WO2021227476A1 - 加热泵和洗碗机 - Google Patents

加热泵和洗碗机 Download PDF

Info

Publication number
WO2021227476A1
WO2021227476A1 PCT/CN2020/135049 CN2020135049W WO2021227476A1 WO 2021227476 A1 WO2021227476 A1 WO 2021227476A1 CN 2020135049 W CN2020135049 W CN 2020135049W WO 2021227476 A1 WO2021227476 A1 WO 2021227476A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
impeller
cover plate
straight
mating surface
Prior art date
Application number
PCT/CN2020/135049
Other languages
English (en)
French (fr)
Inventor
周亚运
龚涛
金毅
Original Assignee
佛山市威灵洗涤电机制造有限公司
淮安威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市威灵洗涤电机制造有限公司, 淮安威灵电机制造有限公司 filed Critical 佛山市威灵洗涤电机制造有限公司
Priority to EP20935433.1A priority Critical patent/EP4071361A4/en
Publication of WO2021227476A1 publication Critical patent/WO2021227476A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4214Water supply, recirculation or discharge arrangements; Devices therefor
    • A47L15/4217Fittings for water supply, e.g. valves or plumbing means to connect to cold or warm water lines, aquastops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4214Water supply, recirculation or discharge arrangements; Devices therefor
    • A47L15/4225Arrangements or adaption of recirculation or discharge pumps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4285Water-heater arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This application relates to the technical field of kitchen appliances, in particular to a heat pump and a dishwasher.
  • the heating pump with heating function usually has a centrifugal impeller in the heating chamber.
  • the impeller keeps rotating during work.
  • the part of the impeller installation position that matches the impeller cover is usually only in the impeller inlet cylinder section.
  • the covering length formed is small, resulting in the diameter of the impeller cover and the impeller.
  • the diameter of the inlet cylinder section is similar, so the resistance between the installation position of the impeller and the flow in the impeller cover is small, which causes the water to easily flow back to the impeller inlet along the impeller cover, resulting in the reduction of hydraulic efficiency and head of the pump, thus affecting the pump Hydraulic efficiency.
  • an object of the present application is to provide a high-efficiency and high-lift heat pump.
  • Another object of the present application is to provide a dishwasher including the above-mentioned heat pump.
  • the technical solution of the first aspect of the present application provides a heat pump, including: a housing, a heating cavity is provided in the housing, and the housing is provided with a water inlet communicating with the heating cavity; an impeller;
  • the impeller is arranged in the heating chamber, and the impeller includes an annular cover plate, a first end of the cover plate encloses a water inlet corresponding to the water inlet, and a second The end extends in the direction away from the water inlet along the axial direction of the impeller and expands outward;
  • the heating chamber is provided with a ring-shaped mating surface, and the mating surface is wrapped around the outer side of the cover plate , And have a gap with the cover plate, the mating surface has a third end and a fourth end arranged along the axial direction of the impeller, the fourth end and the second end are arranged correspondingly, and The diameter of the fourth end is greater than or equal to the diameter of the second end.
  • the heat pump provided by the technical solution of the first aspect of the present application improves the matching structure between the cover plate of the impeller and the installation position of the impeller. By increasing the resistance along the way and the blocking structure, the backflow of the impeller clearance is reduced. Purpose, thereby improving the hydraulic efficiency of the pump.
  • the heat pump includes a shell and an impeller.
  • the impeller is arranged in a heating chamber of the shell.
  • the liquid enters the heating chamber from the water inlet of the shell, enters the impeller through the water inlet of the impeller, and is thrown out in the radial direction through the water outlet of the impeller.
  • the impeller includes a cover plate, a blade and a back plate.
  • the cover plate faces the water inlet and defines the water inlet of the impeller, and the cover plate extends from the water inlet along the axial direction of the impeller and extends outward along the radial direction of the impeller; the blades are arranged between the cover plate and the back plate, and the cover plate
  • the back plate defines the water outlet of the impeller; the back plate is connected with the rotating shaft of the driving device and drives the impeller to rotate under the driving of the driving device.
  • the matching surface in the heating chamber is wrapped on the outside of the cover plate, and there is a gap between the cover plate to prevent the impeller from scratching with the matching surface during the rotation of the impeller.
  • the liquid enters the impeller from the first end of the cover plate, and is thrown out from the water outlet at the second end of the cover plate. Since the diameter of the fourth end of the mating surface is greater than or equal to the diameter of the second end of the cover plate, the liquid thrown by the impeller will be blocked by the mating surface, and it is not easy to directly flow into the gap between the cover plate and the mating surface, thereby reducing backflow , Improve the hydraulic efficiency of the pump.
  • the mating surface can also As a blocking structure, it blocks the liquid backflow, thereby achieving the purpose of reducing the gap backflow and improving the hydraulic efficiency of the heat pump.
  • thermo pump in the above technical solution provided by this application may also have the following additional technical features:
  • the gap between the mating surface and the cover plate is uniformly arranged.
  • the gap between the mating surface and the cover adopts a uniformly arranged solution, and the structure is relatively regular, which is convenient for processing and forming, and can also play a role in preventing assembly sheepness.
  • this arrangement facilitates reasonable setting of the gap size, and on the basis of preventing scratching, it can also prevent the liquid entering the heating chamber from directly entering the gap and affecting the hydraulic efficiency of the heat pump.
  • the cover plate includes a straight cylinder section and an arc-shaped extension section connected to the straight cylinder section, and an end of the straight cylinder section away from the arc-shaped extension section forms the first end of the cover plate ,
  • the end of the arc-shaped expansion section away from the straight section forms the second end of the cover plate;
  • the mating surface includes a straight section and a gradual section connected to the straight section, and the straight section is far away
  • One end of the diverging section forms the third end of the mating surface, and one end of the diverging section away from the straight section forms the fourth end of the mating surface;
  • the straight section surrounds the Straight cylinder section, the divergent section surrounds the arc-shaped expansion section.
  • the cover plate includes a straight cylinder section and an arc-shaped expansion section.
  • the straight cylinder section is arranged opposite to the water inlet of the shell and defines the water inlet and outlet to ensure that the liquid entering from the water inlet can enter the impeller along the axial direction of the impeller.
  • the arc-shaped expansion section expands outwards along the radial direction of the impeller, which is convenient for the liquid entering the impeller to flow and throw out along the radial direction of the cover plate to the impeller.
  • the mating surface correspondingly includes a straight section and a diverging section.
  • the straight section surrounds the straight cylinder section and forms a uniform gap with the straight cylinder section; the divergent section surrounds the arc-shaped extension section and forms a uniform gap with the arc-shaped extension section.
  • the arc-shaped expansion section can play a role in blocking the liquid backflow gap and effectively ensure the hydraulic efficiency of the water pump.
  • the length of the straight section is greater than the length of the straight section; the end of the straight section away from the diverging section is connected with a ring-shaped inclined surface; along the direction from the outside to the inside, the ring The oblique surface extends obliquely in the direction close to the straight cylinder section.
  • the length of the straight section of the mating surface is greater than the length of the straight section of the cover plate, so that the end of the straight section away from the expanding section (that is, the third end of the mating surface) will exceed the end of the straight section away from the arc-shaped expansion section (that is, the cover plate).
  • this solution is beneficial to further extend the length of the gap, thereby further extending the resistance along the way, thereby further reducing the gap backflow.
  • the setting of the annular slope can block the liquid in the gap and prevent the liquid from flowing radially inward toward the water inlet of the impeller, thereby further reducing the backflow of the gap.
  • the gap between the mating surface and the cover plate is in the range of 0.3 mm to 2.5 mm.
  • the fourth end is convexly provided with a shielding protrusion, and an end of the shielding protrusion away from the fourth end extends along the axial direction of the impeller and surrounds the second end.
  • the diameter of the fourth end of the mating surface is larger than the diameter of the second end of the cover plate, which can improve the shielding effect of the mating surface, thereby further reducing the gap backflow.
  • the setting of the shielding protrusion can further increase the length of the gap on the one hand, thereby further increasing the resistance along the way, thereby further reducing the gap backflow; on the other hand, the gap is made to form a corner at the fourth end of the mating surface, which can further prevent The gap continues to flow in the gap beyond the corner, thereby further reducing the gap backflow.
  • the end of the shielding protrusion away from the fourth end is flush with the second end.
  • the cover plate has a certain thickness, along the axial direction of the impeller, the end of the shielding protrusion away from the fourth end is flush with the second end of the cover plate, which can prevent the shielding protrusion from crossing the second end of the cover plate and blocking the impeller Part of the water outlet, thus ensuring the water output efficiency of the impeller, which in turn also helps to improve the hydraulic efficiency of the heat pump.
  • the outer shell is formed with an inner pipe section, and the inner wall surface of the inner pipe section forms the mating surface.
  • the inner pipe section of the shell is used to form the mating surface, no additional components are required, and no separate installation is required, which is beneficial to improve assembly efficiency and reduce production costs.
  • the inner pipe section and the outer shell have an integrated structure, and the connection strength is high, thus ensuring the position stability of the mating surface.
  • the housing includes: an upper pump housing, the upper pump housing is provided with the inner pipe section; and a lower pump housing, the lower pump housing is connected to the upper pump housing, the lower pump housing A partition is provided at one end away from the upper pump casing, and the partition, the upper pump casing and the lower pump casing surround the heating chamber; wherein, the impeller is connected to a driving device, and the driving
  • the device includes a stator, a rotor, and a rotating shaft.
  • the rotating shaft passes through the partition and is connected to the impeller;
  • the lower pump housing includes a pump housing section and a rotor sleeve.
  • the rotor is located in the rotor sleeve.
  • the stator is sleeved on the outer side of the rotor sleeve, and the pump casing section is connected with the upper pump casing and is provided with a water outlet pipe section.
  • the casing includes an upper pump casing and a lower pump casing.
  • the upper pump casing and the lower pump casing are arranged separately, which is convenient for the assembly of the heating tube and the impeller, and it is also convenient to reasonably sum the shapes of the upper and lower pump casings according to the needs, so as to facilitate the upper pump casing.
  • the processing and shaping of the lower pump casing The setting of the partition separates the heating chamber from the driving device to prevent the liquid from affecting the driving device.
  • the rotating shaft of the driving device is connected to the impeller through the partition plate, which ensures that the impeller can rotate under the driving of the driving device.
  • the upper pump housing includes a straight pipe section and a rotating section connected to the straight pipe section, the rotating section is sleeved on the outer side of the inner pipe section, and the water inlet is connected with a water inlet pipe section, so The water inlet pipe section is connected with the rotating section through reinforcing ribs; a heating pipe is provided in the heating chamber, and the heating pipe includes a linear heating section and an arc heating section; the linear heating section is located in the straight pipe section, The arc heating section is located in the rotating section.
  • the heating tube includes a straight heating section and an arc heating section.
  • the upper pump housing includes a straight tube and a rotating section.
  • the linear heating section and the arc heating section of the heating tube are both located in the heating chamber, and The length of the heating tube is longer, so the heating efficiency is higher.
  • the upper pump casing also has a water inlet pipe section, and the water inlet pipe section is connected to the rotating section through reinforcing ribs, which ensures the strength and stability of the water inlet pipe section and is convenient for connecting soft water inlet pipes such as rubber pipes.
  • a sealing ring is provided between the upper pump housing and the lower pump housing; a sealing ring is provided between the partition plate and the rotating shaft; and the upper pump housing is a flame-retardant pump housing ;
  • the rotor sleeve and the pump housing section are an integral structure.
  • a sealing ring is arranged between the upper pump casing and the lower pump casing to prevent liquid from flowing out of the gap between the upper pump casing and the lower pump casing, thereby improving the sealing performance of the heating chamber.
  • a sealing ring is arranged between the partition and the rotating shaft to prevent liquid from flowing out of the gap between the partition and the rotating shaft, thereby improving the sealing performance of the heating chamber.
  • the design of the rotor sleeve and the pump casing section as an integral structure not only helps to improve the connection strength between the rotor sleeve and the pump casing section, but also eliminates the connection process between the two, thereby reducing installation costs.
  • the technical solution of the second aspect of the present application provides a dishwasher, including: a dishwasher main body; and the heat pump according to any one of the technical solutions of the first aspect, the heat pump and the dishwasher The main body is connected.
  • the dishwasher provided by the technical solution of the second aspect of the present application includes the heat pump described in any one of the technical solutions of the first aspect, and therefore has all the beneficial effects of any of the above technical solutions, and will not be repeated here. .
  • Fig. 1 is a schematic diagram of an exploded structure of a heat pump according to some embodiments of the present application
  • Fig. 2 is a schematic sectional view of the heat pump shown in Fig. 1 after being assembled;
  • FIG. 3 is an enlarged schematic diagram of the impeller in Figure 2;
  • Fig. 4 is a partial three-dimensional enlarged schematic diagram of the heat pump shown in Fig. 1 after being assembled;
  • FIG. 5 is a schematic diagram of an exploded structure of the heat pump according to an embodiment of the present application.
  • Fig. 6 is a partial enlarged schematic diagram of the heat pump shown in Fig. 5;
  • FIG. 7 is a partial enlarged schematic diagram of the structure shown in FIG. 6;
  • FIG. 8 is a schematic diagram of an exploded structure of the heat pump according to an embodiment of the present application.
  • Fig. 9 is a partial enlarged schematic diagram of the heat pump shown in Fig. 8.
  • Fig. 10 is a partial enlarged schematic diagram of the structure shown in Fig. 9;
  • FIG. 11 is a schematic diagram of an exploded structure of the heat pump according to an embodiment of the present application.
  • Figure 12 is a partial enlarged schematic view of the heat pump shown in Figure 11;
  • Fig. 13 is a partial enlarged schematic view of the structure shown in Fig. 12;
  • Fig. 14 is a schematic block diagram of a dishwasher according to some embodiments of the present application.
  • the heat pump 104 provided by the embodiment of the first aspect of the present application includes: a housing 1 and an impeller 2, as shown in FIG. 1.
  • the housing 1 is provided with a heating cavity 13 (as shown in Fig. 2).
  • the housing 1 is provided with a water inlet 1141 communicating with the heating chamber 13 (as shown in Fig. 2).
  • the impeller 2 is arranged in the heating chamber 13.
  • the impeller 2 includes an annular cover 21.
  • the first end 211 of the cover plate 21 encloses a water inlet 213 corresponding to the water inlet 1141 (as shown in FIG. 3).
  • the second end 212 of the cover plate 21 extends in a direction away from the water inlet 1141 along the axial direction of the impeller 2 and expands outward.
  • the heating cavity 13 is provided with a ring-shaped mating surface 1111 (as shown in FIG. 6).
  • the mating surface 1111 is wrapped around the outer side of the cover plate 21 and has a gap 15 therebetween.
  • the mating surface 1111 has a third end 1112 and a fourth end 1113 arranged along the axial direction of the impeller 2, as shown in FIG. 7.
  • the fourth end 1113 and the second end 212 are arranged correspondingly, as shown in FIG. 6.
  • the diameter D1 of the fourth end 1113 is greater than or equal to the diameter D2 of the second end 212.
  • the matching structure between the cover 21 of the impeller 2 and the installation position of the impeller 2 is improved.
  • the purpose of the clearance of the impeller 2 is to improve the hydraulic efficiency of the water pump.
  • the heat pump 104 includes a housing 1 and an impeller 2.
  • the impeller 2 is provided in the heating chamber 13 of the housing 1.
  • the liquid enters the heating chamber 13 from the water inlet 1141 of the housing 1, and enters the impeller 2 through the water inlet 213 of the impeller 2.
  • the water outlet of the impeller 2 is thrown out in the radial direction.
  • the impeller 2 includes a cover plate 21, a blade 22 and a back plate 23, as shown in FIG. 3.
  • the cover plate 21 faces the water inlet 1141 and defines the water inlet 213 of the impeller 2, and the cover plate 21 extends from the water inlet 213 along the axial direction of the impeller 2 and extends outward in the radial direction of the impeller 2.
  • the blade 22 is arranged between the cover plate 21 and the back plate 23 and defines the water outlet of the impeller 2 with the cover plate 21 and the back plate 23.
  • the back plate 23 is connected with the rotating shaft 33 of the driving device 3 and drives the impeller 2 to rotate under the driving of the driving device 3.
  • the mating surface 1111 in the heating chamber 13 is wrapped on the outside of the cover plate 21, and there is a gap 15 between the cover plate 21 to prevent the impeller 2 from scratching with the mating surface 1111 during the rotation of the impeller.
  • the liquid enters the impeller 2 from the first end 211 of the cover plate 21, and is thrown out through the water outlet at the second end 212 of the cover plate 21.
  • the diameter of the fourth end 1113 of the mating surface 1111 is greater than or equal to the diameter of the second end 212 of the cover plate 21, the liquid thrown by the impeller 2 will be blocked by the mating surface 1111, and it is not easy to directly flow into the cover plate 21 and the mating surface 1111. In the gap 15 between, the backflow is reduced and the hydraulic efficiency of the water pump is improved.
  • the diameter of the fourth end 1113 of the mating surface 1111 is generally smaller than the diameter of the second end 212 of the cover plate 21, which causes water to easily enter the cover plate 21 along the cover plate 21.
  • the gap 15 between the mating surface 1111 and the mating surface 1111 reduces the hydraulic efficiency of the water pump.
  • This solution is equivalent to extending the length of the mating surface 1111, so that the diameter of the fourth end 1113 of the mating surface 1111 is greater than or equal to the diameter of the second end 212 of the cover plate 21.
  • the mating surface 1111 can also be used as a blocking structure to block the backflow of liquid, thereby achieving the purpose of reducing the backflow of the gap 15 and improving the hydraulic efficiency of the heat pump 104.
  • Example one (as shown in Figure 5, Figure 6 and Figure 7)
  • the diameter D1 of the fourth end 1113 is equal to the diameter D2 of the second end 212, as shown in FIG. 7.
  • the gap 15 between the mating surface 1111 and the cover plate 21 is uniformly arranged, as shown in FIG. 6.
  • the gap 15 between the mating surface 1111 and the cover 21 adopts a uniformly arranged solution, and the structure is relatively regular, which is convenient for processing and forming, and can also play a role in preventing assembly sheepness.
  • this arrangement is convenient for setting the size of the gap 15 reasonably, and on the basis of preventing scratching, it can also prevent the liquid entering the heating chamber 13 from directly entering the gap 15 and affecting the hydraulic efficiency of the heat pump 104.
  • the gap 15 between the mating surface 1111 and the cover plate 21 can also be arranged non-uniformly, as long as the diameter of the fourth end 1113 of the mating surface 1111 is greater than or equal to the diameter of the second end 212 of the cover plate 21, namely Can play a role in reducing backflow.
  • the cover plate 21 includes a straight cylinder section 214 and an arc-shaped extension section 215 connected to the straight cylinder section 214, as shown in FIG. 3.
  • An end of the straight section 214 away from the arc-shaped extended section 215 forms the first end 211 of the cover plate 21.
  • An end of the arc-shaped extended section 215 away from the straight section 214 forms the second end 212 of the cover plate 21.
  • the mating surface 1111 includes a straight section 1114 and a diverging section 1115 connected to the straight section 1114, as shown in FIG. 7.
  • the end of the straight section 1114 away from the expanding section 1115 forms the third end 1112 of the mating surface 1111, and the end of the expanding section 1115 away from the straight section 1114 forms the fourth end 1113 of the mating surface 1111.
  • the straight section 1114 surrounds the straight section 214, and the divergent section 1115 surrounds the arc-shaped extended section 215.
  • the cover plate 21 includes a straight cylinder section 214 and an arc-shaped extension section 215.
  • the straight cylinder section 214 is arranged opposite to the water inlet 1141 of the housing 1 and defines the water inlet and outlet 213 to ensure that the liquid entering from the water inlet 1141 can enter the impeller along the axial direction of the impeller 2 2.
  • the arc-shaped expansion section 215 expands outward along the radial direction of the impeller 2 to facilitate the liquid entering the impeller 2 to flow in the radial direction of the impeller 2 along the cover plate 21 and to be thrown out.
  • the mating surface 1111 correspondingly includes a straight section 1114 and a diverging section 1115.
  • the straight section 1114 surrounds the straight section 214 and forms a uniform gap 15 with the straight section 214.
  • the divergent section 1115 surrounds the arc-shaped extension section 215 and forms a uniform gap 15 with the arc-shaped extension section 215.
  • the arc-shaped expansion section 215 can play a role in blocking the liquid backflow gap 15 and effectively ensure the hydraulic efficiency of the water pump.
  • the length of the straight section 1114 is greater than the length of the straight section 214.
  • the end of the straight section 1114 away from the diverging section 1115 is connected with an annular inclined surface 16 (as shown in FIG. 7 ).
  • the annular inclined surface 16 extends obliquely toward the direction of the straight cylinder section 214.
  • the length of the straight section 1114 of the mating surface 1111 is greater than the length of the straight section 214 of the cover plate 21, so that the end of the straight section 1114 away from the expanding section 1115 (that is, the third end 1112 of the mating surface 1111) will exceed the straight section 214 away from the arc Compared with the flush solution, this solution is beneficial to further extend the length of the gap 15, thereby further extending the resistance along the way, thereby further reducing the gap 15. Backflow.
  • the arrangement of the annular inclined surface 16 can block the liquid in the gap 15 and prevent the liquid from flowing radially inward toward the water inlet 213 of the impeller 2, thereby further reducing the backflow of the gap 15.
  • the gap 15 between the mating surface 1111 and the cover plate 21 is in the range of 0.3mm to 2.5mm, such as 0.3mm, 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm, etc., which is beneficial to avoid the gap caused by the gap. If 15 is too small, the risk of rubbing between the impeller 2 and the mating surface 1111 is increased, and it is beneficial to avoid excessive liquid entering the gap 15 due to too large gap 15 and affecting the hydraulic efficiency of the heat pump 104.
  • the radial gap 15 between the straight section 1114 of the mating surface 1111 and the straight section 214 of the cover plate 21 can be used as a reference, which is convenient for measurement.
  • the width of the gap 15 between the mating surface 1111 and the cover plate 21 is not limited to the above range, and can be adjusted as needed in the actual production process.
  • Embodiment two (as shown in Figure 8, Figure 9 and Figure 10)
  • the difference from the first embodiment is that the diameter D1 of the fourth end 1113 is larger than the diameter D2 of the second end 212.
  • the diameter of the fourth end 1113 of the mating surface 1111 is larger than the diameter of the second end 212 of the cover plate 21, which can improve the shielding effect of the mating surface 1111, thereby further reducing the backflow of the gap 15.
  • Embodiment three (as shown in Figure 11, Figure 12 and Figure 13)
  • the fourth end 1113 is convexly provided with a shielding protrusion 17 (as shown in FIG. 13).
  • the shielding protrusion 17 extends along the axial direction of the impeller 2 and surrounds the second end 212.
  • the arrangement of the shielding protrusion 17 can further increase the length of the gap 15 on the one hand, thereby further increasing the resistance along the way, thereby further reducing the return flow of the gap 15; on the other hand, the gap 15 forms a corner at the fourth end 1113 of the mating surface 1111, This can further prevent the gap 15 from continuing to flow in the gap 15 beyond the corner, thereby further reducing the gap 15 backflow.
  • the end of the shielding protrusion 17 away from the fourth end 1113 is flush with the second end 212.
  • the cover plate 21 Since the cover plate 21 has a certain thickness, the end surface of the shielding protrusion 17 away from the fourth end 1113 along the axial direction of the impeller 2 and the second end 212 of the cover plate 21 close to the water outlet along the axial direction of the impeller 2 is provided.
  • the flush can prevent the shielding protrusion 17 from passing over the second end 212 of the cover plate 21 and blocking a part of the water outlet of the impeller 2, thereby ensuring the water outlet efficiency of the impeller 2 and further improving the hydraulic efficiency of the heat pump 104.
  • the housing 1 is formed with an inner pipe section 111, as shown in FIG. 4.
  • the inner wall surface of the inner pipe section 111 forms a mating surface 1111.
  • the inner pipe section 111 of the housing 1 is used to form the mating surface 1111, no additional components are required, and no separate installation is required, which is beneficial to improve assembly efficiency and reduce production costs.
  • the inner pipe section 111 and the outer shell 1 are an integral structure, and the connection strength is high, so the position stability of the mating surface 1111 is also ensured.
  • the housing 1 includes: an upper pump casing 11 and a lower pump casing 12, as shown in FIG. 1.
  • the upper pump casing 11 is provided with an inner pipe section 111.
  • the lower pump casing 12 is connected to the upper pump casing 11, and the end of the lower pump casing 12 away from the upper pump casing 11 is provided with a partition 18, as shown in FIG. 2.
  • the partition 18 and the upper pump casing 11 and the lower pump casing 12 enclose a heating chamber 13.
  • the impeller 2 is connected to the driving device 3, and the driving device 3 includes a stator 31, a rotor 32 and a rotating shaft 33, as shown in FIG. 1.
  • the rotating shaft 33 passes through the partition 18 and is connected to the impeller 2.
  • the lower pump casing 12 includes a pump casing section 121 and a rotor sleeve 122, as shown in Fig. 6.
  • the rotor 32 is located in the rotor sleeve 122, as shown in FIG. 2.
  • the stator 31 is sleeved on the outer side of the rotor sleeve 122.
  • the pump housing section 121 is connected to the upper pump housing 11 and is provided with a water outlet pipe section 1211, as shown in FIG. 2.
  • the casing 1 includes an upper pump casing 11 and a lower pump casing 12.
  • the upper pump casing 11 and the lower pump casing 12 are arranged separately, which facilitates the assembly of the heating tube 4 and the impeller 2, and also facilitates the reasonable totalization of the upper pump casing 11 and the lower pump according to needs.
  • the shape of the casing 12 facilitates the processing and shaping of the upper pump casing 11 and the lower pump casing 12.
  • the partition 18 separates the heating chamber 13 from the driving device 3 to prevent the liquid from affecting the driving device 3.
  • the rotating shaft 33 of the driving device 3 passes through the partition 18 and is connected to the impeller 2 to ensure that the impeller 2 can be rotated by the driving device 3.
  • the driving device 3 further includes a housing 34, as shown in FIG. 1.
  • the housing 34, the stator 31, and the pump housing section 121 are fixedly connected by fasteners such as screws.
  • the upper pump casing 11 includes a straight pipe section 112 and a rotating section 113 connected to the straight pipe section 112, as shown in FIG. 4.
  • the rotating section 113 is sleeved on the outer side of the inner pipe section 111.
  • the water inlet 1141 is connected with a water inlet pipe section 114, and the water inlet pipe section 114 is connected with the rotating section 113 through a reinforcing rib 115, as shown in FIG. 4.
  • a heating tube 4 is provided in the heating cavity 13.
  • the heating tube 4 includes a linear heating section 41 and an arc heating section 42, as shown in FIG. 2.
  • the linear heating section 41 is located in the straight pipe section 112, and the arc heating section 42 is located in the rotating section 113.
  • the heating tube 4 includes a linear heating section 41 and an arc heating section 42.
  • the upper pump casing 11 includes a straight tube and a rotating section 113.
  • the linear heating section 41 and the arc heating section of the heating tube 4 42 are all located in the heating chamber 13, and the length of the heating tube 4 is longer, so the heating efficiency is higher.
  • the upper pump casing 11 also has a water inlet pipe section 114, and the water inlet pipe section 114 is connected to the rotating section 113 through a reinforcing rib 115, which ensures the strength and stability of the water inlet pipe section 114 and is convenient for connecting soft water inlet pipes such as rubber pipes. .
  • a sealing ring 19 is provided between the upper pump casing 11 and the lower pump casing 12, as shown in FIG. 1. This can prevent the liquid from flowing out of the gap 15 between the upper pump casing 11 and the lower pump casing 12, thereby improving the sealing performance of the heating chamber 13.
  • the pump casing section 121 of the lower pump casing 12 is provided with a mounting port 1212, the mounting port 1212 is connected to the upper pump casing 11, and the sealing ring 19 is provided at the mounting port 1212.
  • a sealing ring 19 is provided between the partition 18 and the rotating shaft 33, which can prevent liquid from flowing out of the gap 15 between the partition 18 and the rotating shaft 33, thereby improving the sealing performance of the heating chamber 13.
  • the two ends of the rotating shaft 33 are sleeved with bearings 35, and the sealing ring 19 is provided between the bearing 35 at the partition 18 and the partition 18; the other bearing 35 is provided in the rotor sleeve 122 and is connected to the rotor sleeve 122 There is also a sealing ring 19 between.
  • the upper pump casing 11 is a flame-retardant pump casing, which can prevent the upper pump casing 11 from overheating and catching fire, thereby improving the safety of the heat pump 104 in use.
  • the rotor sleeve 122 and the pump casing section 121 are integrated, which not only helps to improve the connection strength between the rotor sleeve 122 and the pump casing section 121, but also eliminates the connection process between the two, thereby reducing installation costs.
  • the dishwasher 100 provided by the embodiment of the second aspect of the present application includes: a dishwasher main body 102 and a heat pump 104 as in any one of the embodiments of the first aspect, the heat pump 104 and the dishwasher The main body 102 is connected.
  • the dishwasher 100 provided by the embodiment of the second aspect of the present application includes the heat pump 104 of any one of the embodiments of the first aspect, and therefore has all the beneficial effects of any of the above-mentioned embodiments, and will not be repeated here. .
  • a dishwasher 100 includes a dishwasher main body 102 and a heat pump 104.
  • the dishwasher main body 102 includes a control device, a water inlet valve and other structures.
  • the water inlet valve is connected to the water inlet 1141 of the heat pump 104, and the control device is connected to the driving device 3 of the heat pump 104.
  • the heat pump 104 includes: a housing 1, an impeller 2, a heating tube 4, an isolation plate and a driving device 3.
  • the driving device 3 has a stator 31, a rotor 32, a rotating shaft 33 and a housing 34.
  • the housing 34 of the driving device 3 is evenly distributed with three screw holes.
  • the stator 31 has corresponding screw grooves.
  • the rotor 32 is mounted on the rotating shaft 33, and both ends of the rotor 32 have bearings 35 and small sealing rings 19.
  • the casing 1 includes an upper pump casing 11 and a lower pump casing 12.
  • the lower pump casing 12 has a pump casing section 121 and a rotor sleeve 122, and the above-mentioned rotor 32 is nested in the rotor sleeve 122.
  • the lower pump casing 12 and the rotor 32 cover an integral structure, and one-time molding can reduce the processing and installation costs.
  • the pump housing section 121 has a mounting port 1212 and a water outlet pipe section 1211, as well as three evenly distributed screw holes. The screw hole of the lower pump housing 12 and the fixed screw groove and the screw hole on the housing 34 of the driving device 3 are connected together by three screws.
  • the isolation plate and the rotating shaft 33 of the driving device 3 are connected by a small sealing ring 19 and a bearing 35.
  • the impeller 2 is connected to the rotating shaft 33 through a hub.
  • the back plate 23 of the impeller 2 is integrated with the hub.
  • the blade 22 extends upward from the back plate 23 to the cover plate 21 of the impeller 2.
  • the cover 21 of the impeller 2 includes an arc structure.
  • the heating tube 4 is connected to the upper pump casing 11 through a connecting structure 43.
  • the heating pipe 4, the connecting structure 43 and the upper pump casing 11 constitute a heater assembly.
  • the upper pump casing 11 is composed of a straight pipe section 112, a rotating section 113, an inner pipe section 111 and a water inlet pipe section 114.
  • the rotating section 113 is connected with the installation port 1212 of the lower pump casing 12 through a sealing ring 19, and together with the isolation plate defines the heating chamber 13.
  • the water inlet pipe section 114 and the rotating section 113 are connected by reinforcing ribs 115.
  • the heating pipe 4 is composed of a linear heating section 41 and a circular arc heating section.
  • the end of the linear heating section 41 is installed on the top of the straight pipe section 112 of the upper pump casing 11 through a connecting structure 43.
  • the circular arc heating section is connected to the linear heating section 41 and is placed in the heating cavity 13.
  • the upper pump casing 11 is a flame-retardant upper pump casing 11.
  • the inner pipe section 111 of the upper pump casing 11 wraps the cover 21 part of the impeller 2. There is a gap 15 between the inner surface of the inner pipe section 111 and the outer surface of the cover 21 of the impeller 2.
  • the gap 15 can prevent the impeller 2 from rubbing against the upper pump casing when the impeller 2 rotates. 11. However, the gap 15 will cause the liquid to flow back to the inlet of the impeller 2 through the gap 15.
  • the diameter of the fourth end 1113 of the inner pipe section 111 is the maximum outer diameter D1 of the inner pipe section 111.
  • the diameter of the second end 212 of the cover plate 21 is the maximum outer diameter D2 of the cover plate 21.
  • the maximum outer diameter D1 of the inner pipe section 111 of the upper pump casing 11 is greater than or equal to the maximum outer diameter D2 of the cover plate 21 of the impeller 2.
  • the simulation test verifies that when the maximum outer diameter of the inner pipe section 111 of the upper pump casing 11 is smaller than the maximum outer diameter of the cover 21 of the impeller 2, the liquid spun from the impeller 2 easily flows directly into the gap 15 in the heating chamber 13 .
  • the arrangement of the internal heating chamber 13 and the heating tube 4 is newly designed, and the matching structure of the upper cover 21 of the impeller 2 is redesigned.
  • the gap of the impeller 2 is reduced. 15
  • the purpose of reflux thereby improving the hydraulic efficiency of the pump, and at low cost, will not increase the volume of the pump, and because the efficiency of the pump is improved, it is beneficial to reduce the volume of the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种加热泵(104)和洗碗机(100)。加热泵(104)包括:外壳(1),外壳(1)内设有加热腔(13),外壳(1)设有连通加热腔(13)的进水口(1141);叶轮(2),叶轮(2)设在加热腔(13)内,叶轮(2)包括呈环状的盖板(21),盖板(21)的第一端(211)围设出与进水口(1141)对应连通的入水口(213),盖板(21)的第二端(212)沿叶轮(2)的轴向朝远离进水口(1141)的方向延伸且向外扩展;其中,加热腔(13)内设有呈环状的配合面(1111),配合面(1111)包裹在盖板(21)的外侧,并与盖板(21)之间具有间隙(15),配合面(1111)具有沿叶轮(2)的轴向排布的第三端(1112)和第四端(1113),第四端(1113)与第二端(212)对应设置,且第四端(1113)的直径大于或等于第二端(212)的直径。通过增大沿程阻力和阻挡结构,达到了减小叶轮(2)间隙回流的目的,从而提高了水泵的水力效率。

Description

加热泵和洗碗机
本申请要求2020年05月13日在中国国家知识产权局提交的申请号为202010400830.9、申请名称为“加热泵和洗碗机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及厨房电器技术领域,具体而言,涉及一种加热泵和一种洗碗机。
背景技术
目前,带加热功能的加热泵,通常在加热腔内设有离心叶轮。在现有技术中,叶轮在工作时不停转动,为避免剐蹭,叶轮安装位置配合叶轮盖版的部分通常只在于叶轮进口圆筒段,形成的覆盖长度小,导致叶轮盖板的直径与叶轮进口圆筒段的直径差不多,从而叶轮安装位置与叶轮盖版内流动的沿程阻力小,导致水容易沿着叶轮盖板回流到叶轮进口,导致水泵的水力效率和扬程降低,因而影响了水泵的水力效率。
申请内容
为了解决上述技术问题至少之一,本申请的一个目的在于提供一种高效率高扬程加热泵。
本申请的另一个目的在于提供一种包括上述加热泵的洗碗机。
为了实现上述目的,本申请第一方面的技术方案提供了一种加热泵,包括:外壳,所述外壳内设有加热腔,所述外壳设有连通所述加热腔的进水口;叶轮,所述叶轮设在所述加热腔内,所述叶轮包括呈环状的盖板,所述盖板的第一端围设出与所述进水口对应连通的入水口,所述盖板的第二端沿所述叶轮的轴向朝远离所述进水口的方向延伸且向外扩展;其中,所述加热腔内设有呈环状的配合面,所述配合面包裹在所述盖板的外侧,并与所述盖板之间具有间 隙,所述配合面具有沿所述叶轮的轴向排布的第三端和第四端,所述第四端与所述第二端对应设置,且所述第四端的直径大于或等于所述第二端的直径。
本申请第一方面的技术方案提供的加热泵,对叶轮的盖板与叶轮的安装位置之间的配合结构进行了改进,通过增大沿程阻力和阻挡结构,达到了减小叶轮间隙回流的目的,从而提高了水泵的水力效率。
具体而言,加热泵包括外壳和叶轮,叶轮设在外壳的加热腔内,液体从外壳的进水口进入加热腔,经叶轮的入水口进入叶轮,经叶轮的出水口沿径向甩出。其中,叶轮包括盖板、叶片和背板。盖板朝向进水口,限定出叶轮的入水口,且盖板由入水口沿叶轮的轴向延伸,且沿叶轮的径向朝外延伸;叶片设在盖板和背板之间,与盖板和背板限定出叶轮的出水口;背板与驱动装置的旋转轴相连,在驱动装置的驱动下带动叶轮旋转。加热腔内的配合面包裹在盖板的外侧,且与盖板之间具有间隙,以防止叶轮旋转过程中与配合面发生剐蹭。叶轮旋转过程中,液体由盖板的第一端进入叶轮,由盖板的第二端处的出水口甩出。由于配合面的第四端的直径大于或等于盖板的第二端的直径,因而叶轮甩出的液体会被配合面阻挡,不容易直接流入盖板与配合面之间的间隙内,从而减小回流,提高了水泵的水力效率。
本方案延长了配合面的长度,使得配合面的第四端的直径大于或等于盖板的第二端的直径,这一方面增加了间隙的长度,增加了沿程阻力,另一方面配合面也能够作为阻挡结构,来阻挡液体回流,从而实现了减小间隙回流、提高加热泵的水力效率的目的。
另外,本申请提供的上述技术方案中的加热泵还可以具有如下附加技术特征:
在上述技术方案中,所述配合面与所述盖板之间的间隙均匀设置。
配合面与盖板之间的间隙采用均匀设置的方案,结构较为规整,便于加工成型,也能够起到装配防呆的作用。同时,这样设置,便于合理设置间隙的尺寸,在防止剐蹭的基础上,也能够防止进入加热腔的液体直接进入间隙而影响加热泵的水力效率。
在上述技术方案中,所述盖板包括直筒段和与所述直筒段相连的弧形扩展段,所述直筒段远离所述弧形扩展段的一端形成所述盖板的所述第一端,所述 弧形扩展段远离所述直筒段的一端形成所述盖板的所述第二端;所述配合面包括直线段和与所述直线段相连的渐扩段,所述直线段远离所述渐扩段的一端形成所述配合面的所述第三端,所述渐扩段远离所述直线段的一端形成所述配合面的所述第四端;所述直线段环绕所述直筒段,所述渐扩段环绕所述弧形扩展段。
盖板包括直筒段和弧形扩展段,直筒段与外壳的进水口相对设置,并限定出入水口,保证由进水口进入的液体能够沿叶轮的轴向进入叶轮。弧形扩展段沿叶轮的径向朝外扩展,便于进入叶轮的液体沿着盖板向叶轮的径向流动并甩出。配合面相应包括直线段和渐扩段,直线段环绕直筒段,与直筒段之间形成均匀的间隙;渐扩段环绕弧形扩展段,与弧形扩展段之间形成均匀的间隙。其中,弧形扩展段能够起到阻挡液体回流间隙的作用,有效保证水泵的水力效率。
在上述技术方案中,所述直线段的长度大于所述直筒段的长度;所述直线段远离所述渐扩段的一端连接有环状斜面;沿着由外向内的方向,所述环状斜面向靠近所述直筒段的方向倾斜延伸。
设置配合面的直线段的长度大于盖板的直筒段的长度,使得直线段远离渐扩段的一端(即配合面的第三端)会超过直筒段远离弧形扩展段的一端(即盖板的第一端),相较于齐平的方案,本方案有利于进一步延长间隙的长度,从而进一步延长沿程阻力,从而进一步减小间隙回流。同时,环状斜面的设置,能够对间隙内的液体起到阻挡作用,防止液体径向朝内向叶轮的入水口流动,从而进一步减小间隙回流。
在上述任一技术方案中,所述配合面与所述盖板的之间的间隙在0.3mm至2.5mm的范围内。
将配合面与盖板之间的间隙限定在0.3mm至2.5mm的范围内,既有利于避免因间隙过小导致叶轮与配合面发生剐蹭的风险增高,又有利于避免间隙过大导致进入间隙的液体过多而影响加热泵的水力效率。
在上述任一技术方案中,所述第四端凸设有遮挡凸起,所述遮挡凸起远离所述第四端的一端沿所述叶轮的轴向延伸并环绕所述第二端。
设置配合面的第四端的直径大于盖板的第二端的直径,能够提高配合面的遮挡效果,从而进一步减小间隙回流。同时,遮挡凸起的设置,一方面能够进 一步增加间隙长度,从而进一步提高沿程阻力,从而进一步减小间隙回流;另一方面使得间隙在配合面的第四端处形成转角,这能够进一步防止间隙越过转角继续在间隙内流动,从而进一步减小间隙回流。
在上述技术方案中,所述遮挡凸起远离所述第四端的一端与所述第二端齐平。
由于盖板具有一定的厚度,因而沿叶轮的轴向方向,设置遮挡凸起远离第四端的一端与盖板的第二端齐平,能够防止遮挡凸起越过盖板的第二端而挡住叶轮的出水口的一部分,从而保证了叶轮的出水效率,进而也有利于提高加热泵的水力效率。
在上述任一技术方案中,所述外壳形成有内管段,所述内管段的内壁面形成所述配合面。
利用外壳的内管段来形成配合面,无需额外设置其他部件,也无需单独进行安装,因而有利于提高装配效率,降低生产成本。同时,内管段与外壳为一体式结构,连接强度高,因而也保证了配合面的位置稳定性。
在上述技术方案中,所述外壳包括:上泵壳,所述上泵壳设有所述内管段;和下泵壳,所述下泵壳与所述上泵壳相连,所述下泵壳远离所述上泵壳的一端设有隔板,所述隔板与所述上泵壳及所述下泵壳围设出所述加热腔;其中,所述叶轮与驱动装置相连,所述驱动装置包括定子、转子和旋转轴,所述旋转轴穿过所述隔板与所述叶轮相连;所述下泵壳包括泵壳段和转子套,所述转子位于所述转子套内,所述定子套设在所述转子套的外侧,所述泵壳段与所述上泵壳相连并设有出水管段。
外壳包括上泵壳和下泵壳,上泵壳和下泵壳分体设置,便于加热管、叶轮的装配,并且也便于根据需要合理合计上泵壳和下泵壳的形状,便于上泵壳和下泵壳的加工成型。隔板的设置,将加热腔与驱动装置分隔开来,防止液体对驱动装置造成影响。驱动装置的旋转轴穿过隔板与叶轮相连,保证了叶轮能够在驱动装置的驱动下旋转。
在上述技术方案中,所述上泵壳包括直管段和与所述直管段相连的旋转段,所述旋转段套设在所述内管段的外侧,所述进水口连接有进水管段,所述进水管段通过加强筋与所述旋转段连接;所述加热腔内设有加热管,所述加热 管包括直线加热段和弧线加热段;所述直线加热段位于所述直管段内,所述弧线加热段位于所述旋转段内。
本方案中,加热管包括直线加热段和弧线加热段,相应地,上泵壳包括直管管和旋转段,这样,加热管的直线加热段和弧线加热段都位于加热腔内,且加热管的长度较长,因而加热效率较高。同时,上泵壳还具有进水管段,且进水管段通过加强筋与旋转段连接,保证了进水管段的强度和稳定性,便于连接橡胶管等软质的进水管。
在上述技术方案中,所述上泵壳与所述下泵壳之间设有密封圈;所述隔板与所述旋转轴之间设有密封圈;所述上泵壳为阻燃泵壳;所述转子套与所述泵壳段为一体式结构。
在上泵壳与下泵壳之间设置密封圈,能够防止液体从上泵壳与下泵壳之间的间隙流出,从而提高加热腔的密封性。
在隔板与旋转轴之间设置密封圈,能够防止液体从隔板与旋转轴之间的间隙流出,从而提高加热腔的密封性。
将上泵壳设置为阻燃泵壳,能够防止上泵壳过热起火,从而提高加热泵的使用安全性。
将转子套与泵壳段设计为一体式结构,既有利于提高转子套与泵壳段的连接强度,又省去了二者之间的连接工序,从而降低安装成本。
本申请第二方面的技术方案提供了一种洗碗机,包括:洗碗机主体;和如第一方面技术方案中任一项所述的加热泵,所述加热泵与所述洗碗机主体相连。
本申请第二方面的技术方案提供的洗碗机,因包括第一方面技术方案中任一项所述的加热泵,因而具有上述任一技术方案所具有的一切有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中 将变得明显和容易理解,其中:
图1是本申请一些实施例所述的加热泵的分解结构示意图;
图2是图1所示加热泵装配后的剖视结构示意图;
图3是图2中叶轮的放大示意图;
图4是图1所示加热泵装配后的局部立体放大示意图;
图5是本申请一个实施例所述的加热泵的分解结构示意图;
图6是图5所示加热泵的局部放大示意图;
图7是图6所示结构的局部放大示意图;
图8是本申请一个实施例所述的加热泵的分解结构示意图;
图9是图8所示加热泵的局部放大示意图;
图10是图9所示结构的局部放大示意图;
图11是本申请一个实施例所述的加热泵的分解结构示意图;
图12是图11所示加热泵的局部放大示意图;
图13是图12所示结构的局部放大示意图;
图14是本申请一些实施例所述的洗碗机的示意框图。
其中,图1至图14中的附图标记与部件名称之间的对应关系为:
1外壳,11上泵壳,111内管段,1111配合面,1112第三端,1113第四端,1114直线段,1115渐扩段,112直管段,113旋转段,114进水管段,1141进水口,115加强筋,12下泵壳,121泵壳段,1211出水管段,1212安装口,122转子套,13加热腔,15间隙,16环状斜面,17遮挡凸起,18隔板,19密封圈;
2叶轮,21盖板,211第一端,212第二端,213入水口,214直筒段,215弧形扩展段,22叶片,23背板;
3驱动装置,31定子,32转子,33旋转轴,34壳体,35轴承;
4加热管,41直线加热段,42弧线加热段,43连接结构;
100洗碗机,102洗碗机主体,104加热泵。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和 具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图14描述本申请一些实施例所述的加热泵和洗碗机。
本申请第一方面的实施例提供的加热泵104,包括:外壳1和叶轮2,如图1所示。
具体地,外壳1内设有加热腔13(如图2所示)。外壳1设有连通加热腔13的进水口1141(如图2所示)。
叶轮2设在加热腔13内。叶轮2包括呈环状的盖板21。盖板21的第一端211围设出与进水口1141对应连通的入水口213(如图3所示)。盖板21的第二端212沿叶轮2的轴向朝远离进水口1141的方向延伸且向外扩展。
其中,加热腔13内设有呈环状的配合面1111(如图6所示)。配合面1111包裹在盖板21的外侧,并与盖板21之间具有间隙15。配合面1111具有沿叶轮2的轴向排布的第三端1112和第四端1113,如图7所示。第四端1113与第二端212对应设置,如图6所示。且第四端1113的直径D1大于或等于第二端212的直径D2。
本申请第一方面的实施例提供的加热泵104,对叶轮2的盖板21与叶轮2的安装位置之间的配合结构进行了改进,通过增大沿程阻力和阻挡结构,达到了减小叶轮2间隙回流的目的,从而提高了水泵的水力效率。
具体而言,加热泵104包括外壳1和叶轮2,叶轮2设在外壳1的加热腔13内,液体从外壳1的进水口1141进入加热腔13,经叶轮2的入水口213进入叶轮2,经叶轮2的出水口沿径向甩出。其中,叶轮2包括盖板21、叶片22和背板23,如图3所示。盖板21朝向进水口1141,限定出叶轮2的入水口213,且盖板21由入水口213沿叶轮2的轴向延伸,且沿叶轮2的径向朝外延伸。叶片22设在盖板21和背板23之间,与盖板21和背板23限定出叶轮2的出水口。背板23与驱动装置3的旋转轴33相连,在驱动装置3的驱动下带动叶轮2旋转。加热腔13内的配合面1111包裹在盖板21的外侧,且与 盖板21之间具有间隙15,以防止叶轮2旋转过程中与配合面1111发生剐蹭。叶轮2旋转过程中,液体由盖板21的第一端211进入叶轮2,由盖板21的第二端212处的出水口甩出。由于配合面1111的第四端1113的直径大于或等于盖板21的第二端212的直径,因而叶轮2甩出的液体会被配合面1111阻挡,不容易直接流入盖板21与配合面1111之间的间隙15内,从而减小回流,提高了水泵的水力效率。
值得说明的是,经研究后发现,现有技术中,配合面1111的第四端1113的直径通常小于盖板21的第二端212的直径,导致水容易沿着盖板21进入盖板21与配合面1111之间的间隙15,致使水泵的水力效率降低。而本方案相当于延长了配合面1111的长度,使得配合面1111的第四端1113的直径大于或等于盖板21的第二端212的直径,这一方面增加了间隙15的长度,增加了沿程阻力,另一方面配合面1111也能够作为阻挡结构,来阻挡液体回流,从而实现了减小间隙15回流、提高加热泵104的水力效率的目的。
实施例一(如图5、图6和图7所示)
第四端1113的直径D1等于第二端212的直径D2,如图7所示。
其中,配合面1111与盖板21之间的间隙15均匀设置,如图6所示。
配合面1111与盖板21之间的间隙15采用均匀设置的方案,结构较为规整,便于加工成型,也能够起到装配防呆的作用。同时,这样设置,便于合理设置间隙15的尺寸,在防止剐蹭的基础上,也能够防止进入加热腔13的液体直接进入间隙15而影响加热泵104的水力效率。
当然,配合面1111与盖板21之间的间隙15也可以采用非均匀设置的方案,只要保证配合面1111的第四端1113的直径大于或等于盖板21的第二端212的直径,即可起到减小回流的作用。
进一步地,盖板21包括直筒段214和与直筒段214相连的弧形扩展段215,如图3所示。直筒段214远离弧形扩展段215的一端形成盖板21的第一端211。弧形扩展段215远离直筒段214的一端形成盖板21的第二端212。配合面1111包括直线段1114和与直线段1114相连的渐扩段1115,如图7所示。直线段1114远离渐扩段1115的一端形成配合面1111的第三端1112,渐扩段1115远离直线段1114的一端形成配合面1111的第四端1113。直线段1114环绕直 筒段214,渐扩段1115环绕弧形扩展段215。
盖板21包括直筒段214和弧形扩展段215,直筒段214与外壳1的进水口1141相对设置,并限定出入水口213,保证由进水口1141进入的液体能够沿叶轮2的轴向进入叶轮2。弧形扩展段215沿叶轮2的径向朝外扩展,便于进入叶轮2的液体沿着盖板21向叶轮2的径向流动并甩出。配合面1111相应包括直线段1114和渐扩段1115,直线段1114环绕直筒段214,与直筒段214之间形成均匀的间隙15。渐扩段1115环绕弧形扩展段215,与弧形扩展段215之间形成均匀的间隙15。其中,弧形扩展段215能够起到阻挡液体回流间隙15的作用,有效保证水泵的水力效率。
进一步地,直线段1114的长度大于直筒段214的长度。直线段1114远离渐扩段1115的一端连接有环状斜面16(如图7所示)。沿着由外向内的方向,环状斜面16向靠近直筒段214的方向倾斜延伸。
设置配合面1111的直线段1114的长度大于盖板21的直筒段214的长度,使得直线段1114远离渐扩段1115的一端(即配合面1111的第三端1112)会超过直筒段214远离弧形扩展段215的一端(即盖板21的第一端211),相较于齐平的方案,本方案有利于进一步延长间隙15的长度,从而进一步延长沿程阻力,从而进一步减小间隙15回流。同时,环状斜面16的设置,能够对间隙15内的液体起到阻挡作用,防止液体径向朝内向叶轮2的入水口213流动,从而进一步减小间隙15回流。
具体地,配合面1111与盖板21的之间的间隙15在0.3mm至2.5mm的范围内,如0.3mm、0.5mm、1mm、1.5mm、2mm、2.5mm等,既有利于避免因间隙15过小导致叶轮2与配合面1111发生剐蹭的风险增高,又有利于避免间隙15过大导致进入间隙15的液体过多而影响加热泵104的水力效率。
具体测量该间隙15时,可以以配合面1111的直线段1114与盖板21的直筒段214之间的径向间隙15为基准,这样便于测量。
当然,配合面1111与盖板21之间的间隙15宽度不局限于上述范围,在实际生产过程中可以根据需要调整。
实施例二(如图8、图9和图10所示)
与实施例一的区别在于:第四端1113的直径D1大于第二端212的直径 D2。
设置配合面1111的第四端1113的直径大于盖板21的第二端212的直径,能够提高配合面1111的遮挡效果,从而进一步减小间隙15回流。
实施例三(如图11、图12和图13所示)
与实施例二的区别在于:在实施例二的基础上,进一步地,第四端1113凸设有遮挡凸起17(如图13所示)。遮挡凸起17沿叶轮2的轴向延伸并环绕第二端212。
遮挡凸起17的设置,一方面能够进一步增加间隙15长度,从而进一步提高沿程阻力,从而进一步减小间隙15回流;另一方面使得间隙15在配合面1111的第四端1113处形成转角,这能够进一步防止间隙15越过转角继续在间隙15内流动,从而进一步减小间隙15回流。
进一步地,遮挡凸起17远离第四端1113的一端与第二端212齐平。
由于盖板21具有一定的厚度,因而设置遮挡凸起17沿叶轮2的轴向方向远离第四端1113的一端与盖板21的第二端212沿叶轮2的轴向方向靠近出水口的端面齐平,能够防止遮挡凸起17越过盖板21的第二端212而挡住叶轮2的出水口的一部分,从而保证了叶轮2的出水效率,进而也有利于提高加热泵104的水力效率。
在上述任一实施例中,具体地,外壳1形成有内管段111,如图4所示。内管段111的内壁面形成配合面1111。
利用外壳1的内管段111来形成配合面1111,无需额外设置其他部件,也无需单独进行安装,因而有利于提高装配效率,降低生产成本。同时,内管段111与外壳1为一体式结构,连接强度高,因而也保证了配合面1111的位置稳定性。
进一步地,外壳1包括:上泵壳11和下泵壳12,如图1所示。上泵壳11设有内管段111。下泵壳12与上泵壳11相连,下泵壳12远离上泵壳11的一端设有隔板18,如图2所示。隔板18与上泵壳11及下泵壳12围设出加热腔13。
其中,叶轮2与驱动装置3相连,驱动装置3包括定子31、转子32和旋转轴33,如图1所示。旋转轴33穿过隔板18与叶轮2相连。下泵壳12包括 泵壳段121和转子套122,如图6所示。转子32位于转子套122内,如图2所示。定子31套设在转子套122的外侧。泵壳段121与上泵壳11相连并设有出水管段1211,如图2所示。
外壳1包括上泵壳11和下泵壳12,上泵壳11和下泵壳12分体设置,便于加热管4、叶轮2的装配,并且也便于根据需要合理合计上泵壳11和下泵壳12的形状,便于上泵壳11和下泵壳12的加工成型。隔板18的设置,将加热腔13与驱动装置3分隔开来,防止液体对驱动装置3造成影响。驱动装置3的旋转轴33穿过隔板18与叶轮2相连,保证了叶轮2能够在驱动装置3的驱动下旋转。
进一步地,驱动装置3还包括壳体34,如图1所示。壳体34、定子31、泵壳段121通过螺钉等紧固件固定连接。
更具体地,上泵壳11包括直管段112和与直管段112相连的旋转段113,如图4所示。旋转段113套设在内管段111的外侧。进水口1141连接有进水管段114,进水管段114通过加强筋115与旋转段113连接,如图4所示。加热腔13内设有加热管4。加热管4包括直线加热段41和弧线加热段42,如图2所示。直线加热段41位于直管段112内,弧线加热段42位于旋转段113内。
本方案中,加热管4包括直线加热段41和弧线加热段42,相应地,上泵壳11包括直管管和旋转段113,这样,加热管4的直线加热段41和弧线加热段42都位于加热腔13内,且加热管4的长度较长,因而加热效率较高。同时,上泵壳11还具有进水管段114,且进水管段114通过加强筋115与旋转段113连接,保证了进水管段114的强度和稳定性,便于连接橡胶管等软质的进水管。
进一步地,上泵壳11与下泵壳12之间设有密封圈19,如图1所示。这能够防止液体从上泵壳11与下泵壳12之间的间隙15流出,从而提高加热腔13的密封性。具体地,下泵壳12的泵壳段121设有安装口1212,安装口1212与上泵壳11连接,密封圈19设在安装口1212处。
进一步地,隔板18与旋转轴33之间设有密封圈19,这能够防止液体从隔板18与旋转轴33之间的间隙15流出,从而提高加热腔13的密封性。具体地,旋转轴33的两端套设有轴承35,密封圈19设在隔板18处的轴承35与隔板18之间;另一个轴承35设在转子套122内,与转子套122之间也设有密 封圈19。
进一步地,上泵壳11为阻燃泵壳,能够防止上泵壳11过热起火,从而提高加热泵104的使用安全性。
进一步地,转子套122与泵壳段121为一体式结构,既有利于提高转子套122与泵壳段121的连接强度,又省去了二者之间的连接工序,从而降低安装成本。
如图14所示,本申请第二方面的实施例提供的洗碗机100,包括:洗碗机主体102和如第一方面实施例中任一项的加热泵104,加热泵104与洗碗机主体102相连。
本申请第二方面的实施例提供的洗碗机100,因包括第一方面实施例中任一项的加热泵104,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
具体实施例
一种洗碗机100,包括洗碗机主体102和加热泵104。洗碗机主体102包括控制装置、进水阀等结构。进水阀与加热泵104的进水口1141相连,控制装置与加热泵104的驱动装置3相连。
具体地,加热泵104包括:外壳1、叶轮2、加热管4、隔离板和驱动装置3。
驱动装置3具有定子31、转子32、旋转轴33和壳体34。驱动装置3的壳体34均布3个螺钉孔。定子31具有对应的螺钉凹槽。转子32安装在旋转轴33上,转子32两端具有轴承35和小密封圈19。
外壳1包括上泵壳11和下泵壳12。下泵壳12具有泵壳段121和转子套122,上述转子32嵌套在转子套122内。下泵壳12与转子32罩一体结构,一次成型可以减少加工和安装成本。泵壳段121具有安装口1212和出水管段1211,还有均布的3个螺钉孔。下泵壳12的螺钉孔与定的子螺钉凹槽以及驱动装置3的壳体34上的螺钉孔,通过3个螺钉连接在一起。
隔离板与驱动装置3的旋转轴33通过小密封圈19和轴承35连接。
叶轮2通过轮毂与旋转轴33相连接。叶轮2的背板23与轮毂一体。叶片22自背板23向上延伸到叶轮2的盖板21。叶轮2的盖板21包括弧形结构。
加热管4与通过连接结构43与上泵壳11连接在一起。加热管4、连接结构43和上泵壳11组成加热器组件。上泵壳11由直管段112、旋转段113、内管段111和进水管段114组成。旋转段113与下泵壳12的安装口1212通过密封圈19连接,并且和隔离板共同限定出加热腔13。进水管段114与旋转段113通过加强筋115连接。加热管4由直线加热段41和圆弧加热段组成,直线加热段41的端部通过连接结构43安装在上泵壳11的直管段112顶部。圆弧加热段与直线加热段41连接,放置在加热腔13内。上泵壳11为阻燃上泵壳11。
上泵壳11的内管段111包裹住叶轮2的盖板21部分,内管段111的内表面与叶轮2的盖板21外表面存在间隙15,间隙15可以防止叶轮2旋转时剐蹭到上泵壳11。但间隙15会导致液体经过间隙15回流至叶轮2的入口。内管段111的第四端1113的直径为内管段111的最大外径D1。盖板21的第二端212的直径为盖板21的最大外径D2。上泵壳11的内管段111的最大外径D1大于或等于叶轮2盖板21最大外径D2。
经模拟实验测试验证,当上泵壳11的内管段111的最大外径小于叶轮2的盖板21的最大外径时,从叶轮2甩出的液体在加热腔13内容易直接流入间隙15内。
当上泵壳11的内管段111的最大外径D1等于叶轮2的盖板21最大外径D2时,叶轮2甩出的液体被上泵壳11的内管段111最外面的面阻挡,不容易直接流入间隙15内,从而减小回流。
当上泵壳11的内管段111的最大外径D1大于叶轮2的盖板21最大外径D2时,叶轮2甩出的液体被上泵壳11的内管段111外圈阻挡,也不容易流入间隙15内,从而减小回流。
如此,本具体实施例对内部加热腔13与加热管4的布置进行了全新设计,重新设计叶轮2上盖板21的配合结构,通过增大沿程阻力和阻挡结构,达到减小叶轮2间隙15回流的目的,从而提高水泵水力效率,且成本低,不会增大泵的体积,并且由于提升了泵的效率,有利于减少泵体积。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如, “连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种加热泵,其中,包括:
    外壳,所述外壳内设有加热腔,所述外壳设有连通所述加热腔的进水口;
    叶轮,所述叶轮设在所述加热腔内,所述叶轮包括呈环状的盖板,所述盖板的第一端围设出与所述进水口对应连通的入水口,所述盖板的第二端沿所述叶轮的轴向朝远离所述进水口的方向延伸且向外扩展;
    其中,所述加热腔内设有呈环状的配合面,所述配合面包裹在所述盖板的外侧,并与所述盖板之间具有间隙,所述配合面具有沿所述叶轮的轴向排布的第三端和第四端,所述第四端与所述第二端对应设置,且所述第四端的直径大于或等于所述第二端的直径。
  2. 根据权利要求1所述的加热泵,其中,
    所述配合面与所述盖板之间的间隙均匀设置。
  3. 根据权利要求2所述的加热泵,其中,
    所述盖板包括直筒段和与所述直筒段相连的弧形扩展段,所述直筒段远离所述弧形扩展段的一端形成所述盖板的所述第一端,所述弧形扩展段远离所述直筒段的一端形成所述盖板的所述第二端;
    所述配合面包括直线段和与所述直线段相连的渐扩段,所述直线段远离所述渐扩段的一端形成所述配合面的所述第三端,所述渐扩段远离所述直线段的一端形成所述配合面的所述第四端;
    所述直线段环绕所述直筒段,所述渐扩段环绕所述弧形扩展段。
  4. 根据权利要求3所述的加热泵,其中,
    所述直线段的长度大于所述直筒段的长度;
    所述直线段远离所述渐扩段的一端连接有环状斜面;
    沿着由外向内的方向,所述环状斜面向靠近所述直筒段的方向倾斜延伸。
  5. 根据权利要求2至4中任一项所述的加热泵,其中,
    所述配合面与所述盖板的之间的间隙在0.3mm至2.5mm的范围内。
  6. 根据权利要求1至4中任一项所述的加热泵,其中,
    所述第四端凸设有遮挡凸起,所述遮挡凸起远离所述第四端的一端沿所述叶轮的轴向延伸并环绕所述第二端。
  7. 根据权利要求6所述的加热泵,其中,
    所述遮挡凸起远离所述第四端的一端与所述第二端齐平。
  8. 根据权利要求1至4中任一项所述的加热泵,其中,
    所述外壳形成有内管段,所述内管段的内壁面形成所述配合面。
  9. 根据权利要求8所述的加热泵,其中,所述外壳包括:
    上泵壳,所述上泵壳设有所述内管段;和
    下泵壳,所述下泵壳与所述上泵壳相连,所述下泵壳远离所述上泵壳的一端设有隔板,所述隔板与所述上泵壳及所述下泵壳围设出所述加热腔;
    其中,所述叶轮与驱动装置相连,所述驱动装置包括定子、转子和旋转轴,所述旋转轴穿过所述隔板与所述叶轮相连;
    所述下泵壳包括泵壳段和转子套,所述转子位于所述转子套内,所述定子套设在所述转子套的外侧,所述泵壳段与所述上泵壳相连并设有出水管段。
  10. 根据权利要求9所述的加热泵,其中,
    所述上泵壳包括直管段和与所述直管段相连的旋转段,所述旋转段套设在所述内管段的外侧,所述进水口连接有进水管段,所述进水管段通过加强筋与所述旋转段连接;
    所述加热腔内设有加热管,所述加热管包括直线加热段和弧线加热段;
    所述直线加热段位于所述直管段内,所述弧线加热段位于所述旋转段内。
  11. 根据权利要求9所述的加热泵,其中,
    所述上泵壳与所述下泵壳之间设有密封圈;
    所述隔板与所述旋转轴之间设有密封圈;
    所述上泵壳为阻燃泵壳;
    所述转子套与所述泵壳段为一体式结构。
  12. 一种洗碗机,其中,包括:
    洗碗机主体;和
    如权利要求1至11中任一项所述的加热泵,所述加热泵与所述洗碗机主体相连。
PCT/CN2020/135049 2020-05-13 2020-12-09 加热泵和洗碗机 WO2021227476A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20935433.1A EP4071361A4 (en) 2020-05-13 2020-12-09 EGG PUMP AND DISHWASHER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010400830.9A CN113662486B (zh) 2020-05-13 2020-05-13 加热泵和洗碗机
CN202010400830.9 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227476A1 true WO2021227476A1 (zh) 2021-11-18

Family

ID=78526394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135049 WO2021227476A1 (zh) 2020-05-13 2020-12-09 加热泵和洗碗机

Country Status (3)

Country Link
EP (1) EP4071361A4 (zh)
CN (1) CN113662486B (zh)
WO (1) WO2021227476A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204082617U (zh) * 2014-07-02 2015-01-07 襄阳五二五泵业有限公司 一种用于离心泵腔体的节流装置
CN205298048U (zh) * 2015-12-30 2016-06-08 浙江理工大学 一种v形切口叶片稳流离心泵
CN107131154A (zh) * 2017-04-28 2017-09-05 广东威灵电机制造有限公司 风机系统以及电动器具
CN208749587U (zh) * 2018-08-27 2019-04-16 宁波佳音机电科技股份有限公司 用于洗碗机的加热泵及洗碗机
CN209856049U (zh) * 2019-04-12 2019-12-27 石狮市通达电机有限公司 一种洗碗机的集成加热泵
EP3587822A1 (en) * 2018-06-29 2020-01-01 LG Electronics Inc. Drain pump

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59712162D1 (de) * 1997-09-04 2005-02-17 Levitronix Llc Waltham Zentrifugalpumpe
DE10116671B4 (de) * 2001-04-04 2006-04-27 Miele & Cie. Kg Umwälzpumpe mit Heizungseinrichtung
DE102011003464A1 (de) * 2011-02-01 2012-04-26 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung für eine Pumpe und Pumpe
CN105593525B (zh) * 2013-09-17 2017-08-11 Bsh家用电器有限公司 具有屏蔽泵的导水的家用设备
CN105020180B (zh) * 2014-04-24 2018-07-13 佛山市顺德区美的洗涤电器制造有限公司 用于洗碗机的加热泵和洗碗机
CN105090127B (zh) * 2014-05-20 2019-10-11 德昌电机(深圳)有限公司 加热泵
CN105156358A (zh) * 2015-09-29 2015-12-16 佛山市威灵洗涤电机制造有限公司 离心泵
CN107269545A (zh) * 2016-04-06 2017-10-20 德昌电机(深圳)有限公司 泵机
DE102016208020A1 (de) * 2016-05-10 2017-11-16 BSH Hausgeräte GmbH Flüssigkeitsheizpumpe zum Fördern und Aufheizen von Flüssigkeit in einem wasserführenden Haushaltsgerät
JP2017223187A (ja) * 2016-06-17 2017-12-21 パナソニックIpマネジメント株式会社 ターボ機械
US10655266B2 (en) * 2016-11-30 2020-05-19 Whirlpool Corporation Lint processing fluid pump for a laundry appliance
CN108087291B (zh) * 2017-12-29 2024-03-26 浙江工业大学 一种高扬程长叶片型线后腔结构离心泵
CN108331785B (zh) * 2018-02-10 2020-05-22 佛山市顺德区美的洗涤电器制造有限公司 集热泵和洗碗机
CN110529392A (zh) * 2018-05-25 2019-12-03 三花亚威科电器设备(芜湖)有限公司
CN110762023A (zh) * 2018-07-27 2020-02-07 广东威灵电机制造有限公司 水泵组件和具有其的洗碗机
CN110966217A (zh) * 2018-09-30 2020-04-07 青岛海尔洗碗机有限公司 一种洗涤装置的泵
CN110107504B (zh) * 2019-05-20 2021-11-19 佛山市顺德区美的洗涤电器制造有限公司 加热泵和洗碗机
CN110552893A (zh) * 2019-09-03 2019-12-10 广东美的白色家电技术创新中心有限公司 加热泵及具有其的洗碗机或洗衣机
CN111120336A (zh) * 2019-12-06 2020-05-08 广东沃顿科技有限公司 加热泵及洗涤设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204082617U (zh) * 2014-07-02 2015-01-07 襄阳五二五泵业有限公司 一种用于离心泵腔体的节流装置
CN205298048U (zh) * 2015-12-30 2016-06-08 浙江理工大学 一种v形切口叶片稳流离心泵
CN107131154A (zh) * 2017-04-28 2017-09-05 广东威灵电机制造有限公司 风机系统以及电动器具
EP3587822A1 (en) * 2018-06-29 2020-01-01 LG Electronics Inc. Drain pump
CN208749587U (zh) * 2018-08-27 2019-04-16 宁波佳音机电科技股份有限公司 用于洗碗机的加热泵及洗碗机
CN209856049U (zh) * 2019-04-12 2019-12-27 石狮市通达电机有限公司 一种洗碗机的集成加热泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071361A4

Also Published As

Publication number Publication date
EP4071361A1 (en) 2022-10-12
EP4071361A4 (en) 2023-01-25
CN113662486A (zh) 2021-11-19
CN113662486B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023124700A1 (zh) 组合式扇叶装置及组合出风装置
WO2018166052A1 (zh) 电风机和具有其的吸尘器
BR102016030240A2 (pt) Impulsor para uma bomba de fluido
WO2021227476A1 (zh) 加热泵和洗碗机
WO2015027583A1 (zh) 吸油烟机
CN209469626U (zh)
JPWO2019030868A1 (ja) プロペラファン、送風装置及び冷凍サイクル装置
CN212155170U (zh) 加热泵和洗碗机
WO2019144736A1 (zh) 叶轮、风机组件以及电器
JP2022533689A (ja) 集熱ポンプ及び家庭電器
CN114109907A (zh) 泵盖、水泵和热水器
CN114109869A (zh) 一种风机及使用该风机的家电
RU2677308C2 (ru) Конфигурация подводящего канала для корпуса улитки центробежного насоса, фланцевый элемент, корпус улитки для центробежного насоса и центробежный насос
WO2017101086A1 (zh) 离心泵
CN111503054B (zh) 一种泵
CN218934752U (zh) 立式旋涡管道泵
CN212079710U (zh) 一种带有分体式导流壳体的组合式节能轴流风机
CN211288238U (zh)
CN212003701U (zh) 一种泵密封结构和洗碗机泵
CN215072006U (zh) 一种电机散热组件
CN215344175U (zh) 外转子电机支架、风机及吸油烟机
WO2022193356A1 (zh) 一种水泵及清洁设备
CN220937800U (zh) 一种降噪的食品加工机
CN114109853B (zh) 水泵和具有其的热水器
CN207879706U (zh) 一种离心管道风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020935433

Country of ref document: EP

Effective date: 20220706

NENP Non-entry into the national phase

Ref country code: DE