WO2021227133A1 - 一种用于cvd设备的反应室涡轮结构 - Google Patents

一种用于cvd设备的反应室涡轮结构 Download PDF

Info

Publication number
WO2021227133A1
WO2021227133A1 PCT/CN2020/092746 CN2020092746W WO2021227133A1 WO 2021227133 A1 WO2021227133 A1 WO 2021227133A1 CN 2020092746 W CN2020092746 W CN 2020092746W WO 2021227133 A1 WO2021227133 A1 WO 2021227133A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction chamber
support column
turbine structure
chamber
Prior art date
Application number
PCT/CN2020/092746
Other languages
English (en)
French (fr)
Inventor
刘子优
肖蕴章
钟国仿
陈炳安
张灿
Original Assignee
深圳市纳设智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市纳设智能装备有限公司 filed Critical 深圳市纳设智能装备有限公司
Publication of WO2021227133A1 publication Critical patent/WO2021227133A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs

Definitions

  • the invention relates to the technical field of mechanical structures, in particular to a reaction chamber turbine structure used in CVD equipment.
  • CVD chemical vapor deposition
  • SiC/GaN With the emergence of new markets such as 5G and automobiles, the irreplaceable advantages of SiC/GaN accelerate the development and application of related products; with the advancement of manufacturing technology, SiC and GaN devices and modules can already be included in the alternatives in terms of cost. Demand-driven superposition cost reduction, the era of SiC/GaN is coming.
  • the purpose of the present invention is to provide a reaction chamber turbine structure for CVD equipment to solve the above-mentioned problems in the background art.
  • a reaction chamber turbine structure for CVD equipment including a chamber, in which a rotating support column is arranged, and the rotating support column is uniform along the axial direction A plurality of blades are provided, the blades are provided with grooves, wafers are installed through the grooves, and the rotation support column is also provided with a gas splitter plate, the gas splitter plate is arranged under the blades;
  • the gas splitter plate is provided with a plurality of split holes, and the bottom of the chamber is provided with exhaust holes communicating with the exhaust gas system.
  • the gas distribution plate is centered on the rotation support column, and a plurality of distribution holes are uniformly provided in the circumferential direction.
  • the vent hole is provided on a circular arc formed by a plurality of the branch holes.
  • the cavity is also evenly provided with four sets of air outlets.
  • each group of the air outlets is provided with eight air outlets.
  • the inclination angle of the blade is 45°-60°.
  • the beneficial effect of adopting the above technical solution is that the present invention designs four exhaust air holes on the side wall of the chamber, the air outlet direction is consistent with the direction of the rotating mechanism, and auxiliary rotation power can be generated.
  • the air source of the air outlet on the side wall and the spray plate At the same time, the gas mass flow meter is used to control the gas output of the side wall.
  • the reaction gas output from the side wall hole is also used as supplementary gas to fill the area that is not completely filled by the top spray plate intake, so that the whole crystal
  • the concentration of the reaction gas contacted by the circle is more uniform and saturated, which makes the process stability more superior.
  • Figure 1 is a perspective schematic view of the present invention
  • Figure 2 is a schematic diagram of the full-sectional structure of the present invention.
  • Figure 3 is a perspective view of the present invention.
  • this embodiment proposes a reaction chamber turbine structure for CVD equipment, including a chamber in which a rotating support column is arranged, and the rotating support column is uniformly provided with a plurality of blades along the axial direction ,
  • the blade is provided with a groove, the wafer is installed through the groove, the rotating support column is also provided with a gas splitter plate, the gas splitter plate is provided under the blade; the gas splitter plate is provided with a plurality of split holes, and the cavity
  • the bottom of the chamber is provided with an exhaust hole communicating with the exhaust system.
  • the gas distribution plate takes the rotation support column as the rotation center, and a plurality of distribution holes are evenly arranged in the circumferential direction.
  • the exhaust hole is provided on the arc formed by the plurality of branch holes.
  • the cavity is also evenly provided with four sets of air outlets.
  • Each group of the air outlets is provided with eight air outlets.
  • the angle of inclination of the blades is 45°-60°.
  • This patent is a rotatable structure of the base.
  • the rotating support column is the main body, and the reaction gas in the cavity is rotated by the turbine blade-like structure.
  • the reactive gas passes through the gap between the blades and grows material on the wafer fixed on the blade.
  • Each blade carries a wafer.
  • the reaction gas required for the process serves as both the reaction source and the self-rotating force source.
  • This structure does not rotate at a high speed.
  • the rotation speed is controlled by adjusting the angle, weight, shape and flow of the reaction gas. Homogenize the gas flow field in the entire chamber and improve the uniformity between the wafer and the wafer.
  • the main structure includes: a rotating support column, a blade carrying a wafer, an air extraction ring, a supplementary air outlet on the side of the cavity, etc.
  • This patent is based on a semiconductor chamber structure with a cavity and a spray plate, and the main reaction gas enters the cavity vertically downwards through the spray plate.
  • the rotating support column is the main body.
  • the support column is fixed in the chamber and is freely rotatable through a bearing or other rotating mechanism.
  • the support column is connected with 6 blades, but it does not limit the blades.
  • the quantity can be multi-layered and multi-piece. The specific implementation quantity needs to be calculated based on the gas flow rate and the overall flow field in the chamber. When the reaction gas enters the chamber in the vertical direction, it will drive the blades to generate power to make the rotating mechanism rotate.
  • the surface of the rotating support column can be processed with grooves that are conducive to gas flow, and the specific implementation needs to be matched according to different process recipes.
  • Figure 1 is the main structure of the patent, including a chamber, a rotating support column, the blade is connected to the support column, the blade is provided with a groove for carrying the wafer, the chamber is designed with four rows of sidewall vents, and the chamber is The gas flows out of the exhaust hole through the gas distributor to the exhaust system.
  • Figure 2 is a sectional view of the structure of the patent.
  • the arrow pointing vertically downwards in the figure represents the reaction gas entering the chamber from the spray plate, and the oblique arrow represents the reaction gas entering the vent hole on the side wall, and the source of the reaction gas
  • the two gases generate power for the rotating mechanism and flow into the surface of each wafer to complete the process reaction.
  • the mixed gas flows into the chamber through the pores of the gas distributor.
  • the exhaust hole reaches the exhaust system, and the function of the gas distribution plate makes the flow limit and the flow field in the chamber more uniform.
  • a simple process is used as an example for illustration: a 6-inch silicon carbide wafer is used as the substrate, and the reaction gas uses silane and ethane. Or propane, hydrogen, and nitrogen are auxiliary gases, the reaction temperature is 1600°C, the reaction time is 8 hours, and the silicon carbide wafer epitaxial layer is grown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种用于CVD设备的反应室涡轮结构,包括腔室(1),腔室内设置有旋转支撑柱(4),旋转支撑柱上设置有多个叶片(3),叶片上设置有凹槽,通过凹槽安装晶圆,旋转支撑柱上于叶片下方设置有气体分流板(6),气体分流板有多个分流孔(8),腔室的底部设置有连通尾气系统的排气孔(7)。该结构能提高工艺稳定性。

Description

一种用于CVD设备的反应室涡轮结构 技术领域
本发明涉及机械结构技术领域,具体涉及一种用于CVD设备的反应室涡轮结构。
背景技术
当前半导体行业,化学气相沉积(Chemical VaporDeposition,简称为CVD,广泛应用于各集成电路中,随着要求越来越高,相关技术也越来越成熟。
初代半导体的性能的探索已经非常成熟,然而一些固有的缺点却无法逾越,如光学性能、高压高频性能等。与此同时所谓第三代半导体(宽禁带半导体)以其恰好弥补Si材料的不足而逐步受到半导体行业青睐,成为继Si之后最有前景的半导体材料。
随着5G、汽车等新市场出现,SiC/GaN不可替代的优势使得相关产品的研发与应用加速;随着制备技术的进步,SiC与GaN器件与模块在成本上已经可以纳入备选方案内,需求拉动叠加成本降低,SiC/GaN的时代即将到来。
目前,在碳化硅材料的制作工艺上,存在非常多的难点,均匀性和压力控制制约着材料生长的良率及产能,当前市面上成熟的碳化硅材料工艺为单片生长,在当前的技术水平下无法进一步的提高良率,一次工艺的生长时间也相对较长,即使全自动化连续生产的设备也无法带来明显的产能提高,因此,一次工艺完成多片材料生长的结构是当前研究的主要方向。
发明内容
本发明的目的在于提供一种用于CVD设备的反应室涡轮结构,以解决上述背景技术中存在的问题。
为了解决上述技术问题,本发明的技术方案为:一种用于CVD设备的反应室涡轮结构,包括腔室,所述腔室内设置有旋转支撑柱,所述旋转支撑柱沿着轴向方向均匀设置有多个叶片,所述叶片上设置有凹槽,通过所述凹槽安装有晶圆,所述旋转支撑柱还设置有气体分流板,所述气体分流板设于所述叶片的下方;所述气体分流板设置有多个分流孔,所述腔室的底部设置有连通尾气系统的排气孔。
作为本发明的优选方案,所述叶片设置有六个。
作为本发明的优选方案,所述气体分流板以所述旋转支撑柱为旋转中心,周向均匀设置有多个分流孔。
作为本发明的优选方案,所述排气孔设于多个所述分流孔形成的圆弧上。
作为本发明的优选方案,所述腔体还均匀开设有四组出气口。
作为本发明的优选方案,每组所述出气口设置有八个出气孔。
作为本发明的优选方案,所述叶片的倾斜角度为45°-60°。
采用上述技术方案的有益效果是:本发明在腔室侧壁上设计了四排出气孔,出气方向与旋转机构方向一致,可产生辅助的旋转动力,侧壁上出气孔的气体来源与喷淋板的反应气体一致,同时使用气体质量流量计来控制侧壁出气量,同时侧壁孔输出的反应气体也作为补充 气体来填补由顶部喷淋板进气未能完全填充的区域,使整片晶圆接触的反应气体浓度更加均匀饱和,使工艺稳定性更加优越。
附图说明
图1为本发明的透视示意图;
图2为本发明的全剖结构示意图;
图3为本发明的立体图。
图中,1、腔室;2、晶圆;3、叶片;4、旋转支撑柱;5、出气孔;6、第二U型导体;7、气体分流板;8、分流孔。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
根据图1、2所示,本实施例提出一种用于CVD设备的反应室涡轮结构,包括腔室,腔室内设置有旋转支撑柱,旋转支撑柱沿着轴向方向均匀设置有多个叶片,叶片上设置有凹槽,通过所述凹槽安装有晶圆,旋转支撑柱还设置有气体分流板,气体分流板设于所述叶片的下方;气体分流板设置有多个分流孔,腔室的底部设置有连通尾气系统的排气孔。
叶片优选设置有六个。
气体分流板以所述旋转支撑柱为旋转中心,周向均匀设置有多个分流孔。
排气孔设于多个所述分流孔形成的圆弧上。
腔体还均匀开设有四组出气口。
每组所述出气口设置有八个出气孔。
叶片的倾斜角度为45°-60°。
本专利为基台可旋转的一种结构,通过改进腔体结构,以旋转支撑柱为主体,通过涡轮叶片状的结构利用腔室内的反应气体进行自转。同时反应气体经过叶片间隙,在叶片上固定的晶圆上生长材料。每个叶片上承载一张晶圆,工艺所需的反应气体既作为反应源也作为自转动力源,此结构并不会高速旋转,通过调整叶片角度、重量、形状和反应气体的流量来控制自转速度,均匀化整个腔室的气体流场、提高晶圆和晶圆之间的均匀性。
主要结构包括:旋转支撑柱,承载晶圆的叶片,抽气环,腔体侧面的补充气出气孔等。本专利以腔体加喷淋板的半导体腔室结构为基础,主要反应气体通过喷淋板垂直向下进入腔体。
本专利发明了承载晶圆的叶片结构,以旋转支撑柱为主体,支撑柱固定在腔室内并通过轴承或其他旋转机构呈自由可旋转状态,支撑柱上连接6枚叶片,但并不限制叶片数量,可多层多片,具体实施数量需要根据气体流量,腔室内的流场整体仿真计算得出。当反应气体沿垂直方向进入腔室后,会带动叶片产生动力使旋转机构自转。
额外的,旋转支撑柱表面可加工出利于气体流导的沟槽,具体实施需根据不同的工艺配方来进行匹配。
本专利在腔室侧壁上设计了四排出气孔,出气方向与旋转机构方向一致,可产生辅助的旋转动力,侧壁上出气孔的气体来源与喷淋板的反应气体一致,同时使用气体质量流量计来控制侧壁出气量,同时侧壁孔输出的反应气体也作为补充气体来填补由顶部喷淋板进气未能完全填充的区域,使整片晶圆接触的反应气体浓度更加均匀饱和,使工艺稳定性更加优越。
图1为本专利的主体结构,包括腔室,旋转支撑柱,叶片连接在支撑柱上,叶片上有承载晶圆的凹槽,腔室上设计了四排侧壁出气孔,同时腔室内的气体经分气板由排气孔流出至尾气系统。
图2为本专利的结构截面图,图中的垂直向下指向的箭头代表由喷淋板进入腔室的反应气体,斜式的箭头代表由侧壁出气孔进入的反应气体,反应气体的来源相同,配比相同,唯一不同的是分别有单独的流量控制,两种气体为旋转机构产生动力,并流入各晶圆表面完成工艺反应,混合后的气体经分气板的气孔流入腔室的排气孔直至尾气系统,分气板的作用使限流使腔室内的流场更加均匀。
结合本专利所描述结构和示意图,为更加明显的阐述本专利所表达的内容,以一种简单的工艺作为实施例进行说明:以6英寸碳化硅晶圆为基体,反应气体使用硅烷、乙烷或丙烷,氢气、氮气为辅助气体,反应温度为1600℃,反应时间8小时,生长碳化硅晶圆外延层。
具体步骤:1、将6张碳化硅晶圆分别放置在叶片的凹槽内;2、关闭腔室盖板,将设备抽至本底压力3、设备升温至1600℃并稳定2分钟;4、开始通入与工艺需求反应气体相同流量的氮气,按照设定好的比例分别通过喷淋板和腔体侧壁,使旋转机构开始自转;5、待5分钟后旋转机构转速稳定,将反应气体按照工艺配方的比例通入腔室,同时切断关闭氮气;6、腔内的旋转机构使6片晶圆接触的反应气体较为均匀,同时侧壁上的补充气体可充分的填充遗漏的缝隙,6片晶圆之间的膜厚均匀性更加一致,进行8小时的工艺沉积后,关闭反应气体,设备开始降温。7、设备可在降温时通入吹扫气体进行降温加速,恢复到室温后开腔取出晶圆。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (7)

  1. 一种用于CVD设备的反应室涡轮结构,其特征在于,包括腔室,所述腔室内设置有旋转支撑柱,所述旋转支撑柱沿着轴向方向均匀设置有多个叶片,所述叶片上设置有凹槽,通过所述凹槽安装有晶圆,所述旋转支撑柱还设置有气体分流板,所述气体分流板设于所述叶片的下方;所述气体分流板设置有多个分流孔,所述腔室的底部设置有连通尾气系统的排气孔。
  2. 根据权利要求1所述的用于CVD设备的反应室涡轮结构,其特征在于,所述叶片设置有六个。
  3. 根据权利要求1所述的用于CVD设备的反应室涡轮结构,其特征在于,所述气体分流板以所述旋转支撑柱为旋转中心,周向均匀设置有多个分流孔。
  4. 根据权利要求3所述的用于CVD设备的反应室涡轮结构,其特征在于,所述排气孔设于多个所述分流孔形成的圆弧上。
  5. 根据权利要求1所述的用于CVD设备的反应室涡轮结构,其特征在于,所述腔体还均匀开设有四组出气口。
  6. 根据权利要求5所述的用于CVD设备的反应室涡轮结构,其特征在于,每组所述出气口设置有八个出气孔。
  7. 根据权利要求1所述的用于CVD设备的反应室涡轮结构,其特征在于,所述叶片的倾斜角度为45°-60°。
PCT/CN2020/092746 2020-05-13 2020-05-28 一种用于cvd设备的反应室涡轮结构 WO2021227133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010404267.2A CN111501019A (zh) 2020-05-13 2020-05-13 一种用于cvd设备的反应室涡轮结构
CN202010404267.2 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227133A1 true WO2021227133A1 (zh) 2021-11-18

Family

ID=71875501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092746 WO2021227133A1 (zh) 2020-05-13 2020-05-28 一种用于cvd设备的反应室涡轮结构

Country Status (2)

Country Link
CN (1) CN111501019A (zh)
WO (1) WO2021227133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537777A (zh) * 2022-08-16 2022-12-30 湖南顶立科技有限公司 一种气相沉积设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090894A (ja) * 1983-10-20 1985-05-22 Fujitsu Ltd 気相成長装置
JPS60194077A (ja) * 1984-03-14 1985-10-02 Canon Inc 堆積膜形成装置
CN101243203A (zh) * 2005-07-12 2008-08-13 普莱克斯S.T.技术有限公司 用于镀膜操作的固定装置
CN102817012A (zh) * 2011-06-08 2012-12-12 先进科技新加坡有限公司 一种薄膜沉积装置
WO2014104551A1 (ko) * 2012-12-31 2014-07-03 Park Hyung Sang 수직형 플레이트 히터를 이용한 증착 장치
CN103930594A (zh) * 2011-09-28 2014-07-16 赫拉克勒斯公司 通过定向流动的蒸汽相化学渗透致密化三维多孔基材的装载设备
CN110172677A (zh) * 2019-07-05 2019-08-27 佛山王氏航空光学科技有限公司 用于真空镀膜的公自转式镀膜设备
CN110684962A (zh) * 2019-10-21 2020-01-14 江苏菲沃泰纳米科技有限公司 用于镀膜设备的气流导散装置及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638762A (en) * 1985-08-30 1987-01-27 At&T Technologies, Inc. Chemical vapor deposition method and apparatus
US4772356A (en) * 1986-07-03 1988-09-20 Emcore, Inc. Gas treatment apparatus and method
KR100539452B1 (ko) * 1998-10-20 2006-03-14 삼성전자주식회사 반도체 제조용 스피너
JP5457043B2 (ja) * 2009-01-30 2014-04-02 東洋炭素株式会社 Cvd方法
KR101128737B1 (ko) * 2009-12-30 2012-03-23 엘아이지에이디피 주식회사 증착장치
KR101121430B1 (ko) * 2009-12-30 2012-03-16 엘아이지에이디피 주식회사 화학기상 증착장치
JP2013235947A (ja) * 2012-05-08 2013-11-21 Yu Bridge Kk 回転ブレード気相成長装置
CN212560430U (zh) * 2020-05-13 2021-02-19 深圳市纳设智能装备有限公司 一种用于cvd设备的反应室涡轮结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090894A (ja) * 1983-10-20 1985-05-22 Fujitsu Ltd 気相成長装置
JPS60194077A (ja) * 1984-03-14 1985-10-02 Canon Inc 堆積膜形成装置
CN101243203A (zh) * 2005-07-12 2008-08-13 普莱克斯S.T.技术有限公司 用于镀膜操作的固定装置
CN102817012A (zh) * 2011-06-08 2012-12-12 先进科技新加坡有限公司 一种薄膜沉积装置
CN103930594A (zh) * 2011-09-28 2014-07-16 赫拉克勒斯公司 通过定向流动的蒸汽相化学渗透致密化三维多孔基材的装载设备
WO2014104551A1 (ko) * 2012-12-31 2014-07-03 Park Hyung Sang 수직형 플레이트 히터를 이용한 증착 장치
CN110172677A (zh) * 2019-07-05 2019-08-27 佛山王氏航空光学科技有限公司 用于真空镀膜的公自转式镀膜设备
CN110684962A (zh) * 2019-10-21 2020-01-14 江苏菲沃泰纳米科技有限公司 用于镀膜设备的气流导散装置及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537777A (zh) * 2022-08-16 2022-12-30 湖南顶立科技有限公司 一种气相沉积设备
CN115537777B (zh) * 2022-08-16 2024-05-14 湖南顶立科技有限公司 一种气相沉积设备

Also Published As

Publication number Publication date
CN111501019A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
EP2543063B1 (en) Wafer carrier with sloped edge
WO2008088743A1 (en) Gas treatment systems
JP2011500961A (ja) 化学気相成長反応器
WO2021227133A1 (zh) 一种用于cvd设备的反应室涡轮结构
JP2024503166A (ja) 半導体成長装置及びその動作方法
KR101412034B1 (ko) 가스분사조립체 및 이를 이용한 박막증착장치
JP2008198752A (ja) 気相成長装置および気相成長方法
JP2641351B2 (ja) 可変分配率ガス流反応室
JPS6090894A (ja) 気相成長装置
KR940011099B1 (ko) 기상반응장치
CN212560430U (zh) 一种用于cvd设备的反应室涡轮结构
TWI490367B (zh) 金屬有機化合物化學氣相沉積方法及其裝置
JP2007109685A (ja) 化合物半導体製造装置および化合物半導体製造方法
JP4888242B2 (ja) シリコンエピタキシャルウェーハの製造方法
US11885018B2 (en) High pressure spatial chemical vapor deposition system and related process
JP6335683B2 (ja) SiCエピタキシャルウェハの製造装置
WO2020258676A1 (zh) 石墨载盘及具有其的mocvd反应装置
JP2020161544A (ja) 成膜装置および成膜方法
JPS6316617A (ja) 気相成長装置
JP7245417B2 (ja) 成膜装置および成膜方法
JPH01297820A (ja) 基体へのフィルム被着装置およびその方法
JPS6252200A (ja) 気相エピタキシヤル成長装置
JPH039609B2 (zh)
CN105779970B (zh) 气体喷淋头和沉积装置
JPS61248518A (ja) 化合物半導体薄膜の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935437

Country of ref document: EP

Kind code of ref document: A1