WO2021227595A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2021227595A1
WO2021227595A1 PCT/CN2021/077245 CN2021077245W WO2021227595A1 WO 2021227595 A1 WO2021227595 A1 WO 2021227595A1 CN 2021077245 W CN2021077245 W CN 2021077245W WO 2021227595 A1 WO2021227595 A1 WO 2021227595A1
Authority
WO
WIPO (PCT)
Prior art keywords
control element
switch
heat exchanger
cooling device
electronic control
Prior art date
Application number
PCT/CN2021/077245
Other languages
English (en)
French (fr)
Inventor
王飞
崔文娟
张心怡
董旭
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021227595A1 publication Critical patent/WO2021227595A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This application relates to the technical field of refrigeration equipment, for example, to an air conditioner.
  • the indoor space requires a high cooling capacity.
  • the compressor needs to operate at a high frequency. At this time, the current is very high and the temperature of electronic control components such as chips is high.
  • the compressor frequency is often reduced to meet the demand of the chip temperature rise, but this will lead to a decrease in the cooling effect.
  • the chip's temperature is reduced by cooling the chip, but when the chip is cooled, if the cooling temperature is lower than the ambient temperature, it may cause condensation on the surface of the chip and cause electrical safety problems. Especially when the environment is 100% relative humidity, if the cooling temperature is lower than the ambient temperature, it is more likely to cause condensation on the chip and affect the safety of the electrical appliance.
  • the embodiments of the present disclosure provide an air conditioner, so as to reduce the temperature of the electronic control element without affecting the refrigeration effect and the safety of the electrical appliance.
  • an air conditioner includes a compressor, a reversing component, an indoor heat exchanger, and an outdoor heat exchanger connected in sequence, and also includes a throttling device, which is connected in series with the indoor heat exchanger and the outdoor heat exchanger.
  • a parallel branch in parallel with the throttling device, including a first switch connected in sequence from the outdoor heat exchanger to the indoor heat exchanger, an electric control element cooling device, and The second switch; wherein the first switch is configured to conduct in the direction from the outdoor heat exchanger to the cooling device of the electronic control element, and the second switch is configured to exchange heat from the indoor The direction of the device to the cooling device of the electronic control element is conducted.
  • the refrigerant passes through the compressor, the reversing component, and the outdoor heat exchanger in turn, and is divided into two paths.
  • One way flows through the throttling device, and then flows through the indoor heat exchanger after flowing out of the throttling device to realize the air conditioner.
  • the other way flows through the first switch, flows through the first switch, and then flows through the electric control element cooling device. After the refrigerant is cooled in the outdoor heat exchanger, the temperature of the refrigerant is lower than the temperature of the electric control element.
  • the temperature of the refrigerant in the cooling device of the electronic control element is higher than the ambient temperature, so that the cooling of the electronic control element will not cause electricity Condensation on the surface of the control element improves the safety of the electronic control element, and there is no need to reduce the frequency of the compressor, which will not cause the cooling effect of the air conditioner to decrease.
  • the refrigerant passes through the compressor, the reversing component, and the indoor heat exchanger in turn, and is divided into two paths.
  • One way flows through the throttling device, and then flows through the outdoor heat exchanger after flowing out of the throttling device to realize air conditioning. Circulation of refrigerant in the device.
  • the other way flows through the second switch, and then flows through the cooling device of the electronic control element. After the refrigerant releases heat in the indoor heat exchanger, the temperature of the refrigerant is lower than the temperature of the electronic control element.
  • the temperature of the refrigerant in the cooling device of the electronic control element is higher than the ambient temperature, so that the cooling of the electronic control element will not cause Condensation on the surface of the electronic control element improves the safety of the electronic control element, and there is no need to reduce the frequency of the compressor, which will not cause the cooling effect of the air conditioner to decrease.
  • Figure 1 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure
  • Figure 2 is a partial structural diagram of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 3 is a partial structural diagram of another air conditioner provided by an embodiment of the present disclosure.
  • the directions or positional relationships indicated by the terms “upper”, “lower”, “inner”, “in”, “outer”, “front”, “rear”, etc. are based on the directions shown in the drawings or Positional relationship. These terms are mainly used to better describe the embodiments of the present disclosure and the embodiments thereof, and are not used to limit that the indicated device, element, or component must have a specific orientation, or be constructed and operated in a specific orientation. In addition, some of the above terms may be used to indicate other meanings in addition to the orientation or position relationship. For example, the term “shang” may also be used to indicate a certain attachment relationship or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure can be understood according to specific situations.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • an embodiment of the present disclosure provides an air conditioner, which includes a compressor 10, a reversing assembly 20, an indoor heat exchanger 80, a throttling device 70, an outdoor heat exchanger 30, and a parallel branch 40 connected in sequence. , The cooling device 90 of the electronic control element, the first switch 50 and the second switch 60.
  • the compressor 10 has an exhaust port and a return port;
  • the reversing assembly 20 includes first to fourth ports b, the first port a is connected to one of the second port d and the third port c, and the fourth port b is connected to The other of the second port d and the third port c is connected, the first port a is connected to the exhaust port, and the fourth port b is connected to the return port; the first end of the indoor heat exchanger 80 is connected to the second port d , The first end of the outdoor heat exchanger 30 is connected to the third interface c.
  • the first port a and the third port c are connected, and the second port d and the fourth port b are connected.
  • the first port a and the second port d are conductive
  • the third port c and the fourth port b are conductive.
  • the reversing assembly 20 may be a four-way valve. In other embodiments, the reversing assembly 20 includes multiple control valves, and the reversing is achieved by controlling the on and off of the multiple control valves. For example, the reversing assembly 20 includes a first pipe to a fourth pipe, and a first pipe to a second pipe.
  • the four pipes are connected end to end in sequence, the first pipe is connected in series with a first solenoid valve, the second pipe is connected in series with a second solenoid valve, the third pipe is connected in series with a third solenoid valve, and the fourth pipe is connected in series with a fourth solenoid valve,
  • the connection between the first pipe and the second pipe defines a first interface a
  • the connection between the first pipe and the fourth pipe defines a third interface c
  • the connection between the fourth pipe and the third pipe defines a fourth interface b.
  • connection of the third pipeline and the second pipeline defines a second interface d, the first solenoid valve and the third solenoid valve are opened or closed at the same time, and the second solenoid valve and the fourth solenoid valve are opened or closed at the same time.
  • the throttling device 70 is connected in series between the second end of the indoor heat exchanger 80 and the second end of the outdoor heat exchanger 30.
  • the throttling device 70 has the effect of reducing pressure.
  • the throttling device 70 is a capillary tube or an electronic expansion valve.
  • the number of throttling devices can be one to reduce the cost of the air conditioner.
  • the parallel branch 40 is connected in parallel with the throttle device 70, in other words, the parallel branch 40 is connected in parallel on both sides of the throttle device 70.
  • the electric control element cooling device 90, the first switch 50 and the second switch 60 are connected in series on the parallel branch 40.
  • the electronic control element cooling device 90 is provided on the first switch 50 and the second switch 60, that is, the first switch 50 and the second switch 60 are respectively located on opposite sides of the electronic control element cooling device 90, and the first switch 50 is located on the electronic control element
  • the cooling device 90 is close to the second end of the outdoor heat exchanger 30, and the first switch 50 is configured to be able to conduct in the direction from the outdoor heat exchanger 30 to the cooling device 90 of the electric control element.
  • the second switch 60 is located on the side of the electronic control element cooling device 90 close to the second end of the indoor heat exchanger 80, and the second switch 60 is configured to be able to conduct in the direction from the indoor heat exchanger 80 to the electronic control element cooling device 90 .
  • the cooling device 90 of the electronic control element has a refrigerant circulation channel, and the refrigerant circulation channel communicates with the parallel branch 40.
  • the electronic control element cooling device 90 is arranged adjacent to the electronic control element of the air conditioner, and the refrigerant flowing into the electronic control element cooling device 90 dissipates heat to the electronic control element.
  • the electronic control element can be a chip or other electronic control element, especially one that is easy to generate heat. Electronic control components.
  • the refrigerant cycle process is: high temperature and high pressure gas discharged from the compressor 10
  • the refrigerant passes through the reversing assembly 20 and enters the outdoor heat exchanger 30.
  • the refrigerant is condensed in the outdoor heat exchanger 30 to dissipate heat.
  • the temperature of the condensed refrigerant is slightly higher than the outdoor ambient temperature and lower than the temperature of the electronic control element.
  • the refrigerant enters the parallel branch 40, passes through the first switch 50, and enters the electronic control element cooling device 90, absorbing heat and cooling the electronic control element, and because the refrigerant entering the electronic control element cooling device 90 does not pass through the throttling device 70
  • the temperature of the refrigerant is higher than the ambient temperature, so that condensation will not occur on the surface of the electronic control element during the process of cooling the electronic control element.
  • Another part of the refrigerant enters the throttling device 70 for throttling, flows out of the throttling device 70 and then flows into the indoor heat exchanger 80 to evaporate, cool the room air, and evaporate into a low-temperature and low-pressure gas refrigerant, and finally a gaseous refrigerant After the reversing assembly 20, it returns to the compressor 10 to complete the refrigeration cycle.
  • the refrigerant cycle process is: the high-temperature and high-pressure gas discharged from the compressor 10
  • the refrigerant passes through the reversing assembly 20 and enters the indoor heat exchanger 80.
  • the refrigerant condenses and dissipates heat in the indoor heat exchanger 80 to heat the room air. After flowing out of the indoor heat exchanger 80, it is divided into two paths, one of which passes through the first
  • the second switch 60 enters the electronic control element cooling device 90 to cool the electronic control element.
  • the temperature of the refrigerant entering the electronic control element cooling device 90 is higher than the ambient temperature and lower than the temperature of the electronic control element, so that the temperature of the electronic control element can be lowered, and it can also ensure that no condensation occurs on the surface of the electronic control element.
  • the other way enters the throttling device 70 for throttling. After flowing out of the throttling device 70, it enters the outdoor heat exchanger 30 to evaporate and absorb heat. The evaporated refrigerant passes through the reversing assembly 20 and returns to the compressor 10 to complete the manufacturing process. Thermal cycling.
  • the control element cooling device 90 can cool the electronic control element well, and at the same time, because the refrigerant entering the electronic control element cooling device 90 does not pass through the throttling device 70, the temperature of the refrigerant in the electronic control element cooling device 90 The temperature is still higher than the outdoor environment, and there will be no condensation on the surface of the electronic control element, ensuring the reliability of the electronic control.
  • the refrigerant condensed by the indoor heat exchanger 80 passes through the electronic control element cooling device 90, which can cool the electronic control element well, and at the same time, because of the refrigerant entering the electronic control element cooling device 90 Without the throttling device 70, the temperature of the refrigerant in the cooling device 90 for the electronic control element remains higher than the outdoor ambient temperature, and no condensation occurs on the surface of the electronic control element, ensuring the reliability of the electronic control.
  • the compressor frequency can be increased to make the air conditioner output more cooling capacity.
  • the air conditioner according to the embodiment of the present disclosure can not only have a good cooling effect on the electric control element during cooling and heating operation, but also ensure that the air conditioner can operate for a long time, and at the same time, it can also prevent condensation from affecting the reliability of the electric control element. sex.
  • the first switch 50 is configured in a direction from the second end of the outdoor heat exchanger 30 to the cooling device 90 of the electric control element.
  • One-way conduction in other words, the direction from the electric control element cooling device 90 to the outdoor heat exchanger 30 cannot be conducted.
  • the refrigerant flowing out of the second end of the outdoor heat exchanger 30 can enter the electronic control element cooling device 90 through the first switch 50, and the electronic control element cooling device 90 cools the temperature of the electronic control element, but the electronic control element The refrigerant in the cooling device 90 cannot flow to the second end of the outdoor heat exchanger 30 through the first switch 50.
  • the first switch 50 may be a one-way valve or a two-way valve.
  • the first switch 50 is configured to be able to conduct in the direction from the second end of the outdoor heat exchanger 30 to the cooling device 90 of the electric control element, and also to be able to conduct in the direction from the electric
  • the control element cooling device 90 is connected to the outdoor heat exchanger 30, so that in the heating mode, the refrigerant flowing into the electronic control element cooling device 90 through the second switch 60 can flow out of the first switch 50 and flow into the outdoor heat exchanger.
  • the refrigerant in the cooling device of the electronic control element can flow out to the first switch 50, the refrigerant can continuously flow into the cooling device 90 of the electronic control element through the second switch 60, so that the cooling device 90 of the electronic control element can flow into the cooling device 90.
  • the refrigerant is constantly updated to enhance the heat dissipation effect of the electronic control components.
  • the fluid flow rate per unit time is less than that from the second end of the outdoor heat exchanger 30 to the cooling device of the electric control element 30
  • the fluid flow rate per unit time when the direction of 90 is turned on that is, when the first switch 50 is turned on from the cooling device 90 of the electronic control element to the outdoor heat exchanger 30, the first switch 50 has a throttling effect.
  • the first switch 50 is provided with a first flow channel 504 and a second flow channel 503, the flow area of the first flow channel 504 is larger than the flow area of the second flow channel 503, the first flow channel and the second flow channel
  • the channel can be two independent channels, or the second channel is a part of the first channel.
  • the unit time The fluid flow rate inside is smaller than the fluid flow rate per unit time when the direction from the second end of the outdoor heat exchanger 30 to the electric control element cooling device 90 is turned on.
  • the area of the cross section of the pipeline perpendicular to the flow direction is the flow area.
  • the first switch 50 If the first switch 50 is turned on in the direction from the cooling device 90 of the electronic control element to the second end of the outdoor heat exchanger 30, the first switch 50 does not have a throttling effect, that is to say, the first switch 50 is connected from the electronic control element
  • the direction of the cooling device 90 to the second end of the outdoor heat exchanger 30 is completely conductive, and the direction from the second end of the outdoor heat exchanger 30 to the cooling device 90 of the electronic control element is also completely conductive, so that in the heating mode, The refrigerant flowing out of the second end of the indoor heat exchanger 80 completely or almost completely enters the parallel branch 40 and will not flow through the throttling device 70.
  • the refrigerant does not pass through the throttling effect of the throttling device 70, the refrigerant exchanges heat outdoors Evaporation is not allowed in the device 30, and heating of the air conditioner cannot be realized. Therefore, when the first switch 50 is conductive in the direction from the cooling device 90 of the electronic control element to the second end of the outdoor heat exchanger 30, it has a throttling effect and is in a partially conductive state, which makes the indoor heat exchanger 80 flow out. Part of the refrigerant can flow into the throttling device 70 for throttling, realizing normal heating of the air conditioner.
  • the first switch 50 may be a one-way throttle valve or an electronic expansion valve.
  • the fluid flow rate per unit time when the first switch 50 is turned on from the cooling device 90 of the electronic control element to the outdoor heat exchanger 30 is less than the fluid flow rate per unit time of the throttling device 70, that is, the first switch 50 when the direction from the cooling device 90 of the electric control element to the outdoor heat exchanger 30 is turned on, the degree of throttling is greater than the degree of throttling of the throttling device 70. Further, the first switch 50 is switched from the cooling device 90 to the electric control element.
  • the degree of throttling when the direction of the outdoor heat exchanger 30 is turned on is much greater than the degree of throttling of the throttling device 70. In this way, more refrigerant flows through the throttling device 70, and a small amount of refrigerant enters the parallel branch 40, ensuring the cooling and heating effect of the air conditioner.
  • the throttling device is provided with a throttling passage, and the refrigerant enters the throttling device from the inlet of the throttling passage and flows out from the outlet of the throttling passage.
  • the flow area of the second flow passage 503 is smaller than the flow area of the throttling passage in the throttling device, so that the first switch 50 is turned on in the direction from the electric control element cooling device 90 to the outdoor heat exchanger 30 per unit time
  • the fluid flow rate of is smaller than the fluid flow rate of the throttling device 70 per unit time.
  • the second switch 60 is configured to be unidirectionally conducted in the direction from the indoor heat exchanger 80 to the cooling device 90 for the electric control element.
  • the refrigerant flowing out of the second end of the indoor heat exchanger 80 can enter the electronic control element cooling device 90 through the second switch 60, and the electronic control element cooling device 90 cools the temperature of the electronic control element, but the electronic control The refrigerant in the element cooling device 90 cannot flow to the second end of the indoor heat exchanger 80 through the second switch 60.
  • the second switch 60 may be a one-way valve or a two-way valve.
  • the second switch 60 is configured to be able to conduct in the direction from the second end of the indoor heat exchanger 80 to the cooling device 90 of the electric control element, and also to be able to conduct in the direction from the electric
  • the control element cooling device 90 is conductive to the second end of the indoor heat exchanger 80.
  • the refrigerant flowing into the electronic control element cooling device 90 through the first switch 50 can flow out of the second switch 60 and flow into the indoor heat exchanger 80, because the refrigerant in the electronic control element cooling device can flow out to
  • the second switch 60 allows the refrigerant to continuously flow into the electronic control element cooling device 90 through the first switch 50, so that the refrigerant in the electronic control element cooling device 90 is continuously updated, and the heat dissipation effect of the electronic control element is enhanced.
  • the fluid flow rate per unit time is less than that from the second end of the indoor heat exchanger 80 to the electric control element cooling device 90
  • the fluid flow rate per unit time when the direction is turned on that is to say, when the second switch 60 is turned on from the cooling device 90 of the electronic control element to the second end of the indoor heat exchanger 80, the second switch 60 has a throttling effect. .
  • the second switch is provided with a third flow channel 603 and a fourth flow channel 604.
  • the flow area of the third flow channel 603 is larger than the flow area of the fourth flow channel 604.
  • the four runners can be two independent runners, or the third runner is a part of the fourth runner.
  • the second switch is also configured to conduct in the direction from the cooling device of the electronic control element to the indoor heat exchanger, wherein the second switch is in a state of being conducted in the direction from the indoor heat exchanger to the cooling device of the electronic control element to cool
  • the refrigerant flows along the third flow path 603, and the refrigerant flows along the fourth flow path 604 when the second switch is turned on from the cooling device of the electronic control element to the indoor heat exchanger.
  • the second switch 60 Since the flow area of the third flow passage 603 is larger than the flow area of the fourth flow passage 604, the second switch 60 is turned on in the direction from the cooling device 90 of the electronic control element to the second end of the indoor heat exchanger 80 per unit time.
  • the fluid flow rate inside is smaller than the fluid flow rate per unit time when the direction from the second end of the indoor heat exchanger 80 to the electric control element cooling device 90 is turned on.
  • the second switch 60 If the second switch 60 is turned on in the direction from the cooling device 90 of the electronic control element to the second end of the indoor heat exchanger 80, the second switch 60 does not have a throttling effect, that is to say, the second switch 60 is connected from the electronic control element
  • the direction from the cooling device 90 to the second end of the indoor heat exchanger 80 is completely conductive, and the direction from the second end of the indoor heat exchanger 80 to the cooling device 90 of the electronic control element is also completely conductive, so that in the cooling mode, the outdoor The refrigerant flowing out of the second end of the heat exchanger 30 completely or almost completely enters the parallel branch 40 and will not flow through the throttling device 70.
  • the refrigerant Since the refrigerant has not passed through the throttling effect of the throttling device 70, the refrigerant is in the indoor heat exchanger 80 can not evaporate, can not realize the refrigeration of air conditioner. Therefore, when the second switch 60 is turned on from the cooling device 90 of the electronic control element to the second end of the indoor heat exchanger 80, it has a throttling effect and is in a partially conductive state, so that the flow of the outdoor heat exchanger 30 Part of the refrigerant can flow into the throttling device 70 for throttling, realizing normal heating of the air conditioner.
  • the second switch 60 is a one-way throttle valve or an electronic expansion valve.
  • the fluid flow rate per unit time when the second switch 60 is turned on from the electronic control element cooling device 90 to the indoor heat exchanger 80 is smaller than the fluid flow rate per unit time of the throttling device 70. That is, the throttling degree of the second switch 60 when it is turned on from the cooling device 90 of the electric control element to the indoor heat exchanger 80 is greater than the throttling degree of the throttling device 70. Further, the second switch 60 is connected from the electric control element The degree of throttling when the direction from the cooling device 90 to the indoor heat exchanger 80 is conducted is much greater than the degree of throttling of the throttling device 70. In this way, more refrigerant flows through the throttling device 70, and a small amount of refrigerant enters the parallel branch 40, ensuring the cooling and heating effect of the air conditioner.
  • the flow area of the fourth flow passage 604 is smaller than the flow area of the throttling passage in the throttling device, so that the second switch 60 is turned on in the direction from the electronic control element cooling device 90 to the indoor heat exchanger 80 in a unit time
  • the fluid flow rate of is smaller than the fluid flow rate of the throttling device 70 per unit time.
  • the flow direction of the refrigerant will be described.
  • the direction to the electric control element cooling device 90 is unidirectionally conducted, and the second switch 60 is configured to be unidirectionally conducted from the second end of the indoor heat exchanger 80 to the electric control element cooling device 90.
  • the first end 501 of the first switch is defined as the end of the first switch 50 connected to the cooling device 90 of the electronic control element, and the second end 502 of the first switch is connected to the first end 701 of the throttling device.
  • the first end 601 of the second switch is defined as the end of the second switch 60 connected to the cooling device 90 of the electronic control element, and the second end 602 of the second switch is the end connected to the second end 702 of the throttling device .
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the reversing assembly 20 and is cooled by the outdoor heat exchanger 30.
  • the temperature of the refrigerant flowing out of the second end of the outdoor heat exchanger 30 is higher than the ambient temperature.
  • the agent is divided into two paths, one way enters the throttling device 70, and after flowing out of the throttling device 70, it enters the indoor heat exchanger 80 to achieve cooling.
  • the other way enters the parallel branch 40 and enters the electronic control element cooling device 90 through the first switch 50. Since the refrigerant at the second end 602 of the second switch is throttled and reduced by the throttle device 70, the second The refrigerant pressure at the second end 602 of the switch is low.
  • the refrigerant pressure in the first switch 50 is higher than the refrigerant pressure in the second switch 60, so that the refrigerant can be filled with the electric control element through the first switch 50
  • the cooling device 90 does not flow into the electronic control element cooling device 90 through the second switch 60.
  • the refrigerant in the electronic control element cooling device 90 flows in through the first switch 50 without passing through the throttling device 70, and because of the With the unidirectional conduction of the two switches 60, the refrigerant in the electric control element cooling device 90 cannot flow out through the second switch 60.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the reversing assembly 20 and is condensed and dissipated by the indoor heat exchanger 80.
  • the temperature of the refrigerant flowing out of the second end of the indoor heat exchanger 80 is higher than the ambient temperature.
  • the refrigerant is divided into two paths, one way enters the throttling device 70, and after flowing out of the throttling device 70, it enters the outdoor heat exchanger 30 to realize heating.
  • the other path enters the parallel branch 40 and enters the electronic control element cooling device 90 through the second switch 60.
  • the refrigerant at the second end 502 of the first switch is throttled and reduced by the throttle device 70, the first The refrigerant pressure at the second end 502 of the switch is low. Therefore, the refrigerant pressure in the second switch 60 is higher than the refrigerant pressure in the first switch 50, so that the refrigerant can be filled with the electronic control element through the second switch 60
  • the cooling device 90 does not flow into the electronic control element cooling device 90 through the first switch 50. In other words, the refrigerant in the electronic control element cooling device 90 flows in through the second switch 60 without passing through the throttling device 70.
  • One-way conduction of a switch 50 the refrigerant in the electronic control element cooling device 90 cannot flow out through the first switch 50.
  • the temperature of the refrigerant flowing out of the second end of the outdoor heat exchanger 30 is higher than the ambient temperature, and the refrigerant is divided into two paths, one path It enters the parallel branch 40 through the first switch 50 and enters the electric control element cooling device 90, and flows out of the parallel branch 40 through the second switch 60.
  • the second switch 60 moves along the line from the electric control element cooling device 90 to the indoor heat exchanger 80.
  • the direction of the second end can be conducted, and it also has a throttling effect, so that another refrigerant can enter the throttling device 70 through the first end 701 of the throttling device.
  • the second end 702 of the throttling device flows out, and the refrigerant flowing out of the second end 702 of the throttling device merges with the refrigerant flowing out of the second switch 60 and then enters the second end of the indoor heat exchanger 80 to complete the refrigeration cycle of the air conditioner.
  • the temperature of the refrigerant flowing out of the second end of the indoor heat exchanger 80 is higher than the ambient temperature, and the refrigerant is divided into two paths.
  • One way enters the parallel branch 40 through the second switch 60, enters the electric control element cooling device 90, and flows out of the parallel branch 40 through the first switch 50, and the first switch 50 flows from the electric control element cooling device 90 to the outdoor heat exchanger 30.
  • the direction of the second end of the throttling device can be conducted, and it also has a throttling effect, so that another refrigerant can enter the throttling device 70 through the second end 702 of the throttling device.
  • the first end 701 of the device flows out, and the refrigerant flowing out of the first end 701 of the throttling device merges with the refrigerant flowing out of the first switch 50 and enters the second end of the outdoor heat exchanger 30 to complete the heating cycle of the air conditioner .
  • one of the first switch 50 and the second switch 60 may be a one-way valve, and the other may be a one-way throttle valve or an electronic expansion valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及制冷设备技术领域,公开一种空调器,包括:节流装置,串联在室内换热器和室外换热器之间;并联支路,与节流装置并联,包括从室外换热器到室内换热器的方向依次连接的第一开关、电控元件冷却装置和第二开关;其中,第一开关被配置为沿从室外换热器到电控元件冷却装置的方向导通,第二开关被配置为沿从室内换热器到电控元件冷却装置的方向导通。电控元件冷却装置在对电控元件降温时,不会导致电控元件表面的凝露,电控元件的安全性提高,而且不需要降低压缩机的频率,不会导致空调器的制冷效果降低。

Description

空调器
本申请基于申请号为202021577706.1、申请日为2020年07月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及制冷设备技术领域,例如涉及一种空调器。
背景技术
高温环境下,室内空间所需制冷量高,对于变频空调器需要压缩机高频率运行,此时电流非常高,电控元件例如芯片温度高。
一些技术中,为了避免芯片被烧毁,往往将压缩机频率降低以满足芯片温升的需求,但这会导致制冷效果的下降。
另一些技术中,采用对芯片冷却的方式降低芯片的温度,但对芯片冷却时,如果冷却温度如果小于环境温度,有可能会使芯片表面凝露而导致电器安全问题。尤其是在环境为100%相对湿度时,冷却温度如果小于环境温度,更容易导致芯片上产生凝露而影响电器安全性。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种空调器,以在不影响制冷效果和电器安全性的前提下,实现对电控元件的降温。
根据本公开实施例提供的一种空调器,包括依次连接的压缩机、换向组件、室内换热器和室外换热器,还包括:节流装置,串联在所述室内换热器和所述室外换热器之间;并联支路,与所述节流装置并联,包括从所述室外换热器到所述室内换热器的方向依次连接的第一开关、电控元件冷却装置和第二开关;其中,所述第一开关被配置为沿从所述室外换热器到所述电控元件冷却装置的方向导通,所述第二开关被配置为沿从所述室内换热器到所述电控元件冷却装置的方向导通。
本公开实施例提供的空调器,可以实现以下技术效果:
在制冷模式下,制冷剂依次经压缩机、换向组件、室外换热器后,分为两路,一路流经节流装置,从节流装置流出后流经室内换热器,实现空调器制冷剂的循环。另一路流经第一开关,流经第一开关后流经电控元件冷却装置,制冷剂在室外换热器中冷却后,制冷 剂温度低于电控元件的温度,可以对电控元件进行降温,又因为流入电控元件冷却装置的制冷剂未经过节流装置节流,因此电控元件冷却装置中的制冷剂温度高于环境温度,从而在对电控元件降温时,不会导致电控元件表面的凝露,电控元件的安全性提高,而且不需要降低压缩机的频率,不会导致空调器的制冷效果降低。
在制热模式下,制冷剂依次经压缩机、换向组件、室内换热器后,分为两路,一路流经节流装置,从节流装置流出后流经室外换热器,实现空调器制冷剂的循环。另一路流经第二开关,流经第二开关后流经电控元件冷却装置,制冷剂在室内换热器中放热后,制冷剂温度低于电控元件的温度,可以对电控元件进行降温,又因为流入电控元件冷却装置的制冷剂未经过节流装置节流,因此电控元件冷却装置中的制冷剂温度高于环境温度,从而在对电控元件降温时,不会导致电控元件表面的凝露,电控元件的安全性提高,而且不需要降低压缩机的频率,不会导致空调器的制冷效果降低。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个空调器的结构示意图;
图2是本公开实施例提供的一个空调器局部的结构示意图;
图3是本公开实施例提供的另一个空调器局部的结构示意图。
附图标记:
10压缩机;20换向组件;a第一接口;d第二接口;c第三接口;b第四接口;30室外换热器;40并联支路;50第一开关;501第一开关的第一端;502第一开关的第二端;503第二流道;504第一流道;60第二开关;601第二开关的第一端;602第二开关的第二端;603第三流道;604第四流道;70节流装置;701节流装置的第一端;702节流装置的第二端;80室内换热器;90电控元件冷却装置。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在 适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
如图1所示,本公开实施例提供一种空调器,包括依次连接的压缩机10、换向组件20、室内换热器80、节流装置70和室外换热器30、并联支路40、电控元件冷却装置90、第一开关50和第二开关60。
压缩机10具有排气口和回气口;换向组件20包括第一至第四接口b,第一接口a与第二接口d和第三接口c中的其中一个导通,第四接口b与第二接口d和第三接口c中的另一个导通,第一接口a与排气口相连,第四接口b与回气口相连;室内换热器80的第一端与第二接口d相连,室外换热器30的第一端与第三接口c相连。在空调器制冷运行时,第一接口a与第三接口c导通且第二接口d和第四接口b导通。在空调器制热运行时,第一接口a和第二接口d导通且第三接口c和第四接口b导通。
在一些实施例中,换向组件20可以为四通阀。在另一些实施例中,换向组件20包括多个控制阀,通过控制多个控制阀的通断实现换向,例如,换向组件20包括第一管道至第四管道,第一管道至第四管道依次首尾相连,第一管道上串联有第一电磁阀,第二管道上串联有第二电磁阀,第三管道上串联有第三电磁阀,第四管道上串联有第四电磁阀,第一管道和第二管道的连接处限定出第一接口a,第一管道和第四管道的连接处限定出第三接口c,第四管道和第三管道的连接处限定出第四接口b,第三管道和第二管道的连接处限定出第二接口d,第一电磁阀和第三电磁阀同时开启或关闭,第二电磁阀和第四电磁阀同时开启或关闭。
节流装置70串联在室内换热器80的第二端和室外换热器30的第二端之间。节流装 置70降压的作用,可选地,节流装置70为毛细管或电子膨胀阀。节流装置的数量可以为一个,以降低空调器的成本。
并联支路40与节流装置70并联,换言之,并联支路40并联在节流装置70的两侧。电控元件冷却装置90、第一开关50和第二开关60串联在并联支路40上。
电控元件冷却装置90设置在第一开关50和第二开关60,即第一开关50和第二开关60分别位于电控元件冷却装置90相对的两侧,且第一开关50位于电控元件冷却装置90靠近室外换热器30的第二端的一侧,第一开关50被配置为能够沿从室外换热器30到电控元件冷却装置90的方向导通。第二开关60位于电控元件冷却装置90靠近室内换热器80的第二端的一侧,第二开关60被配置为能够沿从室内换热器80到电控元件冷却装置90的方向导通。
电控元件冷却装置90内具有制冷剂流通通道,制冷剂流通通道与并联支路40相连通。
电控元件冷却装置90邻近空调器的电控元件设置,通过流入电控元件冷却装置90中的制冷剂对电控元件散热,电控元件可以为芯片或其它电控元件,尤其是易发热的电控元件。
空调器制冷运行时,换向组件20的第一接口a和第三接口c导通,第二接口d和第四接口b导通,制冷剂循环流程是:压缩机10排出的高温高压的气体制冷剂经过换向组件20,进入室外换热器30,制冷剂在室外换热器30内冷凝散热,冷凝后的制冷剂温度略高于室外环境温度又低于电控元件的温度,一部分制冷剂进入到并联支路40中,经过第一开关50进入电控元件冷却装置90中,对电控元件吸热降温,而且因为进入电控元件冷却装置90中的制冷剂没有经过节流装置70的节流,制冷剂温度高于环境温度,从而在对电控元件降温的过程中电控元件表面不会产生凝露。另一部分制冷剂进入到节流装置70中进行节流,从节流装置70流出后流入室内换热器80内蒸发,对房间空气进行降温,蒸发成低温低压的气体制冷剂,最后气态制冷剂经换向组件20,回到压缩机10,完成制冷循环。
空调器制热时,换向组件20的第一接口a和第二接口d导通,第四接口b和第三接口c导通,制冷剂循环流程是:压缩机10排出的高温高压的气体制冷剂经过换向组件20,进入室内换热器80,制冷剂在室内换热器80内冷凝散热,对房间空气进行升温,从室内换热器80流出后分为两路,其中一路经第二开关60进入电控元件冷却装置90对电控元件进行冷却降温,由于进入电控元件冷却装置90中的制冷剂在室内换热器80中进行冷凝散热且未流经节流装置70,因此进入电控元件冷却装置90中的制冷剂温度高于环境温度又低于电控元件的温度,从而既能够对电控元件进行降温,还能够保证电控元件表面不会产生凝露。另一路进入节流装置70进行节流,从节流装置70流出后,进入室外换热器30进行蒸发吸热,蒸发之后的制冷剂,经过换向组件20,回到压缩机10,完成制热循环。
根据本公开实施例的空调器,通过设置并联支路及第一开关50、第二开关60和电控元件冷却装置90,制冷循环时,经过室外换热器30冷凝后的制冷剂,经过电控元件冷却 装置90,可以对电控元件进行很好的降温,同时又因为进入电控元件冷却装置90中的制冷剂没有经过节流装置70,电控元件冷却装置90中的制冷剂的温度仍保持高于室外环境温度,电控元件表面不会有凝露产生,保证电控可靠性。
制热循环时,经过室内换热器80冷凝后的制冷剂,经过电控元件冷却装置90,可以对电控元件进行很好的降温,同时又因为进入电控元件冷却装置90中的制冷剂没有经过节流装置70,电控元件冷却装置90中的制冷剂的温度仍保持高于室外环境温度,电控元件表面不会有凝露水产生,保证电控可靠性。利用空调器自身的循环系统去冷却电控元件,使电控元件在高负载情况下所产生的热量能有效地散出去,此时可以提升压缩机频率使得空调器输出更大的制冷量。
根据本公开实施例的空调器,不仅在制冷和制热运行时可以对电控元件起到很好的降温作用,保证了空调器可以长期运行,同时还可以避免凝露影响电控元件的可靠性。
对于第一开关50的具体形式,在一个具体的实施例中,如图2所示,第一开关50被配置为沿从室外换热器30的第二端到电控元件冷却装置90的方向单向导通,换言之,从电控元件冷却装置90到室外换热器30的方向不能导通。
在制冷模式下,室外换热器30的第二端流出的制冷剂能够通过第一开关50进入电控元件冷却装置90,通过电控元件冷却装置90对电控元件进行降温,但电控元件冷却装置90中的制冷剂无法通过第一开关50流向室外换热器30的第二端。
第一开关50可以为单向阀,也可以为二通阀。
在另一个具体的实施例中,如图3所示,第一开关50被配置为能够从室外换热器30的第二端到电控元件冷却装置90的方向导通,还能够沿从电控元件冷却装置90到室外换热器30的方向导通,这样制热模式下,经第二开关60流入电控元件冷却装置90中的制冷剂能够从第一开关50中流出,流入室外换热器30,由于电控元件冷装置中的制冷剂能够流出到第一开关50,从而制冷剂能够经过第二开关60源源不断的流入电控元件冷却装置90,使得电控元件冷却装置90中的制冷剂不断更新,增强对电控元件的散热效果。
第一开关50在从电控元件冷却装置90到室外换热器30的第二端的方向导通时,单位时间内的流体流量小于从室外换热器30的第二端到电控元件冷却装置90的方向导通时单位时间内的流体流量,也就是说第一开关50在从电控元件冷却装置90到室外换热器30的方向导通时,第一开关50具有节流作用。
如图3所示,第一开关50内设有第一流道504和第二流道503,第一流道504的通流面积大于第二流道503的通流面积,第一流道和第二流道可以是两个相互独立的流道,还可以是第二流道是第一流道的一部分。第一开关在从室外换热器到电控元件冷却装置的方向导通的状态下,制冷剂沿第一流道504流动,第一开关在从电控元件冷却装置到室外换热器的方向导通的状态下,制冷剂沿第二流道503流动。由于第二流道503的通流面积小于第一流道504的通流面积,从而第一开关50在从电控元件冷却装置90到室外换热器30的第二端的方向导通时,单位时间内的流体流量小于从室外换热器30的第二端到电控 元件冷却装置90的方向导通时单位时间内的流体流量。其中,流体在管道中流动时,管道垂直于流动方向的截面的面积为通流面积。
如果第一开关50在从电控元件冷却装置90到室外换热器30的第二端的方向导通时,第一开关50不具有节流作用,也就是说第一开关50在从电控元件冷却装置90到室外换热器30的第二端的方向完全导通,在从室外换热器30的第二端到电控元件冷却装置90的方向也是完全导通,这样在制热模式下,室内换热器80的第二端流出的制冷剂完全或几乎完全进入并联支路40,不会流经节流装置70,由于未经过节流装置70的节流作用,制冷剂在室外换热器30中不能蒸发,无法实现空调的制热。因此,第一开关50在从电控元件冷却装置90到室外换热器30的第二端的方向导通时,具有节流作用,为部分导通的状态,这样使得室内换热器80流出的部分制冷剂能够流入节流装置70节流,实现空调的正常制热。
第一开关50可以为单向节流阀或电子膨胀阀。
可选地,第一开关50在从电控元件冷却装置90到室外换热器30的方向导通时单位时间内的流体流量小于节流装置70在单位时间内的流体流量,即第一开关50在从电控元件冷却装置90到室外换热器30的方向导通时的节流程度大于节流装置70的节流程度,进一步地,第一开关50在从电控元件冷却装置90到室外换热器30的方向导通时的节流程度远大于节流装置70的节流程度。这样使得更多的制冷剂流经节流装置70,少量制冷剂进入并联支路40,保证空调器制冷制热的效果。
节流装置中设有节流通道,制冷剂从节流通道的入口进入节流装置,并从节流通道的出口流出。第二流道503的通流面积小于节流装置中的节流通道的通流面积,使得第一开关50在从电控元件冷却装置90到室外换热器30的方向导通时单位时间内的流体流量小于节流装置70在单位时间内的流体流量。
关于第二开关60的形式,在一个具体的实施例中,如图2所示,第二开关60为被配置为沿从室内换热器80到电控元件冷却装置90的方向单向导通。
在制热模式下,室内换热器80的第二端流出的制冷剂能够通过第二开关60进入电控元件冷却装置90,通过电控元件冷却装置90对电控元件进行降温,但电控元件冷却装置90中的制冷剂无法通过第二开关60流向室内换热器80的第二端。
第二开关60可以为单向阀,也可以为二通阀。
在另一个具体的实施例中,如图3所示,第二开关60被配置为能够从室内换热器80的第二端到电控元件冷却装置90的方向导通,还能够沿从电控元件冷却装置90到室内换热器80的第二端的方向导通。这样制冷模式下,经第一开关50流入电控元件冷却装置90中的制冷剂能够从第二开关60中流出,流入室内换热器80,由于电控元件冷装置中的制冷剂能够流出到第二开关60,从而制冷剂能够经过第一开关50源源不断的流入电控元件冷却装置90,使得电控元件冷却装置90中的制冷剂不断更新,增强对电控元件的散热效果。
第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向导通时单位时间内的流体流量小于从室内换热器80的第二端到电控元件冷却装置90的方向导通时单位时间内的流体流量,也就是说第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向导通时,第二开关60具有节流作用。
如图3所示,第二开关内设有第三流道603和第四流道604,第三流道603的通流面积大于第四流道604的通流面积,第三流道和第四流道可以是两个相互独立的流道,还可以是第三流道是第四流道的一部分。第二开关还被配置为沿从电控元件冷却装置到室内换热器的方向导通,其中,第二开关在从室内换热器到电控元件冷却装置的方向导通的状态下,制冷剂沿第三流道603流动,第二开关在从电控元件冷却装置到室内换热器的方向导通的状态下,制冷剂沿第四流道604流动。由于第三流道603的通流面积大于第四流道604的通流面积,使得第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向导通时单位时间内的流体流量小于从室内换热器80的第二端到电控元件冷却装置90的方向导通时单位时间内的流体流量。
如果第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向导通时,第二开关60不具有节流作用,也就是说第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向完全导通,在从室内换热器80的第二端到电控元件冷却装置90的方向也是完全导通,这样在制冷模式下,室外换热器30的第二端流出的制冷剂完全或几乎完全进入并联支路40,不会流经节流装置70,由于未经过节流装置70的节流作用,制冷剂在室内换热器80中不能蒸发,无法实现空调的制冷。因此,第二开关60在从电控元件冷却装置90到室内换热器80的第二端的方向导通时,具有节流作用,为部分导通的状态,这样使得室外换热器30流出的部分制冷剂能够流入节流装置70节流,实现空调的正常制热。
可选地,第二开关60为单向节流阀或电子膨胀阀。
可选地,第二开关60在从电控元件冷却装置90到室内换热器80的方向导通时单位时间内的流体流量小于节流装置70在单位时间内的流体流量。即第二开关60在从电控元件冷却装置90到室内换热器80的方向导通时的节流程度大于节流装置70的节流程度,进一步地,第二开关60在从电控元件冷却装置90到室内换热器80的方向导通时的节流程度远大于节流装置70的节流程度。这样使得更多的制冷剂流经节流装置70,少量制冷剂进入并联支路40,保证空调器制冷制热的效果。
第四流道604的通流面积小于节流装置中的节流通道的通流面积,使得第二开关60在从电控元件冷却装置90到室内换热器80的方向导通时单位时间内的流体流量小于节流装置70在单位时间内的流体流量。
下面以第一开关50和第二开关60均为单向阀为例,如图1所示,对制冷剂的流动方向进行说明,第一开关50被构成从室外换热器30的第二端到电控元件冷却装置90的方向单向导通,第二开关60被构成从室内换热器80的第二端到电控元件冷却装置90的方 向单向导通。
为方便描述,将第一开关的第一端501定义为第一开关50上与电控元件冷却装置90相连的一端,第一开关的第二端502为与节流装置的第一端701相连的一端,第二开关的第一端601定义为第二开关60上与电控元件冷却装置90相连的一端,第二开关的第二端602为与节流装置的第二端702相连的一端。
制冷模式下,压缩机10排出的高温高压制冷剂通过换向组件20,并经室外换热器30冷却后,从室外换热器30的第二端流出的制冷剂温度高于环境温度,制冷剂分为两路,一路进入节流装置70,从节流装置70流出后进入室内换热器80,实现制冷。另一路进入并联支路40,经第一开关50进入电控元件冷却装置90,由于第二开关的第二端602处的制冷剂是经过节流装置70节流降压后的,所以第二开关的第二端602处的制冷剂压力低,因此,第一开关50中的制冷剂压力高于第二开关60中的制冷剂压力,这样,制冷剂可以通过第一开关50充满电控元件冷却装置90而不会通过第二开关60流入电控元件冷却装置90,换言之,电控元件冷却装置90中的制冷剂是经第一开关50流入的、未经过节流装置70,而且由于第二开关60的单向导通,电控元件冷却装置90中的制冷剂无法通过第二开关60流出,电控元件冷却装置90中的制冷剂与电控元件换热后,温度升高,再通过与第一开关的第二端502处的制冷剂传热进行降温,以将电控元件冷却装置90中的制冷剂的温度维持在一定温度范围内,使得电控元件冷却装置90中的制冷剂能够持续对电控元件进行冷却。
制热模式下,压缩机10排出的高温高压制冷剂通过换向组件20,并经室内换热器80冷凝散热后,从室内换热器80的第二端流出的制冷剂温度高于环境温度,制冷剂分为两路,一路进入节流装置70,从节流装置70流出后进入室外换热器30,实现制热。另一路进入并联支路40,经第二开关60进入电控元件冷却装置90,由于第一开关的第二端502处的制冷剂是经过节流装置70节流降压后的,所以第一开关的第二端502处的制冷剂压力低,因此,第二开关60中的制冷剂压力高于第一开关50中的制冷剂压力,这样,制冷剂可以通过第二开关60充满电控元件冷却装置90而不会通过第一开关50流入电控元件冷却装置90,换言之,电控元件冷却装置90中的制冷剂是经第二开关60流入的、未经过节流装置70,而且由于第一开关50的单向导通,电控元件冷却装置90中的制冷剂无法通过第一开关50流出,电控元件冷却装置90中的制冷剂与电控元件换热后,温度升高,再通过与第二开关的第二端602处的制冷剂传热进行降温,以将电控元件冷却装置90中的制冷剂的温度维持在一定温度范围内,使得电控元件冷却装置90中的制冷剂能够持续对电控元件进行冷却。
下面再以第一开关50和第二开关60均为单向节流阀或电子膨胀阀为例,如图3所示,对制冷剂的流动方向进行说明。
制冷模式下,压缩机10排出的高温高压制冷剂通过室外换热器30冷却后,从室外换热器30的第二端流出的制冷剂温度高于环境温度,制冷剂分为两路,一路经第一开关50 进入并联支路40,并进入电控元件冷却装置90,经第二开关60流出并联支路40,第二开关60沿从电控元件冷却装置90到室内换热器80的第二端的方向能够导通,且还有节流作用,使得另一路制冷剂能够经节流装置的第一端701进入节流装置70,在节流装置70中节流后,经节流装置的第二端702流出,节流装置的第二端702流出的制冷剂与从第二开关60流出的制冷剂汇合后进入室内换热器80的第二端,完成空调器的制冷循环。
制热模式下,压缩机10排出的高温高压制冷剂通过室内换热器80冷却后,从室内换热器80的第二端流出的制冷剂温度高于环境温度,制冷剂分为两路,一路经第二开关60进入并联支路40,并进入电控元件冷却装置90,经第一开关50流出并联支路40,第一开关50沿从电控元件冷却装置90到室外换热器30的第二端的方向能够导通,且还有节流作用,使得另一路制冷剂能够经节流装置的第二端702进入节流装置70,在节流装置70中节流后,经节流装置的第一端701流出,节流装置的第一端701流出的制冷剂与从第一开关50流出的制冷剂汇合后进入室外换热器30的第二端,完成空调器的制热循环。
可以理解,还可以是第一开关50和第二开关60中的一个为单向阀,另一个为单向节流阀或电子膨胀阀。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调器,包括依次连接的压缩机、换向组件、室内换热器和室外换热器,其特征在于,还包括:
    节流装置,串联在所述室内换热器和所述室外换热器之间;
    并联支路,与所述节流装置并联,包括从所述室外换热器到所述室内换热器的方向依次连接的第一开关、电控元件冷却装置和第二开关;
    其中,所述第一开关被配置为沿从所述室外换热器到所述电控元件冷却装置的方向导通,所述第二开关被配置为沿从所述室内换热器到所述电控元件冷却装置的方向导通。
  2. 根据权利要求1所述的空调器,其特征在于,
    所述第一开关为单向阀,被配置为沿从所述室外换热器到所述电控元件冷却装置的方向单向导通。
  3. 根据权利要求1所述的空调器,其特征在于,
    所述第一开关内设有第一流道和第二流道,所述第一流道的通流面积大于所述第二流道的通流面积,所述第一开关还被配置为沿从所述电控元件冷却装置到所述室外换热器的方向导通,其中,所述第一开关在从所述室外换热器到所述电控元件冷却装置的方向导通的状态下,制冷剂沿所述第一流道流动,所述第一开关在从所述电控元件冷却装置到所述室外换热器的方向导通的状态下,制冷剂沿所述第二流道流动。
  4. 根据权利要求3所述的空调器,其特征在于,
    所述第二流道的通流面积小于所述节流装置中的节流通道的通流面积,其中,制冷剂在所述节流装置中沿所述节流通道流动。
  5. 根据权利要求3所述的空调器,其特征在于,
    所述第一开关为单向节流阀或电子膨胀阀。
  6. 根据权利要求1至5中任一项所述的空调器,其特征在于,
    所述第二开关为单向阀,被配置为沿从所述室内换热器到所述电控元件冷却装置的方向单向导通。
  7. 根据权利要求1至5中任一项所述的空调器,其特征在于,
    所述第二开关内设有第三流道和第四流道,所述第三流道的通流面积大于所述第四流道的通流面积,所述第二开关还被配置为沿从所述电控元件冷却装置到所述室内换热器的方向导通,其中,所述第二开关在从所述室内换热器到所述电控元件冷却装置的方向导通的状态下,制冷剂沿所述第三流道流动,所述第二开关在从所述电控元件冷却装置到所述室内换热器的方向导通的状态下,制冷剂沿所述第四流道流动。
  8. 根据权利要求7所述的空调器,其特征在于,
    所述第四流道的通流面积小于所述节流装置中的节流通道的通流面积,其中,制冷剂在所述节流装置中沿所述节流通道流动。
  9. 根据权利要求7所述的空调器,其特征在于,
    所述第二开关为单向节流阀或电子膨胀阀。
  10. 根据权利要求1至5中任一项所述的空调器,其特征在于,
    所述节流装置为毛细管或电子膨胀阀。
PCT/CN2021/077245 2020-07-31 2021-02-22 空调器 WO2021227595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021577706.1 2020-07-31
CN202021577706.1U CN213020386U (zh) 2020-07-31 2020-07-31 空调器

Publications (1)

Publication Number Publication Date
WO2021227595A1 true WO2021227595A1 (zh) 2021-11-18

Family

ID=75462495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077245 WO2021227595A1 (zh) 2020-07-31 2021-02-22 空调器

Country Status (2)

Country Link
CN (1) CN213020386U (zh)
WO (1) WO2021227595A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204176803U (zh) * 2014-09-30 2015-02-25 广东美的制冷设备有限公司 冷暖型空调器和单冷型空调器
CN104534575A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 空调器
CN204329389U (zh) * 2014-12-08 2015-05-13 广东美的制冷设备有限公司 空调器
CN106403348A (zh) * 2016-11-28 2017-02-15 广州华凌制冷设备有限公司 一种空调器及其制冷控制方法
US20190049124A1 (en) * 2016-06-12 2019-02-14 Qingdao Haier Air Conditioner General Corp., Ltd. Cooling Device for Air Conditioner Circuit Board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204176803U (zh) * 2014-09-30 2015-02-25 广东美的制冷设备有限公司 冷暖型空调器和单冷型空调器
CN104534575A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 空调器
CN204329389U (zh) * 2014-12-08 2015-05-13 广东美的制冷设备有限公司 空调器
US20190049124A1 (en) * 2016-06-12 2019-02-14 Qingdao Haier Air Conditioner General Corp., Ltd. Cooling Device for Air Conditioner Circuit Board
CN106403348A (zh) * 2016-11-28 2017-02-15 广州华凌制冷设备有限公司 一种空调器及其制冷控制方法

Also Published As

Publication number Publication date
CN213020386U (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN211739588U (zh) 一种可提高换热性能的空调
WO2021000873A1 (zh) 一种高功率密度机柜的整体高效散热系统
JP6644154B2 (ja) 空気調和装置
WO2021103370A1 (zh) 散热组件、空调系统及其散热控制方法
WO2018072510A1 (zh) 一种空调热回收系统
AU2011101720A4 (en) Multifunctional air-conditioning and hot-water system
WO2020211301A1 (zh) 空调系统、空调器和空调系统的控制方法
WO2020082741A1 (zh) 两管制喷气增焓室外机及多联机系统
US20190128581A1 (en) Heat pump unit and multi-functional mode control method
KR20040086294A (ko) 히트 펌프 유형의 공기 조절 장치
JP2002022315A (ja) 高効率四方切換弁
WO2021227595A1 (zh) 空调器
WO2023173847A1 (zh) 空气源热泵热水器系统
KR100517266B1 (ko) 폐열 회수식 열 펌프
CN217235882U (zh) 变频空调系统
CN215295145U (zh) 散热器和空调器
CN109668233A (zh) 多联机系统
CN210921855U (zh) 空调系统
TWI557385B (zh) 冷熱多功熱泵設備
CN210801674U (zh) 单冷空调系统及热泵空调系统
TWI529356B (zh) 冷熱共生熱泵設備
JP2697376B2 (ja) 二元冷凍サイクルを有する冷却装置のためのデフロスト装置
CN215336705U (zh) 空调器
CN216716398U (zh) 空调器
WO2021063272A1 (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803974

Country of ref document: EP

Kind code of ref document: A1