WO2021063272A1 - 热管理系统 - Google Patents
热管理系统 Download PDFInfo
- Publication number
- WO2021063272A1 WO2021063272A1 PCT/CN2020/117923 CN2020117923W WO2021063272A1 WO 2021063272 A1 WO2021063272 A1 WO 2021063272A1 CN 2020117923 W CN2020117923 W CN 2020117923W WO 2021063272 A1 WO2021063272 A1 WO 2021063272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- heat exchange
- management system
- thermal management
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/26—Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/153—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/021—Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/021—Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
- F25B2313/0212—Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during dehumidifying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/04—Desuperheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/06—Superheaters
Definitions
- This application relates to the field of air conditioning, and in particular to a thermal management system.
- the thermal management system can realize cooling, heating, ventilation and air purification of indoor air, providing a comfortable environment for indoor personnel. How to optimize the thermal management system to improve the performance of the thermal management system is the current focus.
- the high-temperature and high-pressure refrigerant flows out of the outlet of the compressor and directly enters the outdoor heat exchanger.
- the temperature of the refrigerant flowing out of the outlet of the compressor is higher.
- the cooling After the refrigerant exchanges heat with the external environment in the outdoor heat exchanger the temperature of the refrigerant flowing out of the outdoor heat exchanger is still relatively high, resulting in poor cooling effect of the thermal management system.
- the present application provides a thermal management system to improve the cooling effect of the thermal management system in a high-temperature environment.
- a thermal management system includes a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and an air conditioning box.
- the third heat exchanger includes a first heat exchange part for circulating refrigerant and a second heat exchange part for circulating cooling liquid;
- the thermal management system includes a cooling mode.
- the outlet of the compressor, the first heat exchange part, the first heat exchanger, the first throttling device, and the second The two heat exchangers and the inlet of the compressor are connected to form a refrigerant circuit, the second heat exchange part and the fourth heat exchanger are communicated to form a cooling liquid circuit, and the cooling liquid in the second heat exchange part can absorb The heat of the refrigerant in the first heat exchange part;
- the fourth heat exchanger is located outside the air conditioning box.
- the application also provides a thermal management system, which includes an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and The power device for the flow of cooling liquid; the first heat exchanger is located outside the air-conditioning box, the second heat exchanger is located in the air-conditioning box, and the third heat exchanger includes a device for circulating refrigerant The first heat exchange part and the second heat exchange part for circulating cooling liquid;
- the thermal management system includes a cooling mode.
- the cooling mode In the cooling mode, the outlet of the compressor, the first heat exchange part, the first heat exchanger, the first throttling device, and the The inlets of the two heat exchangers and the compressor are connected to form a first refrigerant circuit;
- the power unit, the second heat exchange part, and the fourth heat exchanger communicate to form a coolant circuit; the coolant in the second heat exchange part can heat up with the refrigerant in the first heat exchange part Exchange to cool down the refrigerant in the first heat exchange part.
- Fig. 1 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application
- Fig. 2 is a schematic diagram of the flow path of refrigerant and cooling liquid in the cooling mode of the thermal management system of Fig. 1, wherein the bold part represents the flow path;
- Fig. 3 is a schematic diagram of the refrigerant flow path of the heat management system of Fig. 1 in heating mode, wherein the bold part represents the flow path;
- FIG. 4 is a schematic diagram of the refrigerant flow path of the heat management system of FIG. 1 in the heating and dehumidification mode, wherein the bold part represents the flow path;
- Fig. 5 is a schematic diagram of a partial cut-away structure of a third heat exchanger according to an embodiment of the present application.
- first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
- word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
- connection used in this application is intended to indicate that a certain medium can circulate from one element to another element; the term “connected” used in this application is intended to indicate a physical relationship, and does not necessarily mean that between elements It is a connected relationship.
- the thermal management system may include a compressor 1, a first heat exchanger 2, a first throttling device 3, a second heat exchanger 4, The third heat exchanger 6, the fourth heat exchanger 7 and the air conditioning box 13.
- the third heat exchanger 6 includes a first heat exchange part 61 and a second heat exchange part 62, and the first heat exchange part 61 and the second heat exchange part 62 can exchange heat.
- the first heat exchanger 2 and the fourth heat exchanger 7 are located outside the air-conditioning box 13
- the second heat exchanger 4 is located in the indoor air inlet channel
- the indoor air inlet channel is the channel of the air-conditioning box 13, namely the first
- the second heat exchanger 4 is located in the air-conditioning box 13.
- the thermal management system of this embodiment includes a cooling mode. Please refer to FIG. 2.
- the thermal management system includes two circuits, a first refrigerant circuit and a cooling liquid circuit.
- the outlet of the compressor 1, the first heat exchange part 61, the first heat exchanger 2, the first throttling device 3, the second heat exchanger 4, and the inlet of the compressor 1 are connected to form a first refrigerant circuit.
- the outlet of the compressor 1, the first heat exchange portion 61, the first heat exchanger 2, the first throttling device 3, the second heat exchanger 4, and the inlet of the compressor 1 are connected in sequence to form a first refrigerant circuit .
- the second heat exchange part 62 and the fourth heat exchanger 7 are connected to form a cooling liquid circuit 5.
- the second heat exchange part 62 and the fourth heat exchanger 7 are sequentially connected to form a cooling liquid circuit 5.
- the cooling liquid circuit The above structures in 5 can also be connected in other arrangement order.
- the sequential connection only describes the sequence relationship of the connections between the various devices, and the various devices may also include other devices, such as shut-off valves.
- the type of the cooling liquid in the present application can be selected according to needs.
- the cooling liquid can be a substance capable of heat exchange, such as water and oil, or a mixture of water and ethylene glycol, or other mixtures that can exchange heat.
- the coolant in the second heat exchange part 62 can cool the refrigerant in the first heat exchange part 61.
- the first heat exchanger 2 is used as a condenser
- the second heat exchanger 4 is used as an evaporator.
- the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant.
- the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 and enters the first heat exchange part 61, the first heat exchange part
- the refrigerant in 61 exchanges heat with the coolant in the second heat exchange section 62.
- the refrigerant releases heat.
- the released heat is carried by the coolant circuit 5 to the fourth heat exchanger 7.
- the heated coolant is exchanged in the fourth heat exchanger.
- the heat exchanger 7 exchanges heat with the outdoor air flow, the cooling liquid releases heat, and the released heat is carried by the air flow to the outdoor ambient air, and the low-temperature cooling liquid continues to be recycled in the cooling liquid circuit 5.
- the cooled refrigerant enters the first heat exchanger 2 and exchanges heat with the outdoor air flow in the first heat exchanger 2.
- the refrigerant further releases heat, which releases heat.
- the heat is carried by the air stream to the outdoor ambient air, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant.
- the refrigerant flows out of the first heat exchanger 2 and is throttled by the first throttling device 3, which is throttled and reduced in pressure to become a low-temperature and low-pressure refrigerant.
- the low-temperature and low-pressure refrigerant enters the second heat exchanger 4, and the low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4, so that the temperature of the air around the second heat exchanger 4 is reduced.
- the cold air enters the passage of the air-conditioning box 13 and is sent into the room, reducing the indoor temperature.
- the refrigerant undergoes a phase change and partially or completely evaporates into a low-temperature and low-pressure gaseous refrigerant, which flows back into the compressor 1 to realize the recycling of the refrigerant.
- a third heat exchanger 6 is provided at the outlet of the compressor 1.
- the refrigerant in the first heat exchange part 61 is cooled by the coolant in the second heat exchange part 62, which can reduce the compressor 1
- the temperature of the refrigerant in the outlet pipe for example, the temperature of the refrigerant decreases from 150° C. to 80° C., so that the temperature of the refrigerant flowing into the first heat exchanger 2 is lowered, and the heat exchange pressure of the first heat exchanger 2 is reduced.
- the cooled refrigerant then passes through the first heat exchanger 2 to exchange heat with the external environment to further reduce the temperature of the refrigerant, for example, the temperature of the refrigerant decreases from 80°C to 47°C.
- the refrigerant flowing out of the first heat exchanger 2 sequentially flows through the first throttling device 3 to reduce pressure, flows through the second heat exchanger 4 to absorb heat and evaporate, and then flows back into the compressor 1 to realize the recycling of the refrigerant.
- a third heat exchanger 6 is provided at the outlet of the compressor 1.
- the refrigerant flowing out of the outlet of the compressor 1 will first pass through the third heat exchanger 6, and then After the temperature of the third heat exchanger 6 is cooled, it flows into the first heat exchanger 2 (that is, the outdoor heat exchanger), and takes the heat to the outside environment through the coolant circuit 5, and assumes part of the heat exchange pressure of the outdoor heat exchanger, effectively solving the high temperature
- the problem of insufficient outdoor heat exchanger capacity in the environment for example, between 35°C and 50°C), improves the refrigeration capacity of the system.
- the third heat exchanger 6 includes a first collector 15, a second collector 16, and a shell 19.
- the shell 19 has two opposite ends, and the two ends of the shell 19 are respectively sealed and connected to the first
- the current collecting member 15 and the second current collecting member 16 thus enclose a heat exchange cavity 190, a heat exchange tube 17 and a heat dissipation member 18 are arranged in the third heat exchanger 6, and the heat exchange tube 17 and the heat dissipation member 18 are alternately stacked one by one
- the heat exchange cavity 190 the heat exchange tube 17 and the heat sink 18 are fixedly connected, and the two ends of the heat exchange tube 17 are respectively fixedly connected to the first current collecting part 15 and the second current collecting part 16, and the first current collecting part 15
- the second collecting member 16 has a collecting cavity, and the collecting cavity communicates with the lumen of the heat exchange tube 17 so that the refrigerant can circulate between the first collecting piece 15 and the second collecting piece 16.
- the opposite sides of the shell 19 are also provided with inlet pipes and outlet pipes, so that the cooling liquid can enter and exit the heat exchange cavity 190, and the cooling liquid enters the heat exchange cavity 190, and exchanges heat with the refrigerant through the heat exchange tube 17.
- the heat sink 18 may be a corrugated fin to improve heat exchange efficiency, and the heat exchange tube 17 may be a microchannel flat tube.
- Two connecting pieces are provided on the second collecting piece 16, and the two connecting pieces are respectively used for connecting the refrigerant pipeline, so that the refrigerant can enter and exit the second collecting piece 16. It is understandable that those of ordinary skill in the art can select other types of heat exchangers as the first heat exchanger 2, the second heat exchanger 4, the third heat exchanger 6 and the fourth heat exchanger 7 according to specific scenarios.
- This application can also select the corresponding type of refrigerant and adopt a suitable heat exchanger according to the actual application.
- the third heat exchanger 6 can adopt the structure shown in FIG. 5, which has the characteristics of high compressive strength and is suitable for the use of carbon dioxide.
- the medium with high requirements for isostatic pressure is used as the refrigerant.
- the thermal management system further includes functional components that can generate heat and need to dissipate heat when the temperature exceeds a set value.
- the coolant circuit includes the above-mentioned functional components, and the coolant circuit is used to dissipate heat from the functional components. Therefore, the cooling liquid circuit 5 of this embodiment can also undertake the heat dissipation of the functional components in the thermal management system to ensure the normal operation of the functional components, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode.
- the functional components may include a motor 51, and the coolant circuit 5 can also undertake the heat dissipation of the motor 51 in the thermal management system to ensure the normal operation of the motor 51, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode.
- the functional components can also include other components that can generate heat, such as batteries, etc.
- the thermal management system can recycle the waste heat generated by the functional components.
- the cooling liquid circuit may also include a power device (for example, a pump device 52) for flowing the cooling liquid.
- a pump device 52 for example, a pump device 52
- the coolant flow path of the coolant circuit 5 includes: pump device 52 -> motor 51 (or other functional components) -> second heat exchange part 62 -> fourth heat exchanger 7 .
- the thermal management system may further include a first fan 9 located outside the air-conditioning box 13.
- the first heat exchanger 2 and the fourth heat exchanger 7 are along the airflow direction of the first fan 9 Arrangement, that is, the first heat exchanger 2 is located on the upwind side of the fourth heat exchanger 7.
- the first heat exchanger 2 and the second heat exchanger 4 share a fan to dissipate heat from the first heat exchanger 2 and the second heat exchanger 4, and save installation space;
- the cooling mode since the temperature of the first heat exchanger 2 is usually higher than the temperature of the fourth heat exchanger 7, this arrangement allows the air to pass through the first heat exchanger 2 with a higher temperature first.
- the fourth heat exchanger 7 passes through the fourth heat exchanger 7 with a lower temperature, so as to improve the heat exchange effect and avoid affecting the heat dissipation of the first heat exchanger 2.
- the first fan 9, the first heat exchanger 2 and the fourth heat exchanger 7 are arranged in a row or a row at intervals; optionally, the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger. Between the heat exchangers 2, the airflow generated by the first fan 9 can more quickly take away the heat of the coolant in the fourth heat exchanger 7, speed up the cooling effect of the coolant circuit 5, and reduce the second heat exchange part faster The refrigerant temperature within 62.
- the inlet of the compressor 1 can also be connected to a gas-liquid separator 8 for gas-liquid separation of the refluxing refrigerant, and the liquid part of it is stored in the gas-liquid separator 8, and the low temperature and low pressure The part of the gaseous refrigerant enters the compressor 1 and is compressed again to realize the recycling of the refrigerant.
- the gas-liquid separator 8 may not be provided.
- a gas-liquid separator 8 is installed at the inlet of the compressor 1 to further describe the structure of the thermal management system.
- the thermal management system may further include a fifth heat exchanger 10, and the fifth heat exchanger 10 includes a third heat exchange part 11 and a fourth heat exchange part 12.
- the outlet of the compressor 1, the first heat exchange part 61, the first heat exchanger 2, the third heat exchange part 11, the first throttling device 3, the second heat exchanger 4 , The gas-liquid separator 8, the fourth heat exchange unit 12, and the inlet of the compressor 1 are connected to form a first refrigerant circuit.
- the refrigerant flowing out of the first heat exchanger 2 then passes through the third heat exchange section 11.
- the refrigerant in the third heat exchange section 11 and the fourth heat exchange section 12 (low pressure side tube The refrigerant in the path) exchanges heat to further reduce the temperature of the refrigerant in the third heat exchange part 11, and further improve the cooling effect of the heat management system.
- the refrigerant flowing out of the third heat exchange part 11 is throttled by the first throttle device 3, and the throttle and pressure drop become a low-temperature and low-pressure refrigerant.
- the low-temperature and low-pressure refrigerant enters the second heat exchanger 4, and the low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4, so that the temperature of the air around the second heat exchanger 4 is reduced.
- the cold air enters the passage of the air-conditioning box 13 and is sent into the room, reducing the indoor temperature.
- the refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gaseous refrigerant, which flows into the gas-liquid separator 8.
- the gas-liquid separator 8 separates the refluxing refrigerant, and stores the liquid part of it in the gas-liquid separator 8.
- the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 through the fourth heat exchange part 12 to be recompressed to realize the recycling of the refrigerant.
- the thermal management system may further include a second throttling device 20 and a sixth heat exchanger 30, where the sixth heat exchanger 30 is located in the passage of the air conditioning box 13.
- the thermal management system of this embodiment also includes a heating mode. In the heating mode, the outlet of the compressor 1, the first heat exchange portion 61, the sixth heat exchanger 30, and the second throttling device 20
- the third heat exchange part 11, the first heat exchanger 2, the gas-liquid separator 8, the fourth heat exchange part 12, and the inlet of the compressor 1 are connected to form a second refrigerant circuit.
- Those skilled in the art can understand that only one of the first refrigerant circuit in the cooling mode and the second refrigerant circuit in the heating mode can be selected in the same working mode.
- the thermal management system further includes a damper 14 located in the air conditioning box 13, and the damper 14 is located between the second heat exchanger 4 and the sixth heat exchanger 30.
- the damper 14 is used to control whether the air passes through the sixth heat exchanger 30. For example, in the cooling mode, the damper 14 is closed so that the air does not pass through the sixth heat exchanger 30; in the heating mode, the damper 14 is opened so that the air can pass through the sixth heat exchanger 30.
- the first heat exchanger 2 is used as an evaporator
- the sixth heat exchanger 30 is used as a condenser or an air cooler.
- the damper 14 is opened so that air can flow.
- the damper 14 at the sixth heat exchanger 30 is closed, which reduces the influence of the sixth heat exchanger 30.
- the compressor 1 compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant.
- the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1, and enters the sixth heat exchange through the first heat exchange part 61
- the high-temperature and high-pressure refrigerant exchanges heat with the air flow, the refrigerant releases heat, and the hot air enters the passage of the air-conditioning box 13 and is sent into the room to increase the indoor temperature.
- the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant.
- the refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20.
- the refrigerant becomes low-temperature and low-pressure refrigerant through throttling and depressurization.
- the low-temperature and low-pressure refrigerant enters the first heat exchanger 2 through the third passage and absorbs outside air.
- the heat in the flow phase becomes a low-pressure gaseous refrigerant.
- the low-pressure gas refrigerant flowing out of the first heat exchanger 2 enters the gas-liquid separator 8.
- the gas-liquid separator 8 separates the refluxing refrigerant, and stores the liquid part of the refrigerant in the gas-liquid separator 8.
- the gaseous refrigerant part enters the compressor 1 through the fourth heat exchange part 12 to be compressed again, so as to realize the recycling of the refrigerant.
- the thermal management system of the present application also includes a first branch.
- the first branch is arranged in parallel with the third heat exchanger 6.
- a control valve 80 is provided on the first branch.
- the control valve 80 may be a water valve or other types. Valve, referring to FIG. 3, the control valve 80 is connected to the first branch, and the control valve 80 is arranged in parallel with the third heat exchanger 6.
- the control valve 80 may also be a three-way valve.
- the first port of the three-way valve is connected to the motor 51 through a pipeline, and the second port of the three-way valve is connected to the second exchange of the third heat exchanger 6 through a pipeline.
- the heat part 62, the third port of the three-way valve is connected to the first branch.
- the control valve 80 opens and the pump device 52 opens. Since the flow resistance of the coolant at the third heat exchanger 6 is greater than the flow resistance at the control valve 80, Therefore, only a small amount of coolant flows to the third heat exchanger 6, and the coolant flow path of the coolant circuit 5 includes: pump device 52->motor 51 (or other functional components)->control valve 80->fourth heat exchanger 7 . The excess heat generated by the motor is released to the external environment through the fourth heat exchanger 7.
- the fourth heat exchanger 7 When the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger 2 (the fourth heat exchanger 7, the first fan 9
- the position between the first heat exchanger 2 and the first heat exchanger 2 is not limited, and is roughly arranged in the direction of the airflow.
- the airflow generated by the first fan 9 can quickly take away the heat of the cooling liquid of the fourth heat exchanger 7 while the air
- the temperature rises the temperature of the surrounding environment of the first heat exchanger 2 rises, and the low-temperature refrigerant in the first heat exchanger 2 can absorb this part of the heat.
- the motor The excess heat generated will be absorbed by the refrigerant in the first heat exchanger 2, which can increase the heating capacity of the thermal management system.
- the first heat exchanger 2 In the other hand, in the winter heating mode, the first heat exchanger 2 is prone to frost in a low temperature environment, and the control valve 80 can be opened to defrost the first heat exchanger 2.
- the thermal management system may also include a heating and dehumidifying mode, which can be used when dehumidification is required in winter.
- a heating and dehumidifying mode In the heating and dehumidifying mode, the outlet of the compressor 1, the first heat exchange part 61, the sixth heat exchanger 30, the second throttling device 20, the third heat exchange part 11, the first heat exchanger 2, the gas-liquid The separator 8, the fourth heat exchange part 12, and the inlet of the compressor 1 are connected to form a second refrigerant circuit, and the outlet of the compressor 1, the first heat exchange part 61, the sixth heat exchanger 30, and the first throttling device 3.
- the second heat exchanger 4, the gas-liquid separator 8, the fourth heat exchange part 12, and the inlet of the compressor 1 are connected to form a third refrigerant circuit.
- the second refrigerant circuit is the second refrigerant circuit in the heating mode in the above embodiment.
- the third refrigerant circuit is used for indoor refrigeration.
- the working process of the third refrigerant circuit is: Compressor 1 compresses low-temperature and low-pressure gaseous refrigerant into high-temperature and high-pressure gaseous refrigerant, and high-temperature and high-pressure gaseous refrigerant is supplied by compressor 1.
- the outlet flows out, enters the sixth heat exchanger 30 through the first heat exchange part 61, and exchanges heat in the sixth heat exchanger 30.
- the refrigerant releases heat, and the released heat is carried into the room by the air stream, and the refrigerant phase Change and condense into liquid or gas-liquid two-phase refrigerant.
- the refrigerant flows out of the sixth heat exchanger 30, one way enters the second throttle device 20 to realize the heating function of the second refrigerant circuit, and the other way enters the first throttle device 3 for expansion, throttling and depressurization becomes low-temperature and low-pressure refrigeration.
- the low-temperature and low-pressure refrigerant enters the second heat exchanger 4. At this time, the air circulation mode is internal circulation.
- the moisture in the air condenses into water droplets to reduce the air around the second heat exchanger 4 humidity.
- the dehumidified air then flows through the sixth heat exchanger 30 for heating, so as to achieve the purpose of heating and dehumidifying.
- the refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gaseous refrigerant, which flows into the gas-liquid separator 8.
- the gas-liquid separator 8 separates the refluxing refrigerant, and stores the liquid part of it in the gas-liquid separator 8.
- the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 and is compressed again to realize the recycling of the refrigerant.
- the thermal management system may also include a four-way valve 40.
- the four-way valve 40 includes a first port 401, a second port 402, a third port 403, and a fourth port 404.
- the first heat exchange part 61 includes a first port 401, a second port 402, a third port 403, and a fourth port 404.
- An inlet 611 and a first outlet 612, the first heat exchanger 2 includes a first interface 21 and a second interface 22, the second heat exchanger 4 includes a third interface 41 and a fourth interface 42, and the sixth heat exchanger 30 includes The fifth interface 301 and the sixth interface 302, and the third heat exchange part 11 includes a seventh interface 111 and an eighth interface 112.
- the first inlet 611 is in communication with the outlet of the compressor 1, and the first outlet 612 is in communication with the fifth interface 301.
- the first port 401 is in communication with the sixth interface 302.
- the second port 402 is connected to the first port 21, the second port 22 is connected to the seventh port 111, the eighth port 112 is connected to one end of the second throttling device 20, and the third port 403 is connected to the other of the second throttling device 20. Connect at one end.
- the third port 403 is also in communication with one end of the first throttle device 3, the third port 41 is in communication with the other end of the first throttle device 3, and the fourth port 42, the fourth port 404 and the gas-liquid separator 8
- the inlet is connected; for the thermal management system without the gas-liquid separator 8, the fourth interface 42 and the fourth port 404 are communicated with the inlet of the compressor 1 through the fourth heat exchange part 12.
- the first port 401 is connected to the second port 402, and the third port 403 is not connected to the fourth port 404; in the heating mode and the heating and dehumidifying mode, the first port 401 is connected to the third port 403, And the second port 402 and the fourth port 404 are connected.
- the flow direction of the refrigerant can be switched, thereby realizing the switching of different modes.
- a three-way valve or a stop valve can also be used to replace the four-way valve 40 to control the switching of the refrigerant flow direction and realize the switching of different modes.
- the thermal management system may also include a shut-off valve 50.
- One end of the shut-off valve 50 is in communication with the first outlet 612 and the fifth interface 301, and the other end of the shut-off valve 50 is connected with the first port 401 and the sixth interface. 302 is connected.
- the shut-off valve 50 in the cooling mode, the shut-off valve 50 is opened. Due to the flow resistance, the sixth heat exchanger 30 can be bypassed through the branch where the shut-off valve 50 is located, and only a small amount or no refrigerant flows through the sixth heat exchanger.
- the device 30 reduces the influence of the sixth heat exchanger 30 on the cooling effect; in the heating mode or the heating and dehumidifying mode, the shut-off valve 50 is closed. By controlling the cut-off valve 50, the on-off of the branch is realized, which is applied to different modes.
- the cut-off valve 50 has a simple structure and reliable on-off control.
- the thermal management system further includes a one-way valve 60, and the one-way valve 60 is arranged in parallel with the second throttling device 20.
- the one-way valve 60 in the cooling mode, the one-way valve 60 is turned on, and the second throttling device 20 is turned off; in the heating mode or the heating and dehumidifying mode, the one-way valve 60 is turned off, and the second throttling device 20 is throttled.
- the on-off of the branch is realized, which is applied to different modes.
- the first throttle device 3 and the second throttle device 20 can play the role of throttling, pressure reduction and cut-off in the thermal management system, and may include a throttle valve and ordinary thermal power. Expansion valve or electronic expansion valve, etc.
- the thermal management system may further include a second fan 70 located in the passage of the air-conditioning box 13, and the second heat exchanger 4 and the sixth heat exchanger 30 are arranged along the airflow direction of the second fan 70.
- the second heat exchanger 4 and the sixth heat exchanger 30 share a fan, which saves installation space.
- the second fan 70, the second heat exchanger 4, and the sixth heat exchanger 30 are arranged in a row or a row at intervals.
- thermal management system of this embodiment can be applied to houses, vehicles or other equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
本申请提供一种热管理系统,该热管理系统包括压缩机、第一换热器、第一节流装置、第二换热器、第三换热器和第四换热器,第三换热器包括用以流通制冷剂的第一换热部和用以流通冷却液的第二换热部;热管理系统包括制冷模式,在制冷模式下,压缩机的出口、第一换热部、第一换热器、第一节流装置、第二换热器、压缩机的进口连通形成第一制冷剂回路,第二换热部和第四换热器连通形成冷却液回路,第二换热部内的冷却液能够吸收第一换热部内的制冷剂的热量;第四换热器位于所述空调箱外。在压缩机的出口设置第三换热器,在制冷模式下,第三换热器能够承担一部分室外换热器的换热压力。
Description
本申请要求了申请日为2019年9月30日、申请号为201910945514.7、发明创造名称为“热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及空调领域,尤其涉及一种热管理系统。
热管理系统可以实现对室内空气进行制冷、加热、换气和空气净化,为室内人员提供舒适的环境。如何优化热管理系统,以提高热管理系统的性能为目前的重点。
相关热管理系统中,在制冷模式下,高温高压的制冷剂由压缩机的出口流出,直接进入室外换热器,压缩机的出口流出的制冷剂温度较高,当室外环境温度较高,制冷剂在室外换热器中与外界环境进行热量交换后,从室外换热器流出的制冷剂温度仍然较大,导致热管理系统制冷效果不佳。
发明内容
本申请提供一种热管理系统,以提升热管理系统在高温环境下的制冷效果。
具体地,本申请是通过如下技术方案实现的:
一种热管理系统,所述热管理系统包括压缩机、第一换热器、第一节流装置、第二换热器、第三换热器、第四换热器和空调箱,所述第三换热器包括用以流通制冷剂的第一换热部和用以流通冷却液的第二换热部;
所述热管理系统包括制冷模式,在所述制冷模式下,所述压缩机的出口、 所述第一换热部、所述第一换热器、所述第一节流装置、所述第二换热器、所述压缩机的进口连通形成制冷剂回路,所述第二换热部和所述第四换热器连通形成冷却液回路,所述第二换热部内的冷却液能够吸收所述第一换热部内的制冷剂的热量;
所述第四换热器位于所述空调箱外。
本申请还提供了一种热管理系统,其包括空调箱、压缩机、第一换热器、第一节流装置、第二换热器、第三换热器、第四换热器和用以使冷却液流动的动力装置;所述第一换热器位于所述空调箱外,所述第二换热器位于所述空调箱内,所述第三换热器包括用以流通制冷剂的第一换热部和用以流通冷却液的第二换热部;
所述热管理系统包括制冷模式,在所述制冷模式下,所述压缩机的出口、所述第一换热部、所述第一换热器、所述第一节流装置、所述第二换热器、所述压缩机的进口连通形成第一制冷剂回路;
所述动力装置、所述第二换热部和所述第四换热器连通形成冷却液回路;所述第二换热部内的冷却液能够与所述第一换热部内的制冷剂进行热交换,以对所述第一换热部内的制冷剂进行降温。
由以上技术方案可见,通过在压缩机的出口设置第三换热器,在制冷模式下,压缩机的出口流出的制冷剂会先经过第三换热器,由第三换热器降温后再流入第一换热器(即室外换热器),通过冷却液回路将制冷剂回路的热量带至外界环境中,承担一部分室外换热器的换热压力,有效解决高温环境下室外换热器换热能力不足的问题,以提高热管理系统的制冷效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是本申请一实施例提供的热管理系统的结构示意图;
图2是图1的热管理系统在制冷模式下制冷剂、冷却液流动路径示意图,其中加粗部分表示流动路径;
图3是图1的热管理系统在制热模式下制冷剂流动路径示意图,其中加粗部分表示流动路径;
图4是图1的热管理系统在制热除湿模式下制冷剂流动路径示意图,其中加粗部分表示流动路径;
图5是本申请一实施例提供的第三换热器局部剖切结构示意图。
附图标记:
1:压缩机;2:第一换热器;21:第一接口;22:第二接口;3:第一节流装置;4:第二换热器;41:第三接口;42:第四接口;5:冷却液回路;51:电机;52:泵装置;6:第三换热器;61:第一换热部;611:第一入口;612:第一出口;62:第二换热部;7:第四换热器;8:气液分离器;9:第一风扇;10:第五换热器;11:第三换热部;111:第七接口;112:第八接口;12:第四换热部;13空调箱;14:风门;15:第一集流件;16:第二集流件;17:换热管;18:散热件;19:壳体;190:换热腔;20:第二节流装置;30:第六换热器;301:第五接口;302:第六接口;40:四通阀;401:第一端口;402:第二端口;403:第三端口;404:第四端口;50:截止阀;60:单向阀;70:第二风扇;80:控制阀。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本 申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请中使用的术语“连通”旨在表明某种介质能够从一个元件向另一个元件流通;本申请中使用的术语“连接”旨在表明物理上的关系,并不必然意味着元件之间是连通的关系。
下面结合附图,对本申请的热管理系统进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
结合图1至图4,本申请实施例提供的一种热管理系统,该热管理系统可以包括压缩机1、第一换热器2、第一节流装置3、第二换热器4、第三换热器6、第四换热器7和空调箱13。其中,第三换热器6包括第一换热部61和第二换热部62,第一换热部61和第二换热部62能够进行热交换。本实施例的第一换热器2和第四换热器7位于所述空调箱13外,第二换热器4位于室内进风通道,室内进风通道为空调箱13的通道,即第二换热器4位于所述空调箱13内。
本实施例的热管理系统包括制冷模式,请参见图2,在制冷模式下,热管理系统包括两条回路,分别为第一制冷剂回路和冷却液回路。其中,压缩机1的出口、第一换热部61、第一换热器2、第一节流装置3、第二换热器4、压缩机1的进口连通形成第一制冷剂回路,可选地,压缩机1的出口、第一换热部61、第一换热器2、第一节流装置3、第二换热器4、压缩机1的进口顺序连通形成第一制冷剂回路。
第二换热部62和第四换热器7连通形成冷却液回路5,可选地,第二换热 部62和第四换热器7顺序连通形成冷却液回路5,当然,冷却液回路5中的上述结构也可以按照其它排列顺序连通。
需要说明的是,本申请实施例中,顺序连通仅说明各个器件之间连接的顺序关系,而各个器件之间还可包括其它器件,例如截止阀等。另外,本申请的冷却液的类型可根据需要选择,例如,冷却液可为水、油等能够进行换热的物质或者水和乙二醇的混合液或者其它能够进行换热的混合液。
在本实施例中,第二换热部62内的冷却液能够对第一换热部61内的制冷剂进行降温。
具体而言,在制冷模式下,第一换热器2作为冷凝器使用,第二换热器4作为蒸发器使用。参见图2,压缩机1将低温低压的气态制冷剂压缩成高温高压的气态制冷剂,高温高压的气态制冷剂由压缩机1的出口流出,进入第一换热部61,第一换热部61内的制冷剂与第二换热部62内的冷却液换热,制冷剂释放热量,释放的热量由冷却液回路5带至第四换热器7,加热后的冷却液在第四换热器7中与室外空气流换热,冷却液释放热量,释放的热量被空气流带到室外环境空气中,低温的冷却液在冷却液回路5继续循环利用。第一换热部61内的制冷剂释放热量后,降温后的制冷剂进入第一换热器2,在第一换热器2中与室外空气流换热,制冷剂进一步释放热量,释放的热量被空气流带到室外环境空气中,制冷剂则发生相变而冷凝成液态或气液两相制冷剂。制冷剂流出第一换热器2,经过第一节流装置3节流,节流降压变成低温低压的制冷剂。低温低压的制冷剂进入第二换热器4,低温低压制冷剂吸收第二换热器4周围的空气的热量,使第二换热器4周围的空气温度降低,在空气流的作用下,冷空气进入空调箱13的通道并被送入室内,降低室内温度。制冷剂则发生相变而部分或全部蒸发成低温低压的气态制冷剂,回流入压缩机1,实现制冷剂的循环利用。
在压缩机1的出口设置第三换热器6,在制冷模式下,通过第二换热部62内的冷却液对第一换热部61内的制冷剂进行降温,可以降低压缩机1的出口管路中制冷剂的温度,如制冷剂的温度从150℃降低到80℃,使得流入 第一换热器2的制冷剂温度降低,减小了第一换热器2的换热压力。降温后的制冷剂再经过第一换热器2与外界环境进行热量交换,进一步降低制冷剂的温度,如制冷剂温度从80℃降低到47℃。由第一换热器2流出的制冷剂依次流经第一节流装置3降压,流经第二换热器4进行吸热蒸发,然后回流入压缩机1,实现制冷剂的循环利用。
本申请实施例的热管理系统,通过在压缩机1的出口设置第三换热器6,在制冷模式下,压缩机1的出口流出的制冷剂会先经过第三换热器6,由第三换热器6降温后再流入第一换热器2(即室外换热器),通过冷却液回路5将热量带至外界环境中,承担一部分室外换热器的换热压力,有效解决高温环境下(例如35℃-50℃之间)室外换热器能力不足的问题,提高系统的制冷能力。
本领域普通技术人员可以根据具体场景选择第一换热器2、第二换热器4、第三换热器6和第四换热器7的类型,例如,第一换热器2、第二换热器4以及第四换热器7可以为风冷换热器,第三换热器6为水冷换热器。参考图5,第三换热器6包括第一集流件15、第二集流件16和壳体19,壳体19具有相对的两端,壳体19的两端分别密封连接于第一集流件15和第二集流件16从而围成一换热腔190,在第三换热器6内设置换热管17和散热件18,换热管17和散热件18一一交替堆叠在换热腔190内,换热管17和散热件18固定连接,且换热管17的两端分别固定连接在第一集流件15和第二集流件16,第一集流件15和第二集流件16具有集流腔,集流腔和换热管17的管腔连通,从而可以使制冷剂在第一集流件15和第二集流件16之间流通。壳体19相对的两侧还设置有进口管和出口管,从而使冷却液可以进出换热腔190,冷却液进入换热腔190内,通过换热管17与所述制冷剂进行热交换,散热件18可以是波纹翅片,用于提高换热效率,换热管17可以是微通道扁管。第二集流件16上设置有两个连接件,两个连接件分别用于连接制冷剂管路,从而使制冷剂可以进出第二集流件16。可以理解的是,本领域普通技术人员可以根据具体场景选择其它类型的换热器作为第一换热器2、第二换热 器4、第三换热器6和第四换热器7,在此不作限定。本申请也可以根据实际应用选择相应类型的冷媒并采用合适的换热器,例如第三换热器6可采用如图5所示的结构,此结构具有耐压强度高的特点,适合采用二氧化碳等耐压要求高的介质作为制冷剂。
本实施例中,热管理系统还包括功能部件,该功能部件能够产生热量,且当温度超过设定值时需要进行散热。冷却液回路包括上述功能部件,该冷却液回路用于对功能部件进行散热。因此,本实施例的冷却液回路5还能承担热管理系统中的功能部件的散热,保证功能部件的正常运行,从而有效保证热管理系统在制冷模式下的稳定运行。请参见图1,功能部件可以包括电机51,冷却液回路5还能承担热管理系统中的电机51的散热,保证电机51的正常运行,从而有效保证热管理系统在制冷模式下的稳定运行。可以理解的是,功能部件还可以包括其它能够产生热量的部件,如电池等等,热管理系统可以对功能部件产生的余热进行回收利用,例如在冬季制热模式下,利用功能部件的余热以提高热管理系统的制热能力。此外,请再次参见图1,冷却液回路还可以包括用以使冷却液流动的动力装置(例如泵装置52),通过设置泵装置52,能够驱动冷却液在冷却液回路5中的循环流动。可选地,在一实施例中,冷却液回路5的冷却液流动路径包括:泵装置52->电机51(或其它功能部件)->第二换热部62->第四换热器7。
请参见图1,热管理系统还可以包括位于空调箱13外的第一风扇9,本实施例中,第一换热器2和第四换热器7沿所述第一风扇9的气流方向排布,即第一换热器2位于第四换热器7的上风侧。采用这种排布方式,一方面使得第一换热器2和第二换热器4共用风扇,以对第一换热器2和第二换热器4进行散热,且节省了安装空间;另一方面,在制冷模式下,由于第一换热器2的温度通常高于第四换热器7的温度,这种排布方式能够使空气先经过温度较高的第一换热器2,再经过温度较低的第四换热器7,从而有利于改善热交换的效果,避免影响第一换热器2的散热。可选地,第一风扇9、第一换热器2和第四换热器7呈一排或一列间隔排布;可选地,第四换热器7位于第一风 扇9和第一换热器2之间,第一风扇9产生的气流能够更快地将第四换热器7的冷却液的热量带走,加快冷却液回路5的冷却效果,更快地降低第二换热部62内的制冷剂温度。
另外,请再次参见图1,压缩机1的进口还可以连接气液分离器8,以便对回流的制冷剂进行气液分离,将其中的液态部分储藏于气液分离器8内,而低温低压的气态制冷剂部分则进入压缩机1重新被压缩,实现制冷剂的循环利用。当然,针对一些新型的压缩机,如具有储存液体的功能或气液分离功能的压缩机,也可以不设置气液分离器8。
以下以压缩机1的进口处设置气液分离器8来进一步对热管理系统的结构进行阐述。
请参见图1和图2,热管理系统还可以包括第五换热器10,该第五换热器10包括第三换热部11和第四换热部12。请参见图2,在制冷模式下,压缩机1的出口、第一换热部61、第一换热器2、第三换热部11、第一节流装置3、第二换热器4、气液分离器8,第四换热部12、压缩机1的进口连通形成第一制冷剂回路。具体而言,在制冷模式下,第一换热器2流出的制冷剂再经过第三换热部11,第三换热部11内的制冷剂与第四换热部12内(低压侧管路)的制冷剂进行热量交换,进一步降低第三换热部11内的制冷剂温度,进一步提高热管理系统的制冷效果。第三换热部11流出的制冷剂经第一节流装置3节流,节流降压变成低温低压的制冷剂。低温低压的制冷剂进入第二换热器4,低温低压制冷剂吸收第二换热器4周围的空气的热量,使第二换热器4周围的空气温度降低,在空气流的作用下,冷空气进入空调箱13的通道并被送入室内,降低室内温度。制冷剂则发生相变而大部分蒸发成低温低压的气态制冷剂,流入气液分离器8,气液分离器8对回流的制冷剂进行分离,将其中的液态部分储藏于气液分离器8内,而低温低压的气态制冷剂部分则通过第四换热部12进入压缩机1重新压缩,实现制冷剂的循环利用。
请再次参见图1,热管理系统还可以包括第二节流装置20和第六换热器30,其中,第六换热器30位于空调箱13的通道内。请参见图3,本实施例的 热管理系统还包括制热模式,在制热模式下,压缩机1的出口、第一换热部61、第六换热器30、第二节流装置20、第三换热部11、第一换热器2、气液分离器8、第四换热部12、压缩机1的进口连通形成第二制冷剂回路。所属技术领域的技术人员能够理解,制冷模式下第一制冷剂回路和制热模式下的第二制冷剂回路在同一工作模式下只能选择其中之一。
热管理系统还包括位于空调箱13中的风门14,风门14位于第二换热器4和第六换热器30之间。风门14用于控制空气是否经过第六换热器30。例如,在制冷模式下,风门14关闭,使空气不经过第六换热器30;在制热模式下,风门14打开,使空气能够经过第六换热器30。
具体而言,在制热模式下,第一换热器2作为蒸发器使用,第六换热器30作为冷凝器或气冷器使用,在制热模式下,风门14打开,使空气可以流经第六换热器30,需要说明的是,在制冷模式下,第六换热器30处的风门14为关闭状态,减小第六换热器30的影响。请参见图3,压缩机1将低温低压的气态制冷剂压缩成高温高压的气态制冷剂,高温高压的气态制冷剂由压缩机1的出口流出,经第一换热部61进入第六换热器30,高温高压的制冷剂在第六换热器30中与空气流换热,制冷剂释放热量,热空气进入空调箱13的通道并被送入室内,提高室内温度。制冷剂则发生相变而冷凝成液态或气液两相制冷剂。制冷剂流出第六换热器30,进入第二节流装置20,节流降压变成低温低压的制冷剂,低温低压的制冷剂经第三通道进入第一换热器2,吸收外部空气流中的热量,相变成低压气态制冷剂。第一换热器2流出的低压气态制冷剂进入气液分离器8,气液分离器8对回流的制冷剂进行分离,将其中的液态部分储藏于气液分离器8内,而低温低压的气态制冷剂部分则经第四换热部12进入压缩机1重新被压缩,实现制冷剂的循环利用。
本申请的热管理系统还包括第一支路,第一支路与所述第三换热器6并联设置,第一支路上设有控制阀80,控制阀80可以是水阀或其它类型的阀,参照图3,控制阀80连接在第一支路上,控制阀80与第三换热器6并联设置。可选的,控制阀80也可以是三通阀,三通阀的第一端口与通过管路连接 电机51,三通阀的第二端口通过管路连接第三换热器6的第二换热部62,三通阀的第三端口连接第一支路。
在所述制热模式下,当电机产生了多余热量时,控制阀80打开,泵装置52开启,由于冷却液在第三换热器6处的流动阻力相对控制阀80处的流动阻力大,因此只有少量冷却液流向第三换热器6,冷却液回路5的冷却液流动路径包括:泵装置52->电机51(或其它功能部件)->控制阀80->第四换热器7。电机产生的多余热量通过第四换热器7向外界环境释放,第四换热器7位于第一风扇9和第一换热器2之间时(第四换热器7、第一风扇9和第一换热器2之间的位置不作限定,大致为气流方向排布),第一风扇9产生的气流能够更快地将第四换热器7的冷却液的热量带走,同时空气温度升高,相应的第一换热器2周围环境的温度升高,第一换热器2内的低温制冷剂能吸收该部分热量,如此,在冬季外界环境温度较低的情况下,电机产生的多余热量会被第一换热器2中的制冷剂吸收,可以提升热管理系统的制热量。另一方面,在冬季制热模式下,第一换热器2在低温环境下容易结霜,可以开启控制阀80对第一换热器2进行除霜。
请参见图4,热管理系统还可以包括制热除湿模式,该制热除湿模式可以在冬季需要除湿时使用。在制热除湿模式下,压缩机1的出口、第一换热部61、第六换热器30、第二节流装置20、第三换热部11、第一换热器2、气液分离器8、第四换热部12、压缩机1的进口连通形成第二制冷剂回路,且压缩机1的出口、第一换热部61、第六换热器30、第一节流装置3、第二换热器4、气液分离器8、第四换热部12、压缩机1的进口连通形成第三制冷剂回路。
其中,第二制冷剂回路即上述实施例中的制热模式下的第二制冷剂回路。第三制冷剂回路用于为室内制冷,第三制冷剂回路的工作流程为:压缩机1将低温低压的气态制冷剂压缩成高温高压的气态制冷剂,高温高压的气态制冷剂由压缩机1的出口流出,经第一换热部61进入第六换热器30,在第六换热器30中换热,制冷剂释放热量,释放的热量被空气流带到室内,制冷剂则发生相变而冷凝成液态或气液两相制冷剂。制冷剂流出第六换热器30,一路 进入第二节流装置20实现第二制冷剂回路的制热功能,另一路进入第一节流装置3膨胀,节流降压变成低温低压的制冷剂,低温低压的制冷剂进入第二换热器4。此时空气的循环方式为内循环,湿度较高的空气流经温度相对较低的第二换热器4时,空气中的水分冷凝成水珠,以降低第二换热器4周围的空气湿度。除湿后的空气再流经第六换热器30加热,以实现制热除湿的目的。制冷剂则发生相变而大部分蒸发成低温低压的气态制冷剂,流入气液分离器8,气液分离器8对回流的制冷剂进行分离,将其中的液态部分储藏于气液分离器8内,而低温低压的气态制冷剂部分则进入压缩机1重新被压缩,实现制冷剂的循环利用。
请再次参见图1,热管理系统还可以包括四通阀40,四通阀40包括第一端口401、第二端口402、第三端口403和第四端口404,第一换热部61包括第一入口611和第一出口612,第一换热器2包括第一接口21和第二接口22,第二换热器4包括第三接口41和第四接口42,第六换热器30包括第五接口301和第六接口302,第三换热部11包括第七接口111和第八接口112。其中,第一入口611与压缩机1的出口连通,第一出口612与第五接口301连通。第一端口401与第六接口302连通。第二端口402与第一接口21连通,第二接口22与第七接口111连通,第八接口112与第二节流装置20的一端连通,第三端口403与第二节流装置20的另一端连通。并且,第三端口403还与第一节流装置3的一端连通,第三接口41与第一节流装置3的另一端连通,第四接口42、第四端口404与气液分离器8的进口连通;对于未设置气液分离器8的热管理系统,第四接口42、第四端口404经第四换热部12与压缩机1的进口连通。在制冷模式下,第一端口401与第二端口402连通,第三端口403与第四端口404不连通;在制热模式和制热除湿模式下,第一端口401与第三端口403连通,且第二端口402与第四端口404连通。通过控制四通阀40的连接状态,实现制冷剂流动方向的切换,从而实现不同模式的切换。当然,也可采用三通阀、截止阀来替代该四通阀40,从而控制制冷剂流动方向的切换,实现不同模式的切换。
请结合图1至图4,热管理系统还可以包括截止阀50,截止阀50的一端与第一出口612和第五接口301连通,截止阀50的另一端与第一端口401和第六接口302连通。本实施例中,在制冷模式下,截止阀50开启,由于流阻的原因,可通过截止阀50所在支路旁通第六换热器30,仅少量或者没有制冷剂流经第六换热器30,降低第六换热器30对制冷效果的影响;在制热模式或制热除湿模式下,截止阀50关闭。通过控制截止阀50,实现所在支路的通断,应用于不同模式,截止阀50结构简单,通断控制可靠。
请再次结合图1至图4,热管理系统还包括单向阀60,单向阀60与第二节流装置20并联设置。其中,在制冷模式下,单向阀60导通,第二节流装置20截止;在制热模式或制热除湿模式下,单向阀60截止,第二节流装置20节流。通过控制单向阀60和第二节流装置20,实现所在支路的通断,应用于不同模式。
需要说明的是,本申请实施例中,第一节流装置3、第二节流装置20在热管理系统中可以起到节流降压和截止的作用,可包括节流阀、普通的热力膨胀阀或电子膨胀阀等。
另外,请再次参见图1,热管理系统还可以包括位于空调箱13的通道的第二风扇70,第二换热器4和第六换热器30沿第二风扇70的气流方向排布,采用这种排布方式,使得第二换热器4和第六换热器30共用风扇,节省了安装空间。可选地,第二风扇70、第二换热器4和第六换热器30呈一排或一列间隔排布。
值得一提的是,本实施例的热管理系统可以应用在房屋、车辆或其它设备上。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
Claims (20)
- 一种热管理系统,其特征在于,所述热管理系统包括压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4)、第三换热器(6)、第四换热器(7)和空调箱(13),所述第三换热器(6)包括用以流通制冷剂的第一换热部(61)和用以流通冷却液的第二换热部(62);所述热管理系统包括制冷模式,在所述制冷模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第一换热器(2)、所述第一节流装置(3)、所述第二换热器(4)、所述压缩机(1)的进口连通形成第一制冷剂回路;所述第二换热部(62)和所述第四换热器(7)连通形成冷却液回路(5),所述第二换热部(62)内的冷却液能够吸收所述第一换热部(61)内的制冷剂的热量;所述第四换热器(7)位于所述空调箱(13)外。
- 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括位于所述空调箱(13)外的第一风扇(9),所述第一换热器(2)和所述第四换热器(7)共用所述第一风扇(9)以进行散热。
- 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括第五换热器(10),所述第五换热器(10)包括能够进行热交换的第三换热部(11)和第四换热部(12);在所述制冷模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第一换热器(2)、所述第三换热部(11)、所述第一节流装置(3)、所述第二换热器(4)、所述第四换热部(12)、所述压缩机(1)的进口连通形成所述第一制冷剂回路。
- 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括第二节流装置(20)和第六换热器(30),所述第六换热器(30)位于所述空调箱(13)内;所述热管理系统还包括制热模式,在所述制热模式下,所述压缩机(1)的 出口、所述第一换热部(61)、所述第六换热器(30)、所述第二节流装置(20)、所述第一换热器(2)、所述压缩机(1)的进口连通形成第二制冷剂回路。
- 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括第五换热器(10)、第二节流装置(20)和第六换热器(30),所述第五换热器(10)包括能够进行热交换的第三换热部(11)和第四换热部(12),所述第六换热器(30)位于所述空调箱(13)内;所述热管理系统还包括制热除湿模式;在所述制热除湿模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第六换热器(30)、所述第二节流装置(20)、所述第三换热部(11)、所述第一换热器(2)、所述第四换热部(12)、所述压缩机(1)的进口连通形成所述第二制冷剂回路;且所述压缩机(1)的出口、所述第一换热部(61)、所述第六换热器(30)、所述第一节流装置(3)、所述第二换热器(4)、所述第四换热部(12)、所述压缩机(1)的进口连通形成第三制冷剂回路。
- 根据权利要求5所述的热管理系统,其特征在于,所述热管理系统还包括四通阀(40),所述四通阀(40)包括第一端口(401)、第二端口(402)、第三端口(403)和第四端口(404);所述第一换热部(61)包括第一入口(611)和第一出口(612),所述第一换热器(2)包括第一接口(21)和第二接口(22),所述第二换热器(4)包括第三接口(41)和第四接口(42),所述第六换热器(30)包括第五接口(301)和第六接口(302),所述第三换热部(11)包括第七接口(111)和第八接口(112);所述第一入口(611)与所述压缩机(1)的出口连通,所述第一出口(612)与所述第五接口(301)连通;所述第一端口(401)与所述第六接口(302)连通;所述第二端口(402)与所述第一接口(21)连通,所述第二接口(22)与所述第七接口(111)连通,所述第八接口(112)与所述第二节流装置(20)的一端连通,所述第三端口(403)与所述第二节流装置(20)的另一端连通,并与所述第一节流装置(3)的一端连通,所述第三接口(41)与所述第一节流装 置(3)的另一端连通,所述第四接口(42)、所述第四端口(404)经所述第四换热部(12)与所述压缩机(1)的进口连通。
- 根据权利要求6所述的热管理系统,其特征在于,所述热管理系统还包括截止阀(50),所述截止阀(50)的一端与所述第一出口(612)连通,并与所述第五接口(301)连通,所述截止阀(50)的另一端与所述第一端口(401)连通,并与所述第六接口(302)连通。
- 根据权利要求7所述的热管理系统,其特征在于,在所述制冷模式下,所述截止阀(50)开启;在所述制热除湿模式下,所述截止阀(50)关闭。
- 根据权利要求6所述的热管理系统,其特征在于,所述热管理系统还包括气液分离器(8),所述第四接口(42)和所述第四端口(404)与所述气液分离器(8)的进口连通,所述气液分离器(8)的出口与所述第四换热部(12)连通。
- 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统还包括单向阀(60),所述单向阀(60)与所述第二节流装置(20)并联设置。
- 根据权利要求10所述的热管理系统,其特征在于,在所述制冷模式下,所述单向阀(60)导通,所述第二节流装置(20)关闭;在所述制热模式下,所述单向阀(60)截止,所述第二节流装置(20)开启。
- 根据权利要求1-11任一项所述的热管理系统,其特征在于,所述热管理系统还包括第一支路,第一支路与所述第三换热器(6)并联设置,所述第一支路设有控制阀(80)。
- 根据权利要求12所述的热管理系统,其特征在于,在所述制冷模式下,所述控制阀(80)关闭。
- 根据权利要求1-11任一项所述的热管理系统,其特征在于,所述热管 理系统包括泵装置(52)和需要进行散热的功能部件,所述泵装置(52)和所述功能部件位于所述冷却液回路(5)中。
- 一种热管理系统,其特征在于,所述热管理系统包括空调箱(13)、压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4)、第三换热器(6)、第四换热器(7)和用以使冷却液流动的动力装置;所述第一换热器(2)和所述第四换热器(7)位于所述空调箱(13)外,所述第二换热器(4)位于所述空调箱(13)内,所述第三换热器(6)包括用以流通制冷剂的第一换热部(61)和用以流通冷却液的第二换热部(62);所述热管理系统包括制冷模式,在所述制冷模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第一换热器(2)、所述第一节流装置(3)、所述第二换热器(4)、所述压缩机(1)的进口连通形成第一制冷剂回路;所述动力装置、所述第二换热部(62)和所述第四换热器(7)连通形成冷却液回路(5);所述第二换热部(62)内的冷却液能够与所述第一换热部(61)内的制冷剂进行热交换,以对所述第一换热部(61)内的制冷剂进行降温。
- 根据权利要求15所述的热管理系统,其特征在于,所述热管理系统还包括第五换热器(10),所述第五换热器(10)包括能够进行热交换的第三换热部(11)和第四换热部(12);在所述制冷模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第一换热器(2)、所述第三换热部(11)、所述第一节流装置(3)、所述第二换热器(4)、所述第四换热部(12)、所述压缩机(1)的进口连通形成所述第一制冷剂回路。
- 根据权利要求15所述的热管理系统,其特征在于,所述热管理系统还包括第二节流装置(20)和第六换热器(30),所述第六换热器(30)位于所述空调箱(13)内;所述热管理系统还包括制热模式,在所述制热模式下,所述压缩机(1)的 出口、所述第一换热部(61)、所述第六换热器(30)、所述第二节流装置(20)、所述第一换热器(2)、所述压缩机(1)的进口连通形成第二制冷剂回路。
- 根据权利要求15所述的热管理系统,其特征在于,所述热管理系统还包括第五换热器(10)、第二节流装置(20)和第六换热器(30),所述第五换热器(10)包括能够进行热交换的第三换热部(11)和第四换热部(12),所述第六换热器(30)位于所述空调箱(13)内;所述热管理系统还包括制热除湿模式,在所述制热除湿模式下,所述压缩机(1)的出口、所述第一换热部(61)、所述第六换热器(30)、所述第二节流装置(20)、所述第三换热部(11)、所述第一换热器(2)、所述第四换热部(12)、所述压缩机(1)的进口连通形成第二制冷剂回路;且所述压缩机(1)的出口、所述第一换热部(61)、所述第六换热器(30)、所述第一节流装置(3)、所述第二换热器(4)、所述第四换热部(12)、所述压缩机(1)的进口连通形成第三制冷剂回路。
- 根据权利要求15所述的热管理系统,其特征在于,所述冷却液回路(5)包括需要进行散热的功能部件,所述功能部件包括电机(51)和/或电池。
- 根据权利要求15所述的热管理系统,其特征在于,所述第三换热器(6)包括第一集流件(15)、第二集流件(16)、换热管(17)和壳体(19);所述换热管(17)的两端分别固定连接于所述第一集流件(15)和所述第二集流件(16),所述第一集流件(15)和所述第二集流件(16)分别具有集流腔,所述集流腔和所述换热管(17)的管腔连通,以流通制冷剂;所述壳体(19)密封连接于所述第一集流件(15)和所述第二集流件(16)以围成一个换热腔(190),所述壳体(19)还设置有进口管和出口管,所述进口管和所述出口管与所述换热腔(190)连通,以流通冷却液。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20871421.2A EP3982059B1 (en) | 2019-09-30 | 2020-09-25 | Heat management system |
US17/609,770 US20220243961A1 (en) | 2019-09-30 | 2020-09-25 | Thermal management system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910945514.7 | 2019-09-30 | ||
CN201910945514.7A CN112577213A (zh) | 2019-09-30 | 2019-09-30 | 热管理系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021063272A1 true WO2021063272A1 (zh) | 2021-04-08 |
Family
ID=75116906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/117923 WO2021063272A1 (zh) | 2019-09-30 | 2020-09-25 | 热管理系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220243961A1 (zh) |
EP (1) | EP3982059B1 (zh) |
CN (1) | CN112577213A (zh) |
WO (1) | WO2021063272A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113154519B (zh) * | 2021-04-02 | 2024-10-22 | 珠海格力电器股份有限公司 | 一种制冷系统及其控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020007943A1 (en) * | 2000-07-21 | 2002-01-24 | Yukikatsu Ozaki | Heat Pump Cycle |
US20020046570A1 (en) * | 2000-10-20 | 2002-04-25 | Satoshi Itoh | Heat pump cycle having internal heat exchanger |
JP2002366231A (ja) * | 2001-06-07 | 2002-12-20 | Mitsubishi Electric Corp | 流量制御装置及び空気調和装置 |
US20040134217A1 (en) * | 2003-01-09 | 2004-07-15 | Satoshi Itoh | Air conditioner with dehumidifying and heating operation |
US20050039959A1 (en) * | 2002-01-18 | 2005-02-24 | Frank Fruhauf | Vehicle with an air-conditioning system and a heat source |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1929233B1 (de) * | 2005-09-12 | 2019-05-29 | MAHLE Behr GmbH & Co. KG | Ladeluftkühler oder abgaskühler für eine brennkraftmaschine eines kraftfahrzeuges |
KR101344519B1 (ko) * | 2007-05-08 | 2013-12-24 | 한라비스테온공조 주식회사 | 이산화탄소 공조 시스템 |
FR2971047B1 (fr) * | 2011-02-01 | 2013-01-11 | Peugeot Citroen Automobiles Sa | Echangeur thermique reversible, procede de fonctionnement, utilisation et vehicule muni d'un tel echangeur. |
KR101416357B1 (ko) * | 2012-09-07 | 2014-07-08 | 현대자동차 주식회사 | 차량용 히트펌프 시스템 및 그 제어방법 |
CN109140815B (zh) * | 2017-06-27 | 2020-09-25 | 杭州三花研究院有限公司 | 一种热管理系统及一种流量控制装置 |
CN109140816B (zh) * | 2017-06-27 | 2020-07-17 | 杭州三花研究院有限公司 | 一种热管理系统 |
US11267315B2 (en) * | 2017-10-02 | 2022-03-08 | Marelli Cabin Comfort Japan Corporation | Air-conditioning device |
EP3786546B1 (en) * | 2018-06-14 | 2023-08-02 | Hangzhou Sanhua Research Institute Co., Ltd. | Heat pump system |
US11906216B2 (en) * | 2019-04-05 | 2024-02-20 | Hanon Systems | Vehicular heat management system |
CN210951942U (zh) * | 2019-09-30 | 2020-07-07 | 杭州三花研究院有限公司 | 热管理系统 |
-
2019
- 2019-09-30 CN CN201910945514.7A patent/CN112577213A/zh active Pending
-
2020
- 2020-09-25 US US17/609,770 patent/US20220243961A1/en active Pending
- 2020-09-25 WO PCT/CN2020/117923 patent/WO2021063272A1/zh active Application Filing
- 2020-09-25 EP EP20871421.2A patent/EP3982059B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020007943A1 (en) * | 2000-07-21 | 2002-01-24 | Yukikatsu Ozaki | Heat Pump Cycle |
US20020046570A1 (en) * | 2000-10-20 | 2002-04-25 | Satoshi Itoh | Heat pump cycle having internal heat exchanger |
JP2002366231A (ja) * | 2001-06-07 | 2002-12-20 | Mitsubishi Electric Corp | 流量制御装置及び空気調和装置 |
US20050039959A1 (en) * | 2002-01-18 | 2005-02-24 | Frank Fruhauf | Vehicle with an air-conditioning system and a heat source |
US20040134217A1 (en) * | 2003-01-09 | 2004-07-15 | Satoshi Itoh | Air conditioner with dehumidifying and heating operation |
Non-Patent Citations (1)
Title |
---|
See also references of EP3982059A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3982059B1 (en) | 2024-05-15 |
CN112577213A (zh) | 2021-03-30 |
EP3982059A1 (en) | 2022-04-13 |
EP3982059A4 (en) | 2022-08-17 |
US20220243961A1 (en) | 2022-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11760162B2 (en) | Thermal management system | |
JP6685409B2 (ja) | 空気調和装置 | |
WO2018161907A1 (zh) | 一种热管理系统 | |
KR101639814B1 (ko) | 냉장 및 냉동 복합 공조시스템 | |
JP2021509945A (ja) | 空調機システム | |
CN210951942U (zh) | 热管理系统 | |
CN113454407B (zh) | 用于电动或混合动力机动车辆的热管理的装置 | |
JP2010501826A (ja) | 通信装備用冷房装置 | |
CN111231612B (zh) | 热管理系统 | |
JP2005299935A (ja) | 空気調和装置 | |
WO2021228018A1 (zh) | 空调机组及其控制方法 | |
US11358438B2 (en) | Automotive air conditioning system | |
CN109080409B (zh) | 一种热泵系统、空调及汽车 | |
JP2007322024A (ja) | 大温度差空調システム | |
KR100225636B1 (ko) | 냉난방겸용 공기조화기 | |
WO2003062710A1 (fr) | Climatiseur du type a pompe a chaleur | |
WO2021063272A1 (zh) | 热管理系统 | |
CN107449129B (zh) | 空调系统及具有其的车辆 | |
CN208059150U (zh) | 一种变频空调系统 | |
KR101173736B1 (ko) | 냉장 및 냉동 복합 공조시스템 | |
CN108895698A (zh) | 空调器 | |
US20170314813A1 (en) | Split-Type Air Conditioning and Heat Pump System with Energy Efficient Arrangement | |
KR100613502B1 (ko) | 히트 펌프식 공기조화기 | |
CN215637633U (zh) | 空调室外机 | |
JP2012063083A (ja) | 熱源ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871421 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20 871 421.2 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020871421 Country of ref document: EP Effective date: 20220106 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |