the tensile strength of the high-stiffness polyester film by the tensile elongation in at least one direction is 2.0 MPa /% or more.
For example, the tensile strength of the high stiffness film in the vertical direction (TD) divided by the tensile elongation is preferably 2.0 MPa /% or more, more preferably 2.2 MPa /% or more. The value obtained by dividing the tensile strength of the high stiffness film in the flow direction (MD) by the tensile elongation is preferably 1.8 MPa /% or more, and more preferably 2.0 MPa /% or more.
 引張強度及び引張伸度は、JIS K7127に準拠して測定され得る。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。試験片としては、フィルムを幅15mm、長さ150mmの矩形状のフィルムに切り出したものを用いることができる。試験片を保持する一対のチャックの間の、測定開始時の間隔は100mmであり、引張速度は300mm/分である。試験の際の環境温度は25℃である。 Tensile strength and tensile elongation can be measured in accordance with JIS K7127. As a measuring instrument, a tensile tester STA-1150 manufactured by Orientec Co., Ltd. can be used. As a test piece, what cut out the film into the rectangular film of width 15 mm and length 150 mm can be used. The distance between the pair of chucks holding the test piece at the start of measurement is 100 mm, and the pulling speed is 300 mm / min. The environmental temperature during the test is 25 ° C.
 流れ方向における高スティフネスポリエステルフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。そして、垂直方向における高スティフネスポリエステルフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。熱収縮率を測定する際の加熱温度は100℃であり、加熱時間は40分である。 The heat shrinkage of the high stiffness polyester film in the flow direction is preferably 0.7% or less, more preferably 0.5% or less. And the thermal contraction rate of the high stiffness polyester film in the vertical direction is preferably 0.7% or less, and more preferably 0.5% or less. The heating temperature at the time of measuring the thermal contraction rate is 100 ° C., and the heating time is 40 minutes.
 流れ方向における高スティフネスポリエステルフィルムのヤング率は、好ましくは4.0GPa以上であり、より好ましくは4.5MPa以上である。そして、垂直方向における高スティフネスポリエステルフィルムのヤング率は、好ましくは4.0GPa以上であり、より好ましくは4.5GPa以上である。 The Young's modulus of the high stiffness polyester film in the flow direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more. And, the Young's modulus of the high stiffness polyester film in the vertical direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more.
 高スティフネスポリエステルフィルムの製造工程においては、例えば、まず、ポリエステルを溶融及び成形することによって得られたポリエステルフィルムを、流れ方向及び垂直方向において、それぞれ90℃~145℃で3倍~4.5倍に延伸する第1延伸工程を実施する。 In the production process of the high-stiffness polyester film, for example, the polyester film obtained by melting and forming the polyester first is 3 to 4.5 times at 90 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively. The first stretching step of stretching into
 続いて、ポリエステルフィルムを、流れ方向及び垂直方向において、それぞれ100℃~145℃で1.1倍~3.0倍に延伸する第2延伸工程を実施する。 Subsequently, the polyester film is subjected to a second stretching step of stretching 1.1 times to 3.0 times at 100 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively.
 その後、190℃~220℃の温度で熱固定を行う。続いて、流れ方向及び垂直方向において、100℃~190℃の温度で、ポリエステルフィルムの幅を0.2%~2.5%程度縮める為の弛緩処理を実施する。 Thereafter, heat setting is performed at a temperature of 190 ° C. to 220 ° C. Subsequently, a relaxation treatment is performed at a temperature of 100 ° C. to 190 ° C. in the flow direction and the vertical direction to reduce the width of the polyester film by about 0.2% to 2.5%.
 これらの工程において、延伸倍率、延伸温度、熱固定温度、弛緩処理率を調整することにより、上述の機械特性を備える高スティフネスポリエステルフィルムを得ることができる
 高スティフネスポリエステルフィルムに用いられるポリエステルの種類としては、ポリエチレンテレフタレートが好ましい。
In these steps, by adjusting the draw ratio, the draw temperature, the heat setting temperature, and the relaxation treatment rate, it is possible to obtain a high stiffness polyester film having the above-mentioned mechanical properties. As a kind of polyester used for the high stiffness polyester film Is preferably polyethylene terephthalate.
 上記のような本発明のプラスチック基材としてのプラスチックフィルムの厚さは、特に制限を受けるものではなく、後述するローラー式連続蒸着膜成膜装置により蒸着膜を成膜する際の前処理や成膜処理することができるものであればよく、可撓性及び形態保持性の観点から、6~400μm、好ましくは、9~200μmの範囲が望ましい。但し、高スティフネスポリエステルフィルムの場合には、厚さは、好ましくは5μm以上であり、より好ましくは7μm以上であり、さらに、好ましくは25μm以下であり、より好ましくは20μm以下である。プラスチックフィルムの厚さが前記範囲内にあると、曲げやすい上に搬送中に破けることもなく、密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルムの製造に用いられる連続蒸着膜成膜装置で取り扱いやすい。
 特にプラスチック基材に高スティフネスポリエステルフィルムを用いた場合には、積層フィルムの厚さと重量を小さくした上で同等以上の剛性、引張強度、突き刺し強度を有する積層フィルムを得ることができる。
The thickness of the plastic film as the plastic substrate of the present invention as described above is not particularly limited, and the pretreatment and formation when depositing a deposited film by a roller type continuous deposited film deposition apparatus described later Any film can be used, and from the viewpoint of flexibility and shape retention, a range of 6 to 400 μm, preferably 9 to 200 μm is desirable. However, in the case of a high stiffness polyester film, the thickness is preferably 5 μm or more, more preferably 7 μm or more, further preferably 25 μm or less, and more preferably 20 μm or less. When the thickness of the plastic film is within the above range, the continuous film is used for producing a laminated film having an aluminum oxide vapor deposition film provided with a barrier property with improved adhesion without bending and being broken during transportation. Easy to handle with a deposited film deposition system.
In particular, when a high-stiffness polyester film is used as the plastic substrate, it is possible to obtain a laminated film having the same or higher rigidity, tensile strength and piercing strength after reducing the thickness and weight of the laminated film.
 次に、酸化アルミニウム蒸着膜について説明する。本発明においては、酸化アルミニウム蒸着膜の成膜は、プラスチック基材と酸化アルミニウム蒸着膜との密着性等を向上させるために、プラスチック基材のフィルムの表面に、以下で説明するプラズマ前処理装置を用いた特殊酸素プラズマ前処理を行うことが好ましい。特殊酸素プラズマ前処理は、本発明において各種樹脂のフィルム又はシートと酸化アルミニウム蒸着膜との密着性等を従来法より強化、改善するための前処理であって、次のような蒸着膜成膜装置において実施されるものである。 Next, the aluminum oxide vapor deposition film will be described. In the present invention, the deposition of the aluminum oxide vapor deposition film is performed on the surface of the plastic substrate film in order to improve the adhesion between the plastic substrate and the aluminum oxide vapor deposition film, and the like. It is preferable to perform special oxygen plasma pretreatment using The special oxygen plasma pretreatment is a pretreatment for strengthening and improving the adhesion between a film or sheet of various resins and an aluminum oxide vapor deposition film in the present invention, as compared with the conventional method. It is implemented in an apparatus.
 本発明の密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルムの製造に好適に用いられるローラー式連続蒸着膜成膜装置10は、図2に示すように、減圧チャンバ12内に隔壁35a~35cが形成されている。該隔壁35a~35cにより、基材搬送室12A、プラズマ前処理室12B、成膜室12Cが形成され、特に、隔壁と隔壁35a~35cで囲まれた空間としてプラズマ前処理室12B及び成膜室12Cが形成され、各室は、必要に応じて、さらに内部に排気室が形成される。
(特殊酸素プラズマ前処理)
The roller-type continuous vapor deposition film deposition apparatus 10 suitably used for the production of a laminated film having an aluminum oxide vapor deposition film having a barrier property with improved adhesion according to the present invention is, as shown in FIG. The partition walls 35a to 35c are formed on the The base material transfer chamber 12A, the plasma pretreatment chamber 12B, and the film formation chamber 12C are formed by the partition walls 35a to 35c, and in particular, the plasma pretreatment chamber 12B and the film formation chamber are spaces surrounded by the partition walls and the partition walls 35a to 35c. 12C is formed, and each chamber is further internally formed with an exhaust chamber as required.
(Special oxygen plasma pretreatment)
 プラズマ前処理室12B内には、前処理が行われるプラスチック基材Sを搬送し、かつプラズマ処理を可能にするプラズマ前処理ローラー20の一部が基材搬送室12Aに露出するように設けられており、プラスチック基材Sは巻き取られながらプラズマ前処理室12Bに移動するようになっている。 In the plasma pretreatment chamber 12B, a plastic substrate S to be subjected to pretreatment is conveyed, and a part of the plasma pretreatment roller 20 that enables plasma treatment is provided so as to be exposed to the substrate conveyance chamber 12A. The plastic substrate S is moved to the plasma pretreatment chamber 12B while being wound up.
 プラズマ前処理室12B及び成膜室12Cは、基材搬送室12Aと接して設けられており、プラスチック基材Sを大気に触れさせないままに移動可能である。また、前処理室12Bと基材搬送室12Aの間は、矩形の穴により接続されており、その矩形の穴を通じてプラズマ前処理ローラー20の一部が基材搬送室12A側に飛び出しており、該搬送室の壁と該前処理ローラー20の間に隙間が開いており、その隙間を通じて基材Sが基材搬送室12Aから成膜室12Cへ移動可能である。基材搬送室12Aと成膜室12Cとの間も同様の構造となっており、プラスチック基材Sを大気に触れさせずに移動可能である。 The plasma pretreatment chamber 12B and the film forming chamber 12C are provided in contact with the substrate transfer chamber 12A, and can move the plastic substrate S without being exposed to the atmosphere. Further, the pretreatment chamber 12B and the substrate transfer chamber 12A are connected by a rectangular hole, and a part of the plasma pretreatment roller 20 protrudes to the substrate transfer chamber 12A through the rectangular hole, A gap is opened between the wall of the transfer chamber and the pretreatment roller 20, and the substrate S can be moved from the substrate transfer chamber 12A to the film forming chamber 12C through the gap. The same structure is also provided between the substrate transfer chamber 12A and the film forming chamber 12C, and the plastic substrate S can be moved without being exposed to the atmosphere.
 基材搬送室12Aは、成膜ローラー23により再度基材搬送室12Aに移動させられた、片面に蒸着膜が成膜されたプラスチック基材Sをロール状に巻き取るため、巻取り手段としての巻き取りローラーが設けられ、蒸着膜を成膜されたプラスチック基材Sを巻き取り可能とするようになっている。 The base material transfer chamber 12A is moved to the base material transfer chamber 12A again by the film forming roller 23, and rolls up the plastic base material S on which the vapor deposition film is formed on one side. A take-up roller is provided to enable take-up of the plastic substrate S on which the deposited film is formed.
 本発明の密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルムを製造する際、前記プラズマ前処理室12Bは、プラズマが生成する空間を他の領域と区分し、対向空間を効率よく真空排気できるように構成されることで、プラズマガス濃度の制御が容易となり、生産性が向上する。その減圧して形成する前処理圧力は、0.1Pa~100Pa程度に設定、維持することができ、特に、本発明の酸化アルミニウム蒸着膜の好ましい遷移領域の変成率とするため特殊酸素プラズマ前処理の処理圧力としては、1~20Paが好ましい。 When manufacturing a laminated film having an aluminum oxide vapor deposition film having a barrier property with improved adhesion according to the present invention, the plasma pretreatment chamber 12B divides the space generated by plasma from the other region, and the opposing space By being configured to be able to evacuate efficiently, control of plasma gas concentration becomes easy, and productivity is improved. The pretreatment pressure to be formed by reducing the pressure can be set and maintained at about 0.1 Pa to 100 Pa, and in particular, special oxygen plasma pretreatment to achieve the transformation rate of the preferable transition region of the aluminum oxide vapor deposition film of the present invention. The processing pressure of is preferably 1 to 20 Pa.
 プラスチック基材Sの搬送速度は、特に限定されないが、生産効率の観点から、少なくとも200~1000m/minにすることができ、特に、本発明の酸化アルミニウム蒸着膜の遷移領域の変成率とするため特殊酸素プラズマ前処理の搬送速度としては、300~800m/minが好ましい。 The transport speed of the plastic substrate S is not particularly limited, but can be at least 200 to 1000 m / min from the viewpoint of production efficiency, and in particular, to set the conversion rate of the transition region of the aluminum oxide vapor deposition film of the present invention. The transport speed of the special oxygen plasma pretreatment is preferably 300 to 800 m / min.
 プラズマ前処理装置を構成するプラズマ前処理ローラー20は、プラスチック基材Sがプラズマ前処理手段によるプラズマ処理時の熱による基材の収縮や破損を防ぐこと、酸素プラズマPをプラスチック基材Sに対して均一にかつ広範囲に適用することを目的とするものである。
 前処理ローラー20は、前処理ローラー内を循環させる温度調節媒体の温度を調整することにより、-20℃から100℃の間で、一定温度に調節することが可能であることが好ましい。
The plasma pretreatment roller 20 constituting the plasma pretreatment apparatus prevents the plastic substrate S from shrinking or breaking of the substrate due to heat during plasma treatment by the plasma pretreatment means, oxygen plasma P to the plastic substrate S It is intended to be applied uniformly and widely.
It is preferable that the pretreatment roller 20 can be adjusted to a constant temperature between -20 ° C. and 100 ° C. by adjusting the temperature of the temperature control medium circulated in the pretreatment roller.
 プラズマ前処理手段は、プラズマ供給手段及び磁気形成手段を含むものである。プラズマ前処理手段はプラズマ前処理ローラー20と協働し、プラスチック基材S表面近傍に酸素プラズマPを閉じ込める。 The plasma pretreatment means includes plasma supply means and magnetic formation means. The plasma pretreatment means cooperates with the plasma pretreatment roller 20 to confine the oxygen plasma P near the surface of the plastic substrate S.
 プラズマ前処理手段は、前処理ローラー20の一部を覆うように設けられている。具体的には、前処理ローラー20の外周近傍の表面に沿ってプラズマ前処理手段を構成するプラズマ供給手段と磁気形成手段を配置して、前処理ローラー20とプラズマ原料ガスを供給するとともにプラズマPを発生させる電極ともなるプラズマ供給ノズル22a~22cとプラズマPの発生を促進するためマグネット21等を有する磁気形成手段とにより挟まれた空隙を形成するように設置する。
 それにより、該空隙の空間にプラズマ供給ノズル22a~22cを開口させてプラズマを基材表面に向かって噴射し、該空隙内をプラズマ形成領域とし、さらに、前処理ローラー20とプラスチック基材Sの表面近傍にプラズマ密度の高い領域を形成することで、プラスチック基材Sの片面にプラズマ処理面を形成する本発明の特殊酸素プラズマ前処理が行えるように構成されている。
The plasma pretreatment means is provided so as to cover a part of the pretreatment roller 20. Specifically, the plasma supply means and the magnetic forming means constituting the plasma pretreatment means are disposed along the surface in the vicinity of the outer periphery of the pretreatment roller 20 to supply the pretreatment roller 20 and the plasma raw material gas and the plasma P Are formed so as to form an air gap sandwiched between the plasma supply nozzles 22a to 22c, which also serve as electrodes for generating the magnetic field, and the magnetic forming means having the magnet 21 etc., to promote the generation of the plasma P.
Thereby, the plasma supply nozzles 22a to 22c are opened in the space of the gap, and plasma is jetted toward the surface of the substrate to make the inside of the gap a plasma forming region. By forming a region with high plasma density in the vicinity of the surface, the special oxygen plasma pretreatment of the present invention for forming a plasma treated surface on one side of the plastic substrate S can be performed.
 プラズマ前処理手段のプラズマ供給手段は、減圧チャンバ12の外部に設けたプラズマ供給ノズルに接続された原料揮発供給装置18と、該装置から原料ガス供給を供給する原料ガス供給ラインを含むものである。供給されるプラズマ原料ガスは、酸素単独又は酸素ガスとアルゴン、ヘリウム、窒素及びそれらの1種以上のガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。 The plasma supply means of the plasma pretreatment means includes a raw material volatilization supply device 18 connected to a plasma supply nozzle provided outside the decompression chamber 12, and a raw material gas supply line for supplying the raw material gas from the device. The supplied plasma source gas is a mixture gas of oxygen alone or a mixture of oxygen gas with argon, helium, nitrogen and one or more of those gases, and the flow rate of the gas is measured from the gas storage unit via a flow controller. While being supplied.
 これら供給されるガスは、必要に応じて所定の比率で混合されて、プラズマ原料ガス単独又はプラズマ形成用混合ガスに形成され、プラズマ供給手段に供給される。その単独又は混合ガスは、プラズマ供給手段のプラズマ供給ノズル22a~22cに供給され、プラズマ供給ノズル22a~22cの供給口が開口する前処理ローラー20の外周近傍に供給される。
 そのノズル開口は前処理ローラー20上のプラスチック基材Sに向けられ、プラスチック基材Sの表面全体に均一に酸素プラズマPを拡散、供給させることが可能となるように配置、構成され、プラスチック基材Sの大面積の部分に均一なプラズマ前処理が可能となる。
These supplied gases are mixed at a predetermined ratio as needed, formed into a plasma source gas alone or a mixed gas for plasma formation, and supplied to the plasma supply means. The single or mixed gas is supplied to the plasma supply nozzles 22a to 22c of the plasma supply means, and is supplied near the outer periphery of the pretreatment roller 20 where the supply ports of the plasma supply nozzles 22a to 22c are opened.
The nozzle opening is directed to the plastic substrate S on the pretreatment roller 20, and is arranged and configured to be able to diffuse and supply the oxygen plasma P uniformly over the entire surface of the plastic substrate S, the plastic substrate A uniform plasma pretreatment can be performed on the large-area portion of the material S.
 本発明の酸化アルミニウム蒸着膜の遷移領域の変成率とするため特殊酸素プラズマ前処理としては、酸素ガスとアルゴンまたはヘリウムとの混合比率は、5対1、好ましくは、2対1である。混合比率を5対1とすることで、プラスチックフィルム基材上での蒸着アルミニウムの膜形成エネルギーが増加し、更に2対1とすることで、水酸化アルミニウムの形成が基材の界面近傍で形成される、すなわち該遷移領域の変成率が低下する。 As a special oxygen plasma pretreatment to obtain a transformation rate of the transition region of the aluminum oxide vapor deposition film of the present invention, the mixing ratio of oxygen gas and argon or helium is 5: 1, preferably 2: 1. By setting the mixing ratio to 5: 1, the film formation energy of the deposited aluminum on the plastic film substrate is increased, and by further setting it to 2: 1, the formation of aluminum hydroxide is formed in the vicinity of the interface of the substrate That is, the transformation rate of the transition region is reduced.
 前記プラズマ供給ノズル22a~22cは、前処理ローラー20の対向電極として機能するもので、電極機能を有するようにできているものであり、前処理ローラー20との間に供給される高周波電圧、低周波電圧等による電位差によって供給されたプラズマ原料ガスが励起状態になり、プラズマPが発生し、供給される。 The plasma supply nozzles 22 a to 22 c function as counter electrodes of the pretreatment roller 20 and are made to have an electrode function, and the high frequency voltage supplied between the pretreatment roller 20 and the plasma supply nozzles 22 a to 22 c is low. The plasma source gas supplied by the potential difference due to the frequency voltage or the like is in the excited state, and the plasma P is generated and supplied.
 具体的には、プラズマ前処理手段のプラズマ供給手段は、プラズマ電源としてプラズマ前処理ローラーを設置し、対向電極との間に周波数が10Hzから2.5GHzの交流電圧を印加し、投入電力制御または、インピーダンス制御等を行い、プラズマ前処理ローラー20との間に任意の電圧を印加した状態にすることができるものであり、基材の表面物性を物理的ないしは化学的に改質する処理ができる酸素プラズマPを正電位にするバイアス電圧を印加できる電源32を備えている。
 本発明で採用する単位面積あたりのプラズマ強度として50~8000W・sec/mであり、50W・sec/m以下では、プラズマ前処理の効果がみられず、また、8000W・sec/m以上では、基材の消耗、破損着色、焼成などプラズマによる基材の劣化が起きる傾向にある。特に、本発明の酸化アルミウム蒸着膜の遷移領域の変成率とするため特殊酸素プラズマ前処理のプラズマ強度としては、100~1000W・sec/mが好ましい。
Specifically, the plasma supply means of the plasma pretreatment means installs a plasma pretreatment roller as a plasma power source, applies an AC voltage with a frequency of 10 Hz to 2.5 GHz to the counter electrode, and controls input power or And impedance control etc., and an arbitrary voltage can be applied between the substrate and the plasma pretreatment roller 20, so that the surface physical properties of the substrate can be physically or chemically modified. A power supply 32 is provided that can apply a bias voltage that makes the oxygen plasma P a positive potential.
A 50 ~ 8000W · sec / m 2 as the plasma intensity per unit area employed in the present invention, the 50W · sec / m 2 or less, without the effect of the plasma pretreatment was observed, also, 8000W · sec / m 2 In the above, there is a tendency for deterioration of the substrate due to plasma, such as consumption of the substrate, damage coloring, and firing. In particular, the plasma intensity of the special oxygen plasma pretreatment is preferably 100 to 1000 W · sec / m 2 in order to obtain the transformation ratio of the transition region of the aluminum oxide vapor deposition film of the present invention.
 プラズマ前処理手段は、磁気形成手段を有している。磁気形成手段として、マグネットケース内に絶縁性スペーサ、ベースプレートが設けられ、このベースプレートにマグネット21が設けられる。マグネットケースに絶縁性シールド板が設けられ、この絶縁性シールド板に電極が取り付けられる。
 したがって、マグネットケースと電極は電気的に絶縁されており、マグネットケースを減圧チャンバ12内に設置、固定しても電極は電気的にフローティングレベルとすることが可能である。
The plasma pretreatment means comprises magnetism forming means. As a magnetic formation means, an insulating spacer and a base plate are provided in the magnet case, and the magnet 21 is provided on the base plate. An insulating shield plate is provided on the magnet case, and an electrode is attached to the insulating shield plate.
Therefore, the magnet case and the electrode are electrically insulated, and even if the magnet case is installed and fixed in the decompression chamber 12, the electrode can be made to have an electrically floating level.
 電極には電力供給配線31が接続され、電力供給配線31は電源32に接続される。また、電極内部には電極及びマグネット21の冷却のための温度調節媒体配管が設けられる。
 マグネット21は、電極兼プラズマ供給手段であるプラズマ供給ノズル22a~22cからの酸素プラズマPが基材Sに集中して適用するために設けられる。マグネット21を設けることにより、基材表面近傍での反応性が高くなり、良好なプラズマ前処理面を高速で形成することが可能となる。
A power supply wiring 31 is connected to the electrode, and the power supply wiring 31 is connected to a power supply 32. Further, a temperature control medium pipe for cooling the electrode and the magnet 21 is provided inside the electrode.
The magnet 21 is provided in order to apply the oxygen plasma P from the plasma supply nozzles 22a to 22c, which are electrode and plasma supply means, to the substrate S in a concentrated manner. By providing the magnet 21, the reactivity in the vicinity of the surface of the substrate becomes high, and it becomes possible to form a good plasma pretreatment surface at high speed.
 マグネット21は、プラスチック基材Sの表面位置での磁束密度が10ガウスから10000ガウスである。プラスチック基材S表面での磁束密度が10ガウス以上であれば、基材表面近傍での反応性を十分高めることが可能となり、良好な前処理面を高速で形成することができる。 The magnet 21 has a magnetic flux density at the surface position of the plastic substrate S of 10 gauss to 10000 gauss. If the magnetic flux density on the surface of the plastic substrate S is 10 gauss or more, the reactivity near the surface of the substrate can be sufficiently enhanced, and a good pretreatment surface can be formed at high speed.
 電極のマグネット21の配置構造によりプラズマ前処理時に形成されるイオン、電子がその配置構造に従って運動するため、例えば、1m以上の大面積のプラスチック基材Sに対してプラズマ前処理をする場合においても電極表面全体にわたり、電子やイオン、基材の分解物が均一に拡散され、プラスチック基材Sが大面積の場合にも所望のプラズマ強度で、均一かつ安定した目的の前処理が可能となるものである。 Since the ions and electrons formed at the time of plasma pretreatment are moved according to the arrangement structure of the electrode 21 due to the arrangement structure of the magnets 21, for example, in the case of performing the plasma pretreatment on a large area plastic substrate S of 1 m 2 or more Also, electrons, ions, and decomposition products of the substrate are uniformly diffused over the entire surface of the electrode, and even when the plastic substrate S has a large area, uniform and stable target pretreatment can be performed with desired plasma strength. It is a thing.
(酸化アルミニウム蒸着膜)
 特殊酸化プラズマ処理されたプラスチック基材Sは、次の成膜室12Cに導くためのガイドロール14a~14dにより基材搬送室12Aから成膜室12Cに移動し、成膜区画で酸化アルミニウム蒸着膜が形成される。
(Aluminum oxide deposited film)
The special oxidation plasma-treated plastic substrate S is moved from the substrate transfer chamber 12A to the film forming chamber 12C by the guide rolls 14a to 14d for leading to the next film forming chamber 12C, and the aluminum oxide deposited film is formed in the film forming section. Is formed.
 酸化アルミニウム蒸着膜は、主成分として酸化アルミニウムを含む無機酸化物の薄膜であって、酸化アルミニウムあるいはアルミニウムの窒化物、炭化物、水酸化物の単独又はその混合物などのアルミニウム化合物を含むことができる酸化アルミニウムを主成分として含む層である。
 さらに、酸化アルミニウム蒸着膜は、前記アルミニウム化合物を主成分として含み、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム、酸化亜鉛、酸化ジルコニウム等の金属酸化物、またはこれらの金属窒化物、炭化物及びその混合物などを含むことができる。
The aluminum oxide vapor deposition film is a thin film of an inorganic oxide containing aluminum oxide as a main component, which can contain an aluminum compound such as aluminum oxide or aluminum nitride such as aluminum nitride, carbide or hydroxide alone or a mixture thereof It is a layer containing aluminum as a main component.
Furthermore, the aluminum oxide vapor deposition film contains the above-mentioned aluminum compound as a main component, and silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, indium oxide, zinc oxide, zirconium oxide Etc., or metal nitrides thereof, carbides, and mixtures thereof.
 本発明の酸化アルミニウム蒸着膜は、酸化アルミニウム蒸着膜の遷移領域の変成率を45%以下としたものである。
 酸化アルミニウム蒸着膜の遷移領域の変成率は、バリア性を有する積層フィルムAの酸化アルミニウム蒸着膜2に対し、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、アルミニウム蒸着膜由来のイオンと、プラスチック基材に由来するイオンを測定することにより図3のようなグラフ解析図が得られるものである。
 具体的には、飛行時間型二次イオン質量分析計を用いてCsにより、一定の条件で酸化アルミニウム蒸着膜の最表面からエッチングを行い、酸化アルミニウム蒸着膜とプラスチック基材との界面の元素結合及び酸化アルミニウム蒸着膜の元素結合を測定し、測定された元素および元素結合についてそれぞれのグラフを得(図3 グラフ解析図)、1)元素C6のグラフの強度が半分になる位置を、プラスチック基材と酸化アルミニウムの界面として、表面から界面までを酸化アルミニウム蒸着膜として求め、2)元素結合AlHを表すグラフにおけるピークを求め、そのピークから界面までを遷移領域とし、求め、3)(元素結合AlHのピークから界面までの遷移領域/酸化アルミニウム蒸着膜)×100(%)と遷移領域の変成率を定め、求めたものである。
The aluminum oxide vapor deposition film of the present invention has a conversion ratio of 45% or less of the transition region of the aluminum oxide vapor deposition film.
The transformation ratio of the transition region of the aluminum oxide vapor deposition film is a time-of-flight type secondary while repeating soft etching at a constant speed with a Cs (cesium) ion gun to the aluminum oxide vapor deposition film 2 of the laminated film A having a barrier property. A graph analysis diagram as shown in FIG. 3 can be obtained by measuring the ions derived from the aluminum vapor deposition film and the ions derived from the plastic substrate using ion mass spectrometry (TOF-SIMS).
Specifically, etching is performed from the outermost surface of a deposited aluminum oxide film under a constant condition using Cs using a time-of-flight secondary ion mass spectrometer, and element bonding at the interface between the deposited aluminum oxide film and the plastic base material And measure the elemental bonds of the vapor deposited aluminum oxide film, and obtain the respective graphs for the measured elements and elemental bonds (Fig. 3 graph analysis diagram); 1) the position at which the strength of the graph of the element C6 becomes half From the surface to the interface is determined as the deposited aluminum oxide film as the interface between the material and the aluminum oxide, 2) the peak in the graph representing the element-bound Al 2 O 4 H is determined, and the peak to the interface is determined as the transition region; ) (the transition region / aluminum oxide vapor deposited film from the peak of the elements bond Al 2 O 4 H to the interface) × 100 (%) and the transition territory Determine the metamorphic rate is that determined.
 本発明の酸化アルミニウム蒸着膜層の遷移領域の変成率は、45%以下が望ましい。45%を超えると、135℃、40分間の熱水処理(ハイレトルト)後あるいは121℃、40分間の熱水処理(セミレトルト)後におけるプラスチック基材と蒸着膜との密着性が低下し、また、水蒸気に対するバリア性能が低下する。 The transformation ratio of the transition region of the aluminum oxide vapor deposition film layer of the present invention is preferably 45% or less. If it exceeds 45%, the adhesion between the plastic substrate and the deposited film after hot water treatment (high retort) at 135 ° C. for 40 minutes or after hot water treatment (semi retort) at 121 ° C. for 40 minutes decreases In addition, the barrier performance against water vapor is reduced.
 熱水処理(レトルト処理)は、プラスチック基材と酸化アルミニウム蒸着膜の界面に大きな機械的及び化学的なストレスを与える。このストレスによりバリア性が劣化してしまう。この部位にストレスがかかるのは、この部位が積層構成の中で一番脆弱だからである。
 従って、レトルト耐性を得るためには、基材との界面を強固に、蒸着膜を被覆することが重要である。
 水酸化アルミニウムは、その化学構造によりプラスチック基材との密着性がよく、またそれ自体がネットワークを作り緻密なため、高い水蒸気バリア性を有する。しかし、レトルト処理のような強力な環境に対して、水酸化アルミと基材との水素結合に基づく結合構造は微視的に崩れやすい。また、水酸化アルミニウムのネットワークに対しても、水分子と水酸化アルミニウムの粒界面の親和性から膜中に浸透しやすい。
Hydrothermal treatment (retort treatment) exerts a large mechanical and chemical stress on the interface between the plastic substrate and the deposited aluminum oxide film. This stress degrades the barrier property. This site is stressed because this site is the most vulnerable in the stack configuration.
Therefore, in order to obtain retort resistance, it is important to cover the deposited film firmly at the interface with the substrate.
Aluminum hydroxide has high water vapor barrier properties because it has good adhesion to a plastic substrate due to its chemical structure, and itself forms a network and is compact. However, in a strong environment such as retort treatment, the bonding structure based on hydrogen bonding between aluminum hydroxide and the substrate is easily broken microscopically. In addition, it also easily penetrates into the film due to the affinity of the water particle / aluminum hydroxide particle interface to the aluminum hydroxide network.
 本発明では、酸化アルミニウム蒸着膜における水酸化アルミニウムが形成するプラスチック基材との界面における遷移領域を極力狭くするために、元素結合AlHに注目し、その存在量を制御することで、熱水処理によって元素結合AlHから発生する水酸化アルミニウムを抑え、相対的に水酸化アルミニウムが少ない酸化アルミニウム膜比率を上げることにより、レトルト処理による水分子による微視的な蒸着膜破壊、プラスチック基材との界面破壊を大きく抑制した。それにより従来にない密着性、バリア性を有するレトルト耐性を備える積層フィルムを提供することができる。 In the present invention, in order to narrow the transition region at the interface with the plastic base formed by aluminum hydroxide in the aluminum oxide vapor deposition film as narrow as possible, attention is paid to the element bonding Al 2 O 4 H, and the amount thereof is controlled. A microscopic vapor deposition film by water molecules by retort treatment by suppressing the aluminum hydroxide generated from the element-bound Al 2 O 4 H by the hydrothermal treatment and increasing the ratio of the aluminum oxide film relatively less in aluminum hydroxide The fracture and the interfacial fracture with the plastic substrate were greatly suppressed. As a result, it is possible to provide a laminated film with retort resistance having adhesion and barrier properties that have not been achieved conventionally.
 本発明の酸化アルミニウム蒸着膜は、特殊酸素プラズマ前処理されたプラスチック基材表面に蒸着膜を成膜することで形成することができる。蒸着膜を成膜する蒸着法としては、物理蒸着法、化学蒸着の中から種々の蒸着法が適用できる。
 物理蒸着法としては、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、クラスターイオンビーム法からなる群から選ぶことができ、化学蒸着法としては、プラズマCVD法、プラズマ重合法、熱CVD法、触媒反応型CVD法からなる群から選ぶことができる。本発明においては、物理蒸着法の蒸着法が好適である。
The aluminum oxide vapor deposition film of the present invention can be formed by depositing a vapor deposition film on the surface of a special oxygen plasma pretreated plastic substrate. As a vapor deposition method for forming a vapor deposition film, various vapor deposition methods can be applied from physical vapor deposition and chemical vapor deposition.
The physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, cluster ion beam method, and as chemical vapor deposition method, plasma CVD method, plasma polymerization method, thermal It can be selected from the group consisting of CVD method and catalytic reaction type CVD method. In the present invention, a physical vapor deposition method is preferred.
 本発明に好適な物理蒸着法により蒸着を行うことができる、図2に示すローラー式連続蒸着膜成膜装置10を使って、酸化アルミニウム蒸着膜の製膜について、以下説明する。 The film formation of the aluminum oxide vapor deposition film will be described below using the roller type continuous vapor deposition film deposition apparatus 10 shown in FIG. 2 which can perform vapor deposition by a physical vapor deposition method suitable for the present invention.
 蒸着膜成膜装置は、減圧された成膜室12C内に配置され、プラズマ前処理装置で前処理されたプラスチック基材Sの処理面を外側にしてプラスチック基材Sを巻きかけて搬送し、成膜処理する成膜ローラー23と、該成膜ローラーに対向して配置された成膜源24のターゲットを蒸発させてプラスチック基材表面に蒸着膜を成膜する。
 蒸着膜成膜手段24は抵抗加熱方式であり、アルミニウムを蒸発源としてアルミニウムの金属線材を用い、 酸素を供給ししてアルミニウム蒸気を酸化しつつ、プラスチック基材Sの表面に酸化アルミニウム蒸着膜を成膜させる。
The vapor deposition film forming apparatus is disposed in the film forming chamber 12C under reduced pressure, and transports the plastic substrate S by winding the plastic substrate S with the treated surface of the plastic substrate S pretreated by the plasma pretreatment apparatus outside. A deposition film is formed on the surface of the plastic substrate by evaporating a film forming roller 23 for film formation processing and a target of a film forming source 24 disposed opposite to the film forming roller.
The vapor deposition film forming means 24 is a resistance heating method, using a metal wire of aluminum with aluminum as an evaporation source, supplying oxygen to oxidize aluminum vapor, depositing an aluminum oxide vapor deposition film on the surface of the plastic substrate S. Form a film.
 本発明においては、舟形(「ボートタイプ」という)蒸着容器に、ローラー23の軸方向にアルミニウムの金属線材を複数配置し、抵抗加熱式により加熱する。このようにすることで、供給される熱、熱量を抑えてアルミニウムの金属材料を蒸発させることができ、プラスチック基材Sの熱的変形性を極力抑えながら酸化アルミニウム蒸着膜を成膜することができる。 In the present invention, a plurality of aluminum metal wires are arranged in the axial direction of the roller 23 in a boat (“boat type”) vapor deposition vessel, and heating is performed by resistance heating. In this way, the metal material of aluminum can be evaporated by suppressing the supplied heat and heat amount, and the aluminum oxide vapor deposition film can be formed while suppressing the thermal deformability of the plastic substrate S as much as possible. it can.
 上記のように製膜される酸化アルミニウムの蒸着膜の厚さは、3~50nmであり、好ましくは8~30nmである。この範囲であれば、バリア性を保持することができる。 The thickness of the aluminum oxide vapor deposition film formed as described above is 3 to 50 nm, preferably 8 to 30 nm. Within this range, barrier properties can be maintained.
(バリア性被覆層)
 本発明の積層フィルムの酸化アルミニウム蒸着膜の表面上に積層されるバリア性被覆層は、酸化アルミニウム蒸着膜を機械的・化学的に保護するとともに、バリア性を有する積層フィルムのバリア性能を向上させるものである。以下、バリア性に優れたレトルト耐性を備えるバリア性積層フィルムを形成するためコートされるバリア性被覆層について説明する。
(Barrier coating layer)
The barrier coating layer laminated on the surface of the aluminum oxide deposited film of the laminated film of the present invention protects the aluminum oxide deposited film mechanically and chemically and improves the barrier performance of the laminated film having the barrier property. It is a thing. Hereinafter, a barrier coating layer to be coated to form a barrier laminate film having retort resistance excellent in barrier properties will be described.
 バリア性被覆層は、バリアコート剤を酸化アルミニウム蒸着膜上に塗布し固化して形成されるものである。バリアコート剤は金属アルコキシド、水溶性高分子、必要に応じて加えられるシランカップリング剤、ゾルゲル法触媒、酸などから構成される。 The barrier coating layer is formed by applying a barrier coating agent on a deposited aluminum oxide film and solidifying it. The barrier coating agent is composed of a metal alkoxide, a water-soluble polymer, a silane coupling agent optionally added, a sol-gel method catalyst, an acid and the like.
 金属アルコキシドとしては、一般式R M(OR(ただし、式中、R、Rは、炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上の金属アルコキシド、金属アルコキシドのMで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他等を例示することができ、例えば、MがSiであるアルコキシシランを使用することが好ましいものである。 As a metal alkoxide, a general formula R 1 n M (OR 2 ) m (wherein, R 1 and R 2 each represents an organic group having 1 to 8 carbon atoms, M represents a metal atom, and n represents n) , M represents an integer of 1 or more, and n + m represents a valence of M) at least one metal alkoxide represented by M), a metal represented by M of a metal alkoxide Examples of the atom include silicon, zirconium, titanium, aluminum, and the like. For example, it is preferable to use an alkoxysilane in which M is Si.
 上記のアルコキシシランとしては、例えば、一般式Si(ORa)(ただし、式中、Raは、低級アルキル基を表す。)で表されるものである。上記において、Raとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、その他等が用いられる。上記のアルコキシシランの具体例としては、例えば、テトラメトキシシラン Si(OCH、テトラエトキシシラン Si(OC)4、テトラプロポキシシラン Si(OC、テトラブトキシシラン Si(OC、その他等を使用することができる。
上記アルコキシドは、2種以上を併用してもよい
The above alkoxysilane is, for example, one represented by the general formula Si (ORa) 4 (wherein, Ra represents a lower alkyl group). In the above, as Ra, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like are used. Specific examples of the above alkoxysilane include, for example, tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4, tetrapropoxysilane Si (OC 3 H 7 ) 4 , tetrabutoxysilane Si (OC 4 H 9 ) 4 , others, etc. can be used.
The above alkoxide may be used in combination of two or more.
 シランカップリング剤として、ビニル基、エポキシ基、メタクリル基、アミノ基などの反応基を有するものを用いることができる。特にエポキシ基を有するオルガノアルコキシシランが好適であり、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルジメチルメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、あるいは、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等を使用することができる。上記のようなシランカップリング剤は、1種ないし2種以上を混合して用いてもよい。 As a silane coupling agent, what has reactive groups, such as a vinyl group, an epoxy group, methacryl group, and an amino group, can be used. In particular, organoalkoxysilanes having an epoxy group are suitable, for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyldimethylmethoxysilane, γ-glycidoxy Propyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyldimethylethoxysilane, or β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane can be used. The silane coupling agents as described above may be used alone or in combination of two or more.
 水溶性高分子は、ポリビニルアルコール系樹脂、またはエチレン・ビニルアルコ一ル共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコ一ル系樹脂およびエチレン・ビニルアルコール共重合体を組み合わせて使用することができる。本発明では、ポリビニルアルコール系樹脂が好適である。 As the water-soluble polymer, polyvinyl alcohol resins or ethylene / vinyl alcohol copolymers can be used alone, or polyvinyl alcohol resins and ethylene / vinyl alcohol copolymers are used in combination. can do. In the present invention, polyvinyl alcohol resins are preferred.
 ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。ポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂でも、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、OH基が変性された変性ポリビニルアルコール系樹脂でもよい。ポリビニルアルコール系樹脂として、ケン化度については、ガスバリア性塗膜の膜硬度が向上する結晶化が行われるものを少なくとも用いることが必要で、好ましくは、ケン化度が70%以上である。また、その重合度としても、従来のゾルゲル法で用いられている範囲(100~5000程度)のものであれば用いることができる。このようなポリビニルアルコール系樹脂としては、株式会社クラレ製のRS樹脂である「RS-110(ケン化度=99%、重合度=1,000)」、日本合成化学工業株式会社製の「ゴーセノールNM-14(ケン化度=99%、重合度=1,400)」等を挙げることができる。 Generally as a polyvinyl alcohol-type resin, what is obtained by saponifying polyvinyl acetate can be used. As a polyvinyl alcohol-based resin, a partially saponified polyvinyl alcohol-based resin in which several tens of acetic acid groups remain, a completely saponified polyvinyl alcohol in which no acetic acid groups remain, or a modified polyvinyl alcohol-based resin in which OH groups are modified Good. As the polyvinyl alcohol-based resin, with respect to the degree of saponification, it is necessary to use at least one that is subjected to crystallization to improve the film hardness of the gas barrier coating, and preferably the degree of saponification is 70% or more. Further, even if the polymerization degree is in the range (about 100 to 5000) used in the conventional sol-gel method, it can be used. As such polyvinyl alcohol-based resin, "RS-110 (saponification degree = 99%, polymerization degree = 1,000)" which is RS resin manufactured by Kuraray Co., Ltd., "Gosenol" manufactured by Japan Synthetic Chemical Industry Co., Ltd. NM-14 (degree of saponification = 99%, degree of polymerization = 1,400) and the like can be mentioned.
 エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン-酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。
 例えば、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではない。ただし、バリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。
As the ethylene-vinyl alcohol copolymer, a saponified copolymer of ethylene and vinyl acetate, that is, one obtained by saponifying an ethylene-vinyl acetate random copolymer can be used.
For example, the partial saponification product in which several tens mol% of acetic acid groups remain, to completely saponified products in which only several mol% of acetic acid groups remain or no acetic acid groups remain, is not particularly limited. However, from the viewpoint of the barrier property, it is preferable to use one having a preferable degree of saponification of 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more.
 本発明において、バリア性被覆層は、以下の方法で製造することができる。
 まず、上記金属アルコキシド、必要に応じて添加するシランカップリング剤、水溶性高分子、ゾルゲル法触媒、酸、及び溶媒としての水、メチルアルコール、エチルアルコール、イソプロパノール等のアルコール等の有機溶媒を混合し、バリアコート剤を調製する。
 次いで、酸化アルミニウム蒸着膜の上に、常法により、上記のバリアコート剤を塗布し、乾燥する。この乾燥工程によって、上記金属アルコキシド、シランカップリング剤および水溶性高分子の重縮合が更に進行し、塗膜が形成される。第一の塗膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。
 さらに、20~200℃、かつプラスチック基材の融点以下の温度、好ましくは、50~180℃の範囲の温度で、3秒~10分間加熱処理する。これによって、酸化アルミニウム蒸着膜の上に、上記バリアコート剤によるバリア性被覆層を形成することができる。
In the present invention, the barrier coating layer can be produced by the following method.
First, the above metal alkoxide, a silane coupling agent added as necessary, a water-soluble polymer, a sol-gel method catalyst, an acid, water as a solvent, and an organic solvent such as alcohol such as methyl alcohol, ethyl alcohol and isopropanol are mixed. And prepare a barrier coating agent.
Then, the above-mentioned barrier coating agent is applied onto the aluminum oxide vapor-deposited film by a conventional method and dried. By the drying step, polycondensation of the metal alkoxide, the silane coupling agent and the water-soluble polymer further proceeds to form a coating film. The above coating operation may be further repeated on the first coating film to form a plurality of coating films composed of two or more layers.
Furthermore, heat treatment is carried out at a temperature of 20 to 200 ° C. and a temperature below the melting point of the plastic substrate, preferably at a temperature in the range of 50 to 180 ° C., for 3 seconds to 10 minutes. Thereby, a barrier coating layer of the above-mentioned barrier coating agent can be formed on the aluminum oxide vapor deposition film.
 バリアコート剤の組成は、アルコキシシラン100重量部に対して、ポリビニルアルコ-ル系樹脂などの水溶性高分子を100~500重量部、シランカップリング剤を1~20重量部位の範囲内で使用することができる。上記において、シランカップリング剤を20重量部超えて使用すると、形成されるバリア性塗膜の剛性と脆性とが大きくなり、好ましくない。 The composition of the barrier coating agent is 100 to 500 parts by weight of a water-soluble polymer such as polyvinyl alcohol resin and 100 to 20 parts by weight of a silane coupling agent based on 100 parts by weight of alkoxysilane can do. In the above, when the silane coupling agent is used in excess of 20 parts by weight, the rigidity and the brittleness of the barrier coating film formed become large, which is not preferable.
 上記にように形成されるバリア性被覆層は、層厚が100~500nmである。この範囲であれば、コート膜が割れず蒸着膜表面を十分に被覆するため好ましい。 The barrier coating layer formed as described above has a layer thickness of 100 to 500 nm. Within this range, it is preferable because the coating film does not break and the surface of the deposited film is sufficiently covered.
(ガスバリア性包装材料)
 本発明のバリア性積層フィルムは、熱水処理、特に高温熱水処理のレトルト処理後においても、プラスチック基材と酸化アルミニウム蒸着膜との密着性が良好で、かつガスバリア性にも優れているので、食品用のレトルト包装材、医療用の高温熱水処理包装材だけでなく、ペットフード等のレトルト処理を行う内容物の包装材として好適に使用できる。
 本発明のガスバリア性包装材料は、バリア性積層フィルムに少なくとも1層のヒートシール可能な層を積層したものであって、ヒートシール可能な熱可塑性樹脂が接着層を介して、あるいは介することなく、最内層として積層され、ヒートシール性が付与されたものである。ガスバリア性包装材料としは、さらに必要に応じて、包装材料として付与したい機能、例えば、遮光性を付与するための遮光性層、装飾性、印字を付与するための印刷層、絵柄層、レーザー印刷層、臭気を吸収又は吸着する吸収性・吸着性層など各種機能層を層構成として追加し、ガスバリア性包装材料とすることもできる。
(Gas barrier packaging material)
The barrier laminate film of the present invention has good adhesion between the plastic substrate and the aluminum oxide deposited film even after retorting treatment with hot water, particularly high temperature hot water, and is also excellent in gas barrier property. It can be suitably used as a packaging material for retort packaging materials for food, high temperature hot water treatment packaging materials for medical use, and contents for performing retort processing such as pet food.
The gas barrier packaging material of the present invention is obtained by laminating at least one heat sealable layer on a barrier laminate film, and the heat sealable thermoplastic resin does not pass through or through the adhesive layer. It is laminated as the innermost layer and is provided with heat sealability. As a gas barrier packaging material, if desired, the function to be added as a packaging material, for example, a light shielding layer for giving a light shielding property, a decorative layer, a printing layer for giving a print, a pattern layer, a laser printing It is also possible to add various functional layers such as a layer, an absorbent / adsorbent layer that absorbs or adsorbs an odor as a layer configuration to make a gas barrier packaging material.
 また、用途に応じた機能フィルムを更に積層して作製することができる。例えば、レトルト用のガスバリア性包装材料であれば、耐ピンホール構造として、ナイロンフィルムを、また耐熱構造として耐熱シーラントCPPなどを積層した多層フィルムのガスバリア性包装材料、或いは、液体紙容器用のガスバリア性包装材料であれば、紙を積層した積層体の包装材料が挙げられる。
 特にプラスチック基材に高スティフネスポリエステルフィルムを用いた積層フィルムから作製された包装材料の場合には、包装材料の厚さと重量を小さくした上で同等以上の剛性、引張強度、突き刺し強度を有する積層フィルムを得ることができる。
Moreover, the functional film according to a use can further be laminated | stacked and produced. For example, in the case of a gas barrier packaging material for retort, a gas barrier packaging material of a multilayer film in which a nylon film is laminated as a pinhole resistant structure and a heat resistant sealant CPP as a heat resistant structure, or a gas barrier for liquid paper containers If it is an elastic packaging material, the packaging material of the laminated body which laminated | stacked paper is mentioned.
In particular, in the case of a packaging material made of a laminated film using a high-stiffness polyester film as a plastic substrate, a laminated film having the same or higher rigidity, tensile strength and piercing strength after reducing the thickness and weight of the packaging material You can get
 ヒートシール可能な熱可塑性樹脂としては、熱によって溶融し相互に融着し得る樹脂層やフィルムないしシートであれば良く、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密脂のフィルムないしシートであれば良い。
 そして、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、エチレン-酢酸ビニル共重合体、α-オレフィン共重合体、アイオノマー樹脂、エチレンーアクリル酸共重合体、エチレンーアクリル酸エチル共重合体、エチレンーメタクリル酸メチル共重合体、エチレンープロピレン共重合体、エラストマー等の樹脂の一種ないしそれ以上からなる樹脂ないしはこれらをフィルム化したシートを使用することが好ましく、中でも、食品等の内容物に接する層としては、衛生性、耐熱性、耐薬品性、保香性を有するポリエチレン、ポリプロピレン等のオレフィン系樹脂の一種ないしそれ以上からなる樹脂ないしはこれらをフィルム化したシートを使用することがより好ましい。
 その厚さとしては3~100μm位が好ましく、15~70μm位がより好ましい。
The heat-sealable thermoplastic resin may be a resin layer or film or sheet which can be melted by heat and fused to each other, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear Shape) Low-density fat film or sheet may be used.
And, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, polymethylpentene, polystyrene, ethylene-vinyl acetate copolymer, α-olefin copolymer, Resin consisting of one or more resins such as ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, elastomer, etc. It is preferable to use a sheet formed into a film, and among them, as a layer in contact with contents such as food, it is a type of olefin resin such as polyethylene, polypropylene, etc. having hygienicity, heat resistance, chemical resistance and aroma retention. Or resin consisting of them or films of these It is more preferable to use the sheets.
The thickness thereof is preferably about 3 to 100 μm, and more preferably about 15 to 70 μm.
[ガスバリア性包装体]
 本発明のガスバリア性包装体は、本発明のガスバリア性包装材料から作製される包装体である。
 例えば、多層フィルムからなるガスバリア性包装材料のシーラント層を熱融着させるようなヒートシール加工によって、ピロー包装袋、三方シール、四方シール、ガセットタイプ等の形態のガスバリア性包装体を作製できる。また、紙を積層した積層フィルムからなるガスバリア性包装材料であれば、酒、ジュース等のゲーベルトップ型の液体紙容器包装体を作製できる。
[Gas barrier package]
The gas barrier package of the present invention is a package produced from the gas barrier packaging material of the present invention.
For example, a gas barrier package in the form of a pillow packaging bag, a three-way seal, a four-way seal, a gusset type or the like can be produced by heat sealing such that the sealant layer of the gas barrier packaging material made of a multilayer film is heat-sealed. Moreover, if it is a gas-barrier packaging material which consists of a laminated film which laminated | stacked paper, the liquid paper container package body of the goebel top type | molds of liquor, juice, etc. can be produced.
(評価項目の測定方法)
 上記各実施例又は比較例に示した条件下で製造した密着性が改善されたバリア性を備える酸化アルミニウム蒸着膜を有する積層フィルム又は該積層フィルムにバリア性被覆層を有するバリア性積層フィルムを測定用のサンプルとし、蒸着膜の遷移領域の変成率、酸素透過度、水蒸気透過度、及び密着強度について、下記の方法を用いて測定した。
(Measuring method of evaluation item)
Measurement of a laminated film having a deposited aluminum oxide film having a barrier property with improved adhesion produced under the conditions shown in the respective examples or comparative examples or a barrier laminate film having a barrier coating layer on the laminated film As a sample for use, the transformation rate, the oxygen permeability, the water vapor permeability, and the adhesion strength of the transition region of the deposited film were measured using the following methods.
(遷移領域の変成率)
 本発明において、蒸着膜の遷移領域の変成率は、積層フィルムの酸化アルミニウム蒸着膜表面にCs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、酸化アルミウム蒸着膜由来のイオンと、プラスチック基材に由来するイオンを測定することにより図3のグラフ解析図が得られる。ここで、グラフの縦軸の単位(intensity)は、測定されたイオンの強度、横軸の単位(cycle)は、エッチングの回数である。
 上記TOF-SIMSに用いられる飛行時間型二次イオン質量分析計としてはION TOF社製、TOF.SIMS5を用い、下記測定条件で測定を行なった。
(Transformation rate of transition region)
In the present invention, the transformation rate of the transition region of the deposited film is time-of-flight secondary ion mass spectrometry (while repeating the soft etching at a constant speed with a Cs (cesium) ion gun on the aluminum oxide deposited film surface of the laminated film) The graph analysis diagram of FIG. 3 is obtained by measuring the ions derived from the aluminum oxide vapor deposition film and the ions derived from the plastic substrate using TOF-SIMS). Here, the unit (intensity) of the vertical axis of the graph is the measured ion intensity, and the unit (cycle) of the horizontal axis is the number of times of etching.
As a time-of-flight secondary ion mass spectrometer used for the above TOF-SIMS, ION TOF company TOF. The measurement was performed using SIMS 5 under the following measurement conditions.
(TOFSIMS測定条件)
 ・一次イオン種類:Bi ++(0.2pA,100μs)
・測定面積:150×150μm
 ・Et(エッチング)銃種類:Cs(1keV、60nA)
 ・Et(エッチング)面積:600×600μm
 ・Et(エッチング)レート:3sec/Cycle
 ・真空引き時間:1×10-6mbar以下で15h以上
 ・真空引き開始後、30h以内に測定
(TOF SIMS measurement conditions)
Primary ion type: Bi 3 ++ (0.2 pA, 100 μs)
・ Measurement area: 150 × 150 μm 2
・ Et (etching) gun type: Cs (1 keV, 60 nA)
・ Et (etching) area: 600 × 600 μm 2
・ Et (etching) rate: 3 sec / cycle
・ Vacuum evacuation time: 15 h or more at 1 × 10 -6 mbar or less
 なお、測定対象となる酸化アルミニウム由来のイオンを測定するためにイオン銃としては、通常、複数ある酸化アルミニウム由来のイオンの中から他の成分由来のイオンとの切り分けが必要であり、且つ十分な強度を有するものを選択する必要があること及び、特に元素結合AlHの濃度分布に近似換算できる深さ分布を得る目的から、本発明においては、Csイオンを選択することとした。 In addition, in order to measure the ion derived from aluminum oxide used as a measuring object, it is usually necessary to separate the ions derived from other components from the plurality of aluminum oxide derived ions, and sufficient In the present invention, it is decided to select Cs ions in order to obtain a depth distribution which can be approximately converted to a concentration distribution of element-bound Al 2 O 4 H, in particular, since it is necessary to select one having strength.
 Csを用いて、酸化アルミウム蒸着膜の最表面からエッチングを行い、酸化アルミウム蒸着膜とポリエステルフィルム等のフィルム基材との界面の元素結合及び蒸着膜の元素結合の分析を実施し、測定された元素および元素結合のグラフ1の各グラフを得た。なお、グラフは、測定された質量数の118.93をAlHに、101.94をAlに、72.00をC6になど、測定される質量数で元素および元素結合を特定して作成したものである。グラフにおいて元素C6の強度がプラスチック基材層部分の半分になる位置を、フィルム基材と酸化アルミニウムの界面として、表面から界面までを酸化アルミニウム蒸着膜とした。
 次に、測定された元素結合AlHを表すグラフにおけるピークを求め、そのピークから界面までを遷移領域とし、求めることができる。
 以上の操作を行い、酸化アルミニウム蒸着膜の遷移領域の変成率を
(元素結合AlHのピークから界面までの遷移領域/酸化アルミニウム蒸着膜)×100(%)
として求めた。
Etching was performed from the outermost surface of the aluminum oxide vapor deposition film using Cs, and analysis of elemental bonding of the interface between the aluminum oxide vapor deposition film and the film substrate such as polyester film and elemental bonding of the vapor deposition film was carried out and measured. Graphs 1 of elemental and elemental bonds were obtained. The graph is the measured mass number of 118.93 were in Al 2 O 4 H, the Al 2 O 3 and 101.94, etc. 72.00 to C6, elemental and elemental coupled mass number measured Were identified and created. The position where the strength of the element C6 is half of the plastic base layer portion in the graph is the interface between the film base and the aluminum oxide, and the aluminum oxide vapor deposition film is from the surface to the interface.
Next, a peak in the graph representing the measured elemental bond Al 2 O 4 H can be determined, and the range from the peak to the interface can be determined as a transition region.
Performing the above operation, the transformation ratio of the transition region of the aluminum oxide deposition film (transition region from the peak of the element-bound Al 2 O 4 H to the interface / aluminum oxide deposition film) × 100 (%)
Asked as.
(酸素透過度)
 酸素透過度測定装置(モダンコントロール(MOCON)社製〔機種名:オクストラン(OX-TRAN)2/21〕)を用いて、測定のために作製したバリア性積層フィルム/接着剤/ナイロンフィルム15μm/接着剤/CPP70μmの複合積層フィルムとし、酸素供給側がバリア性積層フィルムのフィルム面となるように上記試験用サンプルをセットし、23℃、100%RH雰囲気下の測定条件で、JIS K 7126 B法に準拠して測定した。
 測定サンプルとして、
1)レトルト処理前の複合積層フィルム
2)ハイレトルト処理条件:135℃、40分間の処理をした袋の状態にした複合積層フィルムの袋片面の複合積層フィルム
3)セミレトルト処理条件:121℃、40分間の処理をした袋の状態にした複合積層フィルムの袋片面の複合積層フィルム
を用いた。
(Oxygen permeability)
Barrier laminate film / adhesive / nylon film 15μm / prepared for measurement using an oxygen permeability measurement device (Model name: OX-TRAN 2/21 manufactured by Modern Control (MOCON)) Set the adhesive / CPP 70 μm composite laminate film, set the above test sample so that the oxygen supply side is the film surface of the barrier laminate film, and measure JIS K 7126 B method under the measurement conditions at 23 ° C and 100% RH. It measured according to.
As a measurement sample
1) Composite laminate film before retort treatment 2) High retort treatment condition: Composite laminate film on one side of the composite laminate film bag treated at 135 ° C. for 40 minutes 3) Semi-retort treatment condition: 121 ° C. The composite laminated film on one side of the bag of the composite laminated film was used in the form of a bag treated for 40 minutes.
(水蒸気透過度)
水蒸気透過度測定装置(モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN)3/33〕)を用いて、センサー側がバリア性積層フィルムのフィルム面となるように上記試験用サンプルをセットし、37.8℃、100%RH雰囲気下の測定条件で、JIS K 7126 B法に準拠し、測定した。
測定サンプルとして、
1)レトルト処理前の複合積層フィルム
2)ハイレトルト処理条件:135℃、40分間の処理をした袋の状態にした複合積層フィルムの袋片面の複合積層フィルム
3)セミレトルト処理条件:121℃、40分間の処理をした袋の状態にした複合積層フィルムの袋片面の複合積層フィルム
を用いた。
(Water vapor permeability)
Using the water vapor transmission rate measuring device (Model name made by Mocon (MOCON) [Model name, PERMATRAN 3/33]), the above-mentioned test sample so that the sensor side becomes the film surface of the barrier laminate film Were set, and measurement was performed in accordance with the JIS K 7126 B method under measurement conditions in an atmosphere of 37.8.degree. C. and 100% RH.
As a measurement sample
1) Composite laminate film before retort treatment 2) High retort treatment condition: Composite laminate film on one side of the composite laminate film bag treated at 135 ° C. for 40 minutes 3) Semi-retort treatment condition: 121 ° C. The composite laminated film on one side of the bag of the composite laminated film was used in the form of a bag treated for 40 minutes.
(基材と酸化アルミニウム蒸着膜間の密着強度)
<密着強度の測定(1);ハイレトルト・セミレトルト処理前の密着強度>
 バリア性積層フィルムのバリア性被覆層側に2液硬化型ポリウレタン系接着剤を塗工し、乾燥処理したものと、厚さ70μmの無延伸ポリプロピレンフィルムに2液硬化型ポリウレタン系接着剤と厚さ15μmの延伸ナイロンフィルムと貼り合わせたフィルムとをドライラミネートした積層複合フィルムを作製した。
 上記積層複合フィルムを48時間エージング処理した後、15mm巾の短冊状にカットしたサンプルについて、引張試験機(株式会社オリエンテック社製[機種名:テンシロン万能材料試験機])を用いてJIS K6854-2に準拠し、バリア性積層フィルム基材と酸化アルミウム蒸着膜との強度を測定した。
(Adhesive strength between substrate and deposited aluminum oxide film)
<Measurement of adhesion strength (1); adhesion strength before high retort / semi-retort treatment>
A two-component curable polyurethane adhesive is applied to the barrier coating layer side of the barrier laminate film, dried and treated, and a two-component curable polyurethane adhesive and thickness on a 70 μm-thick non-oriented polypropylene film A laminated composite film was produced by dry laminating a 15 μm stretched nylon film and a film bonded to each other.
The above-mentioned laminated composite film was subjected to aging treatment for 48 hours, and then cut into a strip of 15 mm width using a tensile tester (Model name: Tensilon universal material tester made by ORIENTEC Co., Ltd.) JIS K6854- In accordance with 2, the strength of the barrier laminate film substrate and the aluminum oxide vapor deposition film was measured.
 測定は、測定のために事前に剥離したポリプロピレンフィルム側とバリア性積層フィルム側をそれぞれ測定器のつかみ具で把持し、ポリプロピレンフィルムとバリア性積層フィルムとがまだ積層されている部分の面方向に対して直交する方向において互いに逆向きに(180°剥離:T字剥離法)、50mm/minの速度で引っ張り、安定領域における引張応力の平均値を測定した。
 剥離は積層複合フィルムで密着強度が最も弱いバリア性積層フィルムのプラスチックス基材と酸化アルミニウム蒸着膜との間で生じており、上記の測定値を、バリア性積層フィルムのプラスチック基材と酸化アルミニウム蒸着膜の密着強度とした。
For measurement, the polypropylene film side and the barrier laminate film side that were peeled off in advance for measurement are held by the clamp of the measuring instrument, and in the surface direction of the part where the polypropylene film and the barrier laminate film are still laminated The film was pulled at a speed of 50 mm / min in directions opposite to each other in the direction orthogonal to each other (180 ° peeling: T-shaped peeling method), and the average value of tensile stress in the stable region was measured.
Peeling occurs between the plastic base material of the barrier laminate film and the aluminum oxide deposited film having the weakest adhesive strength in the laminate composite film, and the measured values described above are the plastic substrate of the barrier laminate film and aluminum oxide It was taken as the adhesion strength of the vapor deposition film.
<密着強度の測定(2);ハイレトルト処理後の密着強度>
 バリア性積層フィルムのバリア性被覆層側に2液硬化型ポリウレタン系接着剤を塗工し、乾燥処理したものと、厚さ70μmの無延伸ポリプロピレンフィルムに2液硬化型ポリウレタン系接着剤と厚さ15μmの延伸ナイロンフィルムと貼り合わせたフィルムとをドライラミネートし、積層複合フィルムを作製した。
 上記積層複合フィルムを用いてB5サイズに作製した四方パウチに水100mLを注入し、135℃、40分間で熱水式レトルト処理を行った。該レトルト処理後、中身の水を抜いた四方パウチから15mm巾の短冊状にカットしたサンプルを作成した。このサンプルを用いて密着強度の測定(1)と同様にして、密着強度を測定した。
<Measurement of adhesion strength (2); adhesion strength after high retort treatment>
A two-component curable polyurethane adhesive is applied to the barrier coating layer side of the barrier laminate film, dried and treated, and a two-component curable polyurethane adhesive and thickness on a 70 μm-thick non-oriented polypropylene film A film laminated with a 15 μm stretched nylon film was dry laminated to produce a laminated composite film.
100 mL of water was injected into a four-way pouch made of B5 size using the above laminated composite film, and a hot water retort treatment was performed at 135 ° C. for 40 minutes. After the retort treatment, a sample cut into strips of 15 mm width was made from the four-way pouch from which the water content was drained. The adhesion strength was measured in the same manner as in the adhesion strength measurement (1) using this sample.
<密着強度の測定(3):セミレトルト処理後の密着強度>
 密着強度の測定(2)の構成にいて、ナイロンフィルムを使わずに、ポリプロピレンフィルムの厚みを70μmにして積層複合フィルムを作製した。
 上記積層複合フィルムを用いてB5サイズに作製した四方パウチに水100mLを注入し、121℃、40分間で熱水式レトルト処理を行った。該レトルト処理後、中身の水を抜いた四方パウチから15mm巾の短冊状にカットしたサンプルを作成した。このサンプルを用いて密着強度の測定(1)と同様にして、密着強度を測定した。
<Measurement of adhesion strength (3): Adhesion strength after semi-retort treatment>
In the configuration (2) of measurement of adhesion strength, a laminated composite film was manufactured by setting the thickness of a polypropylene film to 70 μm without using a nylon film.
100 mL of water was injected into a four-way pouch made of B5 size using the above laminated composite film, and a hot water retort treatment was performed at 121 ° C. for 40 minutes. After the retort treatment, a sample cut into strips of 15 mm width was made from the four-way pouch from which the water content was drained. The adhesion strength was measured in the same manner as in the adhesion strength measurement (1) using this sample.
実施例1
<酸化アルミニウム蒸着膜>
 まず、基材である厚さ12μmのポリエステルフィルム(以下、PETフィルム)を巻き取ったロールを準備した。
 次に、このPETフィルムの蒸着膜を設ける面に、プラズマ前処理装置を配置した前処理区画と成膜区画を隔離した連続蒸着膜成膜装置を用いて、前処理区画において下記プラズマ条件下でプラズマ供給ノズルからプラズマを導入し、搬送速度400m/minで特殊酸素プラズマ前処理を施し、連続搬送した成膜区画内で、プラズマ処理面上に下記条件において真空蒸着法の加熱手段として反応性抵抗加熱方式により、厚さ12nmの酸化アルミニウム蒸着膜をPETフィルムに形成した。
Example 1
<Aluminum oxide vapor deposition film>
First, a roll was prepared by winding a 12 μm thick polyester film (hereinafter referred to as a PET film) as a substrate.
Next, using the continuous vapor deposition film deposition apparatus in which the pretreatment section in which the plasma pretreatment apparatus is disposed and the deposition section are separated on the surface of the PET film on which the deposition film is to be provided, the pretreatment section under the following plasma conditions The plasma is introduced from the plasma supply nozzle, special oxygen plasma pretreatment is performed at a transfer speed of 400 m / min, and in the film forming section continuously transferred, reactive resistance as a heating means of vacuum deposition under the following conditions A 12 nm thick aluminum oxide vapor deposition film was formed on a PET film by a heating method.
(プラズマ前処理条件)
・プラズマ強度:150W・sec/m
・プラズマ形成ガス:アルゴン1200(sccm)、酸素3000(sccm)
・磁気形成手段:1000ガウスの永久磁石
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
・前処理区画の真空度:3.8Pa
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・波長366nmの光線透過率:92%
(Plasma pretreatment conditions)
・ Plasma strength: 150 W · sec / m 2
Plasma forming gas: argon 1200 (sccm), oxygen 3000 (sccm)
Magnetic forming means: permanent magnet of 1000 gauss Applied voltage between pretreatment drum and plasma supply nozzle: 340 V
-Degree of vacuum in the pretreatment compartment: 3.8 Pa
(Aluminum oxide film formation conditions)
-Degree of vacuum: 8.1 × 10-2 Pa
・ Conveying speed: 400 m / min
-Light transmittance of wavelength 366 nm: 92%
<バリア性被覆層>
 水385g、イソプロピルアルコール67g及び0.5N塩酸9.1gを混合し、pH2.2に調整した溶液にテトラエトキシシラン175gとグリシドキシプロピルトリメトキシシラン9.2gを10℃となるよう冷却しながら混合させて溶液Aを調製した。
 ケン価度99%以上の重合度2400のポリビニルアルコール14.7g、水324g、イソプロピルアルコール17gを混合した溶液Bを調製した。
 A液とB液を重量比6.5:3.5となるよう混合して得られた溶液をバリアコート剤とした。
<Barrier coating layer>
A solution prepared by mixing 385 g of water, 67 g of isopropyl alcohol and 9.1 g of 0.5 N hydrochloric acid and adjusting the pH to 2.2 was cooled to 10 ° C. with 175 g of tetraethoxysilane and 9.2 g of glycidoxypropyltrimethoxysilane. Solution A was prepared by mixing.
A solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of saponification of 99% or more and a degree of polymerization of 2400, 324 g of water, and 17 g of isopropyl alcohol.
A solution obtained by mixing solution A and solution B so that the weight ratio was 6.5: 3.5 was used as a barrier coating agent.
<バリア性積層フィルム>
 上記のPETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート剤をスピンコート法によりコーティングした。その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのバリア性被覆層を酸化アルミニウム蒸着膜上に形成して、バリア性積層フィルムを得た。
<Barrier laminated film>
The barrier coating agent prepared above was coated by spin coating on the aluminum oxide deposited film of the PET film described above. Thereafter, the resultant was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on the aluminum oxide vapor deposition film, to obtain a barrier laminate film.
実施例2
 酸化アルミニウム蒸着膜厚の厚さを14nmに変更した以外は、実施例1と同じにして、バリア性積層フィルムを得た。
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:340m/min
・波長366nmの光線透過率:92%
Example 2
A barrier laminate film was obtained in the same manner as in Example 1 except that the thickness of the aluminum oxide vapor deposition film thickness was changed to 14 nm.
(Aluminum oxide film formation conditions)
-Degree of vacuum: 8.1 × 10-2 Pa
・ Conveying speed: 340 m / min
-Light transmittance of wavelength 366 nm: 92%
実施例3
 基材として厚さ12μmのバイオマス由来のポリエステルフィルムを使用したこと以外は、実施例1と同じにして、バリア性積層フィルムを得た。
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・波長366nmの光線透過率:92%
Example 3
A barrier laminate film was obtained in the same manner as in Example 1 except that a biomass-derived polyester film with a thickness of 12 μm was used as a substrate.
(Aluminum oxide film formation conditions)
-Degree of vacuum: 8.1 × 10-2 Pa
・ Conveying speed: 400 m / min
-Light transmittance of wavelength 366 nm: 92%
実施例4
 基材として厚さ12μmのポリブチレンテレフタレートフィルムを使用したことと、酸化アルミニウム蒸着膜厚の厚さを10nmに変更した以外は、実施例1と同じにして、バリア性積層フィルムを得た。
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・波長366nmの光線透過率:92%
Example 4
A barrier laminate film was obtained in the same manner as in Example 1 except that a polybutylene terephthalate film having a thickness of 12 μm was used as a substrate and the thickness of the aluminum oxide vapor deposition film thickness was changed to 10 nm.
(Aluminum oxide film formation conditions)
-Degree of vacuum: 8.1 × 10-2 Pa
・ Conveying speed: 400 m / min
-Light transmittance of wavelength 366 nm: 92%
実施例5
 基材として高スティフネスポリエステルフィルムの東レ株式会社製のXP-55(厚み16μm)を使用したこと以外は、実施例1と同じにして、バリア性積層フィルムを得た。
Example 5
A barrier laminate film was obtained in the same manner as in Example 1 except that XP-55 (thickness 16 μm) manufactured by Toray Industries, Inc., which is a high stiffness polyester film, was used as a substrate.
比較例1
 プラズマ前処理を行わなかった以外は、実施例1と同じにしてバリア性積層フィルムを得た。
Comparative Example 1
A barrier laminate film was obtained in the same manner as in Example 1 except that the plasma pretreatment was not performed.
比較例2
 まず、基材である厚さ12μmのPETフィルムを巻き取ったロールを準備した。次に、このPETフィルムの蒸着層を設ける面に、ダイレクトプラズマ方式を用いて下記の条件でプラズマ処理し、プラズマ処理したPETフィルムの巻き取りロールを得た。次に、このPETフィルムのプラズマ処理面に、反応性抵抗加熱方式により、厚さ12nmの酸化アルミニウム蒸着膜を下記の条件で形成した。
Comparative example 2
First, a roll was prepared by winding a 12 μm thick PET film as a substrate. Next, the surface of the PET film on which the vapor deposition layer is to be formed was plasma-treated under the following conditions using a direct plasma system to obtain a roll-up roll of plasma-treated PET film. Next, a 12 nm-thick aluminum oxide vapor deposition film was formed on the plasma-treated surface of this PET film by the reactive resistance heating method under the following conditions.
(プラズマ前処理条件)
・直流プラズマ強度:150W・sec/m
・プラズマ形成ガス:アルゴン1200(sccm)、酸素3000(sccm)
・磁気形成手段:なし
・前処理ドラム-プラズマ供給ノズル間印加電圧:なし
(Plasma pretreatment conditions)
・ DC plasma intensity: 150 W · sec / m 2
Plasma forming gas: argon 1200 (sccm), oxygen 3000 (sccm)
Magnetic formation means: None Pretreatment drum-Applied voltage between plasma supply nozzles: None
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・波長366nmの光線透過率:92%
(Aluminum oxide film formation conditions)
-Degree of vacuum: 8.1 × 10-2 Pa
・ Conveying speed: 400 m / min
-Light transmittance of wavelength 366 nm: 92%
 次に、酸化アルミニウム蒸着膜上に実施例1と同様にして、バリア性被覆層を形成して、バリア性積層フィルムを得た。 Next, in the same manner as in Example 1, a barrier coating layer was formed on the aluminum oxide vapor deposition film to obtain a barrier laminate film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 測定結果を表1に示す。実施例1~5に示されているように、本発明における積層フィルムの酸化アルミニウム蒸着膜の遷移領域の変成率は45%以下となり、比較例1,2では該遷移領域の変成率が高く、ハイレトルト処理、セミレトルト処理後、比較例1と2ではレトルト処理前の剥離強度が実施例とほぼ同じであっても、レトルト処理後、1N/15mm以下の低い値となり、急激な剥離強度の劣化が見られる。これとは対照的に、本発明では剥離強度が2.1N/15mm以上と十分に密着強度が維持され、レトルト処理による密着強度の大幅な低下が見られず、劣化が抑えられている。 The measurement results are shown in Table 1. As shown in Examples 1 to 5, the transformation ratio of the transition region of the deposited aluminum oxide film of the laminated film in the present invention is 45% or less, and in Comparative Examples 1 and 2, the transformation ratio of the transition region is high. After high retort treatment and semi-retort treatment, Comparative Examples 1 and 2 have a low value of 1 N / 15 mm or less after retort treatment even if the peel strength before retort treatment is almost the same as that of the example. Deterioration is seen. In contrast to this, in the present invention, the peel strength is sufficiently maintained such that the peel strength is 2.1 N / 15 mm or more, and a significant decrease in the adhesion strength due to the retort treatment is not observed, and the deterioration is suppressed.
 また、バリア性能においても、実施例1~5は、ハイレトルト処理、セミレトルト処理後、水蒸気透過率が0.9g/m/24hr以下とレトルト処理によるバリア性能の劣化が抑えられ、また酸素透過度についてはいずれのレトルト処理後でも、一定の水準を維持できている。これに対し、比較例1と2ではレトルト前処理の水蒸気透過率は実施例とほぼ同じであっても、ハイレトルト処理後では1.2g/m/24hrと高い値となり劣化を示し、また酸素透過度についても、0.5cc/m/24hr以上と2倍以上の高い値を示し、レトルト処理によるバリア性能の劣化が起きている。
 これらの結果に見られるように、本発明の酸化アルミニウムの遷移領域の変成率を制御した積層フィルムでは、優れたレトルト耐性を示すものが得られる。
Also in barrier performance, Examples 1-5, high retort treatment, after semi retorting, deterioration of barrier performance water vapor transmission rate according to 0.9g / m 2 / 24hr or less and retort treatment is suppressed, the oxygen The permeability can be maintained at a constant level after any retort treatment. In contrast, Comparative Example 1 and the water vapor transmission rate of the retort pretreatment at 2 be substantially the same as in Example, after the high retort treatment showed deterioration becomes 1.2 g / m 2/24 hr or a high value, also for even oxygen permeability, 0.5 cc / m 2/24 hr or more and a high value of more than 2 times, degradation of barrier performance is occurring due to retort treatment.
As can be seen from these results, in the laminated film in which the transformation ratio of the transition region of the aluminum oxide of the present invention is controlled, one showing excellent retort resistance is obtained.
 本発明は、蒸着膜とプラスチック基材との間の酸化アルミニウム蒸着膜の遷移領域の変成率を適正に設定することで改善された密着性が得られ、バリア性を有する酸化アルミニウム蒸着膜を備える積層フィルム及びバリア性積層フィルムを得ることができる。
 蒸着膜とプラスチック基材間のレトルト処理前後における密着強度の劣化を改善することで、酸素ガス、水蒸気等の透過を阻止するバリア性及び密着性を有するバリア性積層フィルムとすることができ、例えば、レトルト処理、殺菌処理等の加工に伴う処理に耐える積層材を必要とする食品、医薬品などの包装材、及び電気・電子部品の包装、保護シートなどの耐久性、バリア性を必要とする使用環境が厳しい分野の産業資材等に適用できる。
According to the present invention, the adhesion is improved by appropriately setting the transformation ratio of the transition region of the aluminum oxide vapor deposition film between the vapor deposition film and the plastic substrate, and the aluminum oxide vapor deposition film having a barrier property is provided. A laminate film and a barrier laminate film can be obtained.
By improving the deterioration of the adhesion strength before and after the retort treatment between the vapor deposition film and the plastic substrate, it is possible to obtain a barrier laminate film having a barrier property and adhesion for blocking permeation of oxygen gas, water vapor, etc. , Foods that require laminated materials that can withstand processing accompanying processing such as retort processing, sterilization processing, packaging materials such as pharmaceuticals, and packaging of electric and electronic parts, uses that require durability and barrier properties such as protective sheets It can be applied to industrial materials in fields where the environment is severe.
1,S ………プラスチック基材
2 ………酸化アルミニウム蒸着膜
3………バリア性被覆層
A ………積層フィルム又は蒸着膜フィルム
B ………バリア性積層フィルム
P ………プラズマ
10 ………ローラー式連続蒸着膜成膜装置
12 ………減圧チャンバ
12A ………基材搬送室
12B ………プラズマ前処理室
12C ………成膜室
14a~d ………ガイドロール
18 ………原料ガス揮発供給装置
20 ………前処理ローラー
21 ………マグネット
22 ………プラズマ供給ノズル
23 ………成膜ローラー
24 ………蒸着膜成膜手段
31 ………電力供給配線
32 ………電源
35a~35c ………隔壁
1, S: Plastic base 2: Aluminum oxide vapor deposited film 3: Barrier coating layer A: ... Laminated film or vapor deposited film B: ...... Barrier laminated film P: ...... Plasma 10 ...... Roller-type continuous vapor deposition film deposition apparatus 12 ...... 減 圧 Decompression chamber 12A ...... 基材 Substrate transfer chamber 12B ...... Plasma pretreatment chamber 12C ...... Film formation chambers 14a to 14d ...... Guide roll 18 ...... ... Source gas volatilization supply device 20 ... ... Pretreatment roller 21 ... ... Magnet 22 ... ... Plasma supply nozzle 23 ... ... Film formation roller 24 ... ... Vapor deposition film formation means 31 ... ... Power supply wiring 32 ... ...... Power supply 35a to 35c ......... Partition wall

Claims (14)

  1.  プラスチック基材の表面に酸化アルミニウムを主成分とする酸化アルミニウム蒸着膜を形成したバリア性を備える積層フィルムにおいて、基材フィルム表面と形成された酸化アルミニウム蒸着膜を主体する蒸着膜との密着強度を規定する該蒸着膜の遷移領域が形成されており、該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、TOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される該変成される遷移領域の割合により定義される遷移領域の変成率が45%以下とする、上記積層フィルム。 In a laminated film having a barrier property in which an aluminum oxide vapor deposition film mainly composed of aluminum oxide is formed on the surface of a plastic substrate, adhesion strength between the substrate film surface and the vapor deposition film mainly comprising the aluminum oxide vapor deposition film formed A transition region of the deposited film to be defined is formed, and the transition region is transformed into aluminum hydroxide detected by performing etching using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Defined by the ratio of the denatured transition region defined using TOF-SIMS to the aluminum oxide deposited film that contains elemental bound Al 2 O 4 H and is defined by performing etching using TOF-SIMS The above laminated film, wherein the transformation ratio of the transition region is 45% or less.
  2.  プラスチック基材が、ポリエチレンテレフタレートフィルムである、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the plastic substrate is a polyethylene terephthalate film.
  3.  プラスチック基材が、リサイクルポリエチレンテレフタレートフィルムを含む、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the plastic substrate comprises a recycled polyethylene terephthalate film.
  4.  プラスチック基材が、ポリブチレンテレフタレートフィルムである、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the plastic substrate is a polybutylene terephthalate film.
  5.  プラスチック基材が、バイオマス由来のポリエステルフィルムである、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the plastic substrate is a biomass-derived polyester film.
  6.  プラスチック基材が、高スティフネスポリエステルフィルムである、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the plastic substrate is a high stiffness polyester film.
  7.  プラスチック基材表面が酸素プラズマ処理面である、請求項1~6のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the plastic substrate surface is an oxygen plasma treated surface.
  8.  酸素プラズマ処理面にインラインで酸化アルミニウム蒸着膜が積層された、請求項7に記載の積層フィルム。 The laminated film according to claim 7, wherein an aluminum oxide vapor deposition film is laminated inline on the oxygen plasma treated surface.
  9.  請求項1~8のいずれか1項に記載の積層フィルムの酸化アルミニウム蒸着膜表面上にバリア性被覆層が積層されてなる、バリア性積層フィルム。 A barrier laminate film comprising a barrier coating layer laminated on the surface of the aluminum oxide vapor deposited film of the laminate film according to any one of claims 1 to 8.
  10.  バリア性被覆層が、金属アルコキシドと水溶性高分子の混合溶液を塗布し、加熱乾燥してなる層である、請求項9に記載のバリア性積層フィルム。 10. The barrier laminate film according to claim 9, wherein the barrier coating layer is a layer formed by applying a mixed solution of a metal alkoxide and a water-soluble polymer, and drying by heating.
  11.  バリア性被覆層が、金属アルコキシドとシランカップリング剤と水溶性高分子の混合溶液を塗布し、加熱乾燥してなる層である、請求項9に記載のバリア性積層フィルム。 10. The barrier laminate film according to claim 9, wherein the barrier coating layer is a layer formed by applying a mixed solution of a metal alkoxide, a silane coupling agent and a water-soluble polymer, and drying by heating.
  12.  請求項9~11のいずれか1項に記載のバリア性積層フィルムにヒートシール性を有する熱可塑性樹脂が積層されてなる、ガスバリア性包装材料。 A gas barrier packaging material comprising a thermoplastic resin having heat sealability laminated on the barrier laminate film according to any one of claims 9 to 11.
  13.  レトルト殺菌用包装に用いられる、請求項12に記載のガスバリア性包装材料。 The gas barrier packaging material according to claim 12, which is used for retort sterilization packaging.
  14.  請求項12または13に記載のガスバリア性包装材料から作製された、ガスバリア性包装体。 A gas barrier package made from the gas barrier packaging material according to claim 12 or 13.
PCT/JP2018/039877 2017-10-30 2018-10-26 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film WO2019087960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550319A JP7192781B2 (en) 2017-10-30 2018-10-26 LAMINATED FILM, BARRIER LAMINATED FILM, GAS BARRIER PACKAGING MATERIAL AND GAS BARRIER PACKAGE USING THE BARRIER LAMINATED FILM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017208739 2017-10-30
JP2017-208739 2017-10-30
JP2018042601 2018-03-09
JP2018-042601 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019087960A1 true WO2019087960A1 (en) 2019-05-09

Family

ID=66333043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039877 WO2019087960A1 (en) 2017-10-30 2018-10-26 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film

Country Status (2)

Country Link
JP (1) JP7192781B2 (en)
WO (1) WO2019087960A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182017A1 (en) * 2018-03-22 2019-09-26 大日本印刷株式会社 Barrier laminate film, and packaging material which uses barrier laminate film
WO2019182018A1 (en) * 2018-03-23 2019-09-26 大日本印刷株式会社 Barrier resin film, barrier laminate and packaging material using barrier laminate
JP2020055302A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Packaging material for paper container and liquid-storing paper container
JP2020185672A (en) * 2019-05-10 2020-11-19 大日本印刷株式会社 Barrier film
JP2020189689A (en) * 2019-05-16 2020-11-26 大日本印刷株式会社 Packaging bag
WO2021045127A1 (en) * 2019-09-06 2021-03-11 大日本印刷株式会社 Barrier film, laminate using said barrier film, packaging product using said laminate
JP2021045929A (en) * 2019-09-19 2021-03-25 大日本印刷株式会社 Barrier film, laminate using the barrier film, packaging product using the laminate
JP2021049779A (en) * 2019-09-19 2021-04-01 大日本印刷株式会社 Barrier film, laminate using the barrier film, and packaging product using the laminate
JP2021050014A (en) * 2019-09-24 2021-04-01 大日本印刷株式会社 Packaging material and package product with packaging material
WO2021065890A1 (en) 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate and packaging container comprising said barrier laminate
WO2021065878A1 (en) 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, heat sealing laminate provided with barrier laminate, and packaging container provided with heat sealing laminate
WO2021200816A1 (en) 2020-03-31 2021-10-07 大日本印刷株式会社 Multilayer body and packaging container formed of multilayer body
WO2021230319A1 (en) * 2020-05-14 2021-11-18 凸版印刷株式会社 Gas barrier film
CN113906153A (en) * 2019-06-12 2022-01-07 大日本印刷株式会社 Barrier film, laminate and packaging product
WO2023013768A1 (en) 2021-08-05 2023-02-09 大日本印刷株式会社 Barrier multilayer body, cover material and packaging container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2012096469A (en) * 2010-11-02 2012-05-24 Dainippon Printing Co Ltd Barrier film, and laminate using the same
WO2013100073A1 (en) * 2011-12-28 2013-07-04 大日本印刷株式会社 Vapor deposition apparatus having pretreatment device that uses plasma
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2018058355A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Film, film production method and packaging material having film
WO2018203526A1 (en) * 2017-05-02 2018-11-08 東レフィルム加工株式会社 Aluminum vapor-deposited film and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708765B2 (en) 2011-07-13 2017-07-18 Andritz Inc. Rotor refiner plate element for counter-rotating refiner having curved bars and serrated leading edges

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2012096469A (en) * 2010-11-02 2012-05-24 Dainippon Printing Co Ltd Barrier film, and laminate using the same
WO2013100073A1 (en) * 2011-12-28 2013-07-04 大日本印刷株式会社 Vapor deposition apparatus having pretreatment device that uses plasma
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2018058355A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Film, film production method and packaging material having film
WO2018203526A1 (en) * 2017-05-02 2018-11-08 東レフィルム加工株式会社 Aluminum vapor-deposited film and production method therefor

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182017A1 (en) * 2018-03-22 2019-09-26 大日本印刷株式会社 Barrier laminate film, and packaging material which uses barrier laminate film
WO2019182018A1 (en) * 2018-03-23 2019-09-26 大日本印刷株式会社 Barrier resin film, barrier laminate and packaging material using barrier laminate
US11655087B2 (en) 2018-03-23 2023-05-23 Dai Nippon Printing Co., Ltd. Barrier resin film, barrier laminate and packaging material using barrier laminate
JP7425984B2 (en) 2018-09-28 2024-02-01 大日本印刷株式会社 Packaging materials for paper containers and liquid paper containers
JP2020055302A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Packaging material for paper container and liquid-storing paper container
JP2020185672A (en) * 2019-05-10 2020-11-19 大日本印刷株式会社 Barrier film
JP7331444B2 (en) 2019-05-10 2023-08-23 大日本印刷株式会社 barrier film
JP2020189689A (en) * 2019-05-16 2020-11-26 大日本印刷株式会社 Packaging bag
JP7163890B2 (en) 2019-05-16 2022-11-01 大日本印刷株式会社 packaging bag
JP2022189878A (en) * 2019-05-16 2022-12-22 大日本印刷株式会社 packaging bag
JP7318783B2 (en) 2019-05-16 2023-08-01 大日本印刷株式会社 packaging bag
EP3984738A4 (en) * 2019-06-12 2023-06-21 Dai Nippon Printing Co., Ltd. Barrier film, laminate, and packaging product
CN113906153B (en) * 2019-06-12 2024-05-28 大日本印刷株式会社 Barrier film, laminate and packaged product
CN113906153A (en) * 2019-06-12 2022-01-07 大日本印刷株式会社 Barrier film, laminate and packaging product
WO2021045127A1 (en) * 2019-09-06 2021-03-11 大日本印刷株式会社 Barrier film, laminate using said barrier film, packaging product using said laminate
JP2021045929A (en) * 2019-09-19 2021-03-25 大日本印刷株式会社 Barrier film, laminate using the barrier film, packaging product using the laminate
JP2022000345A (en) * 2019-09-19 2022-01-04 大日本印刷株式会社 Barrier film, laminate using the barrier film, and packaging product using the laminate
JP7031772B2 (en) 2019-09-19 2022-03-08 大日本印刷株式会社 Barrier film, laminate using the barrier film, packaging product using the laminate
JP7056790B2 (en) 2019-09-19 2022-04-19 大日本印刷株式会社 Barrier film, laminate using the barrier film, packaging product using the laminate
JP2021049779A (en) * 2019-09-19 2021-04-01 大日本印刷株式会社 Barrier film, laminate using the barrier film, and packaging product using the laminate
WO2021054123A1 (en) * 2019-09-19 2021-03-25 大日本印刷株式会社 Barrier film, layered body using said barrier film, and packaged product using said layered body
JP2021102349A (en) * 2019-09-19 2021-07-15 大日本印刷株式会社 Barrier film, laminate using the barrier film, packaging product using the laminate
JP2021050014A (en) * 2019-09-24 2021-04-01 大日本印刷株式会社 Packaging material and package product with packaging material
WO2021065890A1 (en) 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate and packaging container comprising said barrier laminate
WO2021065878A1 (en) 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, heat sealing laminate provided with barrier laminate, and packaging container provided with heat sealing laminate
WO2021200816A1 (en) 2020-03-31 2021-10-07 大日本印刷株式会社 Multilayer body and packaging container formed of multilayer body
WO2021230319A1 (en) * 2020-05-14 2021-11-18 凸版印刷株式会社 Gas barrier film
WO2023013768A1 (en) 2021-08-05 2023-02-09 大日本印刷株式会社 Barrier multilayer body, cover material and packaging container

Also Published As

Publication number Publication date
JPWO2019087960A1 (en) 2020-11-26
JP7192781B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2019087960A1 (en) Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film
JP7248011B2 (en) Barrier laminated film and packaging material using the barrier laminated film
JP7434767B2 (en) Gas-barrier vapor-deposited film, and laminates, packaging materials, and packages using the gas-barrier vapor-deposited film
JP7434766B2 (en) Gas barrier vapor deposited films, gas barrier laminates, gas barrier packaging materials and gas barrier packaging bodies.
JP7056790B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP7027972B2 (en) Barrier resin film, barrier laminate, and packaging material using the barrier laminate
CN111886131B (en) Barrier resin film, barrier laminate, and packaging material using barrier laminate
JP2020029095A (en) Barrier film and packaging material
JP7441433B2 (en) Vapor deposition film forming apparatus and vapor deposition film forming method
JP5381159B2 (en) Gas barrier laminate film and method for producing the same
JP7031772B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP2020070429A (en) Oxygen plasma treated resin film, gas barrier vapor deposition film and gas barrier laminate using the gas barrier vapor deposition film, gas barrier packaging material, gas barrier package, gas barrier packaging bag and manufacturing method of these
JP2023123494A (en) Barrier laminate film, and method of manufacturing barrier laminate film, and packaging material having barrier laminate film
WO2021045127A1 (en) Barrier film, laminate using said barrier film, packaging product using said laminate
JP2022189878A (en) packaging bag
JP2021041697A (en) Barrier film, laminate using the barrier film, and packaging product using the laminate
JP2021049780A (en) Barrier film, laminate using the barrier film, and packaging product using the laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873159

Country of ref document: EP

Kind code of ref document: A1