WO2021227416A1 - 电动车辆能量管理方法、电动车辆能量管理装置及服务器 - Google Patents

电动车辆能量管理方法、电动车辆能量管理装置及服务器 Download PDF

Info

Publication number
WO2021227416A1
WO2021227416A1 PCT/CN2020/129399 CN2020129399W WO2021227416A1 WO 2021227416 A1 WO2021227416 A1 WO 2021227416A1 CN 2020129399 W CN2020129399 W CN 2020129399W WO 2021227416 A1 WO2021227416 A1 WO 2021227416A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
charging
client
target
electric
Prior art date
Application number
PCT/CN2020/129399
Other languages
English (en)
French (fr)
Inventor
牟晓琳
杨之乐
冯伟
郭媛君
张艳辉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021227416A1 publication Critical patent/WO2021227416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0639Item locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • This application belongs to the field of intelligent transportation technology, and in particular relates to an electric vehicle energy management method, an electric vehicle energy management device, a server, and a computer-readable storage medium.
  • the present application provides an electric vehicle energy management method, an electric vehicle energy management device, a server, and a computer-readable storage medium, which can help the electric vehicle to replenish energy in a timely manner when the electric vehicle is in an emergency and the charging pile cannot be found.
  • this application provides an electric vehicle energy management method, including:
  • the target charging end vehicle is a vehicle that can currently provide energy
  • an electric vehicle energy management device including:
  • the charging request receiving unit is configured to receive a charging request of the client vehicle, and the charging request carries the location information of the client vehicle;
  • the target vehicle search unit is configured to search for a target charging terminal vehicle within a preset range based on the above-mentioned location information
  • the location information sending unit is configured to send the location information to the target charging end vehicle to instruct the target charging end vehicle to drive to the location of the client vehicle and to charge the client vehicle.
  • the present application provides a server, including a memory, a processor, and a computer program stored in the above-mentioned memory and capable of running on the above-mentioned processor.
  • a server including a memory, a processor, and a computer program stored in the above-mentioned memory and capable of running on the above-mentioned processor.
  • the above-mentioned processor executes the above-mentioned computer program, the above-mentioned first aspect is implemented Method steps.
  • the present application provides a computer-readable storage medium, the above-mentioned computer-readable storage medium stores a computer program, and when the above-mentioned computer program is executed by a processor, the steps of the method in the above-mentioned first aspect are implemented.
  • the present application provides a computer program product.
  • the above-mentioned computer program product includes a computer program, and when the above-mentioned computer program is executed by one or more processors, the steps of the method in the above-mentioned first aspect are implemented.
  • FIG. 1 is a schematic diagram of the system architecture of an electric vehicle energy management system composed of a server, a client vehicle, and a charging terminal vehicle in an electric vehicle energy management method provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the implementation process of the first electric vehicle energy management method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the implementation process of a second electric vehicle energy management method provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of the implementation process of a third method for electric vehicle energy management provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the interaction flow between the server and the client vehicle in the third electric vehicle energy management method provided by the embodiment of the present application;
  • FIG. 6 is a schematic diagram of an application scenario of an electric vehicle energy management method provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of an electric vehicle energy management device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a server provided by an embodiment of the present application.
  • this application proposes an electric vehicle energy management method, an electric vehicle energy management device, a server, and a computer-readable storage medium, which can find other electric vehicles nearby that can provide charging services when the energy of the electric vehicle is in a hurry.
  • the energy transmission technology between the electric vehicles is used to charge the electric vehicles in urgent energy in a timely manner.
  • an electric vehicle energy management system can be constructed first.
  • the electric vehicle energy management system consists of more than one charging end vehicle (only one is shown in Figure 1), more than one client vehicle (only one is shown in Figure 1) and a server, and the client vehicle and All charging-end vehicles can interact with the server for data.
  • the client-side vehicle is a vehicle that may have a demand for charging services
  • the charging-end vehicle is a vehicle that can provide charging services.
  • an electric vehicle When an electric vehicle has insufficient energy during driving, it can be used as a client vehicle to send a charging request to the server of the electric vehicle energy management system; after the server receives the charging request sent by the client vehicle, it can promptly provide It looks for a suitable charging-end vehicle, and informs the charging-end vehicle to go to the client vehicle as soon as possible to charge the client vehicle.
  • the R&D personnel of an electric vehicle energy management system can design a vehicle application program applied to a mobile terminal, and use the vehicle application program as the carrier of the mobile client.
  • the mobile client can establish a connection with the electric vehicle, so that the driver can register the electric vehicle in the electric vehicle energy management system through the mobile client.
  • the driver can also directly realize the registration of the electric vehicle in the electric vehicle energy management system through the on-board unit of the electric vehicle.
  • each electric vehicle can be registered as a client vehicle and/or a charging terminal vehicle in the electric vehicle energy management system, but for electric vehicles registered as both a client vehicle and a charging terminal vehicle, That is, during the driving process of the electric vehicle, the driver must first determine the role of the electric vehicle during the driving process; that is, although an electric vehicle can be registered as a client vehicle and a charging terminal vehicle at the same time, its Only one character can drive on the road at a time.
  • an electric vehicle A has been registered as a client vehicle and a charging end vehicle at the same time; if the electric vehicle A has sufficient energy in the early stages of driving, the driver can first select electric vehicle A as the charging end vehicle; if In the later stage of driving, if the electric vehicle has consumed some energy and it can no longer provide charging services for other vehicles or causes its energy to be in a hurry, the driver can switch the electric vehicle A from the charging end vehicle to the client vehicle.
  • FIG. 2 shows an electric vehicle energy management method provided by an embodiment of the present application. The details are as follows:
  • Step 201 Receive a charging request from a client vehicle, and the charging request carries location information of the client vehicle.
  • the electric vehicle when the energy of the electric vehicle is insufficient, the electric vehicle can act as a client vehicle to initiate a charging request with its own location information to the server, where the location information is represented by latitude and longitude.
  • the server receives the charging request sent by the client vehicle, it can start to execute each step of the electric vehicle energy management method provided in the embodiment of the present application.
  • the on-board unit of the client vehicle can record various vehicle parameters of the client vehicle (such as remaining power, speed, etc.). , Location, charging mode, and/or travel destination) are synchronized to the mobile client.
  • the driver can check the various vehicle parameters of the client vehicle through the mobile client, and autonomously determine whether the client vehicle is in emergency.
  • the driver manually initiates a charging request to the server through the mobile client
  • the mobile client can intelligently determine whether the client vehicle is in an energy emergency.
  • the mobile client autonomously initiates a charging request to the server and outputs a reminder message to remind the driver to park at the nearest parking place.
  • the on-board unit may display various vehicle parameters of the client vehicle in real time on its screen.
  • the driver can check the various vehicle parameters of the client vehicle through the on-board unit's screen, and autonomously determine whether the client vehicle is in emergency.
  • the driver manually initiates a charging request to the server through the on-board unit
  • the on-board unit can intelligently determine whether the client vehicle is in an energy emergency.
  • the on-board unit autonomously initiates a charging request to the server and outputs a reminder message to remind the driver to park at the nearest parking place.
  • a low energy threshold can be preset; when the mobile client or the on-board unit monitors that the remaining power of the client vehicle is lower than the low energy threshold, it can be determined that the client vehicle has Energy is in a hurry.
  • the low energy threshold may be set by the electric vehicle energy management system, or may be set by the driver of the client vehicle, which is not limited here.
  • Step 202 based on the location information, find a target charging terminal vehicle within a preset range.
  • the server after the server receives the charging request of the client vehicle, it can find a target charging terminal vehicle that can provide charging services within a preset range.
  • the preset range may be: a circular area with the current position of the client vehicle as the center and a preset distance (for example, 5 kilometers) as the radius; or, taking the current position of the client vehicle as the center, and
  • the preset distance (for example, 10 kilometers) is a square area formed by side length; or, it can also be an irregular area; or, it can also be the administrative area where the current location of the client vehicle is located.
  • the delineation method is limited.
  • each charging-end vehicle in the electric vehicle energy management system may periodically upload the current position of the charging-end vehicle to the server through its on-board unit or a connected mobile client.
  • the current position may be expressed in latitude and longitude, so that the server It can quickly determine whether a certain charging end vehicle is within a preset range.
  • Step 203 Send location information to the target charging terminal vehicle to instruct the target charging terminal vehicle to drive to the location of the client vehicle and charge the client vehicle.
  • the server determines the target charging end vehicle, it can immediately send the location information of the client vehicle to the target charging end vehicle, specifically to the on-board unit of the target charging end vehicle or to the target charging end vehicle.
  • the connected mobile client sends the location information of the client vehicle.
  • the target charging terminal vehicle can then navigate according to the location information to merge with the client vehicle as soon as possible and provide charging services for the client vehicle.
  • the target charging terminal vehicle can realize energy transmission between electric vehicles through a special charging connector, so as to achieve the purpose of charging the client vehicle.
  • FIG. 3 shows a schematic flowchart of a second electric vehicle energy management method provided by an embodiment of the present application.
  • a batch of idle charging-end vehicles within a preset range will be found first, and then the target charging-end vehicles will be determined from the batch of idle charging-end vehicles.
  • step 301 and step 201 Same, step 304 is the same as step 203, and will not be repeated here:
  • Step 301 Receive a charging request from a client vehicle, and the charging request carries location information of the client vehicle.
  • Step 302 based on the location information, find an idle vehicle set within a preset range, and the idle vehicle set includes currently idle charging end vehicles.
  • each charging terminal vehicle in addition to its current location, can also upload its working status to the server.
  • the working status includes: idle status, occupied status, and reserved status.
  • the idle state is used to indicate that the charging end vehicle is currently idle
  • the occupied state is used to indicate that the charging end vehicle is currently providing charging services for a certain electric vehicle
  • the reservation state is used to indicate that the charging end vehicle is currently reserved for charging by an electric vehicle. service.
  • preliminary screening can be performed according to the charging state of the charging-end vehicles to obtain a set of idle vehicles. In the set of idle vehicles, only the currently idle charging-end vehicles are reserved, that is, only the charging-end vehicles whose working state is in the idle state are reserved.
  • Step 303 Determine the target charging terminal vehicle in the idle vehicle set.
  • the set of idle vehicles is not empty, it can be determined that there are currently idle charging end vehicles within the preset range. At this time, it is no longer necessary to consider those charging-end vehicles that have been occupied or reserved, and only consider the currently idle charging-end vehicles to avoid excessive waiting time for client vehicles.
  • Step 304 Send location information to the target charging terminal vehicle to instruct the target charging terminal vehicle to drive to the location of the client vehicle and charge the client vehicle.
  • step 303 includes:
  • A1. Calculate the available electric energy of each charging end vehicle in the idle vehicle set.
  • each charging terminal vehicle may also periodically report vehicle parameters such as remaining power, reserved driving distance, driving efficiency, battery information, purchased electricity price, and supported charging mode to the server.
  • the reserved driving distance is used to indicate the driving distance required by the charging terminal vehicle after it provides the charging service, that is, the charging terminal vehicle needs to maintain its own energy to travel the reserved driving distance.
  • the driving efficiency can be the theoretical driving efficiency or the actual driving efficiency.
  • the theoretical driving efficiency can be obtained by the electric vehicle description of the charging end vehicle; the actual driving efficiency can be obtained by the formula Calculated, in the above formula, ⁇ fact is the actual driving efficiency, effective_driving_distance is the effective driving distance, and effective_energy_comsumption is the effective energy consumption.
  • the unit of driving efficiency used may be kilometers/kWh or miles/kWh, which is not limited here.
  • the battery information is used to indicate various battery parameters of the charging end vehicle, including the total battery storage capacity, depth of discharge (DoD) and cycle life, etc., which are not limited here.
  • the charging mode may include an AC charging mode, a DC charging mode, a wireless charging mode, etc., which are not limited here.
  • the server can use these vehicle parameters to calculate the available electrical energy of each charging end vehicle in the idle vehicle set.
  • the available electric energy of the vehicle at the charging end can be calculated by the following formula:
  • Energy_S is the available electric energy of the charging end vehicle
  • E_storage is the remaining electric energy of the charging end vehicle
  • Dist_S is the reserved driving distance of the charging end vehicle
  • ⁇ _S is the driving efficiency of the charging end vehicle
  • Charging_efficiency is the charging efficiency.
  • A2. Calculate the electric energy to be consumed when each charging terminal vehicle charges the client vehicle.
  • step A2 when the charging terminal vehicle charges the client vehicle, it needs to drive to the client vehicle before starting the charging operation. Therefore, the electric energy consumed by the charging-end vehicle traveling to the client vehicle should also be included in the to-be-consumed electric energy required by the charging-end vehicle to charge the client vehicle. At the same time, the client vehicle usually hopes to obtain enough power to reach the place it wants to reach after a single charge, so as to reduce the number of charging as much as possible. Based on this, step A2 can be specifically expressed as:
  • A21 Determine the target location where the client vehicle is to be driven.
  • the client vehicle if the client vehicle activates the navigation function and obtains the travel destination of the current itinerary entered by the driver of the client vehicle, the client vehicle can carry the travel destination in the itinerary. Charging request.
  • the travel destination is the location that the client vehicle wants to reach after the charging is completed; the server can directly determine the travel destination as the target location for the client vehicle to drive.
  • the charging request initiated by the client vehicle will not be carried There is a destination for the itinerary. For example, when an electric taxi with no passengers is driving on the road, the driver usually does not have a specific destination. In this application scenario, when the electric taxi is used as a client vehicle to initiate a charging request, the driver The travel destination is not entered, so the charge request will not carry the travel destination.
  • the charging pile closest to the client vehicle can be found as the target charging pile, and the target charging pile is assumed to be the client vehicle after the charging of the target charging terminal vehicle is completed.
  • the location you want to reach; the server can determine the target charging pile as the target location for the client vehicle to drive.
  • the client vehicle can make a call to the target charging terminal vehicle through the scheme provided in the embodiment of the application without specifying the destination of the trip, and only need to obtain enough information from the target charging terminal vehicle to reach the nearest
  • the energy required by the charging pile is sufficient, and subsequent energy replenishment can be operated through the nearest charging pile to reduce charging costs.
  • A22 Calculate the to-be-driving distance of the client vehicle based on the target location and location information.
  • the server determines the distance required for the client vehicle to travel to the target location as the distance to be driven. Therefore, the server can plan the waiting distance for the client vehicle according to the target location of the client vehicle and the location information of the client vehicle. Driving route, and calculate the to-be-driving distance corresponding to the to-be-driving route.
  • A23 For each charging-end vehicle in the idle vehicle set, calculate the driving distance of the charging-end vehicle based on the current position and location information of the charging-end vehicle.
  • the server determines the distance required for the charging end vehicle to travel to the client vehicle as the workshop driving distance. Therefore, for each charging end vehicle in the idle vehicle set, the server can determine the current location of the charging end vehicle according to the current location of the charging end vehicle. And the location information of the client vehicle, and calculate the distance traveled by each charging terminal vehicle.
  • A24 Calculate the electric energy to be consumed by the vehicle at the charging end according to the distance traveled in the workshop and the distance to be traveled.
  • the electric energy to be consumed is the energy consumed by the charging terminal vehicle to charge the client vehicle, and specifically consists of two parts: the first part is a fixed part, and the second part is a variable part.
  • the fixed part is: the energy required for the client vehicle to travel the distance to be traveled;
  • the variable part is: the energy required for the charging end vehicle to travel to the client vehicle.
  • the electric energy to be consumed by the vehicle at the charging end can be calculated by the following formula:
  • Energy_C is the electric energy to be consumed by the vehicle at the charging end;
  • DD is the distance traveled between the charging end vehicle and the client vehicle in the workshop, which is specifically calculated in step A23;
  • Dist_C is the distance to be traveled by the client vehicle, which is specifically calculated in step A22 Obtained;
  • ⁇ _C is the driving efficiency of the client vehicle;
  • ⁇ _S is the driving efficiency of the charging end vehicle.
  • Dist_C/ ⁇ _C is only related to the client vehicle, and its value will not change, that is, Dist_C/ ⁇ _C is a fixed part of the electric energy to be consumed; and DD/ ⁇ _S and Each charging-end vehicle is related, and the value of DD/ ⁇ _S corresponding to different charging-end vehicles is different, that is, DD/ ⁇ _S is the changing part that constitutes the electric energy to be consumed.
  • A3. Determine the charging end vehicle that can provide more electric energy than the electric energy to be consumed in the idle vehicle set as the target charging end vehicle.
  • any charging-end vehicle that can provide more electrical energy than the electrical energy to be consumed can provide the client vehicle with enough electrical energy to go to the target location. Therefore, in the set of idle vehicles, the charging-end vehicle that can provide more electric energy than the electric energy to be consumed can be determined as the target charging-end vehicle.
  • the server can be random screening, that is, from the set of idle vehicles, a charging end vehicle that can provide more power than the power to be consumed is randomly determined as the target charging end vehicle; or, it can also be based on a specific evaluation Dimension to filter.
  • the evaluation dimension can be the expected revenue of the charging end vehicle, and step A3 can be specifically expressed as:
  • the purchased electricity price and battery information can be obtained from the vehicle parameters reported by each charging end vehicle, and the battery loss of each charging end vehicle can be obtained from the battery information, and then based on each charging end vehicle's
  • the purchase price, battery loss, electric energy to be consumed and the sale price preset by the energy management system of the electric vehicle are calculated using the preset revenue calculation formula to obtain the expected revenue of each charging terminal vehicle charging the client vehicle.
  • the profit calculation formula can be:
  • Revenue is the expected revenue
  • Energy_C is the electric energy to be consumed by the charging end vehicle
  • Charging_price is the preset selling price
  • P_initial is the purchase price of the charging end vehicle
  • Cost_d is the battery loss.
  • the charging-end vehicle with the largest expected profit calculated can be determined as the final target charging-end vehicle.
  • the target charging terminal vehicle provides charging services for the client vehicle
  • the client vehicle can get convenient charging services, and the target charging terminal vehicle can get a certain amount of remuneration, realizing mutual benefit and win-win for both parties.
  • the target charging end vehicle can also be determined from other evaluation dimensions, which is not limited here.
  • the charging end vehicle with the smallest charging cost can be determined as the target charging end vehicle, and the charging cost can be calculated by Energy_C*Charging_price That is, multiply the electric energy to be consumed by the charging end vehicle by the preset selling price to obtain the charging cost that the client vehicle has to pay to call the charging end vehicle.
  • the server can use the to-be-consumed and available power of each charging-end vehicle to find a charging-end vehicle that can provide sufficient power to the client vehicle as the target charging-end vehicle.
  • the final target charging end vehicle can be screened based on the expected revenue of the charging end vehicle, so as to achieve a win-win situation for the client vehicle and the target charging end vehicle.
  • FIG. 3 shows a schematic flow chart of the third electric vehicle energy management method provided by the embodiment of the present application.
  • Different charging modes can be analyzed to determine the target charging end vehicle, where step 401 is the same as step 301, step 402 is the same as step 302, step 404 is the same as step A2, and step 406 is the same as step 304.
  • step 401 is the same as step 301
  • step 402 is the same as step 302
  • step 404 is the same as step A2
  • step 406 is the same as step 304.
  • Step 401 Receive a charging request from a client vehicle, and the charging request carries location information of the client vehicle.
  • step 402 based on the location information, an idle vehicle set is found within a preset range, and the idle vehicle set includes currently idle charging end vehicles.
  • Step 403 Calculate the available electric energy of each charging terminal vehicle in the idle vehicle set under the specified charging mode.
  • each charging mode supported by the client vehicle is determined to be the designated charging mode; if the client vehicle If the charging request initiated does not carry the charging mode it supports, all currently developed charging modes are determined as the designated charging mode. It can be seen that multiple charging modes may be included in the specified charging mode.
  • step A1 the formula for calculating the available electric energy of the vehicle at the charging end can be refined as:
  • Energy_S is the energy that the vehicle at the charging end can provide in a specific charging mode
  • Charging_efficiency is the charging efficiency of the vehicle at the charging end in a specific mode
  • the meaning of other parameters can be referred to the specific explanation of step A1, which is not described here. Go into details. Based on this, the available electric energy of each charging terminal vehicle in the specified charging mode can be calculated.
  • the server can calculate the Energy_S(AC), Energy_S(DC) and Energy_S(wireless) of the charging end vehicle, and Energy_S(AC) represents The charging end vehicle can provide electric energy in the AC charging mode, Energy_S (DC) represents the electric energy provided by the charging end vehicle in the DC charging mode, and Energy_S (wireless) represents the electric energy provided by the charging end vehicle in the wireless charging mode.
  • Step 404 Calculate the electric energy to be consumed when each charging terminal vehicle charges the client vehicle.
  • step 405 it is determined that in the set of idle vehicles, the charging end vehicle that can provide more electric energy in the specified charging mode than the electric energy to be consumed is the target charging end vehicle.
  • Step 405 can have the following application scenarios:
  • the charging request initiated by the client vehicle does not carry the charging mode supported by the client vehicle.
  • the charging mode supported by the client vehicle is unknown, in order to fully satisfy the client vehicle According to the requirements, all the charging modes that have been developed will be determined as designated charging modes.
  • the charging end vehicle is required to support all charging modes, and the available power in each charging mode is greater than the power to be consumed. That is, in this application scenario, only the charging end vehicle that supports AC charging mode, DC charging mode and wireless charging mode at the same time, and meets the requirements of Delta_E (AC), Delta_E (DC) and Delta_E (wireless) are greater than 0.
  • Delta_E(AC) represents the difference between the available electric energy of the charging end vehicle and the electric energy to be consumed in the AC charging mode
  • Delta_E(DC) represents the charging end vehicle in the DC charging mode The difference between the available electric energy and the electric energy to be consumed
  • Delta_E (wireless) represents the difference between the available electric energy and the electric energy to be consumed by the vehicle at the charging end in the wireless charging mode.
  • the charging request initiated by the client vehicle carries the charging mode supported by the client vehicle.
  • the charging mode supported by the client vehicle since the charging mode supported by the client vehicle is known, it can be targeted to satisfy the client Vehicle requirements.
  • the target charging end vehicle needs to support AC charging mode and/or DC charging mode, and the target charging end vehicle needs to meet Delta_E(AC) and/or Delta_E(AC )Greater than 0.
  • Step 406 Send location information to the target charging terminal vehicle to instruct the target charging terminal vehicle to drive to the location of the client vehicle and charge the client vehicle.
  • step 405 can be specifically expressed as:
  • each specified charging mode determine the charging end vehicle with the largest expected profit as the candidate charging end vehicle in the corresponding specified charging mode.
  • the calculation formula of the expected profit can be specifically as follows:
  • Revenue (mode) is the expected revenue in the specified charging mode
  • Charging_price (mode) is the selling price of the electric vehicle in the specified charging mode preset by the energy management system of electric vehicles; the meaning of other parameters can be referred to the specific explanation of step B1. I will not repeat them here.
  • the expected revenue of each charging terminal vehicle under the specified charging mode can be obtained.
  • the specified charging mode is AC charging mode, DC charging mode and wireless charging mode
  • the Revenue (AC), Revenue (DC) and Revenue (wireless) of each charging terminal vehicle can be calculated separately, and each specified charging can be obtained by filtering Candidate charging end vehicle in the mode.
  • the charging information may be the charging time and the charging cost of the candidate charging terminal vehicle in the corresponding designated charging mode.
  • the charging time can be estimated based on the charging efficiency of the candidate charging terminal vehicle in the corresponding charging mode and the energy to be consumed by the candidate charging terminal vehicle;
  • the charging cost can be based on the selling price and the electricity price of the candidate charging terminal vehicle in the corresponding designated charging mode.
  • the electric energy to be consumed by the candidate charging end vehicle is estimated.
  • the candidate charging end vehicle selected by the driver of the client vehicle is determined as the target charging end vehicle.
  • Figure 5 shows a schematic diagram of the interaction process between the client vehicle and the server when the server executes steps C1 to C3. Among them, the other steps except steps C1 to C3 are not shown in FIG. 5, and are omitted by dashed lines.
  • the driver of the client vehicle is provided with more options, allowing the driver of the client vehicle to determine the target charging terminal vehicle according to their own needs.
  • the specified charging mode is AC charging mode, DC charging mode, and wireless charging mode.
  • the server can determine Car_S_AC, Car_S_DC and Car_S_wireless is the candidate charging end vehicle in the corresponding specified charging mode.
  • the server pushes the charging information of Car_S_AC, Car_S_DC and Car_S_wireless to the on-board unit of the client vehicle or the connected mobile client.
  • the driver of the client vehicle selects the target charging terminal vehicle among Car_S_AC, Car_S_DC and Car_S_wireless, and The selection result is returned to the server.
  • the server performs subsequent operations based on the target charging end vehicle selected by the driver.
  • the server can directly log in to the client vehicle. Under the supported charging mode, the charging end vehicle with the highest expected profit is selected as the target charging end vehicle.
  • the charging request initiated by the client vehicle carries the charging mode supported by the client vehicle, and there are more than two charging modes supported by the client vehicle, then the server can assign the client vehicle
  • the charging end vehicle with the highest expected profit in each supported charging mode is the candidate target charging end vehicle. For example, if the client vehicle only supports AC charging mode and DC charging mode, the designated charging mode is AC charging mode and DC charging mode. Mark the charging end vehicle with the highest Revenue (AC) as Car_S_AC, and mark the charging end vehicle with the highest Revenue (DC) as Car_S_DC, then the server can determine that Car_S_AC and Car_S_DC are candidate charging end vehicles in the corresponding specified charging mode.
  • AC Revenue
  • DC Revenue
  • the driver of the client vehicle selects the target charging terminal vehicle from Car_S_AC and Car_S_DC, and returns the selection result to server.
  • the server performs subsequent operations based on the target charging end vehicle selected by the driver.
  • the server can screen the target charging terminal vehicle for the client according to the charging mode supported by the client vehicle.
  • the candidate charging end vehicle in each charging mode supported by the client vehicle can be screened out, and the final choice of the target charging end vehicle can be given to the driver of the client vehicle .
  • the above process can provide more abundant charging possibilities for the client vehicle to meet the different needs of the client vehicle.
  • the server may obtain the vehicle information of the client vehicle and send it to the target charging terminal vehicle
  • the vehicle information of the client vehicle where the vehicle information is used to identify the client vehicle, and the vehicle information may be license plate information and/or model information of the client vehicle, etc., which is not limited here.
  • the server may also obtain the vehicle information of the target charging end vehicle and send it to The client vehicle sends the vehicle information of the target charging end vehicle, where the vehicle information is used to identify the target charging end vehicle, and the vehicle information may be the license plate information and/or model information of the target charging end vehicle, etc., which is not limited here.
  • the server may also estimate the target charging terminal based on the electric energy to be consumed and the preset selling price of the target charging terminal vehicle
  • the charging cost of the vehicle, and the charging cost of the target charging terminal vehicle is sent to the on-board unit of the client vehicle or the connected mobile client.
  • FIG. 6 shows an application scenario of the electric vehicle energy management method provided by an embodiment of the present application.
  • vehicle A After vehicle A is fully charged at home through solar, wind or other new energy charging methods, it can be used as a charging end vehicle to drive on the road; the destination of vehicle B is point C, but since vehicle B’s energy is only 20%, It is not enough to support the vehicle B to reach the destination of the trip.
  • vehicle B can be used as a client vehicle to initiate a charging request; the server uses the electric vehicle energy management method provided in the embodiments of this application to finally determine vehicle A as the target charging end vehicle , And send the current location of vehicle B to the vehicle A; after receiving the current location of vehicle B, vehicle A travels to the current location of vehicle B to merge with vehicle B and provide charging service for vehicle B.
  • the server will automatically find and quickly determine the target charging end vehicle that can provide charging services within a certain range based on the charging request, and notify the target charging end vehicle to rush to the electric vehicle with energy emergency as soon as possible, through the energy transmission technology between electric vehicles Provide charging services for the energy-critical electric vehicles.
  • the client vehicle side will give a certain remuneration to the charging terminal vehicle side, that is, the charging terminal vehicle can benefit from the behavior of providing charging services, and achieve a win-win situation for the client vehicle and the charging terminal vehicle.
  • an embodiment of the present application provides an electric vehicle energy management device, and the above-mentioned electric vehicle energy management device is integrated in a server.
  • the electric vehicle energy management device 700 in the embodiment of the present application includes:
  • the charging request receiving unit 701 is configured to receive a charging request of a client vehicle, and the charging request carries the location information of the client vehicle;
  • the target vehicle search unit 702 is configured to search for a target charging terminal vehicle within a preset range based on the above-mentioned location information
  • the location information sending unit 703 is configured to send the location information to the target charging terminal vehicle to instruct the target charging terminal vehicle to drive to the location of the client vehicle and to charge the client vehicle.
  • the aforementioned target vehicle search unit 702 includes:
  • the collection search subunit is used to search for a collection of idle vehicles within a preset range based on the above-mentioned location information, and the above-mentioned idle vehicle collection includes currently idle vehicles on the charging end;
  • the vehicle determining subunit is used to determine the target charging end vehicle in the idle vehicle set.
  • the foregoing vehicle determination subunit includes:
  • the first calculation subunit is used to calculate the available electric energy of each charging terminal vehicle in the above-mentioned idle vehicle set;
  • the second calculation subunit is used to calculate the electric energy to be consumed when each of the above-mentioned charging terminal vehicles is charging the above-mentioned client vehicle;
  • the target charging end vehicle determining subunit is used to determine that the charging end vehicle in the idle vehicle set that can provide more electric energy than the electric energy to be consumed is the target charging end vehicle.
  • the foregoing second calculation subunit includes:
  • the target location determination subunit is used to determine the target location where the above-mentioned client vehicle is to be driven;
  • the to-be-driving distance calculation subunit is used to calculate the to-be-driving distance of the client vehicle according to the above-mentioned target location and the above-mentioned position information;
  • the workshop driving distance calculation subunit is used to calculate the workshop driving distance of the charging terminal vehicle according to the current position of the charging terminal vehicle and the position information for each charging terminal vehicle in the above idle vehicle set;
  • the workshop driving distance calculation subunit is used to calculate the to-be-consumed electric energy of the charging terminal vehicle based on the workshop driving distance and the to-be-driving distance.
  • the above-mentioned target location determining subunit is specifically configured to determine the above-mentioned itinerary destination as the above-mentioned target location if the above-mentioned charging request carries the travel destination of the client vehicle, and if the above-mentioned charging request does not carry For the above travel destination, the target charging pile is determined as the target location, wherein the target charging pile is the charging pile closest to the client vehicle.
  • the target charging end vehicle determination subunit is specifically used to separately calculate each of the idle vehicle sets that can provide electrical energy
  • the charging-end vehicle that is larger than the electric energy to be consumed is the expected revenue of charging the client vehicle, and the charging-end vehicle with the largest expected revenue is determined as the target charging-end vehicle.
  • the aforementioned electric vehicle energy management device 700 further includes:
  • the vehicle information acquiring unit is configured to acquire vehicle information of the target charging end vehicle after the target charging end vehicle is found within a preset range based on the foregoing location information, and the vehicle information is used to identify the target charging end vehicle;
  • the vehicle information sending unit is used to send the vehicle information to the client vehicle.
  • the server will automatically find and quickly determine the target charging end vehicle that can provide charging services within a certain range based on the charging request, and notify the target charging end vehicle to rush to the electric vehicle with energy emergency as soon as possible, through the energy transmission technology between electric vehicles Provide charging services for the energy-critical electric vehicles.
  • the client vehicle side will give a certain remuneration to the charging terminal vehicle side, that is, the charging terminal vehicle can benefit from the behavior of providing charging services, and achieve a win-win situation for the client vehicle and the charging terminal vehicle.
  • the embodiment of the present application also provides a server. Please refer to FIG. 8.
  • the server 8 in the embodiment of the present application includes: a memory 801, one or more processors 802 (only one is shown in FIG. 8) and stored in the memory 801 A computer program that can run on the processor.
  • the memory 801 is used to store software programs and units
  • the processor 802 executes various functional applications and data processing by running the software programs and units stored in the memory 801 to obtain resources corresponding to the aforementioned preset events.
  • the processor 802 implements the following steps when running the above-mentioned computer program stored in the memory 801:
  • the location information is sent to the target charging end vehicle to instruct the target charging end vehicle to drive to the location where the client vehicle is located and to charge the client vehicle.
  • the foregoing location information is used to find the target charging terminal within a preset range.
  • Vehicles including:
  • an idle vehicle set is found within a preset range, and the above-mentioned idle vehicle set includes currently idle charging end vehicles;
  • the target charging end vehicle is determined from the set of idle vehicles.
  • the foregoing determination of the foregoing target charging end vehicle in the foregoing idle vehicle set includes:
  • the charging end vehicle in the idle vehicle set that can provide more electric energy than the electric energy to be consumed is the target charging end vehicle.
  • the foregoing calculation of the electrical energy to be consumed when the respective charging terminal vehicles are charged for the client vehicles respectively includes:
  • the foregoing determination of the target location where the client vehicle is to be driven includes:
  • the travel destination is determined as the target location
  • the target charging post is determined as the above-mentioned target location, wherein the above-mentioned target charging post is the charging post closest to the client vehicle.
  • the set of idle vehicles includes a plurality of charging end vehicles that can provide more electrical energy than the electrical energy to be consumed
  • the foregoing determination of the idle vehicle are the above-mentioned target charging-end vehicles, including:
  • the above-mentioned charging-end vehicle with the largest expected profit is determined as the above-mentioned target charging-end vehicle.
  • the processor 802 implements the following steps by running the above-mentioned computer program stored in the memory 801:
  • the processor 802 may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors or digital signal processors (DSP). , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 801 may include a read-only memory and a random access memory, and provides instructions and data to the processor 802. A part or all of the memory 801 may also include a non-volatile random access memory. For example, the memory 801 may also store information about the device category.
  • the server will automatically find and quickly determine the target charging end vehicle that can provide charging services within a certain range based on the charging request, and notify the target charging end vehicle to rush to the electric vehicle with energy emergency as soon as possible, through the energy transmission technology between electric vehicles Provide charging services for the energy-critical electric vehicles.
  • the client vehicle side will give a certain reward to the charging terminal vehicle side, that is, the charging terminal vehicle can benefit from the behavior of providing charging services, and achieve a win-win situation for the client vehicle and the charging terminal vehicle.
  • the disclosed device and method may be implemented in other ways.
  • the system embodiment described above is only illustrative.
  • the division of the above-mentioned modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above-mentioned integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • this application implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by computer programs instructing associated hardware.
  • the above-mentioned computer programs can be stored in a computer-readable storage medium. When the program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the above-mentioned computer program includes computer program code, and the above-mentioned computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the above-mentioned computer-readable storage medium may include: any entity or device capable of carrying the above-mentioned computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer readable memory, read-only memory (ROM, Read-Only Memory) ), Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • the content contained in the above-mentioned computer-readable storage medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable storage The medium does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Mechanical Engineering (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Health & Medical Sciences (AREA)
  • Transportation (AREA)
  • Marketing (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动车辆能量管理方法、电动车辆能量管理装置、服务器及计算机可读存储介质,适用于智能交通技术领域。方法包括:服务器接收客户端车辆的充电请求,所述充电请求中携带所述客户端车辆的位置信息(201);基于所述位置信息,在预设范围内查找出目标充电端车辆(202);向所述目标充电端车辆发送所述位置信息,以指示所述目标充电端车辆行驶至所述客户端车辆所处位置并为所述客户端车辆充电(203)。通过该方案,实现对道路中行驶的电动车辆的统筹管理,在有电动车辆出现能量告急的情况时,可及时为其寻找到能够提供充电服务的其它车辆。

Description

电动车辆能量管理方法、电动车辆能量管理装置及服务器 技术领域
本申请属于智能交通技术领域,尤其涉及一种电动车辆能量管理方法、电动车辆能量管理装置、服务器及计算机可读存储介质。
背景技术
随着汽车产业的不断发展,电动车辆也得到了普及。然而,当前大部分区域的电动车辆的充电桩较少,这导致电动车辆的续航成为限制电动车辆发展的重要因素。
在电动车辆能量告急且未能找到充电桩的情况下,如何帮助该电动车辆及时补充能量,成为当前亟待解决的问题。
发明内容
本申请提供了一种电动车辆能量管理方法、电动车辆能量管理装置、服务器及计算机可读存储介质,可在电动车辆能量告急且未能找到充电桩的情况下,及时帮助电动车辆补充能量。
第一方面,本申请提供了一种电动车辆能量管理方法,包括:
当接收到客户端车辆的充电请求时,基于上述充电请求获得上述客户端车辆的当前位置及待行驶距离;
在上述客户端车辆的当前位置的预设范围内查找出目标充电端车辆,其中,上述目标充电端车辆为当前能够提供能量的车辆;
向上述目标充电端车辆发送上述客户端车辆的当前位置,以指示上述目标充电端车辆行驶至上述客户端车辆的当前位置处为上述客户端车辆充电。
由上可见,在本申请第一方面所提供的方案中,电动车辆在行驶的过程中, 若出现能量告急的情况,只需向服务器发送充电请求并原地等待即可,不再需要电动车辆的驾驶员四处寻找充电桩;服务器会基于该充电请求自动查找并快速确定一定范围内能够提供充电服务的目标充电端车辆,并通知目标充电端车辆尽快赶往能量告急的电动车辆处,通过电动车辆间的能量传输技术为该能量告急的电动车辆提供充电服务。通过上述过程,在电动车辆存在充电需求时,由于不再需要电动车辆的驾驶员四处寻找充电桩,一方面可简化驾驶员的操作流程,另一方面可减少驾驶员因寻找充电桩所耗费的时间。
第二方面,本申请提供了一种电动车辆能量管理装置,包括:
充电请求接收单元,用于接收客户端车辆的充电请求,上述充电请求中携带上述客户端车辆的位置信息;
目标车辆查找单元,用于基于上述位置信息,在预设范围内查找出目标充电端车辆;
位置信息发送单元,用于向上述目标充电端车辆发送上述位置信息,以指示上述目标充电端车辆行驶至上述客户端车辆所处位置并为上述客户端车辆充电。
第三方面,本申请提供了一种服务器,包括存储器、处理器以及存储在上述存储器中并可在上述处理器上运行的计算机程序,上述处理器执行上述计算机程序时实现如上述第一方面的方法的步骤。
第四方面,本申请提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现如上述第一方面的方法的步骤。
第五方面,本申请提供了一种计算机程序产品,上述计算机程序产品包括计算机程序,上述计算机程序被一个或多个处理器执行时实现如上述第一方面的方法的步骤。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电动车辆能量管理方法中,服务器、客户端车辆及充电端车辆所构成的电动车辆能量管理系统的系统架构示意图;
图2是本申请实施例提供的第一种电动车辆能量管理方法的实现流程示意图;
图3是本申请实施例提供的第二种电动车辆能量管理方法的实现流程示意图;
图4是本申请实施例提供的第三种电动车辆能量管理方法的实现流程示意图;
图5是本申请实施例提供的第三种电动车辆能量管理方法中,服务器与客户端车辆的交互流程示意图;
图6是本申请实施例提供的电动车辆能量管理方法的应用场景示意图;
图7是本申请实施例提供的电动车辆能量管理装置的结构框图;
图8是本申请实施例提供的服务器的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
当前,虽然电动车辆已得到了广泛推广,但电动车辆所配套的充电设施(也即充电桩)仍未覆盖至各个区域,这一定程度上导致了电动车辆充电难的问题。为解决这一问题,本申请提出了一种电动车辆能量管理方法、电动车辆能量管理装置、服务器及计算机可读存储介质,可在电动车辆能量告急时,查找出附近可提供充电服务的其它电动车辆,并通过电动车辆之间的能量传输技术及时为能量告急的电动车辆进行充电。
为实现本申请所提出的技术方案,可先构建一电动车辆能量管理系统。请参阅图1,该电动车辆能量管理系统由一个以上充电端车辆(图1中仅示出一个)、一个以上客户端车辆(图1中仅示出一个)及服务器构成,且客户端车辆及充电端车辆均可与服务器进行数据交互,其中,客户端车辆为可能存在充电服务需求的车辆,充电端车辆为能够提供充电服务的车辆。当一电动车辆在行驶过程中出现能量不足的情况时,其可作为客户端车辆向电动车辆能量管理系统的服务器发送充电请求;服务器在接收到客户端车辆所发送的充电请求后,可以及时为其寻找合适的充电端车辆,并通知该充电端车辆尽快前去客户端车辆处为客户端车辆进行充电。
在一种应用场景下,电动车辆能量管理系统的研发人员可设计一应用于移动终端的车辆应用程序,并以车辆应用程序作为移动客户端的载体。该移动客户端可与电动车辆建立连接,以使得驾驶员通过该移动客户端实现电动车辆在电动车辆能量管理系统中的注册。
在另一种应用场景下,驾驶员也可以直接通过电动车辆的车载单元实现电动车辆在电动车辆能量管理系统中的注册。
可以理解的是,每一电动车辆均可在该电动车辆能量管理系统中注册成为客户端车辆和/或充电端车辆,但对于既注册为客户端车辆,又注册为充电端车辆的电动车辆来说,该电动车辆在行驶过程中,必须由其驾驶员先确定本次行驶过程中该电动车辆的角色;也即,虽然一辆电动车辆可同时注册为客户端车辆和充电端车辆,但其每次仅能以一种角色在道路中行驶。举例来说,一辆电 动车辆A已同时注册为客户端车辆和充电端车辆;如果在行驶初期,该电动车辆A的能量充足,驾驶员可先将电动车辆A选定为充电端车辆;如果在行驶后期,该电动车辆已消耗了一些能量导致其无法再为其它车辆提供充电服务或导致其能量告急,则驾驶员可将电动车辆A由充电端车辆切换为客户端车辆。
为了说明本申请所提出的技术方案,下面通过具体实施例来进行说明。
请参阅图2,图2示出了本申请实施例提供的一种电动车辆能量管理方法,详述如下:
步骤201,接收客户端车辆的充电请求,充电请求中携带客户端车辆的位置信息。
在本申请实施例中,当电动车辆的能量不足时,该电动车辆可以作为客户端车辆向服务器发起携带有自身位置信息的充电请求,其中,该位置信息以经纬度表示。服务器一旦接收到客户端车辆所发送的充电请求,即可开始执行本申请实施例所提供的电动车辆能量管理方法的各个步骤。
可选地,在客户端车辆为通过移动客户端完成在电动车辆能量管理系统中的注册的情况下,该客户端车辆的车载单元可以将客户端车辆的各项车辆参数(例如剩余电能、速度、位置、充电模式和/或行程目的地等参数)同步至该移动客户端。此时,驾驶员可通过该移动客户端查阅客户端车辆的各项车辆参数,并自主判断客户端车辆是否能量告急,在能量告急时,由驾驶员手动通过该移动客户端向服务器发起充电请求;或者,也可以由该移动客户端智能判断客户端车辆是否能量告急,在能量告急时,由移动客户端自主向服务器发起充电请求,并输出提醒消息,提醒驾驶员在最近的停车地点停车。
可选地,在客户端车辆为通过车载单元完成在电动车辆能量管理系统中的注册的情况下,该车载单元可以在其屏幕上实时显示客户端车辆的各项车辆参数。此时,驾驶员可通过该车载单元的屏幕查阅客户端车辆的各项车辆参数,并自主判断客户端车辆是否能量告急,在能量告急时,由驾驶员手动通过该车 载单元向服务器发起充电请求;或者,也可以由该车载单元智能判断客户端车辆是否能量告急,在能量告急时,由车载单元自主向服务器发起充电请求,并输出提醒消息,提醒驾驶员在最近的停车地点停车。
可选地,对于客户端车辆来说,可预先设定一低能量阈值;当移动客户端或车载单元监测到客户端车辆的剩余电能低于该低能量阈值时,即可判断客户端车辆已能量告急。该低能量阈值可以由电动车辆能量管理系统进行设置,也可以由客户端车辆的驾驶员进行设置,此处不作限定。
步骤202,基于位置信息,在预设范围内查找出目标充电端车辆。
在本申请实施例中,当服务器接收到客户端车辆的充电请求后,可在一预设范围内查找出一可提供充电服务的目标充电端车辆。具体地,预设范围可以为:以客户端车辆的当前位置为圆心,以预设距离(例如5千里)为半径所构成的圆形区域;或者,以客户端车辆的当前位置为中心,以预设距离(例如10千里)为边长所构成的正方形区域;或者,也可以是不规则区域;或者,还可以为客户端车辆的当前位置所处的行政区域,此处不对预设范围的划定方式作出限定。
可选地,电动车辆能量管理系统中的各个充电端车辆均可以通过其车载单元或者相连接的移动客户端周期性向服务器上传充电端车辆的当前位置,该当前位置可以以经纬度表示,以使得服务器能够快速判定某一充电端车辆是否处于预设范围内。
步骤203,向目标充电端车辆发送位置信息,以指示目标充电端车辆行驶至客户端车辆所处位置并为客户端车辆充电。
在本申请实施例中,服务器在确定了目标充电端车辆后,可立刻向该目标充电端车辆发送客户端车辆的位置信息,具体为向目标充电端车辆的车载单元或与该目标充电端车辆相连接的移动客户端发送客户端车辆的位置信息。该目标充电端车辆随即可以根据该位置信息进行导航,以尽快与客户端车辆汇合,并为该客户端车辆提供充电服务。具体地,目标充电端车辆可通过特制的充电 连接器实现电动车辆间的能量传输,达到为客户端车辆进行充电的目的。下面对目标充电端车辆为客户端车辆充电的流程作出简单说明:将充电连接器的放电端设置于目标充电端车辆处,使得目标充电端车辆进入放电状态;将充电连接器的充电端设置于客户端车辆处,使得客户端车辆进入充电状态;在目标充电端车辆进入放电状态,客户端车辆进入充电状态后,电能从目标充电端车辆被传输至客户端车辆处,实现客户端车辆的能量补充。
为了给客户端车辆查找出最为合适的目标充电端车辆,请参阅图3,图3示出了本申请实施例提供的第二种电动车辆能量管理方法的流程示意图。在本申请实施例中,将首先查找出在预设范围内的一批空闲的充电端车辆,再在这一批空闲的充电端车辆中确定出目标充电端车辆,其中,步骤301与步骤201相同,步骤304与步骤203相同,此处不再赘述:
步骤301,接收客户端车辆的充电请求,充电请求中携带客户端车辆的位置信息。
步骤302,基于位置信息,在预设范围内查找得到空闲车辆集合,空闲车辆集合包括当前空闲的充电端车辆。
在本申请实施例中,各个充电端车辆除了自身的当前位置外,还可向服务器上传其工作状态,该工作状态包括:空闲状态、占用状态及预约状态。其中,空闲状态用于表示充电端车辆当前正空闲,占用状态用于表示充电端车辆当前正在为某一电动车辆提供充电服务,预约状态用于表示充电端车辆当前已被某一电动车辆预约充电服务。为减少客户端车辆的等待时间,可以在获得了处于预设范围内的所有充电端车辆后,根据充电端车辆的充电状态进行初步筛选,获得空闲车辆集合。该空闲车辆集合中,仅保留当前空闲的充电端车辆,也即,仅保留工作状态为空闲状态的充电端车辆。
步骤303,在空闲车辆集合中确定目标充电端车辆。
在本申请实施例中,只要空闲车辆集合不为空,即可确定预设范围内存在 有当前空闲的充电端车辆。此时,可以不再考虑那些已被占用或已被预约的充电端车辆,仅考虑当前空闲的充电端车辆,以避免客户端车辆的等待时间过长。
步骤304,向目标充电端车辆发送位置信息,以指示目标充电端车辆行驶至客户端车辆所处位置并为客户端车辆充电。
可选地,为了充分满足客户端车辆的行驶需求,上述步骤303包括:
A1、分别计算空闲车辆集合中的各个充电端车辆的可提供电能。
在本申请实施例中,各个充电端车辆还可周期性向服务器上报剩余电能、预留行驶距离、行驶效率、电池信息、买入电价及支持的充电模式等车辆参数。其中,预留行驶距离用于表示充电端车辆在提供了充电服务后自身所需求的行驶距离,也即充电端车辆需至少保持自身能量能够行驶预留行驶距离。行驶效率可以为理论行驶效率,也可以为实际行驶效率,其中,理论行驶效率可通过充电端车辆的电动车辆说明而得;实际行驶效率可通过公式
Figure PCTCN2020129399-appb-000001
计算而得,上式中,η fact为实际行驶效率,effective_driving_distance为有效行驶里程,effective_energy_comsumption为有效耗费能量。本申请实施例中,所采用的行驶效率的单位可以为千米/千瓦时,也可以为英里/千瓦时,此处不作限定。电池信息用于表示充电端车辆的各个电池参数,包括电池总存储量,放电深度(depth of discharge,DoD)及循环寿命等,此处不作限定。充电模式可包括交流充电模式、直流充电模式及无线充电模式等,此处不作限定。服务器可利用这些车辆参数,计算得到空闲车辆集合中的各个充电端车辆的可提供电能。
可选地,充电端车辆的可提供电能可通过如下公式计算而得:
Figure PCTCN2020129399-appb-000002
其中,Energy_S为充电端车辆的可提供电能;E_storage为充电端车辆的剩余电能;Dist_S为充电端车辆的预留行驶距离;η_S为充电端车辆的行驶效率; Charging_efficiency为充电效率。
A2、分别计算各个充电端车辆为客户端车辆进行充电时所需的待消耗电能。
在本申请实施例中,充电端车辆在为客户端车辆进行充电时,需要先行驶至客户端车辆处,然后才能开始充电操作。因而,充电端车辆行驶至客户端车辆处所消耗的电能也应包含在充电端车辆为客户端车辆进行充电时所需的待消耗电能之内。同时,客户端车辆通常也希望在一次充电后,就能够获得足以到达其想要到达的地点的电能,以尽可能减少充电次数。基于此,步骤A2可具体表现为:
A21、确定客户端车辆待行驶的目标地点。
在一种应用场景下,若客户端车辆启动了导航功能,获得了客户端车辆的驾驶员所输入的本次行程的行程目的地,则客户端车辆可将该行程目的地携带于其所发起的充电请求中。在充电请求携带有行程目的地的情况下,该行程目的地即为客户端车辆在充电完成后想要到达的地点;服务器可直接将该行程目的地确定为客户端车辆待行驶的目标地点。
在另一种应用场景下,若客户端车辆未启动导航功能,没能获得客户端车辆的驾驶员所输入的本次行程的行程目的地,则客户端车辆所发起的充电请求中不会携带有行程目的地。例如,未载客的电动出租车在道路上行驶时,其驾驶员通常并没有特定的目的地,在这种应用场景下,该电动出租车作为客户端车辆发起充电请求时,由于该驾驶员没有输入行程目的地,因而该充电请求中也不会携带有行程目的地。此时,由于客户端车辆的行程目的地未知,而客户端车辆又已经能量告急,考虑到在充电桩处进行充电所需要的花销往往比呼叫充电端车辆进行充电所需要的花销要少,因而,在充电请求未携带有行程目的地的情况下,可查找距离客户端车辆最近的充电桩作为目标充电桩,并默认该目标充电桩为客户端车辆在呼叫目标充电端车辆充电完成后想要到达的地点;服务器可将该目标充电桩确定为客户端车辆待行驶的目标地点。通过上述过程,可使得客户端车辆在未指定行程目的地的情况下,通过本申请实施例所提供的 方案呼叫到目标充电端车辆之后,仅需通过该目标充电端车辆获取到足以到达最近的充电桩所需要的能量即可,后续能量补给可通过该最近的充电桩进行操作,以减少充电花销。
A22、根据目标地点及位置信息,计算客户端车辆的待行驶距离。
本申请实施例中,服务器将客户端车辆行驶至目标地点处所需要的距离确定为待行驶距离,因而,服务器可根据客户端车辆的目标地点及客户端车辆的位置信息,为客户端车辆规划待行驶路线,并计算得到该待行驶路线所对应的待行驶距离。
A23、针对空闲车辆集合中的每个充电端车辆,根据充电端车辆的当前位置及位置信息,计算充电端车辆的车间行驶距离。
在本申请实施例中,服务器将充电端车辆行驶至客户端车辆处所需要的距离确定为车间行驶距离,因而,针对空闲车辆集合中的每个充电端车辆,服务器可根据充电端车辆的当前位置及客户端车辆的位置信息,计算每个充电端车辆的车间行驶距离。
A24、根据车间行驶距离和待行驶距离计算充电端车辆的待消耗电能。
在本申请实施例中,待消耗电能为充电端车辆为客户端车辆进行充电所需要耗费的能量,具体由两部分组成:第一部分为固定部分,第二部分为变化部分。其中,固定部分为:客户端车辆行驶待行驶距离所需要的能量;变化部分为:充电端车辆行驶至客户端车辆处所需要的能量。
可选地,充电端车辆的待消耗电能可通过如下公式计算而得:
Figure PCTCN2020129399-appb-000003
其中,Energy_C为充电端车辆的待消耗电能;DD为充电端车辆与客户端车辆的车间行驶距离,具体由步骤A23计算而得;Dist_C为客户端车辆的待行驶距离,具体由步骤A22计算而得;η_C为客户端车辆的行驶效率;η_S为充电端车辆的行驶效率。可见,对空闲车辆集合中的各个充电端车辆来说,Dist_C/η_C只与客户端车辆相关,其值不会发生改变,即Dist_C/η_C为组成 待消耗电能的固定部分;而DD/η_S与各个充电端车辆相关,不同的充电端车辆所对应的DD/η_S的值不同,即DD/η_S为组成待消耗电能的变化部分。
A3、确定空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为目标充电端车辆。
在本申请实施例中,但凡可提供电能大于待消耗电能的充电端车辆,都可为客户端车辆提供足以前往目标地点的电能。因而,可在空闲车辆集合中,将可提供电能大于待消耗电能的充电端车辆确定为目标充电端车辆。
可选地,若空闲车辆集合中,可提供电能大于待消耗电能的充电端车辆的数量有多个,则需要对可提供电能大于待消耗电能的充电端车辆进行进一步筛选,以确定唯一的一个目标充电端车辆。服务器所采用的筛选方式可以是随机进行筛选,也即,从空闲车辆集合中,随机确定一个可提供电能大于待消耗电能的充电端车辆为目标充电端车辆;或者,也可以是基于特定的评价维度进行筛选。例如,该评价维度可以是充电端车辆的期望收益,则步骤A3可具体表现为:
B1、分别计算空闲车辆集合中,各个可提供电能大于待消耗电能的充电端车辆为客户端车辆进行充电的期望收益。
在本申请实施例中,可从各个充电端车辆所上报的车辆参数中获取到买入电价及电池信息,并从电池信息中获取到各个充电端车辆的电池损耗,然后基于各个充电端车辆的买入电价、电池损耗、待消耗电能及电动车辆能量管理系统所预设的卖出电价,以预设的收益计算公式计算得到各个充电端车辆为客户端车辆进行充电的期望收益。该收益计算公式可以为:
Revenue=Energy_C*Charging_price-Energy_C*(P_initial+Cost_d)
其中,Revenue为期望收益;Energy_C为充电端车辆的待消耗电能;Charging_price为预设的卖出电价;P_initial为充电端车辆的买入电价;Cost_d为电池损耗。
B2、将期望收益最大的充电端车辆确定为目标充电端车辆。
在本申请实施例中,为了给充电端车辆的驾驶员创造最大的收益,可以将计算得到的期望收益最大的充电端车辆确定为最终的目标充电端车辆。这样一来,在目标充电端车辆为客户端车辆提供充电服务的行为中,客户端车辆可得到便利的充电服务,目标充电端车辆可得到一定报酬,实现双方的互利共赢。
当然,根据不同的应用场景,也可以从其它的评价维度来确定目标充电端车辆,此处不作限定。例如,从客户端车辆付出的充电花销的评价维度来确定目标充电端车辆,则可将充电花销最小的充电端车辆确定为目标充电端车辆,充电花销可通过Energy_C*Charging_price计算而得,也即,将充电端车辆的待消耗电能乘以预设的卖出电价即可得到客户端车辆呼叫该充电端车辆所要付出的充电花销。
由上可见,通过本申请实施例,服务器可通过各个充电端车辆的待消耗电能及可提供电能,查找出能够为客户端车辆提供足够电能的充电端车辆作为目标充电端车辆。并且,还可在能够为客户端车辆提供足够电能的充电端车辆较多时,通过充电端车辆的期望收益筛选出最终的目标充电端车辆,实现客户端车辆及目标充电端车辆的双赢。
为了提供更为丰富的充电可能,提升充电端车辆为客户端车辆充电的灵活性,图3示出了本申请实施例提供的第三种电动车辆能量管理方法的流程示意图,在本申请实施例中,可对不同的充电模式进行分析,以确定目标充电端车辆,其中,步骤401与步骤301相同,步骤402与步骤302相同,步骤404与步骤A2相同,步骤406与步骤304相同,此处不再赘述:
步骤401,接收客户端车辆的充电请求,充电请求中携带客户端车辆的位置信息。
步骤402,基于位置信息,在预设范围内查找得到空闲车辆集合,空闲车辆集合包括当前空闲的充电端车辆。
步骤403,分别计算空闲车辆集合中的各个充电端车辆在指定充电模式下的可提供电能。
在本申请实施例中,若客户端车辆所发起的充电请求中携带有其所支持的充电模式,则将客户端车辆所支持的每一种充电模式均确定为指定充电模式;若客户端车辆所发起的充电请求中未携带有其所支持的充电模式,则将当前已开发的所有充电模式均确定为指定充电模式。可见,指定充电模式中可能包括有多个充电模式。
可选地,在步骤A1的基础上,可将充电端车辆的可提供电能的计算公式细化为:
Figure PCTCN2020129399-appb-000004
其中,Energy_S(mode)为充电端车辆在特定充电模式下的可提供电能;Charging_efficiency(mode)为充电端车辆在特定模式下的充电效率;其它参数含义可参照步骤A1的具体解释,此处不作赘述。基于此,可计算得到各个充电端车辆在指定充电模式下的可提供电能。举例来说,若指定充电模式为交流充电模式、直流充电模式及无线充电模式,则服务器可计算得到充电端车辆的Energy_S(AC)、Energy_S(DC)及Energy_S(wireless),Energy_S(AC)代表充电端车辆在交流充电模式下的可提供电能,Energy_S(DC)代表充电端车辆在直流充电模式下的可提供电能,Energy_S(wireless)代表充电端车辆在无线充电模式下的可提供电能。
步骤404,分别计算各个充电端车辆为客户端车辆进行充电时所需的待消耗电能。
步骤405,确定空闲车辆集合中,指定充电模式下的可提供电能大于待消耗电能的充电端车辆为目标充电端车辆。
在本申请实施例中,假定当前已开发的充电模式有交流充电模式、直流充电模式及无线充电模式这三种,并记充电端车辆的可提供电能与待消耗电能的差值为Delta_E,则步骤405可以有如下几种应用场景:
在一种应用场景下,客户端车辆所发起的充电请求中未携带有客户端车辆所支持的充电模式,此时,由于客户端车辆所支持的充电模式未知,为了全方位的满足客户端车辆的要求,所有已开发的充电模式都将被确定为指定充电模式。这种应用场景下,要求充电端车辆支持所有的充电模式,且在每一充电模式下的可提供电能均大于待消耗电能。也即,在这种应用场景下,只有同时支持交流充电模式、直流充电模式及无线充电模式,且满足Delta_E(AC)、Delta_E(DC)及Delta_E(wireless)均大于0的充电端车辆才可被确定为目标充电端车辆,其中,Delta_E(AC)表示在交流充电模式下,充电端车辆的可提供电能与待消耗电能的差值;Delta_E(DC)表示在直流充电模式下,充电端车辆的可提供电能与待消耗电能的差值;Delta_E(wireless)表示在无线充电模式下,充电端车辆的可提供电能与待消耗电能的差值。
在另一种应用场景下,客户端车辆所发起的充电请求中携带有客户端车辆所支持的充电模式,此时,由于客户端车辆所支持的充电模式已知,可针对性的满足客户端车辆的要求。在这种应用场景下,仅要求充电端车辆所支持的充电模式与客户端车辆所支持的任一充电模式中相匹配,而且至少在一种相匹配的充电模式下的可提供电能大于待消耗电能。例如,若客户端车辆仅支持交流充电模式及直流充电模式,则目标充电端车辆需要支持交流充电模式和/或直流充电模式,且目标充电端车辆需满足Delta_E(AC)和/或Delta_E(AC)大于0。
步骤406,向目标充电端车辆发送位置信息,以指示目标充电端车辆行驶至客户端车辆所处位置并为客户端车辆充电。
可选地,若空闲车辆集合中,指定充电模式下的可提供电能大于待消耗电能的充电端车辆有多个,则需要对指定充电模式下可提供电能大于待消耗电能的充电端车辆进行进一步筛选,以确定唯一的一个目标充电端车辆。基于此,步骤405可具体表现为:
C1、在每个指定充电模式下,将期望收益最大的充电端车辆确定为对应指 定充电模式下的候选充电端车辆。
在本申请实施例中,在指定充电模式下,期望收益的计算公式可以具体为:
Revenue(mode)=Energy_C*Charging_price(mode)-Energy_C*(P_initial+Cost_d)
其中,Revenue(mode)为在指定充电模式下的期望收益;Charging_price(mode)为电动车辆能量管理系统所预设的指定充电模式下的卖出电价;其它参数含义可参照步骤B1的具体解释,此处不作赘述。通过该计算公式,可得到指定充电模式下各个充电端车辆的期望收益。例如,假定指定充电模式为交流充电模式、直流充电模式及无线充电模式,则可分别计算得到各个充电端车辆的Revenue(AC)、Revenue(DC)及Revenue(wireless),并筛选得到各个指定充电模式下的候选充电端车辆。
C2、将每个充电模式下的候选充电端车辆的充电信息推送至客户端车辆,以供客户端车辆基于充电信息选择目标充电端车辆。
在本申请实施例中,充电信息可以是候选充电端车辆在对应指定充电模式下的充电时间及充电花销。其中,充电时间可根据候选充电端车辆在对应充电模式下的充电效率及候选充电端车辆的待消耗电能进行估算;充电花销可根据候选充电端车辆在对应指定充电模式下的卖出电价及候选充电端车辆的待消耗电能进行估算。通过向客户端车辆推送每个指定充电模式下的候选充电端车辆的充电信息,可方便客户端车辆的驾驶员快速做出选择。
C3、接收客户端车辆的选择指令,并基于该选择指令确定目标充电端车辆。
在本申请实施例中,将客户端车辆的驾驶员所选定的候选充电端车辆确定为目标充电端车辆。
请参阅图5,图5给出了服务器执行步骤C1至C3时,客户端车辆与服务器的交互流程的示意。其中,步骤C1至C3之外的其它各个步骤在图5中未示出,以虚线进行省略。通过C1至C3,给客户端车辆的驾驶员提供了更多的选择可能,可使得客户端车辆的驾驶员根据自身需求确定目标充电端车辆。
为便于理解,以下给出具体的应用场景解释步骤C1至C3:
在第一种应用场景下,客户端车辆所发起的充电请求中未携带有客户端车辆所支持的充电模式,则指定充电模式为交流充电模式、直流充电模式及无线充电模式。将Revenue(AC)最高的充电端车辆记为Car_S_AC,将Revenue(DC)最高的充电端车辆记为Car_S_DC,将Revenue(wireless)最高的充电端车辆记为Car_S_wireless,则服务器可确定Car_S_AC、Car_S_DC及Car_S_wireless为对应指定充电模式下的候选充电端车辆。服务器将Car_S_AC、Car_S_DC及Car_S_wireless的充电信息均推送至客户端车辆的车载单元或相连接的移动客户端处,由客户端车辆的驾驶员在Car_S_AC、Car_S_DC及Car_S_wireless中选定目标充电端车辆,并将选择结果返回至服务器。服务器基于驾驶员所选择的目标充电端车辆,执行后续操作。
在第二种应用场景下,客户端车辆所发起的充电请求中携带有客户端车辆所支持的充电模式,且客户端车辆所支持的充电模式仅有一种,则服务器可直接在该客户端车辆所支持的充电模式下筛选出期望收益最大的充电端车辆作为目标充电端车辆。
在第三种应用场景下,客户端车辆所发起的充电请求中携带有客户端车辆所支持的充电模式,且客户端车辆所支持的充电模式有两种以上,则服务器可将客户端车辆所支持的每一充电模式下期望收益最高的充电端车辆作为候选目标充电端车辆。例如,若客户端车辆仅支持交流充电模式及直流充电模式,则指定充电模式为交流充电模式及直流充电模式。将Revenue(AC)最高的充电端车辆记为Car_S_AC,将Revenue(DC)最高的充电端车辆记为Car_S_DC,则服务器可确定Car_S_AC及Car_S_DC为对应指定充电模式下的候选充电端车辆。将Car_S_AC及Car_S_DC的充电信息均推送至客户端车辆的车载单元或相连接的移动客户端处,由客户端车辆的驾驶员在Car_S_AC及Car_S_DC中选定目标充电端车辆,并将选择结果返回至服务器。服务器基于驾驶员所选择的目标充电端车辆,执行后续操作。
由上可见,通过本申请实施例,服务器可根据客户端车辆所支持的充电模 式为客户端筛对目标充电端车辆进行筛选。在客户端车辆所支持的充电模式较多时,可筛选出客户端车辆所支持的每个充电模式下的候选充电端车辆,并将目标充电端车辆的最终选择权交给客户端车辆的驾驶员。上述过程可为客户端车辆提供更为丰富的充电可能,满足客户端车辆的不同的需求。
可选地,为了帮助目标充电端车辆的驾驶员快速辨认等待充电的客户端车辆,在步骤202、步骤303及步骤405之后,服务器可以获取客户端车辆的车辆信息,并向目标充电端车辆发送客户端车辆的车辆信息,其中,该车辆信息用于标识客户端车辆,该车辆信息可以是客户端车辆的车牌信息和/或车型信息等,此处不作限定。
可选地,为了帮助客户端车辆的驾驶员快速辨认本次提供充电服务的目标充电端车辆,在步骤202、步骤303及步骤405之后,服务器还可以获取目标充电端车辆的车辆信息,并向客户端车辆发送目标充电端车辆的车辆信息,其中,该车辆信息用于标识目标充电端车辆,该车辆信息可以是目标充电端车辆的车牌信息和/或车型信息等,此处不作限定。
可选地,为了实现充电花销的公开及透明,在步骤202、步骤303及步骤405之后,服务器还可以基于目标充电端车辆的待消耗电能及预设的卖出电价,预估目标充电端车辆的充电花销,并向客户端车辆的车载单元或相连接的移动客户端发送目标充电端车辆的充电花销。
请参阅图6,图6示出了本申请实施例所提供的电动车辆能量管理方法的一种应用场景。车辆A在家中通过太阳能、风能或其它新能源充电方式充至满电之后,即可作为充电端车辆行驶上路;车辆B的行程目的地为C点,但由于车辆B的能量仅剩20%,不足以支撑该车辆B达到行程目的地,此时,车辆B可作为客户端车辆发起充电请求;服务器通过本申请实施例所提供的电动车辆 能量管理方法,最终将车辆A确定为目标充电端车辆,并向该车辆A发送车辆B的当前位置;车辆A在接收到车辆B的当前位置后,行驶至车辆B的当前位置处与车辆B汇合,并为车辆B提供充电服务。
由上可见,通过本申请实施例,电动车辆在行驶的过程中,若出现能量告急的情况,只需向服务器发送充电请求并原地等待即可,不再需要电动车辆的驾驶员四处寻找充电桩;服务器会基于该充电请求自动查找并快速确定一定范围内能够提供充电服务的目标充电端车辆,并通知目标充电端车辆尽快赶往能量告急的电动车辆处,通过电动车辆间的能量传输技术为该能量告急的电动车辆提供充电服务。通过上述过程,在电动车辆存在充电需求时,由于不再需要电动车辆的驾驶员四处寻找充电桩,一方面可简化驾驶员的操作流程,另一方面可减少驾驶员因寻找充电桩所耗费的时间。且上述过程中,客户端车辆一侧将给予充电端车辆一侧一定的报酬,也即,充电端车辆能够从提供充电服务的行为中获益,实现客户端车辆及充电端车辆的双赢。
对应于前文所提出的电动车辆能量管理方法,本申请实施例提供了一种电动车辆能量管理装置,上述电动车辆能量管理装置集成于服务器。请参阅图7,本申请实施例中的电动车辆能量管理装置700包括:
充电请求接收单元701,用于接收客户端车辆的充电请求,上述充电请求中携带上述客户端车辆的位置信息;
目标车辆查找单元702,用于基于上述位置信息,在预设范围内查找出目标充电端车辆;
位置信息发送单元703,用于向上述目标充电端车辆发送上述位置信息,以指示上述目标充电端车辆行驶至上述客户端车辆所处位置并为上述客户端车辆充电。
可选地,上述目标车辆查找单元702,包括:
集合查找子单元,用于基于上述位置信息,在预设范围内查找得到空闲车 辆集合,上述空闲车辆集合包括当前空闲的充电端车辆;
车辆确定子单元,用于在上述空闲车辆集合中确定上述目标充电端车辆。
可选地,上述车辆确定子单元,包括:
第一计算子单元,用于分别计算上述空闲车辆集合中的各个充电端车辆的可提供电能;
第二计算子单元,用于分别计算上述各个充电端车辆为上述客户端车辆进行充电时所需的待消耗电能;
目标充电端车辆确定子单元,用于确定上述空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为上述目标充电端车辆。
可选地,上述第二计算子单元,包括:
目标地点确定子单元,用于确定上述客户端车辆待行驶的目标地点;
待行驶距离计算子单元,用于根据上述目标地点及上述位置信息,计算上述客户端车辆的待行驶距离;
车间行驶距离计算子单元,用于针对上述空闲车辆集合中的每个充电端车辆,根据上述充电端车辆的当前位置及上述位置信息,计算上述充电端车辆的车间行驶距离;
车间行驶距离计算子单元,用于根据上述车间行驶距离和上述待行驶距离计算上述充电端车辆的待消耗电能。
可选地,上述目标地点确定子单元,具体用于若上述充电请求中携带有上述客户端车辆的行程目的地,则将上述行程目的地确定为上述目标地点,若上述充电请求中未携带有上述行程目的地,则将目标充电桩确定为上述目标地点,其中,上述目标充电桩为与上述客户端车辆距离最近的充电桩。
可选地,若上述空闲车辆集合中包括多个可提供电能大于待消耗电能的充电端车辆,则上述目标充电端车辆确定子单元,具体用于分别计算上述空闲车辆集合中,各个可提供电能大于待消耗电能的充电端车辆为上述客户端车辆进行充电的期望收益,并将上述期望收益最大的充电端车辆确定为上述目标充电 端车辆。
可选地,上述电动车辆能量管理装置700还包括:
车辆信息获取单元,用于在上述基于上述位置信息,在预设范围内查找出目标充电端车辆之后,获取上述目标充电端车辆的车辆信息,上述车辆信息用于标识上述目标充电端车辆;
车辆信息发送单元,用于向上述客户端车辆发送上述车辆信息。
由上可见,通过本申请实施例,电动车辆在行驶的过程中,若出现能量告急的情况,只需向服务器发送充电请求并原地等待即可,不再需要电动车辆的驾驶员四处寻找充电桩;服务器会基于该充电请求自动查找并快速确定一定范围内能够提供充电服务的目标充电端车辆,并通知目标充电端车辆尽快赶往能量告急的电动车辆处,通过电动车辆间的能量传输技术为该能量告急的电动车辆提供充电服务。通过上述过程,在电动车辆存在充电需求时,由于不再需要电动车辆的驾驶员四处寻找充电桩,一方面可简化驾驶员的操作流程,另一方面可减少驾驶员因寻找充电桩所耗费的时间。且上述过程中,客户端车辆一侧将给予充电端车辆一侧一定的报酬,也即,充电端车辆能够从提供充电服务的行为中获益,实现客户端车辆及充电端车辆的双赢。
本申请实施例还提供了一种服务器,请参阅图8,本申请实施例中的服务器8包括:存储器801,一个或多个处理器802(图8中仅示出一个)及存储在存储器801上并可在处理器上运行的计算机程序。其中:存储器801用于存储软件程序以及单元,处理器802通过运行存储在存储器801的软件程序以及单元,从而执行各种功能应用以及数据处理,以获取上述预设事件对应的资源。具体地,处理器802通过运行存储在存储器801的上述计算机程序时实现以下步骤:
接收客户端车辆的充电请求,上述充电请求中携带上述客户端车辆的位置信息;
基于上述位置信息,在预设范围内查找出目标充电端车辆;
向上述目标充电端车辆发送上述位置信息,以指示上述目标充电端车辆行驶至上述客户端车辆所处位置并为上述客户端车辆充电。
假设上述为第一种可能的实施方式,则在第一种可能的实施方式作为基础而提供的第二种可能的实施方式中,上述基于上述位置信息,在预设范围内查找出目标充电端车辆,包括:
基于上述位置信息,在预设范围内查找得到空闲车辆集合,上述空闲车辆集合包括当前空闲的充电端车辆;
在上述空闲车辆集合中确定上述目标充电端车辆。
在上述第二种可能的实施方式作为基础而提供的第三种可能的实施方式中,上述在上述空闲车辆集合中确定上述目标充电端车辆,包括:
分别计算上述空闲车辆集合中的各个充电端车辆的可提供电能;
分别计算上述各个充电端车辆为上述客户端车辆进行充电时所需的待消耗电能;
确定上述空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为上述目标充电端车辆。
在上述第三种可能的实施方式作为基础而提供的第四种可能的实施方式中,上述分别计算上述各个充电端车辆为上述客户端车辆进行充电时所需的待消耗电能,包括:
确定上述客户端车辆待行驶的目标地点;
根据上述目标地点及上述位置信息,计算上述客户端车辆的待行驶距离;
针对上述空闲车辆集合中的每个充电端车辆,根据上述充电端车辆的当前位置及上述位置信息,计算上述充电端车辆的车间行驶距离;
根据上述车间行驶距离和上述待行驶距离计算上述充电端车辆的待消耗电 能。
在上述第四种可能的实施方式作为基础而提供的第五种可能的实施方式中,上述确定上述客户端车辆待行驶的目标地点,包括:
若上述充电请求中携带有上述客户端车辆的行程目的地,则将上述行程目的地确定为上述目标地点;
若上述充电请求中未携带有上述行程目的地,则将目标充电桩确定为上述目标地点,其中,上述目标充电桩为与上述客户端车辆距离最近的充电桩。
在上述第三种可能的实施方式作为基础而提供的第六种可能的实施方式中,若上述空闲车辆集合中包括多个可提供电能大于待消耗电能的充电端车辆,则上述确定上述空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为上述目标充电端车辆,包括:
分别计算上述空闲车辆集合中,各个可提供电能大于待消耗电能的充电端车辆为上述客户端车辆进行充电的期望收益;
将上述期望收益最大的充电端车辆确定为上述目标充电端车辆。
在上述第一种可能的实施方式作为基础,或者上述第二种可能的实施方式作为基础,或者上述第三种可能的实施方式作为基础,或者上述第四种可能的实施方式作为基础,或者上述第五种可能的实施方式作为基础,或者上述第六种可能的实施方式作为基础而提供的第七种可能的实施方式中,在上述基于上述位置信息,在预设范围内查找出目标充电端车辆之后,处理器802通过运行存储在存储器801的上述计算机程序时实现以下步骤:
获取上述目标充电端车辆的车辆信息,上述车辆信息用于标识上述目标充电端车辆;
向上述客户端车辆发送上述车辆信息。
应当理解,在本申请实施例中,所称处理器802可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器801可以包括只读存储器和随机存取存储器,并向处理器802提供指令和数据。存储器801的一部分或全部还可以包括非易失性随机存取存储器。例如,存储器801还可以存储设备类别的信息。
由上可见,通过本申请实施例,电动车辆在行驶的过程中,若出现能量告急的情况,只需向服务器发送充电请求并原地等待即可,不再需要电动车辆的驾驶员四处寻找充电桩;服务器会基于该充电请求自动查找并快速确定一定范围内能够提供充电服务的目标充电端车辆,并通知目标充电端车辆尽快赶往能量告急的电动车辆处,通过电动车辆间的能量传输技术为该能量告急的电动车辆提供充电服务。通过上述过程,在电动车辆存在充电需求时,由于不再需要电动车辆的驾驶员四处寻找充电桩,一方面可简化驾驶员的操作流程,另一方面可减少驾驶员因寻找充电桩所耗费的时间。上述过程中,客户端车辆一侧将给予充电端车辆一侧一定的报酬,也即,充电端车辆能够从提供充电服务的行为中获益,实现客户端车辆及充电端车辆的双赢。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将上述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬 件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者外部设备软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关联的硬件来完成,上述的计算机程序可存储于一计算机可读存储介质中,该计算 机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,上述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。上述计算机可读存储介质可以包括:能够携带上述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机可读存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,上述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括是电载波信号和电信信号。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电动车辆能量管理方法,其特征在于,包括:
    接收客户端车辆的充电请求,所述充电请求中携带所述客户端车辆的位置信息;
    基于所述位置信息,在预设范围内查找出目标充电端车辆;
    向所述目标充电端车辆发送所述位置信息,以指示所述目标充电端车辆行驶至所述客户端车辆所处位置并为所述客户端车辆充电。
  2. 如权利要求1所述的电动车辆能量管理方法,其特征在于,所述基于所述位置信息,在预设范围内查找出目标充电端车辆,包括:
    基于所述位置信息,在预设范围内查找得到空闲车辆集合,所述空闲车辆集合包括当前空闲的充电端车辆;
    在所述空闲车辆集合中确定所述目标充电端车辆。
  3. 如权利要求2所述的电动车辆能量管理方法,其特征在于,所述在所述空闲车辆集合中确定所述目标充电端车辆,包括:
    分别计算所述空闲车辆集合中的各个充电端车辆的可提供电能;
    分别计算所述各个充电端车辆为所述客户端车辆进行充电时所需的待消耗电能;
    确定所述空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为所述目标充电端车辆。
  4. 如权利要求3所述的电动车辆能量管理方法,其特征在于,所述分别计算所述各个充电端车辆为所述客户端车辆进行充电时所需的待消耗电能,包括:
    确定所述客户端车辆待行驶的目标地点;
    根据所述目标地点及所述位置信息,计算所述客户端车辆的待行驶距离;
    针对所述空闲车辆集合中的每个充电端车辆,根据所述充电端车辆的当前位置及所述位置信息,计算所述充电端车辆的车间行驶距离;
    根据所述车间行驶距离和所述待行驶距离计算所述充电端车辆的待消耗电能。
  5. 如权利要求4所述的电动车辆能量管理方法,其特征在于,所述确定所述客户端车辆待行驶的目标地点,包括:
    若所述充电请求中携带有所述客户端车辆的行程目的地,则将所述行程目的地确定为所述目标地点;
    若所述充电请求中未携带有所述行程目的地,则将目标充电桩确定为所述目标地点,其中,所述目标充电桩为与所述客户端车辆距离最近的充电桩。
  6. 如权利要求3所述的电动车辆能量管理方法,其特征在于,若所述空闲车辆集合中包括多个可提供电能大于待消耗电能的充电端车辆,则所述确定所述空闲车辆集合中可提供电能大于待消耗电能的充电端车辆为所述目标充电端车辆,包括:
    分别计算所述空闲车辆集合中,各个可提供电能大于待消耗电能的充电端车辆为所述客户端车辆进行充电的期望收益;
    将所述期望收益最大的充电端车辆确定为所述目标充电端车辆。
  7. 如权利要求1至6任一项所述的电动车辆能量管理方法,其特征在于,在所述基于所述位置信息,在预设范围内查找出目标充电端车辆之后,所述电动车辆能量管理方法还包括:
    获取所述目标充电端车辆的车辆信息,所述车辆信息用于标识所述目标充电端车辆;
    向所述客户端车辆发送所述车辆信息。
  8. 一种电动车辆能量管理装置,其特征在于,包括:
    充电请求接收单元,用于接收客户端车辆的充电请求,所述充电请求中携带所述客户端车辆的位置信息;
    目标车辆查找单元,用于基于所述位置信息,在预设范围内查找出目标充电端车辆;
    位置信息发送单元,用于向所述目标充电端车辆发送所述位置信息,以指示所述目标充电端车辆行驶至所述客户端车辆所处位置并为所述客户端车辆充电。
  9. 一种服务器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的方法。
PCT/CN2020/129399 2020-05-15 2020-11-17 电动车辆能量管理方法、电动车辆能量管理装置及服务器 WO2021227416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010413569.6 2020-05-15
CN202010413569.6A CN111709795A (zh) 2020-05-15 2020-05-15 电动车辆能量管理方法、电动车辆能量管理装置及服务器

Publications (1)

Publication Number Publication Date
WO2021227416A1 true WO2021227416A1 (zh) 2021-11-18

Family

ID=72536982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129399 WO2021227416A1 (zh) 2020-05-15 2020-11-17 电动车辆能量管理方法、电动车辆能量管理装置及服务器

Country Status (2)

Country Link
CN (1) CN111709795A (zh)
WO (1) WO2021227416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115114541A (zh) * 2022-07-26 2022-09-27 北京弘玑信息技术有限公司 一种匹配服务提供端和服务需求端的方法、介质及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709795A (zh) * 2020-05-15 2020-09-25 中国科学院深圳先进技术研究院 电动车辆能量管理方法、电动车辆能量管理装置及服务器
CN112238779A (zh) * 2020-11-17 2021-01-19 富能宝能源科技集团有限公司 基于移动储能电池的独立电动汽车充电装置及充放电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917232A (zh) * 2015-05-28 2015-09-16 深圳市华宝新能源有限公司 电动汽车移动充电控制方法和系统
CN108332767A (zh) * 2018-02-05 2018-07-27 北京车和家信息技术有限公司 一种电量共享方法及相关设备
CN109532548A (zh) * 2018-12-12 2019-03-29 北京智行者科技有限公司 一种充电服务方法
CN109740860A (zh) * 2018-12-12 2019-05-10 北京智行者科技有限公司 一种充电车辆选取方法
CN110341538A (zh) * 2018-03-23 2019-10-18 上海擎感智能科技有限公司 互助充电控制/管理方法、系统、介质、车机/服务端
US10507738B1 (en) * 2019-01-24 2019-12-17 The Florida International University Board Of Trustees Systems and methods for electric vehicle charging decision support system
CN111709795A (zh) * 2020-05-15 2020-09-25 中国科学院深圳先进技术研究院 电动车辆能量管理方法、电动车辆能量管理装置及服务器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917232A (zh) * 2015-05-28 2015-09-16 深圳市华宝新能源有限公司 电动汽车移动充电控制方法和系统
CN108332767A (zh) * 2018-02-05 2018-07-27 北京车和家信息技术有限公司 一种电量共享方法及相关设备
CN110341538A (zh) * 2018-03-23 2019-10-18 上海擎感智能科技有限公司 互助充电控制/管理方法、系统、介质、车机/服务端
CN109532548A (zh) * 2018-12-12 2019-03-29 北京智行者科技有限公司 一种充电服务方法
CN109740860A (zh) * 2018-12-12 2019-05-10 北京智行者科技有限公司 一种充电车辆选取方法
US10507738B1 (en) * 2019-01-24 2019-12-17 The Florida International University Board Of Trustees Systems and methods for electric vehicle charging decision support system
CN111709795A (zh) * 2020-05-15 2020-09-25 中国科学院深圳先进技术研究院 电动车辆能量管理方法、电动车辆能量管理装置及服务器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115114541A (zh) * 2022-07-26 2022-09-27 北京弘玑信息技术有限公司 一种匹配服务提供端和服务需求端的方法、介质及设备

Also Published As

Publication number Publication date
CN111709795A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021227416A1 (zh) 电动车辆能量管理方法、电动车辆能量管理装置及服务器
CN105590473B (zh) 一种基于互联网终端的泊车系统及其工作方法
US11368028B2 (en) Facilitating charging of acceptor nodes by mobile charging systems
CN105702082A (zh) 基于移动终端App实现车位预约和停车场选择的方法及系统
CN109635985A (zh) 订单分配方法、分配系统及计算机可读存储介质
CN108039056B (zh) 终端,租用停车位的方法,停车位管理方法及系统
CN114141047A (zh) 车位管理方法、设备与系统
CN104951848A (zh) 一种实时拼车匹配方法
CN110020842B (zh) 一种基于区块链的汽车智能管理方法及系统
CN103247078A (zh) 一种出租车乘客共同乘车服务装置及计价方法
US11945323B2 (en) Cooperative automotive mobile charging infrastructure
CN114298559A (zh) 换电站的换电方法、换电管理平台及存储介质
CN112562206A (zh) 一种新能源共享汽车智能调度方法、系统及服务器
US11797069B2 (en) Server and matching system for matching a used BEV able to supply power with a location for storing the used BEV
CN109842678A (zh) 一种车辆共享方法及装置
CN114038230A (zh) 共享停车场车位推荐方法、系统、计算机设备及储存介质
CN110826744A (zh) 一种动力电池更换预约方法、计算机设备及可读存储介质
CN117409492A (zh) 路内智慧停车无人化运营管理方法及系统
CN107978173A (zh) 实现车位共享的方法及装置
CN105336157A (zh) 交互式出租车呼叫系统及方法
CN109146348A (zh) 一种物流数据处理方法及装置
US20230011007A1 (en) Information processing device and information processing method
CN110363981B (zh) 一种出租车交接方法及装置
GB2614337A (en) A method for booking an electrical vehicle charging station and a method of managing electrical vehicle battery charging at a commercial parking location
CN113096320A (zh) 车辆充电停车方案确定方法、服务器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935655

Country of ref document: EP

Kind code of ref document: A1