WO2021230152A1 - ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物 - Google Patents

ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物 Download PDF

Info

Publication number
WO2021230152A1
WO2021230152A1 PCT/JP2021/017514 JP2021017514W WO2021230152A1 WO 2021230152 A1 WO2021230152 A1 WO 2021230152A1 JP 2021017514 W JP2021017514 W JP 2021017514W WO 2021230152 A1 WO2021230152 A1 WO 2021230152A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
different
same
plural
Prior art date
Application number
PCT/JP2021/017514
Other languages
English (en)
French (fr)
Inventor
陽子 橋爪
明弘 芝本
美由紀 原田
Original Assignee
学校法人関西大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西大学, 株式会社ダイセル filed Critical 学校法人関西大学
Publication of WO2021230152A1 publication Critical patent/WO2021230152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the invention of the present disclosure relates to polyorganosylsesquioxane, a curable composition containing the same, and a cured product thereof. More specifically, the present invention relates to polyorganosylsesquioxane which has excellent mechanical properties such as toughness and surface hardness and can be suitably used for electric / electronic devices, a curable composition containing the same, and a cured product thereof. ..
  • This application claims the priority of Japanese Patent Application No. 2020-083247 filed in Japan on May 11, 2020, the contents of which are incorporated herein by reference.
  • Epoxy resin is used in various industrial applications because it has excellent heat resistance, mechanical properties, electrical properties, adhesive strength, etc., and is used for insulating materials, printed wiring boards, encapsulants, laminated boards, prepregs, etc. Its use as an advanced material in the field of electronic devices such as underfill is expanding. In recent years, as electronic devices have been rapidly miniaturized and improved in performance, there is an increasing demand for further improvement of mechanical properties and the like for epoxy resins.
  • Japanese Unexamined Patent Publication No. 2014-122337 Japanese Unexamined Patent Publication No. 2016-8218 Japanese Unexamined Patent Publication No. 2008-21459 Japanese Patent Application Laid-Open No. 2015-48400
  • an object of the present invention to provide a polyorganosylsesquioxane capable of forming a cured product exhibiting excellent mechanical properties and surface hardness.
  • Another object of the invention of the present disclosure is to provide a curable composition capable of forming a cured product exhibiting excellent mechanical properties and surface hardness.
  • another object of the invention of the present disclosure is to provide a cured product that exhibits excellent mechanical properties and surface hardness.
  • another object of the invention of the present disclosure is to provide an electronic device having a cured product exhibiting excellent mechanical properties and surface hardness.
  • the inventors of the present disclosure according to the polyorganosylsesquioxane having a toughness group and an epoxy group, a curable composition containing the polyorganosylsesquioxane. Found that it is useful as an advanced material for electronic devices because it can form a cured product having excellent mechanical properties (for example, toughness) and high surface hardness.
  • the invention of the present disclosure has been completed based on these findings.
  • the invention of the present disclosure provides a polyorganosylsesquioxane having an epoxy group and a mesogen group.
  • the mesogen group may be a monovalent mesogen group.
  • the molar ratio of the epoxy group to the mesogen group may be 1/99 to 99/1.
  • the polyorganosylsesquioxane may have a structural unit represented by the following formula (1) and a structural unit represented by the following formula (Ma). [R 1 SiO 3/2 ] (1) [In formula (1), R 1 represents a group containing an epoxy group. ] [M a SiO 3/2 ] (Ma) Wherein (Ma), M a represents a group containing a monovalent mesogenic group. ]
  • the R 1 may be a group represented by the following formula (1a), (1b), (1c), or (1d). [In the formula, R 1a , R 1b , R 1c , and R 1d represent linear or branched alkylene groups that are the same or different. ]
  • M a can be a group represented by the following formula (Ma1). -R m- M a1 (Ma1) [In the formula (Ma1), R m represents a linear or branched alkylene group. M a1 represents a monovalent mesogen group. ]
  • the mesogen group may be a group represented by the following formula (a). -(-M 1A -X A- ) n- M 2A (a) [In the formula (a), M 1A represents a group obtained by removing two hydrogen atoms from the structural formula of the hydrocarbon ring or the heterocycle, and M 2A is one hydrogen atom from the structural formula of the hydrocarbon ring or the heterocycle. Indicates a group excluding. X A indicates a single bond or a linking group. n represents an integer of 1 to 3. ]
  • the mesogen group may be at least one selected from the group consisting of monovalent groups represented by the following formulas (a1) to (a9).
  • R a1 and R a2 each independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • M1 represents an integer of 0 to 4.
  • m2 in the case of .m1 represents an integer of 0 to 5 is 2 or more, plural R a1, if may be the same or different .m2 is 2 or more, plural R a2, at the same It may or may not be different. Wavy lines indicate the sites of connection with other structures.
  • R a3 , R a4 and R a5 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, respectively.
  • M3 and m4 independently represent each other.
  • .M5 represents an integer of 0 to 4
  • 0 if .m3 represents an integer of 1-5 is 2 or more
  • plural R a5 may be be the same or different.
  • R a6 , R a7 and R a8 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and m6 is an integer of 0 to 4.
  • .m7 showing a is 0 .M8 represents an integer of 1-8, when the .m6 represents an integer of 0 to 5 is 2 or more, plural R a6 may be be the same or different .m7 for but 2 or more, plural R a7, when may be the same or different .m8 is 2 or more, plural R a8 may be the same or different.
  • wavy lines Indicates the binding site with other structures.
  • R a9 , R a10 and R a11 independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms, respectively.
  • M9 is an integer of 0 to 4 .m10 showing a is 0 .M11 represents an integer of 1-8, when the .m9 represents an integer of 0 to 5 is 2 or more, plural R a9 may be be the same or different .m10 for but 2 or more, plural R a10, if may be the same or different .m11 is 2 or more, plural R a11 may be the same or different.
  • wavy lines Indicates the binding site with other structures.
  • R a12 and R a13 independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms, respectively.
  • M12 represents an integer of 0 to 4.
  • m13 in the case of .m12 represents an integer of 0 to 5 is 2 or more, plural R a12, if may be the same or different .m13 is 2 or more, plural R a13 are the same It may or may not be different.
  • R ax and R ay are independently hydrogen atoms, methyl groups, or cyano groups, where either R ax or R ay is a hydrogen atom. Indicates the binding site with other structures.
  • R a14 and R a15 each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • M14 represents an integer of 0 to 4.
  • m15 in the case of .m14 represents an integer of 0 to 5 is 2 or more, plural R a14, if may be the same or different .m15 is 2 or more, plural R a15 are the same It may or may not be different.
  • Y 1 and Y 2 are different, CH or N. Wavy lines indicate binding sites with other structures.
  • R a16 and R a17 independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms, respectively.
  • M16 represents an integer of 0 to 4.
  • m17 in the case of .m16 represents an integer of 0 to 5 is 2 or more, plural R a16, if may be the same or different .m17 is 2 or more, plural R a17 are the same It may or may not be different. Wavy lines indicate the sites of connection with other structures.
  • R a18 and R a19 each independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • M18 represents an integer of 0 to 4.
  • m19 in the case of .m18 represents an integer of 0 to 5 is 2 or more, plural R a18, if may be the same or different .m19 is 2 or more, plural R a19 are the same It may or may not be different. Wavy lines indicate the sites of connection with other structures.
  • R a20 and R a21 each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • M20 represents an integer of 0 to 4.
  • m21 in the case of .m20 represents an integer of 0 to 5 is 2 or more, plural R a20, if may be the same or different .m21 is 2 or more, plural R a21 are the same It may or may not be different. Wavy lines indicate the sites of connection with other structures.
  • the invention of the present disclosure also provides a curable composition containing the polyorganosylsesquioxane.
  • the curable composition may further contain an epoxy compound other than the polyorganosylsesquioxane.
  • the epoxy compound may contain an epoxy compound having a mesogen group.
  • the epoxy compound may contain a compound represented by the following formula (B).
  • E 1- X 1- M b -X 2- E 2 (B) (In formula (B), M b represents a divalent mesogen group; E 1 and E 2 each independently represent an epoxy group-containing group; X 1 and X 2 each independently and simply. Indicates a bond or linking group.)
  • M b may be a group represented by the following formula (b). -(-M 1B -X B- ) o -M 2B- (b) [In the formula (b), M 1B and M 2B represent groups which are the same or different and have two hydrogen atoms removed from the structural formula of the hydrocarbon ring or the heterocycle. X B indicates a single bond or linking group. o indicates an integer of 1 to 3. ]
  • the M b may be at least one selected from the group consisting of divalent groups represented by the following formulas (b1) to (b7).
  • R b1 and R 2b independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms, and n1 and n2 independently represent 0 to 0 to n2, respectively. If .n1 showing 4 of the integer is 2 or more, plural R b1, if may be the same or different .n2 is 2 or more, plural R b2 are different even in the same Wavy lines may indicate a binding site with a group represented by -X 1- E 1 or -X 2- E 2.
  • R b3 , R b4 and R b5 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, respectively.
  • N3, n4 and n5 are n3, n4 and n5, respectively.
  • wavy line is a -X 1 -E 1 or -X 2 -E 2 Indicates the binding site with the represented group.
  • R b6 , R b7 and R b8 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms, respectively.
  • N6 and n8 independently represent each other.
  • .N7 represents an integer of 0 to 4
  • plural R b8 are identical or different.
  • wavy lines, -X 1 -E 1 or -X 2- E 2 indicates the binding site with the group.
  • R b9 and R b10 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms, and n9 and n10 independently represent 0 to 0 to n10, respectively. If .n9 showing 4 of the integer is 2 or more, plural R b9, if may be the same or different .n10 is 2 or more, plural R b10 is different even for the same R bx may be a hydrogen atom, a methyl group, or a cyano group. Wavy lines indicate a binding site with a group represented by -X 1- E 1 or -X 2- E 2.)
  • R b11 and R b12 independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms, and n11 and n12 independently represent 0 to 0 to n12, respectively. If .n11 showing 4 of the integer is 2 or more, plural R b11, if may be the same or different .n12 is 2 or more, plural R b12 is different even for the same Wavy lines may indicate a binding site with a group represented by -X 1- E 1 or -X 2- E 2.
  • R b13 and R b14 each independently .N13 and n14 represents a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms are each independently 0 to If .n13 showing 4 of the integer is 2 or more, plural R b13, if may be the same or different .n14 is 2 or more, plural R b14 is different even for the same Wavy lines may indicate a binding site with a group represented by -X 1- E 1 or -X 2- E 2.
  • R b15 and R b16 each independently represent a linear or branched-chain alkyl group or a halogen atom having 1 to 6 carbon atoms, and n15 and n16 independently represent 0 to 0 to n16, respectively. If .n15 showing 4 of the integer is 2 or more, plural R b15, if may be the same or different .n16 is 2 or more, plural R b16 is different even for the same Wavy lines may indicate a binding site with a group represented by -X 1- E 1 or -X 2- E 2.
  • the epoxy compound may contain a bisphenol glycidyl ether type epoxy resin.
  • the bisphenol glycidyl ether type epoxy resin may contain a high molecular weight bisphenol glycidyl ether type epoxy resin.
  • the content of the polyorganosylsesquioxane is 1 to 50% by weight based on the total amount (100% by weight) of the compound having an epoxy group contained in the curable composition. May be good.
  • the curable composition may further contain a curing agent.
  • the curing agent may contain an amine-based curing agent.
  • the content of the amine-based curing agent is 0.1 to 10 equivalents of the active hydrogen of the amino group contained in the amine-based curing agent per 1 equivalent of the epoxy group contained in the curable composition. It may be an amount.
  • the invention of the present disclosure also provides a cured product of the curable composition.
  • the invention of the present disclosure provides an electronic device including the cured product.
  • the polyorganosylsesquioxane of the present disclosure has an epoxy group and a mesogen group in the molecule, mechanical properties (eg, for example) can be obtained by curing a curable composition containing the polyorganosylsesquioxane as an essential component. , Toughness) and can form a cured product with high surface hardness. Therefore, the polyorganosyl sesquioxane of the present disclosure, and the curable composition containing the polyorganosyl sesquioxane, are used in the fields of electronic devices such as insulating materials, printed wiring boards, encapsulants, laminated boards, prepregs, and underfills. It is useful as an advanced material for.
  • polyorganosylsesquioxane having an epoxy group and a mesogen group The polyorganosilsesquioxane of the present disclosure has at least one epoxy group and at least one mesogen group in the molecule, and is a silsesquioxane constituent unit represented by [RSiO 3/2]. It is a compound having (so-called T unit).
  • T unit the polyorganosylsesquioxane of the present disclosure may be referred to as "polyorganosylsesquioxane (A)" or "component (A)".
  • the component (A) is a curable compound (polymerizable compound) having a structure in which polyorganosylsesquioxane having a three-dimensional structure composed of T units has at least one epoxy group.
  • R in the above formula indicates a hydrogen atom or a monovalent organic group, and the same applies to the following.
  • the silsesquioxane structural unit represented by the above formula is the water addition of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compounds represented by the formulas (a) to (d) described later). It is formed by decomposition and condensation reactions.
  • the polyorganosylsesquioxane (A) of the present disclosure contains a mesogen group in addition to an epoxy group, whereby a cured product of a curable composition containing the component (A) (hereinafter, simply "the cured product of the present disclosure”).
  • the mechanical properties (eg, toughness) of (sometimes referred to as toughness) are improved, and the surface hardness is also improved. This is because the silsesquioxane skeleton partially sparses the surrounding network structure, forming nanopores in the system, and the pores act as stress concentration points in the peripheral network chain. It is considered that the toughness is improved by inducing plastic deformation.
  • the "epoxy group" contained in the component (A) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic).
  • An epoxy group composed of two adjacent carbon atoms and an oxygen atom) and the like can be mentioned.
  • As the alicyclic epoxy group a group composed of two adjacent carbon atoms constituting a cyclohexane ring and an oxygen atom (cyclohexene oxide group) is preferable.
  • Examples of the group containing the glycidyl group include a glycidyloxy C 1-10 alkyl group (for example, a glycidyloxy C 1-4 alkyl group) such as a glycidyloxymethyl group, a 2-glycidyloxyethyl group and a 3-glycidyloxypropyl group. ) Etc. can be mentioned.
  • the group containing the alicyclic epoxy group is not particularly limited, but is an epoxy C 5-12 cycloalkyl-linear or branched C 1-10 alkyl group, for example, a 2,3-epoxycyclopentylmethyl group.
  • Epoxycyclopentyl C 1-10 alkyl groups such as 2- (2,3-epoxycyclopentyl) ethyl group, 2- (3,4-epoxycyclopentyl) ethyl group, 3- (2,3-epoxycyclopentyl) propyl group, 4 , 5-Epoxycyclooctylmethyl group, 2- (4,5-epoxycyclooctyl) ethyl group, 3- (4,5-epoxycyclooctyl) propyl group and other epoxycyclooctyl C 1-10 alkyl groups. be able to.
  • the group containing these alicyclic epoxy groups may have a C 1-6 alkyl group such as a methyl group or an ethyl group as a substituent on the C 5-12 cycloalkane ring.
  • Examples of the group containing an alicyclic epoxy group having a substituent include 4-methyl-3,4-epoxycyclohexylmethyl group, 2- (3-methyl-3,4-epoxycyclohexyl) ethyl group, 2- ( C such as 4-methyl-3,4-epoxycyclohexyl) ethyl group, 3- (4-methyl-3,4-epoxycyclohexyl) propyl group, 4- (4-methyl-3,4-epoxycyclohexyl) butyl group 1-4 Alkyl-epoxy C 5-12 cycloalkyl-Linear or branched C 1-10 alkyl groups and the like can be mentioned.
  • the number of epoxy groups contained in one molecule of the component (A) is not particularly limited, but from the viewpoint of imparting excellent mechanical properties to the cured product of the present disclosure, two or more are preferable, and 2 to 50 are preferable.
  • the number is, more preferably 2 to 30, and even more preferably 2 to 15.
  • the plurality of epoxy groups may be the same or different.
  • the ratio of the monomer unit having an epoxy group to the total amount of the siloxane constituent unit in the component (A) [total siloxane constituent unit; total amount of M unit, D unit, T unit, and Q unit] is the cured product of the present disclosure.
  • the "mesogen group" possessed by the component (A) is a general term for a rigid molecular structure capable of exhibiting liquid crystallinity. Since the mesogen group has a rigid molecular structure in which molecular motion is suppressed, when the curable composition containing the component (A) is cured, the mesogen structure is oriented to form a tough network structure, resulting in an excellent machine. It is considered to show the characteristic characteristics.
  • the molecular structure of the mesogen group is not particularly limited, and examples thereof include the structures described in pages 14 to 15 of the Journal of the Japanese Society of Adhesion, Vol. 40, No. 1 (2004).
  • the mesogen group contained in the component (A) may be a monovalent mesogen group or a divalent or higher valence group, but a monovalent mesogen group that is easy to prepare is preferable.
  • Specific examples of the monovalent mesogen group include a group represented by the following formula (a). -(-M 1A -X A- ) n- M 2A (a)
  • M 1A represents a group obtained by removing two hydrogen atoms from the structural formula of the hydrocarbon ring or the heterocycle
  • M 2A is one hydrogen atom from the structural formula of the hydrocarbon ring or the heterocycle.
  • X A indicates a single bond or a linking group.
  • n represents an integer of 1 to 3.
  • [-C (-R ax ) C (-R ay )-] (one of the above R ax and Ray indicates a hydrogen atom and the other indicates a hydrogen atom, a methyl group or a cyano group).
  • the hydrocarbon ring includes an aliphatic hydrocarbon ring and an aromatic hydrocarbon ring.
  • the heterocycle includes a saturated heterocycle and an aromatic heterocycle.
  • aliphatic hydrocarbon ring examples include a 6-membered saturated or unsaturated aliphatic hydrocarbon ring such as a cyclohexane ring and a cyclohexene ring.
  • aromatic hydrocarbon ring examples include a benzene ring.
  • the saturated heterocycle is preferably a 6-membered saturated heterocycle, and examples thereof include piperidine and tetrahydropyran.
  • aromatic heterocycle examples include a pyrimidine group and a pyridine group.
  • the hydrocarbon ring and the heterocycle may have a substituent.
  • substituents include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group and the like having 1 to 6 carbon atoms.
  • substituent include a chain or branched alkyl group, a fluorine atom, a chlorine atom, a halogen atom such as a bromine atom, and the like.
  • the hydrocarbon ring and the heterocycle have two or more substituents, the two or more substituents may be the same or different.
  • n is an integer of 1 to 3, preferably 1 or 2.
  • n is 2 or more, the structures represented by a plurality of (-M 1A- X A- ) may be the same or different.
  • n M 1A and M 2A in the formula (a) is a group containing a benzene ring.
  • M 1A is a group containing a benzene ring is a phenylene group.
  • M 2A is a group containing a benzene ring is a phenyl group.
  • More specifically preferred monovalent mesogen groups include monovalent groups represented by the following formulas (a1) to (a9).
  • the wavy line in the chemical formula of the present specification indicates a binding site with another structure.
  • R a1 and R a2 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • m1 represents an integer from 0 to 4.
  • m2 represents an integer from 0 to 5.
  • the plurality of Ra1s may be the same or different.
  • a plurality of Ra2 may be the same or different.
  • R a3 , R a4 and R a5 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • m3 and m4 each independently represent an integer of 0 to 4.
  • m5 represents an integer from 0 to 5.
  • a plurality of Ra3s may be the same or different.
  • a plurality of Ra4s may be the same or different.
  • m5 is 2 or more, a plurality of Ra5s may be the same or different.
  • R a6 , R a7 and R a8 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • m6 represents an integer from 0 to 4.
  • m7 represents an integer from 0 to 8.
  • m8 represents an integer from 0 to 5.
  • a plurality of Ra6s may be the same or different.
  • m7 is 2 or more
  • a plurality of Ra7s may be the same or different.
  • m8 is 2 or more, a plurality of Ra8s may be the same or different.
  • R a9 , R a10 and R a11 independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • m9 represents an integer from 0 to 4.
  • m10 represents an integer from 0 to 8.
  • m11 represents an integer of 0 to 5.
  • a plurality of Ra9s may be the same or different.
  • a plurality of Ra10s may be the same or different.
  • m11 is 2 or more, a plurality of Ra11s may be the same or different.
  • R a12 and R a13 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • m12 represents an integer from 0 to 4.
  • m13 represents an integer of 0 to 5. If m12 is 2 or more, plural R a12 may be be the same or different. When m13 is 2 or more, the plurality of Ra13s may be the same or different.
  • R ax and R ay are each independently a hydrogen atom, a methyl group, or a cyano group. However, either R ax or R ay is a hydrogen atom.
  • R a14 and R a15 each independently represent a linear or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • m14 represents an integer from 0 to 4.
  • m15 represents an integer from 0 to 5. If m14 is 2 or more, plural R a14 may be be the same or different.
  • the plurality of Ra15s may be the same or different.
  • Y 1 and Y 2 are differently CH or N. That is, one of Y 1 and Y 2 is CH, and the other is N.
  • R a16 and R a17 each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • m16 represents an integer from 0 to 4.
  • m17 represents an integer of 0 to 5.
  • the plurality of Ra16s may be the same or different. If m17 is 2 or more, plural R a17 may be be the same or different.
  • R a18 and R a19 each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • m18 represents an integer from 0 to 4.
  • m19 represents an integer from 0 to 5. If m18 is 2 or more, plural R a18 may be be the same or different. When m19 is 2 or more, the plurality of Ra19s may be the same or different.
  • R a20 and R a21 each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • m20 represents an integer from 0 to 4.
  • m21 represents an integer of 0 to 5. If m20 is 2 or more, plural R a20 may be be the same or different. When m21 is 2 or more, the plurality of Ra21s may be the same or different.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R a1 to R a21 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert.
  • -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable.
  • Examples of the halogen atom represented by R a1 to R a21 include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • the mesogen group preferably has a structure represented by the formulas (a1) to (a4), and the formula (a1), (a3) or (a4).
  • the structure represented by the formula (a1) is more preferable, and the structure represented by the formula (a1) is further preferable.
  • the number of mesogen groups contained in one molecule of the component (A) is not particularly limited, but from the viewpoint of imparting excellent mechanical properties to the cured product of the present disclosure, two or more are preferable, and 2 to 50 are preferable.
  • the number is, more preferably 2 to 30, and even more preferably 2 to 15.
  • the plurality of mesogen groups may be the same or different.
  • the ratio of the monomer unit having a mesogen group to the total amount of the siloxane constituent unit in the component (A) [total siloxane constituent unit; total amount of M unit, D unit, T unit, and Q unit] is the cured product of the present disclosure. From the viewpoint of imparting excellent mechanical properties and high surface hardness, it is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol% or more, still more preferably 25 mol% or more.
  • the molar ratio of the epoxy group to the mesogen group (epoxy group / mesogen group) in the component (A) is not particularly limited, but from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure. For example, it is 1/99 to 99/1.
  • the lower limit of the molar ratio is preferably 10/90, more preferably 20/80, still more preferably 30/70, and particularly preferably 40/60.
  • the upper limit of the molar ratio is preferably 85/15, more preferably 80/20, and even more preferably 75/25. When the molar ratio is in the above range, it is easy to obtain a cured product having a good balance between heat resistance and mechanical properties.
  • the component (A) preferably has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (Ma) as the silsesquioxane unit.
  • R 1 SiO 3/2 (1)
  • R 1 represents a group containing an epoxy group.
  • M a SiO 3/2 Ma
  • M a represents a group containing a monovalent mesogenic group.
  • the component (A) is referred to as a structural unit represented by the following formula (I) (sometimes referred to as “T3 body”) and a structural unit represented by the following formula (II) (referred to as “T2 body”). It may be preferable to have). Further, the component (A) preferably has a structural unit represented by the formula (4) described later and a structural unit represented by the formula (7). [R a SiO 3/2 ] (I) [R b SiO 2/2 (OR c )] (II)
  • the structural unit represented by the above formula (1) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2].
  • T unit silsesquioxane structural unit
  • the structural unit represented by the above formula (1) is formed by a hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (a) described later). Will be done.
  • R 1 in the formula (1) represents a group containing an epoxy group (monovalent group).
  • the group containing an epoxy group include known and commonly used groups having an oxylan ring, and the cured product of the present disclosure is not particularly limited, but from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • the group represented by the following formula (1a), the group represented by the following formula (1b), the group represented by the following formula (1c), and the group represented by the following formula (1d) are preferable and more preferable. Is a group represented by the following formula (1a) or a group represented by the following formula (1c), more preferably a group represented by the following formula (1c).
  • R 1a represents a linear or branched alkylene group.
  • the linear or branched alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a decamethylene group and the like.
  • Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 1a is a linear alkylene group having 1 to 4 carbon atoms and a branched chain having 3 or 4 carbon atoms from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • the alkylene group in the form is preferable, and an ethylene group, a trimethylene group and a propylene group are more preferable, and an ethylene group and a trimethylene group are more preferable.
  • R 1b represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1b is a linear alkylene group having 1 to 4 carbon atoms and a branched chain having 3 or 4 carbon atoms from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • the alkylene group in the form is preferable, and an ethylene group, a trimethylene group and a propylene group are more preferable, and an ethylene group and a trimethylene group are more preferable.
  • R 1c represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1c is a linear alkylene group having 1 to 4 carbon atoms and a branched chain having 3 or 4 carbon atoms from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • the alkylene group in the form is preferable, and an ethylene group, a trimethylene group and a propylene group are more preferable, and an ethylene group and a trimethylene group are more preferable.
  • R 1d represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1d is a linear alkylene group having 1 to 4 carbon atoms and a branched chain having 3 or 4 carbon atoms from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • the alkylene group in the form is preferable, and an ethylene group, a trimethylene group and a propylene group are more preferable, and an ethylene group and a trimethylene group are more preferable.
  • R 1 in the formula (1) mechanical properties superior to the cured product of the present disclosure, in view of being able to impart a high surface hardness
  • R 1c is A group that is a trimethylene group [ie, a 3- (glycidyloxy) propyl group] is preferred.
  • the component (A) may have only one type of structural unit represented by the above formula (1), or may have two or more types of structural units represented by the above formula (1). May be good.
  • the structural unit represented by the above formula (Ma) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2].
  • T unit silsesquioxane structural unit
  • the structural unit represented by the above formula (Ma) is formed by the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (d) described later). Will be done.
  • M a in formula (Ma) refers to a group (a monovalent group) containing a mesogenic group.
  • the group containing the above-mentioned mesogen group include known and commonly used groups having the above-mentioned mesogen group, and the cured product of the present disclosure is not particularly limited, but the cured product of the present disclosure can be imparted with excellent mechanical properties and high surface hardness. Therefore, a group represented by the following formula (Ma1) is preferable. -R m- M a1 (Ma1)
  • R m represents a linear or branched alkylene group, and the same group as R 1a in the above formula (1a) is exemplified.
  • R m is a linear alkylene group having 1 to 4 carbon atoms or a branch having 3 or 4 carbon atoms from the viewpoint of imparting excellent mechanical properties and high surface hardness to the cured product of the present disclosure.
  • a chain alkylene group is preferable, and an ethylene group, a trimethylene group, a propylene group, and even more preferably an ethylene group are preferable.
  • M a1 represents a monovalent mesogenic group.
  • the monovalent mesogen group include known and commonly used groups, and the group is not particularly limited, but the group represented by the above formula (a) is preferable.
  • the M a1 include monovalent groups represented by the above formulas (a1) to (a9).
  • the monovalent group represented by the formula (a1) ⁇ (a4) are preferred, wherein (a1 ), (A3) or (a4) is more preferable, and the monovalent group represented by the formula (a1) is further preferable.
  • the component (A) may have only one type of structural unit represented by the above formula (Ma), or may have two or more types of structural units represented by the above formula (Ma). May be good.
  • the component (A) is a silsesquioxane structural unit [RSiO 3/2 ], in addition to the structural unit represented by the above formula (1) and the structural unit represented by the above formula (Ma), the following formula ( It may have a structural unit represented by 2). [R 2 SiO 3/2 ] (2)
  • the structural unit represented by the above formula (2) is a silsesquioxane structural unit (T unit) generally represented by [RSiO 3/2]. That is, the structural unit represented by the above formula (2) is a hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (b) described later). Formed by.
  • R 2 in the above formula (2) is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkyl group.
  • the aryl group include a phenyl group, a tolyl group, a naphthyl group and the like.
  • the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the alkyl group include a linear or branched alkyl such as a methyl group, an ethyl group, a propyl group, an n-butyl group, an isopropyl group, an isobutyl group, an s-butyl group, a t-butyl group and an isopentyl group. The group is mentioned.
  • Examples of the alkenyl group include a linear or branched alkenyl group such as a vinyl group, an allyl group, and an isopropenyl group.
  • Examples of the above-mentioned substituted aryl group, substituted aralkyl group, substituted cycloalkyl group, substituted alkyl group, and substituted alkenyl group include hydrogen atoms or main ribs in each of the above-mentioned aryl group, aralkyl group, cycloalkyl group, alkyl group and alkenyl group. From the group consisting of an ether group, an ester group, a carbonyl group, a siloxane group, a halogen atom (fluorine atom, etc.), an acrylic group, a methacryl group, a mercapto group, an amino group, and a hydroxy group (hydroxyl group). Examples include groups substituted with at least one selected species.
  • R 2 a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group is preferable, a substituted or unsubstituted aryl group is more preferable, and a phenyl group is more preferable.
  • Percentage of each of the above-mentioned silsesquioxane constituent units (constituent unit represented by the formula (1), the constituent unit represented by the formula (Ma), the constituent unit represented by the formula (2)) in the component (A). Can be appropriately adjusted depending on the composition of the raw material (hydrolyzable trifunctional silane) for forming these constituent units.
  • the component (A) is not only the structural unit represented by the above formula (1), the structural unit represented by the above formula (Ma), and the structural unit represented by the formula (2), and further, the above formula (1). ), A silsesquioxane structural unit other than the structural unit represented by the above formula (Ma) and the structural unit represented by the formula (2) [RSiO 3/2 ], [R 3 SiO 1].
  • the structural unit represented by [/ 2 ] (so-called M unit), the structural unit represented by [R 2 SiO 2/2 ] (so-called D unit), and the structural unit represented by [SiO 4/2 ] (so-called). It may have at least one siloxane constituent unit selected from the group consisting of (Q units).
  • silsesquioxane structural unit other than the structural unit represented by the above formula (1), the structural unit represented by the above formula (Ma), and the structural unit represented by the formula (2) are as follows. Examples thereof include a structural unit represented by the equation (3). [HSiO 3/2 ] (3)
  • the ratio [T3 body / T2] is not particularly limited, but is, for example, 5 or more, preferably 6 or more, more preferably 7 or more, more preferably 20 or more, more preferably 21 or more, more preferably 23 or more, still more preferably 25 or more.
  • the ratio [T3 / T2] is preferably 500 or less, more preferably 100 or less, more preferably 50 or less, still more preferably 40 or less, still more preferably less than 20, particularly preferably 18 or less, most preferably. Is 16 or less, particularly preferably 14 or less.
  • each of the three oxygen atoms bonded to the silicon atom represented in the structure represented by the following formula (I') is bonded to another silicon atom (silicon atom not represented by the formula (I')). ..
  • the two oxygen atoms located above and below the silicon atom shown in the structure represented by the following formula (II') are each other silicon atom (silicon atom not shown in the formula (II')). It is combined. That is, both the T3 body and the T2 body are structural units (T units) formed by the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound.
  • R a in the above formula (I) (formula (I ') in the R a same) and formula (II) in the R b (wherein (II') in the R b versa), respectively, an epoxy group , A group containing a mesogen group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group. Indicates an alkenyl group or a hydrogen atom.
  • R a and R b, R 1 in the formula (1), M a in the formula (Ma), is the same as R 2 in the formula (2) are exemplified.
  • R a in the formula (I) and R b in the formula (II) are groups (alkoxy group and alkoxy group) bonded to a silicon atom in the hydrolyzable trifunctional silane compound used as a raw material of the component (A), respectively. group other than a halogen atom; e.g., R 1, M a in the formula described below (a) ⁇ (d), R 2, from the hydrogen atom or the like).
  • R c in the formula (II) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group. ..
  • the alkyl group in R c in the formula (II) is generally an alkoxy group in the hydrolyzable silane compound used as a raw material for the component (A) (for example, an alkoxy group as X a to X d described later). ) Is derived from the alkyl group forming.
  • the above ratio [T3 body / T2 body] in the component (A) can be obtained by, for example, 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 body) represented by the above formula (I) and the silicon atom in the structural unit (T2 body) represented by the above formula (II) are at different positions. Since a signal (peak) is shown in (chemical shift), the above ratio [T3 / T2] can be obtained by calculating the integration ratio of each of these peaks. Specifically, for example, when the component (A) is represented by the above formula (1) and R 1 has a structural unit which is a 3- (glycidyloxy) propyl group, it is represented by the above formula (I).
  • the signal of the silicon atom in the structure (T3 body) to be formed appears at ⁇ 62 to ⁇ 70 ppm, and the signal of the silicon atom in the structure (T2 body) represented by the above formula (II) appears at ⁇ 54 to -60 ppm. Therefore, in this case, the above ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of -62 to -70 ppm and the signal (T2 body) of -54 to -60 ppm. can.
  • R 1 is a group containing an epoxy group other than the 3- (glycidyloxy) propyl group
  • [T3 body / T2 body] can be obtained in the same manner.
  • the 29 Si-NMR spectrum of the component (A) can be measured by, for example, the following equipment and conditions.
  • Measuring device Product name "JNM-ECA500NMR” (manufactured by JEOL Ltd.)
  • Solvent Deuterated chloroform Number of integrations: 1800 Measurement temperature: 25 ° C
  • T2 body When the ratio [T3 body / T2 body] of the component (A) is within the above range (for example, 5 or more and 500 or less), a certain amount of T2 body is present with respect to the T3 body in the component (A).
  • a certain amount of T2 body is present with respect to the T3 body in the component (A).
  • T2 body examples include a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), a structural unit represented by the following formula (6), and the following formula (7).
  • R c in the following formulas (4) to (7) represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, like R c in the formula (II).
  • R 1 SiO 2/2 (OR c )] (4)
  • R 2 SiO 2/2 (OR c )] (5)
  • the polyorganosilsesquioxane in the component (A) may have any of a complete cage type, an incomplete cage type, a ladder type, and a random type silsesquioxane structure, and these silsesquioxane structures may be used. You may have two or more in combination.
  • the component (A) has a complete cage type and / or an incomplete cage type silsesquioxane structure. preferable. Since the component (A) has a three-dimensional structure resulting from a complete cage type and / or an incomplete cage type silsesquioxane structure, the motility of the network formed by the mesogen group of the component (A) is more constrained. , The heat resistance is more likely to be improved. In addition, the introduction of cage-type and / or incomplete cage-type silsesquioxane structures tends to further reduce the network density of mesogen groups and further improve mechanical properties (eg, toughness).
  • mechanical properties eg, toughness
  • the FT-IR spectrum of the component (A) can be measured by, for example, the following devices and conditions.
  • Measuring device Product name "FT-720" (manufactured by HORIBA, Ltd.) Measurement method: Transmission method Resolution: 4 cm -1 Wavenumber range: 400-4000 cm -1 Accumulation number: 16 times
  • the ratio (total amount) of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4) is not particularly limited, but is preferably 10 mol% or more, more preferably 30 mol. % Or more, more preferably 50 mol% or more, even more preferably 55 mol% or more, even more preferably 60 mol% or more, preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 80.
  • the ratio of each siloxane constituent unit in the component (A) can be calculated, for example, by measuring the composition of the raw material, NMR spectrum, or the like.
  • the ratio (total amount) of the structural unit represented by the above formula (Ma) and the structural unit represented by the above formula (7) is not particularly limited, but is preferably 10 mol% or more, more preferably 15 mol. % Or more, more preferably 20 mol% or more, still more preferably 25 mol% or more, preferably 90 mol% or less, more preferably 85 mol% or less, still more preferably 80 mol% or less, still more preferably 70 mol.
  • % Or less preferably 60 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less, still more preferably 45 mol% or less, still more preferably 40 mol% or less.
  • the mechanical properties and surface hardness of the cured product of the present disclosure tend to be high.
  • the heat resistance of the cured product of the present disclosure tends to be high.
  • the ratio (total amount) of the structural unit represented by the above formula (5) is not particularly limited, but is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, still more preferably 0 to 30 mol%, and further. More preferably, it is 1 to 15 mol%.
  • the ratio (total amount) of the structural unit represented by the formula (7) is not particularly limited, but is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, and further preferably 80 to 100 mol%. By setting the above ratio to 60 mol% or more, the mechanical properties and surface hardness of the cured product of the present disclosure tend to be higher.
  • the standard polystyrene-equivalent number average molecular weight (Mn) of the component (A) by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1000 to 50,000, for example.
  • the lower limit of the number average molecular weight is preferably 1200, more preferably 1500.
  • the upper limit of the number average molecular weight is preferably 10000, more preferably 8000, still more preferably 3000, particularly preferably 2800, and most preferably 2600.
  • the molecular weight dispersion (Mw / Mn) of the component (A) in terms of standard polystyrene by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1.0 to 4.0.
  • the lower limit of the molecular weight dispersion is preferably 1.1, more preferably 1.2.
  • the upper limit of the molecular weight dispersion is preferably 3.0, more preferably 2.5, still more preferably 3.0, particularly preferably 2.0, and most preferably 1.9.
  • the mechanical properties and surface hardness of the cured product of the present disclosure tend to be higher.
  • the number average molecular weight and the degree of molecular weight dispersion of the component (A) can be measured by the following devices and conditions.
  • Measuring device Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: THF, sample concentration 0.1-0.2 wt% Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • the component (A) can be produced by a known or conventional method for producing a polysiloxane, and is not particularly limited, but is produced, for example, by a method of hydrolyzing and condensing one or more hydrolyzable silane compounds.
  • the hydrolyzable silane compound includes a hydrolyzable trifunctional silane compound (a compound represented by the following formula (a)) for forming a structural unit represented by the above formula (1), and the above-mentioned. It is necessary to use a hydrolyzable trifunctional silane compound (compound represented by the following formula (d)) for forming a structural unit represented by the formula (Ma) as an essential hydrolyzable silane compound.
  • a compound represented by the following formula (a) which is a hydrolyzable silane compound for forming a silsesquioxane structural unit (T unit) in the component (A), and the following formula (
  • the component (A) is obtained by a method of hydrolyzing and condensing the compound represented by d),, if necessary, the compound represented by the following formula (b) and the compound represented by the following formula (c).
  • the compound represented by the above formula (a) is a compound forming a structural unit represented by the formula (1) in the component (A).
  • R 1 in the formula (a) like that of R 1 in the formula (1), a group containing an epoxy group. That is, as R 1 in the formula (a), the group represented by the above formula (1a), the group represented by the above formula (1b), the group represented by the above formula (1c), and the above formula (1d).
  • ) Is preferred, more preferably a group represented by the above formula (1a), a group represented by the above formula (1c), still more preferably a group represented by the above formula (1c), and even more.
  • X a in the above formula (a) is an alkoxy group or a halogen atom.
  • the alkoxy group in X a for example, a methoxy group, an ethoxy group, a propoxy group, isopropyloxy group, a butoxy group, an alkoxy group having 1 to 4 carbon atoms such as isobutyl group and the like.
  • the halogen atom of X a for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X a may each be the same or may be different.
  • the compound represented by the above formula (b) is a compound forming a structural unit represented by the formula (2) in the component (B).
  • R 2 in formula (b) like the R 2 in the formula (2), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted Alkyl group of, or substituted or unsubstituted alkenyl group is shown.
  • R 2 in the formula (b) a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group is preferable, and a substituted or unsubstituted aryl group is more preferable. More preferably, it is a phenyl group.
  • X b in the formula (b) is an alkoxy group or a halogen atom.
  • Specific examples of X b include those exemplified as X a.
  • X b an alkoxy group is preferable, a C 1-3 alkoxy group is more preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X bs may be the same or different.
  • the compound represented by the above formula (c) is a compound forming a structural unit represented by the formula (3) in the component (A).
  • X c in the formula (c) is an alkoxy group or a halogen atom.
  • Specific examples of X c include those exemplified as X a.
  • X c an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X 3 may each be the same or may be different.
  • the compound represented by the above formula (d) is a compound forming a structural unit represented by the formula (Ma) in the component (A).
  • M a in formula (d) is likewise a M a in the above formula (Ma), a group containing a mesogenic group. That is, the M a in formula (d), preferably a group represented by the above formula (Ma1), more preferably a group represented by the formula (Ma1), R m is located at an ethylene group , Ma1 is a monovalent group represented by the above formula (a1) [among others, 2-[(1,1'-biphenyl) -4-yl] ethyl group].
  • X d in the formula (d) is an alkoxy group or a halogen atom.
  • Specific examples of X d include those exemplified as X a.
  • X d an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X d may each be the same or may be different.
  • the compound represented by the above formula (d) can be prepared by a known method. More specifically, a compound having an aliphatic carbon-carbon double bond and a mesogen group in the molecule and a compound represented by the above formula (c) are reacted in the presence of a hydrosilylation catalyst (“hydrosilylation”). It is preferable to include at least a step of causing (sometimes referred to as "reaction").
  • Examples of the compound having an aliphatic carbon-carbon double bond and a mesogen group in the molecule include a compound represented by the following formula (Ma2). R m1- M a1 (Ma2)
  • a monovalent mesogenic group is preferably a group represented by the formula (a1), more preferably, 1,1 '-Biphenyl-4-yl group.
  • R m1 in the formula (Ma2) is a group having an aliphatic carbon-carbon double bond (or an unsaturated aliphatic hydrocarbon group), and is a group that can be converted to R m in the formula (Ma1). ..
  • Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, an allyl group, a metallicyl group, a 1-propenyl group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group and a 3-butenyl group.
  • Examples thereof include C 2-10 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group, preferably C 2-4 alkenyl group, and more preferably vinyl group. Is.
  • the amount of the compound represented by the above formula (c) used in the above hydrosilylation reaction is not particularly limited, but the aliphatic carbon-carbon of the compound having an aliphatic carbon-carbon double bond and a mesogen group in the molecule is not particularly limited.
  • the total amount of the double bond is preferably 1 mol or more (for example, 1 to 10 mol), more preferably 1.05 to 5 mol, still more preferably 1.1 to 3 mol, based on 1 mol of the total amount of the double bond.
  • hydrosilylation catalyst examples include well-known hydrosilylation reaction catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, and platinum.
  • the hydrosilylation catalyst may be used alone or in combination of two or more. Of these, it is preferable to use a platinum vinyl methyl siloxane complex, a platinum-carbonyl vinyl methyl complex, or a complex of platinum chloride acid with an alcohol or an aldehyde because the reaction rate is good.
  • the amount of the hydrosilylation catalyst used is not particularly limited, but is based on 1 mol of the total amount of the aliphatic carbon-carbon double bond of the compound having an aliphatic carbon-carbon double bond and a mesogen group in the above-mentioned molecule. It is preferably 1 ⁇ 10 -8 to 1 ⁇ 10 ⁇ 2 mol, more preferably 1.0 ⁇ 10 -6 to 1.0 ⁇ 10 -3 mol. If the amount used is less than 1 ⁇ 10 -8 mol, the reaction may not proceed sufficiently.
  • the hydrosilylation reaction may be carried out in a solvent (for example, toluene or the like), if necessary.
  • the atmosphere in which the hydrosilylation reaction is carried out may be any one that does not inhibit the reaction and is not particularly limited, but may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like. Further, the hydrosilylation reaction can be carried out by any method such as batch type, semi-batch type and continuous type.
  • the reaction temperature in the hydrosilylation reaction is not particularly limited, but is preferably 0 to 200 ° C, more preferably 20 to 150 ° C, and even more preferably 30 to 100 ° C.
  • the reaction temperature may be controlled to be constant during the reaction, or may be changed sequentially or continuously.
  • the reaction time in the hydrosilylation reaction is not particularly limited, but is preferably 10 to 2000 minutes, more preferably 60 to 1500 minutes.
  • the method for producing the compound represented by the above formula (d) may include other steps other than the above hydrosilylation reaction.
  • the other steps include a step of preparing a raw material, a step of purifying and isolating a reaction product, and the like.
  • separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and combinations thereof are used.
  • separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and combinations thereof are used.
  • separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and combinations thereof are used.
  • Known or conventional methods such as separation means can be used.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the formulas (a) to (d) may be used in combination.
  • a hydrolyzable trifunctional silane compound other than the compounds represented by the above formulas (a) to (d) a hydrolyzable monofunctional silane compound forming M units, and a hydrolytic bifunctional silane forming D units.
  • examples thereof include compounds, hydrolyzable tetrafunctional silane compounds forming Q units, and the like.
  • the amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the structure of the desired component (A).
  • the amount of the compound represented by the above formula (a) is not particularly limited, but is preferably 40 to 90 mol%, more preferably 45, based on the total amount (100 mol%) of the hydrolyzable silane compound used. It is ⁇ 85 mol%, more preferably 50-80 mol%.
  • the amount of the compound represented by the above formula (b) is not particularly limited, but is preferably 0 to 50 mol%, more preferably 0 to 50 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 0 to 40 mol%, more preferably 0 to 30 mol%, still more preferably 1 to 15 mol%.
  • the amount of the compound represented by the above formula (d) is not particularly limited, but is preferably 10 to 60 mol%, more preferably 10 to 60 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 15 to 55 mol%, more preferably 20 to 50 mol%.
  • hydrolysis and condensation reactions of these hydrolyzable silane compounds can be carried out simultaneously or sequentially.
  • the order in which the reactions are carried out is not particularly limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound may be carried out in one step or may be carried out in two or more steps.
  • the component (A) having the above ratio [T3 / T2] of less than 20 and / or the number average molecular weight of less than 2500 (hereinafter, may be referred to as “low molecular weight polyorganosylsesquioxane”) is efficiently used.
  • low molecular weight polyorganosylsesquioxane low molecular weight polyorganosylsesquioxane
  • the component (A) having the above ratio [T3 / T2] of 20 or more and / or the number average molecular weight of 2500 or more (hereinafter, may be referred to as “high molecular weight polyorganosylsesquioxane”) is efficiently used.
  • the hydrolysis and condensation reaction is carried out in two or more steps (preferably two steps), that is, the hydrolysis and condensation reaction is further carried out one or more times using the above low molecular weight polyorganosylsesquioxane as a raw material. It is preferable to do so.
  • a low molecular weight polyorganosylsesquioxane having the above ratio [T3 / T2] of 5 or more and less than 20 and a number average molecular weight of 1000 or more and less than 2500 was obtained.
  • the second stage by further subjecting the low molecular weight polyorganosylsesquioxane to a hydrolysis and condensation reaction, the above ratio [T3 / T2] is 20 or more and 500 or less, and the number average molecular weight is 2500. It is possible to obtain a high molecular weight polyorganosylsesquioxane having a molecular weight of 50,000 or less.
  • the first-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent. Above all, it is preferable to carry out in the presence of a solvent.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
  • ketones and ethers are preferable as the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount of the solvent used in the first-stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. Etc., it can be adjusted as appropriate.
  • the first stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkaline catalyst, but an alkaline catalyst is preferable in order to suppress the decomposition of the epoxy group.
  • the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid and p.
  • -Sulphonic acid such as toluene sulfonic acid
  • solid acid such as active clay
  • Lewis acid such as iron chloride can be mentioned.
  • alkaline catalyst examples include hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide.
  • Alkaline metal carbonate such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate
  • Alkaline earth metal carbonate such as magnesium carbonate
  • Hydrogen carbonates of alkali metals such as; organic acid salts of alkali metals such as lithium acetate, sodium acetate, potassium acetate, cesium acetate (eg, acetates); organic acid salts of alkaline earth metals such as magnesium acetate (eg, acetates).
  • Alkali metal alkoxides such as lithium methoxyd, sodium methoxyd, sodium ethoxydo, sodium isopropoxide, potassium ethoxydo, potassium t-butoxide; alkali metal phenoxide such as sodium phenoxide; triethylamine, N-methyl Alkali such as piperidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] nona-5-ene (tertiary amine, etc.); pyridine , 2,2'-Bipylidyl, 1,10-Phenantrolin and other nitrogen-containing aromatic heterocyclic compounds and the like. It should be noted that one type of catalyst may be used alone, or two or more types may be used in combination. Further, the catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
  • the amount of the catalyst used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
  • the amount of water used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
  • the method for adding water in the first-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. good. When added sequentially, it may be added continuously or intermittently.
  • reaction conditions for the first-stage hydrolysis and condensation reaction it is possible to select reaction conditions such that the above ratio [T3 / T2] in the low molecular weight polyorganosylsesquioxane is 5 or more and less than 20. is important.
  • the reaction temperature of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 40 to 100 ° C, more preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the ratio [T3 / T2] tends to be more efficiently controlled to 5 or more and less than 20.
  • the reaction time of the hydrolysis and condensation reaction in the first stage is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 1.5 to 8 hours.
  • first-stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere during the first-stage hydrolysis and condensation reaction is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or under the presence of oxygen such as an air atmosphere. However, it is preferably under an inert gas atmosphere.
  • Low molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction of the first stage. After the completion of the first-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group. Further, the low molecular weight polyorganosylsesquioxane is separated by, for example, water washing, acid washing, alkaline washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and other separation means, or a combination thereof. It may be separated and purified by means or the like.
  • the low molecular weight polyorganosyl sesquioxane obtained by the first-stage hydrolysis and condensation reaction is subjected to the second-stage hydrolysis and condensation reaction to produce a high-molecular-weight polyorganosyl sesquioxane. be able to.
  • the second-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent.
  • the solvent mentioned in the hydrolysis and condensation reaction of the first stage can be used.
  • the solvent for the hydrolysis and condensation reaction in the second stage As the solvent for the hydrolysis and condensation reaction in the second stage, the low molecular weight polyorganosylsesquioxane containing the reaction solvent for the hydrolysis and condensation reaction in the first stage, the extraction solvent and the like is distilled off as it is or partially. May be used. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount used is not particularly limited and is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the low molecular weight polyorganosylsesquioxane. Therefore, it can be appropriately adjusted according to the desired reaction time and the like.
  • the second stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • a catalyst the catalyst mentioned in the first stage hydrolysis and condensation reaction can be used, and in order to suppress the decomposition of the epoxy group, an alkaline catalyst is preferable, and sodium hydroxide is more preferable. Hydroxide of alkali metal such as potassium hydroxide and cesium hydroxide; carbonate of alkali metal such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate. It should be noted that one type of catalyst may be used alone, or two or more types may be used in combination. Further, the catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
  • the amount of the catalyst used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0, with respect to the low molecular weight polyorganosylsesquioxane (1000000 ppm). It can be appropriately adjusted within the range of 1 to 1000 ppm.
  • the amount of water used in the hydrolysis and condensation reactions of the second stage is not particularly limited, and is preferably 10 to 100,000 ppm, more preferably 100 to 20,000 ppm, based on the low molecular weight polyorganosylsesquioxane (1000000 ppm). It can be adjusted as appropriate within the range of. When the amount of water used is larger than 100,000 ppm, it tends to be difficult to control the ratio of high molecular weight polyorganosylsesquioxane [T3 / T2] and the number average molecular weight within a predetermined range.
  • the method of adding the water in the hydrolysis and condensation reaction of the second stage is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. good. When added sequentially, it may be added continuously or intermittently.
  • the reaction conditions for the hydrolysis and condensation reactions in the second stage are such that the ratio [T3 / T2] in the high molecular weight polyorganosylsesquioxane is 20 or more and 500 or less, and the number average molecular weight is 2500 to 50,000. It is preferable to select various reaction conditions.
  • the reaction temperature of the hydrolysis and condensation reaction in the second stage varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 100 ° C. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be controlled more efficiently within the desired range.
  • the reaction time of the hydrolysis and condensation reaction in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours. Further, a desired ratio is obtained by performing timely sampling while performing hydrolysis and condensation reactions within the above reaction temperature range, and performing the reaction while monitoring the above ratio [T3 / T2] and the number average molecular weight. [T3 / T2], high molecular weight polyorganosylsesquioxane having a number average molecular weight can also be obtained.
  • the second stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reaction in the second stage is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or under the presence of oxygen such as an air atmosphere. However, it is preferably under an inert gas atmosphere.
  • the high molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction of the second stage. After the completion of the hydrolysis and condensation reaction in the second stage, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group.
  • separation means for high-molecular-weight polyorganosylsesquioxane for example, washing with water, washing with acid, washing with alkali, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., and separation by combining these. It may be separated and purified by means or the like.
  • a cured product having excellent mechanical properties and surface hardness can be formed by curing the curable composition containing the component (A) as an essential component.
  • the curable composition of the present disclosure contains polyorganosylsesquioxane (component (A)) having an epoxy group and a mesogen group as an essential component.
  • component (A) polyorganosylsesquioxane
  • the curable composition of the present disclosure may further contain other components such as other epoxy compounds, curing agents (for example, amine-based curing agents), and curing accelerators.
  • the component (A) may be used alone or in combination of two or more.
  • the content (blending amount) of the component (A) in the curable composition of the present disclosure is not particularly limited, but is preferably 1 to 50% by weight with respect to the total amount (100% by weight) of the curable composition excluding the solvent. %, More preferably 5 to 30% by weight, still more preferably 10 to 20% by weight.
  • the content of the component (A) in this range By setting the content of the component (A) in this range, the mechanical properties and surface hardness of the cured product of the present disclosure tend to be improved in a well-balanced manner.
  • the content (blending amount) of the component (A) in the curable composition of the present disclosure is not particularly limited, but is the total amount of the compound having an epoxy group [for example, the total amount of the compound having an epoxy group contained in the curable composition,
  • the total amount of the component (A) and the component (B) described later] (100% by weight) is preferably 1 to 50% by weight, more preferably 3 to 40% by weight, still more preferably 5 to 35% by weight. %.
  • the curable composition of the present disclosure may further contain an epoxy compound (sometimes referred to as "component (B)") other than the component (A).
  • component (B) may be used alone or in combination of two or more.
  • a known or commonly used compound having one or more epoxy groups (oxylan rings) in the molecule can be used, and is not particularly limited, but for example, an alicyclic epoxy compound (alicyclic epoxy).
  • Resins aromatic epoxy compounds (aromatic epoxy resins; excluding the compounds contained in the component (A)), aliphatic epoxy compounds (aliphatic epoxy resins) and the like can be mentioned.
  • the curable composition of the present disclosure is an aromatic epoxy compound other than the compound contained in the component (A) as the component (B) from the viewpoint of imparting excellent mechanical properties and high surface hardness to the obtained cured product. It is preferable to include.
  • aromatic epoxy compound examples include an epoxy compound having a mesogen group other than the compound contained in the component (A); condensation of bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, etc.] with epihalohydrin.
  • Epibis-type glycidyl ether-type epoxy resin obtained by the reaction phenols [eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehydes [eg, formaldehyde, acetaldehyde, benzaldehyde, hydroxy Polyhydric alcohols obtained by condensation reaction with benzaldehyde, salicylaldehyde, etc.] are further condensed with epihalohydrin to obtain novolak alkyl type glycidyl ether type epoxy resin; two phenol skeletons are present at the 9-position of the fluorene ring.
  • phenols eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.
  • aldehydes eg, formaldehyde, acetaldeh
  • the aromatic epoxy compound is an epoxy compound having a mesogen group other than the compound contained in the component (A) (hereinafter, "" (Sometimes referred to as “component (B1)”) and / or epibis-type glycidyl ether type epoxy resin (hereinafter sometimes referred to as “component (B2)”) is preferable, and component (B1) is more preferable.
  • the component (B1) is a compound having at least one mesogen group and at least one epoxy group in the molecule. That is, the component (B1) is a curable compound having at least one epoxy group in the molecule. However, those corresponding to the component (A) are excluded from the component (B1). Mechanical properties can be imparted to the cured product of the present disclosure.
  • the curable composition of the present disclosure contains the component (B1) in addition to the component (A), whereby the mechanical properties of the cured product of the present disclosure (for example). , Toughness) and surface hardness are also improved. Furthermore, the heat resistance is also improved. This is because the mesogen group linked to the silsesquioxane skeleton of the component (A) is partially oriented to the mesogen group of the epoxy resin of the component (B1) to produce a stress dispersion effect, resulting in higher toughness. It is believed that it will be obtained. It should be noted that these mechanisms are merely estimates and should not be construed as limiting the inventions of the present disclosure by these mechanisms.
  • the "mesogen group” contained in the component (B1) may be a monovalent mesogen group or a divalent or higher mesogen group, but the cured product of the present disclosure has excellent mechanical properties and high mechanical properties.
  • a divalent mesogen group is preferable from the viewpoint of imparting surface hardness.
  • Specific examples of the divalent mesogen group include a group represented by the following formula (b). -(-M 1B -X B- ) o -M 2B- (b) [In the formula (b), M 1B and M 2B represent groups which are the same or different and have two hydrogen atoms removed from the structural formula of the hydrocarbon ring or the heterocycle. X B indicates a single bond or linking group. o indicates an integer of 1 to 3. ]
  • the hydrocarbon ring includes an aliphatic hydrocarbon ring and an aromatic hydrocarbon ring.
  • the heterocycle includes a saturated heterocycle and an aromatic heterocycle.
  • aliphatic hydrocarbon ring examples include a 6-membered saturated or unsaturated aliphatic hydrocarbon ring such as a cyclohexane ring and a cyclohexene ring.
  • aromatic hydrocarbon ring examples include a benzene ring.
  • the saturated heterocycle is preferably a 6-membered saturated heterocycle, and examples thereof include piperidine and tetrahydropyran.
  • aromatic heterocycle examples include a pyrimidine group and a pyridine group.
  • the hydrocarbon ring and the heterocycle may have a substituent.
  • substituents include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group and the like having 1 to 6 carbon atoms.
  • substituent include a chain or branched alkyl group, a fluorine atom, a chlorine atom, a halogen atom such as a bromine atom, and the like.
  • the hydrocarbon ring and the heterocycle have two or more substituents, the two or more substituents may be the same or different.
  • o is an integer of 1 to 3, preferably 1 or 2.
  • the structures represented by a plurality of (-M 1B- X B- ) may be the same or different.
  • At least one of the n M 1B and M 2B in the formula (a) is preferably a group containing a benzene ring, and particularly preferably a phenylene group.
  • More specifically preferred mesogen groups include divalent groups represented by the following formulas (b1) to (b7).
  • the wavy line in the chemical formula of the present specification indicates a binding site with another structure.
  • R b1 and R 2b independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n1 and n2 each independently represent an integer of 0 to 4. When n1 is 2 or more, the plurality of R b1s may be the same or different. When n2 is 2 or more, the plurality of R b2s may be the same or different.
  • R b3 , R b4 and R b5 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n3, n4 and n5 each independently represent an integer of 0 to 4.
  • the plurality of R b3s may be the same or different.
  • the plurality of R b4s may be the same or different.
  • the plurality of R b5s may be the same or different.
  • R b6 , R b7 and R b8 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n6 and n8 each independently represent an integer of 0 to 4.
  • n7 represents an integer of 0 to 8.
  • a plurality of R b6s may be the same or different.
  • the plurality of R b7s may be the same or different.
  • the plurality of R b8s may be the same or different.
  • R b9 and R b10 independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n9 and n10 each independently represent an integer of 0 to 4.
  • a plurality of R b9s may be the same or different.
  • the plurality of R b10s may be the same or different.
  • R bx is a hydrogen atom, a methyl group, or a cyano group.
  • R b11 and R b12 each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n11 and n12 each independently represent an integer of 0 to 4. When n11 is 2 or more, the plurality of R b11s may be the same or different. When n12 is 2 or more, the plurality of R b12s may be the same or different.
  • R b13 and R b14 each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n13 and n14 each independently represent an integer of 0 to 4. If n13 is 2 or more, plural R b13 may be be the same or different. If n14 is 2 or more, plural R b14 may be be the same or different.
  • R b15 and R b16 each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n15 and n16 each independently represent an integer of 0 to 4. When n15 is 2 or more, the plurality of R b15s may be the same or different. When n16 is 2 or more, the plurality of R b16s may be the same or different.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R b1 to R b16 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert.
  • -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable.
  • Examples of the halogen atom represented by R b1 to R b16 include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • the divalent mesogen group preferably has a structure represented by the formulas (b1) to (b3), and the formula (b1) or (b1) or ( The structure represented by b3) is more preferable, and the structure represented by the formula (b3) is further preferable.
  • the number of mesogen groups contained in the component (B1) is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the "epoxy group” contained in the component (B1) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic).
  • An epoxy group composed of two adjacent carbon atoms and an oxygen atom) and the like can be mentioned.
  • As the alicyclic epoxy group a group composed of two adjacent carbon atoms constituting a cyclohexane ring and an oxygen atom (cyclohexene oxide group) is preferable.
  • the number of epoxy groups contained in one molecule of the component (B1) is not particularly limited, but two or more are preferable and preferably two or more from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • the number is 2 to 10, more preferably 2 to 5, and even more preferably 2.
  • the plurality of epoxy groups may be the same or different.
  • the component (B1) is not particularly limited, and examples thereof include a compound represented by the following formula (B). E 1- X 1- M b -X 2- E 2 (B)
  • M b represents the above-mentioned divalent mesogen group.
  • E 1 and E 2 each independently indicate a group containing an epoxy group.
  • X 1 and X 2 each independently represent a single bond or a linking group (a divalent group having one or more atoms).
  • Examples of the group containing an epoxy group represented by E 1 and E 2 include known and conventional groups having an oxylan ring, and the cured product of the present disclosure is not particularly limited, but imparts excellent heat resistance and mechanical properties to the cured product of the present disclosure. From the viewpoint of being able to do so, the group represented by the following formula (E1) or the group represented by (E2) is preferable, and the group represented by the formula (E1) is more preferable.
  • Ra represents a linear or branched alkylene group having 1 to 6 carbon atoms.
  • the linear or branched alkylene group having 1 to 6 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group.
  • Groups, decamethylene groups and the like can be mentioned.
  • Ra a linear alkylene group having 1 to 4 carbon atoms is preferable, and a methylene group and ethylene are more preferable, from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is a group, more preferably a methylene group.
  • R b is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R c represents a linear or branched alkylene group having 1 to 6 carbon atoms, and a group similar to Ra is exemplified.
  • R c a linear alkylene group having 1 to 4 carbon atoms is preferable, and more preferably a methylene group, an ethylene group or a trimethylene, from the viewpoint of imparting excellent mechanical properties to the cured product of the present disclosure. It is a group, more preferably a methylene group or an ethylene group.
  • R d is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • Examples of the linking group represented by X 1 and X 2 include a linear or branched alkylene group having 1 to 6 carbon atoms ( a group similar to R r is exemplified), an ether bond (-O-), and an amino.
  • group (-NR X -; R X is a linear or branched alkyl group having 1 to 6 carbon hydrogen atom or a C), sulfenyl group (-S-), sulfinyl group (-SO-), sulfonyl groups ( -SO 2- ), carbonyl group (-CO-), ester bond (-COO-), amide group (-CONR Y H-; RY is a hydrogen atom or a linear or branched chain with 1 to 6 carbon atoms.
  • the linking group represented by X 1 and X 2 is an ether bond (-O-) or one or more of an ether bond from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • a group in which one or two or more of the alkylene groups are linked is preferable, and an ether bond (—O—) is more preferable.
  • the component (B1) is preferably a compound represented by the following formulas (B1a) to (B1c), and from the viewpoint of imparting excellent mechanical properties to the cured product of the present disclosure, the following formula (B1)
  • the compound represented by B1a) or (B1c) is more preferable, and the compound represented by the following formula (B1c) is further preferable.
  • the component (B1) may be used alone or in combination of two or more.
  • the component (B1) can be produced by a known method, and a commercially available product can also be used.
  • Examples of commercially available products of the component (B1) include the trade name "YX4000” (biphenyl type epoxy resin; manufactured by Mitsubishi Chemical Corporation).
  • the component (B2) is a bisphenol glycidyl ether type epoxy resin. That is, the component (B2) is a curable compound having at least an epoxy group in the molecule. Since the component (B1) has a rigid bisphenol skeleton, it is possible to impart excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • the bisphenol glycidyl ether type epoxy resin also includes a high molecular weight bisphenol glycidyl ether type epoxy resin obtained by further addition reaction with the above bisphenols.
  • the component (B2) may be used alone or in combination of two or more.
  • the component (B2) can be produced by a known method, and a commercially available product can also be used.
  • Examples of commercially available products of the component (B2) include the trade name "JER 828 EL” (bisphenol type epoxy resin; manufactured by Mitsubishi Chemical Corporation).
  • Examples of the alicyclic epoxy compound include known and commonly used compounds having one or more alicyclics and one or more epoxy groups in the molecule, and are not particularly limited, but for example, (1) in the molecule.
  • a compound having an epoxy group (referred to as "alicyclic epoxy group") composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic; (2) The epoxy group is directly bonded to the alicyclic by a single bond.
  • Compounds having an alicyclic and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like can be mentioned.
  • Examples of the compound (1) having an alicyclic epoxy group in the molecule include a compound represented by the following formula (i).
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which a part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. Examples thereof include a group in which a plurality of groups are linked.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group and a trimethylene group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1,3-.
  • Examples thereof include a divalent cycloalkylene group (including a cycloalkylidene group) such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • a divalent cycloalkylene group such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized include a vinylene group, a propenylene group, and a 1-butenylene group.
  • an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and more preferably, an alkenylene group having 2 to 4 carbon atoms in which the entire carbon-carbon double bond is epoxidized. Is.
  • Typical examples of the alicyclic epoxy compound represented by the above formula (i) are 3,4,3', 4'-diepoxybicyclohexane, and the following formulas (i-1) to (i-10). Examples thereof include compounds represented by.
  • l and m in the following formulas (i-5) and (i-7) represent integers of 1 to 30, respectively.
  • R'in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group and an isopropylene group.
  • the shape of the alkylene group is preferable.
  • N1 to n6 in the following formulas (i-9) and (i-10) represent integers of 1 to 30, respectively.
  • Examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl).
  • Examples of the compound in which the epoxy group is directly bonded to the alicyclic (2) by a single bond include a compound represented by the following formula (ii).
  • R " is a group (p-valent organic group) obtained by removing p hydroxyl groups (-OH) from the structural formula of the p-valent alcohol, and p and n each represent a natural number.
  • the valent alcohol [R "(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms) and the like.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in () (inside the outer parentheses) may be the same or different.
  • Examples of the compound having an alicyclic and an alicyclic ether group in the above-mentioned (3) molecule include an alicyclic alcohol (for example, an alicyclic polyhydric alcohol) glycidyl ether. More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)).
  • an alicyclic alcohol for example, an alicyclic polyhydric alcohol
  • glycidyl ether More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)).
  • Cyclohexyl A compound obtained by hydrogenating a bisphenol A type epoxy compound such as propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,5-dimethylpropoxy) 3-Epoxypropoxy) Cyclohexyl] A compound obtained by hydrogenating a bisphenol F type epoxy compound such as methane (hydrogenated bisphenol F type epoxy compound); hydrided biphenol type epoxy compound; hydrided phenol novolak type epoxy compound; hydride cresol Novolak type epoxy compound; bisphenol A hydride cresol novolak type epoxy compound; hydride naphthalene type epoxy compound; hydride epoxy compound of
  • aromatic epoxy compound examples include bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, etc.] and an epibis-type glycidyl ether type epoxy resin obtained by a condensation reaction with epihalohydrin; these epis.
  • High molecular weight epibistype glycidyl ether type epoxy resin obtained by further addition reaction of bistype glycidyl ether type epoxy resin with the above bisphenols; phenols [for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehydes [for example, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicylaldehyde, etc.] and polyhydric alcohols obtained by subjecting them to a condensation reaction with epihalohydrin.
  • phenols for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.
  • aldehydes for example, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde,
  • Alkyl type glycidyl ether type epoxy resin Two phenol skeletons are bonded to the 9-position of the fluorene ring, and glycidyl is attached to the oxygen atom obtained by removing the hydrogen atom from the hydroxy group of these phenol skeletons, either directly or via an alkyleneoxy group. Examples thereof include an epoxy compound to which a group is bonded.
  • Examples of the aliphatic epoxy compound include glycidyl ethers of alcohols having no q-valent cyclic structure (q is a natural number); monovalent or polyvalent carboxylic acids [eg, acetic acid, propionic acid, butyric acid, stearic acid, etc. Glycidyl ester of adipic acid, sebacic acid, maleic acid, itaconic acid, etc.; Epoxy of fats and oils having double bonds such as epoxidized flaxseed oil, epoxidized soybean oil, epoxidized ash oil; polyolefin (poly) such as epoxidized polybutadiene Epoxy compounds (including alkaziene) and the like can be mentioned.
  • monovalent or polyvalent carboxylic acids eg, acetic acid, propionic acid, butyric acid, stearic acid, etc. Glycidyl ester of adipic acid, sebacic acid, maleic acid, itaconic acid,
  • Examples of the alcohol having no q-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol and 1-butanol; ethylene glycol, 1,2-propanediol, 1 , 3-Propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol and other dihydric alcohols; Examples thereof include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol and sorbitol.
  • the q-valent alcohol may be a polyether polyol, a polyester polyol, a
  • the content (blending amount) of the component (B) in the curable composition of the present disclosure is not particularly limited, but the solvent is excluded from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, still more preferably 60 to 90% by weight, based on the curable composition (100% by weight).
  • the content (blending amount) of the component (B1) in the curable composition of the present disclosure is not particularly limited, but the solvent is excluded from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, still more preferably 60 to 90% by weight, based on the curable composition (100% by weight).
  • the content (blending amount) of the component (B2) in the curable composition of the present disclosure is not particularly limited, but the solvent is excluded from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, still more preferably 60 to 90% by weight, based on the curable composition (100% by weight).
  • the curable composition of the present disclosure may further contain a curing agent (hereinafter, may be referred to as "curing agent (C)” or “component (C)”).
  • the curing agent (C) is a compound having a function of curing the curable composition of the present disclosure by reacting with a curable compound such as the component (A) and the component (B).
  • a known or conventional curing agent can be used as a curing agent for epoxy resin, and the curing agent is not particularly limited, but for example, an amine-based curing agent (C1) and an acid anhydride-based curing agent (C2) can be used.
  • amine-based curing agent (C1) a known or commonly used amine-based curing agent can be used, and is not particularly limited, and for example, an aliphatic polyamine, an alicyclic polyamine, an aromatic polyamine, a modified polyamine, a secondary amine, and the like. Examples thereof include tertiary amines.
  • aliphatic polyamines examples include polyethylene polyamines (eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.), hexamethylenediamine, 1,3-pentanediamine, 2-methylpentamethylenediamine, and the like. Examples thereof include dipropylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine and the like.
  • polyethylene polyamines eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.
  • hexamethylenediamine 1,3-pentanediamine
  • 2-methylpentamethylenediamine examples thereof include dipropylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine and the like.
  • alicyclic polyamine examples include isophorone diamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazin, and mensendiamine. , 4,4'-Methylenebiscyclohexyl, 4,4'-methylenebis (2-methylcyclohexylamine), bis (aminomethyl) norbornan, lalomin C-260 and the like.
  • aromatic polyamine examples include m-phenylenediamine, p-phenylenediamine, m-xylylene diamine, and diaminodiphenyl sulfone (for example, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, etc.).
  • modified polyamine examples include modified amines with carboxylic acids (polyaminoamides and aminoamides), modified amines with epoxy compounds (amine-epoxyadduct), modified amines with Michael reaction (Michael-added polyamines), modified amines with Mannig reaction, and ureas.
  • modified amines by reaction with thiourea modified amines by reaction with ketones (ketimine, Schiff base), modified amines by reaction with epichlorohydrin, modified amines by reaction with benzyl chloride, modified amines by reaction with phosphorus compounds, Modified amines by reaction with benzoquinone, trialkylsilylated amines, modified amines by reaction between amino groups and isocyanate compounds, modified amines by reaction between amine compounds with hydroxyl groups and isocyanate compounds, modified amines by reaction with carbonates, etc. Can be mentioned.
  • polyoxypropylene diamine for example, Jeffamine D230 etc.
  • polyoxypropylene triamine for example, Jeffermin T403 etc.
  • polycyclohexylpolyamine mixture for example, N-aminoethylpiperazine and the like may be used.
  • Examples of the secondary amine or the tertiary amine include imidazoles [for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole.
  • Examples include heterocyclic tertiary amines such as octane, triethylenediamine (TEDA), pyridine, picolin, 1.8-diazabicyclo [5.4.0] -7-undecene (DBU) and the like. Will be.
  • heterocyclic tertiary amines such as octane, triethylenediamine (TEDA), pyridine, picolin, 1.8-diazabicyclo [5.4.0] -7-undecene (DBU) and the like. Will be.
  • acid anhydride-based curing agent (C2) a known or commonly used acid anhydride-based curing agent can be used, and is not particularly limited, and for example, methyltetrahydroanhydride phthalic acid (4-methyltetrahydroanhydride phthalic acid, 3-Methyltetrahydrohydroan phthalic acid, etc.), Methylhexahydroanhydride phthalic acid (4-methylhexahydrohydride phthalic acid, 3-methylhexahydrohydride phthalic acid, etc.), Dodecenyl succinic anhydride, Methylendomethylenetetrahydrophthalic acid, Phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexendicarboxylic acid anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic acid
  • Examples of the polyamide-based curing agent (C3) include a polyamide resin having either or both of a primary amino group and a secondary amino group in the molecule.
  • Examples of the polymercaptan-based curing agent (C4) include liquid polymercaptan and polysulfide resin.
  • phenol-based curing agent (C5) a known or commonly used phenol-based curing agent can be used, and is not particularly limited. Examples thereof include aralkyl resins such as modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
  • Examples of the polycarboxylic acid-based curing agent (C6) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and a carboxyl group-containing polyester.
  • an amine-based curing agent (C1) is preferable from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the amine-based curing agent (C1) aromatic polyamines and aliphatic polyamines are preferable from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • amine-based curing agent (C1) a compound represented by the following formula (C1a) and a compound represented by the following formula (C1b) are preferable, and a compound represented by the following formula (C1a) is more preferable.
  • R e and R f each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • l1 and l2 each independently represent an integer of 0 to 4.
  • a plurality of Res may be the same or different.
  • the plurality of R fs may be the same or different.
  • Z indicates a single bond or a linking group (a divalent group having one or more atoms).
  • l3 independently indicates an integer of 0 to 6, preferably an integer of 2 to 5, and more preferably 3 or 4.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R e and R f includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert.
  • -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable.
  • the halogen atom represented by R e and R f include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • Examples of the linking group represented by Z include groups similar to the linking groups represented by X 1 and X 2 described above.
  • the linking group represented by Z is a linear or branched alkylene group having 1 to 6 carbon atoms and an ether bond (-) from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • O-), sulphenyl group (-S-), sulfinyl group (-SO-), sulfonyl group (-SO 2- ) and the like are preferable, and methylene group (-CH 2- ), ether bond (-O-), A sulfonyl group (-SO 2- ) is more preferred, and a methylene group is preferred.
  • diaminodiphenylmethanes and polyethylene polyamines are more preferable, and a group consisting of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4,4'-diaminodiphenylmethane and the like. At least one more selected is more preferred.
  • the curing agent (C) may be used alone or in combination of two or more. Further, as the curing agent (C), commercially available reagents can also be used.
  • the content (blending amount) of the curing agent (C) in the curable composition of the present disclosure is not particularly limited, but is 1 with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition excluding the solvent. It is preferably up to 50 parts by weight, more preferably 5 to 30 parts by weight. By setting the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
  • the content (blending amount) of the amine-based curing agent (C1) is not particularly limited, but is included in the curable composition of the present disclosure. It is preferable to use the active hydrogen of the amino group of the amine-based curing agent (C1) at a ratio of 0.1 to 10 equivalents per 1 equivalent of the epoxy group in all the compounds having an epoxy group, preferably 0.3 to 10 equivalents. It is more preferable to use it in a ratio of 5 equivalents.
  • the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
  • the curable composition of the present disclosure contains a curing agent, it may further contain a curing accelerator.
  • the curing accelerator is a compound having a function of accelerating the reaction rate of a curing compound (for example, a compound having an epoxy group) when it reacts with the curing agent.
  • a known or conventional curing accelerator can be used, and is not particularly limited, but for example, a tertiary amine [for example, lauryldimethylamine, N, N-dimethylcyclohexylamine, N, N- Dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4,6-tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.
  • a tertiary amine for example, lauryldimethylamine, N, N-dimethylcyclohexylamine, N, N- Dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4,6-tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.
  • imidazoles eg, 2-methylimidazole, 2-ethylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4- Methyl imidazole, 1-benzyl-2-methylimidazole, etc.]
  • Organic phosphorus compounds eg, triphenylphosphine, triphenyl phosphite, etc.]
  • Quartic ammonium salts eg, tetraethylammonium bromide, tetrabutylammonium bromide, etc.]
  • Tertiary phosphonium salts eg, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, tetrabutylphosphonium myristate, tetrabutylphosphonium palmitate, te
  • the curing accelerators (D) include the product names "U-CAT SA 506", “U-CAT SA 102", “U-CAT 5003", “U-CAT 18X”, and “U-CAT 12XD” ( (Made by Sun Appro Co., Ltd.); Product names "TPP-K”, “TPP-MK” (Made by Hokuko Kagaku Kogyo Co., Ltd.); Product name “PX-4ET” (manufactured by Nippon Chemical Industrial Co., Ltd.) Commercial products such as can also be used.
  • the content (blending amount) of the curing accelerator in the curable composition of the present disclosure is not particularly limited, but is 0.01 to 5 weight by weight with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition.
  • the amount is preferably 0.03 to 3 parts by weight, more preferably 0.03 to 2 parts by weight.
  • the curable composition of the present disclosure may further contain a curing catalyst (eg, instead of a curing agent).
  • the curing catalyst is a compound capable of initiating or accelerating the polymerization reaction of a curable compound such as the component (A) and the component (B).
  • the curing catalyst is not particularly limited, and examples thereof include a polymerization initiator such as a photocationic polymerization initiator (photoacid generator) and a thermal cationic polymerization initiator (thermal acid generator).
  • a known or conventional photocationic polymerization initiator can be used, for example, a sulfonium salt (salt of sulfonium ion and anion), iodonium salt (salt of iodonium ion and anion).
  • a sulfonium salt salt of sulfonium ion and anion
  • iodonium salt salt of iodonium ion and anion
  • Selenium salt salt of selenium ion and anion
  • ammonium salt salt of ammonium ion and anion
  • phosphonium salt salt of transition metal complex ion and anion
  • sulfonium salt examples include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, and tri-p-tolylsulfonium salt.
  • Tri-o-tolylsulfonium salt tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, 2-naphthyldiphenylsulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthylsulfonium salt, Triaryl such as tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt, etc.
  • Diarylsulfonium salt such as diphenylphenacil sulfonium salt, diphenyl4-nitrophenacil sulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; phenylmethylbenzylsulfonium salt, 4-hydroxyphenylmethylbenzylsulfonium salt, 4- Monoaryl sulfonium salts such as methoxyphenyl methyl benzyl sulfonium salt; trialkyl sulfonium salts such as dimethyl phenacil sulfonium salt, phenacil tetrahydrothiophenium salt, dimethyl benzyl sulfonium salt and the like can be mentioned.
  • diphenyl [4- (phenylthio) phenyl] sulfonium salt for example, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate and the like can be used. ..
  • UV9380C manufactured by
  • selenium salt examples include triaryl selenium salts, tri-p-tolyl selenium salts, tri-o-tolyl selenium salts, tris (4-methoxyphenyl) selenium salts, 1-naphthyldiphenyl selenium salts and the like. Salts; diallyl selenium salts such as diphenylphenacyl selenium salt, diphenylbenzyl selenium salt, diphenylmethyl selenium salt; monoaryl selenium salts such as phenylmethyl benzyl selenium salt; trialkyl selenium salts such as dimethyl phenacyl selenium salt and the like. ..
  • ammonium salt examples include tetra (tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, trimethyl-n-butylammonium salt and the like).
  • Alkylammonium salt; Pyrrolidium salt such as N, N-dimethylpyrrolidium salt, N-ethyl-N-methylpyrrolidium salt; N, N'-dimethylimidazolinium salt, N, N'-diethylimidazolinium salt, etc.
  • Imidazolinium salt such as N, N'-dimethyltetrahydropyrimidium salt, N, N'-diethyltetrahydropyrimidium salt; N, N-dimethylmorpholinium salt, N, N -Morholinium salt such as diethylmorpholinium salt; piperidinium salt such as N, N-dimethylpiperidinium salt, N, N-diethylpiperidinium salt; pyridinium salt such as N-methylpyridinium salt and N-ethylpyridinium salt.
  • Imidazolium salts such as N, N'-dimethylimidazolium salt; quinolium salts such as N-methylquinolium salt; isoquinolium salts such as N-methylisoquinolium salt; thiazonium salts such as benzylbenzothiazonium salt; Examples thereof include acridium salts such as benzyl acridium salts.
  • the phosphonium salt examples include tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt and tetrakis (2-methoxyphenyl) phosphonium salt; triarylphosphonium salt such as triphenylbenzylphosphonium salt; triethyl.
  • tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt and triethylphenacylphosphonium salt.
  • Examples of the salt of the transition metal complex ion include salts of chromium complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Cr + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Cr +. ; Salts of iron complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Fe + , ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Fe + and the like can be mentioned.
  • the anion constituting the salt described above for example, SbF 6 -, PF 6 - , BF 4 -, (CF 3 CF 2) 3 PF 3 -, (CF 3 CF 2 CF 2) 3 PF 3 -, (C 6 F 5) 4 B -, (C 6 F 5) 4 Ga -, a sulfonate anion (trifluoromethanesulfonic acid anion, pentafluoroethanesulfonate anion, nonafluorobutanesulfonic acid anion, methanesulfonic acid anion, benzenesulfonic acid anion, p- toluenesulfonate anion, etc.), (CF 3 SO 2) 3 C -, (CF 3 SO 2) 2 N -, perhalogenated acid ion, a halogenated sulfonic acid ion, carbonate ion, aluminate Examples thereof include an ion, a hexafluor
  • thermal cationic polymerization initiator examples include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like.
  • aryl sulfonium salt examples include hexafluoroantimonate salt and the like.
  • trade names "SP-66” and “SP-77” all manufactured by ADEKA Corporation
  • trade names "Sun Aid SI-60L” and “Sun Aid SI-80L” can be used.
  • the aluminum chelate include ethyl acetoacetate aluminum diisopropyrate and aluminum tris (ethyl acetoacetate).
  • the boron trifluoride amine complex examples include a boron trifluoride monoethylamine complex, a boron trifluoride imidazole complex, and a boron trifluoride piperidine complex.
  • one type of curing catalyst may be used alone, or two or more types may be used in combination.
  • the content (blending amount) of the curing catalyst in the curable composition of the present disclosure is not particularly limited, but is 0.01 to 3.0 with respect to a total of 100 parts by weight of the component (A) and the component (B). It is preferably parts by weight, more preferably 0.05 to 3.0 parts by weight, and even more preferably 0.1 to 1.0 parts by weight (for example, 0.3 to 1.0 parts by weight).
  • the content of the curing catalyst is 0.01 parts by weight or more, the curing reaction can be efficiently and sufficiently proceeded, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved. ..
  • the content of the curing catalyst is 3.0 parts by weight or less, the storage stability of the curable composition tends to be further improved and the coloring of the cured product tends to be suppressed.
  • the curable composition of the present disclosure further comprises curable compounds other than the component (A) and the component (B) (sometimes referred to as "other curable compounds") as long as the effects of the present disclosure are not impaired. It may be included.
  • the other curable compound a known or commonly used curable compound can be used, and examples thereof include, but are not limited to, an oxetane compound and a vinyl ether compound.
  • one type of other curable compound may be used alone, or two or more types may be used in combination.
  • oxetane compound examples include known and commonly used compounds having one or more oxetane rings in the molecule, and are not particularly limited. For example, 3,3-bis (vinyloxymethyl) oxetane and 3-ethyl-3-.
  • the vinyl ether compound a known or commonly used compound having one or more vinyl ether groups in the molecule can be used, and is not particularly limited, but for example, 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxy.
  • 2-hydroxyethyl vinyl ether ethylene glycol monovinyl ether
  • 2-hydroxypropyl vinyl ether 2-hydroxyisopropyl vinyl ether
  • 4-hydroxybutyl vinyl ether 3-hydroxybutyl vinyl ether
  • 2-hydroxybutyl vinyl ether 3-hydroxyisobutyl vinyl ether
  • 2-hydroxyisobutyl vinyl ether 2-hydroxyisobutyl vinyl ether
  • 1-methyl-3 -Hydroxypropyl vinyl ether 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether
  • 4-hydroxycyclohexylvinyl ether 1,6-hexanediol monovinyl ether, 1,6-hexanediol divinyl ether, 1,8-
  • Examples of the vinyl ether compound having one or more hydroxyl groups in the molecule include 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, and 4-hydroxy.
  • the content (blending amount) of the other curable compound in the curable composition of the present disclosure is not particularly limited, but is the total amount (100% by weight; curing) of the component (A), the component (B) and the other curable compound. 50% by weight or less (for example, 0 to 50% by weight), more preferably 30% by weight or less (for example, 0 to 30% by weight), still more preferably 10% by weight or less, based on the total amount of the sex compound. be.
  • the content of the other curable compound By setting the content of the other curable compound to 50% by weight or less (for example, 10% by weight or less), the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be further improved.
  • the desired performance for example, quick curability and viscosity adjustment for the curable composition
  • the desired performance for example, quick curability and viscosity adjustment for the curable composition
  • the curable composition of the present disclosure further comprises, as any other optional component, precipitated silica, wet silica, fumed silica, fired silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate. , Carbon black, silicon carbide, silicon nitride, boron nitride and other inorganic fillers, and these fillers treated with organic silicon compounds such as organohalosilane, organoalkoxysilane and organosilazane; silicone resin, epoxy resin.
  • Fluororesin and other organic resin fine powders Fillers such as silver, copper and other conductive metal powders, curing aids, solvents (organic solvents, etc.), stabilizers (antioxidants, UV absorbers, light resistance stabilizers) , Heat stabilizers, heavy metal defoamers, etc.), flame retardants (phosphorus flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardants, reinforcing materials (other fillers, etc.), nuclei Agents, coupling agents (silane coupling agents, etc.), lubricants, waxes, plasticizers, mold release agents, impact resistance improvers, hue improvers, clearing agents, rheology adjusters (fluidity improvers, etc.), processability Improvement agents, colorants (dye, pigment, etc.), antistatic agents, dispersants, surface conditioners (defoamers, leveling agents, anti-armpit agents, etc.), surface modifiers (slip agents, etc.), matting
  • the curable composition of the present disclosure is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature or, if necessary, while heating.
  • the curable composition of the present disclosure can be used as a one-component composition in which each component is mixed in advance and used as it is, or for example, two or more components stored separately.
  • the curable composition of the present disclosure is not particularly limited, but is preferably a liquid at room temperature (about 25 ° C.). More specifically, the curable composition of the present disclosure has a viscosity at 25 ° C. of a solution diluted to a solvent of 20% [for example, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. , 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, still more preferably 1000 to 8000 mPa ⁇ s. By setting the viscosity to 300 mPa ⁇ s or more, the heat resistance of the cured product tends to be further improved.
  • the viscosity of the curable composition of the present disclosure is determined by using a viscometer (trade name "MCR301", manufactured by Anton Pearl Co., Ltd.), a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature: Measured at 25 ° C.
  • the curable composition By advancing the polymerization reaction of the curable compound (component (A), component (B), etc.) in the curable composition of the present disclosure, the curable composition can be cured, and the cured product of the present disclosure can be used.
  • the curing method can be appropriately selected from well-known methods, and is not particularly limited, and examples thereof include irradiation with active energy rays and / or heating.
  • active energy ray for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used. Of these, ultraviolet rays are preferable because they are easy to handle.
  • the conditions for curing the curable composition of the present disclosure by irradiation with active energy rays depend on the type and energy of the active energy rays to be irradiated, the shape and size of the cured product, and the like. It can be adjusted as appropriate, and is not particularly limited, but is preferably about 1 to 1000 mJ / cm 2 when irradiating with ultraviolet rays.
  • active energy rays for example, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
  • further heat treatment annealing, aging
  • the conditions for curing the curable composition of the present disclosure by heating are not particularly limited, but are preferably, for example, 30 to 250 ° C, more preferably 50 to 200 ° C.
  • the curing time can be set as appropriate.
  • the curable composition of the present disclosure By curing the curable composition of the present disclosure as described above, a cured product having excellent heat resistance and mechanical properties (for example, toughness) and high surface hardness can be formed. Therefore, the curable compositions of the present disclosure are useful in a variety of industrial applications such as electronic devices, adhesives, paints and the like, and are electronic such as insulating materials, printed wiring boards, encapsulants, laminates, prepregs, underfills and the like. It can be suitably used as an advanced material in the field of equipment.
  • the cured product of the present disclosure has excellent mechanical properties (for example, toughness).
  • the bending strain when the bending test of the cured product of the present disclosure is performed is preferably 8.0% or more, more preferably 9.0% or more, still more preferably 9.1% or more, still more preferably 9.2. % Or more, still more preferably 9.3% or more, even more preferably 9.4% or more, still more preferably 9.5% or more. Further bending tests of the cured product of the present disclosure can be carried out by the method described in Examples below.
  • the pencil hardness of the cured product of the present disclosure is not particularly limited, but is preferably 2H or more, more preferably 3H or more, still more preferably 4H or more.
  • the pencil hardness can be evaluated according to the method described in ISO15184.
  • the molecular weight of the product was measured under the following conditions. Measuring device: Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: THF, sample concentration 0.1-0.2 wt% Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • FT-IR was measured under the following conditions.
  • Measuring device Fourier transform infrared spectrophotometer IR Infinity-1, manufactured by Shimadzu Corporation Measuring range: 4000-650 cm -1 Number of integrations: 16 times Resolution: 4 cm -1 Measurement method: NaCl plate, permeation method
  • trimethoxysilane was added dropwise, and after completion of the addition, the mixture was stirred at 55 ° C. for 15 hours. After completion of the reaction, the product was purified by vacuum distillation to obtain 79.8 parts by weight of the desired product (2-([1,1'-biphenyl] -4-yl) ethyl) trimethoxysilane.
  • Production Example 1 Production of 1- (4-glycidyloxy-3-methylphenyl) -4- (4-glycidyloxyphenyl) -cyclohexene
  • 4-diphenyl cyclohexene 15.00g (5.36 ⁇ 10 -2 mol) , 12 times for one phenolic hydroxyl group equivalents of epichlorohydrin 119.64g (1.29mol)
  • DMSO90mL was added at room temperature as a solvent Completely dissolved.
  • the inorganic salt was removed by filtration, and methanol (750 mL), which was a poor solvent, was added to the filtrate to precipitate a white solid. Then, it cooled in a refrigerator (8 ° C.) for 13 hours. After cooling, the precipitate was removed by suction filtration and washed 5 times with methanol (20 mL). The obtained solid was dried at 60 ° C. for 2.5 hours in a vacuum chamber under reduced pressure to obtain 15.69 g (3.99 ⁇ 10 ⁇ 2 mol, yield 75%) of a white solid.
  • Production Example 2 Production of epoxy group-containing polyorganosylsesquioxane 3-glycidyloxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) 94.5 parts by weight (0.4 mol part), 378.0 parts by weight of acetone 105.1 parts by weight (5.8 mol parts) of ion-exchanged water and 105.1 parts by weight were placed in a 1 L flask under a nitrogen stream and heated to 50 ° C. with stirring. 11.1 parts by weight (0.4 mmol part) of a 5.0% by weight potassium carbonate aqueous solution was added dropwise over 5 minutes. After stirring at 50 ° C. for 5 hours, the reaction solution was cooled to room temperature.
  • MIBK methyl isobutyl ketone
  • Example 3 Preparation of epoxy resin containing polyorganosylsesquioxane containing an epoxy group and a biphenyl group Biphenyl type epoxy resin (trade name "YX4000", 4,4'-bis (3-glycidyloxy) -3,3', 5 , 5'-Tetramethylbiphenyl, manufactured by Mitsubishi Chemical Corporation) 1.00 g (epoxy group: 5.64 mmol) was placed in an aluminum cup (3.0 ⁇ 3.0 ⁇ 2.0 cm 3 ), and in Example 1.
  • YX4000 4,4'-bis (3-glycidyloxy) -3,3', 5 , 5'-Tetramethylbiphenyl, manufactured by Mitsubishi Chemical Corporation
  • Three-point bending test measuring device Instron type tensile test (AGS-J, manufactured by Shimadzu Corporation) Standard: ISO178 Sample size: Thickness 1.0 mm x Width 4.0 mm x Length 30.0 mm Distance between fulcrums: 17.8 mm Test speed: 2 mm / min
  • Fracture toughness test standard by small three-point bending method ASTM-E399-9 Measuring device: 1t tensile tester (AG-20 / 50KNIS MO, manufactured by Shimadzu Corporation) Crosshead speed: 0.5mm / min Sample size: 2.2 x 4.4 x 19.6 mm 3 Maximum load: 20kgf Distance between fulcrums: 17.6 mm The following formula was used to calculate the fracture toughness value K I c.
  • the introduced silsesquioxane skeleton partially sparses the peripheral network structure, forming nanopores in the system, and the pores act as stress concentration points in the peripheral part. It is considered that the toughness was improved by inducing plastic deformation of the network chain. Furthermore, it is considered that higher toughness can be obtained by causing a stress dispersion effect by partially orienting the mesogen group linked to the silsesquioxane skeleton to the mesogen group of the epoxy resin.
  • Examples 3 to 8 containing the component (A) showed higher surface hardness equivalent to that of Comparative Examples 4 to 6 as compared with Comparative Examples 1 to 3 not containing the component (A) (Table). See 1 and 2). It is considered that this is because the hardness was improved by the introduction of the silsesquioxane structure, which is hard as an inorganic skeleton.
  • Production Example 1 The compound obtained in Production Example 1, the compound represented by the following formula.
  • Ma1 represents a monovalent mesogen group.
  • [6] The polyorganosylsesquioxane according to any one of [1] to [5], wherein the mesogen group is a group represented by the formula (a).
  • -(-M 1A -X A- ) n- M 2A (a) [In the formula (a), M 1A represents a group obtained by removing two hydrogen atoms from the structural formula of the hydrocarbon ring or the heterocycle, and M 2A is one hydrogen atom from the structural formula of the hydrocarbon ring or the heterocycle. Indicates a group excluding.
  • X A indicates a single bond or a linking group.
  • n represents an integer of 1 to 3.
  • [7] Described in any one of [1] to [5], wherein the mesogen group is at least one selected from the group consisting of monovalent groups represented by the formulas (a1) to (a9).
  • Polyorganosilsesquioxane [8] The above-mentioned R 1 is described in any one of [4] to [7], which is a group represented by the formula (1a), the formula (1b), the formula (1c), or the formula (1d). Polyorganosilsesquioxane.
  • the polyorganosilsesquioxane according to any one of [1] to [8], wherein the number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography is 1000 to 50,000.
  • the epoxy compound (B) contains an epoxy compound (B1) having a mesogen group.
  • the epoxy compound (B1) having a mesogen group has the following formula (B).
  • E 1- X 1- M b -X 2- E 2 (B) (In formula (B), M b represents a divalent mesogen group; E 1 and E 2 each independently represent an epoxy group-containing group; X 1 and X 2 each independently and simply. Indicates a bond or linking group.)
  • M 1B and M 2B represent groups which are the same or different and have two hydrogen atoms removed from the structural formula of the hydrocarbon ring or the heterocycle.
  • X B indicates a single bond or linking group.
  • o indicates an integer of 1 to 3.
  • M b is at least one selected from the group consisting of divalent groups represented by the formulas (b1) to (b7).
  • the curable composition containing the polyorganosyl sesquioxane of the present disclosure can be cured to form a cured product having excellent mechanical properties and a high surface hardness. Therefore, the polyorganosylsesquioxane and the curable composition containing the polyorganosylsesquioxane are used in the fields of electronic devices such as insulating materials, printed wiring boards, encapsulants, laminated boards, prepregs, and underfills. It is useful as an advanced material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

優れた機械的特性と表面硬度を示す硬化物を形成できるポリオルガノシルセスキオキサン、該ポリオルガノシルセスキオキサンを含む硬化性組成物を提供する。 本開示のポリオルガノシルセスキオキサンは、エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサンである。前記ポリオルガノシルセスキオキサンは、下記式(1)で表される構成単位と、下記式(Ma)で表される構成単位とを有することが好ましい。 [R1SiO3/2] (1) [式(1)中、R1は、エポキシ基を含有する基を示す。] [MaSiO3/2] (Ma) [式(Ma)中、Maは、1価のメソゲン基を含有する基を示す。]

Description

ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物
 本開示の発明は、ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物に関する。より詳細には、靭性などの機械的特性、表面硬度に優れ、電気・電子機器等に好適に使用することができるポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物に関する。本願は、2020年5月11日に日本に出願した、特願2020-083247号の優先権を主張し、その内容をここに援用する。
 エポキシ樹脂は、耐熱性、機械的特性、電気的特性、接着力等に優れているため、様々な産業用途で使用されており、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料としての利用が拡大している。近年、電子機器の小型化、高性能化が急速に進んでいるため、エポキシ樹脂に対する機械的特性等のさらなる向上の要求が高まっている。
 その解決手段のひとつとして、エポキシ樹脂中に剛直なメソゲン骨格を導入して、耐熱性や強靭性などの機械的特性を高める試みがなされている(例えば、特許文献1、2参照)。また、エポキシ樹脂中に剛直なメソゲン骨格に加えて、優れた熱的特性や表面硬度を有する無機骨格として鎖状又は環状のシロキサン構造を導入して、耐熱性や機械的特性のさらなる向上が試みられている(例えば、特許文献3、4参照)。
特開2014-122337号公報 特開2016-8218号公報 特開2008-214599号公報 特開2015-48400号公報
 しかしながら、特許文献1~4のエポキシ樹脂の硬化物の機械的特性や表面硬度は、電子機器の先端材料として満足できるものではなかった。
 従って、本開示の発明の目的は、優れた機械的特性と表面硬度を示す硬化物を形成できるポリオルガノシルセスキオキサンを提供することである。
 また、本開示の発明の他の目的は、優れた機械的特性と表面硬度を示す硬化物を形成できる硬化性組成物を提供することである。
 さらに、本開示の発明の他の目的は、優れた機械的特性と表面硬度を示す硬化物を提供することである。
 さらに、本開示の発明の他の目的は、優れた機械的特性と表面硬度を示す硬化物を備える電子機器を提供することである。
 本開示の発明者らは、上記課題を解決するために鋭意検討した結果、メソゲン基とエポキシ基を有するポリオルガノシルセスキオキサンによれば、該ポリオルガノシルセスキオキサンを含む硬化性組成物は、機械的特性(例えば、靭性)に優れると共に、表面硬度が高い硬化物を形成でき、電子機器の先端材料として有用であることを見出した。本開示の発明は、これらの知見に基づいて完成されたものである。
 すなわち、本開示の発明は、エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサンを提供する。
 前記ポリオルガノシルセスキオキサンにおいて、前記メソゲン基は、1価のメソゲン基であってもよい。
 前記ポリオルガノシルセスキオキサンにおいて、前記エポキシ基と前記メソゲン基のモル比(エポキシ基/メソゲン基)は、1/99~99/1であってもよい。
 前記ポリオルガノシルセスキオキサンは、下記式(1)で表される構成単位と、下記式(Ma)で表される構成単位とを有していてもよい。
   [R1SiO3/2]   (1)
[式(1)中、R1はエポキシ基を含有する基を示す。]
   [MaSiO3/2]   (Ma)
[式(Ma)中、Maは1価のメソゲン基を含有する基を示す。]
 前記ポリオルガノシルセスキオキサンにおいて、前記R1は、下記式(1a)、(1b)、(1c)、又は(1d)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000018
[式中、R1a、R1b、R1c、R1dは、同一又は異なって、直鎖又は分岐鎖状のアルキレン基を示す。]
 前記ポリオルガノシルセスキオキサンにおいて、前記Maは、下記式(Ma1)で表される基であってもよい。
   -Rm-Ma1   (Ma1)
[式(Ma1)中、Rmは直鎖又は分岐鎖状のアルキレン基を示す。Ma1は1価のメソゲン基を示す。]
 前記ポリオルガノシルセスキオキサンにおいて、前記メソゲン基は、下記式(a)で表される基であってもよい。
   -(-M1A-XA-)n-M2A   (a)
[式(a)中、M1Aは炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示し、M2Aは炭化水素環又は複素環の構造式から1個の水素原子を除いた基を示す。XAは単結合又は連結基を示す。nは1~3の整数を示す。]
 前記ポリオルガノシルセスキオキサンにおいて、前記メソゲン基は、下記式(a1)~(a9)で表される1価の基からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000019
(式(a1)中、Ra1及びRa2は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m1は、0~4の整数を示す。m2は、0~5の整数を示す。m1が2以上の場合、複数のRa1は、同一であっても異なっていてもよい。m2が2以上の場合、複数のRa2は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000020
(式(a2)中、Ra3、Ra4及びRa5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m3及びm4は、それぞれ独立に、0~4の整数を示す。m5は、0~5の整数を示す。m3が2以上の場合、複数のRa3は、同一であっても異なっていてもよい。m4が2以上の場合、複数のRa4は、同一であっても異なっていてもよい。m5が2以上の場合、複数のRa5は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000021
(式(a3)中、Ra6、Ra7及びRa8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m6は、0~4の整数を示す。m7は、0~8の整数を示す。m8は、0~5の整数を示す。m6が2以上の場合、複数のRa6は、同一であっても異なっていてもよい。m7が2以上の場合、複数のRa7は、同一であっても異なっていてもよい。m8が2以上の場合、複数のRa8は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000022
(式(a4)中、Ra9、Ra10及びRa11は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m9は、0~4の整数を示す。m10は、0~8の整数を示す。m11は、0~5の整数を示す。m9が2以上の場合、複数のRa9は、同一であっても異なっていてもよい。m10が2以上の場合、複数のRa10は、同一であっても異なっていてもよい。m11が2以上の場合、複数のRa11は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000023
(式(a5)中、Ra12及びRa13は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m12は、0~4の整数を示す。m13は、0~5の整数を示す。m12が2以上の場合、複数のRa12は、同一であっても異なっていてもよい。m13が2以上の場合、複数のRa13は、同一であっても異なっていてもよい。Rax及びRayは、それぞれ独立に、水素原子、メチル基、又はシアノ基である。ただし、Rax及びRayのいずれか一方は水素原子である。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000024
(式(a6)中、Ra14及びRa15は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m14は、0~4の整数を示す。m15は、0~5の整数を示す。m14が2以上の場合、複数のRa14は、同一であっても異なっていてもよい。m15が2以上の場合、複数のRa15は、同一であっても異なっていてもよい。Y1及びY2は、異なって、CH又はNである。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000025
(式(a7)中、Ra16及びRa17は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m16は、0~4の整数を示す。m17は、0~5の整数を示す。m16が2以上の場合、複数のRa16は、同一であっても異なっていてもよい。m17が2以上の場合、複数のRa17は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000026
(式(a8)中、Ra18及びRa19は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m18は、0~4の整数を示す。m19は、0~5の整数を示す。m18が2以上の場合、複数のRa18は、同一であっても異なっていてもよい。m19が2以上の場合、複数のRa19は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000027
(式(a9)中、Ra20及びRa21は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m20は、0~4の整数を示す。m21は、0~5の整数を示す。m20が2以上の場合、複数のRa20は、同一であっても異なっていてもよい。m21が2以上の場合、複数のRa21は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
 また、本開示の発明は、前記ポリオルガノシルセスキオキサンを含む硬化性組成物を提供する。
 前記硬化性組成物は、さらに、前記ポリオルガノシルセスキオキサン以外のエポキシ化合物を含んでいてもよい。
 前記硬化性組成物において、前記エポキシ化合物は、メソゲン基を有するエポキシ化合物を含んでいてもよい。
 前記硬化性組成物において、前記エポキシ化合物は、下記式(B)で表される化合物を含んでいてもよい。
   E1-X1-Mb-X2-E2   (B)
(式(B)中、Mbは2価のメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
 前記硬化性組成物において、前記Mbは、下記式(b)で表される基であってもよい。
   -(-M1B-XB-)o-M2B-  (b)
[式(b)中、M1B、M2Bは、同一又は異なって、炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示す。XBは単結合又は連結基を示す。oは1~3の整数を示す。]
 前記硬化性組成物において、前記Mbは、下記式(b1)~(b7)で表される2価の基からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000028
(式(b1)中、Rb1及びR2bは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRb1は、同一であっても異なっていてもよい。n2が2以上の場合、複数のRb2は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000029
(式(b2)中、Rb3、Rb4及びRb5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRb3は、同一であっても異なっていてもよい。n4が2以上の場合、複数のRb4は、同一であっても異なっていてもよい。n5が2以上の場合、複数のRb5は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000030
(式(b3)中、Rb6、Rb7及びRb8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6及びn8は、それぞれ独立に、0~4の整数を示す。n7は、0~8の整数を示す。n6が2以上の場合、複数のRb6は、同一であっても異なっていてもよい。n7が2以上の場合、複数のRb7は、同一であっても異なっていてもよい。n8が2以上の場合、複数のRb8は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000031
(式(b4)中、Rb9及びRb10は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRb9は、同一であっても異なっていてもよい。n10が2以上の場合、複数のRb10は、同一であっても異なっていてもよい。Rbxは、水素原子、メチル基、又はシアノ基である。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000032
(式(b5)中、Rb11及びRb12は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRb11は、同一であっても異なっていてもよい。n12が2以上の場合、複数のRb12は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000033
(式(b6)中、Rb13及びRb14は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRb13は、同一であっても異なっていてもよい。n14が2以上の場合、複数のRb14は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000034
(式(b7)中、Rb15及びRb16は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRb15は、同一であっても異なっていてもよい。n16が2以上の場合、複数のRb16は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
 前記硬化性組成物において、前記エポキシ化合物は、ビスフェノールグリシジルエーテル型エポキシ樹脂を含んでいてもよい。
 前記硬化性組成物において、前記ビスフェノールグリシジルエーテル型エポキシ樹脂は、高分子量ビスフェノールグリシジルエーテル型エポキシ樹脂を含んでいてもよい。
 前記硬化性組成物において、前記ポリオルガノシルセスキオキサンの含有量は、前記硬化性組成物に含まれるエポキシ基を有する化合物の全量(100重量%)に対して1~50重量%であってもよい。
 前記硬化性組成物は、さらに、硬化剤を含んでいてもよい。
 前記硬化性組成物において、前記硬化剤は、アミン系硬化剤を含んでいてもよい。
 前記硬化性組成物において、前記アミン系硬化剤の含有量は、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤が有するアミノ基の活性水素が0.1~10当量となる量であってもよい。
 また、本開示の発明は、前記硬化性組成物の硬化物を提供する。
 また、本開示の発明は、前記硬化物を備える電子機器を提供する。
 本開示のポリオルガノシルセスキオキサンは、分子内にエポキシ基とメソゲン基を有するため、該ポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物を硬化させることにより、機械的特性(例えば、靭性)に優れると共に、表面硬度が高い硬化物を形成することができる。従って、本開示のポリオルガノシルセスキオキサン、該ポリオルガノシルセスキオキサンを含む硬化性組成物は、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料として有用である。
実施例1で得られるエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサン(エポキシ基/ビフェニル基=70/30)の1H-NMRスペクトルである。 実施例2で得られるエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサン(エポキシ基/ビフェニル基=50/50)の1H-NMRスペクトルである。
[エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサン]
 本開示のポリオルガノシルセスキオキサンは、分子内に、少なくとも1個のエポキシ基と、少なくとも1個のメソゲン基とを有し、[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)を有する化合物である。以下、本開示のポリオルガノシルセスキオキサンを、「ポリオルガノシルセスキオキサン(A)」又は「成分(A)」と称する場合がある。
 成分(A)は、T単位により構成される三次元構造のポリオルガノシルセスキオキサンが少なくとも1個のエポキシ基を有する構造を有する硬化性化合物(重合性化合物)である。上記式中のRは、水素原子又は一価の有機基を示し、以下においても同じである。上記式で表されるシルセスキオキサン構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)~(d)で表される化合物等)の加水分解及び縮合反応により形成される。
 本開示のポリオルガノシルセスキオキサン(A)が、エポキシ基に加えてメソゲン基を含むことにより、成分(A)を含む硬化性組成物の硬化物(以下、単に「本開示の硬化物」と称する場合がある)の機械的特性(例えば、靭性)が向上し、さらに表面硬度も向上する。これは、シルセスキオキサン骨格によって、周辺のネットワーク構造が部分的に疎になることで、系内にナノ空孔が形成され、空孔が応力集中点として作用し、周辺部の網目鎖の塑性変形を誘起して、靭性が向上するものと考えられる。また、シルセスキオキサン骨格に連結したメソゲン基が部分的に配向することによって応力分散効果が生じることで、より高い靭性が得られるものと考えられる。さらに、無機骨格として硬いシルセスキオキサン構造の導入により、硬度が向上するためと考えられる。なお、これらのメカニズムは推定に過ぎず、これらメカニズムにより本開示の発明が限定されると解釈するべきではない。
 成分(A)が有する「エポキシ基」としては、特に限定されず、例えば、エポキシ基(オキシラニル基)、グリシジル基(2,3-エポキシプロピル基)、脂環式エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)などが挙げられる。上記脂環式エポキシ基としては、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成される基(シクロヘキセンオキシド基)が好ましい。
 上記グリシジル基を含む基としては、例えば、グリシジルオキシメチル基、2-グリシジルオキシエチル基、3-グリシジルオキシプロピル基等のグリシジルオキシC1-10アルキル基(例えば、グリシジルオキシC1-4アルキル基)等を挙げることができる。
 上記脂環式エポキシ基を含む基としては、特に制限されないが、エポキシC5-12シクロアルキル-直鎖状又は分岐鎖状C1-10アルキル基、例えば、2,3-エポキシシクロペンチルメチル基、2-(2,3-エポキシシクロペンチル)エチル基、2-(3,4-エポキシシクロペンチル)エチル基、3-(2,3-エポキシシクロペンチル)プロピル基等のエポキシシクロペンチルC1-10アルキル基、4,5-エポキシシクロオクチルメチル基、2-(4,5-エポキシシクロオクチル)エチル基、3-(4,5-エポキシシクロオクチル)プロピル基等のエポキシシクロオクチルC1-10アルキル基等を挙げることができる。
 これらの脂環式エポキシ基を含む基は、C5-12シクロアルカン環に置換基としてメチル基、エチル基などのC1-6アルキル基を有していてもよい。置換基を有する脂環式エポキシ基を含む基としては、例えば、4-メチル-3,4-エポキシシクロヘキシルメチル基、2-(3-メチル-3,4-エポキシシクロヘキシル)エチル基、2-(4-メチル-3,4-エポキシシクロヘキシル)エチル基、3-(4-メチル-3,4-エポキシシクロヘキシル)プロピル基、4-(4-メチル-3,4-エポキシシクロヘキシル)ブチル基等のC1-4アルキル-エポキシC5-12シクロアルキル-直鎖状又は分岐鎖状C1-10アルキル基等を挙げることができる。
 成分(A)が一分子中に有するエポキシ基の数は、特に限定されないが、本開示の硬化物に優れた機械的特性を付与できるという観点から、2個以上が好ましく、好ましくは2~50個、より好ましくは2~30個、さらに好ましくは2~15個である。成分(A)が一分子中に2個以上のエポキシ基を有する場合、複数のエポキシ基は、同一であっても異なっていてもよい。
 成分(A)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量]に対する、エポキシ基を有する単量体単位の割合は、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、好ましくは10モル%以上、より好ましくは30モル%以上、さらに好ましくは50モル%以上、さらにより好ましくは55モル%以上、さらにより好ましくは60モル%以上であり、好ましくは95モル%以下、より好ましくは90モル%以下、さらに好ましくは80モル%以下、さらにより好ましくは75モル%以下である。エポキシ基を有する単量体単位の割合が10モル%未満の場合、耐熱性が低下する場合がある。エポキシ基を有する単量体単位の割合が95モル%を超える場合、靭性などの機械的特性が低下する場合がある。
 成分(A)が有する「メソゲン基」とは、液晶性を示し得る剛直な分子構造の総称である。メソゲン基は分子運動が抑制された剛直な分子構造をとるため、成分(A)を含有する硬化性組成物を硬化した場合、メソゲン構造が配向して強靱なネットワーク構造をとる結果、優れた機械的特性を示すと考えられる。
 メソゲン基の分子構造としては、特に限定されないが、例えば、日本接着学会誌、第40巻、第1号(2004年)の第14頁から第15頁に記載されている構造が挙げられる。
 成分(A)が有するメソゲン基としては、1価のメソゲン基であってもよく、2価以上のメソゲン基であってもよいが、調製が容易な1価のメソゲン基が好ましい。1価のメソゲン基の具体例としては、下記式(a)で表される基が挙げられる。
   -(-M1A-XA-)n-M2A   (a)
[式(a)中、M1Aは炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示し、M2Aは炭化水素環又は複素環の構造式から1個の水素原子を除いた基を示す。XAは単結合又は連結基を示す。nは1~3の整数を示す。]
 前記連結基としては、例えば、-CH=N-、-N=CH-等の、[-Y1=Y2-](前記Y1、Y2の一方はCHを示し、他方はNを示す)で表される基;-CH=CH-、-CH=C(Me)-、-C(Me)=CH-、-CH=C(CN)-、-C(CN)=CH-等の、[-C(-Rax)=C(-Ray)-](前記Rax、Rayの一方は水素原子を示し、他方は、水素原子、メチル基、又はシアノ基を示す)で表される基;-N=N-、-C≡C-、-CH=N(→O)-、-N(→O)=CH-、-CH=CH-CO-、-CO-CH=CH-、-N=N(→O)-、-N(→O)=N-、エステル結合(-C(=O)-O-、又は-O-C(=O)-)、アミド結合(-CONH-、又は-NHCO-)、-CO-、カーボネート結合(-O-C(=O)-O-)、ウレタン結合(-O-CO-NH-、又は-NH-CO-O-)、アルキレン基(例えば、C1-5アルキレン基)などが挙げられる。
 前記炭化水素環には、脂肪族炭化水素環及び芳香族炭化水素環が含まれる。前記複素環には、飽和複素環及び芳香族複素環が含まれる。
 前記脂肪族炭化水素環としては、例えば、シクロヘキサン環、シクロヘキセン環などの、6員の、飽和又は不飽和脂肪族炭化水素環が挙げられる。
 前記芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。
 前記飽和複素環としては6員の飽和複素環が好ましく、例えば、ピペリジン、テトラヒドロピランが挙げられる。
 前記芳香族複素環としては、例えば、ピリミジン基、ピリジン基が挙げられる。
 前記炭化水素環及び複素環は置換基を有していてもよい。前記置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の直鎖又は分岐鎖状のアルキル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。前記炭化水素環及び複素環が2個以上の置換基を有する場合、2個以上の置換基は、同一であっても異なっていてもよい。
 前記nは1~3の整数であり、好ましくは1又は2である。nが2以上である場合は、複数個の(-M1A-XA-)で表される構造は、同一であっても異なっていてもよい。
 前記式(a)中のn個のM1A、及びM2Aの少なくとも1つは、ベンゼン環を含む基であることが好ましい。M1Aがベンゼン環を含む基である場合の好ましい態様はフェニレン基である。M2Aがベンゼン環を含む基である場合の好ましい態様はフェニル基である。
 より具体的に好ましい1価のメソゲン基としては、下記式(a1)~(a9)で表される1価の基が挙げられる。なお、本明細書の化学式中の波線は、他の構造との結合部位を示す。
Figure JPOXMLDOC01-appb-C000035
 式(a1)中、Ra1及びRa2は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m1は、0~4の整数を示す。m2は、0~5の整数を示す。m1が2以上の場合、複数のRa1は、同一であっても異なっていてもよい。m2が2以上の場合、複数のRa2は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000036
 式(a2)中、Ra3、Ra4及びRa5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m3及びm4は、それぞれ独立に、0~4の整数を示す。m5は、0~5の整数を示す。m3が2以上の場合、複数のRa3は、同一であっても異なっていてもよい。m4が2以上の場合、複数のRa4は、同一であっても異なっていてもよい。m5が2以上の場合、複数のRa5は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000037
 式(a3)中、Ra6、Ra7及びRa8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m6は、0~4の整数を示す。m7は、0~8の整数を示す。m8は、0~5の整数を示す。m6が2以上の場合、複数のRa6は、同一であっても異なっていてもよい。m7が2以上の場合、複数のRa7は、同一であっても異なっていてもよい。m8が2以上の場合、複数のRa8は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000038
 式(a4)中、Ra9、Ra10及びRa11は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m9は、0~4の整数を示す。m10は、0~8の整数を示す。m11は、0~5の整数を示す。m9が2以上の場合、複数のRa9は、同一であっても異なっていてもよい。m10が2以上の場合、複数のRa10は、同一であっても異なっていてもよい。m11が2以上の場合、複数のRa11は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000039
 式(a5)中、Ra12及びRa13は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m12は、0~4の整数を示す。m13は、0~5の整数を示す。m12が2以上の場合、複数のRa12は、同一であっても異なっていてもよい。m13が2以上の場合、複数のRa13は、同一であっても異なっていてもよい。Rax及びRayは、それぞれ独立に、水素原子、メチル基、又はシアノ基である。ただし、Rax及びRayのいずれか一方は水素原子である。
Figure JPOXMLDOC01-appb-C000040
 式(a6)中、Ra14及びRa15は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m14は、0~4の整数を示す。m15は、0~5の整数を示す。m14が2以上の場合、複数のRa14は、同一であっても異なっていてもよい。m15が2以上の場合、複数のRa15は、同一であっても異なっていてもよい。Y1及びY2は、異なって、CH又はNである。すなわち、Y1及びY2の一方はCHであり、他方はNである。
Figure JPOXMLDOC01-appb-C000041
 式(a7)中、Ra16及びRa17は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m16は、0~4の整数を示す。m17は、0~5の整数を示す。m16が2以上の場合、複数のRa16は、同一であっても異なっていてもよい。m17が2以上の場合、複数のRa17は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000042
 式(a8)中、Ra18及びRa19は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m18は、0~4の整数を示す。m19は、0~5の整数を示す。m18が2以上の場合、複数のRa18は、同一であっても異なっていてもよい。m19が2以上の場合、複数のRa19は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000043
 式(a9)中、Ra20及びRa21は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m20は、0~4の整数を示す。m21は、0~5の整数を示す。m20が2以上の場合、複数のRa20は、同一であっても異なっていてもよい。m21が2以上の場合、複数のRa21は、同一であっても異なっていてもよい。
 Ra1~Ra21で示される炭素数1~6の直鎖又は分岐鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられ、メチル基、エチル基が好ましい。Ra1~Ra21で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、塩素原子が好ましい。
 本開示の硬化物に優れた機械的特性を付与できるという観点から、メソゲン基は、式(a1)~(a4)で表される構造が好ましく、式(a1)、(a3)又は(a4)で表される構造がより好ましく、式(a1)で表される構造がさらに好ましい。
 成分(A)が一分子中に有するメソゲン基の数は、特に限定されないが、本開示の硬化物に優れた機械的特性を付与できるという観点から、2個以上が好ましく、好ましくは2~50個、より好ましくは2~30個、さらに好ましくは2~15個である。成分(A)が一分子中に2個以上のメソゲン基を有する場合、複数のメソゲン基は、同一であっても異なっていてもよい。
 成分(A)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量]に対する、メソゲン基を有する単量体単位の割合は、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上、さらに好ましくは25モル%以上であり、好ましくは90モル%以下、より好ましくは85モル%以下、さらに好ましくは80モル%以下、さらにより好ましくは70モル%以下、さらにより好ましくは60モル%以下、さらにより好ましくは55モル%以下、さらにより好ましくは50モル%以下、さらにより好ましくは45モル%以下、さらにより好ましくは40モル%以下である。メソゲン基を有する単量体単位の割合が10モル%未満の場合、靭性などの機械的特性が低下する場合がある。メソゲン基を有する単量体単位の割合が90モル%を超える場合、耐熱性が低下する場合がある。
 成分(A)における、エポキシ基とメソゲン基のモル比(エポキシ基/メソゲン基)は、特に限定されないが、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、例えば1/99~99/1である。前記モル比の下限値は、好ましくは10/90、より好ましくは20/80、更に好ましくは30/70、特に好ましくは40/60である。前記モル比の上限値は、好ましくは85/15、より好ましくは80/20、さらに好ましくは75/25である。当該モル比が上記範囲にあることにより、耐熱性と機械的特性のバランスが取れた硬化物が得られやすい。
 成分(A)は、シルセスキオキサン単位として、下記式(1)で表される構成単位と、下記式(Ma)で表される構成単位とを有することが好ましい。
   [R1SiO3/2]   (1)
[式(1)中、R1は、エポキシ基を含有する基を示す。]
   [MaSiO3/2]   (Ma)
[式(Ma)中、Maは、1価のメソゲン基を含有する基を示す。]
 また、成分(A)は、下記式(I)で表される構成単位(「T3体」と称する場合がある)と、下記式(II)で表される構成単位(「T2体」と称する場合がある)を有することが好ましい。
 さらに、成分(A)は、後述の式(4)で表される構成単位と、式(7)で表される構成単位とを有することが好ましい。
   [RaSiO3/2]   (I)
   [RbSiO2/2(ORc)]   (II)
 上記式(1)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)である。上記式(1)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)で表される化合物)の加水分解及び縮合反応により形成される。
 式(1)中のR1は、エポキシ基を含有する基(一価の基)を示す。上記エポキシ基を含有する基としては、オキシラン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、本開示の硬化物に優れた機械的特性、及び高い表面硬度を付与できるという観点から、下記式(1a)で表される基、下記式(1b)で表される基、下記式(1c)で表される基、及び下記式(1d)で表される基が好ましく、より好ましくは下記式(1a)で表される基又は下記式(1c)で表される基、さらに好ましくは下記式(1c)で表される基である。
Figure JPOXMLDOC01-appb-C000044
 上記式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等の炭素数1~10の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、R1aとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1bとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1cとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1dとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 式(1)中のR1としては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、上記式(1c)で表される基であって、R1cがトリメチレン基である基[すなわち、3-(グリシジルオキシ)プロピル基]が好ましい。
 成分(A)は、上記式(1)で表される構成単位を1種のみ有するものであってもよいし、上記式(1)で表される構成単位を2種以上有するものであってもよい。
 上記式(Ma)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)である。上記式(Ma)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(d)で表される化合物)の加水分解及び縮合反応により形成される。
 式(Ma)中のMaは、メソゲン基を含有する基(一価の基)を示す。上記メソゲン基を含有する基としては、上述のメソゲン基を有する公知乃至慣用の基が挙げられ、特に限定されないが、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、下記式(Ma1)で表される基が好ましい。
   -Rm-Ma1   (Ma1)
 式(Ma1)中、Rmは、直鎖又は分岐鎖状のアルキレン基を示し、上記式(1a)中のR1aと同様の基が例示される。中でも、Rmとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、又は炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基である。
 式(Ma1)中、Ma1は1価のメソゲン基を示す。上記1価のメソゲン基としては、公知乃至慣用の基が挙げられ、特に限定されないが、上記式(a)で表される基が好ましい。前記Ma1としては、例えば、上記式(a1)~(a9)で表される1価の基が挙げられる。前記Ma1としては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、式(a1)~(a4)で表される1価の基が好ましく、式(a1)、(a3)又は(a4)で表される1価の基がより好ましく、式(a1)で表される1価の基がさらに好ましい。
 式(Ma)中のMaとしては、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、上記式(Ma1)で表される基であって、Rmがエチレン基であり、Ma1が上記式(a1)で表される1価の基である基[すなわち、2-[(1,1’-ビフェニル)-4-イル]エチル基]が好ましい。
 成分(A)は、上記式(Ma)で表される構成単位を1種のみ有するものであってもよいし、上記式(Ma)で表される構成単位を2種以上有するものであってもよい。
 成分(A)は、シルセスキオキサン構成単位[RSiO3/2]として、上記式(1)で表される構成単位、上記式(Ma)で表される構成単位以外にも、下記式(2)で表される構成単位を有していてもよい。
   [R2SiO3/2]   (2)
 上記式(2)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(T単位)である。即ち、上記式(2)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(b)で表される化合物)の加水分解及び縮合反応により形成される。
 上記式(2)中のR2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。上記アリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。上記アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。上記シクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。
 上述の置換アリール基、置換アラルキル基、置換シクロアルキル基、置換アルキル基、置換アルケニル基としては、上述のアリール基、アラルキル基、シクロアルキル基、アルキル基、アルケニル基のそれぞれにおける水素原子又は主鎖骨格の一部若しくは全部が、エーテル基、エステル基、カルボニル基、シロキサン基、ハロゲン原子(フッ素原子等)、アクリル基、メタクリル基、メルカプト基、アミノ基、及びヒドロキシ基(水酸基)からなる群より選択された少なくとも1種で置換された基が挙げられる。
 中でも、R2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 成分(A)における上述の各シルセスキオキサン構成単位(式(1)で表される構成単位、式(Ma)で表される構成単位、式(2)で表される構成単位)の割合は、これらの構成単位を形成するための原料(加水分解性三官能シラン)の組成により適宜調整することが可能である。
 成分(A)は、上記式(1)で表される構成単位、上記式(Ma)で表される構成単位及び式(2)で表される構成単位以外にも、さらに、上記式(1)で表される構成単位、上記式(Ma)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位[RSiO3/2]、[R3SiO1/2]で表される構成単位(いわゆるM単位)、[R2SiO2/2]で表される構成単位(いわゆるD単位)、及び[SiO4/2]で表される構成単位(いわゆるQ単位)からなる群より選択される少なくとも1種のシロキサン構成単位を有していてもよい。なお、上記式(1)で表される構成単位、上記式(Ma)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位としては、例えば、下記式(3)で表される構成単位等が挙げられる。
   [HSiO3/2]   (3)
 成分(A)が、上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)とを有する場合、その割合[T3体/T2体]は、特に限定されないが、例えば5以上、好ましくは6以上、より好ましくは7以上、より好ましくは20以上、より好ましくは21以上、より好ましくは23以上、さらに好ましくは25以上である。上記割合[T3体/T2体]を5以上とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度が向上する傾向がある。一方、上記割合[T3体/T2体]は、好ましくは500以下、より好ましくは100以下、より好ましくは50以下、さらに好ましくは40以下、更に好ましくは20未満、特に好ましくは18以下、最も好ましくは16以下、とりわけ好ましくは14以下である。上記割合[T3体/T2体]を500以下(好ましくは20未満、より好ましくは18以下)とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となる。
 なお、上記式(I)で表される構成単位をより詳細に記載すると、下記式(I’)で表される。また、上記式(II)で表される構成単位をより詳細に記載すると、下記式(II’)で表される。下記式(I’)で表される構造中に示されるケイ素原子に結合した3つの酸素原子はそれぞれ、他のケイ素原子(式(I’)に示されていないケイ素原子)と結合している。一方、下記式(II’)で表される構造中に示されるケイ素原子の上と下に位置する2つの酸素原子はそれぞれ、他のケイ素原子(式(II’)に示されていないケイ素原子)に結合している。即ち、上記T3体及びT2体は、いずれも対応する加水分解性三官能シラン化合物の加水分解及び縮合反応により形成される構成単位(T単位)である。
Figure JPOXMLDOC01-appb-C000045
 上記式(I)中のRa(式(I’)中のRaも同じ)及び式(II)中のRb(式(II’)中のRbも同じ)は、それぞれ、エポキシ基を含有する基、メソゲン基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Ra及びRbの具体例としては、上記式(1)におけるR1、上記式(Ma)におけるMa、上記式(2)におけるR2と同様のものが例示される。なお、式(I)中のRa及び式(II)中のRbは、それぞれ、成分(A)の原料として使用した加水分解性三官能シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(a)~(d)におけるR1、Ma、R2、水素原子等)に由来する。
 上記式(II)中のRc(式(II’)中のRcも同じ)は、水素原子又は炭素数1~4のアルキル基を示す。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素数1~4の直鎖又は分岐鎖状のアルキル基が挙げられる。式(II)中のRcにおけるアルキル基は、一般的には、成分(A)の原料として使用した加水分解性シラン化合物におけるアルコキシ基(例えば、後述のXa~Xdとしてのアルコキシ基等)を形成するアルキル基に由来する。
 成分(A)における上記割合[T3体/T2体]は、例えば、29Si-NMRスペクトル測定により求めることができる。29Si-NMRスペクトルにおいて、上記式(I)で表される構成単位(T3体)におけるケイ素原子と、上記式(II)で表される構成単位(T2体)におけるケイ素原子とは、異なる位置(化学シフト)にシグナル(ピーク)を示すため、これらそれぞれのピークの積分比を算出することにより、上記割合[T3体/T2体]が求められる。具体的には、例えば、成分(A)が、上記式(1)で表され、R1が3-(グリシジルオキシ)プロピル基である構成単位を有する場合には、上記式(I)で表される構造(T3体)におけるケイ素原子のシグナルは-62~-70ppmに現れ、上記式(II)で表される構造(T2体)におけるケイ素原子のシグナルは-54~-60ppmに現れる。従って、この場合、-62~-70ppmのシグナル(T3体)と-54~-60ppmのシグナル(T2体)の積分比を算出することによって、上記割合[T3体/T2体]を求めることができる。R1が3-(グリシジルオキシ)プロピル基以外のエポキシ基を含む基である場合も、同様にして[T3体/T2体]を求めることができる。
 成分(A)の29Si-NMRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「JNM-ECA500NMR」(日本電子(株)製)
 溶媒:重クロロホルム
 積算回数:1800回
 測定温度:25℃
 成分(A)の上記割合[T3体/T2体]が上記範囲(例えば、5以上、500以下)である場合は、成分(A)においてT3体に対して一定量のT2体存在していることを意味する。このようなT2体としては、例えば、下記式(4)で表される構成単位、下記式(5)で表される構成単位、下記式(6)で表される構成単位、下記式(7)で表される構成単位等が挙げられる。下記式(4)におけるR1、下記式(5)におけるR2、下記式(7)におけるMaは、それぞれ上記式(1)におけるR1、上記式(2)におけるR2及び上記式(Ma)におけるMaと同じである。下記式(4)~(7)におけるRcは、式(II)におけるRcと同じく、水素原子又は炭素数1~4のアルキル基を示す。
   [R1SiO2/2(ORc)]   (4)
   [R2SiO2/2(ORc)]   (5)
   [HSiO2/2(ORc)]   (6)
   [MaSiO2/2(ORc)]   (7)
 成分(A)におけるポリオルガノシルセスキオキサンは、完全カゴ型、不完全カゴ型、ラダー型、ランダム型のいずれのシルセスキオキサン構造を有していてもよく、これらシルセスキオキサン構造の2以上を組み合わせて有していてもよい。
 本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、成分(A)は、完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造を有していることが好ましい。成分(A)が完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造に起因する3次元構造を有することにより、成分(A)が有するメソゲン基が形成するネットワークの運動性がより拘束され、耐熱性がより向上しやすくなる。また、カゴ型及び/又は不完全カゴ型シルセスキオキサン構造が導入されることにより、メソゲン基のネットワーク密度がより低下し、機械的特性(例えば、靭性)がより向上する傾向がある。
 成分(A)が完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造を有することは、成分(A)が、FT-IRスペクトルにおいて1050cm-1付近と1150cm-1付近にそれぞれ固有吸収ピークを有せず、1100cm-1付近に一つの固有吸収ピークを有することから確認される[参考文献:R.H.Raney, M.Itoh, A.Sakakibara and T.Suzuki, Chem. Rev. 95, 1409(1995)]。これに対して、一般に、FT-IRスペクトルにおいて1050cm-1付近と1150cm-1付近にそれぞれ固有吸収ピークを有する場合には、ラダー型シルセスキオキサン構造を有すると同定される。なお、成分(A)のFT-IRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「FT-720」((株)堀場製作所製)
 測定方法:透過法
 分解能:4cm-1
 測定波数域:400~4000cm-1
 積算回数:16回
 成分(A)が上記式(4)で表される構成単位を有する場合、シロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位及び上記式(4)で表される構成単位の割合(総量)は、特に限定されないが、好ましくは10モル%以上、より好ましくは30モル%以上、さらに好ましくは50モル%以上、さらにより好ましくは55モル%以上、さらにより好ましくは60モル%以上であり、好ましくは95モル%以下、より好ましくは90モル%以下、さらに好ましくは80モル%以下、さらに好ましくは75モル%以下である。上記割合を10モル%以上とすることにより、本開示の硬化物の機耐熱性が高くなる傾向がある。また、上記割合を95モル%以下とすることにより、本開示の硬化物の機械的特性、表面硬度が高くなる傾向がある。なお、成分(A)における各シロキサン構成単位の割合は、例えば、原料の組成やNMRスペクトル測定等により算出できる。
 成分(A)が上記式(7)で表される構成単位を有する場合、シロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(Ma)で表される構成単位及び上記式(7)で表される構成単位の割合(総量)は、特に限定されないが、好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上、さらに好ましくは25モル%以上であり、好ましくは90モル%以下、より好ましくは85モル%以下、さらに好ましくは80モル%以下、さらにより好ましくは70モル%以下、好ましくは60モル%以下、より好ましくは55モル%以下、さらに好ましくは50モル%以下、さらにより好ましくは45モル%以下、さらにより好ましくは40モル%以下である。上記割合を10モル%以上とすることにより、本開示の硬化物の機械的特性、表面硬度が高くなる傾向がある。上記割合を90モル%以下とすることにより、本開示の硬化物の耐熱性が高くなる傾向がある。
 成分(A)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(2)で表される構成単位及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、0~50モル%が好ましく、より好ましくは0~40モル%、さらに好ましくは0~30モル%、さらにより好ましくは1~15モル%である。上記割合を50モル%以下とすることにより、相対的に式(1)で表される構成単位、式(4)で表される構成単位、上記式(Ma)で表される構成単位及び上記式(7)で表される構成単位の割合を多くすることができるため、本開示の硬化物の機械的特性、表面硬度がより高くなる傾向がある。
 成分(A)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位、上記式(Ma)で表される構成単位、上記式(2)で表される構成単位、上記式(4)で表される構成単位、上記式(5)で表される構成単位、及び上記式(7)で表される構成単位の割合(総量)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。上記割合を60モル%以上とすることにより、本開示の硬化物の機械的特性、表面硬度がより高くなる傾向がある。
 成分(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は、特に限定されないが、例えば、1000~50000の範囲から適宜選択することができる。数平均分子量の下限値は、好ましくは1200、より好ましくは1500である。数平均分子量を1000以上とすることにより、本開示の硬化物の機械的特性、表面硬度がより向上する傾向がある。一方、数平均分子量の上限値は、好ましくは10000、より好ましくは8000、さらに好ましくは3000、特に好ましくは2800、最も好ましくは2600である。数平均分子量を50000以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、本開示の硬化物の機械的特性、表面硬度がより向上する傾向がある。
 成分(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、特に限定されないが、1.0~4.0の範囲から適宜選択することができる。分子量分散度の下限値は、好ましくは1.1、さらに好ましくは1.2である。分子量分散度を1.1以上とすることにより、硬化性組成物が液状となりやすく、取り扱い性が向上する傾向がある。一方、分子量分散度の上限値は、好ましくは3.0、より好ましくは2.5、さらに好ましくは3.0、特に好ましくは2.0、最も好ましくは1.9である。分子量分散度を4.0以下とすることにより、本開示の硬化物の機械的特性、表面硬度がより高くなる傾向がある。
 なお、成分(A)の数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
 成分(A)は、公知乃至慣用のポリシロキサンの製造方法により製造することができ、特に限定されないが、例えば、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。但し、上記加水分解性シラン化合物としては、上述の式(1)で表される構成単位を形成するための加水分解性三官能シラン化合物(下記式(a)で表される化合物)、及び上述の式(Ma)で表される構成単位を形成するための加水分解性三官能シラン化合物(下記式(d)で表される化合物)を必須の加水分解性シラン化合物として使用する必要がある。
 より具体的には、例えば、成分(A)におけるシルセスキオキサン構成単位(T単位)を形成するための加水分解性シラン化合物である下記式(a)で表される化合物、及び下記式(d)で表される化合物、必要に応じてさらに、下記式(b)で表される化合物、下記式(c)で表される化合物を、加水分解及び縮合させる方法により、成分(A)を製造できる。
   R1Si(Xa3   (a)
   R2Si(Xb3   (b)
   HSi(Xc3   (c)
   MaSi(Xd3   (d)
 上記式(a)で表される化合物は、成分(A)における式(1)で表される構成単位を形成する化合物である。式(a)中のR1は、上記式(1)におけるR1と同じく、エポキシ基を含有する基を示す。即ち、式(a)中のR1としては、上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、上記式(1d)で表される基が好ましく、より好ましくは上記式(1a)で表される基、上記式(1c)で表される基、さらに好ましくは上記式(1c)で表される基、さらにより好ましくは上記式(1c)で表される基であって、R1cがトリメチレン基である基[すなわち、3-(グリシジルオキシ)プロピル基]である。
 上記式(a)中のXaは、アルコキシ基又はハロゲン原子を示す。Xaにおけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。また、Xaにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でもX1としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのXaは、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(b)で表される化合物は、成分(B)における式(2)で表される構成単位を形成する化合物である。式(b)中のR2は、上記式(2)におけるR2と同じく、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。即ち、式(b)中のR2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 上記式(b)中のXbは、アルコキシ基又はハロゲン原子を示す。Xbの具体例としては、Xaとして例示したものが挙げられる。中でも、Xbとしては、アルコキシ基が好ましく、より好ましくはC1-3アルコキシ基、更に好ましくはメトキシ基、エトキシ基である。なお、3つのXbは、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(c)で表される化合物は、成分(A)における式(3)で表される構成単位を形成する化合物である。上記式(c)中のXcは、アルコキシ基又はハロゲン原子を示す。Xcの具体例としては、Xaとして例示したものが挙げられる。中でも、Xcとしては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX3は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(d)で表される化合物は、成分(A)における式(Ma)で表される構成単位を形成する化合物である。式(d)中のMaは、上記式(Ma)におけるMaと同じく、メソゲン基を含有する基を示す。即ち、式(d)中のMaとしては、上記式(Ma1)で表される基が好ましく、より好ましくは上記式(Ma1)で表される基であって、Rmがエチレン基であり、Ma1が上記式(a1)で表される1価の基である基[中でも、2-[(1,1’-ビフェニル)-4-イル]エチル基]である。
 上記式(d)中のXdは、アルコキシ基又はハロゲン原子を示す。Xdの具体例としては、Xaとして例示したものが挙げられる。中でも、Xdとしては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのXdは、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(d)で表される化合物は、公知の方法により、調製することができる。より具体的には、分子内に脂肪族炭素-炭素二重結合とメソゲン基を有する化合物と、上記式(c)で表される化合物とを、ヒドロシリル化触媒の存在下で反応(「ヒドロシリル化反応」と称する場合がある)させる工程を少なくとも含むことが好ましい。
 分子内に脂肪族炭素-炭素二重結合とメソゲン基を有する化合物としては、例えば、下記式(Ma2)で表される化合物が挙げられる。
   Rm1-Ma1   (Ma2)
 式(Ma2)中のMa1は、式(Ma1)中のMa1と同じく、1価のメソゲン基であり、好ましくは式(a1)で表される基であり、より好ましくは、1,1’-ビフェニル-4-イル基である。
 式(Ma2)中のRm1は、脂肪族炭素-炭素二重結合を有する基(若しくは、不飽和脂肪族炭化水素基)であり、式(Ma1)中のRmに変換されうる基である。該脂肪族炭素-炭素二重結合を有する基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-10アルケニル基、好ましくはC2-4アルケニル基があげられ、より好ましくはビニル基である。
 上記ヒドロシリル化反応における、上記式(c)で表される化合物の使用量は、特に限定されないが、上記分子内に脂肪族炭素-炭素二重結合とメソゲン基を有する化合物の脂肪族炭素-炭素二重結合の全量1モルに対して、1モル以上(例えば、1~10モル)であることが好ましく、より好ましくは1.05~5モル、さらに好ましくは1.1~3モルである。
 上記ヒドロシリル化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示され、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体などの白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体などの白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、ならびに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。上記ヒドロシリル化触媒は1種を単独で用いてもよく、2種以上を併用してもよい。中でも、白金ビニルメチルシロキサン錯体や白金-カルボニルビニルメチル錯体や塩化白金酸とアルコール、アルデヒドとの錯体を使用することが、反応速度が良好であるため好ましい。
 上記ヒドロシリル化触媒の使用量は、特に限定されないが、上記記分子内に脂肪族炭素-炭素二重結合とメソゲン基を有する化合物の脂肪族炭素-炭素二重結合の全量1モルに対して、1×10-8~1×10-2モルが好ましく、より好ましくは1.0×10-6~1.0×10-3モルである。使用量が1×10-8モル未満であると、反応が十分に進行しない場合がある。
 上記ヒドロシリル化反応は、必要に応じて、溶媒(例えば、トルエンなど)中で実施してもよい。また、上記ヒドロシリル化反応を実施する雰囲気は、反応を阻害しないものであればよく、特に限定されないが、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などのいずれであってもよい。また、ヒドロシリル化反応はバッチ式、セミバッチ式、連続式などいずれの方法で行うこともできる。
 上記ヒドロシリル化反応における反応温度は、特に限定されないが、0~200℃が好ましく、より好ましくは20~150℃、さらに好ましくは30~100℃である。なお、反応温度は、反応の間一定に制御してもよいし、逐次的又は連続的に変化させてもよい。
 また、上記ヒドロシリル化反応における反応時間は、特に限定されないが、10~2000分が好ましく、より好ましくは60~1500分である。
 上記式(d)で表される化合物の製造方法は、上記ヒドロシリル化反応以外のその他の工程を含んでいてもよい。上記その他の工程としては、例えば、原料を調製する工程、反応生成物を精製、単離する工程などが挙げられる。なお、反応生成物の精製や単離においては、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段などの、公知乃至慣用の方法を利用することができる。
 上記加水分解性シラン化合物としては、上記式(a)~(d)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(a)~(d)で表される化合物以外の加水分解性三官能シラン化合物、M単位を形成する加水分解性単官能シラン化合物、D単位を形成する加水分解性二官能シラン化合物、Q単位を形成する加水分解性四官能シラン化合物等が挙げられる。
 上記加水分解性シラン化合物の使用量や組成は、所望する成分(A)の構造に応じて適宜調整できる。上記式(a)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、40~90モル%が好ましく、より好ましくは45~85モル%、さらに好ましくは50~80モル%である。
 また、上記式(b)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、0~50モル%が好ましく、より好ましくは0~40モル%、さらに好ましくは0~30モル%、さらにより好ましくは1~15モル%である。
 また、上記式(d)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、10~60モル%が好ましく、より好ましくは15~55モル%、さらに好ましくは20~50モル%である。
 また、上記加水分解性シラン化合物として2種以上を併用する場合、これらの加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うこともできるし、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。
 上記加水分解性シラン化合物の加水分解及び縮合反応は、1段階で行ってもよいし、2段階以上に分けて行ってもよい。例えば、上記割合[T3体/T2体]が20未満及び/又は数平均分子量が2500未満の成分(A)(以下、「低分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を1段階で行うことが好ましい。また、上記割合[T3体/T2体]が20以上及び/又は数平均分子量が2500以上の成分(A)(以下、「高分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を2段階以上(好ましくは、2段階)で行うこと、即ち、上記低分子量ポリオルガノシルセスキオキサンを原料としてさらに1回以上加水分解及び縮合反応を行うことが好ましい。
 第1段目の加水分解及び縮合反応で、上記割合[T3体/T2体]が5以上20未満であり、数平均分子量が1000以上2500未満である低分子量ポリオルガノシルセスキオキサンを得、第2段目で、該低分子量ポリオルガノシルセスキオキサンを、さらに加水分解及び縮合反応に付すことにより、上記割合[T3体/T2体]が20以上500以下であり、数平均分子量が2500以上50000以下である高分子量ポリオルガノシルセスキオキサンを得ることができる。
 以下に、加水分解性シラン化合物の加水分解及び縮合反応を2段階で行って高分子量ポリオルガノシルセスキオキサンを得る態様について説明するが、成分(A)の製造方法はこれに限定されない。
 第1段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。中でも溶媒の存在下で行うことが好ましい。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。上記溶媒としては、中でも、ケトン、エーテルが好ましい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第1段目の加水分解及び縮合反応における溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第1段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよいが、エポキシ基の分解を抑制するためにはアルカリ触媒が好ましい。上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2’-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第1段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第1段目の加水分解及び縮合反応の反応条件としては、低分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が5以上20未満となるような反応条件を選択することが重要である。第1段目の加水分解及び縮合反応の反応温度は、特に限定されないが、40~100℃が好ましく、より好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]をより効率的に5以上20未満に制御できる傾向がある。また、第1段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.1~10時間が好ましく、より好ましくは1.5~8時間である。また、第1段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第1段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気雰囲気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第1段目の加水分解及び縮合反応により、低分子量ポリオルガノシルセスキオキサンが得られる。上記第1段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の分解を抑制するために触媒を中和することが好ましい。また、低分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 第1段目の加水分解及び縮合反応により得られた低分子量ポリオルガノシルセスキオキサンを、第2段目の加水分解及び縮合反応に付すことにより、高分子量ポリオルガノシルセスキオキサンを製造することができる。
 第2段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。第2段目の加水分解及び縮合反応を溶媒の存在下で行う場合、第1段目の加水分解及び縮合反応で挙げられた溶媒を用いることができる。第2段目の加水分解及び縮合反応の溶媒としては、第1段目の加水分解及び縮合反応の反応溶媒、抽出溶媒等を含む低分子量ポリオルガノシルセスキオキサンをそのまま、又は一部留去したものを用いてもよい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第2段目の加水分解及び縮合反応において溶媒を使用する場合、その使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第2段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、第1段目の加水分解及び縮合反応で挙げられた触媒を用いることができ、エポキシ基の分解を抑制するためには、好ましくはアルカリ触媒であり、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩である。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第2段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは0.01~10000ppm、より好ましくは0.1~1000ppmの範囲内で、適宜調整することができる。
 第2段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは10~100000ppm、より好ましくは100~20000ppmの範囲内で、適宜調整することができる。水の使用量が100000ppmよりも大きいと、高分子量ポリオルガノシルセスキオキサンの割合[T3体/T2体]や数平均分子量が、所定の範囲に制御しにくくなる傾向がある。
 第2段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第2段目の加水分解及び縮合反応の反応条件としては、高分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が20以上500以下、数平均分子量が2500~50000となるような反応条件を選択することが好ましい。第2段目の加水分解及び縮合反応の反応温度は、使用する触媒により変動し、特に限定されないが、5~200℃が好ましく、より好ましくは30~100℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]、数平均分子量をより効率的に所望の範囲に制御できる傾向がある。また、第2段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.5~1000時間が好ましく、より好ましくは1~500時間である。
 また、上記反応温度の範囲内にて加水分解及び縮合反応を行いながら適時サンプリングを行って、上記割合[T3体/T2体]、数平均分子量をモニターしながら反応を行うことによって、所望の割合[T3体/T2体]、数平均分子量を有する高分子量ポリオルガノシルセスキオキサンを得ることもできる。
 第2段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第2段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気雰囲気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第2段目の加水分解及び縮合反応により、高分子量ポリオルガノシルセスキオキサンが得られる。上記第2段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の分解を抑制するために触媒を中和することが好ましい。また、高分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 成分(A)は上述の構成を有するため、成分(A)を必須成分として含む硬化性組成物を硬化させることにより、優れた機械的特性、表面硬度を有する硬化物を形成できる。
[硬化性組成物]
 本開示の硬化性組成物は、エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサン(成分(A))を必須成分として含む。後述のように、本開示の硬化性組成物は、さらに、その他のエポキシ化合物、硬化剤(例えば、アミン系硬化剤)、硬化促進剤等のその他の成分を含んでいてもよい。
 本開示の硬化性組成物において成分(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本開示の硬化性組成物における成分(A)の含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物の全量(100重量%)に対して、好ましくは1~50重量%、より好ましくは5~30重量%、さらに好ましくは10~20重量%である。成分(A)の含有量をこの範囲とすることにより、本開示の硬化物の機械的特性、表面硬度がバランスよく向上する傾向がある。
 本開示の硬化性組成物における成分(A)の含有量(配合量)は、特に限定されないが、エポキシ基を有する化合物の全量[例えば硬化性組成物に含まれるエポキシ基を有する化合物の全量、好ましくは成分(A)と後掲の成分(B)の全量](100重量%)に対して、好ましくは1~50重量%、より好ましくは3~40重量%、さらに好ましくは5~35重量%である。成分(A)の含有量をこの範囲とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がバランスよく向上する傾向がある。
 本開示の硬化性組成物は、さらに、成分(A)以外のエポキシ化合物(「成分(B)」と称する場合がある)を含んでいてもよい。本開示の硬化性組成物において成分(B)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 成分(B)としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、脂環式エポキシ化合物(脂環式エポキシ樹脂)、芳香族エポキシ化合物(芳香族エポキシ樹脂;成分(A)に含まれる化合物を除く)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)等が挙げられる。本開示の硬化性組成物は、得られる硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、成分(B)として、成分(A)に含まれる化合物以外の芳香族エポキシ化合物を含むことが好ましい。
 上記芳香族エポキシ化合物としては、例えば、成分(A)に含まれる化合物以外のメソゲン基を有するエポキシ化合物;ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]とエピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]との縮合反応により得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、上記芳香族エポキシ化合物としては、成分(A)に含まれる化合物以外のメソゲン基を有するエポキシ化合物(以下、「成分(B1)」と称する場合がある)及び/又はエピビスタイプグリシジルエーテル型エポキシ樹脂(以下、「成分(B2)」と称する場合がある)が好ましく、成分(B1)がより好ましい。
 [成分(B1)]
 成分(B1)は、分子内に少なくとも1個のメソゲン基と少なくとも1個のエポキシ基を有する化合物である。即ち、成分(B1)は、分子内にエポキシ基を少なくとも1個有する硬化性化合物である。但し、成分(B1)には、成分(A)に該当するものは除かれる。本開示の硬化物に機械的特性を付与することができる。
 成分(B1)は、剛直なメソゲン基を有するため、本開示の硬化性組成物が、成分(A)に加えて成分(B1)を含むことにより、本開示の硬化物の機械的特性(例えば、靭性)が向上し、表面硬度も向上する。さらにまた、耐熱性も向上する。これは、成分(A)のシルセスキオキサン骨格に連結したメソゲン基が、成分(B1)のエポキシ樹脂のメソゲン基に部分的に配向することによって応力分散効果が生じることで、より高い靭性が得られるものと考えられる。なお、これらのメカニズムは推定に過ぎず、これらメカニズムにより本開示の発明が限定されると解釈するべきではない。
 成分(B1)が有する「メソゲン基」としては、1価のメソゲン基であってもよく、2価以上のメソゲン基であってもよいが、本開示の硬化物に優れた機械的特性、高い表面硬度を付与できるという観点から、2価のメソゲン基が好ましい。2価のメソゲン基の具体例としては、下記式(b)で表される基が挙げられる。
   -(-M1B-XB-)o-M2B-  (b)
[式(b)中、M1B、M2Bは、同一又は異なって、炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示す。XBは単結合又は連結基を示す。oは1~3の整数を示す。]
 前記連結基としては、例えば、単結合、-CH=N-、-CH=CH-、-CH=C(Me)-、-CH=C(CN)-、-C≡C-、-CH=N(→O)-、-CH=CH-CO-、-N=N-、-N=N(→O)-、-COO-、-CONH-、-CO-などが挙げられる。
 前記炭化水素環には、脂肪族炭化水素環及び芳香族炭化水素環が含まれる。前記複素環には、飽和複素環及び芳香族複素環が含まれる。
 前記脂肪族炭化水素環としては、例えば、シクロヘキサン環、シクロヘキセン環などの6員の飽和又は不飽和脂肪族炭化水素環が挙げられる。
 前記芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。
 前記飽和複素環としては6員の飽和複素環が好ましく、例えば、ピペリジン、テトラヒドロピランが挙げられる。
 前記芳香族複素環としては、例えば、ピリミジン基、ピリジン基が挙げられる。
 前記炭化水素環及び複素環は置換基を有していてもよい。前記置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の直鎖又は分岐鎖状のアルキル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。前記炭化水素環及び複素環が2個以上の置換基を有する場合、2個以上の置換基は、同一であっても異なっていてもよい。
 oは1~3の整数であり、好ましくは1又は2である。oが2以上である場合は、複数の(-M1B-XB-)で表される構造は、同一であっても異なっていてもよい。
 前記式(a)中のn個のM1B、及びM2Bの少なくとも1つは、ベンゼン環を含む基であることが好ましく、特に好ましくはフェニレン基である。
 より具体的に好ましいメソゲン基としては、下記式(b1)~(b7)で表される2価の基が挙げられる。なお、本明細書の化学式中の波線は、他の構造との結合部位を示す。
Figure JPOXMLDOC01-appb-C000046
 式(b1)中、Rb1及びR2bは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRb1は、同一であっても異なっていてもよい。n2が2以上の場合、複数のRb2は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000047
 式(b2)中、Rb3、Rb4及びRb5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRb3は、同一であっても異なっていてもよい。n4が2以上の場合、複数のRb4は、同一であっても異なっていてもよい。n5が2以上の場合、複数のRb5は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000048
 式(b3)中、Rb6、Rb7及びRb8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6及びn8は、それぞれ独立に、0~4の整数を示す。n7は、0~8の整数を示す。n6が2以上の場合、複数のRb6は、同一であっても異なっていてもよい。n7が2以上の場合、複数のRb7は、同一であっても異なっていてもよい。n8が2以上の場合、複数のRb8は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000049
 式(b4)中、Rb9及びRb10は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRb9は、同一であっても異なっていてもよい。n10が2以上の場合、複数のRb10は、同一であっても異なっていてもよい。Rbxは、水素原子、メチル基、又はシアノ基である。
Figure JPOXMLDOC01-appb-C000050
 式(b5)中、Rb11及びRb12は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRb11は、同一であっても異なっていてもよい。n12が2以上の場合、複数のRb12は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000051
 式(b6)中、Rb13及びRb14は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRb13は、同一であっても異なっていてもよい。n14が2以上の場合、複数のRb14は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000052
 式(b7)中、Rb15及びRb16は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRb15は、同一であっても異なっていてもよい。n16が2以上の場合、複数のRb16は、同一であっても異なっていてもよい。
 Rb1~Rb16で示される炭素数1~6の直鎖又は分岐鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられ、メチル基、エチル基が好ましい。Rb1~Rb16で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、塩素原子が好ましい。
 本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、2価のメソゲン基は、式(b1)~(b3)で表される構造が好ましく、式(b1)又は(b3)で表される構造がより好ましく、式(b3)で表される構造がさらに好ましい。
 成分(B1)が有するメソゲン基の数は、特に限定されないが、例えば、1~3個が好ましく、1又は2個がより好ましく、1個がさらに好ましい。
 成分(B1)が有する「エポキシ基」としては、特に限定されず、例えば、エポキシ基(オキシラニル基)、グリシジル基(2,3-エポキシプロピル基)、脂環式エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)などが挙げられる。上記脂環式エポキシ基としては、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成される基(シクロヘキセンオキシド基)が好ましい。
 成分(B1)が一分子中に有するエポキシ基の数は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、2個以上が好ましく、好ましくは2~10個、より好ましくは2~5個、さらに好ましくは2個である。成分(B1)が一分子中に2個以上のエポキシ基を有する場合、複数のエポキシ基は、同一であっても異なっていてもよい。
 成分(B1)としては、特に限定されないが、例えば、下記式(B)で表される化合物が挙げられる。
   E1-X1-Mb-X2-E2   (B)
 上記式(B)中、Mbは上述の2価のメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基(1以上の原子を有する二価の基)を示す。
 E1及びE2で示されるエポキシ基を含有する基は、オキシラン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、下記式(E1)で表される基又は(E2)で表される基が好ましく、式(E1)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000053
 式(E1)中、Raは、炭素数1~6の直鎖又は分岐鎖状のアルキレン基を示す。炭素数1~6の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等が挙げられる。中でも、Raとしては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基が好ましく、より好ましくはメチレン基、エチレン基であり、さらに好ましくはメチレン基である。Rbは、水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基であり、好ましくは水素原子又はメチル基であり、より好ましくは水素原子である。
Figure JPOXMLDOC01-appb-C000054
 式(E2)中、Rcは、炭素数1~6の直鎖又は分岐鎖状のアルキレン基を示し、Raと同様の基が例示される。中でも、Rcとしては、本開示の硬化物に優れた機械的特性を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基が好ましく、より好ましくはメチレン基、エチレン基、トリメチレン基であり、さらに好ましくはメチレン基又はエチレン基である。Rdは、水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基であり、好ましくは水素原子又はメチル基であり、より好ましくは水素原子である。
 X1及びX2で示される連結基としては、炭素数1~6の直鎖又は分岐鎖状のアルキレン基(Rrと同様の基が例示される)、エーテル結合(-O-)、アミノ基(-NRX-;RXは水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基)、スルフェニル基(-S-)、スルフィニル基(-SO-)、スルホニル基(-SO2-)、カルボニル基(-CO-)、エステル結合(-COO-)、アミド基(-CONRYH-;RYは水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基)、これらが複数個連結した基等が挙げられる。X1及びX2で示される連結基としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、エーテル結合(-O-)、又はエーテル結合の1又は2以上とアルキレン基の1又は2以上とが連結した基が好ましく、より好ましくはエーテル結合(-O-)である。
 成分(B1)は、より具体的には、下記式(B1a)~(B1c)で表される化合物が好ましく、本開示の硬化物に優れた機械的特性を付与できるという観点から、下記式(B1a)又は(B1c)で表される化合物がより好ましく、下記式(B1c)で表される化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000055
 上記式(B1a)~(B1c)中の各記号の定義及び好ましい態様は、上記と同じである。
 本開示の硬化性組成物において成分(B1)は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 成分(B1)は、公知の方法で製造することができ、市販品を使用することもできる。成分(B1)の市販品として、商品名「YX4000」(ビフェニル型エポキシ樹脂;三菱化学(株)製)などが挙げられる。
[成分(B2)]
 成分(B2)は、ビスフェノールグリシジルエーテル型エポキシ樹脂である。即ち、成分(B2)は、分子内にエポキシ基を少なくとも有する硬化性化合物である。成分(B1)は、剛直なビスフェノール骨格を有するため、本開示の硬化物に優れた耐熱性と機械的特性を付与することができる。
 ビスフェノールグリシジルエーテル型エポキシ樹脂には、上記ビスフェノール類とさらに付加反応させることにより得られる高分子量ビスフェノールグリシジルエーテル型エポキシ樹脂も含まれる。
 本開示の硬化性組成物において成分(B2)は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 成分(B2)は、公知の方法で製造することができ、市販品を使用することもできる。成分(B2)の市販品として、商品名「JER 828 EL」(ビスフェノール型エポキシ樹脂;三菱化学(株)製)などが挙げられる。
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等が挙げられる。
 上記(1)分子内に脂環エポキシ基を有する化合物としては、下記式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000056
 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。
 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、3,4,3’,4’-ジエポキシビシクロヘキサン、下記式(i-1)~(i-10)で表される化合物等が挙げられる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR’は炭素数1~8のアルキレン基であり、中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000059
 式(ii)中、R”は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R”(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(例えば、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパンなどのビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタンなどのビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等が挙げられる。
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。なお、上記q価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等が挙げられる。また、q価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。
 本開示の硬化性組成物における成分(B)の含有量(配合量)は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、溶媒を除く硬化性組成物(100重量%)に対して、40~99重量%が好ましく、より好ましくは50~95重量%、さらに好ましくは60~90重量%である。
 本開示の硬化性組成物における成分(B1)の含有量(配合量)は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、溶媒を除く硬化性組成物(100重量%)に対して、40~99重量%が好ましく、より好ましくは50~95重量%、さらに好ましくは60~90重量%である。
 本開示の硬化性組成物における成分(B2)の含有量(配合量)は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、溶媒を除く硬化性組成物(100重量%)に対して、40~99重量%が好ましく、より好ましくは50~95重量%、さらに好ましくは60~90重量%である。
[硬化剤]
 本開示の硬化性組成物は、さらに硬化剤(以下、「硬化剤(C)」又は「成分(C)」と称する場合がある)を含んでいてもよい。硬化剤(C)は、成分(A)、成分(B)等の硬化性化合物と反応することにより、本開示の硬化性組成物を硬化させる働きを有する化合物である。硬化剤(C)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができ、特に限定されないが、例えば、アミン系硬化剤(C1)、酸無水物系硬化剤(C2)、ポリアミド系硬化剤(C3)、ポリメルカプタン系硬化剤(C4)、フェノール系硬化剤(C5)、ポリカルボン酸系硬化剤(C6)等が挙げられる。
 アミン系硬化剤(C1)としては、公知乃至慣用のアミン系硬化剤を使用でき、特に限定されないが、例えば、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミン、変性ポリアミン、第二級アミン、第三級アミン等が挙げられる。
 上記脂肪族ポリアミンとしては、例えば、ポリエチレンポリアミン類(例、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等)、ヘキサメチレンジアミン、1,3-ペンタンジアミン、2-メチルペンタメチレンジアミン、ジプロピレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等が挙げられる。上記脂環式ポリアミンとしては、例えば、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、N-アミノエチルピペラジン、メンセンジアミン、4,4’-メチレンビスシクロヘキシル、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、ビス(アミノメチル)ノルボルナン、ラロミンC-260等が挙げられる。
 上記芳香族ポリアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、ジアミノジフェニルスルホン(例えば、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン等)、ジアミノジフェニルメタン類[例えば、4,4’-ジアミノジフェニルメタン(=4,4’-メチレンジアニリン)、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2-イソプロピルアニリン)、4,4’-メチレンビス(2-クロロアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2-イソプロピル-6-メチルアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、4,4’-メチレンビス(2-ブロモ-6-エチルアニリン)、4,4’-メチレンビス(N-メチルアニリン)、4,4’-メチレンビス(N-エチルアニリン)、4,4’-メチレンビス(N-sec-ブチルアニリン)等]、4,4’-シクロヘキシリデンジアニリン、4,4’-(9-フルオレニリデン)ジアニリン、4,4’-(9-フルオレニリデン)ビス(N-メチルアニリン)、4,4’-ジアミノベンズアニリド、4,4’-オキシジアニリン、2,4-ビス(4-アミノフェニルメチル)アニリン、4-メチル-m-フェニレンジアミン、2-メチル-m-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、2-クロロ-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ジエチルトルエンジアミン[2,4-ジエチル-6-メチル-m-フェニレンジアミンと4,6-ジエチル-2-メチル-m-フェニレンジアミンの混合物等]、ビス(メチルチオ)トルエンジアミン[6-メチル-2,4-ビス(メチルチオ)-m-フェニレンジアミンと2-メチル-4,6-ビス(メチルチオ)-m-フェニレンジアミンの混合物等]、4,6-ジメチル-m-フェニレンジアミン、トリメチレンビス(4-アミノベンゾエート)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(m-アミノフェニル)ベンゼン等が挙げられる。
 上記変性ポリアミンとしては、例えば、カルボン酸による変性アミン(ポリアミノアミド、アミノアミド)、エポキシ化合物による変性アミン(アミン-エポキシアダクト)、マイケル反応による変性アミン(マイケル付加ポリアミン)、マンニッヒ反応による変性アミン、尿素又はチオ尿素との反応による変性アミン、ケトンとの反応による変性アミン(ケチミン、シッフ塩基)、エピクロルヒドリンとの反応による変性アミン、ベンジルクロライドとの反応による変性アミン、リン化合物との反応による変性アミン、ベンゾキノンとの反応による変性アミン、トリアルキルシリル化アミン、アミノ基とイソシアネート化合物との反応による変性アミン、水酸基を有するアミン化合物とイソシアネート化合物との反応による変性アミン、カーボネートとの反応による変性アミン等が挙げられる。
 その他、ポリオキシプロピレンジアミン(例えば、ジェファーミンD230等)、ポリオキシプロピレントリアミン(例えば、ジェファーミンT403等)、ポリシクロヘキシルポリアミン混合物、N-アミノエチルピペラジン等を用いてもよい。
 上記第二級アミン又は第三級アミンとしては、例えば、イミダゾール類[例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジン等]、ピペリジン、モルホリン、N-メチルピペラジン、ジシアンジアミド、有機酸ジヒドラジド、N,N’-ジメチル尿素誘導体、テトラメチルエチレンジアミン等の直鎖状ジアミン、ジメチルエチルアミン等の直鎖第三級アミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン等のエタノールアミン、トリエチルアミン等のアルキル第三級モノアミン、ベンジルジメチルアミン等の脂肪族第三級アミンや2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)等のフェノール性水酸基を少なくとも1つ持つ芳香環を有する脂肪族第三級アミン、N,N’-ジメチルピペラジン、1,4-ジアザジシクロ[2.2.2]オクタン、トリエチレンジアミン(TEDA)、ピリジン、ピコリン、1.8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等の複素環式第三級アミン等が挙げられる。
 酸無水物系硬化剤(C2)としては、公知乃至慣用の酸無水物系硬化剤を使用することができ、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン無水マレイン酸共重合体などが挙げられる。
ポリアミド系硬化剤(C3)としては、例えば、分子内に第1級アミノ基及び第2級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。
 ポリメルカプタン系硬化剤(C4)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。
 フェノール系硬化剤(C5)としては、公知乃至慣用のフェノール系硬化剤を使用することができ、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパンなどが挙げられる。
 ポリカルボン酸系硬化剤(C6)としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシル基含有ポリエステル等が挙げられる。
 硬化剤(C)としては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、アミン系硬化剤(C1)が好ましい。中でも、アミン系硬化剤(C1)としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、芳香族ポリアミン、脂肪族ポリアミンが好ましい。
 アミン系硬化剤(C1)としては、下記式(C1a)で表される化合物、下記式(C1b)で表される化合物が好ましく、下記式(C1a)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000060
 式(C1a)中、Re及びRfは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。l1及びl2は、それぞれ独立に、0~4の整数を示す。l1が2以上の場合、複数のReは、同一であっても異なっていてもよい。l2が2以上の場合、複数のRfは、同一であっても異なっていてもよい。Zは、単結合又は連結基(1以上の原子を有する二価の基)を示す。
Figure JPOXMLDOC01-appb-C000061
 式(C1b)中、l3は、それぞれ独立に、0~6の整数を示し、2~5の整数が好ましく、3又は4がより好ましい。
 Re及びRfで示される炭素数1~6の直鎖又は分岐鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられ、メチル基、エチル基が好ましい。Re及びRfで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、塩素原子が好ましい。
 Zで示される連結基としては、上述のX1及びX2で示される連結基と同様な基が挙げられる。Zで示される連結基としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、炭素数1~6の直鎖又は分岐鎖状のアルキレン基、エーテル結合(-O-)、スルフェニル基(-S-)、スルフィニル基(-SO-)、スルホニル基(-SO2-)等が好ましく、メチレン基(-CH2-)、エーテル結合(-O-)、スルホニル基(-SO2-)がより好ましく、メチレン基が好ましい。
 アミン系硬化剤(C1)の好適な具体的としては、ジアミノジフェニルメタン類、ポリエチレンポリアミン類がより好ましく、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4,4’-ジアミノジフェニルメタン等からなる群より選択される少なくとも1つがさらに好ましい。
 本開示の硬化性組成物において硬化剤(C)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化剤(C)としては、市販の試薬類を使用することもできる。
 本開示の硬化性組成物における硬化剤(C)の含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、1~50重量部が好ましく、より好ましくは5~30重量部である。硬化剤(C)の含有量を上記範囲とすることにより、十分に硬化させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。
 また、硬化剤(C)としてアミン系硬化剤(C1)を使用する場合、アミン系硬化剤(C1)の含有量(配合量)は、特に限定されないが、本開示の硬化性組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、アミン系硬化剤(C1)が有するアミノ基の活性水素が0.1~10当量となる割合で使用することが好ましく、0.3~5当量となる割合で使用することがより好ましい。硬化剤(C)の含有量を上記範囲とすることにより、十分に硬化させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。
[硬化促進剤]
 本開示の硬化性組成物が硬化剤を含む場合には、さらに硬化促進剤を含んでいてもよい。硬化促進剤は、硬化性化合物(例えば、エポキシ基を有する化合物)が硬化剤と反応する際に、その反応速度を促進する機能を有する化合物である。硬化促進剤としては、公知乃至慣用の硬化促進剤を使用することができ、特に限定されないが、例えば、第三級アミン[例えば、ラウリルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、(N,N-ジメチルアミノメチル)フェノール、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)等];第三級アミン塩[例えば、上記第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩等];イミダゾール類[例えば、2-メチルイミダゾール、2-エチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール等];有機リン系化合物[例えば、トリフェニルホスフィン、亜リン酸トリフェニル等];第四級アンモニウム塩[例えば、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミド等]、第四級ホスホニウム塩[例えば、テトラブチルホスホニウムデカン酸塩、テトラブチルホスホニウムラウリン酸塩、テトラブチルホスホニウムミリスチン酸塩、テトラブチルホスホニウムパルミチン酸塩、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸及び/又はメチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸のアニオンとの塩、テトラブチルホスホニウムカチオンと1,2,4,5-シクロヘキサンテトラカルボン酸のアニオンとの塩等]、第四級アルソニウム塩、第三級スルホニウム塩、第三級セレノニウム塩、第二級ヨードニウム塩、ジアゾニウム塩等のオニウム塩;強酸エステル[例えば、硫酸エステル、スルホン酸エステル、りん酸エステル、ホスフィン酸エステル、ホスホン酸エステル等];ルイス酸と塩基との錯体[例えば、三フッ化ホウ素・アニリン錯体、三フッ化ホウ素・p-クロロアニリン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・イソプロピルアミン錯体、三フッ化ホウ素・ベンジルアミン錯体、三フッ化ホウ素・ジメチルアミン錯体、三フッ化ホウ素・ジエチルアミン錯体、三フッ化ホウ素・ジブチルアミン錯体、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・ジベンジルアミン錯体、三塩化ホウ素・ジメチルオクチルアミン錯体等];有機金属塩[オクチル酸スズ、オクチル酸亜鉛、ジラウリン酸ジブチルスズ、アルミニウムアセチルアセトン錯体等]等などが挙げられる。
 なお、本開示の硬化性組成物において硬化促進剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化促進剤(D)としては、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT 12XD」(以上、サンアプロ(株)製);商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製);商品名「PX-4ET」(日本化学工業(株)製)などの市販品を使用することもできる。
 本開示の硬化性組成物における硬化促進剤の含有量(配合量)は、特に限定されないが、硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.03~3重量部、さらに好ましくは0.03~2重量部である。硬化促進剤の含有量を0.01重量部以上とすることにより、いっそう効率的な硬化促進効果が得られる傾向がある。一方、硬化促進剤の含有量を5重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。
 本開示の硬化性組成物は、さらに(例えば、硬化剤の代わりに)、硬化触媒を含んでいてもよい。上記硬化触媒は、成分(A)、成分(B)等の硬化性化合物の重合反応を開始乃至促進することができる化合物である。上記硬化触媒としては、特に限定されないが、例えば、光カチオン重合開始剤(光酸発生剤)、熱カチオン重合開始剤(熱酸発生剤)等の重合開始剤が挙げられる。
 上記光カチオン重合開始剤としては、公知乃至慣用の光カチオン重合開始剤を使用することができ、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 上記スルホニウム塩としては、例えば、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩等のトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩等のジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩等のモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩等のトリアルキルスルホニウム塩等が挙げられる。
 上記ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩としては、例えば、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスファート等を使用できる。
 上記ヨードニウム塩としては、例えば、商品名「UV9380C」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、ビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート45%アルキルグリシジルエーテル溶液)、商品名「RHODORSIL PHOTOINITIATOR 2074」(ローディア・ジャパン(株)製、テトラキス(ペンタフルオロフェニル)ボレート=[(1-メチルエチル)フェニル](メチルフェニル)ヨードニウム)、商品名「WPI-124」(和光純薬工業(株)製)、ジフェニルヨードニウム塩、ジ-p-トリルヨードニウム塩、ビス(4-ドデシルフェニル)ヨードニウム塩、ビス(4-メトキシフェニル)ヨードニウム塩等が挙げられる。
 上記セレニウム塩としては、例えば、トリフェニルセレニウム塩、トリ-p-トリルセレニウム塩、トリ-o-トリルセレニウム塩、トリス(4-メトキシフェニル)セレニウム塩、1-ナフチルジフェニルセレニウム塩等のトリアリールセレニウム塩;ジフェニルフェナシルセレニウム塩、ジフェニルベンジルセレニウム塩、ジフェニルメチルセレニウム塩等のジアリールセレニウム塩;フェニルメチルベンジルセレニウム塩等のモノアリールセレニウム塩;ジメチルフェナシルセレニウム塩等のトリアルキルセレニウム塩等が挙げられる。
 上記アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩、トリメチル-n-プロピルアンモニウム塩、トリメチル-n-ブチルアンモニウム塩等のテトラアルキルアンモニウム塩;N,N-ジメチルピロリジウム塩、N-エチル-N-メチルピロリジウム塩等のピロリジウム塩;N,N’-ジメチルイミダゾリニウム塩、N,N’-ジエチルイミダゾリニウム塩等のイミダゾリニウム塩;N,N’-ジメチルテトラヒドロピリミジウム塩、N,N’-ジエチルテトラヒドロピリミジウム塩等のテトラヒドロピリミジウム塩;N,N-ジメチルモルホリニウム塩、N,N-ジエチルモルホリニウム塩等のモルホリニウム塩;N,N-ジメチルピペリジニウム塩、N,N-ジエチルピペリジニウム塩等のピペリジニウム塩;N-メチルピリジニウム塩、N-エチルピリジニウム塩等のピリジニウム塩;N,N’-ジメチルイミダゾリウム塩等のイミダゾリウム塩;N-メチルキノリウム塩等のキノリウム塩;N-メチルイソキノリウム塩等のイソキノリウム塩;ベンジルベンゾチアゾニウム塩等のチアゾニウム塩;ベンジルアクリジウム塩等のアクリジウム塩等が挙げられる。
 上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム塩、テトラ-p-トリルホスホニウム塩、テトラキス(2-メトキシフェニル)ホスホニウム塩等のテトラアリールホスホニウム塩;トリフェニルベンジルホスホニウム塩等のトリアリールホスホニウム塩;トリエチルベンジルホスホニウム塩、トリブチルベンジルホスホニウム塩、テトラエチルホスホニウム塩、テトラブチルホスホニウム塩、トリエチルフェナシルホスホニウム塩等のテトラアルキルホスホニウム塩等が挙げられる。
 上記遷移金属錯体イオンの塩としては、例えば、(η5-シクロペンタジエニル)(η6-トルエン)Cr+、(η5-シクロペンタジエニル)(η6-キシレン)Cr+等のクロム錯体カチオンの塩;(η5-シクロペンタジエニル)(η6-トルエン)Fe+、(η5-シクロペンタジエニル)(η6-キシレン)Fe+等の鉄錯体カチオンの塩等が挙げられる。
 上述の塩を構成するアニオンとしては、例えば、SbF6 -、PF6 -、BF4 -、(CF3CF23PF3 -、(CF3CF2CF23PF3 -、(C654-、(C654Ga-、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン等)、(CF3SO23-、(CF3SO22-、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオン等が挙げられる。
 上記熱カチオン重合開始剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。
 上記アリールスルホニウム塩としては、例えば、ヘキサフルオロアンチモネート塩等が挙げられる。本開示の硬化性組成物においては、例えば、商品名「SP-66」、「SP-77」(以上、(株)ADEKA製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-150L」(以上、三新化学工業(株)製)等の市販品を使用することができる。上記アルミニウムキレートとしては、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。また、上記三フッ化ホウ素アミン錯体としては、例えば、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。
 なお、本開示の硬化性組成物において硬化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本開示の硬化性組成物における上記硬化触媒の含有量(配合量)は、特に限定されないが、成分(A)と成分(B)の合計100重量部に対して、0.01~3.0重量部が好ましく、より好ましくは0.05~3.0重量部、さらに好ましくは0.1~1.0重量部(例えば、0.3~1.0重量部)である。硬化触媒の含有量を0.01重量部以上とすることにより、硬化反応を効率的に十分に進行させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。一方、硬化触媒の含有量を3.0重量部以下とすることにより、硬化性組成物の保存性がいっそう向上したり、硬化物の着色が抑制される傾向がある。
 本開示の硬化性組成物は、さらに、成分(A)、成分(B)以外の硬化性化合物(「その他の硬化性化合物」と称する場合がある)を、本開示の効果を損なわない範囲で含んでいてもよい。その他の硬化性化合物としては、公知乃至慣用の硬化性化合物を使用することができ、特に限定されないが、例えば、オキセタン化合物、ビニルエーテル化合物等が挙げられる。なお、本開示の硬化性組成物においてその他の硬化性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記オキセタン化合物としては、分子内に1以上のオキセタン環を有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン、3-エチル-3-{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル)}オキセタン、キシリレンビスオキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン等が挙げられる。
 上記ビニルエーテル化合物としては、分子内に1以上のビニルエーテル基を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールジビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールジビニルエーテル、p-キシレングリコールモノビニルエーテル、p-キシレングリコールジビニルエーテル、m-キシレングリコールモノビニルエーテル、m-キシレングリコールジビニルエーテル、o-キシレングリコールモノビニルエーテル、o-キシレングリコールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールモノビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエチレングリコールモノビニルエーテル、ペンタエチレングリコールジビニルエーテル、オリゴエチレングリコールモノビニルエーテル、オリゴエチレングリコールジビニルエーテル、ポリエチレングリコールモノビニルエーテル、ポリエチレングリコールジビニルエーテル、ジプロピレングリコールモノビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールモノビニルエーテル、トリプロピレングリコールジビニルエーテル、テトラプロピレングリコールモノビニルエーテル、テトラプロピレングリコールジビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールジビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールジビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ポリプロピレングリコールジビニルエーテル、イソソルバイドジビニルエーテル、オキサノルボルネンジビニルエーテル、フェニルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクチルビニルエーテル、シクロヘキシルビニルエーテル、ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、ヒドロキシオキサノルボルナンメタノールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル等が挙げられる。
 分子内に1個以上の水酸基を有するビニルエーテル化合物としては、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールペンタビニルエーテル等が挙げられる。
 本開示の硬化性組成物におけるその他の硬化性化合物の含有量(配合量)は、特に限定されないが、成分(A)、成分(B)とその他の硬化性化合物の総量(100重量%;硬化性化合物の全量)に対して、50重量%以下(例えば、0~50重量%)が好ましく、より好ましくは30重量%以下(例えば、0~30重量%)、さらに好ましくは10重量%以下である。その他の硬化性化合物の含有量を50重量%以下(例えば、10重量%以下)とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がより向上する傾向がある。一方、その他の硬化性化合物の含有量を10重量%以上とすることにより、硬化性組成物や硬化物に対して所望の性能(例えば、硬化性組成物に対する速硬化性や粘度調整等)を付与することができる場合がある。
 本開示の硬化性組成物は、さらに、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、硬化助剤、溶剤(有機溶剤等)、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤、重金属不活性化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤(シランカップリング剤等)、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、透明化剤、レオロジー調整剤(流動性改良剤など)、加工性改良剤、着色剤(染料、顔料など)、帯電防止剤、分散剤、表面調整剤(消泡剤、レベリング剤、ワキ防止剤など)、表面改質剤(スリップ剤など)、艶消し剤、抑泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、光増感剤、発泡剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 本開示の硬化性組成物は、特に限定されないが、上記の各成分を室温で又は必要に応じて加熱しながら攪拌・混合することにより調製することができる。なお、本開示の硬化性組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。
 本開示の硬化性組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本開示の硬化性組成物は、溶媒20%に希釈した液[例えば、メチルイソブチルケトンの割合が20重量%である硬化性組成物(溶液)]の25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性組成物の調製や取り扱いが容易となり、また、硬化物中に気泡が残存しにくくなる傾向がある。なお、本開示の硬化性組成物の粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定される。
[硬化物]
 本開示の硬化性組成物における硬化性化合物(成分(A)、成分(B)等)の重合反応を進行させることにより、該硬化性組成物を硬化させることができ、本開示の硬化物を得ることができる。硬化の方法は、周知の方法より適宜選択でき、特に限定されないが、例えば、活性エネルギー線の照射、及び/又は、加熱する方法が挙げられる。上記活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等のいずれを使用することもできる。中でも、取り扱い性に優れる点で、紫外線が好ましい。
 本開示の硬化性組成物を活性エネルギー線の照射により硬化させる際の条件(活性エネルギー線の照射条件等)は、照射する活性エネルギー線の種類やエネルギー、硬化物の形状やサイズ等に応じて適宜調整することができ、特に限定されないが、紫外線を照射する場合には、例えば1~1000mJ/cm2程度とすることが好ましい。なお、活性エネルギー線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。活性エネルギー線の照射後には、さらに加熱処理(アニール、エージング)を施してさらに硬化反応を進行させることができる。
 一方、本開示の硬化性組成物を加熱により硬化させる際の条件は、特に限定されないが、例えば、30~250℃が好ましく、より好ましくは50~200℃である。硬化時間は適宜設定可能である。
 本開示の硬化性組成物は上述のように、硬化させることによって、耐熱性及び機械的特性(例えば、靭性)に優れ、表面硬度が高い硬化物を形成できる。従って、本開示の硬化性組成物は、電子機器、接着剤、塗料などの様々な産業用途で有用であり、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料としての好適に利用することができる。
 また、本開示の硬化物は優れた機械的特性(たとえば、靭性)を有する。本開示の硬化物の曲げ試験を行った場合の曲げ歪みは、好ましくは8.0%以上、より好ましくは9.0%以上、さらに好ましくは9.1%以上、さらにより好ましくは9.2%以上、さらにより好ましくは9.3%以上、さらにより好ましくは9.4%以上、さらにより好ましくは9.5%以上である。本開示のさらに硬化物の曲げ試験は、後掲の実施例に記載の方法で実施することができる。
 本開示の硬化物の鉛筆硬度は、特に限定されないが、2H以上が好ましく、より好ましくは3H以上、さらに好ましくは4H以上である。なお、鉛筆硬度は、ISO15184に記載の方法に準じて評価することができる。
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示の発明はこれらの実施例により限定されるものではない。
 なお、生成物の分子量の測定は、以下の条件により行った。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
 また、FT-IRは以下の条件により測定した。
 測定装置:フーリエ変換赤外分光光度計IR Affinity-1、(株)島津製作所製
 測定範囲:4000~650cm-1
 積算回数:16回
 分解能:4cm-1
 測定方法:NaCl板、透過法
 また、1H―NMRは以下の条件により測定した。

測定装置:JNM-ECA500NMR(日本電子(株)製)
測定周波数:500MHz
測定溶媒:DMSO-d6
積算回数:16回
実施例1:エポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンA(エポキシ基/ビフェニル基=70/30)の合成
 温度計、ジムロート冷却器、攪拌機、滴下ロートを備えたフラスコに、トルエン377重量部、4-ビニルビフェニル50.0重量部(277ミリモル部)、白金(0)-1,3-ジビニルテトラメチルジシロキサン錯体(白金原子として0.11ミリモル部)、炭酸水素アンモニウム0.47重量部(0.01モル部)を仕込み、攪拌しながら55℃に加熱した。ここに、トリメトキシシラン41.5重量部(340ミリモル部)を滴下し、滴下終了後、55℃で15時間攪拌した。反応終了後、減圧蒸留により精製し、目的物である(2-([1,1’―ビフェニル]-4-イル)エチル)トリメトキシシランを79.8重量部得た。
 温度計、ジムロート冷却器、攪拌機、滴下ロートを備えた300mLの4つ口フラスコに、窒素雰囲気下で、3-グリシジルオキシプロピルトリメトキシシラン(東京化成工業(株)製)15.0重量部(63ミリモル部)、上述の合成操作で得た(2-([1,1’―ビフェニル]-4-イル)エチル)トリメトキシシラン8.2重量部(27ミリモル部)、アセトン92.9重量部、およびイオン交換水16.3重量部(999ミリモル部)を仕込み、撹拌しながら50℃まで加温した。ここに、5.0重量%の炭酸カリウム水溶液2.51重量部(炭酸カリウムとして0.91ミリモル部)を5分間かけて滴下した。滴下終了後、50℃で5時間撹拌したのち、反応液を室温まで冷却した。メチルイソブチルケトン(MIBK)25重量部で希釈後、イオン交換水で7回洗浄し、水層のpHが7以下であることを確認した。有機層を分離後、減圧下溶媒を留去し、29%のMIBKを含むエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンA(エポキシ基/ビフェニル基=70/30)を無色透明の液体として23.9重量部得た。数平均分子量2392、重量平均分子量は3282であった。1H-NMRスペクトルを図1に示す。
実施例2:エポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンB(エポキシ基/ビフェニル基=50/50)の合成
 3-グリシジルオキシプロピルトリメトキシシラン(東京化成工業(株)製)10.7重量部(45ミリモル部)、上記実施例1で得られた(2-([1,1’―ビフェニル]-4-イル)エチル)トリメトキシシラン13.7重量部(45ミリモル部)、アセトン97.7重量部、およびイオン交換水16.3重量部(999ミリモル部)、5.0重量%の炭酸カリウム水溶液2.51重量部(炭酸カリウムとして0.91ミリモル部)とした以外は実施例1と同様に実験操作を行い、21%のMIBKを含むビフェニル基含有ポリオルガノシルセスキオキサンB(エポキシ基/ビフェニル基=50/50)を無色透明の液体として22.1重量部得た。数平均分子量4452、重量平均分子量24358であった。1H-NMRスペクトルを図2に示す。
製造例1:1-(4-グリシジルオキシ-3-メチルフェニル)-4-(4-グリシジルオキシフェニル)-シクロヘキセンの製造
 500mLのセパラブルフラスコに、4,4’-ジヒドロキシ-3-メチル-1,4-ジフェニルシクロヘキセン15.00g(5.36×10-2mol)、フェノール水酸基1つに対して12倍当量のエピクロロヒドリン119.64g(1.29mol)、溶媒としてDMSO90mLを加え室温で完全に溶解させた。次に触媒としてテトラブチルアンモニウムクロリド0.90×10-2g(3.24×10-5mol)を加え、60℃のオイルバスで1時間加熱撹拌した。その後、フェノール性水酸基1つに対して1.2倍当量の水酸化ナトリウム5.15g(1.29×10-1mol)を用いて調製した50wt%の水酸化ナトリウム水溶液を30分かけて滴下し、更に60℃で1.5時間加熱撹拌した。撹拌後、無機塩を濾過により取り除き、ろ液に貧溶媒であるメタノール(750mL)を加えたところ白色固体が析出した。その後、冷蔵庫(8℃)で13時間冷却した。冷却後、析出物を吸引濾過により取り出し、メタノール(20mL)で5回洗浄した。得られた固体を減圧恒温槽で60℃、2.5時間乾燥させ、白色固体を15.69g(3.99×10-2mol、収率75%)得た。
1H-NMR(CDCl3)δ:1.9(q,2H,CH2),2.1(d,2H,CH2),2.3(s,3H,CH3),2.5(t,2H,CH2),2.8(m,1H,CH),2.9(d,4H,CH2,epoxy),3.4(m,2H,CH,epoxy),3.9(d,2H,CH2,epoxy),4.1(d,2H,CH2,epoxy),6.1(s,1H,CH),6.7(d,2H,CH,aromatic),6.9(d,2H,CH,aromatic),7.1(d,2H,CH,aromatic),7.2(d,2H,CH,aromatic),7.3(d,2H,CH,aromatic)
 上記合成に用いた試料を以下に示す。
 ・4,4’-ジヒドロキシ-3-メチル-1,4-ジフェニルシクロヘキセン(Mw280,m.p.202℃,純度97.9%,本州化学工業(株)製)
 ・エピクロロヒドリン(Mw=93,b.p.118℃,純度99%,和光純薬工業(株)製)
 ・DMSO(b.p.189℃,純度98%,富士フイルム和光純薬(株)製)
 ・テトラブチルアンモニウムクロライド(m.p.83-86℃,純度98%,東京化成工業(株))
 ・水酸化ナトリウム(Mw=40,純度97%,富士フイルム和光純薬(株)製)
 ・メタノール(b.p.65℃,純度99%,富士フイルム和光純薬(株)製)
製造例2:エポキシ基含有ポリオルガノシルセスキオキサンの製造
 3-グリシジルオキシプロピルトリメトキシシラン(東京化成工業(株)製)94.5重量部(0.4モル部)、アセトン378.0重量部、およびイオン交換水105.1重量部(5.8モル部)を窒素気流下で1Lのフラスコに仕込み、撹拌しながら50℃まで加温した。5.0重量%の炭酸カリウム水溶液11.1重量部(0.4ミリモル部)を5分間かけて滴下した。50℃で5時間撹拌したのち、反応液を室温まで冷却した。メチルイソブチルケトン(MIBK)100重量部で希釈後、イオン交換水で7回洗浄し、水層のpHが7以下であることを確認した。有機層を分離後、減圧下溶媒を留去し、18.8%のMIBKを含むエポキシ基含有ポリオルガノシルセスキオキサンCを無色透明の液体として76.2重量部得た。数平均分子量1719、重量平均分子量2058であった。
実施例3 エポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサン配合エポキシ樹脂の作成
 ビフェニル型エポキシ樹脂(商品名「YX4000」、4,4’-ビス(3-グリシジルオキシ)-3,3’,5,5’-テトラメチルビフェニル、三菱化学(株)製)1.00g(エポキシ基:5.64mmol)をアルミカップ(3.0×3.0×2.0cm3)に入れ、実施例1で得られたエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンAを、MIBKを除いた正味量にして0.292g(エポキシ基:1.09mmol)を加え、120℃のホットレートで10分間溶解させた。その後、減圧恒温槽で、120℃で30分間加熱してMIBKを除去した。その後、0.334g(アミノ基の活性水素:6.74mmol)の4,4’-ジアミノジフェニルメタンを130℃のホットプレート上で融解させてから加え、120℃のホットプレート上で1分間撹拌した。その後、190℃で3時間硬化させた。なお、昇温速度は5℃/minとし、撹拌は大気雰囲気下で行った。
実施例4~8、比較例1~6
 組成を表1、2に示す組成に変更したこと以外は実施例3と同様にして、硬化物を調製した。
<評価>
 実施例及び比較例で得られた硬化物について、下記の評価試験を実施した。結果を表1、2に示す。
・3点曲げ試験
測定装置   :インストロン型引張試験(AGS-J,島津製作所(株)製)
規格     :ISO178
試料サイズ  :厚さ1.0mm×幅4.0mm×長さ30.0mm
支点間距離  :17.8mm
試験速度   :2mm/min
曲げ応力  σ(MPa)=3FL/2bh2
曲げひずみ ε=6sh/L2
曲げ弾性率 Ef(MPa)=(σ2-σ1)/(ε2-ε1
F :力(N)
L :支点間距離(mm)
b :試験片の平均幅(mm)
h :試験片の平均厚さ(mm)
s :たわみ(mm)
・小型三点曲げ法による破壊靭性試験
規格     :ASTM-E399-9
測定装置   :1t引張試験機(AG-20/50KNIS MO、島津製作所社製)
クロスヘッドスピード:0.5mm/min
サンプルサイズ :2.2×4.4×19.6mm3
最大荷重   :20kgf
支点間距離  :17.6mm
破壊靭性値 KIcの算出には以下の式を用いた。
破壊靭性値 KIc(MN/m2/3)の算出
P:荷重(kN)
S:支点間距離(17.6mm)
B:試験片厚さ(mm)
W:試験片幅(mm)
a:亀裂の長さ(mm)
f(x)=3x1/2{1.99-x(1-x)(2.15-3.93x+2.7x2)}/2(1+2x)(1-x)3/2
x=a/W
・鉛筆硬度試験
規格     :ISO 15184
鉛筆     :HB~6H(Hi-uni MITSU-BISHI社製)
試験速度   :0.5~1.0mm/s
角度     :45度
試料サイズ  :厚さ1.5mm×幅1.5mm×長さ30.0mm
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
 ポリオルガノシルセスキオキサン成分を配合しない比較例1~3及びメソゲン基を有しないポリオルガノシルセスキオキサンを配合した比較例4~6と比較して、エポキシ基及びメソゲン基を含有するポリオルガノシルセスキオキサンを配合した実施例3~8では、より高い曲げ歪みを示し、破壊靭性値の低下が認められた(表1、2参照)。さらには、実施例4、7、8では、上下の治具が接触するまで試験片を屈曲しても破断に至らなかった。
 これは、導入されたシルセスキオキサン骨格によって、周辺のネットワーク構造が部分的に疎になることで、系内にナノ空孔が形成され、空孔が応力集中点として作用し、周辺部の網目鎖の塑性変形を誘起して、靭性が向上したものと考えられる。さらに、シルセスキオキサン骨格に連結したメソゲン基がエポキシ樹脂のメソゲン基に部分的に配向することによって応力分散効果が生じることで、よりより高い靭性が得られるものと考えられる。
 成分(A)を配合していない比較例1~3と比較して、成分(A)を配合した実施例3~8では、比較例4~6と同等のより高い表面硬度を示した(表1、2参照)。
 これは、無機骨格として硬いシルセスキオキサン構造の導入により、硬度が向上したためと考えられる。
 表1、表2に示す各成分は、以下の通りである。
[成分(B)]
・実施例1:実施例1で得られるエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンA(エポキシ基/ビフェニル基=70/30)
・実施例2:実施例2で得られるエポキシ基・ビフェニル基含有ポリオルガノシルセスキオキサンB(エポキシ基/ビフェニル基=50/50)
・製造例2:製造例2で得られるエポキシ基含有ポリオルガノシルセスキオキサンC(エポキシ基:ビフェニル基=10:0)
[成分(B)]
・YX4000:商品名「YX4000」、ビフェニル型エポキシ樹脂、三菱化学(株製)、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000064
・JER 828 EL:商品名「JER 828 EL」、ビスフェノールA型エポキシ樹脂、三菱化学(株)製、下記式で表される化合物(n=0.1)
Figure JPOXMLDOC01-appb-C000065
・製造例1:製造例1で得られる化合物、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000066
[成分(C)]
・DDM:4,4’-ジアミノジフェニルメタン、東京化成工業(株)製、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000067
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以上のまとめとして本開示の構成及びそのバリエーションを以下に付記する。
[1] エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサン。
[2] 前記メソゲン基が、1価のメソゲン基である、[1]に記載のポリオルガノシルセスキオキサン。
[3] 前記エポキシ基と前記メソゲン基のモル比(エポキシ基/メソゲン基)が、1/99~99/1である、[1]又は[2]に記載のポリオルガノシルセスキオキサン。
[4] 下記式(1)で表される構成単位と、下記式(Ma)で表される構成単位とを有する、[1]~[3]のいずれか1つに記載のポリオルガノシルセスキオキサン。
   [R1SiO3/2]   (1)
[式(1)中、R1は、エポキシ基を含有する基を示す。]
   [MaSiO3/2]   (Ma)
[式(Ma)中、Maは、1価のメソゲン基を含有する基を示す。]
[5] 前記Maが、下記式(Ma1)
   -Rm-Ma1   (Ma1)
[式(Ma1)中、Rmは、直鎖又は分岐鎖状のアルキレン基を示す。Ma1は、1価のメソゲン基を示す。]
で表される基である[4]に記載のポリオルガノシルセスキオキサン。
[6] 前記メソゲン基が式(a)で表される基である、[1]~[5]のいずれか1つに記載のポリオルガノシルセスキオキサン。
   -(-M1A-XA-)n-M2A   (a)
[式(a)中、M1Aは炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示し、M2Aは炭化水素環又は複素環の構造式から1個の水素原子を除いた基を示す。XAは単結合又は連結基を示す。nは1~3の整数を示す。]
[7] 前記メソゲン基が、式(a1)~(a9)で表される1価の基からなる群から選ばれる少なくとも1種である、[1]~[5]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[8] 前記R1が、式(1a)、式(1b)、式(1c)又は、式(1d)で表される基である[4]~[7]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[9] ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)が1000~50000である、[1]~[8]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[10] [1]~[9]のいずれか1つに記載のポリオルガノシルセスキオキサン(A)を含む硬化性組成物。
[11] さらに、前記ポリオルガノシルセスキオキサン(A)以外のエポキシ化合物(B)を含む、[10]に記載の硬化性組成物。
[12] 前記エポキシ化合物(B)がメソゲン基を有するエポキシ化合物(B1)を含む、[11]に記載の硬化性組成物。
[13] 前記メソゲン基を有するエポキシ化合物(B1)が、下記式(B)
   E1-X1-Mb-X2-E2   (B)
(式(B)中、Mbは2価のメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
で表される化合物である、[12]に記載の硬化性組成物。
[14] 前記Mbが下記式(b)で表される基である、[13]に記載の硬化性組成物。
   -(-M1B-XB-)o-M2B-  (b)
[式(b)中、M1B、M2Bは、同一又は異なって、炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示す。XBは単結合又は連結基を示す。oは1~3の整数を示す。]
[15] 前記Mbが、式(b1)~(b7)で表される2価の基からなる群から選ばれる少なくとも1種である[13]に記載の硬化性組成物。
[16] 前記エポキシ化合物(B)が、ビスフェノールグリシジルエーテル型エポキシ樹脂(B2)を含む、[10]~[15]のいずれか1つに記載の硬化性組成物。
[17] 前記ビスフェノールグリシジルエーテル型エポキシ樹脂(B2)が、高分子量ビスフェノールグリシジルエーテル型エポキシ樹脂を含む、[16]に記載の硬化性組成物。
[18] 前記ビスフェノールグリシジルエーテル型エポキシ樹脂(B2)が、高分子量ビスフェノールグリシジルエーテル型エポキシ樹脂である、[16]に記載の硬化性組成物。
[19] 前記ポリオルガノシルセスキオキサン(A)の含有量が、エポキシ基を有する化合物の全量(100重量%)に対して1~50重量%である、[10]~[18]の何れか1つに記載の硬化性組成物。
[20] さらに硬化剤を含む、[10]~[19]の何れか1つに記載の硬化性組成物。
[21] 前記硬化剤がアミン系硬化剤を含む、[20]に記載の硬化性組成物。
[22] 前記アミン系硬化剤の含有量が、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤が有するアミノ基の活性水素が0.1~10当量となる量である、[21]に記載の硬化性組成物。
[23] [10]~[22]のいずれか1つに記載の硬化性組成物の硬化物。
[24] [23]に記載の硬化物を備える電子機器。
 本開示のポリオルガノシルセスキオキサンを含む硬化性組成物は、硬化させることにより、機械的特性に優れると共に、表面硬度が高い硬化物を形成することができる。従って、前記ポリオルガノシルセスキオキサン、及び前記ポリオルガノシルセスキオキサンを含む硬化性組成物は、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料として有用である。

Claims (22)

  1.  エポキシ基とメソゲン基とを有するポリオルガノシルセスキオキサン。
  2.  前記メソゲン基が1価のメソゲン基である、請求項1に記載のポリオルガノシルセスキオキサン。
  3.  前記エポキシ基と前記メソゲン基のモル比(エポキシ基/メソゲン基)が、1/99~99/1である、請求項1又は2に記載のポリオルガノシルセスキオキサン。
  4.  下記式(1)で表される構成単位と、下記式(Ma)で表される構成単位とを有する、請求項1~3のいずれか1項に記載のポリオルガノシルセスキオキサン。
       [R1SiO3/2]   (1)
    [式(1)中、R1は、エポキシ基を含有する基を示す。]
       [MaSiO3/2]   (Ma)
    [式(Ma)中、Maは、1価のメソゲン基を含有する基を示す。]
  5.  前記R1が、下記式(1a)、(1b)、(1c)、又は(1d)で表される基である、請求項4に記載のポリオルガノシルセスキオキサン。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1a、R1b、R1c、R1dは、同一又は異なって、直鎖又は分岐鎖状のアルキレン基を示す。]
  6.  前記Maが、下記式(Ma1)で表される基である請求項4又は5に記載のポリオルガノシルセスキオキサン。
       -Rm-Ma1   (Ma1)
    [式(Ma1)中、Rmは、直鎖又は分岐鎖状のアルキレン基を示す。Ma1は、1価のメソゲン基を示す。]
  7.  前記メソゲン基が下記式(a)で表される基である、請求項1~6のいずれか1項に記載のポリオルガノシルセスキオキサン。
       -(-M1A-XA-)n-M2A   (a)
    [式(a)中、M1Aは炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示し、M2Aは炭化水素環又は複素環の構造式から1個の水素原子を除いた基を示す。XAは単結合又は連結基を示す。nは1~3の整数を示す。]
  8.  前記メソゲン基が、下記式(a1)~(a9)で表される1価の基からなる群から選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載のポリオルガノシルセスキオキサン。
    Figure JPOXMLDOC01-appb-C000002
    (式(a1)中、Ra1及びRa2は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m1は、0~4の整数を示す。m2は、0~5の整数を示す。m1が2以上の場合、複数のRa1は、同一であっても異なっていてもよい。m2が2以上の場合、複数のRa2は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(a2)中、Ra3、Ra4及びRa5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m3及びm4は、それぞれ独立に、0~4の整数を示す。m5は、0~5の整数を示す。m3が2以上の場合、複数のRa3は、同一であっても異なっていてもよい。m4が2以上の場合、複数のRa4は、同一であっても異なっていてもよい。m5が2以上の場合、複数のRa5は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(a3)中、Ra6、Ra7及びRa8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m6は、0~4の整数を示す。m7は、0~8の整数を示す。m8は、0~5の整数を示す。m6が2以上の場合、複数のRa6は、同一であっても異なっていてもよい。m7が2以上の場合、複数のRa7は、同一であっても異なっていてもよい。m8が2以上の場合、複数のRa8は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(a4)中、Ra9、Ra10及びRa11は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m9は、0~4の整数を示す。m10は、0~8の整数を示す。m11は、0~5の整数を示す。m9が2以上の場合、複数のRa9は、同一であっても異なっていてもよい。m10が2以上の場合、複数のRa10は、同一であっても異なっていてもよい。m11が2以上の場合、複数のRa11は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(a5)中、Ra12及びRa13は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m12は、0~4の整数を示す。m13は、0~5の整数を示す。m12が2以上の場合、複数のRa12は、同一であっても異なっていてもよい。m13が2以上の場合、複数のRa13は、同一であっても異なっていてもよい。Rax及びRayは、それぞれ独立に、水素原子、メチル基、又はシアノ基である。ただし、Rax及びRayのいずれか一方は水素原子である。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(a6)中、Ra14及びRa15は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m14は、0~4の整数を示す。m15は、0~5の整数を示す。m14が2以上の場合、複数のRa14は、同一であっても異なっていてもよい。m15が2以上の場合、複数のRa15は、同一であっても異なっていてもよい。Y1及びY2は、異なって、CH又はNである。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(a7)中、Ra16及びRa17は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m16は、0~4の整数を示す。m17は、0~5の整数を示す。m16が2以上の場合、複数のRa16は、同一であっても異なっていてもよい。m17が2以上の場合、複数のRa17は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(a8)中、Ra18及びRa19は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m18は、0~4の整数を示す。m19は、0~5の整数を示す。m18が2以上の場合、複数のRa18は、同一であっても異なっていてもよい。m19が2以上の場合、複数のRa19は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000010
    (式(a9)中、Ra20及びRa21は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m20は、0~4の整数を示す。m21は、0~5の整数を示す。m20が2以上の場合、複数のRa20は、同一であっても異なっていてもよい。m21が2以上の場合、複数のRa21は、同一であっても異なっていてもよい。波線は、他の構造との結合部位を示す。)
  9.  請求項1~8のいずれか1項に記載のポリオルガノシルセスキオキサンを含む硬化性組成物。
  10.  さらに、前記ポリオルガノシルセスキオキサン以外のエポキシ化合物を含む、請求項9に記載の硬化性組成物。
  11.  前記エポキシ化合物が、メソゲン基を有するエポキシ化合物を含む、請求項10に記載の硬化性組成物。
  12.  前記エポキシ化合物が、下記式(B)で表される化合物を含む、請求項11に記載の硬化性組成物。
       E1-X1-Mb-X2-E2   (B)
    (式(B)中、Mbは2価のメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
  13.  前記Mbが、下記式(b)で表される基である、請求項12に記載の硬化性組成物。
       -(-M1B-XB-)o-M2B-  (b)
    [式(b)中、M1B、M2Bは、同一又は異なって、炭化水素環又は複素環の構造式から2個の水素原子を除いた基を示す。XBは単結合又は連結基を示す。oは1~3の整数を示す。]
  14.  前記Mbが、下記式(b1)~(b7)で表される2価の基からなる群から選ばれる少なくとも1種である請求項12に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式(b1)中、Rb1及びR2bは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRb1は、同一であっても異なっていてもよい。n2が2以上の場合、複数のRb2は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000012
    (式(b2)中、Rb3、Rb4及びRb5は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRb3は、同一であっても異なっていてもよい。n4が2以上の場合、複数のRb4は、同一であっても異なっていてもよい。n5が2以上の場合、複数のRb5は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000013
    (式(b3)中、Rb6、Rb7及びRb8は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6及びn8は、それぞれ独立に、0~4の整数を示す。n7は、0~8の整数を示す。n6が2以上の場合、複数のRb6は、同一であっても異なっていてもよい。n7が2以上の場合、複数のRb7は、同一であっても異なっていてもよい。n8が2以上の場合、複数のRb8は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000014
    (式(b4)中、Rb9及びRb10は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRb9は、同一であっても異なっていてもよい。n10が2以上の場合、複数のRb10は、同一であっても異なっていてもよい。Rbxは、水素原子、メチル基、又はシアノ基である。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000015
    (式(b5)中、Rb11及びRb12は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRb11は、同一であっても異なっていてもよい。n12が2以上の場合、複数のRb12は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000016
    (式(b6)中、Rb13及びRb14は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRb13は、同一であっても異なっていてもよい。n14が2以上の場合、複数のRb14は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000017
    (式(b7)中、Rb15及びRb16は、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRb15は、同一であっても異なっていてもよい。n16が2以上の場合、複数のRb16は、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
  15.  前記エポキシ化合物が、ビスフェノールグリシジルエーテル型エポキシ樹脂を含む、請求項10~14のいずれか1項に記載の硬化性組成物。
  16.  前記ビスフェノールグリシジルエーテル型エポキシ樹脂が、高分子量ビスフェノールグリシジルエーテル型エポキシ樹脂を含む、請求項15に記載の硬化性組成物。
  17.  前記ポリオルガノシルセスキオキサンの含有量が、硬化性組成物に含まれるエポキシ基を有する化合物の全量(100重量%)に対して1~50重量%である請求項9~16に記載の硬化性組成物。
  18.  さらに、硬化剤を含む、請求項9~17のいずれか1項に記載の硬化性組成物。
  19.  前記硬化剤が、アミン系硬化剤を含む、請求項18に記載の硬化性組成物。
  20.  前記アミン系硬化剤の含有量が、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤が有するアミノ基の活性水素が0.1~10当量となる量である請求項19に記載の硬化性組成物。
  21.  請求項9~20のいずれか1項に記載の硬化性組成物の硬化物。
  22.  請求項21記載の硬化物を備える電子機器。
PCT/JP2021/017514 2020-05-11 2021-05-07 ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物 WO2021230152A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083247 2020-05-11
JP2020083247A JP2021178888A (ja) 2020-05-11 2020-05-11 ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物

Publications (1)

Publication Number Publication Date
WO2021230152A1 true WO2021230152A1 (ja) 2021-11-18

Family

ID=78510949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017514 WO2021230152A1 (ja) 2020-05-11 2021-05-07 ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物

Country Status (3)

Country Link
JP (1) JP2021178888A (ja)
TW (1) TW202200676A (ja)
WO (1) WO2021230152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773595A (zh) * 2022-03-10 2022-07-22 曾国鸿 一种八巯基poss功能化改性三苯胺基杂化多孔材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024059283A (ja) * 2022-10-18 2024-05-01 信越化学工業株式会社 エポキシ樹脂組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302771A (ja) * 2006-05-10 2007-11-22 Shin Etsu Chem Co Ltd 封止用エポキシ樹脂組成物
JP2014152306A (ja) * 2013-02-13 2014-08-25 Ajinomoto Co Inc 樹脂組成物
WO2020230786A1 (ja) * 2019-05-13 2020-11-19 学校法人関西大学 硬化性組成物およびその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302771A (ja) * 2006-05-10 2007-11-22 Shin Etsu Chem Co Ltd 封止用エポキシ樹脂組成物
JP2014152306A (ja) * 2013-02-13 2014-08-25 Ajinomoto Co Inc 樹脂組成物
WO2020230786A1 (ja) * 2019-05-13 2020-11-19 学校法人関西大学 硬化性組成物およびその硬化物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773595A (zh) * 2022-03-10 2022-07-22 曾国鸿 一种八巯基poss功能化改性三苯胺基杂化多孔材料的制备方法
CN114773595B (zh) * 2022-03-10 2024-04-05 刘春晓 一种八巯基poss功能化改性三苯胺基杂化多孔材料的制备方法

Also Published As

Publication number Publication date
TW202200676A (zh) 2022-01-01
JP2021178888A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
CN107683299B (zh) 固化性组合物、粘接片、固化物、叠层物、粘接片的制造方法及装置
WO2021230152A1 (ja) ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物
JP2013253153A (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び光学部材
WO2016204115A1 (ja) 硬化物の製造方法、硬化物、及び前記硬化物を含む積層物
CN110637074B (zh) 粘接剂用固化性组合物、粘接片、固化物、叠层物以及装置
JP6957132B2 (ja) シルセスキオキサン
JP2017008147A (ja) ポリオルガノシルセスキオキサン、硬化性組成物、接着シート、積層物及び装置
EP2995632A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
JP7161013B2 (ja) 硬化性組成物、接着シート、硬化物、積層物、接着シートの製造方法、及び装置
US11149118B2 (en) Insulating film forming composition, insulating film, and semiconductor device provided with insulating film
JP6847597B2 (ja) シルセスキオキサン
JP6740226B2 (ja) 硬化性組成物
JP2017008145A (ja) 硬化性組成物、接着シート、積層物及び装置
WO2020230786A1 (ja) 硬化性組成物およびその硬化物
JP7069449B2 (ja) 硬化性組成物、接着シート、硬化物、積層物、及び装置
JP2019189798A (ja) エポキシ樹脂組成物、硬化物及びシート状成形体
WO2022044967A1 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、接着シート、及び積層物
KR102473850B1 (ko) 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법
KR20230171850A (ko) 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법
KR20230171849A (ko) 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법
KR20230171848A (ko) 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법
KR20230171851A (ko) 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법
TW202402865A (zh) 四甲基雙酚型環氧樹脂以及其製備方法,四甲基雙酚型環氧樹脂組成物,固化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803388

Country of ref document: EP

Kind code of ref document: A1