WO2018072510A1 - 一种空调热回收系统 - Google Patents

一种空调热回收系统 Download PDF

Info

Publication number
WO2018072510A1
WO2018072510A1 PCT/CN2017/094451 CN2017094451W WO2018072510A1 WO 2018072510 A1 WO2018072510 A1 WO 2018072510A1 CN 2017094451 W CN2017094451 W CN 2017094451W WO 2018072510 A1 WO2018072510 A1 WO 2018072510A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
heat dissipation
pipeline
liquid
Prior art date
Application number
PCT/CN2017/094451
Other languages
English (en)
French (fr)
Inventor
罗亚军
张仕强
武连发
贾翔
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2018072510A1 publication Critical patent/WO2018072510A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Embodiments of the present invention relate to the field of household appliances, and in particular, to an air conditioning heat recovery system.
  • the current air conditioning heat recovery system generally includes an internal machine 1, a high pressure air pipe 2, a low pressure air pipe 3, a liquid pipe 4, a compressor 5, a subcooler 6, a driving heat dissipation module 7, and an outdoor heat exchanger 8.
  • the internal machine 1 is connected to the high pressure air pipe 2, the low pressure air pipe 3 and the liquid pipe 4, the low pressure air pipe 3 is connected to the air inlet of the compressor 5, the high pressure air pipe 2 is connected to the air outlet of the compressor 5, and the compressor 5 will flow through the refrigerant of the low pressure air pipe 3.
  • the liquid pipe 4 is connected with the subcooler 6 and the driving heat-dissipating module 7, and the liquid-side pipe of the outdoor heat exchanger 8 is connected to the driving heat-dissipating module through a heating electronic expansion valve 9
  • the gas side of the outdoor unit heat exchanger 8 is connected to the low pressure gas pipe 3 through a four-way valve 10.
  • the refrigerant enters the low-pressure gas pipe 3 after being absorbed by heat in the internal machine 1, and the refrigerant is sent to the compressor 5 through the low-pressure gas pipe 3, and the compressor 5 compresses the refrigerant to form high-pressure exhaust gas, and the high-pressure refrigerant passes through the four-way.
  • the valve 10 flows to the outdoor unit heat exchanger 8, and the outdoor unit heat exchanger 8 acts as a condenser in the cooling mode, and the high-pressure refrigerant is condensed into a liquid refrigerant in the outdoor unit heat exchanger 8, and is heated by the heating electronic expansion valve 9.
  • the heat dissipation module 7 (the liquid refrigerant realizes heat dissipation to the driving heat dissipation module 7) and the subcooler 6 are returned to the internal machine 1.
  • the high-pressure refrigerant releases heat in the internal machine 1 to form a liquid refrigerant, and flows through the cold pipe 6 through the liquid pipe 4 and drives the heat dissipation module 7 to realize heat dissipation to the driving heat dissipation module 7, and then
  • the heating electronic expansion valve 9 flows through the outdoor unit heat exchanger 8, and the outdoor unit heat exchanger 8 is in the heating mode
  • the liquid refrigerant absorbs heat in the outdoor heat exchanger 8 and then enters the low pressure gas pipe 3 to return to the internal machine 1, thereby forming a circulation flow path of the refrigerant in the cooling and heating modes.
  • the internal machine 1 When the air conditioning heat recovery system is in the full heat recovery mode, the internal machine 1 has both a cooling and heating mode, and the sum of the heating capacities of the internal machine 1 in the heating mode is substantially equal to the sum of the cooling capacities of the internal machine 1 in the cooling mode.
  • the air conditioner outdoor unit heat exchanger 8 is not required to participate in the heat exchange.
  • the heating electronic expansion valve 9 of the pipeline where the outdoor unit heat exchanger 8 is located is turned off, and the refrigerant cannot flow through the driving heat dissipation module 7, The heat dissipation to the driving heat dissipation module 7 cannot be achieved.
  • the main function of the driving heat dissipation module 7 is to drive the compressor to work, and the heat is large. If the heat dissipation module 7 is not heated in time, the components in the driving heat dissipation module 7 may burst due to excessive temperature, which is very dangerous. Therefore, the air conditioner How to realize the heat dissipation of the driving heat dissipation module 7 in the heat recovery system in the full heat recovery mode becomes an urgent problem to be solved.
  • an embodiment of the present invention provides an air conditioning heat recovery system to implement heat dissipation of a heat dissipation module of an air conditioner in a full heat recovery mode.
  • An embodiment of the present invention provides an air conditioning heat recovery system, including an internal machine, a high pressure air pipe, a low pressure air pipe, a liquid pipe, a compressor, a subcooler, a driving heat dissipation module, and an outdoor heat exchanger, and further includes:
  • the electronically controlled valve wherein at least one electronically controlled valve is connected in series between the liquid outlet pipe of the driving heat dissipation module and the low pressure gas pipe to form a first pipeline; at least one electronically controlled valve is connected in series to the liquid inlet pipe and the high pressure gas pipe of the heat dissipation module. Forming a second conduit;
  • heat exchanger is connected to the first pipeline and the second pipeline, respectively, for transferring heat of the high temperature refrigerant in the second pipeline to the low temperature refrigerant in the first pipeline.
  • the internal machine includes a first internal machine and a second internal machine, the first internal machine is in a cooling mode, and the second internal machine is in a heating mode.
  • the first internal machine connects the high pressure air pipe, the low pressure air pipe and the liquid pipe
  • the second internal machine connects the high pressure air pipe, the low pressure air pipe and the liquid pipe.
  • the high pressure air pipe, the low pressure air pipe and the liquid pipe connecting the first inner machine and the second inner machine are respectively connected.
  • the electronically controlled valve connected in series between the discharge pipe driving the heat dissipation module and the low pressure air pipe includes an electronic expansion valve.
  • the electronically controlled valve connected in series between the inlet pipe and the high pressure gas pipe that drives the heat dissipation module includes a solenoid valve.
  • the heat exchanger is a plate heat exchanger or a casing heat exchanger.
  • the embodiment of the invention provides an air conditioning heat recovery system, which increases the connection between the heat-dissipating module to the low-pressure gas pipe and the two pipes connecting the high-pressure gas pipe to the liquid pipe, and uses the heat exchanger to connect the high-pressure gas pipe to the liquid pipe.
  • the heat of the medium refrigerant is transferred to the refrigerant in the pipeline connecting the driving heat dissipation module to the low pressure air pipe, so that the refrigerant in the high pressure gas pipe is condensed by the heat exchanger to obtain the liquid refrigerant, and then enters the liquid pipe, and is mixed with the liquid refrigerant in the liquid pipe,
  • the liquid pipe flows through the driving heat dissipation module, and then flows to the low pressure air pipe through the first electronic control valve, thereby completing the heat dissipation of the driving heat dissipation module, avoiding the temperature of the driving heat dissipation module being too high, damaging the components in the driving heat dissipation module, and even causing the explosion.
  • the heat dissipation of the air-conditioning heat recovery system in the complete heat recovery mode is realized, and the stability and safety of the air-conditioning heat recovery system are improved.
  • FIG. 1 is a schematic structural view of an air conditioning heat recovery system in the prior art
  • FIG. 2 is a schematic structural diagram of an air conditioning heat recovery system according to Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic structural view of an air conditioning heat recovery system according to Embodiment 2 of the present invention.
  • Embodiment 2 is a schematic structural view of an air conditioning heat recovery system according to Embodiment 1 of the present invention, which includes an internal machine 1, a high pressure air pipe 2, a low pressure air pipe 3, a liquid pipe 4, a compressor 5, a subcooler 6, and a driving heat dissipation.
  • the first electronically controlled valve 11 is connected in series between the liquid outlet pipe of the driving heat dissipation module 7 and the low pressure air pipe 3 to form a first pipeline;
  • the second electronically controlled valve 12 is connected in series to the liquid inlet pipe and the high pressure air pipe of the heat dissipation module 7 Between the two, a second pipeline is formed;
  • the heat exchanger 13 is connected to the first pipeline and the second pipeline, respectively, and the heat of the high-temperature refrigerant in the second pipeline is transferred to the low-temperature refrigerant in the first pipeline.
  • the liquid pipe 4 passing through the cooler 6 and the driving heat dissipation module 7 is connected to the heat exchanger 13 via the first electric control valve 11, and the liquid refrigerant in the liquid pipe 4 absorbs heat through the heat exchanger 13 to become a low pressure.
  • the gaseous refrigerant enters the low pressure gas pipe 3.
  • the high-pressure gas pipe 2 communicates with the heat exchanger 13 through the second electronically controlled valve 12, and the high-pressure gaseous refrigerant in the high-pressure gas pipe 2 is dissipated into a liquid refrigerant in the heat exchanger 13, so that the heat of the refrigerant in the first pipe and the second pipe is realized.
  • the low-pressure gaseous refrigerant in the first line is returned to the internal machine 1 via the low-pressure gas pipe 3, and the refrigerant in the second line is converted in the heat exchanger 13.
  • the liquid refrigerant in the second pipeline is mixed with the liquid refrigerant in the liquid pipe, and then flows into the driving heat dissipation module 7 through the liquid inlet pipe of the heat dissipation module 7 to complete the heat dissipation of the driving heat dissipation module 7.
  • the first electronically controlled valve 11 connected in series between the outlet pipe driving the heat dissipation module 7 and the low pressure air pipe 3 comprises an electronic expansion valve.
  • the liquid refrigerant flowing through the liquid outlet pipe of the cooler 6 passes through the electronic expansion valve 11, and the electronic expansion valve 11 restricts the flow rate of the liquid refrigerant flowing through the first pipe, thereby reducing the first pipe flowing through the plate heat exchanger 13.
  • the pressure of the refrigerant in the road enables the low-pressure liquid refrigerant to exchange sufficient heat in the heat exchanger 13 to prevent the liquid refrigerant from flowing into the low-pressure gas pipe 3 due to insufficient heat exchange, thereby damaging the normal operation of various components in the air-conditioning system.
  • the electronic expansion valve 11 employed may be an electromagnetic expansion valve that regulates the flow of refrigerant through the electromagnetic expansion valve by applying an electrical signal control on the electromagnetic coil of the electromagnetic expansion valve.
  • the electronic expansion valve 11 employed may also be an electric expansion valve.
  • the air conditioning heat recovery system may include a plurality of first electronically controlled valves 11 and a plurality of second electronically controlled valves 12, and the first electronically controlled valves 11 and the second may be set according to specific requirements of the operation of the air conditioning heat recovery system.
  • the number of the electronically controlled valves 12 and the number of the first electronically controlled valves 11 and the second electrically controlled valves 12 are not limited in the embodiment of the present invention.
  • the second electronically controlled valve 12 connected in series between the inlet pipe driving the heat dissipation module 7 and the high pressure gas pipe 2 comprises a solenoid valve.
  • the solenoid valve 12 can be turned on or off according to the requirement of the working state of the air conditioner to control the breaking of the second pipeline.
  • the heat dissipation module 7 needs to be dissipated through the first pipeline to improve the safety of driving the heat dissipation driving module 7. Since the refrigerant flows through the driving heat dissipation module 7, it exists in a liquid form. Therefore, it is required that the second line is opened to bring in a high-pressure gaseous refrigerant to achieve heat exchange, and at this time, the solenoid valve 12 is opened.
  • the heat exchanger 13 is a plate heat exchanger.
  • the plate heat exchanger 13 is connected to the first pipeline and the second pipeline to realize the heat transfer of the high temperature refrigerant in the second pipeline to the low temperature refrigerant in the first pipeline, and the heat transfer of the plate heat exchanger
  • the high coefficient enables the two pipes to exchange sufficient heat in the plate heat exchanger 13 to ensure complete conversion of gas or liquid gas, and improve the safety of the air conditioning heat recovery system.
  • the heat exchanger 13 can also be a casing heat exchanger.
  • the casing heat exchanger has a simple structure and can control the size of the heat transfer area. By increasing the heat transfer area, the heat exchange between the first pipe and the second pipe in the heat exchanger 13 can also be increased, and the heat recovery of the air conditioner can be improved. The security of the system work.
  • the casing heat exchanger can employ an array casing heat exchanger or a racetrack casing heat exchanger.
  • the above-mentioned plate heat exchanger is a classic heat exchanger adopted by those skilled in the art, and is not limited to the heat exchanger of the embodiment.
  • the refrigerant does not flow through the driving heat dissipation module 7, and the heat dissipation of the driving heat dissipation module 7 cannot be completed, resulting in the temperature of the driving heat dissipation module 7
  • the problem of high damage to the components is increased by connecting the first line connecting the heat-dissipating module 7 to the low-pressure air pipe 3 and the second pipe connecting the heat-dissipating module 7 to the high-pressure gas pipe 2, and connecting using the heat exchanger 13.
  • the heat of the refrigerant in the pipeline from the high pressure gas pipe 2 to the liquid pipe 4 is transferred to the refrigerant in the pipeline connecting the driving heat dissipation module 7 to the low pressure gas pipe 3, so that the refrigerant in the high pressure gas pipe 2 is condensed by the heat exchanger 13 to obtain the liquid refrigerant.
  • the liquid pipe 4 is mixed with the liquid refrigerant in the liquid pipe 4, flows through the liquid pipe 4 through the driving heat dissipation module 7, and is connected to the low pressure gas pipe 3 via the first electric control valve 11, so that the air conditioning heat recovery system is in the complete heat recovery mode.
  • a complete refrigerant circuit flowing through the driving heat dissipation module 7 is formed, thereby realizing heat dissipation to the driving heat dissipation module 7 in the complete heat recovery mode, and improving the air conditioning The stability and safety of the heat recovery system work.
  • FIG. 3 is a schematic structural view of an air conditioning heat recovery system according to Embodiment 2 of the present invention.
  • the system comprises an internal machine, a high pressure air pipe 2, a low pressure air pipe 3, a liquid pipe 4, a compressor 5, a subcooler 6, a driving heat dissipation module 7, an outdoor heat exchanger 8, a heating electronic expansion valve 9, and a four-way valve 10.
  • the internal machine is connected to the high pressure air pipe 2, the low pressure air pipe 3 and the liquid pipe 4.
  • the low pressure air pipe 3 is connected to the intake port of the compressor 5, the high pressure air pipe 2 is connected to the air outlet of the compressor 5, and the gas-liquid separator 14 is connected in series between the internal machine and the compressor 5.
  • the compressor 5 compresses the refrigerant flowing through the low-pressure gas pipe 3 and the gas-liquid separator 14 into a high-pressure high-temperature gaseous refrigerant into the high-pressure gas pipe 2, and the liquid pipe 4 is connected to the driving heat-dissipating module 7 through the cooler 6, and drives the liquid-discharging pipe of the heat-dissipating module 7 to pass.
  • the first electronically controlled valve 11 is connected to the heat exchanger 13 and the outlet pipe that drives the heat dissipation module 7 is connected to the low pressure gas pipe 3 through the heat exchanger 13.
  • the high pressure gas pipe 2 is connected to the heat exchanger 13 through the second electronically controlled valve 12, and the high pressure gas pipe 2 is connected to the liquid pipe 4 through the heat exchanger 13.
  • the liquid side line of the outdoor unit heat exchanger 8 is connected to the heat radiating module through a heating electronic expansion valve 9.
  • the air side of the outdoor unit heat exchanger 8 is connected to the low pressure air tube 3 through a four-way valve 10.
  • the internal machine 1 includes a first internal machine 101 and a second internal machine 102.
  • the air conditioning heat recovery system is in the full heat recovery mode
  • the first internal machine 101 is in the cooling mode
  • the second internal Machine 102 is in a heating mode.
  • the first internal machine 101 is connected to the high pressure air pipe 2, the low pressure air pipe 3 and the liquid pipe 4
  • the second internal machine 102 is connected to the high pressure air pipe 2, the low pressure air pipe 3 and the liquid pipe 4.
  • the high pressure air pipe 2 is connected to the first inner machine 101 and the second inner machine 102 via four.
  • the valve 10 is connected to the air outlet of the compressor 5, and one path of the low pressure air pipe 3 is connected to the first inner machine 101 and the second inner machine 102, and is connected to the air inlet of the compressor 5 via the gas-liquid separator 14, and one road is connected to four
  • the compressor return port of the valve 10 is connected, the liquid pipe 4 is connected to the first internal machine 101 and the second internal machine 102, and the cooling device 6 is connected to drive the heat dissipation module 7.
  • the first electronically controlled valve 11 is connected in series to drive the heat dissipation module 7 out.
  • a first pipeline is formed between the liquid pipe and the low pressure gas pipe 3, and the second electric control valve 12 is connected in series between the liquid inlet pipe driving the heat dissipation module 7 and the high pressure gas pipe 2 to form a second pipeline, and the heat exchanger 13 is respectively connected
  • the first pipeline and the second pipeline transfer heat of the high temperature refrigerant in the second pipeline to the low temperature refrigerant in the first pipeline.
  • the air conditioning heat recovery system when the air conditioning heat recovery system is in the full heat recovery mode, the first internal machine 101 is in the cooling mode, and the refrigerant absorbs external environment heat in the first internal machine 101 to form low pressure gas into the low pressure air pipe 3, and the low pressure gaseous refrigerant passes through the low pressure.
  • the gas pipe 3 enters the compressor 5 through the gas-liquid separator 14, and the gas-liquid separator 14 separates the inflowing gaseous refrigerant from the liquid refrigerant to ensure that the refrigerant flowing to the compressor 5 is in a gaseous state, thereby ensuring the compressor in the air-conditioning heat recovery system.
  • the compressor 5 realizes the compression of the low-pressure gaseous refrigerant, the refrigerant is converted into a high-pressure gas state, and the high-pressure gaseous refrigerant enters the high-pressure gas pipe 2 to return to the second internal machine 102.
  • the second internal machine 102 When the air conditioning heat recovery system is in the full heat recovery mode, the second internal machine 102 is in the heating mode, and the high pressure gaseous refrigerant entering the second internal machine 102 releases heat to the external environment to form a liquid refrigerant into the liquid pipe 4, which is partially liquid.
  • the refrigerant flow passes through the cooler 6, and the subcooler 6 can effectively enhance the refrigeration capacity of the refrigerant and reduce the temperature of the refrigerant in the outlet pipe of the subcooler 6.
  • the low-temperature liquid refrigerant flows through the heat-dissipating module 7 to realize effective heat dissipation to the driving heat-dissipating module 7.
  • the low-temperature refrigerant in the liquid-out pipe of the subcooler 6 enters the heat exchanger 13 through the first electronically controlled valve 11, because the embodiment of the present invention
  • the air conditioning heat recovery system provided increases the second pipeline connecting the high pressure gas pipe 2 to the liquid inlet pipe of the heat dissipation module 7, the second pipe is connected to the heat exchanger 13, and the low temperature liquid refrigerant flowing through the heat dissipation module 7 passes through the first electricity.
  • Control valve 11 (for low temperature liquid cooling The medium plays a role of throttling) absorbing the heat released by the high-temperature and high-pressure gaseous refrigerant in the second pipeline in the heat exchanger 13 into a low-pressure gaseous refrigerant entering the low-pressure gas pipe 3, and at the same time, the high-pressure gaseous refrigerant in the second pipeline releases heat.
  • the liquid refrigerant is returned to the liquid pipe 4 connecting the first internal machine 101 and the second internal machine 102 through the cooler 6, thereby forming a complete circulating flow of the refrigerant flowing through the driving heat dissipation module 7 in the air conditioning heat recovery system in the complete heat recovery mode. road.
  • the high pressure air pipe 2, the low pressure air pipe 3 and the liquid pipe 4 connecting the first inner machine 101 and the second inner machine 102 are respectively connected.
  • the high-pressure liquid refrigerant finally returning to the second internal machine 102 is condensed and condensed into a liquid refrigerant, because the liquid pipe 4 connecting the first internal machine 101 and the second internal machine are connected.
  • the liquid pipes 4 of 102 are connected to each other, and the formed liquid refrigerant flows into the first internal machine 101 through the liquid pipe 4 connected in series, and absorbs external environmental heat in the internal machine to form a gaseous refrigerant, so that the first internal machine 101 and the second inner body are passed.
  • the liquid pipe 4 and the high pressure gas pipe 2 of the machine 102 are connected to the low pressure gas pipe 3 to improve the utilization rate of the refrigerant in the complete heat recovery mode of the air conditioning heat recovery system, and simplify the structure of the air conditioning heat recovery system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调热回收系统,包括电控阀门(11、12),其中,至少一个电控阀门(11)串联于驱动散热模块(7)的出液管与低压气管(3)之间,形成第一管路;至少一个电控阀门(12)串联于驱动散热模块(7)的进液管与高压气管(2)之间,形成第二管路;换热器(13),换热器(13)分别连接第一管路和第二管路,用于将第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒。该系统在完全热回收模式下,可以实现对驱动散热模块(7)的散热,避免了由于驱动散热模块(7)温度过高对系统的损坏,提高了空调热回收系统工作的稳定性与安全性。

Description

一种空调热回收系统
本申请要求于2016年10月21日提交中国专利局、申请号为201610919597.9、发明名称为“一种空调热回收系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及家用电器技术领域,尤其涉及一种空调热回收系统。
背景技术
如图1所示,目前空调热回收系统一般包括内机1、高压气管2、低压气管3、液管4、压缩机5、过冷器6、驱动散热模块7、室外机换热器8,内机1连接高压气管2、低压气管3与液管4,低压气管3连接压缩机5的进气口,高压气管2连接压缩机5的出气口,压缩机5将流经低压气管3的冷媒压缩成高压高温气态冷媒进入高压气管2,液管4与过冷器6及驱动散热模块7连接,室外机换热器8的液侧管路通过一制热电子膨胀阀9连接驱动散热模块7,室外机换热器8气侧通过一四通阀10连接至低压气管3。
当内机1处于制冷模式时,冷媒在内机1中吸热蒸发后进入低压气管3,冷媒经低压气管3送入压缩机5,压缩机5压缩冷媒形成高压排气,高压冷媒经四通阀10流至室外机换热器8,室外机换热器8在制冷模式下充当冷凝器,高压冷媒在室外机换热器8中放热冷凝成液态冷媒,经制热电子膨胀阀9流经驱动散热模块7(液态冷媒实现对驱动散热模块7的散热)和过冷器6回流至内机1。当内机1处于制热模式时,高压冷媒在内机1中放热冷凝形成液态冷媒,经液管4流经过冷器6与驱动散热模块7,实现对驱动散热模块7的散热,之后经制热电子膨胀阀9流经室外机换热器8,室外机换热器8在制热模式下 充当蒸发器,液态冷媒在室外机换热器8中吸热蒸发后进入低压气管3回流至内机1,以此形成制冷和制热模式下冷媒的循环流路。
当空调热回收系统处于完全热回收模式时,内机1同时存在制冷与制热模式,制热模式下内机1的制热量之和基本等同于制冷模式下内机1的制冷量之和,此时,无需空调室外机换热器8参与换热,如图1所示,室外机换热器8所在管路的制热电子膨胀阀9关断,冷媒无法流经驱动散热模块7,也就无法实现对驱动散热模块7的散热。
驱动散热模块7的主要作用是驱动压缩机工作,发热较大,若驱动散热模块7得不到及时散热,驱动散热模块7中的元器件会因温度过高而炸裂,十分危险,因此,空调热回收系统在完全热回收模式下如何实现对驱动散热模块7的散热成为一个亟待解决的问题。
发明内容
有鉴于此,本发明实施例提供了一种空调热回收系统,以实现空调的热回收系统在完全热回收模式下对驱动散热模块进行散热。
本发明实施例提供了一种空调热回收系统,包括内机、高压气管、低压气管、液管、压缩机、过冷器、驱动散热模块、室外机换热器,还包括:
电控阀门,其中,至少一个电控阀门串联于驱动散热模块的出液管与低压气管之间,形成第一管路;至少一个电控阀门串联于驱动散热模块的进液管与高压气管之间,形成第二管路;
换热器,所述换热器分别连接所述第一管路和第二管路,用于将所述第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒。
进一步地,所述内机包括第一内机和第二内机,所述第一内机处于制冷模式,所述第二内机处于制热模式。
进一步地,所述第一内机连接所述高压气管、低压气管和液管,所述第二内机连接所述高压气管、低压气管和液管。
进一步地,连接所述第一内机和所述第二内机的高压气管、低压气管和液管分别对应相连。
进一步地,串联于驱动散热模块的出液管与低压气管之间的电控阀门包括电子膨胀阀。
进一步地,串联于驱动散热模块的进液管与高压气管之间的电控阀门包括电磁阀。
进一步地,所述换热器为板式换热器或套管换热器。
本发明实施例提供了一种空调热回收系统,通过增加连接驱动散热模块至低压气管以及连接高压气管至液管的两条管路,并使用换热器将连接高压气管至液管的管路中冷媒的热量传递给连接驱动散热模块至低压气管的管路中的冷媒,使得高压气管中的冷媒经换热器冷凝得到液态冷媒后进入液管,与液管中的液态冷媒混合后,经液管流经驱动散热模块,再经第一电控阀门流至低压气管,完成了对驱动散热模块的散热,避免了驱动散热模块温度过高而损坏驱动散热模块中的元器件,甚至产生炸裂现象的情况,实现了空调热回收系统在完全热回收模式下对驱动散热模块的散热,提高了空调热回收系统工作的稳定性与安全性。
附图说明
图1是现有技术中空调热回收系统的结构示意图;
图2是本发明实施例一提供的一种空调热回收系统的结构示意图;
图3是本发明实施例二提供的一种空调热回收系统的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图2是本发明实施例一提供的一种空调热回收系统的结构示意图,该系统包括内机1、高压气管2、低压气管3、液管4、压缩机5、过冷器6、驱动散热模块7、室外机换热器8、第一电控阀门11、第二电控阀门12和换热器13。
其中,第一电控阀门11串联于驱动散热模块7的出液管与低压气管3之间,形成第一管路;第二电控阀门12串联于驱动散热模块7的进液管与高压气管2之间,形成第二管路;换热器13分别连接第一管路与第二管路,将所述第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒。
上述技术方案中,连通过冷器6与驱动散热模块7的液管4经第一电控阀门11连接换热器13,所述液管4中的液态冷媒通过换热器13吸收热量成为低压气态冷媒进入低压气管3。高压气管2通过第二电控阀门12连通换热器13,高压气管2中的高压气态冷媒在换热器13中散热成为液态冷媒,这样就实现第一管路与第二管路中冷媒热量的交换,第一管路中的低压气态冷媒经低压气管3回流至内机1,第二管路中的冷媒在换热器13中完成状态的转换。 第二管路中的液态冷媒与液管中的液态冷媒混合后,经驱动散热模块7的进液管流入驱动散热模块7,完成对驱动散热模块7的散热。
可选的,串联于驱动散热模块7的出液管与低压气管3之间的第一电控阀门11包括电子膨胀阀。具体的,流经过冷器6出液管的液态冷媒经过电子膨胀阀11,电子膨胀阀11限制流经第一管路的液态冷媒的流量,降低了流经板式换热器13的第一管路中冷媒的压力,使得该低压液态冷媒能够在换热器13中进行充分的热量交换,避免由于热量交换不充分导致液态冷媒流进低压气管3,损伤空调系统中各个部件的正常工作。
示例性的,采用的电子膨胀阀11可以是电磁式膨胀阀,通过在电磁式膨胀阀的电磁线圈上施加电信号控制的方式,调节冷媒通过电磁式膨胀阀的流量。示例性的,采用的电子膨胀阀11还可以是电动式膨胀阀。
示例性的,所述空调热回收系统可以包括多个第一电控阀门11以及多个第二电控阀门12,可根据空调热回收系统工作的具体需求设置第一电控阀门11以及第二电控阀门12的个数,本发明实施例对第一电控阀门11以及第二电控阀门12的个数和种类不作限定。
可选的,串联于驱动散热模块7的进液管与高压气管2之间的第二电控阀门12包括电磁阀。具体的,所述电磁阀12可根据空调工作状态的需求处于开启或截止状态,控制第二管路的开断。当空调热回收系统进入完全热回收模式时,需要通过第一管路对驱动散热模块7进行散热以提高驱动散热驱动模块7工作的安全性,由于冷媒流经驱动散热模块7后以液态形式存在,因此需要第二管路开通带入高压气态冷媒以实现热量交换,此时,所述电磁阀12开启。
需要说明的是,上述采用的电子膨胀阀11或电磁阀12均属于本领域技术 人员采用的经典的电控阀门,并非对本实施例电控阀门的限定。
可选的,所述换热器13为板式换热器。具体的,采用板式换热器13连接第一管路与第二管路,实现将第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒,板式换热器的传热系数较高,能够使得两条管路在板式换热器13中进行充分的热量交换,保证气液或液气转换完全,提高了空调热回收系统工作的安全性。
可选的,所述换热器13还可以是套管换热器。具体的,套管换热器结构简单,能够控制传热面积的大小,通过增加传热面积同样能够增加第一管路与第二管路在换热器13中的热量交换,提高空调热回收系统工作的安全性。示例性的,套管换热器可以采用阵列式套管换热器或跑道型套管换热器。
需要说明的是,上述采用的板式换热器属于本领域技术人员采用的经典的换热器,并非对本实施例换热器的限定。
本发明实施例的技术方案,针对现有技术中空调热回收系统处于完全热回收模式时,冷媒不流经驱动散热模块7,无法完成对驱动散热模块7的散热,导致驱动散热模块7温度过高损坏元器件的问题,通过增加连通驱动散热模块7至低压气管3的第一管路以及连通驱动散热模块7进液管至高压气管2的第二管路,并使用换热器13将连接高压气管2至液管4的管路中冷媒的热量传递给连接驱动散热模块7至低压气管3的管路中的冷媒,使得高压气管2中的冷媒经换热器13冷凝得到液态冷媒后进入液管4,与液管4中的液态冷媒混合后,经液管4流经驱动散热模块7,再经第一电控阀门11与低压气管3连接,使得空调热回收系统在完全热回收模式下形成了流经驱动散热模块7的完整冷媒回路,实现了完全热回收模式下对驱动散热模块7的散热,提高了空调 热回收系统工作的稳定性与安全性。
实施例二
图3是本发明实施例二提供的一种空调热回收系统的结构示意图。该系统包括内机、高压气管2、低压气管3、液管4、压缩机5、过冷器6、驱动散热模块7、室外机换热器8、制热电子膨胀阀9、四通阀10、第一电控阀门11、第二电控阀门12、换热器13和气液分离器14。其中,内机连接高压气管2、低压气管3和液管4。低压气管3连接压缩机5的进气口,高压气管2连接压缩机5的出气口,在内机与压缩机5之间串联有气液分离器14。压缩机5将流经低压气管3和气液分离器14的冷媒压缩成高压高温气态冷媒进入高压气管2,液管4经过冷器6与驱动散热模块7连接,驱动散热模块7的出液管通过第一电控阀门11与换热器13连接,且驱动散热模块7的出液管通过换热器13连接低压气管3。高压气管2通过第二电控阀门12连接换热器13,且高压气管2通过换热器13连接液管4。室外机换热器8的液侧管路通过一制热电子膨胀阀9连接驱动散热模块7室外机换热器8气侧通过一四通阀10连接至低压气管3。
在上述技术方案的基础上,所述内机1包括第一内机101和第二内机102,当空调热回收系统处于完全热回收模式时,第一内机101处于制冷模式,第二内机102处于制热模式。
可选的,第一内机101连接高压气管2、低压气管3和液管4,第二内机102连接高压气管2、低压气管3和液管4。
具体的,如图3所示,高压气管2连通第一内机101和第二内机102经四 通阀10连接压缩机5出气口,低压气管3的一支路连通第一内机101和第二内机102,经气液分离器14连接压缩机5进气口,一支路连接至四通阀10的压缩机回气口接管,液管4连通第一内机101和第二内机102,经过冷器6连接驱动散热模块7,第一电控阀门11串联于驱动散热模块7的出液管与低压气管3之间,形成第一管路,第二电控阀门12串联于驱动散热模块7的进液管与高压气管2之间,形成第二管路,换热器13分别连接第一管路与第二管路,将所述第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒。
具体的,当空调热回收系统处于完全热回收模式时,第一内机101处于制冷模式,冷媒在第一内机101中吸收外部环境热量蒸发形成低压气体进入低压气管3,低压气态冷媒通过低压气管3经气液分离器14进入压缩机5,气液分离器14对流入的气态冷媒与液态冷媒进行分离,保证流至压缩机5的冷媒均为气态,保证了空调热回收系统中压缩机5工作的安全性与稳定性,压缩机5实现对低压气态冷媒的压缩,冷媒转化为高压气态,高压气态冷媒进入高压气管2回流至第二内机102。
当空调热回收系统处于完全热回收模式时,第二内机102处于制热模式,进入第二内机102的高压气态冷媒向外部环境中释放热量冷凝形成液态冷媒进入液管4,此部分液态冷媒流经过冷器6,过冷器6能够有效增强冷媒的制冷量,降低过冷器6出液管中冷媒的温度。该低温液态冷媒流经驱动散热模块7,实现对驱动散热模块7的有效散热,过冷器6出液管中的低温冷媒经第一电控阀门11进入换热器13,由于本发明实施例提供的空调热回收系统增加了连接高压气管2至驱动散热模块7进液管的第二管路,第二管路连接换热器13,流经驱动散热模块7的低温液态冷媒经第一电控阀门11(对低温液态冷 媒起到节流的作用)在换热器13中吸收第二管路中高温高压气态冷媒释放的热量成为低压气态冷媒进入低压气管3,同时第二管路中的高压气态冷媒释放热量后形成液态冷媒经过冷器6回流至连接第一内机101和第二内机102的液管4,以此形成完全热回收模式下,空调热回收系统中流经驱动散热模块7的冷媒的完整循环流路。
可选的,连接所述第一内机101和所述第二内机102的高压气管2、低压气管3和液管4分别对应相连。
示例性的,第一内机101处于制冷模式时,最终回流到第二内机102的高压液态冷媒放热冷凝成为液态冷媒,由于连接第一内机101的液管4与连接第二内机102的液管4对应相连,形成的液态冷媒通过串联的液管4流入第一内机101,在内机中吸收外部环境热量形成气态冷媒,这样,通过将第一内机101与第二内机102的液管4、高压气管2与低压气管3对应相连提高了空调热回收系统在完全热回收模式下对冷媒的利用率,简化了空调热回收系统结构。
本发明实施例的技术方案,针对现有技术中空调热回收系统处于完全热回收模式时,冷媒不流经驱动散热模块7,无法完成对驱动散热模块7的散热的问题,通过增加连通驱动散热模块7至低压气管3的第一管路以及连通驱动散热模块7进液管4至高压气管2的第二管路,并使用换热器13将连接高压气管2至液管4的管路中冷媒的热量传递给连接驱动散热模块7至低压气管3的管路中的冷媒,使得高压气管2中的冷媒经换热器13冷凝得到液态冷媒后进入液管4,与液管4中的液态冷媒混合后,经液管4流经驱动散热模块7,再经第一电控阀门11与低压气管3连接,使得空调热回收系统在完全热回收模式下形成了流经驱动散热模块7的完整冷媒回路,实现了完全热回收模式下 对驱动散热模块7的散热,提高了空调热回收系统工作的稳定性与安全性。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (7)

  1. 一种空调热回收系统,包括内机、高压气管、低压气管、液管、压缩机、过冷器、驱动散热模块、室外机换热器,其特征在于,还包括:
    电控阀门,其中,至少一个电控阀门串联于驱动散热模块的出液管与低压气管之间,形成第一管路;至少一个电控阀门串联于驱动散热模块的进液管与高压气管之间,形成第二管路;
    换热器,所述换热器分别连接所述第一管路和第二管路,用于将所述第二管路中的高温冷媒的热量传递给第一管路中的低温冷媒。
  2. 根据权利要求1所述的系统,其特征在于,所述内机包括第一内机和第二内机,所述第一内机处于制冷模式,所述第二内机处于制热模式。
  3. 根据权利要求1所述的系统,其特征在于,所述第一内机连接所述高压气管、低压气管和液管,所述第二内机连接所述高压气管、低压气管和液管。
  4. 根据权利要求3所述的系统,其特征在于,连接所述第一内机和所述第二内机的高压气管、低压气管和液管分别对应相连。
  5. 根据权利要求1所述的系统,其特征在于,串联于驱动散热模块的出液管与低压气管之间的电控阀门包括电子膨胀阀。
  6. 根据权利要求1所述的系统,其特征在于,串联于驱动散热模块的进液管与高压气管之间的电控阀门包括电磁阀。
  7. 根据权利要求1所述的系统,其特征在于,所述换热器为板式换热器或套管换热器。
PCT/CN2017/094451 2016-10-21 2017-07-26 一种空调热回收系统 WO2018072510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610919597.9A CN106338112B (zh) 2016-10-21 2016-10-21 一种空调热回收系统
CN201610919597.9 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018072510A1 true WO2018072510A1 (zh) 2018-04-26

Family

ID=57839527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094451 WO2018072510A1 (zh) 2016-10-21 2017-07-26 一种空调热回收系统

Country Status (2)

Country Link
CN (1) CN106338112B (zh)
WO (1) WO2018072510A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465256A (zh) * 2019-01-22 2020-07-28 青岛海尔空调器有限总公司 一种空调的控制方法和控制装置
CN111770667A (zh) * 2020-07-02 2020-10-13 安徽科技学院 一种光电成像装置的循环散热机构
CN113316365A (zh) * 2021-05-27 2021-08-27 山东英信计算机技术有限公司 一种数据中心风液复合制冷系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338112B (zh) * 2016-10-21 2018-07-17 珠海格力电器股份有限公司 一种空调热回收系统
CN111609592B (zh) * 2020-04-24 2021-07-13 珠海格力电器股份有限公司 双温空调系统、控制方法和空调器
CN111609593B (zh) * 2020-04-24 2021-06-25 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609584B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 双温空调系统、控制方法和空调器
CN111609591B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609586B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609590B (zh) * 2020-04-24 2021-06-29 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609589B (zh) * 2020-04-24 2021-07-06 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN115183392A (zh) * 2022-07-08 2022-10-14 广东美的制冷设备有限公司 多联机空调系统及其散热控制方法和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004321A (ja) * 2001-06-27 2003-01-08 Hitachi Ltd 冷凍空調装置
CN105371391A (zh) * 2014-08-20 2016-03-02 青岛海信日立空调系统有限公司 一种空调器室外机及空调器
CN105402961A (zh) * 2015-12-21 2016-03-16 美的集团武汉制冷设备有限公司 空调器及其控制方法
CN205481901U (zh) * 2016-01-25 2016-08-17 深圳麦克维尔空调有限公司 一种全热回收空调装置
CN106338112A (zh) * 2016-10-21 2017-01-18 珠海格力电器股份有限公司 一种空调热回收系统
CN206207605U (zh) * 2016-10-21 2017-05-31 珠海格力电器股份有限公司 一种空调热回收系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565923B2 (ja) * 2004-08-03 2010-10-20 三洋電機株式会社 空気調和装置
CN201348396Y (zh) * 2009-01-19 2009-11-18 广东美的电器股份有限公司 变频空调器
EP2416081B1 (en) * 2009-04-01 2024-03-20 Mitsubishi Electric Corporation Air-conditioning device
CN104329825A (zh) * 2013-07-22 2015-02-04 广东美的暖通设备有限公司 三管制空调系统及其控制方法
CN203908097U (zh) * 2014-05-07 2014-10-29 美的集团股份有限公司 喷气增焓空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004321A (ja) * 2001-06-27 2003-01-08 Hitachi Ltd 冷凍空調装置
CN105371391A (zh) * 2014-08-20 2016-03-02 青岛海信日立空调系统有限公司 一种空调器室外机及空调器
CN105402961A (zh) * 2015-12-21 2016-03-16 美的集团武汉制冷设备有限公司 空调器及其控制方法
CN205481901U (zh) * 2016-01-25 2016-08-17 深圳麦克维尔空调有限公司 一种全热回收空调装置
CN106338112A (zh) * 2016-10-21 2017-01-18 珠海格力电器股份有限公司 一种空调热回收系统
CN206207605U (zh) * 2016-10-21 2017-05-31 珠海格力电器股份有限公司 一种空调热回收系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465256A (zh) * 2019-01-22 2020-07-28 青岛海尔空调器有限总公司 一种空调的控制方法和控制装置
CN111465256B (zh) * 2019-01-22 2022-11-18 青岛海尔空调器有限总公司 一种空调的控制方法和控制装置
CN111770667A (zh) * 2020-07-02 2020-10-13 安徽科技学院 一种光电成像装置的循环散热机构
CN111770667B (zh) * 2020-07-02 2022-03-25 安徽科技学院 一种光电成像装置的循环散热机构
CN113316365A (zh) * 2021-05-27 2021-08-27 山东英信计算机技术有限公司 一种数据中心风液复合制冷系统
CN113316365B (zh) * 2021-05-27 2022-05-31 山东英信计算机技术有限公司 一种数据中心风液复合制冷系统

Also Published As

Publication number Publication date
CN106338112B (zh) 2018-07-17
CN106338112A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2018072510A1 (zh) 一种空调热回收系统
CN110525168B (zh) 新能源汽车二次回路乘员舱及电池电机电控热管理系统
JP2021509945A (ja) 空調機システム
WO2016188295A1 (zh) 热回收多联机的室外机及热回收多联机
WO2016000656A1 (zh) 空调系统
WO2013135048A1 (zh) 一种热交换器及一种机柜
CN102480213A (zh) 散热装置、包括其的变频器以及变频空调
WO2020088425A1 (zh) 空调机及其控制方法
CN107990585A (zh) 一种改进的喷气增焓空调系统
CN102759147B (zh) 空调器多联机系统
WO2020082740A1 (zh) 两管制喷气增焓室外机及多联机系统
CN104896793A (zh) 空调热水机系统
CN105333641B (zh) 空气源空调热水系统
US20130118193A1 (en) Heat pump air-conditioning system and method for controlling the same
WO2020082741A1 (zh) 两管制喷气增焓室外机及多联机系统
WO2020211301A1 (zh) 空调系统、空调器和空调系统的控制方法
CN208765303U (zh) 空调系统
CN106871474A (zh) 风冷水冷组合式空调系统
CN103836837B (zh) 一种双模式复合的热泵机组以及控制方法
CN214746165U (zh) 机组冷媒散热系统、机组和空调系统
CN210921855U (zh) 空调系统
CN103925730A (zh) 电动汽车空调系统
CN109237832B (zh) 热水系统及热水系统的控制方法
TWI557385B (zh) 冷熱多功熱泵設備
TWI529356B (zh) 冷熱共生熱泵設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861705

Country of ref document: EP

Kind code of ref document: A1