WO2021227013A1 - 固态谐振陀螺自校准方法及系统 - Google Patents

固态谐振陀螺自校准方法及系统 Download PDF

Info

Publication number
WO2021227013A1
WO2021227013A1 PCT/CN2020/090521 CN2020090521W WO2021227013A1 WO 2021227013 A1 WO2021227013 A1 WO 2021227013A1 CN 2020090521 W CN2020090521 W CN 2020090521W WO 2021227013 A1 WO2021227013 A1 WO 2021227013A1
Authority
WO
WIPO (PCT)
Prior art keywords
gyroscope
self
calibration
axis
state
Prior art date
Application number
PCT/CN2020/090521
Other languages
English (en)
French (fr)
Inventor
薛旭
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/248,897 priority Critical patent/US20210348503A1/en
Publication of WO2021227013A1 publication Critical patent/WO2021227013A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Definitions

  • the invention relates to the technical field of underground drilling attitude measurement, in particular to a solid-state resonance gyroscope self-calibration method and system.
  • the accuracy of the azimuth measurement depends on the magnitude of the observability component of the gyroscope constant drift in the geographic east direction.
  • the inclination angle is at 90°.
  • the output of the geographic east-direction gyroscope mainly comes from the Z-axis gyroscope (as shown in Figure 1). Because the constant drift is unobservable, it cannot be eliminated, which makes GMD (Gyro Measurement While Drilling (referred to as GMD in this article) can not achieve satisfactory measurement accuracy in the full attitude of the east-west direction, especially in the horizontal section.
  • the Gyro-Compass-Index method is to add a rotating mechanism from the outside.
  • the zero offset constant of the gyroscope will not change within a short time of the assumed rotation process, but the polarity of the sensitive axis is changed.
  • an observer is added through indexing to achieve optimal estimation.
  • the current dual-position analytical method of external transposition in the east-west well trajectory conditions, the accuracy of the azimuth measurement deteriorates with the increase of the inclination angle.
  • the azimuth accuracy is better than 1°
  • the conventional method It is to increase the indexing of another degree of freedom, that is, realize the indexing of the Z-axis gyroscope along the radial direction of the probe tube, and realize the separation of the constant drift of the Z-axis gyroscope, thereby improving the observability.
  • the two sets of indexing mechanisms will increase the difficulty of GMD design and reduce the reliability of the product. Therefore, the present invention attempts to solve the calibration problem of gyroscope constant drift from other technical dimensions.
  • the drift error of the solid-state resonant gyroscope mainly comes from frequency cracking, damping imbalance and control error.
  • the angle random walk coefficient mainly depends on the frequency splitting and the control accuracy of the PLL, and its size determines the fastness of GMD north seeking;
  • the control error mainly comes from the error of the closed-loop controller that maintains the energy of the resonator, high Q value and low damping band.
  • the benefit is that the energy required to maintain the resonance is small, thereby reducing the zero-bias error caused by the control error, and the damping imbalance is an important factor in the zero-bias repeatability error.
  • the angle random walk coefficient of the high temperature solid-state resonant gyroscope can reach The angle random walk coefficient affects the alignment time, and the magnitude of its effect on the alignment accuracy is much smaller than the target value.
  • the driving energy is reduced, thereby reducing the control error.
  • This is also the solid state resonant gyroscope.
  • Design guarantee; the constant value of zero offset caused by damping mismatch is the only drift error that needs to be identified. This error is in phase with the Coriolis force and cannot be separated by demodulation, and because time or temperature changes the damping imbalance error of the resonator, it is also the main source of the gyroscope's repeatability error.
  • the present invention provides a solid-state resonant gyroscope self-calibration method and system, which can realize the separation of zero-bias error and angular rate, fundamentally solve the problem of repeatability error, and realize that the measurement accuracy is better than that under full well inclination.
  • the index of 1° can even reach 0.06 ⁇ .
  • the present invention provides a solid-state resonant gyroscope self-calibration method, which is characterized in that the method uses an external excitation signal to collect the output signals of the key monitoring points inside the gyroscope in different working modes in real time, and realize zero through an algorithm.
  • the excitation signal includes a first excitation signal and a second excitation signal; the first excitation signal and the second excitation signal are respectively connected to the The demodulated main mode detection signal D- x and the sub-mode detection signal D +y are combined to realize feeding.
  • the above aspects and any possible implementation manners further provide an implementation manner.
  • the key monitoring points in the gyroscope include the output points of the antinode controller and the output points of the node controller; at the output of the antinode controller The output points of the node and the node controller are respectively set with a state observer, and the steady state signal of the gyroscope in the first working mode and the second working mode is output through the state observer, and according to the fed excitation signal and the output steady state signal Realize the estimation of the bias error and the input angular rate.
  • the above aspect and any possible implementation manners further provide an implementation manner.
  • the content of the steady-state signal includes: the force to maintain the vibration amplitude of the antinode axis, the Coriolis force caused by the input angular rate, and the generation of externally fed excitation The precession Coriolis force and the simple harmonic force caused by the imbalance of damping.
  • an implementation manner is further provided, and the specific steps of the calibration method include:
  • the gyroscope performs scale factor calibration in the first working mode, and obtains the residual value ⁇ SF p1 of the first position scale factor after self-calibration according to the known excitation signal fed from the outside;
  • the state observer outputs the steady-state signal in the first working mode with
  • the gyroscope is switched from the first working mode to the second working mode in a freely precessing manner
  • the gyroscope performs scale factor calibration in the second working mode, and obtains the residual value ⁇ SF p2 of the second position scale factor after self-calibration according to the known excitation signal fed from the outside;
  • 2 ⁇
  • is the precession angle of the antinode axis relative to the initial position.
  • step S5 After step S5 is completed, the antinode axis is reset, the calibration is completed, and the antinode axis reset process and the calculation process of step S6 do not interfere with each other, and execute The order is in no particular order.
  • the present invention provides a measurement-while-drilling system.
  • the system includes a strapdown inertial navigation system.
  • the strapdown inertial navigation system includes a number of gyroscopes and a number of accelerometers;
  • the system adopts any one of the self-calibration methods described above to perform the zero-bias self-calibration of the gyroscope, so as to improve the accuracy of measurement while drilling in directional drilling.
  • the above-mentioned aspects and any possible implementation manners further provide an implementation manner.
  • the measurement while drilling system determines whether the drill collar is in a static state.
  • the module sends a self-calibration command to start self-calibration.
  • an implementation manner is further provided, and the specific content of judging whether the drill collar is in a static state is any one or both of the first judging method and the second judging method;
  • the first judgment method is specifically: judging whether the sensitive velocity observation and/or the sensitive angular rate observation are less than the judging threshold, if so, judging that the drill collar is in a stationary state, otherwise the drill collar is not in a stationary state;
  • the second judgment method is specifically: judging whether the disturbance amount of the external mud and/or the vibration amount sensed by the vibration sensor is less than a set threshold; if so, it is judged that the drill collar is in a stationary state, otherwise the drill collar is not in a stationary state.
  • the sensitive velocity observation is an acceleration value
  • the sensitive angular rate observation is the root mean square value of the gyroscope angular rate.
  • an implementation manner is further provided, and the self-calibration of two or more gyroscopes is performed in a real-time polling manner;
  • the gyroscopes are self-calibrated one by one, and the gyroscope that is being self-calibrated does not participate in the navigation algorithm of the strapdown inertial navigation system, and other gyroscopes work normally.
  • the present invention provides a continuous navigation measurement system, the system includes a strapdown inertial navigation system, and the strapdown inertial navigation system includes a three-axis gyroscope and a three-axis accelerometer;
  • the inertial navigation system adopts the self-calibration method described above to perform the zero-bias self-calibration of the gyroscope, so as to improve the azimuth measurement accuracy during the navigation process.
  • the present invention can achieve the following technical effects: through free precession, the switching between working mode 1 and working mode 2 is realized, and energy loss during switching is avoided; state observation is added inside the gyroscope control circuit The drift error is separated from the angular rate through the cyclic self-calibration method, thereby improving the azimuth measurement accuracy of the GMD; the free-precession self-calibration method can fundamentally solve the repeatability error problem and achieve the satisfaction of the full well inclination angle. The measurement accuracy is better than 1° index.
  • Figure 1 is a schematic diagram of the zero offset elimination of the rotating position of the gyroscope
  • Fig. 2 is a flow chart of self-calibration of the gyroscope provided by an embodiment of the present invention
  • Fig. 3 is a functional block diagram of a gyroscope closed-loop control system provided by an embodiment of the present invention
  • FIG. 4 is a control block diagram of the gyroscope in working mode 1 provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the vibration mode of the resonator in working mode 1 provided by an embodiment of the present invention.
  • Fig. 6 is a control block diagram of the gyroscope in working mode 2 provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the vibration mode of the resonator in working mode 2 provided by an embodiment of the present invention.
  • FIG. 8 is a block diagram of the self-calibration and self-calibration control of the GMD gyroscope provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a self-calibration process of a gyroscope provided by an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of electrode arrangement of a solid-state resonant gyroscope provided by an embodiment of the present invention.
  • FIG. 11 is a simplified Foucault pendulum model diagram of a fully symmetrical harmonic oscillator provided by an embodiment of the present invention.
  • Type I The Colombian vibratory gyroscope is divided into Type I and Type II.
  • Type II mostly uses tuning fork solutions, such as the early MEMS comb-type gyroscopes and quartz tuning-fork gyroscopes.
  • Type II adopts a fully symmetrical structure, which greatly improves the isotropic indicators of frequency and damping. It is precisely due to the design of the symmetrical structure that the gyroscope can easily realize self-calibration and self-calibration, and can realize the force balance rate mode.
  • representative products such as MEMS ring gyroscope, MEMS-Disk gyroscope, and hemispherical gyroscope HRG.
  • the present invention makes full use of the fully symmetrical structure and high quality factor characteristics of the Type II resonant gyroscope, and adds a set of "Gyro Compass Index” algorithm inside the gyroscope control circuit by constructing an observer, which is called “Index In Loop” ", that is, the self-calibration method of the free precession of the internal resonator (self-calibration), which realizes the separation of drift error from the angular rate, thereby improving the accuracy of the GMD azimuth measurement.
  • the self-calibration method of the present invention is to make the resonator rotate by free precession so as to be in two different positions, realize the switching of the gyroscope between the working mode 1 and the working mode 2, and avoid the energy loss during the switching. Adopting the self-calibration method of free precession can fundamentally solve the problem of repeatability error, and realize that the measurement accuracy is better than 1° index under the full inclination angle.
  • the flowchart of the self-calibration method is shown in Figure 2.
  • FIG. 3 is a block diagram of the principle of the closed-loop control system of the gyroscope.
  • C x and Cy are the quadrature components of the demodulation value of the fixed drive shaft
  • S x and Sy are the quadrature components of the demodulation value of the fixed measurement axis
  • C x represents the amplitude of the drive shaft
  • S x Characterization of phase correlation of the drive shaft C y associated with Coriolis force detection axis
  • S y characterization quadrature couplers four four coefficients as closed loop control system inputs, respectively, to achieve:
  • AGC automatic gain control loop
  • Phase closed loop control Usually a phase locked loop circuit (PLL) is used to make the phase difference through PID control Tends to zero, similar to amplitude control, set Realize that the resonator works at the natural operating frequency ⁇ x ;
  • PLL phase locked loop circuit
  • Quadrature coupling closed-loop control Coriolis force similar to a closed loop control, characterized by coupling the quadrature error amount S y as an input signal, PID control, closed-loop control, coupled achieve orthogonality error amount
  • the present invention aims at the closed-loop control circuit of the gyroscope, adds a state observer inside it for observation, and performs precession indexing of the gyroscope resonator under the condition of external excitation, so as to realize the separation between the drift error and the angular rate, and then zero Partially estimate and realize self-calibration.
  • the MCU calibration processing algorithm unit is embedded in the closed-loop control loop of the gyroscope. After receiving the external GMD command, it starts self-calibration.
  • the MCU calibration processing algorithm unit sends out the excitation signal to realize the feed, and receives the acquisition signal from the state observer.
  • the signal and the collected signal are calculated and processed by the self-calibration algorithm.
  • the exterior of the external excitation is relative to the closed loop control loop of the original gyroscope.
  • the control block diagram of the gyroscope in working mode 1 is shown in Figure 4.
  • two state observers E 1 and E 2 are set .
  • E 1 and E 2 are the output value of the antinode controller and the output value of the node controller, respectively.
  • the PLL and the quadrature coupled closed-loop control loop are ignored.
  • D -x refers to the detection end of the main mode, representing the detection electrode 2A/2B of the main mode in Figure 10
  • E +x refers to the driving end of the main mode, representing the main mode
  • D +y refers to the detection end of the sub-mode, representing the detection electrode 4A/4B
  • E -y refers to the driving end of the sub-mode, representing the driving electrode 3A/3B
  • C a refers to the wave
  • the closed loop controller of the web shaft Is the set antinode vibration amplitude
  • C p refers to the closed-loop controller of the node axis, Is the set node vibration amplitude, usually set in the deep closed-loop negative feedback mode
  • the X axis (that is, the +x/-x axis in Figure 10) is the antinode axis
  • the Y axis (that is, the -y/+y axis in Figure 10) is the node axis.
  • the vibration mode diagram of is shown in Figure 5.
  • the output of the antinode axis controller is:
  • the output of the node controller is:
  • the measured gain usually refers to the conversion of the externally input Coriolis force into capacitance changes (such as quartz hemispherical resonators, MEMS resonators) or charge changes (
  • the proportional coefficient and feedback gain coefficient of piezoelectric ceramic resonators (such as metal CVG, Quapason TM, etc.) usually refer to the proportional coefficient of converting voltage output into feedback force (torque), such as the inverse piezoelectric effect of piezoelectric ceramics , Or use capacitive electrostatic force feedback, etc.
  • B is the zero bias of the gyroscope.
  • refers to the input angular rate.
  • the antinode axis is along the Y axis (ie -y/+y axis in Figure 10), and the node axis is along the X axis (ie, +x/-x axis in Figure 10), as shown in Figure 7,
  • the output of the antinode axis controller in working mode 2 is:
  • the output of the node controller in working mode 2 is:
  • Equations (4.52) and (4.56) constitute the basic relational expressions of the gyroscope's zero-bias self-calibration and self-calibration.
  • Equations (4.57) and (4.58) constitute the basic relational expressions of the principle of gyroscope self-calibration.
  • the standing wave precession method In order to ensure the normal operation of the gyroscope in the self-calibration process, especially to avoid the energy loss of the resonator during state switching, the standing wave precession method is more effective and reliable; the present invention combines The working process of GMD combines the full-angle free precession mode with the force balance mode, and realizes the switching of two states (that is, two working modes) through the precession of the antinode axis; according to the control strategy of the gyroscope, the full-angle mode and the depth The biggest difference of the negative feedback rate mode is that the latter uses deep negative feedback technology to suppress free precession, as shown in Figure 8.
  • the antinode control and the node control are the same, and the only difference is that the antinode axis is fixed.
  • Amplitude, the node axis is set to 0 amplitude; just based on this consideration, through a given known excitation signal, the antinode axis and the node axis of the standing wave can precess freely at the set angular rate.
  • An excitation signal comprising a first excitation signal S a and the second excitation signal S p; S a first excitation signal and a second excitation signal S p are the main mode detection signal D -x demodulated signal and the detection time mode D + y is combined to realize feed-in.
  • the calibration algorithm controls the processor module to generate simple harmonic excitation signals as follows:
  • 2 ⁇
  • is the precession angle of the antinode axis relative to the initial position.
  • the Coriolis force is proportional to the input angular rate, so the precession angle is set to change according to a certain time interval T, and ⁇ is differentiated to obtain the equivalent angular rate as:
  • the wave antinodes with the shaft section free precession axis, acting controller C a, C p signal is synthesized with the pitch axis antinodes wave signal output shaft, whereby the observer output E a and E p They are:
  • state observer E a E p acquisition signal contains four sections, namely: to maintain the vibration amplitude of the antinodes force shaft, the input angular rate causes a Coriolis force, The precession Coriolis force generated by a given external excitation and the simple harmonic force caused by damping imbalance can change the position of the antinode axis of the harmonic oscillator through the given excitation, thereby increasing the observability of the constant drift related to the damping imbalance. Realize the estimation of constant drift.
  • the superscript with a ⁇ sign represents the estimated value or calculated value, and the one without it represents the state value.
  • ⁇ C is the exciting Coriolis force generated by the excitation signal
  • k represents the Braun coefficient of the fully symmetric Coriolis vibratory gyroscope, and its value is only related to the shape of the resonator
  • b represents the bias error caused by damping imbalance
  • ⁇ ⁇ Indicates the damping unbalance angle of the harmonic oscillator, as shown in Figure 11, which illustrates that the error source of the solid-state resonant gyroscope mainly comes from frequency splitting and damping imbalance. Two corresponding angles are given.
  • the calibration process is divided into three physical processes, as shown in Fig. 9, realized by the control sequence of the processor.
  • the gyroscope is in working mode 1.
  • the antinode axis is X and the node axis is Y.
  • the ⁇ 0° in equations (4.62) and (4.63).
  • the antinode axis driving electrodes are: 1A, 1B measuring electrode 2A, 2B, the drive shaft of the electrode nodes 3A, 3B, measuring electrodes 4A, 4B, and in conjunction with the control system design and calculation methods, and collect output E a and E p are stored observer formula:
  • the antinode axis is Y
  • the node axis is X
  • the antinode axis driving electrodes are: 3A, 3B
  • the measuring electrodes 4A, 4B the drive shaft of the electrode nodes 1A, 1B, measuring electrodes 2A, 2B, steady-state output such as a gyroscope of formula (4.66) and (4.67)
  • the acquisition of the output E a and E p are stored observer Mode:
  • the above analysis analyzes the estimation method of input angular rate and zero bias under ideal conditions.
  • the non-ideal factors of the resonator especially the difference in the characteristics of the antinode and the driving of the node and the material of the detection electrode, the difference between high temperature and Under the harsh environment of vibration, the long-term stress release and temperature influence cause the gain coefficient in the two measurement modes to change with time and temperature, which makes the scale factor error.
  • the scale factor refers to the The given different input angular rate (the input is the angle for the full-angle mode) corresponds to the output value of different gyroscopes (analog, digital, frequency, etc.), and the ratio of the output value to the input value (or fitting value) is called Is the scaling factor.
  • the usual method of calculating the scaling factor is to calibrate and calculate by externally inputting a given signal, such as the angular rate value given by the turntable.
  • the off-line method is adopted, that is, calibration and calibration are achieved by simulating a given input excitation or semi-physical simulation before using the gyroscope.
  • the given analog input excitation includes: the precise angular rate, temperature, and angular rate changes (also called angular acceleration) achieved by the turntable excitation, de-calibration and calculation of the constant value of the scaling factor, linearity Key indicators such as temperature, stability, repeatability, temperature-related temperature characteristics, bandwidth, etc., after the calibration is completed, an offline compensation algorithm is generally performed, and the relevant core parameters are solidified through program input. It can be said that once the factory leaves the factory, the relevant parameter indicators are solidified and cannot be changed.
  • the accuracy or stability of the scaling factor directly determines the accuracy of the gyroscope. In practical applications, the offline model made before leaving the factory becomes invalid or loss of accuracy due to the stress release, aging, and environmental factors of the gyroscope's sensitive unit. The repeatability error of the degree factor.
  • the scaling factor calibration method does not need to switch the antinode and node axis. It can identify the forward channel gain (mainly including the drive gain of the sensitive unit) by observing the response of the excitation signal at a given frequency point. And measurement gain), therefore, the real-time measurement and calibration of the scale factor can also be achieved through the architecture built in Figure 8.
  • the present invention directly references this method, and will not be repeated.
  • the Blaine factor is related to the structure of the harmonic oscillator and is a stable value, it can be set to 1 in the analysis.
  • the scaling factors that define working mode 1 and working mode 2 are SF p1 and SF p2 , respectively, according to formula (4.68) and formula (4.69)
  • the estimated input angular rate and zero offset error can be obtained,
  • SF p1 and SF p2 are the scaling factors of the first position and the second position, respectively, and their values can be decomposed into:
  • SF p1 SF p10 + ⁇ SF p1 + ⁇ SF p1 ...(4.70)
  • SF p10 and SF p20 are design value indicators, and their values are known; ⁇ SF p1 and ⁇ SF p2 are the error values that can be identified by the scaling factor self-calibration method; ⁇ SF p1 and ⁇ SF p2 Is the residual value after calibration.
  • SF p1 and SF p2 are defined as the expressions of the scale factors at two positions. The calculation method of the scale factors is the IEEE standard, which will not be repeated here.
  • the ground speed component For the MWD (measurement while drilling) stop state, since the fixed input of the gyroscope is the ground speed component, if the latitude in the laboratory is 40°, the ground speed component is about 12°/h, the final self-calibration accuracy is about:
  • the final azimuth measurement accuracy is about 0.06 ⁇ , which is far better than the design target value of 1°.
  • Figure 2 shows the relevant design timing and operation flow.
  • the constant zero bias of the three gyros are calibrated respectively.
  • the GMD works in a slightly disturbed or completely static working environment, it contains horizontal sections.
  • the constant zero deviation and input angular rate of the gyroscope can be estimated through the zero deviation self-calibration method.
  • the microprocessor sets related instructions to achieve zero deviation calibration at any position. And it forms a complementary design with the zero-bias calibration scheme of the indexing mechanism.
  • the self-calibration method of the present invention is particularly suitable for GMD systems, and the gyroscope starts to perform self-calibration after receiving the GMD self-calibration instruction.
  • the specific calibration steps include:
  • Step 1 Start the self-calibration program
  • Step 3 observer data, the gyro output at an operating mode, i.e., calculated using the formula (4.64) and (4.65) and two outputs and the observer E p E a data set;
  • Step 4 Antinode axis precession control; after receiving the precession command, the antinode axis and the nodal axis of the gyroscope precess at the preset fixed precession angular rate, and the steady state of the drive axis and the measurement axis at this time output of formula (4.62) and (4.63), i.e., the observer at E p and E a precession mode output signal;
  • the signals of the two observers include: the force to maintain the vibration amplitude of the antinode axis, the Coriolis force caused by the input angular rate, the precession Coriolis force generated by a given external excitation, and the simple harmonic force caused by damping imbalance. Given the excitation, change the position of the antinode axis of the harmonic oscillator, thereby increasing the observability of the constant drift related to the damping imbalance, and realizing the estimation of the constant drift;
  • Step 5 The gyroscope is calibrated with the scale factor in working mode 2, and the calibration formula is equation (4.71);
  • the antinode axis is Y
  • the node axis is X
  • the precession angle parameter ⁇ 90°
  • Step 6 the gyro output data of the operation mode 2 in the observer, i.e., calculated using the formula (4.66) and (4.67) and two outputs and the observer E p E p of the data set;
  • Step 7 According to the results of steps 2, 3 and 5, 6, as well as equations (4.70) and (4.71), solve equations (4.68) and (4.69) to obtain estimates of input angular rate and zero bias error, and complete the input The angular rate and the zero offset error are separated to realize self-calibration.
  • step 6 After the above step 6 is completed, the antinode axis is reset, and the calibration is over.
  • the antinode axis reset process and the calculation process of step 7 do not interfere with each other, and the execution time is in no order or can be performed at the same time.
  • the calibration method of the present invention is suitable for strapdown inertial navigation systems, which include several (for example, three-axis) gyroscopes and several (for example, three-axis) accelerometers.
  • Strapdown inertial navigation system can be applied to measurement while drilling system and continuous navigation measurement system to perform zero-bias self-calibration of the gyroscope to improve the accuracy of measurement while drilling in directional drilling or the accuracy of attitude measurement during navigation.
  • real-time polling can be used, that is, when calibrating and calibrating a gyroscope, the gyroscope does not participate in the navigation algorithm of the system (such as attitude measurement), and the rest of the gyroscopes It works normally, and the combination of other gyroscopes and accelerometers provides real-time navigation solution data (or attitude measurement data) until all gyroscopes are calibrated, and finally outputs the navigation data calculated by all calibrated gyroscopes (or Attitude measurement, initial alignment data).
  • the self-calibration method of the present invention is suitable for various gyroscopes.
  • the self-calibration can be performed under the static and non-stationary state of the drill collar, but the self-calibration is preferably performed under the static state of the drill collar.
  • the accuracy of self-calibration is higher when the drill collar is stationary, and its azimuth measurement accuracy can reach 0.06 ⁇ .
  • the judgment of whether the drill collar is in a static state is to determine whether the sensitive velocity observation and/or the sensitive angular rate observation is less than the determination threshold, if so, it is determined that the drill collar is in a static state, otherwise it is not in a static state.
  • the sensitive speed observation can be the acceleration value;
  • the sensitive angular rate observation can be the root mean square value of the gyroscope's angular rate.
  • To determine whether the drill collar is in a static state can also be determined by external disturbance, that is, whether the disturbance of the external mud and/or the vibration sensed by the vibration sensor is less than the set threshold; if so, it is determined that the drill collar is at rest, otherwise the drill collar In a non-stationary state. You can choose one or both of the two methods for judging the static state of the drill collar to be used at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

一种固态谐振陀螺自校准方法及系统,涉及地下钻井姿态测量技术领域,能够实现零偏误差与角速率的分离,从根本上解决重复性误差问题;该校准方法通过外部馈入激励信号,实时采集陀螺仪内部关键监测点在不同工作模式下的稳态信号,通过算法实现零偏误差和输入角速率的分离,从而校准陀螺仪的重复性误差;所述激励信号包括第一和第二激励信号;所述第一和第二激励信号分别与解调后的主模态检测信号D -x和次模态检测信号D +y结合,实现馈入;关键监测点包括波腹控制器的输出点和波节控制器的输出点,并根据激励信号和监测点的采集信号实现零偏误差和输入角速率的分离。该方案可适用于随钻测量系统或导航系统中。

Description

固态谐振陀螺自校准方法及系统 【技术领域】
本发明涉及地下钻井姿态测量技术领域,尤其涉及一种固态谐振陀螺自校准方法及系统。
【背景技术】
采用由陀螺仪与加速度计组成的惯导系统进行初始对准或者寻北时,方位测量的精度取决于陀螺仪常值漂移在地理东向的可观测性分量大小,当完全处于水平段,如井斜角处于90°,在东西走向,地理东向的陀螺仪输出主要来自Z轴陀螺(如图1所示),由于其常值漂移不可观测,也就无法消除,从而使得GMD(Gyro Measurement while Drilling,本文简称为GMD)无法在东西走向全姿态尤其是水平段达到满意的测量精度。
Gyro-Compass-Index方法是从外部增加旋转机构,通过改变陀螺仪的敏感轴方向,在假设转动过程的短时间内陀螺仪的零偏常值不变,只是改变了敏感轴的极性,从而达到消除漂移误差的目的。从现代控制理论角度来说,是通过转位增加了观测器(Observer),从而实现最优估计。但是目前外部转位的双位置解析法,在东西走向井轨迹工况,方位测量精度随着井斜角的增加而变差。
若要实现在全姿态角(即井斜角涵盖了0°~90°,钻进方向是东西走向或者南北走向或者是任意组合的夹角方向)下,方位精度均优于1°,常规方法是增加另外一个自由度的转位,也就是沿着探管径向实现对Z轴陀螺仪的转位,实现Z轴陀螺常值漂移的分离,进而提高可观测性。但受制于井下的狭小空间,实现Z轴陀螺仪在水平方向的转位调制难度较大。此外,两套转位机构也会增加GMD设计的难度,并降低产品的可靠性。因 此本发明尝试从其他技术纬度去解决陀螺仪常值漂移的校准问题。
固态谐振陀螺仪的漂移误差主要是来自于频率裂解、阻尼失衡和控制误差。角度随机游走系数主要取决于频率裂解以及PLL的控制精度,其大小决定了GMD寻北的快速性;控制误差主要是来自于维持谐振子能量的闭环控制器的误差,高Q值低阻尼带来的好处就是需要维持谐振的能量小,从而降低了控制误差带来的零偏误差,而阻尼失衡是零偏重复性误差的重要因素。
高温固态谐振陀螺仪的角度随机游走系数可以达到
Figure PCTCN2020090521-appb-000001
角度随机游走系数影响了对准的时间,其影响对准精度的量级远远小于目标值,通过高Q值的设计,降低驱动的能量,从而降低控制误差,这也是固态谐振陀螺仪的设计保障;由阻尼不匹配带来的零偏常值,是唯一需要辨识的漂移误差。该误差是和哥氏力同相位的,无法通过解调的方式分离,且由于时间或者温度带了谐振子的阻尼失衡误差的改变,故而,其也是陀螺仪重复性误差的主要源头。
因此,有必要研究一种固态谐振陀螺自校准方法及系统来应对现有技术的不足,以解决或减轻上述一个或多个问题。
【发明内容】
有鉴于此,本发明提供了一种固态谐振陀螺自校准方法及系统,能够实现零偏误差与角速率的分离,从根本上解决重复性误差问题,实现满足全井斜角下测量精度优于1°指标,甚至可达0.06゜。
一方面,本发明提供一种固态谐振陀螺自校准方法,其特征在于,所述方法通过外部馈入激励信号,实时采集陀螺仪内部关键监测点在不同工作模式下的输出信号,通过算法实现零偏误差和输入角速率的分离,从而校准陀螺仪的重复性误差。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述激励信号包括第一激励信号和第二激励信号;所述第一激励信号和所述第二激励信号分别与解调后的主模态检测信号D -x和次模态检测信号D +y结合,实现馈入。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,陀螺仪内部关键监测点包括波腹控制器的输出点和波节控制器的输出点;在波腹控制器的输出点和波节控制器的输出点分别设置状态观测器,通过状态观测器输出陀螺仪在第一工作模式和第二工作模式的稳态信号,并根据馈入的激励信号和输出的稳态信号实现零偏误差和输入角速率的估计。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,稳态信号的内容包括:维持波腹轴振动幅度的力、输入角速率引起的哥氏力、外部馈入激励产生的进动哥氏力和阻尼失衡引起的简谐力。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述校准方法的具体步骤包括:
S1、陀螺仪在第一工作模式下进行标度因子校准,根据外部馈入的已知激励信号得到第一位置标度因子自校准后的残差值δSF p1
S2、状态观测器输出第一工作模式下的稳态信号
Figure PCTCN2020090521-appb-000002
Figure PCTCN2020090521-appb-000003
S3、陀螺仪以自由进动的方式由第一工作模式转换到第二工作模式;
S4、陀螺仪在第二工作模式下进行标度因子校准,根据外部馈入的已知激励信号得到第二位置标度因子自校准后的残差值δSF p2
S5、状态观测器输出第二工作模式下的稳态信号
Figure PCTCN2020090521-appb-000004
Figure PCTCN2020090521-appb-000005
S6、根据步骤S1、S2以及S4、S5的结果,分离零偏误差和输入角速率,从而实现陀螺仪的自校准。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式, 第一工作模式为陀螺仪的波腹轴为X轴,波节轴为Y轴,进动角度参数θ=0°;第二工作模式为陀螺仪的波腹轴为Y轴,波节轴为X轴,进动角度参数θ=90°。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,θ=2λ,λ是波腹轴相对初始位置的进动角度。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,步骤S3自由进动的过程包括:收到进动指令后,陀螺仪的波腹轴与波节轴按照预设的固定进动角速率进动,直到θ=90°。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在步骤S5完成后,波腹轴复位,校准结束,波腹轴复位过程与步骤S6的计算过程互不干扰,执行顺序不分先后。
另一方面,本发明提供一种随钻测量系统,所述系统包括捷联惯导系统,所述捷联惯导系统包括若干陀螺仪、若干加速度计;其特征在于,所述捷联惯导系统采用如上任一所述的自校准方法进行陀螺仪的零偏自校准,提高定向钻进的随钻测量的精度。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述随钻测量系统判断钻铤是否处于静止状态,若处于静止状态,所述随钻测量系统向陀螺仪的MCU模块发送自校准命令开始进行自校准。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,判断钻铤是否处于静止状态的具体内容为第一判断方式和第二判断方式中的任意一种或两种;
所述第一判断方式具体为:判断敏感速度观测量和/或敏感角速率观测量是否小于判定阈值,若是,则判定钻铤处于静止状态,否则钻铤不处于静止状态;
所述第二判断方式具体为:判断外部泥浆的扰动量和/或振动传感器感 应到的振动量是否小于设定的阈值;若是,则判定钻铤处于静止状态,否则钻铤不处于静止状态。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述敏感速度观测量为加速度数值;所述敏感角速率观测量为陀螺仪角速率的均方根值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,对两个及以上陀螺仪进行自校准时采用实时轮询的方式进行;
具体为:逐一轮流对陀螺仪进行自校准,且正在自校准中的陀螺仪不参与捷联惯导系统的导航算法,其他陀螺仪正常工作。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述随钻测量系统最终的方位测量精度可达0.06゜。
再一方面,本发明提供一种连续导航测量系统,所述系统包括捷联惯导系统,所述捷联惯导系统包括三轴陀螺仪、三轴加速度计;其特征在于,所述捷联惯导系统采用如上任一所述的自校准方法进行陀螺仪的零偏自校准,提高导航过程中的方位测量精度。
与现有技术相比,本发明可以获得包括以下技术效果:通过自由进动,实现工作模式1和工作模式2之间的切换,避免切换时的能量损耗;在陀螺仪控制电路内部增加状态观测器,并通过循环自校准法实现漂移误差从角速率中分离,从而提升GMD的方位测量精度;采用自由进动的自校准方法可以从根本上解决重复性误差问题,实现满足全井斜角下测量精度优于1°指标。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是陀螺仪转位置消除零偏原理图;
图2是本发明一个实施例提供的陀螺仪进行自校准的流程图;
图3是本发明一个实施例提供的陀螺仪闭环控制系统原理框图;
图4是本发明一个实施例提供的陀螺仪在工作模式1下的控制框图;
图5是本发明一个实施例提供的谐振子在工作模式1下的振型示意图;
图6是本发明一个实施例提供的陀螺仪在工作模式2下的控制框图;
图7是本发明一个实施例提供的谐振子在工作模式2下的振型示意图;
图8是本发明一个实施例提供的GMD陀螺仪自校准与自标定控制框图;
图9是本发明一个实施例提供的陀螺仪自校准过程示意图;
图10是本发明一个实施例提供的固态谐振陀螺仪的电极布置示意图;
图11是本发明一个实施例提供的全对称谐振子的简化傅科摆模型图。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形 式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
哥式振动陀螺仪分为TypeⅠ和TypeⅡ型。TypeⅠ多采用音叉方案,如早期的MEMS梳齿式陀螺仪,石英音叉式陀螺仪。TypeⅡ型采用全对称结构,极大地改善了频率与阻尼的各项同性指标,并且正是由于对称结构的设计,使得陀螺仪的方便地实现了自校准与自标定,并能够实现力平衡速率模式与速率积分全角模式的统一,代表性的产品如MEMS环形陀螺仪,MEMS-Disk型陀螺仪,以及半球陀螺仪HRG。
本发明充分利用TypeⅡ型谐振陀螺仪的全对称结构以及高的品质因子特性,通过构建观测器的方式,在陀螺仪控制电路内部增加一套“Gyro Compass Index”算法,称之为“Index In Loop”,即内部谐振子自由进动的自校准方法(self-calibration),实现漂移误差从角速率中分离,从而提升GMD的方位测量精度。
本发明的自校准方法,是通过自由进动使谐振子转动从而处于两个不同的位置,实现陀螺仪在工作模式1和工作模式2之间的切换,避免切换时的能量损耗。采用自由进动的自校准方法可以从根本上解决重复性误差问题,实现满足全井斜角下测量精度优于1°指标。自校准方法的流程图如图2所示。
图3是陀螺仪闭环控制系统原理框图。在图3中,C x、C y是固定驱动轴的解调值正交分量,S x、S y是固定测量轴的解调值正交分量,C x表征了驱动轴的幅度,S x表征了驱动轴的相位相关,C y是与检测轴的哥氏力相关,S y表征正交耦合,四个系数作为四路闭环控制系统的输入,分别实现:
1)幅度闭环控制。通常采用自动增益控制回路(AGC),使得谐振子在驱动轴上等幅度振荡,维持振荡幅度到预设值,即:
Figure PCTCN2020090521-appb-000006
2)相位闭环控制。通常采用锁相环电路(PLL)通过PID控制使得相 位差
Figure PCTCN2020090521-appb-000007
趋于零,类似于幅度控制,设定
Figure PCTCN2020090521-appb-000008
实现谐振子工作在固有工作频率ω x
3)哥氏力闭环控制。通过PID闭环控制,实现闭环反馈力实时平衡输入哥氏力,实现驻波被固定捆绑在固定电极上,也就是实现进动角θ=θ 0,通常设定θ 0=0,,表征实时进动角大小的误差量C y是PID控制信号的输入,通过控制策略实施,从而实现误差量C y=θ 0=0;
4)正交耦合闭环控制。类似于哥氏力闭环控制,表征正交耦合误差量的S y作为PID控制信号的输入,通过闭环控制,实现正交耦合误差量的
Figure PCTCN2020090521-appb-000009
Figure PCTCN2020090521-appb-000010
本发明针对陀螺仪闭环控制电路,在其内部增加状态观测器进行观测,在外部激励的条件下对陀螺仪谐振子进行进动转位,实现漂移误差和角速率之间的分离,进而对零偏进行估计,实现自校准。在陀螺仪的闭环控制回路中嵌入MCU校准处理算法单元,接收到外部GMD指令后开始自校准,由该MCU校准处理算法单元发出激励信号实现馈入,并接收状态观测器的采集信号,根据激励信号和采集信号进行自校准算法的计算和处理。外部激励的外部是相对于原始陀螺仪的闭环控制回路来说的。
陀螺仪在工作模式1下的控制框图如图4所示。在分析中,设置两个状态观测器E 1与E 2,E 1与E 2分别是波腹控制器的输出值与波节控制器的输出值。为了方便介绍校准原理,在该控制框图中,忽略了PLL与正交耦合闭环控制回路。
图4和图6中,D -x是指主模态的检测端,代表图10中的主模态的检测电极2A/2B,E +x是指主模态的驱动端,代表主模态的驱动电极1A/1B;D +y是指次模态的检测端,代表检测电极4A/4B,E -y是指次模态的驱动端,代表驱动电极3A/3B;C a是指波腹轴的闭环控制器,
Figure PCTCN2020090521-appb-000011
是设定的波腹振动幅 度;C p是指波节轴的闭环控制器,
Figure PCTCN2020090521-appb-000012
是设定的波节振动幅度,在深度闭环负反馈模式下通常设置
Figure PCTCN2020090521-appb-000013
在工作模式1,X轴(即图10中+x/-x轴)是波腹轴,Y轴(即图10中-y/+y轴)是波节轴,谐振子的工作模式1下的振型示意图如图5所示,此时的波腹轴控制器输出为:
Figure PCTCN2020090521-appb-000014
波节控制器的输出为:
Figure PCTCN2020090521-appb-000015
其中
Figure PCTCN2020090521-appb-000016
Figure PCTCN2020090521-appb-000017
Figure PCTCN2020090521-appb-000018
Figure PCTCN2020090521-appb-000019
为工作模式1下的波腹轴的测量增益系数与反馈增益系数,同样
Figure PCTCN2020090521-appb-000020
Figure PCTCN2020090521-appb-000021
为工作模式1下的波节轴的测量增益系数与反馈增益系数,测量增益通常是指将外部输入的哥氏力转换为电容变化(如石英半球式谐振子、MEMS谐振子)或者电荷变化(采用压电陶瓷的谐振子如金属CVG、Quapason TM等)的比例系数,反馈增益系数,通常是指将电压输出转换为反馈力(力矩)的比例系数,如采用压电陶瓷的逆压电效应、或采用电容式的静电力反馈等。B是陀螺仪的零偏。Ω指输入角速率。
切换X/Y轴,使陀螺仪工作在状态2,即工作模式2,陀螺仪的控制框图如图6所示。
此时,波腹轴沿Y轴(即图10中-y/+y轴)方向,波节轴沿着X轴(即图10中+x/-x轴)方向,如图7所示,工作模式2下的波腹轴控制器输出为:
Figure PCTCN2020090521-appb-000022
工作模式2下波节控制器的输出为:
Figure PCTCN2020090521-appb-000023
式(4.52)与式(4.56)构成了陀螺仪零偏自校准、自标定的基本关系式。
可知,当陀螺仪工作在互成45度角的两个平衡位置时,并假设在两个位置状态切换时间很短,且陀螺仪的实际输入角速率保持不变,假设半球谐振子的波腹轴与波节轴的检测与驱动的电极材料完全一致,即G 1=G 2=G,则由式(4.52)与式(4.56)可求得零偏:
Figure PCTCN2020090521-appb-000024
求得输入角速率值:
Figure PCTCN2020090521-appb-000025
式中,SF是指陀螺仪的标度因子,
Figure PCTCN2020090521-appb-000026
式(4.57)与式(4.58)构成了陀螺仪自校准原理的基本关系式。
自校准的建模与实现:为了保证陀螺仪在自校准过程中的正常工作,尤其是避免在状态切换中谐振子能量的损耗,采用驻波进动的方式更为有效和可靠;本发明结合GMD的工作流程,将全角自由进动模式与力平衡模式进行结合,通过波腹轴的进动实现两种状态(即两种工作模式)的切换;根据陀螺仪的控制策略,全角模式与深度负反馈速率模式的最大区别是后者通过反馈深度负反馈技术抑制自由进动,如图8所示,实质上,波腹控制与波节控制是一致的,唯一的区别是波腹轴设置固定幅度,波节轴设置0幅度;正是基于此考虑,通过给定的已知激励信号,使得驻波的波腹轴与波节轴按照设定的角速率自由进动,设置控制策略如图8所示。激 励信号包括第一激励信号S a和第二激励信号S p;第一激励信号S a和第二激励信号S p分别与解调后的主模态检测信号D -x和次模态检测信号D +y结合,实现馈入。
图8中,校准算法控制处理器模块产生简谐激励信号分别为:
S a=G Acosθ  ...(4.59)
S p=G Asinθ  ...(4.60)
S a和S p分别代表对应的简谐激励,G A是激励的增益系数。
其中,θ=2λ,λ是波腹轴相对初始位置的进动角度。
哥氏力与输入角速率成比例关系,故而设置进动角度按照一定的时间间隔T变化,对θ微分,得到等效角速率为:
Figure PCTCN2020090521-appb-000027
此时,波腹轴与波节轴将自由进动,作用在控制器C a、C p的信号是波腹轴与波节轴输出信号的合成,由此得到观测器E a与E p输出分别为:
Figure PCTCN2020090521-appb-000028
Figure PCTCN2020090521-appb-000029
式(4.62)与式(4.63)中,状态观测器E a、E p采集的信号都包含了四个部分,分别是:维持波腹轴振动幅度的力、输入角速率引起的哥氏力、外部给定激励产生的进动哥氏力、阻尼失衡引起的简谐力,通过已知给定的激励,改变谐振子波腹轴位置,从而增加与阻尼失衡相关的常值漂移可观测性,实现常值漂移的估计。上标带有^号的,代表估计值,或者计算值,不带的,就是表示状态值。
Ω C为由激励信号产生的激励哥氏力;k代表全对称哥氏振动陀螺仪的布兰恩系数,其值只和谐振子的形状相关;b表示由于阻尼失衡引起的零 偏误差;θ τ表示谐振子的阻尼失衡角,如图11所示,说明固态谐振陀螺仪的误差源,主要来自频率裂解与阻尼失衡,给出了对应的两个角度。
根据式(4.62)与式(4.63),将该校准过程分为三个物理过程,如图9所示,通过处理器的控制时序实现。
1)初始位置(工作模式1)
陀螺仪处于工作模式1,此时的波腹轴为X,波节轴为Y,式(4.62)与(4.63)中的θ=0°,此时的波腹轴驱动电极为:1A、1B,测量电极2A、2B,波节轴的驱动电极为3A、3B,测量电极4A、4B,并结合控制系统设计与计算方法,采集并存储观测器E a与E p的输出分别为式:
Figure PCTCN2020090521-appb-000030
Figure PCTCN2020090521-appb-000031
2)进动过程
发出指令,实现陀螺仪的波腹轴与波节轴按照固定进动角速率进动直到θ=90°,此时的驱动轴与测量轴的稳态输出为式(4.62)与式(4.63)所示。
3)结束位置(工作模式2)
在位置θ=90°时,停止进动,陀螺正常工作在位置2,此时的波腹轴为Y,波节轴为X,波腹轴驱动电极为:3A、3B,测量电极4A、4B,波节轴的驱动电极为1A、1B,测量电极2A、2B,陀螺仪稳态输出如式(4.66)与式(4.67)所示,采集并存储观测器E a与E p的输出分别为式:
Figure PCTCN2020090521-appb-000032
Figure PCTCN2020090521-appb-000033
同样,设定G 1与G 2可准确测得,同样为简单起见,G 1=G 2=G,则由公式(4.65)与(4.66)可估计校准后的陀螺仪输入角速率与零偏,原理与 公式(4.52)与(4.56)类似。
上述分析了理想情况下,输入角速率与零偏的估计方法,实际上由于谐振子的非理想因素,尤其是波腹与波节的驱动和检测电极的材料等特性的差异性,在高温与振动的恶劣环境下,长时间的应力释放与温度影响,导致两个测量模式下的增益系数随时间与温度变化,从而使得标度因子存在误差,根据IEEE标准的定义,标度因子是指在给定的不同输入角速率(对于全角模式输入是角度)对应于不同陀螺仪的输出值(模拟量、数字量、频率量等),输出值与输入值的比值(或者拟合值)称之为标度因子。标度因子的计算通常方法是通过外部输入给定信号如转台给定的角速率值去标定与计算的。一般是采用离线的方式,也就是在陀螺仪使用之前,通过模拟给定输入激励或者半实物仿真,实现标定与校准的。对于速率陀螺仪来说,给定的模拟输入激励包含:转台激发实现的精确的角速率、温度、角速率的变化(也称之为角加速度),去标定与计算标度因子常值、线性度、稳定性、重复性、与温度相关的温度特性、带宽等关键指标,完成标定后,一般进行离线补偿算法,并通过程序输入从而固化了相关的核心参数。可以说,一旦出厂之后,相关的参数指标是固化的,不能改变。标度因子的精度或者稳定性直接决定了陀螺仪的精度,在实际应用中,往往由于陀螺敏感单元的应力释放、老化、环境的因素,使得出厂之前做的离线模型失效或者精度损失,即标度因子的重复性误差问题。
因此,如果开发一种在使用过程中(称之为在线in-line),能够模拟地面的离线环境,实现标度因子的实时的标定与校准,是GMD校准算法研究的又一个重点。不同于GMD零偏校准方法,标度因子校准方法不需要切换波腹、波节轴,通过观测给定频率点的激励信号的响应,从而辨识前向通道增益(主要包含了敏感单元的驱动增益与测量增益),因此,通过图8搭建的架构亦可以实现标度因子的实时测量与校准。本发明直接引用该 方法,不再赘述。
由于布莱恩因子与谐振子的结构形式有关,是稳定值,在分析中可设置为1,定义工作模式1与工作模式2的标度因子分别为SF p1与SF p2根据式(4.68)与式(4.69)可得输入角速率与零偏误差的估计,
Figure PCTCN2020090521-appb-000034
Figure PCTCN2020090521-appb-000035
式(4.68)与式(4.69)中,SF p1与SF p2分别是第一位置与第二位置的标度因子,其值可以分解为:
SF p1=SF p10+ΔSF p1+δSF p1   ...(4.70)
SF p2=SF p20+ΔSF p2+δSF p2   ...(4.71)
式(4.70)与式(4.71)中,SF p10与SF p20是设计值指标,其值已知;ΔSF p1与ΔSF p2是可以用标度因子自校准手段辨识的误差值;δSF p1与δSF p2是校准后的残差值。SF p1和SF p2,定义为两个位置的标度因子的表达式,标度因子的计算获取方法为IEEE的标准,这里不做赘述。
设定残差值与设计值的关系式为:
δSF p1≈δSF p2≈εSF p10≈εSF p20   ...(4.72)
式(4.72)中,ε为标度因子残差的相对误差值,实际测试值ε=1000ppm,则可以得到通过零偏自校准方法的输入角速率估计误差为:
Figure PCTCN2020090521-appb-000036
对于MWD(随钻测量)停钻状态,由于陀螺仪的固定输入是地速分量,如在实验室的纬度是40°,地速分量约为12°/h,最终的自校准精度约是:
Figure PCTCN2020090521-appb-000037
根据式(4.24),最终的方位测量精度约为0.06゜,远优于设计目标值1°的指标。
至此,分析了陀螺仪的零偏自校准的基本原理,结合其在GMD中的应用,图2给出了相关的设计时序和操作流程。在静基座下,通过标度因子自校准与零偏自校准的结合,分别校准了三个陀螺的常值零偏,由于GMD工作在微小扰动或者完全静止的工作环境下,在包含水平段任何井斜角,都可以通过零偏自校准的方法估计陀螺仪的常值零偏与输入角速率,在GMD设计中,微处理器中设置相关的指令,实现在任何位置的零偏校准,并与转位机构的零偏校准方案构成互补设计。
本发明的自校准方法尤其适用于GMD系统,当陀螺仪接收到GMD自校准指令后即开始进行自校准。具体的校准步骤包括:
步骤1、启动自校准程序;
步骤2、陀螺仪在工作模式1下进行标度因子校准,校准公式为式(4.70);陀螺仪处于工作模式1时的波腹轴为X,波节轴为Y,进动角度参数θ=0°;
步骤3、陀螺仪输出工作模式1下的观测器数据,即采用式(4.64)和式(4.65)计算并输出设置的两个观测器E a和E p的数据;
步骤4、波腹轴进动控制;收到进动指令后,陀螺仪的波腹轴与波节轴按照预设的固定进动角速率进动,此时的驱动轴与测量轴的稳态输出为式(4.62)与式(4.63),即观测器E a和E p在进动模式中的输出信号;
两个观测器的信号均包括:维持波腹轴振动幅度的力、输入角速率引起的哥氏力、外部给定激励产生的进动哥氏力以及阻尼失衡引起的简谐力,通过已知给定的激励,改变谐振子波腹轴位置,从而增加与阻尼失衡相关 的常值漂移可观测性,实现常值漂移的估计;
步骤5、陀螺仪在工作模式2下进行标度因子校准,校准公式为式(4.71);
陀螺仪处于工作模式2时的波腹轴为Y,波节轴为X,进动角度参数θ=90°;
步骤6、陀螺仪输出工作模式2下的观测器数据,即采用式(4.66)和式(4.67)计算并输出设置的两个观测器E p和E p的数据;
步骤7、根据步骤2、3和步骤5、6的结果,以及式(4.70)和式(4.71),求解式(4.68)和式(4.69)得到输入角速率与零偏误差的估计,完成输入角速率和零偏误差的分离,从而实现自校准。
在上述步骤6完成后,波腹轴复位,校准结束,波腹轴复位过程与步骤7的计算过程互不干扰,执行时不分先后,也可同时进行。
本发明的校准方法适用于捷联惯导系统,捷联惯导系统包括若干(比如三轴)陀螺仪、若干(比如三轴)加速度计。捷联惯导系统可以应用于随钻测量系统和连续导航测量系统,进行陀螺仪的零偏自校准,提高定向钻进的随钻测量的精度或者导航过程中的姿态测量精度。
多个陀螺仪的自校准与自标定过程中,可以使用实时轮询的方式,即,在校准和标定一个陀螺仪时,该陀螺仪不参加系统的导航算法(如姿态测量),其余的陀螺仪正常工作,并由其余陀螺仪与加速度计的组合提供实时导航解算数据(或者姿态测量数据)直到全部的陀螺仪都得到校准,最终输出经过全部校准后的陀螺仪计算得到的导航数据(或者姿态测量、初始对准数据)。
本发明的自校准方法适用于各种陀螺仪,用于随钻系统时,可在钻铤静止和非静止状态下进行自校准,但是优选钻铤静止状态下进行自校准。钻铤静止状态下自校准的精度更高,其方位测量精度可达0.06゜。
钻铤是否处于静止状态的判断为:判断敏感速度观测量和/或敏感角速率观测量是否小于判定阈值,若是,则判定钻铤处于静止状态,否则不处于静止状态。敏感速度观测量可以是加速度数值;敏感角速率观测量可以是陀螺仪角速率的均方根值。判断钻铤是否处于静止状态还可通过判断外部扰动,即判断外部泥浆的扰动量和/或振动传感器感应到的振动量是否小于设定的阈值;若是,则判定钻铤处于静止,否则钻铤处于非静止状态。两种钻铤静止状态的判断方法可以任选其一或者两个同时使用。
以上对本申请实施例所提供的一种固态谐振陀螺自校准方法及系统,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商 品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (16)

  1. 一种固态谐振陀螺自校准方法,其特征在于,所述方法通过外部馈入激励信号,实时采集陀螺仪内部关键监测点在不同工作模式下的输出信号,通过算法实现零偏误差和输入角速率的分离,从而校准陀螺仪的重复性误差。
  2. 根据权利要求1所述的固态谐振陀螺自校准方法,其特征在于,所述激励信号包括第一激励信号和第二激励信号;所述第一激励信号和所述第二激励信号分别与解调后的主模态检测信号D -x和次模态检测信号D +y结合,实现馈入。
  3. 根据权利要求2所述的固态谐振陀螺自校准方法,其特征在于,陀螺仪内部关键监测点包括波腹控制器的输出点和波节控制器的输出点;在波腹控制器的输出点和波节控制器的输出点分别设置状态观测器,通过状态观测器输出陀螺仪在第一工作模式和第二工作模式的稳态信号。
  4. 根据权利要求1所述的固态谐振陀螺自校准方法,其特征在于,稳态信号的内容包括:维持波腹轴振动幅度的力、输入角速率引起的哥氏力、外部馈入激励产生的进动哥氏力和阻尼失衡引起的简谐力。
  5. 根据权利要求1-4任一所述的固态谐振陀螺自校准方法,其特征在于,所述校准方法的具体步骤包括:
    S1、陀螺仪在第一工作模式下进行标度因子校准,根据外部馈入的已知激励信号得到第一位置标度因子自校准后的残差值δSF p1
    S2、状态观测器输出第一工作模式下的稳态信号
    Figure PCTCN2020090521-appb-100001
    Figure PCTCN2020090521-appb-100002
    S3、陀螺仪以自由进动的方式由第一工作模式转换到第二工作模式;
    S4、陀螺仪在第二工作模式下进行标度因子校准,根据外部馈入的已知激励信号得到第二位置标度因子自校准后的残差值δSF p2
    S5、状态观测器输出第二工作模式下的稳态信号
    Figure PCTCN2020090521-appb-100003
    Figure PCTCN2020090521-appb-100004
    S6、根据步骤S1、S2以及S4、S5的结果,分离零偏误差和输入角速率,从而实现陀螺仪的自校准。
  6. 根据权利要求5所述的固态谐振陀螺自校准方法,其特征在于,第一工作模式为陀螺仪的波腹轴为X轴,波节轴为Y轴,进动角度参数θ=0°;第二工作模式为陀螺仪的波腹轴为Y轴,波节轴为X轴,进动角度参数θ=90°。
  7. 根据权利要求6所述的固态谐振陀螺自校准方法,其特征在于,θ=2λ,λ是波腹轴相对初始位置的进动角度。
  8. 根据权利要求5所述的固态谐振陀螺自校准方法,其特征在于,步骤S3自由进动的过程包括:收到进动指令后,陀螺仪的波腹轴与波节轴按照预设的固定进动角速率进动,直到θ=90°。
  9. 根据权利要求5所述的固态谐振陀螺自校准方法,其特征在于,在步骤S5完成后,波腹轴复位,校准结束,波腹轴复位过程与步骤S6的计算过程互不干扰,执行顺序不分先后。
  10. 一种随钻测量系统,所述系统包括捷联惯导系统,所述捷联惯导系统包括若干陀螺仪、若干加速度计;其特征在于,所述捷联惯导系统采用权利要求1-9任一所述的自校准方法进行陀螺仪的零偏自校准,提高定向钻进的随钻测量的精度。
  11. 根据权利要求10所述的随钻测量系统,其特征在于,所述随钻测量系统判断钻铤是否处于静止状态,若处于静止状态,所述随钻测量系统向陀螺仪的MCU模块发送自校准命令开始进行自校准。
  12. 根据权利要求11所述的随钻测量系统,其特征在于,判断钻铤是否处于静止状态的具体内容为第一判断方式和第二判断方式中的任意一种或两种;
    所述第一判断方式具体为:判断敏感速度观测量和/或敏感角速率观测量是否小于判定阈值,若是,则判定钻铤处于静止状态,否则钻铤不处于 静止状态;
    所述第二判断方式具体为:判断外部泥浆的扰动量和/或振动传感器感应到的振动量是否小于设定的阈值;若是,则判定钻铤处于静止状态,否则钻铤不处于静止状态。
  13. 根据权利要求12所述的随钻测量系统,其特征在于,所述敏感速度观测量为加速度数值;所述敏感角速率观测量为陀螺仪角速率的均方根值。
  14. 根据权利要求10所述的随钻测量系统,其特征在于,对两个及以上陀螺仪进行自校准时采用实时轮询的方式进行;
    具体为:逐一轮流对陀螺仪进行自校准,且正在自校准中的陀螺仪不参与捷联惯导系统的导航算法,其他陀螺仪正常工作。
  15. 根据权利要求11所述的随钻测量系统,其特征在于,所述随钻测量系统最终的方位测量精度达到0.06゜。
  16. 一种连续导航测量系统,所述系统包括捷联惯导系统,所述捷联惯导系统包括三轴陀螺仪、三轴加速度计;其特征在于,所述捷联惯导系统采用权利要求1-9任一所述的自校准方法进行陀螺仪的零偏自校准,提高导航过程中的方位测量精度。
PCT/CN2020/090521 2020-05-11 2020-05-15 固态谐振陀螺自校准方法及系统 WO2021227013A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/248,897 US20210348503A1 (en) 2020-05-11 2021-02-12 Self-calibration method and system of solid-state resonator gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010394129.0A CN111896026B (zh) 2020-05-11 2020-05-11 固态谐振陀螺自校准方法及系统
CN202010394129.0 2020-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/248,897 Continuation US20210348503A1 (en) 2020-05-11 2021-02-12 Self-calibration method and system of solid-state resonator gyroscope

Publications (1)

Publication Number Publication Date
WO2021227013A1 true WO2021227013A1 (zh) 2021-11-18

Family

ID=73207566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090521 WO2021227013A1 (zh) 2020-05-11 2020-05-15 固态谐振陀螺自校准方法及系统

Country Status (2)

Country Link
CN (1) CN111896026B (zh)
WO (1) WO2021227013A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184211A (zh) * 2021-12-27 2022-03-15 北京计算机技术及应用研究所 一种惯导可靠性试验中性能变化机理一致性判定方法
CN114370886A (zh) * 2021-11-23 2022-04-19 上海航天控制技术研究所 基于虚拟转动的全角模式振动陀螺测量误差自标定方法
CN114413891A (zh) * 2022-01-18 2022-04-29 天津大学 温度传感与抑制缺陷的固体波动局部化惯性导航陀螺仪
CN114440933A (zh) * 2022-02-28 2022-05-06 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪旋转调制标度自校正系统
CN114509057A (zh) * 2022-03-14 2022-05-17 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪全角模式控制方法
CN114543843A (zh) * 2022-03-14 2022-05-27 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪通道误差标定校正方法
CN114608612A (zh) * 2022-03-11 2022-06-10 中国船舶重工集团公司第七0七研究所 全角模式谐振陀螺阻尼不均漂移在线补偿系统及方法
CN114964195A (zh) * 2022-07-27 2022-08-30 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺角速度信号温度补偿方法
CN114964306A (zh) * 2022-04-21 2022-08-30 西北工业大学 一种半球谐振陀螺标定因数和零偏自标定方法
CN115096334A (zh) * 2022-06-20 2022-09-23 湖南航天机电设备与特种材料研究所 一种惯导性能参数分析方法及分析系统
CN115127533A (zh) * 2022-08-31 2022-09-30 中国船舶重工集团公司第七0七研究所 一种基于谐振陀螺振型旋转调制下的误差拟合补偿方法
CN115388910A (zh) * 2022-07-28 2022-11-25 西北工业大学 半球谐振陀螺误差自激励方法和系统
CN115435768A (zh) * 2022-09-29 2022-12-06 中国人民解放军火箭军工程大学 一种基于实时滑窗的半球谐振陀螺温度建模补偿方法
CN115876178A (zh) * 2022-12-19 2023-03-31 哈尔滨工业大学 平板电极式半球谐振陀螺的检测与驱动切换的控制方法
CN116086485A (zh) * 2022-08-23 2023-05-09 西北工业大学 半球谐振陀螺误差力补偿方法和装置
CN116465384A (zh) * 2023-06-20 2023-07-21 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN116499444A (zh) * 2023-06-20 2023-07-28 中国船舶集团有限公司第七〇七研究所 一种基于振型主动进动的半球谐振陀螺模态切换方法
CN116576885A (zh) * 2023-05-06 2023-08-11 哈尔滨工业大学 一种基于温度标定与补偿的半球谐振陀螺启动方法及系统
CN117928508A (zh) * 2024-03-20 2024-04-26 四川图林科技有限责任公司 一种全角控制模式的半球谐振陀螺仪驻波方位角解算方法
CN118032015A (zh) * 2024-04-12 2024-05-14 四川图林科技有限责任公司 一种提升半球谐振陀螺仪品质因数的方法
CN118392216A (zh) * 2024-07-01 2024-07-26 浙江大学 一种微机械陀螺标度因数温度非线性在线校准方法
CN119197594A (zh) * 2024-11-28 2024-12-27 中国船舶集团有限公司第七〇七研究所 一种免对准的半球谐振陀螺漂移测试方法
CN119665957A (zh) * 2025-02-20 2025-03-21 四川图林科技有限责任公司 半球谐振陀螺仪自补偿控制系统
CN119984343A (zh) * 2025-04-15 2025-05-13 中国人民解放军国防科技大学 一种驻波角速率误差补偿方法、装置、设备及存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595304B (zh) * 2020-11-17 2022-11-01 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种半球谐振陀螺工作模式自适应控制系统及控制方法
CN112611889B (zh) * 2020-12-08 2022-04-05 中国人民解放军陆军步兵学院石家庄校区 基于静电等效力的微机械加速度计自标定方法
CN112697123B (zh) * 2021-01-05 2022-10-18 中国电子科技集团公司第二十六研究所 一种半球谐振陀螺的工作模式切换控制方法及系统
CN113252019B (zh) * 2021-05-13 2022-05-24 哈尔滨工业大学 一种前向放大系数不一致时的半球谐振陀螺振型角获取方法
CN114046804B (zh) * 2021-11-08 2023-12-22 中国人民解放军国防科技大学 速率积分陀螺驱动电极误差辨识方法、装置、系统和介质
CN114838741B (zh) * 2022-07-04 2022-09-02 中国船舶重工集团公司第七0七研究所 一种全角半球谐振陀螺激励电极误差补偿方法
CN115162955A (zh) * 2022-08-03 2022-10-11 中国石油天然气集团有限公司 一种基于固态陀螺的钻井井下测量方法和系统
CN115060258B (zh) * 2022-08-18 2022-11-01 中国船舶重工集团公司第七0七研究所 一种基于谐振惯导系统的卡尔曼滤波精对准方法
CN115824182B (zh) * 2022-12-07 2024-01-16 中国船舶集团有限公司第七〇七研究所 半球谐振陀螺激励检测方法及系统
CN117129019A (zh) * 2023-10-27 2023-11-28 贵州航天控制技术有限公司 一种半球谐振陀螺的自校准系统
CN118010069B (zh) * 2024-04-10 2024-06-11 四川图林科技有限责任公司 一种半球谐振陀螺仪的振动误差补偿方法
CN118980424B (zh) * 2024-10-17 2024-12-17 四川图林科技有限责任公司 一种基于半球谐振子的振动检测方法
CN120063332A (zh) * 2025-04-27 2025-05-30 天津大学 陀螺仪漂移误差补偿方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969785A (zh) * 2017-04-21 2017-07-21 中国科学院微电子研究所 陀螺仪自校准装置及方法
CN108253952A (zh) * 2017-12-01 2018-07-06 北京时代民芯科技有限公司 一种零偏自校准mems陀螺仪及其零偏自校准方法
US10082404B1 (en) * 2014-09-29 2018-09-25 The Boeing Company Electronic self calibration design for disk resonator gyroscopes using electrode time multiplexing
CN109323711A (zh) * 2018-12-04 2019-02-12 中国工程物理研究院电子工程研究所 一种陀螺仪模态反转零位自校正方法及系统
CN109813927A (zh) * 2019-01-11 2019-05-28 东南大学 一种全对称微机电陀螺仪三轴角速度测量系统
CN110886606A (zh) * 2019-11-20 2020-03-17 中国地质大学(北京) 一种随钻特征量辅助的惯性测斜方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376763C (zh) * 2005-08-26 2008-03-26 中国石化集团胜利石油管理局钻井工艺研究院 一种捷联式稳定平台装置
CN102564452B (zh) * 2011-12-09 2014-12-10 北京理工大学 一种基于惯性导航系统的在线自主标定方法
CN103277047B (zh) * 2013-05-06 2015-05-20 北京市普利门电子科技有限公司 用于旋转导向钻井工具的单轴稳定平台装置及其稳定方法
CN103616037B (zh) * 2013-12-05 2016-04-06 北京航空航天大学 一种imu标定系统的自检自校方法
CN104880201B (zh) * 2015-03-26 2016-01-13 武汉大学 Mems陀螺自动标定方法
CN110068320B (zh) * 2019-05-05 2024-02-06 中国工程物理研究院总体工程研究所 一种零偏自校准原子陀螺仪
CN110686662B (zh) * 2019-11-26 2022-06-24 上海航天控制技术研究所 一种可在线自校准的双模式差分谐振式陀螺仪系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082404B1 (en) * 2014-09-29 2018-09-25 The Boeing Company Electronic self calibration design for disk resonator gyroscopes using electrode time multiplexing
CN106969785A (zh) * 2017-04-21 2017-07-21 中国科学院微电子研究所 陀螺仪自校准装置及方法
CN108253952A (zh) * 2017-12-01 2018-07-06 北京时代民芯科技有限公司 一种零偏自校准mems陀螺仪及其零偏自校准方法
CN109323711A (zh) * 2018-12-04 2019-02-12 中国工程物理研究院电子工程研究所 一种陀螺仪模态反转零位自校正方法及系统
CN109813927A (zh) * 2019-01-11 2019-05-28 东南大学 一种全对称微机电陀螺仪三轴角速度测量系统
CN110886606A (zh) * 2019-11-20 2020-03-17 中国地质大学(北京) 一种随钻特征量辅助的惯性测斜方法及装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370886A (zh) * 2021-11-23 2022-04-19 上海航天控制技术研究所 基于虚拟转动的全角模式振动陀螺测量误差自标定方法
CN114370886B (zh) * 2021-11-23 2024-01-02 上海航天控制技术研究所 基于虚拟转动的全角模式振动陀螺测量误差自标定方法
CN114184211A (zh) * 2021-12-27 2022-03-15 北京计算机技术及应用研究所 一种惯导可靠性试验中性能变化机理一致性判定方法
CN114413891A (zh) * 2022-01-18 2022-04-29 天津大学 温度传感与抑制缺陷的固体波动局部化惯性导航陀螺仪
CN114413891B (zh) * 2022-01-18 2024-01-23 天津大学 温度传感与抑制缺陷的固体波动局部化惯性导航陀螺仪
CN114440933A (zh) * 2022-02-28 2022-05-06 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪旋转调制标度自校正系统
CN114608612A (zh) * 2022-03-11 2022-06-10 中国船舶重工集团公司第七0七研究所 全角模式谐振陀螺阻尼不均漂移在线补偿系统及方法
CN114509057B (zh) * 2022-03-14 2023-06-20 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪全角模式控制方法
CN114509057A (zh) * 2022-03-14 2022-05-17 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪全角模式控制方法
CN114543843A (zh) * 2022-03-14 2022-05-27 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪通道误差标定校正方法
CN114964306A (zh) * 2022-04-21 2022-08-30 西北工业大学 一种半球谐振陀螺标定因数和零偏自标定方法
CN115096334A (zh) * 2022-06-20 2022-09-23 湖南航天机电设备与特种材料研究所 一种惯导性能参数分析方法及分析系统
CN114964195A (zh) * 2022-07-27 2022-08-30 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺角速度信号温度补偿方法
CN114964195B (zh) * 2022-07-27 2022-10-11 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺角速度信号温度补偿方法
CN115388910A (zh) * 2022-07-28 2022-11-25 西北工业大学 半球谐振陀螺误差自激励方法和系统
CN116086485A (zh) * 2022-08-23 2023-05-09 西北工业大学 半球谐振陀螺误差力补偿方法和装置
CN115127533B (zh) * 2022-08-31 2022-11-18 中国船舶重工集团公司第七0七研究所 一种基于谐振陀螺振型旋转调制下的误差拟合补偿方法
CN115127533A (zh) * 2022-08-31 2022-09-30 中国船舶重工集团公司第七0七研究所 一种基于谐振陀螺振型旋转调制下的误差拟合补偿方法
CN115435768A (zh) * 2022-09-29 2022-12-06 中国人民解放军火箭军工程大学 一种基于实时滑窗的半球谐振陀螺温度建模补偿方法
CN115876178B (zh) * 2022-12-19 2023-09-29 哈尔滨工业大学 平板电极式半球谐振陀螺的检测与驱动切换的控制方法
CN115876178A (zh) * 2022-12-19 2023-03-31 哈尔滨工业大学 平板电极式半球谐振陀螺的检测与驱动切换的控制方法
CN116576885A (zh) * 2023-05-06 2023-08-11 哈尔滨工业大学 一种基于温度标定与补偿的半球谐振陀螺启动方法及系统
CN116465384B (zh) * 2023-06-20 2023-08-18 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN116499444B (zh) * 2023-06-20 2023-09-05 中国船舶集团有限公司第七〇七研究所 一种基于振型主动进动的半球谐振陀螺模态切换方法
CN116499444A (zh) * 2023-06-20 2023-07-28 中国船舶集团有限公司第七〇七研究所 一种基于振型主动进动的半球谐振陀螺模态切换方法
CN116465384A (zh) * 2023-06-20 2023-07-21 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN117928508A (zh) * 2024-03-20 2024-04-26 四川图林科技有限责任公司 一种全角控制模式的半球谐振陀螺仪驻波方位角解算方法
CN118032015A (zh) * 2024-04-12 2024-05-14 四川图林科技有限责任公司 一种提升半球谐振陀螺仪品质因数的方法
CN118032015B (zh) * 2024-04-12 2024-06-11 四川图林科技有限责任公司 一种提升半球谐振陀螺仪品质因数的方法
CN118392216A (zh) * 2024-07-01 2024-07-26 浙江大学 一种微机械陀螺标度因数温度非线性在线校准方法
CN119197594A (zh) * 2024-11-28 2024-12-27 中国船舶集团有限公司第七〇七研究所 一种免对准的半球谐振陀螺漂移测试方法
CN119665957A (zh) * 2025-02-20 2025-03-21 四川图林科技有限责任公司 半球谐振陀螺仪自补偿控制系统
CN119984343A (zh) * 2025-04-15 2025-05-13 中国人民解放军国防科技大学 一种驻波角速率误差补偿方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN111896026B (zh) 2021-05-18
CN111896026A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021227013A1 (zh) 固态谐振陀螺自校准方法及系统
US20210348503A1 (en) Self-calibration method and system of solid-state resonator gyroscope
CN111878056B (zh) 一种陀螺随钻测量系统及方法
US11220899B2 (en) Gyro measurement while drilling system and method therefor
CN112697123B (zh) 一种半球谐振陀螺的工作模式切换控制方法及系统
CN111536993B (zh) 一种振动陀螺电极角度误差的辨识与补偿方法及系统
CN111578923A (zh) 一种谐振式陀螺闭环控制方法与系统
CN113074756B (zh) 一种速率积分型振动陀螺的误差补偿方法和装置
CN109323711B (zh) 一种陀螺仪模态反转零位自校正方法及系统
CN105783899B (zh) 具有原位偏差自校准的高带宽科里奥利振动陀螺仪(cvg)
US11193366B2 (en) High-temperature solid state resonant gyroscope and drilling measurement system composed thereby
CN113686356B (zh) 基于rbf网络的谐振陀螺零偏在线自补偿系统及方法
CN114383590B (zh) 速率积分陀螺的相位误差辨识和补偿方法
CN113447047B (zh) 速率积分陀螺检测电极误差辨识方法、装置、系统及介质
WO2021227010A1 (zh) 一种高温固态谐振陀螺仪及其组成的钻井测量系统
Bülz et al. North finding with a single double mass MEMS gyroscope-A performance demonstrator
Tang et al. A rate hemispherical resonator gyroscope with bias stability of 0.0056°/h with compensation of phase delay
Yin et al. A phase self-correction method for bias temperature drift suppression of MEMS gyroscopes
Peng et al. An automatically mode-matched MEMS gyroscope based on phase characteristics
Bogolyubov et al. Astatic gyrocompass based on a hybrid micromechanical gyroscope
CN114894216B (zh) 微机电陀螺寻北仪精度提升方法及微机电陀螺寻北仪
CN114046804B (zh) 速率积分陀螺驱动电极误差辨识方法、装置、系统和介质
CN116698084A (zh) 一种对称式陀螺零偏漂移实时抑制与零偏稳定性提升方法
Chen et al. A time-series configuration method of mode reversal in MEMS gyroscopes under different temperature-varying conditions
Wang et al. A digital output MEMS DRG on-chip temperature compensation method based on virtual sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935338

Country of ref document: EP

Kind code of ref document: A1