WO2021227240A1 - 一种射频微系统三维封装外壳结构以及制作方法 - Google Patents

一种射频微系统三维封装外壳结构以及制作方法 Download PDF

Info

Publication number
WO2021227240A1
WO2021227240A1 PCT/CN2020/101830 CN2020101830W WO2021227240A1 WO 2021227240 A1 WO2021227240 A1 WO 2021227240A1 CN 2020101830 W CN2020101830 W CN 2020101830W WO 2021227240 A1 WO2021227240 A1 WO 2021227240A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
shell
square shell
radio frequency
metal
Prior art date
Application number
PCT/CN2020/101830
Other languages
English (en)
French (fr)
Inventor
庞学满
陈寰贝
梁秋实
Original Assignee
中国电子科技集团公司第五十五研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第五十五研究所 filed Critical 中国电子科技集团公司第五十五研究所
Priority to EP20935562.7A priority Critical patent/EP4109518A4/en
Publication of WO2021227240A1 publication Critical patent/WO2021227240A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4817Conductive parts for containers, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • H01L2223/6622Coaxial feed-throughs in active or passive substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates

Definitions

  • the invention relates to a three-dimensional packaging shell structure of a radio frequency micro system and a manufacturing method thereof, and belongs to the field of radio frequency micro system packaging.
  • radio frequency micro system components The three-dimensional packaging technology of radio frequency micro system components is mainly used in active phased array radar systems.
  • the technical path of design and manufacture of radio frequency micro system components at home and abroad is basically the same; in general, radio frequency micro system components generally have two typical packaging forms : One is PCB with metal shell.
  • This type of packaging is less difficult to manufacture. It is a relatively traditional packaging form.
  • This type of packaging is generally large in size, which poses a bottleneck to the design and production of complex structures. The application is limited. At this stage The other is the most commonly used low-temperature co-fired ceramic (LTCC) with aluminum-based composite metal shell.
  • LTCC low-temperature co-fired ceramic
  • the LTCC substrate has low dielectric loss and high hardness, which can achieve complex wiring requirements and realize multi-channel
  • the transmission condition is currently the most commonly used RF microsystem component packaging form at home and abroad.
  • the aluminum-based composite metal material shell provides signal input and output channels, heat dissipation channels, mechanical support and a protected working environment for the LTCC substrate.
  • This packaging form The size is usually relatively large.
  • RF microsystem components must be developed towards higher integration and miniaturization; compared with LTCC technology, high temperature co-fired ceramic (HTCC) technology has higher reliability, Lower cost, and can achieve higher integration and miniaturization; at the same time, based on HTCC technology with vertical heat dissipation channels and multi-layer BGA pad area array structure of the radio frequency micro-system three-dimensional packaging shell can achieve more abundant packaging forms,
  • the application scenarios are broader; in terms of appearance, by designing a multi-cavity and multi-channel structure, the metal shell structure can be omitted, and further miniaturization of radio frequency micro system components can be realized; therefore, the 3D packaging technology of radio frequency micro system based on HTCC will become a micro system An important direction for the future development of the packaging field.
  • the present invention provides a radio frequency micro system three-dimensional packaging shell structure and a manufacturing method. It is a radio frequency micro system three-dimensional packaging shell developed on the basis of HTCC technology, which effectively solves the problems existing in the background technology and is a highly integrated, The three-dimensional packaging shell structure of the radio frequency micro system with excellent microwave performance and good heat dissipation.
  • the shell body adopts BGA packaging.
  • the aforementioned shell body includes a square shell, which includes a ceramic base.
  • the inner cavity of the square shell is formed in the ceramic base, and the inner cavity is The opening is not closed;
  • a number of steps are provided on the four side walls of the inner cavity of the square shell;
  • a number of central metal holes are opened on each step, and a number of metal grounding holes are opened around the central metal hole, and the metal grounding holes are distributed with the center of the central metal hole as the center;
  • a welding ring is fixed on the ceramic base, which is connected to the peripheral side wall of the square shell to form;
  • the diameter of the central metal hole is in the range of 0.10mm-0.15mm, and the diameter of the metal grounding hole is in the range of 0.15mm-0.20mm;
  • the metal grounding hole includes at least four;
  • metal grounding holes are distributed with the center of the central metal hole as the center of the circle, and the radius of the ring formed by the distribution is 0.5mm-2.0mm;
  • the surface warpage of the aforementioned steps is less than 1 ⁇ m/mm;
  • the diameter of the aforementioned pads is 0.5mm-1.0mm, and the distance between the centers of adjacent pads is less than 1.5mm;
  • a method for manufacturing a three-dimensional packaging shell structure of a radio frequency micro system specifically includes the following steps:
  • the first step use low-loss ceramic preparation process combined with HTCC to prepare ceramic base;
  • the second step insert the parts and components into the mold with the ceramic base in turn, and then braze and assemble them at high temperature to form a square shell preform;
  • the third step electroplating nickel and gold layers on the surface metal area of the square shell preform;
  • the fourth step embed a vertical heat dissipation channel and a gold-tin solder sheet inside the electroplated square shell preform, and form the shell body through brazing;
  • the specific steps of the first step include:
  • the 11th step is to prepare ingredients according to the low-loss ceramic formula, and then ball-mill the configured materials to cast a green ceramic tape with a thickness of 0.20mm-0.35mm for use;
  • step 12 using the HTCC process, the raw porcelain tape is firstly punched, filled with holes, printed metallized patterns, cavities, laminated, and partially laminated to form a square shell.
  • a number of square shells are formed in the square shell.
  • the center of the central metal hole is the center of the circle, and the metal grounding holes are distributed around the central metal hole in a ring shape.
  • the sidewalls of the square shell are processed by laser ablation to form grooves, which are metalized and laminated as a whole And raw cut, and finally form the porcelain piece of the square shell;
  • Step 13 Pre-fire the porcelain parts according to the low-loss ceramic sintering process.
  • the temperature range of the pre-fire is 1000°C-1600°C.
  • the second re-sintering is carried out.
  • the temperature range of the second re-sintering is 1600°C- 1700°C;
  • Step 14 nickel-plating the metal area on the surface of the porcelain after the second sintering
  • the specific steps of the second step include:
  • the 21st step is to embed the secondary sintered ceramic parts in the graphite brazing mold, and place a silver-copper solder sheet with a thickness of 0.05mm in the center of the square shell, and cover the silver-copper solder sheet for forming
  • the high thermal conductivity material of the horizontal heat dissipation channel is brazed under the hydrogen condition of 790 ⁇ 10°C to form a semi-finished product;
  • Step 22 Embed the semi-finished product in the graphite brazing mold, set a welding ring on the surface of the semi-finished product, which is connected with the surrounding side walls of the square shell to form, and braze under the hydrogen condition of 790 ⁇ 10°C.
  • the brazing is used
  • the medium is a silver-copper solder sheet with a thickness of 0.10mm to form a square shell preform;
  • the specific steps of the third step include:
  • Electroplating a nickel layer and a gold layer on the metal area on the surface of the square shell The thickness of the layer is in the range of 0.1-0.3 ⁇ m, and the thickness of the remaining part of the gold layer is in the range of 1.3-5.7 ⁇ m. Finally, the connecting wire carrier used for plating is removed;
  • the specific steps of the fourth step include:
  • a vertical heat dissipation channel is embedded in the pre-plated square shell, which is brazed together under nitrogen at 340 ⁇ 10°C to form the shell body.
  • the medium used for brazing is gold with a thickness of 0.05mm. Tin solder sheet.
  • the present invention has the following beneficial effects:
  • the present invention effectively supports the development of traditional radio frequency front-end modules from planar to board-level 3D structure, and raises the integration level to a new level;
  • the present invention establishes a new type of BGA vertical transmission structure inside the square shell, which meets the requirements of substrate microwave signal transmission and isolation;
  • a stepped structure is provided in the inner cavity of the square shell, which not only provides mounting space, but also forms a good vertical heat dissipation channel, which meets the heat dissipation requirements of high-power chips.
  • Figure 1 is a schematic diagram of the overall structure of a preferred embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a semi-finished product of a preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the square shell preform of the preferred embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a partial structure of the preferred embodiment of the present invention after setting the pads.
  • 1 is a ceramic base
  • 2 is a horizontal heat dissipation channel
  • 3 is a solder ring
  • 4 is a central metal hole
  • 5 is a metal ground hole
  • 6 is a heat dissipation connection material
  • 7 is a vertical heat dissipation channel
  • 8 is a pad.
  • the purpose of this application is to solve the problems that have always existed in the field of radio frequency micro system three-dimensional packaging in the background art in terms of integration, microwave performance, heat dissipation, etc., and to provide a radio frequency micro system three-dimensional packaging shell structure, the shell body adopts BGA packaging, and the shell body It includes a square shell.
  • the square shell includes a ceramic base 1.
  • An inner cavity of a square shell is formed in the ceramic base 1, and the opening of the inner cavity is not closed; the ceramic base 1 welding ring 3 is fixedly welded on the ceramic base 1 Ring 3; a number of steps are set on the four side walls of the inner cavity of the square shell, and the surface warpage of the steps is less than 1 ⁇ m/mm; vertical heat dissipation channels 7 are arranged at the junction of the steps on both sides of the adjacent two sides; the bottom surface of the inner cavity A horizontal heat dissipation channel 2 is set in the center; a number of central metal holes 4 are opened on each step, the diameter of the central metal hole 4 is 0.10mm-0.15mm, and a number of metal grounding holes 5 are opened around the central metal hole 4, the number of which is At least four, the diameter range of the metal grounding hole 5 is 0.15mm-0.20mm, and the metal grounding hole 5 is distributed with the center of the central metal hole 4 as the center, and the radius of the circle formed by the distribution is 0.5mm-2.0mm; Hole
  • the diameter of the pad 88 is 0.5mm-1.0mm, and the distance between the centers of adjacent pads 88 is less than 1.5 mm; the ceramic base 1 welding ring 3 is fixed on the ceramic base 1, and the welding ring 3 is connected to the peripheral side wall of the square shell to form.
  • the use of the BGA transmission structure inside the square shell to replace the outstretched SMT coaxial transmission structure in the traditional radio frequency module can greatly reduce the size of the radio frequency micro system package while ensuring microwave signals Transmission effect;
  • a number of steps are set on the four side walls of the cavity of the square shell to establish a stepped vertical transmission structure, which can easily realize the vertical stacking of multi-level substrates inside the square cavity, which can meet the requirements of substrate microwave signal transmission. And isolation requirements, and by increasing the Z-axis stacking and mounting space, the goal of reducing the plane mounting space and the total package volume can be achieved. This is the first case in the field of package enclosures, making the integration of radio frequency microsystems a new level. Steps
  • Vertical heat dissipation channels 7 are arranged at the step junctions on two adjacent sides; horizontal heat dissipation channels 2 are arranged at the center of the bottom surface of the inner cavity; vertical heat dissipation channels 7 and horizontal heat dissipation channels 2 are mounted composite metal heat sinks, and their thermal conductivity is the same as Compared with the thermal conductivity of the traditional three-dimensional stacking, the thermal conductivity of the internal glue is greatly improved, and it can meet the heat dissipation requirements of tens of watts or even hundreds of watts of power chips. This is an advantage that is difficult to match with the traditional injection method to achieve vertical heat dissipation.
  • the manufacturing method of the radio frequency micro-system three-dimensional packaging shell structure proposed based on the above application specifically includes the following steps:
  • the first step use low-loss ceramic preparation process combined with HTCC to prepare ceramic base 1;
  • step 11 the ingredients are prepared according to the low-loss ceramic formula, and then the configured materials are ball-milled to cast a green ceramic tape with a thickness in the range of 0.20mm-0.35mm for use;
  • the above-mentioned low-loss ceramic formulations are relatively easy to achieve, including alumina, magnesia, calcium oxide and clay.
  • the mass ratio of the four components is 92-97:2-5:0.1-3: 0.1-3;
  • step 12 using the HTCC process, the raw porcelain tape is firstly punched, filled with holes, printed metallized patterns, cavities, laminated, and partially laminated to form a square shell.
  • a number of square shells are formed in the square shell.
  • the center of the central metal hole 4 is the center of the circle, and the metal grounding holes 5 are arranged in a ring-shaped structure around the central metal hole 4, and then processed by laser ablation on the side wall of the square shell to form a groove, and the groove is metalized, Whole lamination and raw cutting to form a porcelain piece with a square shell;
  • Step 13 Pre-fire the porcelain parts according to the low-loss ceramic sintering process.
  • the temperature range of the pre-fire is 1000°C-1600°C.
  • the second re-sintering is carried out.
  • the temperature range of the second re-sintering is 1600°C- 1700°C;
  • step 14 nickel plating is performed on the metal area on the surface of the porcelain piece after the second sintering.
  • Step 2 Insert each component into the mold with ceramic base 1 in turn, and then assemble it through high temperature brazing to form a square shell pre-product;
  • step 21 the second-sintered porcelain piece is embedded in the graphite brazing mold, a silver-copper solder sheet with a thickness of 0.05mm is placed in the center of the square shell, and the silver-copper solder sheet is covered
  • the material with high thermal conductivity used to form the horizontal heat dissipation channel 2 shall be brazed under the condition of hydrogen at 790 ⁇ 10°C to form a semi-finished product;
  • the 22nd step is to embed the semi-finished product in the graphite brazing mold, and set the welding ring 3 on the surface of the semi-finished product, which is connected with the surrounding side walls of the square shell to form, and braze and braze under the hydrogen condition of 790 ⁇ 10°C.
  • the medium used is a silver-copper solder sheet with a thickness of 0.10 mm to form a square shell preform.
  • the third step electroplating nickel and gold layers on the surface metal area of the square shell preform;
  • the metal area on the surface of the square shell preform is electroplated with a nickel layer and a gold layer.
  • the thickness of the nickel layer ranges from 2.5-6.0 ⁇ m.
  • the reason for coating the nickel layer is to act as a barrier layer to block the bottom.
  • the metal ions diffuse upwards, thereby playing a better role in preventing the diffusion of metal ions;
  • the formed central metal hole 4 and metal grounding hole 5 are covered with pads 8.
  • the thickness of the gold layer on the surface of the pad 8 is in the range of 0.1-0.3 ⁇ m, and the thickness of the remaining part of the gold layer is in the range of 1.3-5.7 ⁇ m, and finally removed Connecting wire carrier for plating.
  • the fourth step embed the vertical heat dissipation channel 7 and the gold-tin solder sheet inside the square shell preform after electroplating, and form the shell body through brazing;
  • a vertical vertical heat dissipation channel 7 is embedded in the electroplated square shell preform, which is brazed together under nitrogen at 340 ⁇ 10°C to form the shell body, and the brazing medium is 0.05 in thickness. mm thick gold tin solder sheet.
  • Fig. 1 is a preferred embodiment of a three-dimensional packaging shell structure of a radio frequency micro system provided by the present application.
  • the shell body is a square shell.
  • the required frequency band (25GHz-35GHz) is calculated by simulation software based on the dielectric properties of low-loss ceramics.
  • the coaxial-like microwave signal transmission structure is set up in the low-loss ceramic medium, including the square
  • Two levels of steps are provided on the four side walls of the inner cavity of the type shell; vertical heat dissipation channels 7 are arranged at the junction of the steps on both sides of the adjacent two sides; a horizontal heat dissipation channel 2 is provided at the center of the bottom surface of the inner cavity; including openings on each level of steps
  • Several metal ground holes 5 are set around the central metal hole 4, and the metal ground holes 5 are distributed with the center of the central metal hole 4 as the center; the central metal hole 4, the metal ground hole 5, and the pad 8
  • the hole 4 and the metal ground hole 5 are both covered with a pad 88, and the pad 88 is shown in FIG. 4;
  • the diameter of the central metal hole 4 is 0.10mm
  • the diameter of the surrounding metal grounding hole 5 is 0.17mm
  • the number of surrounding metal grounding holes 5 is 8, evenly distributed in the center of the metal hole.
  • 4 is the center of the circle with a radius of 0.52mm; in the 8-area array structure of BGA pads with horizontally distributed steps on the surface of each layer, the diameter of the pad 8 is 0.5mm, and the distance between the centers of adjacent pads 8 is 1.27 mm.
  • the BGA pad 8 and the BGA pad 8 on the back of the square shell bottom plate are electrically connected through ceramic internal wiring;
  • the center of the bottom surface of the ceramic base 1 is provided with a horizontal heat dissipation channel 2 which is the horizontal heat dissipation channel 2
  • a vertical heat dissipation channel 7 is arranged at a specific position on the upper side, and the specific position is the step connection on two adjacent sides.
  • the vertical heat dissipation channel 7 is embedded with a molybdenum copper high thermal conductivity material of an appropriate size at a specific position on the ceramic side wall;
  • the horizontal heat dissipation channel 2 and the vertical heat dissipation channel 7 are connected and heat-conducted by welding a heat-conducting connector.
  • the first step use low-loss ceramic preparation process combined with HTCC to prepare ceramic base 1;
  • step 11 ingredients are prepared according to the low-loss ceramic formula, and then the configured materials are ball-milled to cast a green ceramic tape with a thickness of 0.20 mm for use;
  • the above-mentioned low-loss ceramic formulations are relatively easy to achieve, including alumina, magnesia, calcium oxide and clay, and the mass ratio of the four components is 95:2.5:0.5:1.5;
  • step 12 using the HTCC (High Temperature Co-fired Multilayer Ceramics) process, the green ceramic tape is firstly punched, filled, printed metallized patterns, cavities, laminated and partially laminated to form a square shell
  • a number of structures are formed with the center of the central metal hole 4 as the center, and the metal grounding holes 5 are distributed around the central metal hole 4 in a ring shape.
  • the sidewalls of the square shell are processed by laser ablation to form grooves , The groove is metalized, integrally laminated and raw-cut to form a square shell porcelain piece;
  • Step 13 Pre-fire the porcelain parts according to the low-loss ceramic sintering process.
  • the temperature range of the pre-fire is 1000°C-1600°C.
  • the second re-sintering is carried out.
  • the temperature range of the second re-sintering is 1600°C- 1700°C;
  • step 14 nickel plating is performed on the metal area on the surface of the porcelain piece after the second sintering.
  • Step 2 Insert each component into the mold with ceramic base 1 in turn, and then assemble it through high temperature brazing to form a square shell pre-product;
  • step 21 the second-sintered porcelain piece is embedded in the graphite brazing mold, a silver-copper solder sheet with a thickness of 0.05mm is placed in the center of the square shell, and the silver-copper solder sheet is covered
  • the high thermal conductivity material copper-molybdenum copper-copper (1:1.5:1) used to form the horizontal heat dissipation channel 2 is brazed under hydrogen conditions of 790 ⁇ 10°C to form a semi-finished product;
  • the 22nd step is to embed the semi-finished product in the graphite brazing mold, and set the welding ring 3 on the surface of the semi-finished product, which is connected with the surrounding side walls of the square shell to form, and braze and braze under the hydrogen condition of 790 ⁇ 10°C.
  • the medium used is a silver-copper solder sheet with a thickness of 0.10 mm to form a square shell preform.
  • the third step electroplating nickel and gold layers on the surface metal area of the square shell preform;
  • the metal area on the surface of the square shell preform is electroplated with a nickel layer and a gold layer, wherein the thickness of the nickel layer is in the range of 2.5-4.0 ⁇ m, and pads are set in the formed central metal hole 4 and metal ground hole 5 88.
  • the thickness of the gold layer on the surface of the pad 88 is in the range of 0.1-0.3 ⁇ m, and the thickness of the remaining part of the gold layer is in the range of 1.3-2.5 ⁇ m.
  • the connecting wire carrier used for plating is removed.
  • the fourth step embed the vertical heat dissipation channel 7 and the gold-tin solder sheet inside the square shell preform after electroplating, and form the shell body through brazing;
  • a vertical vertical heat dissipation channel 7 is embedded inside the electroplated square shell preform, wherein adjacent vertical heat dissipation channels 7 are connected by a heat dissipation connection material 6, and at the same time, the vertical heat dissipation channel 7 and the heat dissipation connection material are connected to each other.
  • 6 is a gold-plated diamond copper material, which is brazed together under nitrogen at 340 ⁇ 10°C to form the shell body.
  • the medium used for brazing is a gold-tin solder sheet with a thickness of 0.05mm.
  • the inner cavity has two stepped BGA fronts, and the four corners are equipped with heat dissipation channels, which can realize the stacking of two layers of BGA circuit substrates on the two stepped BGA fronts of the inner cavity, and two layers of circuits
  • the signal transmission between the substrates is realized through the internal wiring of the ceramic square shell.
  • the vertical heat dissipation channels 7 at the four corners of the cavity and the heat sink (horizontal heat dissipation channel 2) on the bottom plate of the ceramic base 1 can achieve effective heat dissipation of the stacked circuit substrates.
  • the square shell can be sealed by a parallel welding process and has air tightness.
  • the helium leak detection rate is less than or equal to 5 ⁇ 10 -3 Pa ⁇ cm 3 /s (He).
  • connection in this application can be a direct connection between components or an indirect connection between components through other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种射频微系统三维封装外壳结构以及制作方法,外壳本体采用BGA封装,外壳本体包括方型壳体,方型壳体包括陶瓷底座(1),在陶瓷底座(1)内形成方形壳体的内腔,且内腔的开口未封闭;在陶瓷底座(1)上固设焊环(3);在方型壳体内腔的四个侧壁上均设置若干层台阶;相邻两侧的台阶连接处布设垂直散热通道(7),相邻垂直散热通道(7)之间通过散热连接材料(6)连接;在内腔底面中心位置设置水平散热通道(2);在每层台阶上开设若干中心金属孔(4),在中心金属孔(4)周围开设若干金属接地孔(5),且金属接地孔(5)以中心金属孔(4)的圆心作为中心分布;在中心金属孔(4)、金属接地孔(5)上均覆设焊盘;该结构具有集成度高、微波传输性能好、可实现垂直散热等方面的特点。

Description

[根据细则91更正 20.09.2020] 一种射频微系统三维封装外壳结构以及制作方法 技术领域
本发明涉及一种射频微系统三维封装外壳结构以及制作方法,属于射频微系统封装领域。
背景技术
射频微系统组件三维封装技术主要应用于有源相控阵雷达系统,国内外在射频微系统组件的设计制造的技术路径基本一致;一般而言,射频微系统组件一般具备两种典型的封装形式:一是PCB配合金属壳体,这种形式制造难度较低,是一种比较传统的封装形式,该类封装形式一般尺寸大,对复杂结构的设计和生产构成瓶颈,应用受限,现阶段的应用较少;另一种是目前最常用的低温共烧陶瓷(LTCC)配合铝基复合金属材料壳体,LTCC基板的介质损耗低、硬度高,可以实现复杂的布线要求,具备实现多通道传输的条件,是目前国内外最常用的射频微系统组件封装形式,铝基复合金属材料壳体为LTCC基板提供信号输入输出通道、散热通道,机械支撑和受保护的工作环境,这种封装形式尺寸通常也比较大,有采用AlN基板、倒装单片微波集成电路(MMIC)、毛纽扣的形式实现射频微系统组件的封装,但毛纽扣需要较好的精确对位和组装,实用性不强,可靠性较低。
近年来,三维封装组件越来越受到重视,有报道在金属壳体内部通过LTCC基板本身的BGA结构实现多级LTCC基板的垂直堆叠,这种封装结构虽然在一定程度上减小了封装体积,但是需要依靠SMT同轴型接头将金属壳体内部微波信号传输出来,导致微系统整体封装体积仍然较大;同时垂直堆叠LTCC基板之间的散热问题是该领域一直存在的问题;传统方法是通过在金属壳体内部灌胶的方法解决垂直散热问题,但是受限于灌胶的热导率本身比较低,垂直散热效果并不理想。
随着现代雷达的性能指标越发严苛,射频微系统组件必须向着更高的集成度和小型化的方向发展;相比于LTCC技术,高温共烧陶瓷(HTCC)技术具备更高的可靠性、更低的成本,并且可实现更高的集成度与小型化;同时,基于HTCC技术的具有垂直散热通道和多层BGA焊盘面阵结构的射频微系统三维封装外壳可实现更丰富的封装形式,应用场景更为广阔;外形上通过设计多腔体多通道结构,可以省去金属壳体结构,实现射频微系统组件的进一步小型化;因此,基于HTCC的射频微系统三维封装技术将成为微系统封装领域未来发展的重要方向。
发明内容
本发明提供一种射频微系统三维封装外壳结构以及制作方法,是一种应用HTCC技术基础 开发出来的射频微系统三维封装外壳,有效解决了背景技术中存在的问题,是一种集成度高、微波性能优良、散热性好的射频微系统三维封装外壳结构。
本发明解决其技术问题所采用的技术方案是:
一种射频微系统三维封装外壳结构,外壳本体采用BGA封装,前述的外壳本体包括方型壳体,方型壳体包括陶瓷底座,在陶瓷底座内形成方形壳体的内腔,且内腔的开口未封闭;
在陶瓷底座上固设焊环;
在方型壳体内腔的四个侧壁上均设置若干层台阶;
相邻两侧的台阶连接处布设垂直散热通道,相邻垂直散热通道之间通过散热连接材料连接;
在内腔底面中心位置设置水平散热通道;
在每层台阶上开设若干中心金属孔,在中心金属孔周围开设若干金属接地孔,且金属接地孔以中心金属孔的圆心作为中心分布;
在中心金属孔、金属接地孔上均覆设焊盘;
作为本发明的进一步优选,在陶瓷底座上固设焊环,其与方形壳体的四周侧壁连接成型;
作为本发明的进一步优选,中心金属孔的直径范围为0.10mm-0.15mm,金属接地孔的直径范围为0.15mm-0.20mm;
金属接地孔包括至少四个;
且金属接地孔以中心金属孔的中心为圆心进行分布,分布形成的圆环半径范围为0.5mm-2.0mm;
作为本发明的进一步优选,前述台阶的表面翘曲度小于1μm/mm;
作为本发明的进一步优选,前述的焊盘直径为0.5mm-1.0mm,相邻焊盘中心之间的距离小于1.5mm;
一种射频微系统三维封装外壳结构的制作方法,具体包括以下步骤:
第一步:采用低损耗陶瓷制备工艺结合HTCC进行陶瓷底座制备;
第二步:将各零部件依次嵌入置有陶瓷底座的模具内,经过高温钎焊组装,形成方型壳体预制品;
第三步:将方型壳体预制品的表面金属区域电镀镍层和金层;
第四步:在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道以及金锡焊料片,经过钎焊形成外壳本体;
作为本发明的进一步优选,
第一步的具体步骤包括:
第11步,按照低损耗陶瓷配方进行配料,接着对配置后的材料进行球磨,流延出厚度范围为0.20mm-0.35mm的生瓷带,进行备用;
第12步,采用HTCC工艺,首先对生瓷带顺次进行打孔、填孔、印刷金属化图形、打腔、叠片以及部分层压,形成方型壳体,方型壳体内形成若干以中心金属孔中心为圆心,金属接地孔以环状分布中心金属孔四周的结构,接着采用激光烧蚀对方型壳体的侧壁进行加工,形成凹槽,对凹槽进行金属化、整体层压以及生切,最终形成方型壳体的瓷件;
第13步,按照低损耗陶瓷烧结工艺对瓷件进行预烧,预烧的温度范围为1000℃-1600℃,预烧后再进行二次重烧结,二次重烧结的温度范围为1600℃-1700℃;
第14步,对进行二次烧结后的瓷件表面金属区域进行镀镍;
作为本发明的进一步优选,
第二步的具体步骤包括:
第21步,将二次烧结后的瓷件嵌设在石墨钎焊模具中,在方型壳体的中心位置放置厚度为0.05mm的银铜焊料片,在银铜焊料片上覆设用于形成水平散热通道的高热导率材料,在790±10℃的氢气条件下进行钎焊,形成半成品;
第22步,将半成品嵌设在石墨钎焊模具中,在半成品表面设置焊环,其与方形壳体的四周侧壁连接成型,在790±10℃的氢气条件下进行钎焊,钎焊使用的介质为厚度为0.10mm的银铜焊料片,形成方型壳体预制品;
作为本发明的进一步优选,
第三步的具体步骤包括:
将方型壳体预制品表面的金属区域电镀镍层和金层,其中镍层的厚度范围为2.5-6.0μm,在形成的中心金属孔、金属接地孔内均设置焊盘,焊盘表面金层的厚度范围为0.1-0.3μm,其余部分金层的厚度范围为1.3-5.7μm,最后去除用于镀覆的连接线载体;
作为本发明的进一步优选,
第四步的具体步骤包括:
在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道,经过340±10℃的氮气条件下钎焊在一起成为外壳本体,钎焊使用的介质为厚度为0.05mm厚度的金锡焊料片。
通过以上技术方案,相对于现有技术,本发明具有以下有益效果:
1、本发明有效支撑了传统射频前端模组从平面向板级3D结构发展,将集成度上升到了一个新的台阶;
2、本发明在方型壳体内部建立新型的BGA形式垂直传输结构,满足了基板微波信号传输与隔离度的要求;
3、本发明通过在方型壳体内腔内设置台阶状结构,既提供了贴装空间,同时形成了良好的垂直向散热通道,满足了高功率芯片散热的要求。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的优选实施例的整体结构示意图;
图2是本发明的优选实施例半成品的结构示意图;
图3是本发明的优选实施例方型壳体预制品的结构示意图;
图4是本发明的优选实施例设置焊盘后的局部结构示意图。
图中:1为陶瓷底座,2为水平散热通道,3为焊环,4为中心金属孔,5为金属接地孔,6为散热连接材料,7为垂直散热通道,8为焊盘。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
本申请目的旨在解决背景技术中射频微系统三维封装领域在集成度、微波性能、散热性等方面一直存在的问题,提供一种射频微系统三维封装外壳结构,外壳本体采用BGA封装,外壳本体包括方型壳体,方型壳体包括陶瓷底座1,在陶瓷底座1内形成方形壳体的内腔,且内腔的开口未封闭;陶瓷底座1焊环3在陶瓷底座1上固设焊环3;在方型壳体内腔的四个侧壁上均设置若干层台阶,台阶的表面翘曲度小于1μm/mm;相邻两侧的台阶连接处布设垂直散热通道7;在内腔底面中心位置设置水平散热通道2;在每层台阶上开设若干中心金属孔4,中心金属孔4的直径范围为0.10mm-0.15mm,在中心金属孔4周围开设若干金属接地孔5,其个数至少四个,金属接地孔5的直径范围为0.15mm-0.20mm,且金属接地孔5以中心金属孔4的圆心作为中心分布,分布形成的圆环半径范围为0.5mm-2.0mm;中心金属孔4金属接地孔5焊盘8在中心金属孔4、金属接地孔5上均覆设焊盘88,焊盘88直径为0.5mm-1.0mm,相邻焊盘88中心之间的距离小于1.5mm;陶瓷底座1焊环3在陶瓷底座1上固设焊环3,其与方形壳体的四周侧壁连接成型。
从本申请提供的结构来看,采用方型壳体内部的BGA传输结构代替传统射频模组中向外伸张的SMT同轴型传输结构,可以大大缩减射频微系统封装的尺寸,同时确保微波信号的传输效果;
接着在方型壳体内腔的四个侧壁上均设置若干层台阶,建立阶梯形式垂直的传输结构,可以很容易实现多级基板在方型腔体内部的垂直堆叠,既满足基板微波信号传输与隔离度要求,又可以通过提升Z轴堆叠贴装空间达到减少平面贴装空间与封装总体积的目的,这在封装外壳领域尚属首例,使射频微系统的集成度更上一个新的台阶;
相邻两侧的台阶连接处布设垂直散热通道7;在内腔底面中心位置设置水平散热通道2;垂直散热通道7以及水平散热通道2为贴装的复合材料金属散热片,其热导率与传统三维堆叠内部灌胶的热导率相比得到的大大的提升,可以满足数十瓦乃至上百瓦功率芯片散热的要求,这是传统的灌胶形式实现垂直散热难以匹及的优势。
基于上述申请提出的射频微系统三维封装外壳结构的制作方法,具体包括以下步骤:
第一步:采用低损耗陶瓷制备工艺结合HTCC进行陶瓷底座1制备;
具体的,第11步,按照低损耗陶瓷配方进行配料,接着对配置后的材料进行球磨,流延出厚度范围为0.20mm-0.35mm的生瓷带,进行备用;
在上述按照的低损耗陶瓷配方为比较容易实现的配比,分别包括氧化铝、氧化镁、氧化钙以及粘土,四种组分的质量配比为92-97:2-5:0.1-3:0.1-3;
第12步,采用HTCC工艺,首先对生瓷带顺次进行打孔、填孔、印刷金属化图形、打腔、叠片以及部分层压,形成方型壳体,方型壳体内形成若干以中心金属孔4中心为圆心,金属接地孔5以环状分布中心金属孔4四周的结构,接着采用激光烧蚀对方型壳体的侧壁进行加工,形成凹槽,对凹槽进行金属化、整体层压以及生切,最终形成方型壳体的瓷件;
第13步,按照低损耗陶瓷烧结工艺对瓷件进行预烧,预烧的温度范围为1000℃-1600℃,预烧后再进行二次重烧结,二次重烧结的温度范围为1600℃-1700℃;
第14步,对进行二次烧结后的瓷件表面金属区域进行镀镍。
第二步:将各零部件依次嵌入置有陶瓷底座1的模具内,经过高温钎焊组装,形成方型壳体预制品;
具体的,第21步,将二次烧结后的瓷件嵌设在石墨钎焊模具中,在方型壳体的中心位置放置厚度为0.05mm的银铜焊料片,在银铜焊料片上覆设用于形成水平散热通道2的高热导率材料,在790±10℃的氢气条件下进行钎焊,形成半成品;
第22步,将半成品嵌设在石墨钎焊模具中,在半成品表面设置焊环3,其与方形壳体的四周侧壁连接成型,在790±10℃的氢气条件下进行钎焊,钎焊使用的介质为厚度为0.10mm的银铜焊料片,形成方型壳体预制品。
第三步:将方型壳体预制品的表面金属区域电镀镍层和金层;
具体的,将方型壳体预制品表面的金属区域电镀镍层和金层,其中镍层的厚度范围为2.5-6.0μm,涂设镍层的原因是起到一个阻挡层的作用,阻挡底部的金属离子向上扩散,从而起到较好的防止金属离子扩散的作用;
在形成的中心金属孔4、金属接地孔5上均覆设焊盘8,焊盘8表面金层的厚度范围为0.1-0.3μm,其余部分金层的厚度范围为1.3-5.7μm,最后去除用于镀覆的连接线载体。
第四步:在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道7以及金锡焊料片,经过钎焊形成外壳本体;
具体的,在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道7,经过340±10℃的氮气条件下钎焊在一起成为外壳本体,钎焊使用的介质为厚度为0.05mm厚度的金锡焊料片。
实施例:
图1是本申请提供的一种射频微系统三维封装外壳结构的优选实施例,外壳本体为一个方型壳体,是根据低损耗陶瓷的介电性能通过仿真软件计算所需频段(25GHz-35GHz)仿同轴型形式微波信号传输结构以及传输结构的关键尺寸,进而得到整个外壳的结构;从图1中可以看出,方型壳体包括陶瓷底座1,在陶瓷底座1内形成方形壳体的内腔,且内腔的开口未封闭;陶瓷底座1焊环3在陶瓷底座1上固设焊环3;其中,仿同轴形式微波信号传输结构设立在低损耗陶瓷介质中,包括在方型壳体内腔的四个侧壁上均设置的两层台阶;相邻两侧的台阶连接处布设垂直散热通道7;在内腔底面中心位置设置水平散热通道2;包括在每层台阶上开设的若干中心金属孔4,在中心金属孔4周围开设若干金属接地孔5,且金属接地孔5以中心金属孔4的圆心作为中心分布;中心金属孔4金属接地孔5焊盘8在中心金属孔4、金属接地孔5上均覆设焊盘88,焊盘88如图4所示;
其中,在本申请提供的优选实施例中,中心金属孔4的直径为0.10mm,周围金属接地孔5的孔径为0.17mm,周围金属接地孔5数量为8个,均匀分布在以中心金属孔4为圆心,以0.52mm为半径的圆环上;各层台阶表面水平分布的BGA焊盘8面阵结构中,焊盘8直径为0.5mm,相邻焊盘8圆心之间的距离为1.27mm。
需要说明是的是,该BGA焊盘8与方型壳体底板背面的BGA焊盘8通过陶瓷内部布线实现电连通性;陶瓷底座1的底面中心位置设置水平散热通道2,该水平散热通道2是在陶瓷底座1的底面嵌入适当尺寸的铜-钼铜-铜高热导率材料,水平散热通道2的材料凸出方型壳体背面的高度不超过30μm;在陶瓷底座1的四个侧壁上特定位置设置垂直散热通道7,该特定位置为相邻两侧的台阶连接处,具体的,该垂直散热通道7是在陶瓷侧壁上的特定位置嵌 入适当尺寸的钼铜高热导率材料;水平散热通道2与垂直散热通道7之间通过焊接导热连接体实现连通导热。
上述提供的优选实施例的制作方法,具体包括以下步骤:
第一步:采用低损耗陶瓷制备工艺结合HTCC进行陶瓷底座1制备;
具体的,第11步,按照低损耗陶瓷配方进行配料,接着对配置后的材料进行球磨,流延出厚度范围为0.20mm的生瓷带,进行备用;
在上述按照的低损耗陶瓷配方为比较容易实现的配比,分别包括氧化铝、氧化镁、氧化钙以及粘土,四种组分的质量配比为95:2.5:0.5:1.5;
第12步,采用HTCC(高温共烧多层陶瓷)工艺,首先对生瓷带顺次进行打孔、填孔、印刷金属化图形、打腔、叠片以及部分层压,形成方型壳体,方型壳体内形成若干以中心金属孔4中心为圆心,金属接地孔5以环状分布中心金属孔4四周的结构,接着采用激光烧蚀对方型壳体的侧壁进行加工,形成凹槽,对凹槽进行金属化、整体层压以及生切,最终形成方型壳体的瓷件;
第13步,按照低损耗陶瓷烧结工艺对瓷件进行预烧,预烧的温度范围为1000℃-1600℃,预烧后再进行二次重烧结,二次重烧结的温度范围为1600℃-1700℃;
第14步,对进行二次烧结后的瓷件表面金属区域进行镀镍。
第二步:将各零部件依次嵌入置有陶瓷底座1的模具内,经过高温钎焊组装,形成方型壳体预制品;
具体的,第21步,将二次烧结后的瓷件嵌设在石墨钎焊模具中,在方型壳体的中心位置放置厚度为0.05mm的银铜焊料片,在银铜焊料片上覆设用于形成水平散热通道2的高热导率材料铜-钼铜-铜(1:1.5:1),在790±10℃的氢气条件下进行钎焊,形成半成品;
第22步,将半成品嵌设在石墨钎焊模具中,在半成品表面设置焊环3,其与方形壳体的四周侧壁连接成型,在790±10℃的氢气条件下进行钎焊,钎焊使用的介质为厚度为0.10mm的银铜焊料片,形成方型壳体预制品。
第三步:将方型壳体预制品的表面金属区域电镀镍层和金层;
具体的,将方型壳体预制品表面的金属区域电镀镍层和金层,其中镍层的厚度范围为2.5-4.0μm,在形成的中心金属孔4、金属接地孔5内均设置焊盘88,焊盘88表面金层的厚度范围为0.1-0.3μm,其余部分金层的厚度范围为1.3-2.5μm,最后去除用于镀覆的连接线载体。
第四步:在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道7以及金锡焊料片, 经过钎焊形成外壳本体;
具体的,在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道7,其中相邻的垂直散热通道7之间通过散热连接材料6连接,同时垂直散热通道7、散热连接材料6为表面镀金的金刚石铜材料,经过340±10℃的氮气条件下钎焊在一起成为外壳本体,钎焊使用的介质为厚度为0.05mm厚度的金锡焊料片。
在优选实施例中,内腔有两层台阶BGA阵面,四角位置都设置了散热通道,可以实现两层BGA电路基板在内腔的两层台阶BGA阵面阵面上的堆叠,两层电路基板之间的信号传输通过陶瓷方型壳体内部布线来实现,内腔四角位置的垂直散热通道7以及陶瓷底座1底板上的散热片(水平散热通道2)可以实现堆叠电路基板的有效散热,同时该方型壳体可以采用平行封焊工艺进行封帽,并具有气密性,氦检漏率≤5×10 -3Pa·cm 3/s(He)。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本申请中所述的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。
本申请中所述的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种射频微系统三维封装外壳结构,外壳本体采用BGA封装,其特征在于:前述的外壳本体包括方型壳体,方型壳体包括陶瓷底座,在陶瓷底座内形成方形壳体的内腔,且内腔的开口未封闭;
    在陶瓷底座上固设焊环;
    在方型壳体内腔的四个侧壁上均设置若干层台阶;
    相邻两侧的台阶连接处布设垂直散热通道,相邻垂直散热通道之间通过散热连接材料连接;
    在内腔底面中心位置设置水平散热通道;
    在每层台阶上开设若干中心金属孔,在中心金属孔周围开设若干金属接地孔,且金属接地孔以中心金属孔的圆心作为中心分布;
    在中心金属孔、金属接地孔上均覆设焊盘。
  2. 根据权利要求1所述的射频微系统三维封装外壳结构,其特征在于:在陶瓷底座上固设焊环,其与方形壳体的四周侧壁连接成型。
  3. 根据权利要求1所述的射频微系统三维封装外壳结构,其特征在于:中心金属孔的直径范围为0.10mm-0.15mm,金属接地孔的直径范围为0.15mm-0.20mm;
    金属接地孔包括至少四个;
    且金属接地孔以中心金属孔的中心为圆心进行分布,分布形成的圆环半径范围为0.5mm-2.0mm。
  4. 根据权利要求1所述的射频微系统三维封装外壳结构,其特征在于:前述台阶的表面翘曲度小于1μm/mm。
  5. 根据权利要求1所述的射频微系统三维封装外壳结构,其特征在于:前述的焊盘直径为0.5mm-1.0mm,相邻焊盘中心之间的距离小于1.5mm。
  6. 一种射频微系统三维封装外壳结构的制作方法,其特征在于:具体包括以下步骤:
    第一步:采用低损耗陶瓷制备工艺结合HTCC进行陶瓷底座制备;
    第二步:将各零部件依次嵌入置有陶瓷底座的模具内,经过高温钎焊组装,形成方型壳体预制品;
    第三步:将方型壳体预制品的表面金属区域电镀镍层和金层;
    第四步:在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道以及金锡焊料片,经过钎焊形成外壳本体。
  7. 根据权利要求6所述的射频微系统三维封装外壳结构的制作方法,其特征在于:
    第一步的具体步骤包括:
    第11步,按照低损耗陶瓷配方进行配料,接着对配置后的材料进行球磨,流延出厚度范围为0.20mm-0.35mm的生瓷带,进行备用;
    第12步,采用HTCC工艺,首先对生瓷带顺次进行打孔、填孔、印刷金属化图形、打腔、叠片以及部分层压,形成方型壳体,方型壳体内形成若干以中心金属孔中心为圆心,金属接地孔以环状分布中心金属孔四周的结构,接着采用激光烧蚀对方型壳体的侧壁进行加工,形成凹槽,对凹槽进行金属化、整体层压以及生切,最终形成方型壳体的瓷件;
    第13步,按照低损耗陶瓷烧结工艺对瓷件进行预烧,预烧的温度范围为1000℃-1600℃,预烧后再进行二次重烧结,二次重烧结的温度范围为1600℃-1700℃;
    第14步,对进行二次烧结后的瓷件表面金属区域进行镀镍。
  8. 根据权利要求7所述的射频微系统三维封装外壳结构的制作方法,其特征在于:
    第二步的具体步骤包括:
    第21步,将二次烧结后的瓷件嵌设在石墨钎焊模具中,在方型壳体的中心位置放置厚度为0.05mm的银铜焊料片,在银铜焊料片上覆设用于形成水平散热通道的高热导率材料,在790±10℃的氢气条件下进行钎焊,形成半成品;
    第22步,将半成品嵌设在石墨钎焊模具中,在半成品表面设置焊环,其与方形壳体的四周侧壁连接成型,在790±10℃的氢气条件下进行钎焊,钎焊使用的介质为厚度为0.10mm的银铜焊料片,形成方型壳体预制品。
  9. 根据权利要求8所述的射频微系统三维封装外壳结构的制作方法,其特征在于:
    第三步的具体步骤包括:
    将方型壳体预制品表面的金属区域电镀镍层和金层,其中镍层的厚度范围为2.5-6.0μm,在形成的中心金属孔、金属接地孔内均设置焊盘,焊盘表面金层的厚度范围为0.1-0.3μm,其余部分金层的厚度范围为1.3-5.7μm,最后去除用于镀覆的连接线载体。
  10. 根据权利要求9所述的射频微系统三维封装外壳结构的制作方法,其特征在于:
    第四步的具体步骤包括:
    在电镀后的方型壳体预制品内部嵌设垂直向的垂直散热通道,经过340±10℃的氮气条件下钎焊在一起成为外壳本体,钎焊使用的介质为厚度为0.05mm厚度的金锡焊料片。
PCT/CN2020/101830 2020-05-13 2020-07-14 一种射频微系统三维封装外壳结构以及制作方法 WO2021227240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20935562.7A EP4109518A4 (en) 2020-05-13 2020-07-14 STRUCTURE OF THREE-DIMENSIONAL PACKAGING PACKAGE OF RADIO FREQUENCY MICROSYSTEM AND MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010401883.2 2020-05-13
CN202010401883.2A CN111785691B (zh) 2020-05-13 2020-05-13 一种射频微系统三维封装外壳结构以及制作方法

Publications (1)

Publication Number Publication Date
WO2021227240A1 true WO2021227240A1 (zh) 2021-11-18

Family

ID=72753570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101830 WO2021227240A1 (zh) 2020-05-13 2020-07-14 一种射频微系统三维封装外壳结构以及制作方法

Country Status (3)

Country Link
EP (1) EP4109518A4 (zh)
CN (1) CN111785691B (zh)
WO (1) WO2021227240A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864512A (zh) * 2022-05-12 2022-08-05 成都锐芯盛通电子科技有限公司 基于htcc的k波段射频微系统三维收发组件
CN114915330A (zh) * 2022-03-31 2022-08-16 航天恒星科技有限公司 一种基带射频一体化的卫星终端
CN115662965A (zh) * 2022-12-15 2023-01-31 成都华兴大地科技有限公司 一种新型大功耗芯片封装结构及封装方法
CN115831880A (zh) * 2023-02-13 2023-03-21 成都华兴大地科技有限公司 新型芯片集成封装结构
CN116253577A (zh) * 2023-03-10 2023-06-13 合肥圣达电子科技实业有限公司 一种量子计算用陶瓷外壳及其制备方法
CN117038646A (zh) * 2023-10-08 2023-11-10 之江实验室 陶瓷封装结构及其设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151477A (zh) * 2020-08-20 2020-12-29 山东航天电子技术研究所 系统级封装外壳及应用
CN112635444B (zh) * 2020-12-22 2022-05-10 中国电子科技集团公司第五十五研究所 一种具有三维堆叠形式的微系统封装组件及其制作方法
CN112635443B (zh) * 2020-12-22 2022-03-08 中国电子科技集团公司第五十五研究所 具有多级基板堆叠与垂直散热通道的射频微系统三维封装组件与制作方法
CN112652613A (zh) * 2020-12-22 2021-04-13 中国电子科技集团公司第五十五研究所 一种具有三维堆叠形式的多通道微系统封装组件及其制作方法
CN113271721A (zh) * 2021-04-30 2021-08-17 北京七星华创微电子有限责任公司 一种高集成度全密封立体贴装的电路集成组装工艺
CN113255282A (zh) * 2021-07-14 2021-08-13 中国电子科技集团公司信息科学研究院 一种射频微系统设计方法及装置、电子设备、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262079B2 (en) * 2005-02-10 2007-08-28 Altera Corporation Consolidated flip chip BGA assembly process and apparatus
CN101714543A (zh) * 2009-11-12 2010-05-26 美新半导体(无锡)有限公司 用于多芯片系统三维封装的陶瓷基板及其封装方法
CN102738131A (zh) * 2012-03-07 2012-10-17 苏州晶方半导体科技股份有限公司 半导体模组、封装结构及其封装方法
CN108428672A (zh) * 2018-04-17 2018-08-21 中国电子科技集团公司第二十九研究所 超宽带射频微系统的陶瓷双面三维集成架构及封装方法
CN109103165A (zh) * 2018-07-03 2018-12-28 中国电子科技集团公司第二十九研究所 Ltcc基板三维堆叠结构及其气密封装方法
CN109637980A (zh) * 2018-10-29 2019-04-16 中国电子科技集团公司第五十五研究所 一种陶瓷平面焊盘阵列封装外壳及加工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285278A (zh) * 2012-05-17 2015-01-14 伊甘图公司 用于电子集成的三维模块
CN104051352A (zh) * 2014-06-13 2014-09-17 中国电子科技集团公司第五十五研究所 基于高温共烧陶瓷的毫米波芯片外壳及其制造方法
CN104269382B (zh) * 2014-08-20 2017-04-19 中国电子科技集团公司第五十五研究所 基于高温共烧陶瓷技术的x波段高可靠表贴型陶瓷外壳
US10039179B2 (en) * 2015-11-17 2018-07-31 Ngk Spark Plug Co., Ltd. Wiring substrate
JP6881913B2 (ja) * 2015-11-17 2021-06-02 日本特殊陶業株式会社 配線基板
CN105870071A (zh) * 2016-06-28 2016-08-17 中国电子科技集团公司第十三研究所 氮化铝多层陶瓷四边无引线扁平封装外壳
CN109950211B (zh) * 2017-11-22 2020-12-18 中国电子科技集团公司第五十五研究所 X波段双面多腔结构陶瓷外壳及多层陶瓷共烧工艺方法
CN109545771A (zh) * 2018-09-14 2019-03-29 中国电子科技集团公司第五十五研究所 一种高集成模块级封装用多层氮化铝基板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262079B2 (en) * 2005-02-10 2007-08-28 Altera Corporation Consolidated flip chip BGA assembly process and apparatus
CN101714543A (zh) * 2009-11-12 2010-05-26 美新半导体(无锡)有限公司 用于多芯片系统三维封装的陶瓷基板及其封装方法
CN102738131A (zh) * 2012-03-07 2012-10-17 苏州晶方半导体科技股份有限公司 半导体模组、封装结构及其封装方法
CN108428672A (zh) * 2018-04-17 2018-08-21 中国电子科技集团公司第二十九研究所 超宽带射频微系统的陶瓷双面三维集成架构及封装方法
CN109103165A (zh) * 2018-07-03 2018-12-28 中国电子科技集团公司第二十九研究所 Ltcc基板三维堆叠结构及其气密封装方法
CN109637980A (zh) * 2018-10-29 2019-04-16 中国电子科技集团公司第五十五研究所 一种陶瓷平面焊盘阵列封装外壳及加工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915330A (zh) * 2022-03-31 2022-08-16 航天恒星科技有限公司 一种基带射频一体化的卫星终端
CN114864512A (zh) * 2022-05-12 2022-08-05 成都锐芯盛通电子科技有限公司 基于htcc的k波段射频微系统三维收发组件
CN115662965A (zh) * 2022-12-15 2023-01-31 成都华兴大地科技有限公司 一种新型大功耗芯片封装结构及封装方法
CN115831880A (zh) * 2023-02-13 2023-03-21 成都华兴大地科技有限公司 新型芯片集成封装结构
CN116253577A (zh) * 2023-03-10 2023-06-13 合肥圣达电子科技实业有限公司 一种量子计算用陶瓷外壳及其制备方法
CN116253577B (zh) * 2023-03-10 2024-03-29 合肥圣达电子科技实业有限公司 一种量子计算用陶瓷外壳及其制备方法
CN117038646A (zh) * 2023-10-08 2023-11-10 之江实验室 陶瓷封装结构及其设计方法
CN117038646B (zh) * 2023-10-08 2024-01-26 之江实验室 陶瓷封装结构及其设计方法

Also Published As

Publication number Publication date
CN111785691A (zh) 2020-10-16
EP4109518A1 (en) 2022-12-28
CN111785691B (zh) 2022-03-11
EP4109518A4 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2021227240A1 (zh) 一种射频微系统三维封装外壳结构以及制作方法
CN112635444B (zh) 一种具有三维堆叠形式的微系统封装组件及其制作方法
US9153863B2 (en) Low temperature co-fired ceramic (LTCC) system in a package (SiP) configurations for microwave/millimeter wave packaging applications
CN111599802B (zh) 陶瓷封装外壳及封装外壳安装结构
CN105047648B (zh) 一种系统级封装结构及封装方法
JP2010016789A (ja) N個集積開口部結合型パッチ・アンテナを有する無線周波数集積回路チップ・パッケージ、及びその製造する方法
CN104332413A (zh) 一体化集成t/r组件芯片的3d组装方法
CN215496704U (zh) 一种基于HTCC的Ku波段集成封装微波组件
US20190259692A1 (en) Parallel seam welding leadless ceramic package
CN110034095B (zh) 三维堆叠封装集成tr模组
CN113451732B (zh) 一种新型气密瓦片式相控阵天线
CN115881663B (zh) 一种新型大功率瓦式tr模块
CN112652613A (zh) 一种具有三维堆叠形式的多通道微系统封装组件及其制作方法
CN111146190A (zh) 一种硅基三维集成微波变频组件
CN114759015B (zh) 一种大功率射频芯片三维堆叠集成结构及其制备方法
CN107732373B (zh) 一种微波垂直互连陶瓷连接结构
CN102201607A (zh) 基于ltcc技术的微带-带状线转换
TW202306234A (zh) 具有波導管的線路板結構及其製作方法
CN207441925U (zh) 一种微波垂直互连陶瓷连接结构
CN210489608U (zh) 一种满足Ka波段TR组件封装的陶瓷外壳
CN115166641A (zh) 一种基于sip的小型化表贴收发组件
CN115719875A (zh) 一种射频天线封装结构及封装结构的制备方法
CN112652614B (zh) 一种堆叠型三维封装组件结构及制作方法
CN104269382A (zh) 基于高温共烧陶瓷技术的x波段高可靠表贴型陶瓷外壳
RU2799238C1 (ru) Трехмерная конструкция корпуса упаковки для радиочастотной микросистемы и способ ее изготовления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020935562

Country of ref document: EP

Effective date: 20220920

NENP Non-entry into the national phase

Ref country code: DE