WO2021225373A1 - 유도 가열 장치 및 유도 가열 장치의 제어 방법 - Google Patents

유도 가열 장치 및 유도 가열 장치의 제어 방법 Download PDF

Info

Publication number
WO2021225373A1
WO2021225373A1 PCT/KR2021/005645 KR2021005645W WO2021225373A1 WO 2021225373 A1 WO2021225373 A1 WO 2021225373A1 KR 2021005645 W KR2021005645 W KR 2021005645W WO 2021225373 A1 WO2021225373 A1 WO 2021225373A1
Authority
WO
WIPO (PCT)
Prior art keywords
working coil
power value
mode
required power
inverter circuit
Prior art date
Application number
PCT/KR2021/005645
Other languages
English (en)
French (fr)
Inventor
정시훈
강계룡
김한나
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2021268495A priority Critical patent/AU2021268495A1/en
Priority to CN202180033396.8A priority patent/CN115517016A/zh
Publication of WO2021225373A1 publication Critical patent/WO2021225373A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current

Definitions

  • the present specification relates to an induction heating device and a control method of the induction heating device.
  • the induction heating device may include two or more heating zones and two or more working coils corresponding thereto. For example, when a user puts a container on each of the two heating areas and inputs a heating start command, each working coil is driven with a driving frequency corresponding to a required power value set by the user.
  • 1 is a graph showing a resonance characteristic curve of each working coil when an induction heating device including two working coils is driven.
  • each working coil shows the resonance characteristic curve of each working coil, that is, the resonance characteristic curve 31 of the first working coil and the second working coil when the two working coils are respectively driven in a state where the container is placed in each heating region of the induction heating device.
  • the resonance characteristic curves 32 of are shown respectively. 1 , the resonance frequency of the first working coil is fr1, and the resonance frequency of the second working coil is fr2.
  • the driving frequency of at least one of the two working coils is arbitrarily adjusted so that the difference value f2-f1 of the driving frequencies of each working coil is out of the audible frequency band.
  • the driving frequency of the working coil is arbitrarily adjusted to reduce interference noise, there is a problem in that the output power value of the working coil does not match the required power value set by the user.
  • An object of the present specification is an induction heating device and an induction heating device capable of preventing interference noise due to driving of the working coil while maintaining the output power value of the working coil equal to the required power value when two working coils are simultaneously driven To provide a control method.
  • Another object of the present specification is to provide an induction heating device and a control method of the induction heating device capable of preventing interference noise due to driving of a working coil when heating various types of containers having different characteristics.
  • Induction heating apparatus includes a first working coil and a second working coil.
  • the first working coil is driven with a first driving frequency corresponding to the first required power value set by the user
  • the second working coil is driven with a second driving frequency corresponding to the second required power value set by the user. do.
  • the controller determines a third driving frequency corresponding to the third required power value .
  • the driving frequency of the second working coil should be changed to the third driving frequency.
  • the controller calculates a difference value between the driving frequency and the third driving frequency of the working coil (eg, the first working coil) in which the required power value is not changed, and the calculated difference value is compared to a first predetermined reference range (eg, greater than or equal to 5 kHz and less than or equal to 20 kHz).
  • a first predetermined reference range eg, greater than or equal to 5 kHz and less than or equal to 20 kHz.
  • the controller changes the operation mode or power control mode of the first inverter circuit or the second inverter circuit.
  • the controller changes the operation mode of the first inverter circuit or the second inverter circuit from the full-bridge mode to the half-bridge mode.
  • the operation mode of the first inverter circuit or the second inverter circuit is changed to the half-bridge mode, the output power value in the entire frequency band of the first working coil or the second working coil is lowered. Accordingly, a difference value between the driving frequency of the first working coil and the driving frequency of the second working coil is greater than a boundary value (eg, 20 kHz) of the audible frequency band.
  • the controller changes the power control mode of the first inverter circuit or the second inverter circuit to any one of an asymmetric pulse width modulation mode and a phase shift mode.
  • the controller changes the power control mode to an asymmetric pulse width modulation mode when the operating mode of the working coil in which the required power value is changed is a half-bridge mode, and the operating mode of the working coil in which the required power value is changed is full If in bridge mode, change the power control mode to either an asymmetric pulse width modulation mode or a phase shift mode.
  • the first working coil or the second working coil does not change the driving frequency of the first working coil or the second working coil. 2 It is possible to adjust the output power value of the working coil. Therefore, even if the output power value of the first working coil or the second working coil is adjusted to be the same as the third required power value, interference noise due to the driving of the working coil is prevented.
  • Induction heating device is a first working coil, the first working coil is driven at a first driving frequency corresponding to a first required power value of the first working coil to supply a current to the first working coil an inverter circuit, a second working coil, a second inverter circuit driven at a second driving frequency corresponding to a second required power value of the second working coil to supply a current to the second working coil, and the first working coil; or
  • a third driving frequency corresponding to the third required power is determined, and the driving frequency of the working coil in which the required power value is not changed and the first 3 Calculate the difference value of the driving frequency, and when the difference value is included in the first reference range, change the operation mode or power control mode of the first inverter circuit or the second inverter circuit, and the required power value is and a controller for changing the changed output power value of the working coil into the third required power value.
  • the controller operates the first inverter circuit when the resonant frequency of the first working coil is smaller than the resonant frequency of the second working coil and the difference value is included in a predetermined first reference range
  • the mode is changed to the half-bridge mode, and the driving frequency of the first inverter circuit is changed to a fourth driving frequency corresponding to the third required power value.
  • the first inverter circuit includes a variable capacitor unit and a relay unit connected to the variable capacitor unit, and the controller opens or closes a plurality of relays included in the relay unit to obtain the variable capacitor.
  • a negative capacitance value is set to (Cr,h) of [Equation 1] below.
  • (fr,h) is the same value as the frequency of the switching signal input to the second inverter circuit, and Lr is the inductance value of the second inductor included in the second inverter circuit)
  • the controller changes the power control mode of the first inverter circuit to an asymmetric pulse width modulation mode after the driving frequency of the first inverter circuit is changed to the fourth driving frequency.
  • the controller is configured such that when the resonance frequency of the first working coil is the same as the resonance frequency of the second working coil and the difference value is included in a predetermined first reference range, the required power value is The changed working coil power control mode is changed to any one of an asymmetric pulse width modulation mode and a phase shift mode, and the output power value of the working coil in which the required power value is changed according to the power control mode is the same as the third required power value to adjust
  • the controller changes the power control mode to the asymmetric pulse width modulation mode when the operation mode of the working coil in which the required power value is changed is a half-bridge mode, and the power required value is changed walking If the operation mode of the coil is a full bridge mode, the power control mode is changed to one of the asymmetric pulse width modulation mode and the phase shift mode.
  • the required power value is The changed output power value of the working coil is changed to the third required power value.
  • the controller when the power control mode is set to a phase shift mode, the controller adjusts a phase difference between switching signals for driving a working coil in which the required power value is changed.
  • the output power value of the coil is changed to the third required power value.
  • the step of changing the operation mode or power control mode of the first inverter circuit or the second inverter circuit is that the resonance frequency of the first working coil is smaller than the resonance frequency of the second working coil.
  • the first inverter circuit includes a variable capacitor unit and a relay unit connected to the variable capacitor unit, and when the operation mode of the first inverter circuit is changed to the half-bridge mode, the relay unit By opening or closing a plurality of relays included in , the capacitance value of the variable capacitor unit is set to (Cr,h) in Equation 1 below.
  • (fr,h) is the same value as the frequency of the switching signal input to the second inverter circuit, and Lr is the inductance value of the second inductor included in the second inverter circuit)
  • the power control mode of the first inverter circuit is changed to an asymmetric pulse width modulation mode. It further includes the step of changing.
  • the step of changing the operation mode or power control mode of the first inverter circuit or the second inverter circuit is that the resonance frequency of the first working coil is the resonance frequency of the second working coil and Changing the power control mode of the working coil in which the required power value is changed to any one of an asymmetric pulse width modulation mode and a phase shift mode when the same and the difference value is included in a predetermined first reference range, and according to the power control mode and adjusting the output power value of the working coil in which the required power value is changed to be the same as the third required power value.
  • the step of changing the power control mode of the working coil in which the required power value is changed to any one of an asymmetric pulse width modulation mode and a phase shift mode is the operation mode of the working coil in which the required power value is changed Changing the power control mode to the asymmetric pulse width modulation mode if the half-bridge mode, and changing the power control mode to the asymmetric pulse width modulation mode and the phase changing to any one of the transition modes.
  • the step of changing the output power value of the working coil in which the required power value is changed to the third required power value is when the power control mode is set to the asymmetric pulse width modulation mode, the required power value and changing the output power value of the working coil whose required power value is changed to the third required power value by adjusting a duty ratio of a switching signal for driving the changed working coil.
  • the step of changing the output power value of the working coil in which the required power value is changed to the third required power value is when the power control mode is set to the phase shift mode, the required power value is changed. and changing the output power value of the working coil in which the required power value is changed to the third required power value by adjusting a phase difference between switching signals for driving the working coil.
  • the induction heating apparatus can prevent interference noise due to driving of the working coil while maintaining the output power value of the working coil equal to the required power value when the two working coils are simultaneously driven.
  • the induction heating apparatus can prevent interference noise due to the driving of the working coil when heating various types of containers having different characteristics.
  • 1 is a graph showing a resonance characteristic curve of each working coil when an induction heating device including two working coils is driven.
  • FIG. 2 is an exploded perspective view of an induction heating device according to an embodiment of the present specification.
  • FIG. 3 is a circuit diagram of an induction heating device according to an embodiment of the present specification.
  • FIG. 4 shows waveforms of a switching signal, an input voltage, and a resonance current, respectively, when the operation mode of the first inverter circuit is a full bridge mode in an embodiment of the present specification.
  • FIG. 5 is a waveform of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a full bridge mode and the power control mode of the first inverter circuit is an asymmetric pulse width modulation mode in an embodiment of the present specification; indicates.
  • FIG. 6 shows waveforms of a switching signal, an input voltage, and a resonance current, respectively, when the operation mode of the first inverter circuit is the full bridge mode and the power control mode of the first inverter circuit is the phase shift mode in one embodiment of the present specification.
  • FIG. 7 is a graph illustrating a resonance characteristic curve of a working coil when an operation mode of the first inverter circuit is a full bridge mode in an embodiment of the present specification.
  • the 8 is a power control mode of the first inverter circuit when the power control mode of the first inverter circuit is set to the pulse frequency modulation mode in a state in which the operation mode of the first inverter circuit is the full bridge mode in one embodiment of the present specification; It is a graph representing the power conversion efficiency of the induction heating device, respectively, when the power control mode of the first inverter circuit is set to the phase shift mode when the asymmetric pulse width modulation mode is set.
  • FIG. 9 shows waveforms of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a half-bridge mode in an embodiment of the present specification.
  • FIG. 10 shows waveforms of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a half-bridge mode and the power control mode of the first inverter circuit is an asymmetric pulse width modulation mode in an embodiment of the present specification; indicates.
  • FIG. 11 is a graph illustrating a resonance characteristic curve of a working coil when an operation mode of a first inverter circuit is a half-bridge mode in an embodiment of the present specification.
  • FIG. 14 is a graph illustrating resonance characteristic curves of each working coil when the operation mode of the first working coil is changed to a half-bridge mode in order to prevent interference noise in the embodiment of FIG. 13 .
  • 16 is a graph illustrating a resonance characteristic curve of each working coil when the power control mode of the first working coil is changed to prevent interference noise in the embodiment of FIG. 15 .
  • FIG. 18 is a graph illustrating a resonance characteristic curve of each working coil when the power control mode of the second working coil is changed to prevent interference noise in the embodiment of FIG. 17 .
  • 19 is a flowchart illustrating a control method of an induction heating device according to an embodiment of the present specification.
  • FIG. 2 is an exploded perspective view of an induction heating device according to an embodiment of the present specification.
  • the cover plate 104 is coupled to the upper surface of the case 102 to seal the space formed inside the case 102 from the outside.
  • the cover plate 104 includes a top plate 106 on which a container for cooking food can be placed.
  • the upper plate part 106 may be made of a tempered glass material such as ceramic glass, but the material of the upper plate part 106 may vary depending on the embodiment.
  • the working coil assemblies 122 and 124 and heating regions 12 and 14 respectively corresponding to the upper plate part 106 are formed.
  • lines or figures corresponding to the heating regions 12 and 14 may be printed or displayed on the upper plate portion 106 .
  • the case 102 may have a hexahedral shape with an open top.
  • Working coil assemblies 122 and 124 for heating the container are disposed in the space formed inside the case 102 .
  • an interface unit having a function of allowing a user to apply power or adjusting the power level of each heating region 12 , 14 , and a function of displaying information related to the induction heating device 10 inside the case 102 . (114) is provided.
  • the interface unit 114 may be formed of a touch panel capable of both inputting information and displaying information by touch, but an interface unit 114 having a different structure may be used according to an embodiment.
  • the upper plate part 106 is provided with a manipulation area 118 disposed at a position corresponding to the interface part 114 .
  • characters or images may be preprinted on the manipulation area 118 .
  • a user may perform a desired operation by touching a specific point of the manipulation area 118 with reference to characters or images printed in advance on the manipulation area 118 .
  • information output by the interface unit 114 may be displayed through the manipulation area 118 .
  • a user may set the power level of each heating zone 12 , 14 through the interface 114 .
  • the power level may be indicated by a number (eg, 1, 2, 3, ..., 9) on the manipulation area 118 .
  • the required power values and driving frequencies of the working coils corresponding to the respective heating regions 12 and 14 are determined.
  • the controller drives each working coil so that the output power value of each working coil matches the required power value set by the user based on the determined driving frequency.
  • a power supply unit 112 for supplying power to the working coil assemblies 122 and 124 or the interface unit 114 is disposed in a space formed inside the case 102 .
  • two working coil assemblies disposed inside the case 102 that is, the first working coil assembly 122 and the second working coil assembly 124 are exemplarily shown, but in the embodiment In some cases, three or more working coil assemblies may be disposed inside the case 102 .
  • the working coil assemblies 122 and 124 include a working coil that forms an induced magnetic field using a high-frequency alternating current supplied by the power supply unit 112 and an insulating sheet for protecting the coil from heat generated by the container.
  • the first working coil assembly 122 includes a first working coil 132 for heating a vessel placed in the first heating region 12 and a first insulating sheet 130 .
  • the second working coil assembly 124 includes a second working coil and a second heat insulating sheet. In some embodiments, the heat insulating sheet may not be disposed.
  • a temperature sensor is disposed at the center of each working coil.
  • a temperature sensor 134 is disposed at the center of the first working coil 134 .
  • a temperature sensor measures the temperature of the vessel placed in each heating zone.
  • the temperature sensor may be a thermistor temperature sensor having a variable resistance in which the resistance value changes according to the temperature of the container, but is not limited thereto.
  • the temperature sensor outputs a sensing voltage corresponding to the temperature of the container, and the sensing voltage output from the temperature sensor is transmitted to the controller.
  • the controller checks the temperature of the container based on the magnitude of the sensing voltage output from the temperature sensor, and when the temperature of the container is higher than a predetermined reference value, the overheat protection operation of lowering the output power value of the working coil or stopping the operation of the working coil carry out
  • a substrate on which a plurality of circuits or devices including a controller are mounted may be disposed in a space formed inside the case 102 .
  • the controller may perform a heating operation by driving each working coil according to a user's heating start command input through the interface unit 114 .
  • the controller stops the driving of the working coil to end the heating operation.
  • FIG. 3 is a circuit diagram of an induction heating device according to an embodiment of the present specification.
  • the induction heating device 10 is a first rectifying circuit 202, a first smoothing circuit (L1, C1), a first inverter circuit 204, a first working Coil 132 , second rectifying circuit 212 , second smoothing circuits L3 and C5 , second inverter circuit 214 , second working coil 142 , first driving circuit 22 , second driving circuit 24 and a controller 2 .
  • the first rectifying circuit 202 includes a plurality of diode elements D1, D2, D3, and D4. As shown in FIG. 3 , the first rectifying circuit 202 may be a bridge diode circuit, and may be another circuit according to an embodiment. The first rectifying circuit 202 rectifies the AC input voltage supplied from the power supply device 20 to output a voltage having a pulsating waveform.
  • the first smoothing circuits L1 and C1 smooth the voltage rectified by the first rectifying circuit 202 to output a DC link voltage.
  • the first smoothing circuits L1 and C1 include a first inductor L1 and a first DC link capacitor C1.
  • the first inverter circuit 204 includes a first switching element SW1, a second switching element SW2, a third switching element SW3, a fourth switching element SW4, a second inductor L2, and a plurality of capacitors. It includes a variable capacitor unit (C2, C3, C4), including a relay unit (206). As shown in Figure 3, the first inverter circuit 204 of the induction heating device 10 according to an embodiment of the present specification is a full bridge circuit including four switching elements (SW1, SW2, SW3, SW4) is composed of
  • the first switching element SW1 , the second switching element SW2 , the third switching element SW3 , and the fourth switching element SW4 each have a first switching signal S1 output from the first driving circuit 22 . , is turned on and off by the second switching signal S2 , the third switching signal S3 , and the fourth switching signal S4 .
  • Each of the switching elements (SW1, SW2, SW3, SW4) is turned on when each of the switching signals (S1, S2, S3, S4) is at a high level, and each of the switching signals (S1, S2, S3, S4) It is turned off when is low level.
  • any of the switching elements SW1 , SW2 , SW3 , and SW4 may be turned on and off in the same manner as each other.
  • the first switching element SW1 may be turned on and off at the same timing as that of the third switching element SW3 .
  • switching elements that are turned on and off at the same timing are referred to as 'corresponding to each other' switching elements.
  • the DC link voltage input to the first inverter circuit 204 by the turn-on and turn-off operations, that is, the switching operation, of the switching elements SW1, SW2, SW3, and SW4 included in the first inverter circuit 204 is It is converted to AC voltage (AC current).
  • the AC voltage (AC current) converted by the first inverter circuit 204 is supplied to the second inductor L2 , the first working coil 132 , and the plurality of variable capacitor units C2 , C3 , and C4 .
  • an AC voltage (AC current) is supplied by the first inverter circuit 204 , a resonance phenomenon occurs in the first working coil 132 and thermal energy is supplied to the container.
  • the first switching signal S1 , the second switching signal S2 , the third switching signal S3 , and the fourth switching signal S4 have a pulse width (PWM) having a predetermined duty ratio, respectively. modulation) signal.
  • PWM pulse width
  • the relay unit 206 includes a plurality of relays connected in series with each of the variable capacitor units C2, C3, and C4. Each relay included in the relay unit 206 may be opened or closed by a control signal of the controller 2 .
  • the total capacitance values of the variable capacitor units C2, C3, and C4 may vary according to the number of relays closed by the control of the controller 2 . That is, the controller 2 may adjust the capacitance values of the variable capacitor units C2 , C3 , and C4 by opening or closing the relay included in the relay unit 206 .
  • the controller 2 determines the operation mode of the first inverter circuit 202 , and the capacitance values of the variable capacitor units C2 , C3 , and C4 determine the operation mode of the first inverter circuit 202 .
  • the opening/closing state of each relay included in the relay unit 206 may be controlled to correspond to the mode.
  • the frequency of the resonance current flowing through the working coil 132 may be adjusted according to the capacitance values of the variable capacitor units C2 , C3 , and C4 .
  • variable capacitor unit includes three capacitors C2 , C3 , and C4 connected in parallel.
  • the number of capacitors included in the variable capacitor unit may vary according to embodiments.
  • the connection state (series or parallel) of the capacitors included in the variable capacitor unit may vary depending on the embodiment.
  • the second rectifying circuit 212 includes a plurality of diode elements D5 , D6 , D7 , and D8 . As shown in FIG. 3 , the second rectifying circuit 212 may be a bridge diode circuit, and may be another circuit according to an embodiment. The second rectifying circuit 212 rectifies the AC input voltage supplied from the power supply device 20 to output a voltage having a pulsating waveform.
  • the second smoothing circuits L3 and C5 smooth the voltage rectified by the second rectifying circuit 212 to output a DC link voltage.
  • the second smoothing circuits L3 and C5 include a third inductor L3 and a second DC link capacitor C5.
  • the second inverter circuit 214 includes a sixth capacitor C6 , a seventh capacitor C7 , a fifth switching element SW5 , and a sixth switching element SW6 .
  • the second inverter circuit 214 of the induction heating device 10 is configured as a half-bridge circuit including two switching elements SW5 and SW6.
  • the second inverter circuit 214 may be configured as a full-bridge circuit including four switching elements, like the first inverter circuit 204 .
  • the fifth switching element SW5 and the sixth switching element SW6 are respectively turned on and complementary to each other by the fifth switching signal S5 and the sixth switching signal S6 output from the second driving circuit 24 . is turned off
  • each of the switching elements SW1, SW2, SW3, SW4, SW5, and SW6 is an IGBT element, but each of the switching elements SW1, SW2, SW3, SW4, SW5, SW6 is an embodiment It may be another type of switching device (eg, BJT or FET, etc.)
  • the DC link voltage input to the second inverter circuit 214 is converted into an AC voltage (AC voltage) by the turn-on and turn-off operations, ie, switching operations, of the switching elements SW5 and SW6 included in the second inverter circuit 214 .
  • current is converted to
  • the AC voltage (AC current) converted by the second inverter circuit 214 is supplied to the second working coil 142 .
  • an AC voltage (AC current) is supplied by the second inverter circuit 214 , a resonance phenomenon occurs in the second working coil 142 to supply thermal energy to the container.
  • the fifth switching signal S5 and the sixth switching signal S6 are PWM signals each having a predetermined duty ratio.
  • the controller 2 determines the driving frequency of each of the working coils 132 and 142 to correspond to the power level set by the user for the heating region.
  • the controller 2 drives each of the working coils 132 and 142 with reference to a table in which a driving frequency corresponding to each power level is recorded or a relational expression between each power level and the driving frequency. frequency can be determined.
  • the size of the power to be output by each of the working coils 132 and 142 that is, the required power value is determined according to the power level set by the user.
  • the controller 2 supplies a control signal corresponding to the determined driving frequency to each of the driving circuits 22 and 44 .
  • Each of the driving circuits 22 and 24 has switching signals S1, S2, S3, S4, S5, S6) are output.
  • the controller 2 receiving the heating start command by the user determines the driving frequency corresponding to the required power value of each of the working coils 132 and 142, and transmits a control signal corresponding to the determined driving frequency to each driving circuit ( 22, 24). Accordingly, the switching signals S1, S2, S3, S4, S5, and S6 are output from the respective driving circuits 22 and 24, and the switching signals S1, S2, S3, S4, S5, and S6 are respectively outputted from the switching elements.
  • Each of the working coils 132 and 142 is driven while being input to (SW1, SW2, SW3, SW4, SW5, SW6). When each of the working coils 132 and 142 is driven, an eddy current flows through the container and the container is heated.
  • the first working coil 132 and the second working coil 142 are driven at the first driving frequency and the second driving frequency, respectively, and the container is being heated, the first working coil 132 or the second working coil 142 by the user
  • the second required power value of the working coil 142 may be changed to the third required power value.
  • the controller 2 is the first working coil 132 ) should be changed to the third driving frequency corresponding to the third required power value (eg, 500W).
  • the controller 2 may change the power required value of the first working coil 132 or the second working coil 142 to the third required power value, the second corresponding to the third required power value.
  • 3 Determine the drive frequency.
  • the controller 2 calculates a difference value between the driving frequency of the working coil in which the required power value is not changed and the third driving frequency.
  • a difference value between two driving frequencies means a value obtained by subtracting a small value from a larger value among the two driving frequencies.
  • the controller 2 operates the first inverter circuit 204 or the second inverter circuit 214 to prevent interference noise when the calculated difference value is included in a predetermined first reference range (eg, 5 kHz or more and 20 kHz or less). Change mode or power control mode.
  • a predetermined first reference range eg, 5 kHz or more and 20 kHz or less.
  • the resonant frequency of the first working coil 132 is smaller than the resonant frequency of the second working coil 142, and the difference between the driving frequency and the third driving frequency of the working coil in which the required power value is not changed
  • the controller 2 changes the operation mode of the first inverter circuit 204 from the full bridge mode to the half bridge mode to prevent interference noise, and the third required power value and A fourth driving frequency of the corresponding first working coil 132 is determined.
  • the controller 2 changes the driving frequency of the first inverter circuit 204 to the fourth frequency.
  • the output power value of the first working coil 132 is lowered in the entire frequency band of the first working coil 132 . Accordingly, the driving frequency of the first working coil 132 corresponding to the third required power value, that is, the fourth driving frequency is lowered. Accordingly, the difference value between the driving frequency (fourth driving frequency) of the first working coil 132 and the driving frequency (second driving frequency) of the second working coil 142 is greater than or equal to a predetermined noise avoidance value (eg, 22 kHz). be the value In the present specification, the noise avoidance value may be set to a value greater than a maximum value (eg, 20 kHz) among boundary values of the audible frequency band, and may be set differently according to embodiments.
  • a predetermined noise avoidance value eg, 22 kHz
  • the resonant frequency of the first working coil 132 is the same as the resonant frequency of the second working coil 142, and the driving frequency and the third driving frequency of the working coil in which the required power value is not changed
  • the controller 2 changes the power control mode of the working coil in which the required power value is changed to any one of an asymmetric pulse width modulation mode and a phase shift mode, and to the changed power control mode Accordingly, the output power value of the working coil whose required power value is changed is adjusted to be the same as the third required power value.
  • the controller 2 may change the power control mode to the asymmetric pulse width modulation mode when the operation mode of the working coil in which the required power value is changed is the half-bridge mode. In addition, in one embodiment of the present specification, the controller 2 may change the power control mode to any one of an asymmetric pulse width modulation mode and a phase shift mode when the operation mode of the working coil in which the required power value is changed is the full bridge mode.
  • the controller 2 when the power control mode is set to the asymmetric pulse width modulation mode, the controller 2 adjusts the duty ratio of the switching signal for driving the working coil in which the required power value is changed.
  • the output power value of the working coil may be changed to the third required power value.
  • the controller 2 when the power control mode is set to the phase shift mode, the controller 2 adjusts the phase difference between switching signals for driving the working coil in which the required power value is changed.
  • the output power value of the coil may be changed to a third required power value.
  • the driving frequency of the working coil whose required power value is changed is maintained without being changed. Accordingly, the difference between the driving frequency of the first working coil 132 and the driving frequency of the second working coil 142 is out of the audible frequency band, thereby preventing interference noise.
  • the controller 2 sets the difference between the driving frequency and the third driving frequency of the working coil in which the required power value is not changed in a predetermined second reference range (eg, 2 kHz or more and less than 5 kHz). If included, the driving frequency of the first working coil 132 and the driving frequency of the second working coil 142 may be set to be the same. By this control, generation of interference noise due to the driving of the first working coil 132 and the second working coil 142 is prevented.
  • a predetermined second reference range eg, 2 kHz or more and less than 5 kHz.
  • the controller 2 requests when the difference between the driving frequency and the third driving frequency of the working coil in which the required power value is not changed is not included in the first reference range and the second reference range.
  • the driving frequency of the working coil having the changed power value is set as the third driving frequency, and the driving frequency of the working coil in which the required power value is not changed is not changed. This is because interference noise does not occur when the difference between the driving frequency of the working coil in which the required power value is not changed and the third driving frequency is not included in the first reference range and the second reference range.
  • boundary values of the first reference range and the second reference range may be set differently according to embodiments.
  • FIG. 4 shows waveforms of a switching signal, an input voltage, and a resonance current, respectively, when the operation mode of the first inverter circuit is a full bridge mode in an embodiment of the present specification.
  • the controller 2 drives the driving circuit 22 to output the switching signals S1 , S2 , S3 , S4 having a waveform as shown in FIG. 4 . ) to the control signal.
  • the controller 2 outputs the resonance current supplied to the first working coil 132 once during one cycle TS1 of the switching signals S1, S2, S3, and S4, again
  • the capacitance values of the variable capacitor units C1, C2, C3 are It is set to Cr,f as in [Equation 1] below.
  • the controller 2 opens or closes the relays included in the relay unit 206 so that the total capacitance values of the variable capacitor units C1, C2, and C3 match the capacitance values Cr,f of [Equation 1], respectively. .
  • the controller 2 controls the switching signals S1, S2, S3, S4) is supplied to the first inverter circuit 204 . Accordingly, heating of the vessel is carried out.
  • each switching signal has a turn-on period and a turn-off period within one period TS1.
  • the time of the turn-on period is referred to as a turn-on time TS11
  • the time of the turn-off period is referred to as a turn-off time TS12.
  • the ratio of the turn-on time TS11 to one period TS1 is referred to as a duty ratio of the switching signal. For example, when one period TS1 of the first switching signal S1 is 1 second and the turn-on time TS11 is 0.5 seconds, the duty ratio of the first switching signal S1 is 50% (or 0.5).
  • the first switching element SW1 and the second switching element SW2 are turned on and off complementary to each other.
  • the third switching element SW3 and the fourth switching element SW4 are turned on and off complementary to each other.
  • FIG. 4 shows a waveform of Vab, which is the magnitude of the voltage between the a node and the b node in the circuit diagram of FIG. 4 .
  • Vab is the same as the input voltage value Vin, which is the magnitude of the input voltage input to the first working coil 132 .
  • FIG. 4 shows a waveform of an input current input to the first working coil 132 , that is, a resonance current.
  • the input voltage Vab and the resonance current have the same frequency.
  • the frequencies of the input voltage Vab and the resonance current are the same as the frequencies of the switching signals S1, S2, S3, and S4. Accordingly, since the voltage gain of the first working coil 132 is maintained at a maximum value (eg, 1), it is possible to stably supply power to the container.
  • FIG. 5 is a waveform of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a full bridge mode and the power control mode of the first inverter circuit is an asymmetric pulse width modulation mode in an embodiment of the present specification; indicates.
  • the controller 2 adjusts the duty ratios of the switching signals S1 , S2 , S3 , and S4 . 5 , the turn-on time TS11 of the first switching signal S1 and the fourth switching signal S4 (or the turn-off of the second switching signal S2 and the third switching signal S3) time) and the turn-on time TS12 of the second switching signal S2 and the third switching signal S3 (or the turn-off time of the first switching signal S1 and the fourth switching signal S4)
  • the magnitude of the voltage (Vab) and the magnitude of the resonance current are respectively different.
  • the controller 2 controls the first switching signal (S1) and the fourth switching signal (S4).
  • the output power value of the first working coil 132 may be adjusted by adjusting the turn-on time TS11, that is, the duty ratio of the first switching signal S1 and the fourth switching signal S4.
  • the controller 2 increases the turn-on time TS11 of the first switching signal S1 and the fourth switching signal S4, that is, the first switching signal S1 and the fourth switching signal S4. ), the output power value of the first working coil 132 may be increased by increasing the duty ratio. Conversely, the controller 2 reduces the turn-on time TS11 of the first switching signal S1 and the fourth switching signal S4, that is, the first switching signal S1 and the fourth switching signal S4. By reducing the duty ratio, the output power value of the first working coil 132 may be reduced.
  • the duty ratio of the first switching signal S1 and the fourth switching signal S4 is smaller than the duty ratio of the first switching signal S1 and the fourth switching signal S4 in the embodiment of FIG. 4 . . Therefore, in the embodiment of FIG. 5 , the actual power value of the first working coil 132 is smaller than the actual power value of the first working coil 132 in the embodiment of FIG. 4 .
  • FIG. 6 shows waveforms of a switching signal, an input voltage, and a resonance current, respectively, when the operation mode of the first inverter circuit is the full bridge mode and the power control mode of the first inverter circuit is the phase shift mode in one embodiment of the present specification.
  • the controller 2 adjusts a phase difference between switching signals corresponding to each other. 15, according to the phase difference between the first switching signal S1 and the third switching signal S3 (or the phase difference between the second switching signal S2 and the third switching signal S3) corresponding to each other.
  • the magnitude of the input voltage (Vab) and the magnitude of the resonance current are respectively different.
  • the controller 2 Since the output power value of the first working coil 132 varies according to the magnitude of the input voltage (Vab) and the magnitude of the resonance current, the controller 2 provides a first switching signal (S1) and a third switching signal (S1) corresponding to each other ( The output power value of the first working coil 132 may be adjusted by adjusting the phase difference between S3).
  • the controller 2 may increase the output power value of the first working coil 132 by reducing the phase difference between the first switching signal S1 and the third switching signal S3 corresponding to each other. Conversely, the controller 2 may decrease the output power value of the first working coil 132 by increasing the phase difference between the first switching signal S1 and the third switching signal S3 corresponding to each other.
  • the phase difference (90°) between the first switching signal S1 and the third switching signal S3 corresponding to each other in the embodiment of FIG. 6 is the first switching signal S1 and the third switching signal S3 corresponding to each other in the embodiment of FIG. 13 . It is greater than the phase difference (0°) between the signals S3. Therefore, in the embodiment of FIG. 6 , the actual power value of the first working coil 132 is smaller than the actual power value of the first working coil 132 in the embodiment of FIG. 4 .
  • the controller 2 compares the required power value of the first working coil 132 with a predetermined reference power value.
  • the power control mode of the first inverter circuit 204 may be determined as any one of an asymmetric pulse width modulation mode and a phase shift mode.
  • the controller 2 determines the power control mode of the first inverter circuit 204 as an asymmetric pulse width modulation mode when the required power value of the first working coil 132 is smaller than the reference power value, and the first working When the required power value of the coil 132 is not smaller than the reference power value, the power control mode of the first inverter circuit 204 may be determined as the phase shift mode.
  • FIG. 7 is a graph illustrating a resonance characteristic curve of a working coil when an operation mode of the first inverter circuit is a full bridge mode in an embodiment of the present specification.
  • FIG. 7 shows the resonance characteristic curve 41 of the first working coil 132 when the duty ratio of the first switching signal S1 is 50% in the full bridge mode and the duty ratio of the first switching signal S1 in the full bridge mode At 30%, the resonance characteristic curve 42 of the first working coil 132 is shown, respectively.
  • fr is the resonance frequency of the first working coil 132 .
  • the graph of FIG. 7 shows the resonance characteristic curve 41 and the first switching signal S1 and the third switching signal S3 when the phase difference between the first switching signal S1 and the third switching signal S3 is 0°.
  • a resonance characteristic curve 42 when the phase difference between them is 90°.
  • the second 1 The actual power value of the working coil 132 is P1.
  • the controller 2 increases the phase difference between the first switching signal S1 and the third switching signal S3 to 90° while maintaining the driving frequency of the first working coil 132 at f1, the first working coil 132 ) decreases to P2. Therefore, the controller 2 maintains the driving frequency of the first working coil 132 at the same value in the full bridge mode, and the phase difference between the first switching signal S1 and the third switching signal S3 according to the phase shift method. Only by adjusting the output power value of the first working coil 132 may be adjusted.
  • the 8 is a power control mode of the first inverter circuit when the power control mode of the first inverter circuit is set to the pulse frequency modulation mode in a state in which the operation mode of the first inverter circuit is the full bridge mode in one embodiment of the present specification; It is a graph representing the power conversion efficiency of the induction heating device, respectively, when the power control mode of the first inverter circuit is set to the phase shift mode when the asymmetric pulse width modulation mode is set.
  • the power conversion efficiency when the power control mode of the first inverter circuit 204 is set to the asymmetric pulse width modulation mode or the phase shift mode over the entire range of the input power value is determined by the first inverter circuit It is higher than the power conversion efficiency when the power control mode of 204 is set to the pulse frequency modulation mode. Therefore, in a state in which the operation mode of the first inverter circuit 204 is set to the full bridge mode, the output power value of the first working coil 132 is adjusted by an asymmetric pulse width modulation method or a phase shift method, compared to a conventional induction heating device. The power conversion efficiency of the first working coil 132 is increased.
  • FIG. 9 shows waveforms of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a half-bridge mode in an embodiment of the present specification.
  • the controller 2 When the operation mode of the first inverter circuit 204 is determined to be the half-bridge mode, the controller 2 first drives to output the switching signals S1 , S2 , S3 , S4 having a waveform as shown in FIG. 9 . A control signal is applied to the circuit 22 .
  • the controller 2 outputs the resonance current supplied to the first working coil 132 once during one cycle TS2 of the switching signals S1, S2, S3, and S4, again
  • the capacitance values of the variable capacitor units C1, C2, and C3 are It is set to Cr,h as in [Equation 2] below.
  • the controller 2 opens or closes the relays included in the relay unit 206, respectively, so that the total capacitance values of the variable capacitor units C1, C2, and C3 match the capacitance values Cr, h of [Equation 8]. .
  • the controller 2 controls the switching signals S1, S2, S3, S4) is supplied to the inverter circuit 204 . Accordingly, heating of the vessel is carried out.
  • the first switching element SW1 and the second switching element SW2 are turned on and off complementary to each other.
  • the third switching element SW3 continuously maintains a turned-on state
  • the fourth switching element SW4 continuously maintains a turned-off state.
  • Vab is the same as the input voltage value Vin, which is the magnitude of the input voltage input to the first working coil 132 .
  • Vin the input voltage value
  • Vin the input current input to the first working coil 132
  • the operation mode of the first inverter circuit 204 is the half-bridge mode
  • the input voltage Vab and the resonance current have the same frequency.
  • the frequencies of the input voltage Vab and the resonance current are the same as the frequencies of the switching signals S1, S2, S3, and S4. Accordingly, since the voltage gain of the first working coil 132 is maintained at a maximum value (eg, 1), it is possible to stably supply power to the container.
  • the controller 2 determines the power control mode of the first inverter circuit 204 to be the asymmetric pulse width modulation mode.
  • the controller 2 adjusts the duty ratio of the switching signals S1, S2, S3, and S4 while maintaining the frequencies of the switching signals S1, S2, S3, and S4 as they are, thereby the first working coil. It is possible to adjust the output power value of (132).
  • FIG. 10 shows waveforms of a switching signal, an input voltage, and a resonance current when the operation mode of the first inverter circuit is a half-bridge mode and the power control mode of the first inverter circuit is an asymmetric pulse width modulation mode in an embodiment of the present specification; indicates.
  • the controller 2 adjusts the duty ratios of the switching signals S1 , S2 , S3 , and S4 . 10 , a turn-on time TS21 of the first switching signal S1 (or a turn-off time of the second switching signal S2) and a turn-on time TS22 of the second switching signal S2 ) (or the turn-off time of the first switching signal S1 ), the magnitude of the input voltage Vab and the magnitude of the resonance current vary, respectively.
  • the controller 2 controls the turn-on time (TS21) of the first switching signal (S1), that is, The output power value of the first working coil 132 may be adjusted by adjusting the duty ratio of the first switching signal S1 .
  • the controller 2 increases the turn-on time TS21 of the first switching signal S1, that is, increases the duty ratio of the first switching signal S1, thereby increasing the output of the first working coil 132.
  • the power value can be increased.
  • the controller 2 reduces the turn-on time TS21 of the first switching signal S1 , that is, by reducing the duty ratio of the first switching signal S1 , the output power value of the first working coil 132 . can reduce
  • the duty ratio of the first switching signal S1 is smaller than the duty ratio of the first switching signal S1 in the embodiment of FIG. 9 . Therefore, in the embodiment of FIG. 10 , the output power value of the first working coil 132 is smaller than the output power value of the first working coil 132 in the embodiment of FIG. 9 .
  • FIG. 11 is a graph illustrating a resonance characteristic curve of a working coil when an operation mode of a first inverter circuit is a half-bridge mode in an embodiment of the present specification.
  • FIG. 11 shows the resonance characteristic curve 51 of the first working coil 132 when the duty ratio of the first switching signal S1 is 50% in the half-bridge mode and the duty ratio of the first switching signal S1 in the half-bridge mode At 30%, the resonance characteristic curve 52 of the first working coil 132 is shown, respectively.
  • fr is the resonance frequency of the first working coil 132 .
  • the power conversion efficiency of the first inverter circuit 204 when the power control mode of the first inverter circuit 204 is set to the asymmetric pulse width modulation mode over the entire range of the input power value is It is higher than the power conversion efficiency when the power control mode is set to the pulse frequency modulation mode. Therefore, in a state in which the operation mode of the first inverter circuit 204 is set to the half-bridge mode, by adjusting the output power value of the first working coil 132 in an asymmetric pulse width modulation method, the first working coil compared to the conventional induction heating device (132) power conversion efficiency is increased.
  • the induction heating device 10 may heat the vessel by setting the operation mode of the first inverter circuit 204 to the full-bridge mode or the half-bridge mode. Accordingly, it is possible to heat containers having various characteristics without interfering noise.
  • 13 is a resonance characteristic curve of each working coil when the required power value of the first working coil is changed in a state where the resonance frequency of the first working coil and the resonance frequency of the second working coil are different from each other in an embodiment of the present specification; It is a graph representing 14 is a graph illustrating resonance characteristic curves of each working coil when the operation mode of the first working coil is changed to a half-bridge mode in order to prevent interference noise in the embodiment of FIG. 13 .
  • the user places a container on the first heating region 12 and inputs a heating start command.
  • the first required power value of the first working coil 132 corresponding to the power level set by the user for the first heating region 12 is P1
  • the driving frequency corresponding to the first required power value P1 is 16 kHz am.
  • the controller 2 sets the operation mode of the first inverter circuit 204 to the full bridge mode, sets the first driving frequency of the first working coil 132 to 16 kHz, and controls the first driving circuit 22 . supply the signal.
  • the first working coil 132 exhibits the same resonance characteristic as the resonance characteristic curve 61 .
  • the first working coil 132 is driven at a driving frequency of 16 kHz, and the output power value of the first working coil 132 becomes P1.
  • the resonance frequency of the first working coil 204 is 14 kHz.
  • the user places the container on the second heating area 14 and inputs a heating start command.
  • the second required power value of the second working coil 142 corresponding to the power level set by the user for the second heating region 14 is P2, and the driving frequency corresponding to the second required power value P2 is 37 kHz am.
  • the controller 2 sets the second driving frequency of the second working coil 142 to 37 kHz and supplies a control signal to the second driving circuit 24 .
  • the second working coil 142 exhibits the same resonance characteristic as the resonance characteristic curve 62 .
  • the second working coil 142 is driven at a driving frequency of 37 kHz, and the output power value of the second working coil 142 becomes P2. At this time, the resonant frequency of the second working coil 142 is 35 kHz.
  • the user reduces the power level of the first heating region 12 .
  • the power level of the first heating region 12 is lowered, the required power value of the first working coil 132 is lowered from P1 to P3.
  • the controller 2 determines a third driving frequency that is a driving frequency corresponding to a third required power value P3 that is a new required power value of the working coil in which the required power value has been changed, that is, the first working coil 132 .
  • the third frequency corresponding to the third required power value P3 is determined to be 19 kHz.
  • the controller 2 calculates a difference value between the third driving frequency of the working coil in which the required power value is changed and the driving frequency (second driving frequency) of the working coil (the second working coil 142) in which the required power value is not changed. do.
  • a difference value between the third driving frequency (19 kHz) and the second driving frequency (37 kHz) is 18.
  • the controller 2 checks whether the calculated difference value 18 is included in a predetermined first reference range (eg, 5 kHz or more and 20 kHz or less). Since the calculated difference value 18 is included in the first reference range, the controller 2 changes the operation mode of the first inverter circuit 204 to the half-bridge mode. Accordingly, the switching signals S1 , S2 , S3 , and S4 having a waveform as shown in FIG. 9 are respectively input to the first inverter circuit 204 .
  • a predetermined first reference range eg, 5 kHz or more and 20 kHz or less.
  • the output power value of the first working coil 132 decreases in the entire frequency range of the first working coil 132 . Accordingly, the first working coil 132 has a new resonance characteristic such as the resonance characteristic curve 63 shown in FIG. 14 .
  • the controller 2 After changing the operation mode of the first inverter circuit 204 to the half-bridge mode, the controller 2 determines a fourth driving frequency corresponding to the third required power value P3 . 14 , the fourth driving frequency corresponding to the third required power value P3 is 15 kHz.
  • the controller 2 drives the first working coil 132 at the fourth driving frequency (15 kHz) and drives the second working coil 142 at the second driving frequency (37 kHz). Even if the output power value of the first working coil 132 is changed from P1 to P3 by this control, interference noise due to driving of the first working coil 132 and the second working coil 142 does not occur.
  • the controller 2 controls the first inverter circuit 204 can change the power control mode to asymmetric pulse width modulation mode. That is, the controller 2 changes the duty ratio of the switching signal input to the first inverter circuit 204 without changing the driving frequency of the first working coil 132 , so that the output power value of the first working coil 132 is changed. can be changed.
  • the controller 2 is the first inverter circuit 204 after the operation mode is changed to the half-bridge mode as shown in FIG. 10, even after the required power value of the first working coil 132 is changed.
  • the output power value of the first working coil 132 may be changed by changing the driving frequency of the first working coil 132 .
  • FIG. 15 is a resonance characteristic curve of each working coil when the required power value of the first working coil is changed in a state where the resonance frequency of the first working coil and the resonance frequency of the second working coil are the same in another embodiment of the present specification; It is a graph representing Also, FIG. 16 is a graph illustrating resonance characteristic curves of each working coil when the power control mode of the first working coil is changed to prevent interference noise in the embodiment of FIG. 15 .
  • the user places a container on the first heating region 12 and inputs a heating start command.
  • the first required power value of the first working coil 132 corresponding to the power level set by the user for the first heating region 12 is P1
  • the driving frequency corresponding to the first required power value P1 is 22 kHz am.
  • the controller 2 sets the operation mode of the first inverter circuit 204 to the full bridge mode, sets the first driving frequency of the first working coil 132 to 22 kHz, and controls the first driving circuit 22 . supply the signal.
  • the first working coil 132 exhibits the same resonance characteristic as the resonance characteristic curve 65 .
  • the first working coil 132 is driven at a driving frequency of 22 kHz, and the output power value of the first working coil 132 becomes P1.
  • the resonance frequency of the first working coil 204 is 20 kHz.
  • the user places the container on the second heating area 14 and inputs a heating start command.
  • the second required power value of the second working coil 142 corresponding to the power level set by the user for the second heating region 14 is P2, and the driving frequency corresponding to the second required power value P2 is 22 kHz am.
  • the controller 2 sets the second driving frequency of the second working coil 142 to 22 kHz and supplies a control signal to the second driving circuit 24 .
  • the second working coil 142 exhibits the same resonance characteristic as the resonance characteristic curve 65 .
  • the second working coil 142 is driven at a driving frequency of 22 kHz, and the output power value of the second working coil 142 becomes P2.
  • the resonant frequency of the second working coil 142 is 22 kHz. That is, in the embodiment of FIG. 15 , the resonance frequency of the first working coil 132 and the resonance frequency of the second working coil 142 are the same.
  • the user reduces the power level of the first heating region 12 .
  • the power level of the first heating region 12 is lowered, the required power value of the first working coil 132 is lowered from P1 to P3.
  • the controller 2 determines a third driving frequency that is a driving frequency corresponding to a third required power value P3 that is a new required power value of the working coil in which the required power value has been changed, that is, the first working coil 132 .
  • the third frequency corresponding to the third required power value P3 is determined to be 30 kHz.
  • the controller 2 calculates a difference value between the third driving frequency of the working coil in which the required power value is changed and the driving frequency (second driving frequency) of the working coil (the second working coil 142) in which the required power value is not changed. do.
  • the difference between the third driving frequency (22 kHz) and the second driving frequency (30 kHz) is 8.
  • the controller 2 checks whether the calculated difference value 8 is included in a predetermined first reference range (eg, 5 kHz or more and 20 kHz or less). Since the calculated difference value 18 is included in the first reference range and the operation mode of the first inverter circuit 204 is the full bridge mode, the controller 2 sets the power control mode of the first inverter circuit 204 to the asymmetric pulse Change to either the width modulation mode or the phase shift mode.
  • a predetermined first reference range eg, 5 kHz or more and 20 kHz or less.
  • the controller 2 controls the first inverter circuit 204 while maintaining the driving frequency of the first working coil 132 at the first driving frequency (22 kHz) as it is.
  • the output power value of the first working coil 132 is adjusted to P3 by adjusting the duty ratio of the input switching signals or the phase difference between the switching signals input to the first inverter circuit 204 .
  • the controller 2 reduces the duty ratio of the switching signals input to the first inverter circuit 204 or increases the phase difference between the switching signals input to the first inverter circuit 204 of the first working coil 132 .
  • the output power value is reduced, and the first working coil 132 has a new resonance characteristic such as the resonance characteristic curve 66 shown in FIG. 16 .
  • the resonant frequency of the first working coil 132 and the resonant frequency of the second working coil 142 are the same as each other, and the first required power value P1 of the first working coil 132 . ) and the second required power value P2 of the second working coil 142 are equal to each other.
  • the resonant frequency of the first working coil 132 and the resonant frequency of the second working coil 142 are not the same as each other, and the first requirement of the first working coil 132 is The power value P1 and the second required power value P2 of the second working coil 142 may be applied even if they are not the same.
  • 17 is a resonance characteristic curve of each working coil when the required power value of the second working coil is changed in a state where the resonance frequency of the first working coil and the resonance frequency of the second working coil are the same in another embodiment of the present specification; It is a graph representing 18 is a graph illustrating a resonance characteristic curve of each working coil when the power control mode of the second working coil is changed to prevent interference noise in the embodiment of FIG. 17 .
  • the user places a container on the first heating region 12 and inputs a heating start command.
  • the first required power value of the first working coil 132 corresponding to the power level set by the user for the first heating region 12 is P1
  • the driving frequency corresponding to the first required power value P1 is 22 kHz am.
  • the controller 2 sets the operation mode of the first inverter circuit 204 to the full bridge mode, sets the first driving frequency of the first working coil 132 to 22 kHz, and controls the first driving circuit 22 . supply the signal.
  • the first working coil 132 exhibits the same resonance characteristic as the resonance characteristic curve 65 .
  • the first working coil 132 is driven at a driving frequency of 22 kHz, and the output power value of the first working coil 132 becomes P1.
  • the resonance frequency of the first working coil 204 is 20 kHz.
  • the user places the container on the second heating area 14 and inputs a heating start command.
  • the second required power value of the second working coil 142 corresponding to the power level set by the user for the second heating region 14 is P2, and the driving frequency corresponding to the second required power value P2 is 22 kHz am.
  • the controller 2 sets the second driving frequency of the second working coil 142 to 22 kHz and supplies a control signal to the second driving circuit 24 .
  • the second working coil 142 exhibits the same resonance characteristic as the resonance characteristic curve 65 .
  • the second working coil 142 is driven at a driving frequency of 22 kHz, and the output power value of the second working coil 142 becomes P2.
  • the resonant frequency of the second working coil 142 is 22 kHz. That is, in the embodiment of FIG. 15 , the resonance frequency of the first working coil 132 and the resonance frequency of the second working coil 142 are the same.
  • the user decreases the power level of the second heating region 14 .
  • the power level of the second heating region 14 is lowered, the required power value of the second working coil 142 is lowered from P2 to P3.
  • the controller 2 determines a third driving frequency that is a driving frequency corresponding to a third required power value P3 that is a new required power value of the working coil whose required power value has been changed, that is, the second working coil 142 .
  • the third frequency corresponding to the third required power value P3 is determined to be 30 kHz.
  • the controller 2 calculates a difference value between the third driving frequency of the working coil whose required power value is changed and the driving frequency (first driving frequency) of the working coil (the first working coil 132 ) whose required power value is not changed. do.
  • the difference between the third driving frequency (22 kHz) and the first driving frequency (30 kHz) is 8.
  • the controller 2 checks whether the calculated difference value 8 is included in a predetermined first reference range (eg, 5 kHz or more and 20 kHz or less). Since the calculated difference value 18 is included in the first reference range and the operation mode of the second inverter circuit 214 is the half-bridge mode, the controller 2 sets the power control mode of the second inverter circuit 214 to the asymmetric pulse Change to width modulation mode.
  • a predetermined first reference range eg, 5 kHz or more and 20 kHz or less.
  • the controller 2 controls the second inverter circuit 214 while maintaining the driving frequency of the second working coil 142 at the second driving frequency (22 kHz) as it is.
  • the output power value of the second working coil 142 is adjusted to P3 by adjusting the duty ratio of the input switching signals.
  • the controller 2 reduces the duty ratio of the switching signals input to the second inverter circuit 214 , the second working coil 122 has a new resonance characteristic such as the resonance characteristic curve 67 shown in FIG. 18 . .
  • the resonance frequency of the first working coil 132 and the resonance frequency of the second working coil 142 are the same as each other, and the first required power value P1 of the first working coil 132 . ) and the second required power value P2 of the second working coil 142 are equal to each other.
  • the resonant frequency of the first working coil 132 and the resonant frequency of the second working coil 142 are not the same as each other, and the first requirement of the first working coil 132 is The power value P1 and the second required power value P2 of the second working coil 142 may be applied even if they are not the same.
  • 19 is a flowchart illustrating a control method of an induction heating device according to an embodiment of the present specification.
  • the controller 2 of the induction heating device 10 drives the first working coil 132 at a first driving frequency corresponding to the first required power value set by the user (702) . Also, the controller 2 drives the second working coil 142 at a second driving frequency corresponding to the second required power value set by the user ( 704 ).
  • the user changes the required power value of the first working coil 132 or the second working coil 142 to the third required power value. If so, the controller 2 determines a third driving frequency corresponding to the third required power value ( 706 ).
  • the controller 2 calculates a difference value between the driving frequency of the working coil in which the required power value is not changed and the third driving frequency ( 708 ).
  • the controller 2 changes the operation mode or power control mode of the first inverter circuit 204 or the second inverter circuit 214 when the calculated difference value is included in the first reference range ( 710 ).
  • the step 710 of changing the operation mode or power control mode of the first inverter circuit 204 or the second inverter circuit 214 is the resonant frequency of the first working coil 132 is the second 2 Operation of the first inverter circuit 204 when the difference between the driving frequency and the third driving frequency of the working coil, which is smaller than the resonance frequency of the working coil 142 and the required power value is not changed, is included in the first reference range changing the mode to the half-bridge mode and changing the driving frequency of the first inverter circuit 204 to a fourth driving frequency corresponding to the third required power value.
  • the step 710 of changing the operation mode or power control mode of the first inverter circuit 204 or the second inverter circuit 214 is that the resonance frequency of the first working coil 132 is When the difference between the driving frequency and the third driving frequency of the working coil that is the same as the resonance frequency of the second working coil 142 and the required power value is not changed is included in the first reference range, the working coil in which the required power value is changed Changing the power control mode of the asymmetric pulse width modulation mode and the phase shift mode to any one of the asymmetric pulse width modulation mode and the phase shift mode and adjusting the output power value of the working coil whose required power value is changed according to the changed power control mode to be the same as the third required power value includes
  • the step 710 of changing the operation mode or power control mode of the first inverter circuit 204 or the second inverter circuit 214 is the operation mode of the working coil in which the required power value is changed. If the half-bridge mode, the power control mode is changed to the asymmetric pulse width modulation mode including the steps of
  • the controller 2 changes the output power value of the working coil whose required power value is changed to a third required power value ( 712).
  • the step 712 of changing the output power value of the working coil in which the required power value is changed to the third required power value is changed when the power control mode is set to the asymmetric pulse width modulation mode. and changing the output power value of the working coil whose required power value is changed to a third required power value by adjusting a duty ratio of a switching signal for driving the working coil.
  • the step 712 of changing the output power value of the working coil in which the required power value is changed to the third required power value is changed when the power control mode is set to the phase shift mode. and changing the output power value of the working coil whose required power value is changed to a third required power value by adjusting a phase difference between switching signals for driving the coil.
  • control method of the induction heating device changes the power control mode of the first inverter circuit 132 after the driving frequency of the first inverter circuit 132 is changed to the fourth driving frequency with an asymmetric pulse
  • the method may further include changing to a width modulation mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

본 명세서는 유도 가열 장치 및 유도 가열 장치의 제어 방법에 관한 것이다. 본 명세서의 일 실시예에서, 사용자가 제1 워킹 코일 또는 제2 워킹 코일의 요구 전력값을 제3 요구 전력값으로 변경하면, 제어기는 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정한다. 본 명세서의 일 실시예에 따른 제어기는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값을 산출하고, 산출된 차이값을 미리 정해진 제1 기준 범위와 비교한다. 산출된 차이값이 제1 기준 범위에 포함되면, 제어기는 제1 인버터 회로 또는 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하고, 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경한다.

Description

유도 가열 장치 및 유도 가열 장치의 제어 방법
본 명세서는 유도 가열 장치 및 유도 가열 장치의 제어 방법에 관한 것이다.
유도 가열 장치는 워킹 코일 주변에 발생하는 자계를 이용하여 금속 재질의 용기에 와전류(eddy current)를 발생시킴으로써 용기를 가열하는 장치이다. 유도 가열 장치가 구동되면 고주파 전류가 워킹 코일에 인가된다. 이에 따라 유도 가열 장치 내부에 배치되는 워킹 코일 주변에는 유도 자계가 발생한다. 이와 같이 발생한 유도 자계의 자력선이 워킹 코일의 상부에 놓인 금속 성분을 포함한 용기의 바닥을 통과하면, 용기 바닥의 내부에 와전류가 발생한다. 이렇게 발생한 와전류가 용기에 흐르면 용기 자체가 가열된다.
유도 가열 장치는 2개 이상의 가열 영역 및 이에 대응되는 2개 이상의 워킹 코일을 포함할 수 있다. 예를 들어 사용자가 2개의 가열 영역에 각각 용기를 올려 놓고 가열 시작 명령을 입력하면, 각각의 워킹 코일은 사용자에 의하여 설정된 요구 전력값과 대응되는 구동 주파수로 구동된다.
도 1은 2개의 워킹 코일을 포함하는 유도 가열 장치가 구동될 때 각각의 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 1에는 유도 가열 장치의 각 가열 영역에 용기가 놓인 상태에서 2개의 워킹 코일이 각각 구동될 때 각 워킹 코일의 공진 특성 곡선, 즉 제1 워킹 코일의 공진 특성 곡선(31) 및 제2 워킹 코일의 공진 특성 곡선(32)이 각각 도시되어 있다. 도 1에서 제1 워킹 코일의 공진 주파수는 fr1이고, 제2 워킹 코일의 공진 주파수는 fr2이다.
도 1에서 제1 워킹 코일의 제1 요구 전력값은 P1이고, 제2 워킹 코일의 요구 전력값은 P2이다. 따라서 제1 워킹 코일은 제1 요구 전력값(P1)과 대응되는 제1 구동 주파수(f1)로 구동되고, 제2 워킹 코일은 제2 요구 전력값(P2)과 대응되는 제2 구동 주파수(f2)로 구동된다.
도 1에 도시된 바와 같이 2개의 워킹 코일이 동시에 구동될 때, 각 워킹 코일의 구동 주파수의 차이값(f2-f1)이 가청 주파수 대역(예컨대, 2kHz~20kHz)에 포함되면 워킹 코일의 구동에 따른 간섭 소음이 발생한다. 이러한 간섭 소음은 유도 가열 장치를 사용하는 사용자가 큰 불편을 느끼게 하며, 사용자가 유도 가열 장치의 고장을 의심하게 하는 원인이 되기도 한다.
종래 기술에 따르면, 각 워킹 코일의 구동 주파수의 차이값(f2-f1)이 가청 주파수 대역을 벗어나게 하기 위해서, 2개의 워킹 코일 중 적어도 하나의 워킹 코일의 구동 주파수가 임의로 조절된다. 그러나 간섭 소음을 줄이기 위해서 워킹 코일의 구동 주파수가 임의로 조절되면, 워킹 코일의 출력 전력값이 사용자에 의해서 설정된 요구 전력값과 일치하지 않게 되는 문제가 있다.
본 명세서의 목적은 2개의 워킹 코일이 동시에 구동될 때 워킹 코일의 출력 전력값을 요구 전력값과 동일하게 유지하면서 워킹 코일의 구동으로 인한 간섭 소음을 방지할 수 있는 유도 가열 장치 및 유도 가열 장치의 제어 방법을 제공하는 것이다.
또한 본 명세서의 목적은 서로 다른 특성을 갖는 여러 종류의 용기를 가열할 때 워킹 코일의 구동으로 인한 간섭 소음을 방지할 수 있는 유도 가열 장치 및 유도 가열 장치의 제어 방법을 제공하는 것이다.
본 명세서의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 명세서의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 명세서의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 명세서의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 명세서의 일 실시예에 따른 유도 가열 장치는 제1 워킹 코일 및 제2 워킹 코일을 포함한다. 제1 워킹 코일은 사용자에 의해서 설정되는 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동되고, 제2 워킹 코일은 사용자에 의해서 설정되는 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동된다.
본 명세서의 일 실시예에서, 사용자가 제1 워킹 코일 또는 제2 워킹 코일의 요구 전력값을 제3 요구 전력값으로 변경하면, 제어기는 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정한다. 예를 들어 사용자가 제2 워킹 코일의 요구 전력값을 제3 요구 전력값으로 변경하면 제2 워킹 코일의 구동 주파수는 제3 구동 주파수로 변경되어야 한다.
그러나 제2 워킹 코일이 제3 구동 주파수로 구동되면 제1 워킹 코일과 제2 워킹 코일에 의한 간섭 소음이 발생할 수 있다. 따라서, 본 명세서의 일 실시예에 따른 제어기는 요구 전력값이 변경되지 않은 워킹 코일(예를 들어, 제1 워킹 코일)의 구동 주파수와 제3 구동 주파수의 차이값을 산출하고, 산출된 차이값을 미리 정해진 제1 기준 범위(예컨대, 5kHz 이상이고 20kHz 이하)와 비교한다.
산출된 차이값이 제1 기준 범위에 포함된다는 것은 제1 워킹 코일과 제2 워킹 코일에 의한 간섭 소음이 발생하는 것을 의미한다. 따라서 간섭 소음을 방지하기 위하여, 본 명세서의 일 실시예에 따른 제어기는 제1 인버터 회로 또는 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경한다.
본 명세서의 일 실시예에서, 제어기는 제1 인버터 회로 또는 제2 인버터 회로의 동작 모드를 풀 브릿지 모드에서 하프 브릿지 모드로 변경한다. 제1 인버터 회로 또는 제2 인버터 회로의 동작 모드가 하프 브릿지 모드로 변경되면 제1 워킹 코일 또는 제2 워킹 코일의 전체 주파수 대역에서 출력 전력값이 낮아진다. 이에 따라서 제1 워킹 코일의 구동 주파수 및 제2 워킹 코일의 구동 주파수의 차이값은 가청 주파수 대역의 경계값(예컨대, 20kHz)보다 커진다. 이러한 제어에 의해서 워킹 코일의 구동으로 인한 간섭 소음이 방지된다.
본 명세서의 일 실시예에서, 제어기는 제1 인버터 회로 또는 제2 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경한다. 본 명세서의 일 실시예에서, 제어기는 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하고, 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경한다.
제1 인버터 회로 또는 제2 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경되면 제1 워킹 코일 또는 제2 워킹 코일의 구동 주파수를 변경하지 않고 제1 워킹 코일 또는 제2 워킹 코일의 출력 전력값을 조절할 수 있다. 따라서 제1 워킹 코일 또는 제2 워킹 코일의 출력 전력값이 제3 요구 전력값과 동일하게 조절되더라도 워킹 코일의 구동으로 인한 간섭 소음이 방지된다.
본 명세서의 일 실시예에 따른 유도 가열 장치는 제1 워킹 코일, 상기 제1 워킹 코일의 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동되어 상기 제1 워킹 코일에 전류를 공급하는 제1 인버터 회로, 제2 워킹 코일, 상기 제2 워킹 코일의 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동되어 상기 제2 워킹 코일에 전류를 공급하는 제2 인버터 회로 및 상기 제1 워킹 코일 또는 상기 제2 워킹 코일의 요구 전력값이 제3 요구 전력값으로 변경되면 상기 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정하고, 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 상기 제3 구동 주파수의 차이값을 산출하고, 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하고, 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 제어기를 포함한다.
본 명세서의 일 실시예에서, 상기 제어기는 상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수보다 작고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로의 동작 모드를 하프 브릿지 모드로 변경하고, 상기 제1 인버터 회로의 구동 주파수를 상기 제3 요구 전력값과 대응되는 제4 구동 주파수로 변경한다.
또한 본 명세서의 일 실시예에서, 상기 제1 인버터 회로는 가변 캐패시터부 및 상기 가변 캐패시터부와 연결되는 릴레이부를 포함하고, 상기 제어기는 상기 릴레이부에 포함된 다수의 릴레이를 열거나 닫아서 상기 가변 캐패시터부의 캐패시턴스 값을 하기 [수학식 1]의 (Cr,h)로 설정한다.
[수학식 1]
Figure PCTKR2021005645-appb-img-000001
(여기서, (fr,h)는 상기 제2 인버터 회로에 입력되는 스위칭 신호의 주파수와 동일한 값이고, 상기 Lr은 상기 제2 인버터 회로에 포함되는 제2 인덕터의 인덕턴스 값임)
또한 본 명세서의 일 실시예에서, 상기 제어기는 상기 제1 인버터 회로의 구동 주파수가 상기 제4 구동 주파수로 변경된 이후 상기 제1 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경한다.
또한 본 명세서의 일 실시예에서, 상기 제어기는 상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수와 동일하고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하고, 상기 전력 제어 모드에 따라서 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값과 동일하게 조절한다.
또한 본 명세서의 일 실시예에서, 상기 제어기는 상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드로 변경하고, 상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드 및 상기 위상 변이 모드 중 어느 하나로 변경한다.
또한 본 명세서의 일 실시예에서, 상기 제어기는 상기 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경한다.
또한 본 명세서의 일 실시예에서, 상기 제어기는 상기 전력 제어 모드가 위상 변이 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경한다.
또한 본 명세서의 일 실시예에 따른 유도 가열 장치의 제어 방법은, 상기 제1 워킹 코일을 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동시키는 단계, 상기 제2 워킹 코일을 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동시키는 단계, 상기 제1 워킹 코일 또는 상기 제2 워킹 코일의 요구 전력값이 제3 요구 전력값으로 변경되면 상기 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정하는 단계, 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 상기 제3 구동 주파수의 차이값을 산출하는 단계, 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 워킹 코일에 전류를 공급하는 제1 인버터 회로 또는 상기 제2 워킹 코일에 전류를 공급하는 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계 및 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함한다.
본 명세서의 일 실시예에서, 상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계는 상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수보다 작고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로의 동작 모드를 하프 브릿지 모드로 변경하는 단계 및 상기 제1 인버터 회로의 구동 주파수를 상기 제3 요구 전력값과 대응되는 제4 구동 주파수로 변경하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 상기 제1 인버터 회로는 가변 캐패시터부 및 상기 가변 캐패시터부와 연결되는 릴레이부를 포함하고, 상기 제1 인버터 회로의 동작 모드가 상기 하프 브릿지 모드로 변경되면 상기 릴레이부에 포함된 다수의 릴레이가 열리거나 닫힘으로써 상기 가변 캐패시터부의 캐패시턴스 값이 하기 [수학식 1]의 (Cr,h)로 설정된다.
[수학식 1]
Figure PCTKR2021005645-appb-img-000002
(여기서, (fr,h)는 상기 제2 인버터 회로에 입력되는 스위칭 신호의 주파수와 동일한 값이고, 상기 Lr은 상기 제2 인버터 회로에 포함되는 제2 인덕터의 인덕턴스 값임)
또한 본 명세서의 일 실시예에 따른 유도 가열 장치의 제어 방법은, 상기 제1 인버터 회로의 구동 주파수가 상기 제4 구동 주파수로 변경된 이후 상기 제1 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하는 단계를 더 포함한다.
또한 본 명세서의 일 실시예에서, 상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계는 상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수와 동일하고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계 및 상기 전력 제어 모드에 따라서 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값과 동일하게 조절하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계는 상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드로 변경하는 단계 및 상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드 및 상기 위상 변이 모드 중 어느 하나로 변경하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계는 상기 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계는 상기 전력 제어 모드가 위상 변이 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함한다.
본 명세서에 따른 유도 가열 장치는 2개의 워킹 코일이 동시에 구동될 때 워킹 코일의 출력 전력값을 요구 전력값과 동일하게 유지하면서 워킹 코일의 구동으로 인한 간섭 소음을 방지할 수 있다.
또한 본 명세서에 따른 유도 가열 장치는 서로 다른 특성을 갖는 여러 종류의 용기를 가열할 때 워킹 코일의 구동으로 인한 간섭 소음을 방지할 수 있다.
도 1은 2개의 워킹 코일을 포함하는 유도 가열 장치가 구동될 때 각각의 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 2는 본 명세서의 일 실시예에 따른 유도 가열 장치의 분해 사시도이다.
도 3은 본 명세서의 일 실시예에 따른 유도 가열 장치의 회로 구성도이다.
도 4는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
도 5는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
도 6은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 위상 변이 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
도 7은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드일 때 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 8은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드인 상태에서 제1 인버터 회로의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때, 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정될 때, 제1 인버터 회로의 전력 제어 모드가 위상 변이 모드로 설정될 때 유도 가열 장치의 전력 변환 효율을 각각 나타내는 그래프이다.
도 9는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
도 10은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
도 11은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드일 때 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 12는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드인 상태에서 제1 인버터 회로의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때와 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정될 때 유도 가열 장치의 전력 변환 효율을 각각 나타내는 그래프이다.
도 13은 본 명세서의 일 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 다른 상태에서 제1 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 14는 도 13의 실시예에서 간섭 소음 방지를 위해 제1 워킹 코일의 동작 모드가 하프 브릿지 모드로 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 15는 본 명세서의 다른 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 동일한 상태에서 제1 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 16은 도 15의 실시예에서 간섭 소음 방지를 위해 제1 워킹 코일의 전력 제어 모드가 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 17은 본 명세서의 다른 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 동일한 상태에서 제2 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 18은 도 17의 실시예에서 간섭 소음 방지를 위해 제2 워킹 코일의 전력 제어 모드가 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 19는 본 명세서의 일 실시예에 따른 유도 가열 장치의 제어 방법을 나타내는 흐름도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자가 본 명세서의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 명세서를 설명함에 있어서 본 명세서와 관련된 공지 기술에 대한 구체적인 설명이 본 명세서의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 명세서에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
도 2는 본 명세서의 일 실시예에 따른 유도 가열 장치의 분해 사시도이다.
도 2을 참조하면, 본 명세서의 일 실시예에 따른 유도 가열 장치(10)는 본체를 구성하는 케이스(102) 및 케이스(102)와 결합되어 케이스(102)를 밀폐하는 커버 플레이트(104)를 포함한다.
커버 플레이트(104)는 케이스(102)의 상면과 결합하여 케이스(102) 내부에 형성되는 공간을 외부로부터 밀폐한다. 커버 플레이트(104)는 음식물의 조리를 위한 용기가 놓일 수 있는 상판부(106)를 포함한다. 본 명세서의 일 실시예에서, 상판부(106)는 세라믹 글래스와 같은 강화 유리 재질로 이루어질 수 있으나 상판부(106)의 재질은 실시예에 따라 달라질 수 있다.
상판부(106)에는 워킹 코일 어셈블리(122, 124)와 각각 대응되는 가열 영역(12, 14)이 형성된다. 사용자가 가열 영역(12, 14)의 위치를 명확하게 인식할 수 있게 하기 위하여, 가열 영역(12, 14)에 대응되는 선이나 도형이 상판부(106) 상에 인쇄 또는 표시될 수 있다.
케이스(102)는 상부가 개방된 육면체 형상을 가질 수 있다. 케이스(102) 내부에 형성되는 공간에는 용기를 가열하기 위한 워킹 코일 어셈블리(122, 124)가 배치된다. 또한 케이스(102) 내부에는 사용자로 하여금 전원을 인가하게 하거나 각 가열 영역(12, 14)의 파워 레벨을 조절하게 하는 기능과, 유도 가열 장치(10)와 관련된 정보를 표시하는 기능을 갖는 인터페이스부(114)가 구비된다. 인터페이스부(114)는 터치에 의한 정보 입력 및 정보 표시가 모두 가능한 터치 패널로 이루어질 수 있으나, 실시예에 따라서 다른 구조를 갖는 인터페이스부(114)가 사용될 수도 있다.
또한 상판부(106)에는 인터페이스부(114)와 대응되는 위치에 배치되는 조작 영역(118)이 구비된다. 사용자의 조작을 위하여, 조작 영역(118)에는 문자나 이미지 등이 미리 인쇄될 수 있다. 사용자는 조작 영역(118)에 미리 인쇄된 문자나 이미지를 참고하여 조작 영역(118)의 특정 지점을 터치함으로써 원하는 조작을 수행할 수 있다. 또한 인터페이스부(114)에 의해서 출력되는 정보는 조작 영역(118)을 통해서 표시될 수 있다.
사용자는 인터페이스부(114)를 통해서 각각의 가열 영역(12, 14)의 파워 레벨을 설정할 수 있다. 파워 레벨은 조작 영역(118) 상에 숫자(예컨대, 1, 2, 3, ..., 9)로 표시될 수 있다. 각각의 가열 영역(12, 14)에 대한 파워 레벨이 설정되면 각각의 가열 영역(12, 14)과 대응되는 워킹 코일의 요구 전력값 및 구동 주파수가 결정된다. 제어기는 결정된 구동 주파수에 기초하여 각각의 워킹 코일의 출력 전력값이 사용자에 의하여 설정된 요구 전력값과 일치하도록 각각의 워킹 코일을 구동시킨다.
또한 케이스(102) 내부에 형성되는 공간에는 워킹 코일 어셈블리(122, 124)나 인터페이스부(114)에 전력을 공급하기 위한 전원부(112)가 배치된다.
참고로 도 2의 실시예에서는 케이스(102) 내부에 배치된 두 개의 워킹 코일 어셈블리, 즉 제1 워킹 코일 어셈블리(122) 및 제2 워킹 코일 어셈블리(124)가 예시적으로 도시되어 있으나, 실시예에 따라서는 케이스(102) 내부에 세 개 이상의 워킹 코일 어셈블리가 배치될 수도 있다.
워킹 코일 어셈블리(122, 124)는 전원부(112)에 의해 공급되는 고주파 교류 전류를 이용하여 유도 자계를 형성하는 워킹 코일 및 용기에 의해 발생하는 열로부터 코일을 보호하기 위한 단열 시트를 포함한다. 예를 들어 도 2에서 제1 워킹 코일 어셈블리(122)는 제1 가열 영역(12)에 놓여지는 용기를 가열하기 위한 제1 워킹 코일(132) 및 제1 단열 시트(130)를 포함한다. 또한 도시되지는 않았으나, 제2 워킹 코일 어셈블리(124)는 제2 워킹 코일 및 제2 단열 시트를 포함한다. 실시예에 따라서는 단열 시트가 배치되지 않을 수도 있다.
또한 각각의 워킹 코일의 중심부에는 온도 센서가 배치된다. 예를 들어 도 2에서 제1 워킹 코일(134)의 중심부에는 온도 센서(134)가 배치된다. 온도 센서는 각각의 가열 영역에 놓여진 용기의 온도를 측정한다. 본 명세서의 일 실시예에서, 온도 센서는 용기의 온도에 따라서 저항값이 변화하는 가변 저항을 갖는 서미스터 온도 센서일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시예에서 온도 센서는 용기의 온도에 대응되는 센싱 전압을 출력하며, 온도 센서로부터 출력되는 센싱 전압은 제어기에 전달된다. 제어기는 온도 센서로부터 출력되는 센싱 전압의 크기에 기초하여 용기의 온도를 확인하고, 용기의 온도가 미리 정해진 기준값 이상이면 워킹 코일의 출력 전력값을 낮추거나 워킹 코일의 구동을 중단시키는 과열 보호 동작을 수행한다.
또한 도 2에는 도시되지 않았으나 케이스(102) 내부에 형성되는 공간에는 제어기를 포함한 다수의 회로 또는 소자가 실장되는 기판이 배치될 수 있다. 제어기는 인터페이스부(114)를 통해서 입력되는 사용자의 가열 시작 명령에 따라서 각각의 워킹 코일을 구동시켜 가열 동작을 수행할 수 있다. 사용자가 인터페이스부(114)를 통해서 가열 종료 명령을 입력하면 제어기는 워킹 코일의 구동을 중단시켜 가열 동작을 종료시킨다.
도 3은 본 명세서의 일 실시예에 따른 유도 가열 장치의 회로 구성도이다.
도 3을 참조하면, 본 명세서의 일 실시예에 따른 유도 가열 장치(10)는 제1 정류 회로(202), 제1 평활화 회로(L1, C1), 제1 인버터 회로(204), 제1 워킹 코일(132), 제2 정류 회로(212), 제2 평활화 회로(L3, C5), 제2 인버터 회로(214), 제2 워킹 코일(142), 제1 구동 회로(22), 제2 구동 회로(24), 제어기(2)를 포함한다.
제1 정류 회로(202)는 다수의 다이오드 소자(D1, D2, D3, D4)를 포함한다. 도 3에 도시된 바와 같이 제1 정류 회로(202)는 브릿지 다이오드 회로일 수 있으며, 실시예에 따라 다른 회로일 수 있다. 제1 정류 회로(202)는 전원 장치(20)로부터 공급되는 교류 입력 전압을 정류하여 맥동 파형을 갖는 전압을 출력한다.
제1 평활화 회로(L1, C1)는 제1 정류 회로(202)에 의해서 정류된 전압을 평활화하여 직류 링크 전압을 출력한다. 제1 평활화 회로(L1, C1)는 제1 인덕터(L1) 및 제1 직류 링크 캐패시터(C1)를 포함한다.
제1 인버터 회로(204)는 제1 스위칭 소자(SW1), 제2 스위칭 소자(SW2), 제3 스위칭 소자(SW3), 제4 스위칭 소자(SW4), 제2 인덕터(L2), 다수의 캐패시터를 포함하는 가변 캐패시터부(C2, C3, C4), 릴레이부(206)를 포함한다. 도 3에 도시된 바와 같이, 본 명세서의 일 실시예에 따른 유도 가열 장치(10)의 제1 인버터 회로(204)는 4개의 스위칭 소자(SW1, SW2, SW3, SW4)를 포함하는 풀 브릿지 회로로 구성된다.
제1 스위칭 소자(SW1), 제2 스위칭 소자(SW2), 제3 스위칭 소자(SW3), 제4 스위칭 소자(SW4)는 각각 제1 구동 회로(22)로부터 출력되는 제1 스위칭 신호(S1), 제2 스위칭 신호(S2), 제3 스위칭 신호(S3), 제4 스위칭 신호(S4)에 의해서 턴 온 및 턴 오프된다. 각각의 스위칭 소자((SW1, SW2, SW3, SW4)는 각각의 스위칭 신호(S1, S2, S3, S4)가 하이 레벨일 때 턴 온되고, 각각의 스위칭 신호(S1, S2, S3, S4)가 로우 레벨일 때 턴 오프된다.
각각의 스위칭 소자(SW1, SW2, SW3, SW4) 중 임의의 스위칭 소자들은 서로 상보적으로 턴 온 및 턴 오프될 수 있다. 예를 들어 임의의 동작 모드에서, 제1 스위칭 소자(SW1)가 턴 온(턴 오프) 되는 동안 제2 스위칭 소자(SW2)는 턴 오프(턴 온)될 수 있다. 본 명세서에는 서로 상보적으로 턴 온 및 턴 오프되는 스위칭 소자들이 '서로 상보적인' 스위칭 소자들로 지칭된다.
또한 각각의 스위칭 소자(SW1, SW2, SW3, SW4) 중 임의의 스위칭 소자들은 서로 동일하게 턴 온 및 턴 오프될 수 있다. 예를 들어 임의의 동작 모드에서, 제1 스위칭 소자(SW1)는 제3 스위칭 소자(SW3)와 서로 동일한 타이밍에 턴 온 및 턴 오프될 수 있다. 본 명세서에는 서로 동일한 타이밍에 턴 온 및 턴 오프되는 스위칭 소자들이 '서로 대응되는' 스위칭 소자들로 지칭된다.
제1 인버터 회로(204)에 포함된 스위칭 소자들(SW1, SW2, SW3, SW4)의 턴 온 및 턴 오프 동작, 즉 스위칭 동작에 의해서, 제1 인버터 회로(204)에 입력되는 직류 링크 전압이 교류 전압(교류 전류)으로 변환된다. 제1 인버터 회로(204)에 의해서 변환되는 교류 전압(교류 전류)은 제2 인덕터(L2), 제1 워킹 코일(132) 및 다수의 가변 캐패시터부(C2, C3, C4)로 공급된다. 제1 인버터 회로(204)에 의해서 교류 전압(교류 전류)이 공급되면 제1 워킹 코일(132)에 공진 현상이 발생하여 용기에 열 에너지가 공급된다.
본 명세서에서 제1 스위칭 신호(S1), 제2 스위칭 신호(S2), 제3 스위칭 신호(S3), 제4 스위칭 신호(S4)는 각각 미리 정해진 듀티 비(duty ratio)를 갖는 PWM(Pulse Width Modulation) 신호이다.
릴레이부(206)는 각각의 가변 캐패시터부(C2, C3, C4)와 직렬로 연결되는 다수의 릴레이를 포함한다. 릴레이부(206)에 포함되는 각각의 릴레이는 제어기(2)의 제어 신호에 의해서 열리거나 닫힐 수 있다.
본 명세서에서, 제어기(2)의 제어에 의해서 닫힌 릴레이의 개수에 따라서 가변 캐패시터부(C2, C3, C4)의 전체 캐패시턴스 값이 달라질 수 있다. 즉, 제어기(2)는 릴레이부(206)에 포함된 릴레이를 열거나 닫음으로써 가변 캐패시터부(C2, C3, C4)의 캐패시턴스 값을 조절할 수 있다.
본 명세서의 일 실시예에서, 제어기(2)는 제1 인버터 회로(202)의 동작 모드를 결정하고, 가변 캐패시터부(C2, C3, C4)의 캐패시턴스 값이 제1 인버터 회로(202)의 동작 모드와 대응되도록 릴레이부(206)에 포함된 각각의 릴레이의 개폐 상태를 제어할 수 있다. 후술하는 바와 같이, 가변 캐패시터부(C2, C3, C4)의 캐패시턴스 값에 따라서 워킹 코일(132)에 흐르는 공진 전류의 주파수가 조절될 수 있다.
도 3의 실시예에서 가변 캐패시터부는 병렬로 연결되는 3개의 캐패시터(C2, C3, C4)를 포함한다. 그러나 가변 캐패시터부에 포함되는 캐패시터의 개수는 실시예에 따라서 달라질 수 있다. 또한 가변 캐패시터부에 포함되는 캐패시터의 연결 상태(직렬 또는 병렬)는 실시예에 따라 달라질 수 있다.
다시 도 3을 참조하면, 제2 정류 회로(212)는 다수의 다이오드 소자(D5, D6, D7, D8)를 포함한다. 도 3에 도시된 바와 같이 제2 정류 회로(212)는 브릿지 다이오드 회로일 수 있으며, 실시예에 따라 다른 회로일 수 있다. 제2 정류 회로(212)는 전원 장치(20)로부터 공급되는 교류 입력 전압을 정류하여 맥동 파형을 갖는 전압을 출력한다.
제2 평활화 회로(L3, C5)는 제2 정류 회로(212)에 의해서 정류된 전압을 평활화하여 직류 링크 전압을 출력한다. 제2 평활화 회로(L3, C5)는 제3 인덕터(L3) 및 제2 직류 링크 캐패시터(C5)를 포함한다.
제2 인버터 회로(214)는 제6 캐패시터(C6), 제7 캐패시터(C7), 제5 스위칭 소자(SW5), 제6 스위칭 소자(SW6)를 포함한다. 도 3에 도시된 바와 같이, 본 명세서의 일 실시예에 따른 유도 가열 장치(10)의 제2 인버터 회로(214)는 2개의 스위칭 소자(SW5, SW6)를 포함하는 하프 브릿지 회로로 구성된다. 그러나 본 명세서의 다른 실시예에서, 제2 인버터 회로(214)는 제1 인버터 회로(204)와 마찬가지로 4개의 스위칭 소자를 포함하는 풀 브릿지 회로로 구성될 수도 있다.
제5 스위칭 소자(SW5), 제6 스위칭 소자(SW6)는 각각 제2 구동 회로(24)로부터 출력되는 제5 스위칭 신호(S5), 제6 스위칭 신호(S6)에 의해서 상보적으로 턴 온 및 턴 오프된다.
도 3에는 각각의 스위칭 소자(SW1, SW2, SW3, SW4, SW5, SW6)가 IGBT 소자인 실시예가 도시되어 있으나, 각각의 스위칭 소자(SW1, SW2, SW3, SW4, SW5, SW6)는 실시예에 따라서 다른 타입의 스위칭 소자(예컨대, BJT 또는 FET 등)일 수도 있다.
제2 인버터 회로(214)에 포함된 스위칭 소자들(SW5, SW6)의 턴 온 및 턴 오프 동작, 즉 스위칭 동작에 의해서, 제2 인버터 회로(214)에 입력되는 직류 링크 전압이 교류 전압(교류 전류)으로 변환된다. 제2 인버터 회로(214)에 의해서 변환되는 교류 전압(교류 전류)은 제2 워킹 코일(142)로 공급된다. 제2 인버터 회로(214)에 의해서 교류 전압(교류 전류)이 공급되면 제2 워킹 코일(142)에 공진 현상이 발생하여 용기에 열 에너지가 공급된다.
본 명세서에서 제5 스위칭 신호(S5), 제6 스위칭 신호(S6)는 각각 미리 정해진 듀티 비를 갖는 PWM 신호이다.
각각의 인버터 회로(204, 214)로부터 출력되는 교류 전류가 공급되면 각각의 워킹 코일(132, 142)이 구동된다. 각각의 워킹 코일(132, 142)이 구동되면 각각의 워킹 코일(132, 142)의 상부에 놓인 용기에 와전류가 흐르면서 용기가 가열된다. 각각의 워킹 코일(132, 142)이 구동될 때 실제로 발생하는 전력의 크기, 즉 각각의 워킹 코일(132, 142)의 출력 전력값에 따라서 용기에 공급되는 열 에너지의 크기가 달라진다.
제어기(2)는 사용자가 가열 영역에 대하여 설정한 파워 레벨에 대응되도록 각각의 워킹 코일(132, 142)의 구동 주파수를 결정한다. 본 명세서의 일 실시예에서, 제어기(2)는 각각의 파워 레벨에 대응되는 구동 주파수가 기록된 테이블이나 각각의 파워 레벨과 구동 주파수 간의 관계식을 참조하여 각각의 워킹 코일(132, 142)의 구동 주파수를 결정할 수 있다. 또한 사용자가 설정한 파워 레벨에 따라서 각각의 워킹 코일(132, 142)이 출력해야 하는 전력의 크기, 즉 요구 전력값이 결정된다.
제어기(2)는 결정된 구동 주파수에 대응되는 제어 신호를 각각의 구동 회로(22, 44)에 공급한다. 각각의 구동 회로(22, 24)는 제어기(2)로부터 출력되는 제어 신호에 기초하여, 제어기(2)에 의해서 결정된 구동 주파수에 대응되는 듀티비를 갖는 스위칭 신호(S1, S2, S3, S4, S5, S6)를 출력한다.
사용자가 유도 가열 장치(10)의 인터페이스부를 조작하여 유도 가열 장치(10)를 전원 온(Power On) 상태로 변경하면, 전원 장치(20)로부터 유도 가열 장치에 전력이 공급되면서 유도 가열 장치(10)는 구동 대기 상태가 된다. 이어서 사용자는 유도 가열 장치(10)의 각각의 워킹 코일(132, 142) 상부에 용기를 올려 놓고 용기에 대한 파워 레벨을 설정함으로써 각각의 워킹 코일(132, 142)에 대한 가열 시작 명령을 입력한다. 사용자가 가열 시작 명령을 입력하면, 사용자가 설정한 파워 레벨에 따라서 각각의 워킹 코일(132, 142)에 요구되는 전력값, 즉 요구 전력값이 결정된다.
사용자에 의한 가열 시작 명령을 수신한 제어기(2)는 각각의 워킹 코일(132, 142)의 요구 전력값에 대응되는 구동 주파수를 결정하고, 결정된 구동 주파수에 대응되는 제어 신호를 각각의 구동 회로(22, 24)에 공급한다. 이에 따라서 각각의 구동 회로(22, 24)로부터 스위칭 신호(S1, S2, S3, S4, S5, S6)가 출력되고, 스위칭 신호(S1, S2, S3, S4, S5, S6)가 각각 스위칭 소자(SW1, SW2, SW3, SW4, SW5, SW6)에 입력되면서 각각의 워킹 코일(132, 142)이 구동된다. 각각의 워킹 코일(132, 142)이 구동되면 용기에 와전류가 흐르면서 용기가 가열된다.
한편, 제1 워킹 코일(132) 및 제2 워킹 코일(142)이 각각 제1 구동 주파수 및 제2 구동 주파수로 구동되어 용기가 가열되고 있을 때, 사용자에 의해서 제1 워킹 코일(132) 또는 제2 워킹 코일(142)의 요구 전력값이 제3 요구 전력값으로 바뀔 수 있다. 예를 들어 제1 워킹 코일(132)의 요구 전력값이 제1 요구 전력값(예컨대, 2000W)에서 제3 요구 전력값(예컨대, 500W)으로 바뀌면, 제어기(2)는 제1 워킹 쾨일(132)의 구동 주파수를 제3 요구 전력값(예컨대, 500W)에 대응되는 제3 구동 주파수로 변경해야 한다.
이처럼 제1 워킹 코일(132) 또는 제2 워킹 코일(142)의 구동 주파수가 제3 구동 주파수로 변경되면, 구동 주파수가 변경되지 않은 나머지 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값에 따라서 간섭 소음이 발생할 수 있다.
본 명세서의 일 실시예에서, 제어기(2)는 제1 워킹 코일(132) 또는 제2 워킹 코일(142)의 요구 전력값이 제3 요구 전력값으로 변경되면 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정한다. 전술한 바와 같은 간섭 소음을 방지하기 위하여, 제어기(2)는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값을 산출한다. 본 명세서에서, 2개의 구동 주파수들 간의 차이값은 2개의 구동 주파수들중 큰 값에서 작은 값을 뺀 값을 의미한다.
제어기(2)는 산출된 차이값이 미리 정해진 제1 기준 범위(예컨대, 5kHz 이상이고 20kHz 이하)에 포함되면 간섭 소음 방지를 위해 제1 인버터 회로(204) 또는 제2 인버터 회로(214)의 동작 모드 또는 전력 제어 모드를 변경한다.
본 명세서의 일 실시예에서 제1 워킹 코일(132)의 공진 주파수가 제2 워킹 코일(142)의 공진 주파수보다 작고, 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 미리 정해진 제1 기준 범위에 포함되면, 제어기(2)는 간섭 소음 방지를 위해 제1 인버터 회로(204)의 동작 모드를 풀 브릿지 모드에서 하프 브릿지 모드로 변경하고, 제3 요구 전력값과 대응되는 제1 워킹 코일(132)의 제4 구동 주파수를 결정한다. 제어기(2)는 제1 인버터 회로(204)의 구동 주파수를 제4 주파수로 변경한다.
제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드에서 하프 브릿지 모드로 변경되면, 제1 워킹 코일(132)의 전체 주파수 대역에서 제1 워킹 코일(132)의 출력 전력값이 낮아진다. 따라서 제3 요구 전력값과 대응되는 제1 워킹 코일(132)의 구동 주파수, 즉 제4 구동 주파수가 낮아진다. 이에 따라서 제1 워킹 코일(132)의 구동 주파수(제4 구동 주파수) 및 제2 워킹 코일(142)의 구동 주파수(제2 구동 주파수) 간의 차이값이 미리 정해진 소음 회피값(예컨대, 22kHz) 이상의 값이 된다. 본 명세서에서, 소음 회피값은 가청 주파수 대역의 경계값 중 최대값(예컨대, 20kHz)보다 큰 값으로 설정될 수 있으며, 실시예에 따라 다르게 설정될 수 있다.
본 명세서의 일 실시예에서 제1 워킹 코일(132)의 공진 주파수가 제2 워킹 코일(142)의 공진 주파수와 동일하고, 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 미리 정해진 제1 기준 범위에 포함되면, 제어기(2)는 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하고, 변경된 전력 제어 모드에 따라서 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값과 동일하게 조절한다.
본 명세서의 일 실시예에서, 제어기(2)는 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경할 수 있다. 또한 본 명세서의 일 실시예에서, 제어기(2)는 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경할 수 있다.
본 명세서의 일 실시예에서, 제어기(2)는 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면, 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경할 수 있다.
또한 본 명세서의 일 실시예에서, 제어기(2)는 전력 제어 모드가 위상 변이 모드로 설정되면, 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경할 수 있다.
이처럼 전력 제어 모드가 변경된 이후 변경된 전력 제어 모드에 따라서 워킹 코일의 출력 전력값이 제3 요구 전력값으로 변경되면, 요구 전력값이 변경된 워킹 코일의 구동 주파수는 변경되지 않고 그대로 유지된다. 따라서 제1 워킹 코일(132)의 구동 주파수와 제2 워킹 코일(142)의 구동 주파수의 차이값이 가청 주파수 대역을 벗어나게 되어 간섭 소음이 방지된다.
본 명세서의 다른 실시예에서, 제어기(2)는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 미리 정해진 제2 기준 범위(예컨대, 2kHz 이상이고 5kHz 미만)에 포함되면 제1 워킹 코일(132)의 구동 주파수와 제2 워킹 코일(142)의 구동 주파수를 동일하게 설정할 수 있다. 이러한 제어에 의해서 제1 워킹 코일(132) 및 제2 워킹 코일(142)의 구동으로 인한 간섭 소음의 발생이 방지된다.
또한 본 명세서의 다른 실시예에서, 제어기(2)는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 제1 기준 범위 및 제2 기준 범위에 포함되지 않을 경우 요구 전력값이 변경된 워킹 코일의 구동 주파수를 제3 구동 주파수로 설정하고 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수를 변경하지 않는다. 이는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 제1 기준 범위 및 제2 기준 범위에 포함되지 않으면 간섭 소음이 발생하지 않기 때문이다.
참고로 제1 기준 범위 및 제2 기준 범위의 경계값들은 실시예에 따라서 다르게 설정될 수 있다.
도 4는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드일 때, 제어기(2)는 도 4에 도시된 바와 같은 파형을 갖는 스위칭 신호(S1, S2, S3, S4)를 출력하도록 구동 회로(22)에 제어 신호를 인가한다.
또한 제어기(2)는 도 4에 도시된 바와 같이 스위칭 신호(S1, S2, S3, S4)의 1주기(TS1) 동안 제1 워킹 코일(132)에 공급되는 공진 전류가 1회 출력되도록, 다시 말해서 제1 워킹 코일(132)에 공급되는 공진 전류의 주파수가 스위칭 신호(S1, S2, S3, S4)의 주파수의 1배가 되도록 하기 위하여, 가변 캐패시터부(C1, C2, C3)의 캐패시턴스 값을 하기 [수학식 1]과 같이 Cr,f로 설정한다.
Figure PCTKR2021005645-appb-img-000003
[수학식 1]에서 (fr,f)는 스위칭 신호(S1, S2, S3, S4)의 주파수와 동일하고, Lr은 제2 인덕터(L2)의 인덕턴스 값을 의미한다.
제어기(2)는 가변 캐패시터부(C1, C2, C3)의 전체 캐패시턴스 값이 [수학식 1]의 캐패시턴스 값(Cr,f)과 일치하도록 릴레이부(206)에 포함된 릴레이들을 각각 열거나 닫는다. 가변 캐패시터부(C1, C2, C3)의 캐패시턴스 값 조절이 완료되면 제어기(2)는 제1 구동 회로(22)를 통해서 도 4에 도시된 바와 같은 파형을 갖는 스위칭 신호(S1, S2, S3, S4)를 제1 인버터 회로(204)에 공급한다. 이에 따라서 용기에 대한 가열이 수행된다.
도 4에 도시된 바와 같이, 각각의 스위칭 신호는 1주기(TS1) 내에서 턴 온 구간 및 턴 오프 구간을 갖는다. 본 명세서에서 턴 온 구간의 시간은 턴 온 시간(TS11)으로 지칭되고, 턴 오프 구간의 시간은 턴 오프 시간(TS12)으로 지칭된다. 또한 1주기(TS1)에 대한 턴 온 시간(TS11)의 비율이 스위칭 신호의 듀티비(duty ratio)로 지칭된다. 예를 들어 제1 스위칭 신호(S1)의 1주기(TS1)가 1초이고 턴 온 시간(TS11)이 0.5초일 경우, 제1 스위칭 신호(S1)의 듀티비는 50%(또는 0.5)이다.
도 4을 참조하면, 제1 스위칭 소자(SW1)는 제2 스위칭 소자(SW2)와 서로 상보적으로 턴 온 및 턴 오프된다. 또한 제3 스위칭 소자(SW3)는 제4 스위칭 소자(SW4)와 서로 상보적으로 턴 온 및 턴 오프된다.
도 4에는 도 4의 회로도에서 a노드 및 b노드 사이의 전압의 크기인 Vab의 파형이 도시되어 있다. 여기서 Vab는 제1 워킹 코일(132)에 입력되는 입력 전압의 크기인 입력 전압값(Vin)과 동일하다. 또한 도 4에는 제1 워킹 코일(132)에 입력되는 입력 전류, 즉 공진 전류의 파형이 도시되어 있다.
도 4에 도시된 바와 같이 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드일 때, 입력 전압(Vab) 및 공진 전류는 서로 동일한 주파수를 갖는다. 또한 입력 전압(Vab) 및 공진 전류의 주파수는 스위칭 신호(S1, S2, S3, S4)의 주파수와 동일하다. 이에 따라서 제1 워킹 코일(132)의 전압 이득은 최대값(예컨대, 1)으로 유지되므로 용기에 대한 안정적인 전력 공급이 가능해진다.
도 5는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 결정되면 제어기(2)는 스위칭 신호(S1, S2, S3, S4)의 듀티비를 조절한다. 도 5에 도시된 바와 같이, 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 턴 온 시간(TS11)(또는 제2 스위칭 신호(S2) 및 제3 스위칭 신호(S3)의 턴 오프 시간) 및 제2 스위칭 신호(S2) 및 제3 스위칭 신호(S3)의 턴 온 시간(TS12)(또는 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 턴 오프 시간)에 따라서 입력 전압의 크기(Vab) 및 공진 전류의 크기가 각각 달라진다. 제1 워킹 코일(132)의 출력 전력값은 입력 전압의 크기(Vab) 및 공진 전류의 크기에 따라서 달라지므로, 제어기(2)는 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 턴 온 시간(TS11), 즉 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 듀티비를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 수 있다.
예를 들어 제어기(2)는 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 턴 온 시간(TS11)을 증가시킴으로써, 다시 말해서 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 듀티비를 증가시킴으로써 제1 워킹 코일(132)의 출력 전력값을 증가시킬 수 있다. 반대로 제어기(2)는 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 턴 온 시간(TS11)을 감소시킴으로써, 다시 말해서 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 듀티비를 감소시킴으로써 제1 워킹 코일(132)의 출력 전력값을 감소시킬 수 있다.
도 5의 실시예에서 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 듀티비는 도 4의 실시예의 제1 스위칭 신호(S1) 및 제4 스위칭 신호(S4)의 듀티비보다 작다. 따라서 도 5의 실시예에서 제1 워킹 코일(132)의 실제 전력값은 도 4의 실시예의 제1 워킹 코일(132)의 실제 전력값보다 작다.
도 6은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 위상 변이 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
제1 인버터 회로(204)의 전력 제어 모드가 위상 변이 모드로 결정되면 제어기(2)는 서로 대응되는 스위칭 신호들 간의 위상차를 조절한다. 도 15에 도시된 바와 같이, 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차(또는 제2 스위칭 신호(S2) 및 제3 스위칭 신호(S3) 간의 위상차)에 따라서 입력 전압의 크기(Vab) 및 공진 전류의 크기가 각각 달라진다. 제1 워킹 코일(132)의 출력 전력값은 입력 전압의 크기(Vab) 및 공진 전류의 크기에 따라서 달라지므로, 제어기(2)는 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 수 있다.
예를 들어 제어기(2)는 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차를 감소시킴으로써 제1 워킹 코일(132)의 출력 전력값을 증가시킬 수 있다. 반대로 제어기(2)는 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차를 증가시킴으로써 제1 워킹 코일(132)의 출력 전력값을 감소시킬 수 있다.
도 6의 실시예에서 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차(90°)는 도 13의 실시예의 서로 대응되는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차(0°)보다 크다. 따라서 도 6의 실시예에서 제1 워킹 코일(132)의 실제 전력값은 도 4의 실시예의 제1 워킹 코일(132)의 실제 전력값보다 작다.
본 명세서의 일 실시예에서, 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드일 때, 제어기(2)는 제1 워킹 코일(132)의 요구 전력값을 미리 정해진 기준 전력값과 비교하여 제1 인버터 회로(204)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 결정할 수 있다. 예를 들어 제어기(2)는 제1 워킹 코일(132)의 요구 전력값이 기준 전력값보다 작으면 제1 인버터 회로(204)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 결정하고, 제1 워킹 코일(132)의 요구 전력값이 기준 전력값보다 작지 않으면 제1 인버터 회로(204)의 전력 제어 모드를 위상 변이 모드로 결정할 수 있다.
도 7은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드일 때 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 7에는 풀 브릿지 모드에서 제1 스위칭 신호(S1)의 듀티비가 50%일 때 제1 워킹 코일(132)의 공진 특성 곡선(41) 및 풀 브릿지 모드에서 제1 스위칭 신호(S1)의 듀티비가 30%일 때 제1 워킹 코일(132)의 공진 특성 곡선(42)이 각각 도시되어 있다. 도 7에서 fr은 제1 워킹 코일(132)의 공진 주파수이다.
도 7에 도시된 바와 같이 풀 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수가 f1일 때, 제1 스위칭 신호(S1)의 듀티비가 50%로 설정되면 제1 워킹 코일(132)의 실제 전력값은 P1이 된다. 그러나 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 f1으로 유지하면서 제1 스위칭 신호(S1)의 듀티비를 50%에서 30%로 감소시키면 제1 워킹 코일(132)의 실제 전력값은 P2로 감소한다. 따라서 제어기(2)는 풀 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수를 동일한 값으로 유지하면서, 비대칭 펄스 폭 변조 방식에 따라서 제1 스위칭 신호(S1)의 듀티비를 조절하는 것만으로도 제1 워킹 코일(132)의 실제 전력값을 조절할 수 있다.
또한 도 7의 그래프는 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차가 0°일 때의 공진 특성 곡선(41) 및 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차가 90°일 때의 공진 특성 곡선(42)일 수도 있다.
도 7에 도시된 바와 같이 풀 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수가 f1일 때, 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차가 0°로 설정되면 제1 워킹 코일(132)의 실제 전력값은 P1이 된다. 그러나 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 f1으로 유지하면서 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차를 90°로 증가시키면 제1 워킹 코일(132)의 실제 전력값은 P2로 감소한다. 따라서 제어기(2)는 풀 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수를 동일한 값으로 유지하면서, 위상 변이 방식에 따라서 제1 스위칭 신호(S1) 및 제3 스위칭 신호(S3) 간의 위상차를 조절하는 것만으로도 제1 워킹 코일(132)의 출력 전력값을 조절할 수 있다.
도 8은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 풀 브릿지 모드인 상태에서 제1 인버터 회로의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때, 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정될 때, 제1 인버터 회로의 전력 제어 모드가 위상 변이 모드로 설정될 때 유도 가열 장치의 전력 변환 효율을 각각 나타내는 그래프이다.
도 8에는 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드인 상태에서 제1 인버터 회로(204)의 전력 제어 모드가 펄스 주파수 변조 모드일 때, 즉 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 조절하여 제1 워킹 코일(132)의 출력 전력값을 조절할 때 각각의 입력 전력값에 대한 전력 변환 효율을 나타내는 그래프(43)가 도시되어 있다.
또한 도 8에는 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드인 상태에서 제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때, 즉 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 변경하지 않고 스위칭 신호의 듀티비를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 때 각각의 입력 전력값에 대한 전력 변환 효율을 나타내는 그래프(44)가 도시되어 있다.
또한 도 8에는 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드인 상태에서 제1 인버터 회로(204)의 전력 제어 모드가 위상 변이 모드일 때, 즉 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 변경하지 않고 서로 대응되는 스위칭 신호들 간의 위상차를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 때 각각의 입력 전력값에 대한 전력 변환 효율을 나타내는 그래프(45)가 도시되어 있다.
도 8에 도시된 바와 같이, 입력 전력값의 전 범위에 걸쳐서 제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드 또는 위상 변이 모드로 설정될 때의 전력 변환 효율이 제1 인버터 회로(204)의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때의 전력 변환 효율보다 높다. 따라서 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드로 설정된 상태에서 제1 워킹 코일(132)의 출력 전력값을 비대칭 펄스 폭 변조 방식 또는 위상 변이 방식으로 조절함으로써 종래의 유도 가열 장치에 비해 제1 워킹 코일(132)의 전력 변환 효율이 증대된다.
도 9는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드로 결정되면, 제어기(2)는 도 9에 도시된 바와 같은 파형을 갖는 스위칭 신호(S1, S2, S3, S4)를 출력하도록 제1 구동 회로(22)에 제어 신호를 인가한다.
또한 제어기(2)는 도 9에 도시된 바와 같이 스위칭 신호(S1, S2, S3, S4)의 1주기(TS2) 동안 제1 워킹 코일(132)에 공급되는 공진 전류가 1회 출력되도록, 다시 말해서 제1 워킹 코일(132)에 공급되는 공진 전류의 주파수가 스위칭 신호(S1, S2, S3, S4)의 주파수의 1배가 되도록 하기 위하여, 가변 캐패시터부(C1, C2, C3)의 캐패시턴스 값을 하기 [수학식 2]와 같이 Cr,h로 설정한다.
Figure PCTKR2021005645-appb-img-000004
[수학식 2]에서 (fr,h)는 스위칭 신호(S1, S2, S3, S4)의 주파수와 동일하고, Lr은 제2 인덕터(L2)의 인덕턴스 값을 의미한다.
제어기(2)는 가변 캐패시터부(C1, C2, C3)의 전체 캐패시턴스 값이 [수학식 8]의 캐패시턴스 값(Cr,h)과 일치하도록 릴레이부(206)에 포함된 릴레이들을 각각 열거나 닫는다. 가변 캐패시터부(C1, C2, C3)의 캐패시턴스 값 조절이 완료되면 제어기(2)는 제1 구동 회로(22)를 통해서 도 9에 도시된 바와 같은 파형을 갖는 스위칭 신호(S1, S2, S3, S4)를 인버터 회로(204)에 공급한다. 이에 따라서 용기에 대한 가열이 수행된다.
도 9를 참조하면, 제1 스위칭 소자(SW1)는 제2 스위칭 소자(SW2)와 서로 상보적으로 턴 온 및 턴 오프된다. 또한 제3 스위칭 소자(SW3)는 지속적으로 턴 온 상태를 유지하고, 제4 스위칭 소자(SW4)는 지속적으로 턴 오프 상태를 유지한다.
도 9에는 도 4의 회로도에서 a노드 및 b노드 사이의 전압의 크기인 Vab의 파형이 도시되어 있다. 여기서 Vab는 제1 워킹 코일(132)에 입력되는 입력 전압의 크기인 입력 전압값(Vin)과 동일하다. 또한 도 9에는 제1 워킹 코일(132)에 입력되는 입력 전류, 즉 공진 전류의 파형이 도시되어 있다.
도 9에 도시된 바와 같이 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드일 때, 입력 전압(Vab) 및 공진 전류는 서로 동일한 주파수를 갖는다. 또한 입력 전압(Vab) 및 공진 전류의 주파수는 스위칭 신호(S1, S2, S3, S4)의 주파수와 동일하다. 이에 따라서 제1 워킹 코일(132)의 전압 이득은 최대값(예컨대, 1)으로 유지되므로 용기에 대한 안정적인 전력 공급이 가능해진다.
한편, 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드로 결정되면 제어기(2)는 제1 인버터 회로(204)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 결정한다. 비대칭 펄스 폭 변조 모드에서, 제어기(2)는 스위칭 신호(S1, S2, S3, S4)의 주파수를 그대로 유지하면서 스위칭 신호(S1, S2, S3, S4)의 듀티비를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 수 있다.
도 10은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드이고 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때 스위칭 신호, 입력 전압, 공진 전류의 파형을 각각 나타낸다.
제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 결정되면 제어기(2)는 스위칭 신호(S1, S2, S3, S4)의 듀티비를 조절한다. 도 10에 도시된 바와 같이, 제1 스위칭 신호(S1)의 턴 온 시간(TS21)(또는 제2 스위칭 신호(S2)의 턴 오프 시간) 및 제2 스위칭 신호(S2)의 턴 온 시간(TS22)(또는 제1 스위칭 신호(S1)의 턴 오프 시간)에 따라서 입력 전압의 크기(Vab) 및 공진 전류의 크기가 각각 달라진다. 제1 워킹 코일(132)의 출력 전력값은 입력 전압의 크기(Vab) 및 공진 전류의 크기에 따라서 달라지므로, 제어기(2)는 제1 스위칭 신호(S1)의 턴 온 시간(TS21), 즉 제1 스위칭 신호(S1)의 듀티비를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 수 있다.
예를 들어 제어기(2)는 제1 스위칭 신호(S1)의 턴 온 시간(TS21)을 증가시킴으로써, 다시 말해서 제1 스위칭 신호(S1)의 듀티비를 증가시킴으로써 제1 워킹 코일(132)의 출력 전력값을 증가시킬 수 있다. 반대로 제어기(2)는 제1 스위칭 신호(S1)의 턴 온 시간(TS21)을 감소시킴으로써, 다시 말해서 제1 스위칭 신호(S1)의 듀티비를 감소시킴으로써 제1 워킹 코일(132)의 출력 전력값을 감소시킬 수 있다.
도 10의 실시예에서 제1 스위칭 신호(S1)의 듀티비는 도 9의 실시예의 제1 스위칭 신호(S1)의 듀티비보다 작다. 따라서 도 10의 실시예에서 제1 워킹 코일(132)의 출력 전력값은 도 9의 실시예의 제1 워킹 코일(132)의 출력 전력값보다 작다.
도 11은 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드일 때 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 11에는 하프 브릿지 모드에서 제1 스위칭 신호(S1)의 듀티비가 50%일 때 제1 워킹 코일(132)의 공진 특성 곡선(51) 및 하프 브릿지 모드에서 제1 스위칭 신호(S1)의 듀티비가 30%일 때 제1 워킹 코일(132)의 공진 특성 곡선(52)이 각각 도시되어 있다. 도 11에서 fr은 제1 워킹 코일(132)의 공진 주파수이다.
도 11에 도시된 바와 같이 하프 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수가 f1일 때, 제1 스위칭 신호(S1)의 듀티비가 50%로 설정되면 제1 워킹 코일(132)의 실제 전력값은 P1이 된다. 그러나 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 f1으로 유지하면서 제1 스위칭 신호(S1)의 듀티비를 50%에서 30%로 감소시키면 제1 워킹 코일(132)의 실제 전력값은 P2로 감소한다. 따라서 제어기(2)는 하프 브릿지 모드에서 제1 워킹 코일(132)의 구동 주파수를 동일한 값으로 유지하면서, 비대칭 펄스 폭 변조 방식에 따라서 제1 스위칭 신호(S1)의 듀티비를 조절하는 것만으로도 제1 워킹 코일(132)의 실제 전력값을 조절할 수 있다.
도 12는 본 명세서의 일 실시예에서 제1 인버터 회로의 동작 모드가 하프 브릿지 모드인 상태에서 제1 인버터 회로의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때와 제1 인버터 회로의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정될 때 유도 가열 장치의 전력 변환 효율을 각각 나타내는 그래프이다.
도 12에는 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드인 상태에서 제1 인버터 회로(204)의 전력 제어 모드가 펄스 주파수 변조 모드일 때, 즉 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 조절하여 제1 워킹 코일(132)의 출력 전력값을 조절할 때 각각의 입력 전력값에 대한 전력 변환 효율을 나타내는 그래프(53)가 도시되어 있다.
또한 도 12에는 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드인 상태에서 제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드일 때, 즉 제어기(2)가 제1 워킹 코일(132)의 구동 주파수를 변경하지 않고 스위칭 신호의 듀티비를 조절함으로써 제1 워킹 코일(132)의 출력 전력값을 조절할 때 각각의 입력 전력값에 대한 전력 변환 효율을 나타내는 그래프(54)가 도시되어 있다.
도 12에 도시된 바와 같이, 입력 전력값의 전 범위에 걸쳐서 제1 인버터 회로(204)의 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정될 때의 전력 변환 효율이 제1 인버터 회로(204)의 전력 제어 모드가 펄스 주파수 변조 모드로 설정될 때의 전력 변환 효율보다 높다. 따라서 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드로 설정된 상태에서 제1 워킹 코일(132)의 출력 전력값을 비대칭 펄스 폭 변조 방식으로 조절함으로써 종래의 유도 가열 장치에 비해 제1 워킹 코일(132)의 전력 변환 효율이 증대된다.
전술한 바와 같이 본 명세서에 따른 유도 가열 장치(10)는 제1 인버터 회로(204)의 동작 모드를 풀 브릿지 모드 또는 하프 브릿지 모드로 설정하여 용기를 가열할 수 있다. 따라서 간섭 소음 없이 다양한 특성을 갖는 용기를 가열할 수 있다.
이하에서는 도면을 참조하여 본 명세서에 따른 유도 가열 장치의 제어 방법의 실시예들이 기술된다.
도 13은 본 명세서의 일 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 다른 상태에서 제1 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다. 또한 도 14는 도 13의 실시예에서 간섭 소음 방지를 위해 제1 워킹 코일의 동작 모드가 하프 브릿지 모드로 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 13을 참조하면, 사용자는 제1 가열 영역(12)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제1 가열 영역(12)에 대하여 설정한 파워 레벨과 대응되는 제1 워킹 코일(132)의 제1 요구 전력값은 P1이고, 제1 요구 전력값(P1)과 대응되는 구동 주파수는 16kHz이다. 이에 따라서 제어기(2)는 제1 인버터 회로(204)의 동작 모드를 풀 브릿지 모드로 설정하고 제1 워킹 코일(132)의 제1 구동 주파수를 16kHz로 설정하고 제1 구동 회로(22)에 제어 신호를 공급한다. 이에 따라서 제1 워킹 코일(132)은 공진 특성 곡선(61)과 같은 공진 특성을 나타낸다. 제1 워킹 코일(132)은 16kHz의 구동 주파수로 구동되며 제1 워킹 코일(132)의 출력 전력값은 P1이 된다. 이 때 제1 워킹 코일(204)의 공진 주파수는 14kHz이다.
또한 사용자는 제2 가열 영역(14)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제2 가열 영역(14)에 대하여 설정한 파워 레벨과 대응되는 제2 워킹 코일(142)의 제2 요구 전력값은 P2이고, 제2 요구 전력값(P2)와 대응되는 구동 주파수는 37kHz이다. 이에 따라서 제어기(2)는 제2 워킹 코일(142)의 제2 구동 주파수를 37kHz로 설정하고 제2 구동 회로(24)에 제어 신호를 공급한다. 이에 따라서 제2 워킹 코일(142)은 공진 특성 곡선(62)과 같은 공진 특성을 나타낸다. 제2 워킹 코일(142)은 37kHz의 구동 주파수로 구동되며 제2 워킹 코일(142)의 출력 전력값은 P2가 된다. 이 때 제2 워킹 코일(142)의 공진 주파수는 35kHz이다.
제1 워킹 코일(132) 및 제2 워킹 코일(142)이 각각 구동되어 용기가 가열되고 있을 때, 사용자는 제1 가열 영역(12)의 파워 레벨을 감소시킨다. 제1 가열 영역(12)의 파워 레벨이 낮아지면 제1 워킹 코일(132)의 요구 전력값은 P1에서 P3으로 낮아진다.
제어기(2)는 요구 전력값이 변경된 워킹 코일, 즉 제1 워킹 코일(132)의 새로운 요구 전력값인 제3 요구 전력값(P3)에 대응되는 구동 주파수인 제3 구동 주파수를 결정한다. 도 13에 도시된 바와 같이, 제3 요구 전력값(P3)에 대응되는 제3 주파수는 19kHz로 결정된다.
제어기(2)는 요구 전력값이 변경된 워킹 코일의 제3 구동 주파수와 요구 전력값이 변경되지 않은 워킹 코일(제2 워킹 코일(142))의 구동 주파수(제2 구동 주파수)의 차이값을 산출한다. 도 13의 실시예에서, 제3 구동 주파수(19kHz)와 제2 구동 주파수(37kHz)의 차이값은 18이다.
제어기(2)는 산출된 차이값(18)이 미리 정해진 제1 기준 범위(예컨대, 5kHz 이상이고 20kHz 이하)에 포함되는지 확인한다. 산출된 차이값(18)이 제1 기준 범위에 포함되므로, 제어기(2)는 제1 인버터 회로(204)의 동작 모드를 하프 브릿지 모드로 변경한다. 이에 따라서 제1 인버터 회로(204)에는 도 9에 도시된 바와 같은 파형을 갖는 스위칭 신호들(S1, S2, S3, S4)이 각각 입력된다.
제1 인버터 회로(204)가 하프 브릿지 모드로 구동되면 제1 워킹 코일(132)의 전체 주파수 범위에서 제1 워킹 코일(132)의 출력 전력값이 감소한다. 이에 따라서 제1 워킹 코일(132)은 도 14에 도시된 공진 특성 곡선(63)과 같은 새로운 공진 특성을 갖는다.
제어기(2)는 제1 인버터 회로(204)의 동작 모드를 하프 브릿지 모드로 변경한 후 제3 요구 전력값(P3)에 대응되는 제4 구동 주파수를 결정한다. 도 14에 도시된 바와 같이, 제3 요구 전력값(P3)에 대응되는 제4 구동 주파수는 15kHz이다.
제1 인버터 회로(204)의 동작 모드 변경에 의해서 제1 워킹 코일(132)의 구동 주파수가 제4 구동 주파수로 변경되면, 제2 워킹 코일(142)의 제2 구동 주파수(37kHz)와 제1 워킹 코일(132)의 제4 구동 주파수(15kHz)의 차이값(22)은 미리 정해진 소음 회피값(예컨대, 22) 이상의 값이 되어 제2 기준 범위를 벗어나게 된다. 따라서 제어기(2)는 제1 워킹 코일(132)을 제4 구동 주파수(15kHz)로 구동시키고, 제2 워킹 코일(142)을 제2 구동 주파수(37kHz)로 구동시킨다. 이러한 제어에 의해서 제1 워킹 코일(132)의 출력 전력값이 P1에서 P3으로 변경되더라도 제1 워킹 코일(132) 및 제2 워킹 코일(142)의 구동으로 인한 간섭 소음이 발생하지 않는다.
한편, 도 10과 같이 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드로 변경된 이후 제1 워킹 코일(132)의 요구 전력값이 변경되면, 제어기(2)는 제1 인버터 회로(204)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경할 수 있다. 즉, 제어기(2)는 제1 워킹 코일(132)의 구동 주파수를 변경하지 않고 제1 인버터 회로(204)에 입력되는 스위칭 신호의 듀티비를 변경함으로써 제1 워킹 코일(132)의 출력 전력값을 변경할 수 있다. 그러나 본 명세서의 다른 실시예에서, 제어기(2)는 도 10과 같이 제1 인버터 회로(204)의 동작 모드가 하프 브릿지 모드로 변경된 이후 제1 워킹 코일(132)의 요구 전력값이 변경된 이후에도 제1 워킹 코일(132)의 구동 주파수를 변경하여 제1 워킹 코일(132)의 출력 전력값을 변경할 수 있다.
도 15는 본 명세서의 다른 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 동일한 상태에서 제1 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다. 또한 도 16은 도 15의 실시예에서 간섭 소음 방지를 위해 제1 워킹 코일의 전력 제어 모드가 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 15를 참조하면, 사용자는 제1 가열 영역(12)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제1 가열 영역(12)에 대하여 설정한 파워 레벨과 대응되는 제1 워킹 코일(132)의 제1 요구 전력값은 P1이고, 제1 요구 전력값(P1)과 대응되는 구동 주파수는 22kHz이다. 이에 따라서 제어기(2)는 제1 인버터 회로(204)의 동작 모드를 풀 브릿지 모드로 설정하고 제1 워킹 코일(132)의 제1 구동 주파수를 22kHz로 설정하고 제1 구동 회로(22)에 제어 신호를 공급한다. 이에 따라서 제1 워킹 코일(132)은 공진 특성 곡선(65)과 같은 공진 특성을 나타낸다. 제1 워킹 코일(132)은 22kHz의 구동 주파수로 구동되며 제1 워킹 코일(132)의 출력 전력값은 P1이 된다. 이 때 제1 워킹 코일(204)의 공진 주파수는 20kHz이다.
또한 사용자는 제2 가열 영역(14)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제2 가열 영역(14)에 대하여 설정한 파워 레벨과 대응되는 제2 워킹 코일(142)의 제2 요구 전력값은 P2이고, 제2 요구 전력값(P2)와 대응되는 구동 주파수는 22kHz이다. 이에 따라서 제어기(2)는 제2 워킹 코일(142)의 제2 구동 주파수를 22kHz로 설정하고 제2 구동 회로(24)에 제어 신호를 공급한다. 이에 따라서 제2 워킹 코일(142)은 공진 특성 곡선(65)과 같은 공진 특성을 나타낸다. 제2 워킹 코일(142)은 22kHz의 구동 주파수로 구동되며 제2 워킹 코일(142)의 출력 전력값은 P2가 된다. 이 때 제2 워킹 코일(142)의 공진 주파수는 22kHz이다. 즉, 도 15의 실시예에서 제1 워킹 코일(132)의 공진 주파수와 제2 워킹 코일(142)의 공진 주파수는 서로 동일하다.
제1 워킹 코일(132) 및 제2 워킹 코일(142)이 각각 구동되어 용기가 가열되고 있을 때, 사용자는 제1 가열 영역(12)의 파워 레벨을 감소시킨다. 제1 가열 영역(12)의 파워 레벨이 낮아지면 제1 워킹 코일(132)의 요구 전력값은 P1에서 P3으로 낮아진다.
제어기(2)는 요구 전력값이 변경된 워킹 코일, 즉 제1 워킹 코일(132)의 새로운 요구 전력값인 제3 요구 전력값(P3)에 대응되는 구동 주파수인 제3 구동 주파수를 결정한다. 도 15에 도시된 바와 같이, 제3 요구 전력값(P3)에 대응되는 제3 주파수는 30kHz로 결정된다.
제어기(2)는 요구 전력값이 변경된 워킹 코일의 제3 구동 주파수와 요구 전력값이 변경되지 않은 워킹 코일(제2 워킹 코일(142))의 구동 주파수(제2 구동 주파수)의 차이값을 산출한다. 도 13의 실시예에서, 제3 구동 주파수(22kHz)와 제2 구동 주파수(30kHz)의 차이값은 8이다.
제어기(2)는 산출된 차이값(8)이 미리 정해진 제1 기준 범위(예컨대, 5kHz 이상이고 20kHz 이하)에 포함되는지 확인한다. 산출된 차이값(18)이 제1 기준 범위에 포함되고 제1 인버터 회로(204)의 동작 모드가 풀 브릿지 모드이므로, 제어기(2)는 제1 인버터 회로(204)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경한다.
제1 인버터 회로(204)의 전력 제어 모드가 변경되면, 제어기(2)는 제1 워킹 코일(132)의 구동 주파수를 제1 구동 주파수(22kHz)로 그대로 유지하면서 제1 인버터 회로(204)에 입력되는 스위칭 신호들의 듀티비 또는 제1 인버터 회로(204)에 입력되는 스위칭 신호들 간의 위상차를 조절하여 제1 워킹 코일(132)의 출력 전력값을 P3으로 조절한다. 제어기(2)가 제1 인버터 회로(204)에 입력되는 스위칭 신호들의 듀티비를 감소시키거나 제1 인버터 회로(204)에 입력되는 스위칭 신호들 간의 위상차를 증가시킴으로써 제1 워킹 코일(132)의 출력 전력값이 감소되며, 제1 워킹 코일(132)은 도 16에 도시된 공진 특성 곡선(66)과 같은 새로운 공진 특성을 갖는다.
결국 도 16에 도시된 바와 같이 제1 워킹 코일(132)의 출력 전력값이 P3으로 변경되더라도, 제1 워킹 코일(132)의 구동 주파수와 제2 워킹 코일(142)의 구동 주파수는 서로 동일하다. 이러한 제어에 의해서 제1 워킹 코일(132)의 출력 전력값이 P1에서 P3으로 변경되더라도 제1 워킹 코일(132) 및 제2 워킹 코일(142)의 구동으로 인한 간섭 소음이 발생하지 않는다.
도 15 및 도 16의 실시예에서 제1 워킹 코일(132)의 공진 주파수 및 제2 워킹 코일(142)의 공진 주파수는 서로 동일하고, 제1 워킹 코일(132)의 제1 요구 전력값(P1) 및 제2 워킹 코일(142)의 제2 요구 전력값(P2)은 서로 동일하다. 그러나 본 명세서에 따른 유도 가열 장치의 제어 방법은 제1 워킹 코일(132)의 공진 주파수 및 제2 워킹 코일(142)의 공진 주파수가 서로 동일하지 않고, 제1 워킹 코일(132)의 제1 요구 전력값(P1) 및 제2 워킹 코일(142)의 제2 요구 전력값(P2)이 서로 동일하지 않더라도 적용될 수 있다.
도 17은 본 명세서의 다른 실시예에서 제1 워킹 코일의 공진 주파수와 제2 워킹 코일의 공진 주파수가 서로 동일한 상태에서 제2 워킹 코일의 요구 전력값이 변경되었을 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다. 또한 도 18은 도 17의 실시예에서 간섭 소음 방지를 위해 제2 워킹 코일의 전력 제어 모드가 변경될 때 각 워킹 코일의 공진 특성 곡선을 나타내는 그래프이다.
도 17을 참조하면, 사용자는 제1 가열 영역(12)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제1 가열 영역(12)에 대하여 설정한 파워 레벨과 대응되는 제1 워킹 코일(132)의 제1 요구 전력값은 P1이고, 제1 요구 전력값(P1)과 대응되는 구동 주파수는 22kHz이다. 이에 따라서 제어기(2)는 제1 인버터 회로(204)의 동작 모드를 풀 브릿지 모드로 설정하고 제1 워킹 코일(132)의 제1 구동 주파수를 22kHz로 설정하고 제1 구동 회로(22)에 제어 신호를 공급한다. 이에 따라서 제1 워킹 코일(132)은 공진 특성 곡선(65)과 같은 공진 특성을 나타낸다. 제1 워킹 코일(132)은 22kHz의 구동 주파수로 구동되며 제1 워킹 코일(132)의 출력 전력값은 P1이 된다. 이 때 제1 워킹 코일(204)의 공진 주파수는 20kHz이다.
또한 사용자는 제2 가열 영역(14)에 용기를 올려 놓고 가열 시작 명령을 입력한다. 사용자가 제2 가열 영역(14)에 대하여 설정한 파워 레벨과 대응되는 제2 워킹 코일(142)의 제2 요구 전력값은 P2이고, 제2 요구 전력값(P2)와 대응되는 구동 주파수는 22kHz이다. 이에 따라서 제어기(2)는 제2 워킹 코일(142)의 제2 구동 주파수를 22kHz로 설정하고 제2 구동 회로(24)에 제어 신호를 공급한다. 이에 따라서 제2 워킹 코일(142)은 공진 특성 곡선(65)과 같은 공진 특성을 나타낸다. 제2 워킹 코일(142)은 22kHz의 구동 주파수로 구동되며 제2 워킹 코일(142)의 출력 전력값은 P2가 된다. 이 때 제2 워킹 코일(142)의 공진 주파수는 22kHz이다. 즉, 도 15의 실시예에서 제1 워킹 코일(132)의 공진 주파수와 제2 워킹 코일(142)의 공진 주파수는 서로 동일하다.
제1 워킹 코일(132) 및 제2 워킹 코일(142)이 각각 구동되어 용기가 가열되고 있을 때, 사용자는 제2 가열 영역(14)의 파워 레벨을 감소시킨다. 제2 가열 영역(14)의 파워 레벨이 낮아지면 제2 워킹 코일(142)의 요구 전력값은 P2에서 P3으로 낮아진다.
제어기(2)는 요구 전력값이 변경된 워킹 코일, 즉 제2 워킹 코일(142)의 새로운 요구 전력값인 제3 요구 전력값(P3)에 대응되는 구동 주파수인 제3 구동 주파수를 결정한다. 도 18에 도시된 바와 같이, 제3 요구 전력값(P3)에 대응되는 제3 주파수는 30kHz로 결정된다.
제어기(2)는 요구 전력값이 변경된 워킹 코일의 제3 구동 주파수와 요구 전력값이 변경되지 않은 워킹 코일(제1 워킹 코일(132))의 구동 주파수(제1 구동 주파수)의 차이값을 산출한다. 도 13의 실시예에서, 제3 구동 주파수(22kHz)와 제1 구동 주파수(30kHz)의 차이값은 8이다.
제어기(2)는 산출된 차이값(8)이 미리 정해진 제1 기준 범위(예컨대, 5kHz 이상이고 20kHz 이하)에 포함되는지 확인한다. 산출된 차이값(18)이 제1 기준 범위에 포함되고 제2 인버터 회로(214)의 동작 모드가 하프 브릿지 모드이므로, 제어기(2)는 제2 인버터 회로(214)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경한다.
제2 인버터 회로(214)의 전력 제어 모드가 변경되면, 제어기(2)는 제2 워킹 코일(142)의 구동 주파수를 제2 구동 주파수(22kHz)로 그대로 유지하면서 제2 인버터 회로(214)에 입력되는 스위칭 신호들의 듀티비를 조절하여 제2 워킹 코일(142)의 출력 전력값을 P3으로 조절한다. 제어기(2)가 제2 인버터 회로(214)에 입력되는 스위칭 신호들의 듀티비를 감소시킴으로써, 제2 워킹 코일(122)은 도 18에 도시된 공진 특성 곡선(67)과 같은 새로운 공진 특성을 갖는다.
결국 도 18에 도시된 바와 같이 제2 워킹 코일(142)의 출력 전력값이 P3으로 변경되더라도, 제2 워킹 코일(142)의 구동 주파수와 제1 워킹 코일(132)의 구동 주파수는 서로 동일하다. 이러한 제어에 의해서 제2 워킹 코일(142)의 출력 전력값이 P2에서 P3으로 변경되더라도 제1 워킹 코일(132) 및 제2 워킹 코일(142)의 구동으로 인한 간섭 소음이 발생하지 않는다.
도 17 및 도 18의 실시예에서 제1 워킹 코일(132)의 공진 주파수 및 제2 워킹 코일(142)의 공진 주파수는 서로 동일하고, 제1 워킹 코일(132)의 제1 요구 전력값(P1) 및 제2 워킹 코일(142)의 제2 요구 전력값(P2)은 서로 동일하다. 그러나 본 명세서에 따른 유도 가열 장치의 제어 방법은 제1 워킹 코일(132)의 공진 주파수 및 제2 워킹 코일(142)의 공진 주파수가 서로 동일하지 않고, 제1 워킹 코일(132)의 제1 요구 전력값(P1) 및 제2 워킹 코일(142)의 제2 요구 전력값(P2)이 서로 동일하지 않더라도 적용될 수 있다.
도 19는 본 명세서의 일 실시예에 따른 유도 가열 장치의 제어 방법을 나타내는 흐름도이다.
본 명세서의 일 실시예에 따른 유도 가열 장치(10)의 제어기(2)는 제1 워킹 코일(132)을 사용자가 설정한 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동시킨다(702). 또한 제어기(2)는 제2 워킹 코일(142)을 사용자가 설정한 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동시킨다(704).
제1 워킹 코일(132) 및 제2 워킹 코일(142)이 구동되고 있는 상태에서 사용자가 제1 워킹 코일(132) 또는 제2 워킹 코일(142)의 요구 전력값을 제3 요구 전력값으로 변경하면, 제어기(2)는 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정한다(706).
제어기(2)는 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값을 산출한다(708).
제어기(2)는 산출된 차이값이 미리 정해진 제1 기준 범위에 포함되면 제1 인버터 회로(204) 또는 제2 인버터 회로(214)의 동작 모드 또는 전력 제어 모드를 변경한다(710).
본 명세서의 일 실시예에서, 제1 인버터 회로(204) 또는 제2 인버터 회로(214)의 동작 모드 또는 전력 제어 모드를 변경하는 단계(710)는 제1 워킹 코일(132)의 공진 주파수가 제2 워킹 코일(142)의 공진 주파수보다 작고 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 미리 정해진 제1 기준 범위에 포함되면 제1 인버터 회로(204)의 동작 모드를 하프 브릿지 모드로 변경하는 단계 및 제1 인버터 회로(204)의 구동 주파수를 제3 요구 전력값과 대응되는 제4 구동 주파수로 변경하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 제1 인버터 회로(204) 또는 제2 인버터 회로(214)의 동작 모드 또는 전력 제어 모드를 변경하는 단계(710)는 제1 워킹 코일(132)의 공진 주파수가 제2 워킹 코일(142)의 공진 주파수와 동일하고 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 제3 구동 주파수의 차이값이 미리 정해진 제1 기준 범위에 포함되면 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계 및 변경된 전력 제어 모드에 따라서 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값과 동일하게 조절하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 제1 인버터 회로(204) 또는 제2 인버터 회로(214)의 동작 모드 또는 전력 제어 모드를 변경하는 단계(710)는 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하는 단계 및 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계를 포함한다.
다시 도 19를 참조하면, 단계(710)을 통해서 동작 모드 또는 전력 제어 모드의 변경이 완료된 후 제어기(2)는 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경한다(712).
본 명세서의 일 실시예에서, 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경하는 단계(712)는 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경하는 단계를 포함한다.
또한 본 명세서의 일 실시예에서, 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경하는 단계(712)는 전력 제어 모드가 위상 변이 모드로 설정되면 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 요구 전력값이 변경된 워킹 코일의 출력 전력값을 제3 요구 전력값으로 변경하는 단계를 포함한다.
또한 도면에는 도시되지 않았으나, 본 명세서에 따른 유도 가열 장치의 제어 방법은 제1 인버터 회로(132)의 구동 주파수가 제4 구동 주파수로 변경된 이후 제1 인버터 회로(132)의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하는 단계를 더 포함할 수 있다.
이상과 같이 본 명세서에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 명세서가 한정되는 것은 아니며, 본 명세서의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 명세서의 실시 예를 설명하면서 본 명세서의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (16)

  1. 제1 워킹 코일;
    상기 제1 워킹 코일의 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동되어 상기 제1 워킹 코일에 전류를 공급하는 제1 인버터 회로;
    제2 워킹 코일;
    상기 제2 워킹 코일의 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동되어 상기 제2 워킹 코일에 전류를 공급하는 제2 인버터 회로; 및
    상기 제1 워킹 코일 또는 상기 제2 워킹 코일의 요구 전력값이 제3 요구 전력값으로 변경되면 상기 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정하고, 요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 상기 제3 구동 주파수의 차이값을 산출하고, 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하고, 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 제어기를 포함하는
    유도 가열 장치.
  2. 제1항에 있어서,
    상기 제어기는
    상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수보다 작고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로의 동작 모드를 하프 브릿지 모드로 변경하고, 상기 제1 인버터 회로의 구동 주파수를 상기 제3 요구 전력값과 대응되는 제4 구동 주파수로 변경하는
    유도 가열 장치.
  3. 제2항에 있어서,
    상기 제1 인버터 회로는
    가변 캐패시터부; 및
    상기 가변 캐패시터부와 연결되는 릴레이부를 포함하고,
    상기 제어기는
    상기 릴레이부에 포함된 다수의 릴레이를 열거나 닫아서 상기 가변 캐패시터부의 캐패시턴스 값을 하기 [수학식 1]의 (Cr,h)로 설정하는
    유도 가열 장치.
    [수학식 1]
    Figure PCTKR2021005645-appb-img-000005
    (여기서, (fr,h)는 상기 제2 인버터 회로에 입력되는 스위칭 신호의 주파수와 동일한 값이고, 상기 Lr은 상기 제2 인버터 회로에 포함되는 제2 인덕터의 인덕턴스 값임)
  4. 제2항에 있어서,
    상기 제어기는
    상기 제1 인버터 회로의 구동 주파수가 상기 제4 구동 주파수로 변경된 이후 상기 제1 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하는
    유도 가열 장치.
  5. 제1항에 있어서,
    상기 제어기는
    상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수와 동일하고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하고, 상기 전력 제어 모드에 따라서 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값과 동일하게 조절하는
    유도 가열 장치.
  6. 제5항에 있어서,
    상기 제어기는
    상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드로 변경하고,
    상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드 및 상기 위상 변이 모드 중 어느 하나로 변경하는
    유도 가열 장치.
  7. 제1항에 있어서,
    상기 제어기는
    상기 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는
    유도 가열 장치.
  8. 제1항에 있어서,
    상기 제어기는
    상기 전력 제어 모드가 위상 변이 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는
    유도 가열 장치.
  9. 제1 워킹 코일을 제1 요구 전력값에 대응되는 제1 구동 주파수로 구동시키는 단계;
    제2 워킹 코일을 제2 요구 전력값에 대응되는 제2 구동 주파수로 구동시키는 단계;
    상기 제1 워킹 코일 또는 상기 제2 워킹 코일의 요구 전력값이 제3 요구 전력값으로 변경되면 상기 제3 요구 전력값에 대응되는 제3 구동 주파수를 결정하는 단계;
    요구 전력값이 변경되지 않은 워킹 코일의 구동 주파수와 상기 제3 구동 주파수의 차이값을 산출하는 단계;
    상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 워킹 코일에 전류를 공급하는 제1 인버터 회로 또는 상기 제2 워킹 코일에 전류를 공급하는 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계; 및
    상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
  10. 제9항에 있어서,
    상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계는
    상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수보다 작고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 제1 인버터 회로의 동작 모드를 하프 브릿지 모드로 변경하는 단계; 및
    상기 제1 인버터 회로의 구동 주파수를 상기 제3 요구 전력값과 대응되는 제4 구동 주파수로 변경하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
  11. 제10항에 있어서,
    상기 제1 인버터 회로는
    가변 캐패시터부; 및
    상기 가변 캐패시터부와 연결되는 릴레이부를 포함하고,
    상기 제1 인버터 회로의 동작 모드가 상기 하프 브릿지 모드로 변경되면 상기 릴레이부에 포함된 다수의 릴레이가 열리거나 닫힘으로써 상기 가변 캐패시터부의 캐패시턴스 값이 하기 [수학식 1]의 (Cr,h)로 설정되는
    유도 가열 장치의 제어 방법.
    [수학식 1]
    Figure PCTKR2021005645-appb-img-000006
    (여기서, (fr,h)는 상기 제2 인버터 회로에 입력되는 스위칭 신호의 주파수와 동일한 값이고, 상기 Lr은 상기 제2 인버터 회로에 포함되는 제2 인덕터의 인덕턴스 값임)
  12. 제10항에 있어서,
    상기 제1 인버터 회로의 구동 주파수가 상기 제4 구동 주파수로 변경된 이후 상기 제1 인버터 회로의 전력 제어 모드를 비대칭 펄스 폭 변조 모드로 변경하는 단계를 더 포함하는
    유도 가열 장치의 제어 방법.
  13. 제9항에 있어서,
    상기 제1 인버터 회로 또는 상기 제2 인버터 회로의 동작 모드 또는 전력 제어 모드를 변경하는 단계는
    상기 제1 워킹 코일의 공진 주파수가 상기 제2 워킹 코일의 공진 주파수와 동일하고 상기 차이값이 미리 정해진 제1 기준 범위에 포함되면 상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계; 및
    상기 전력 제어 모드에 따라서 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값과 동일하게 조절하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
  14. 제13항에 있어서,
    상기 요구 전력값이 변경된 워킹 코일의 전력 제어 모드를 비대칭 펄스 폭 변조 모드 및 위상 변이 모드 중 어느 하나로 변경하는 단계는
    상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 하프 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드로 변경하는 단계; 및
    상기 요구 전력값이 변경된 워킹 코일의 동작 모드가 풀 브릿지 모드이면 상기 전력 제어 모드를 상기 비대칭 펄스 폭 변조 모드 및 상기 위상 변이 모드 중 어느 하나로 변경하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
  15. 제9항에 있어서,
    상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계는
    상기 전력 제어 모드가 비대칭 펄스 폭 변조 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호의 듀티비를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
  16. 제9항에 있어서,
    상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계는
    상기 전력 제어 모드가 위상 변이 모드로 설정되면 상기 요구 전력값이 변경된 워킹 코일의 구동을 위한 스위칭 신호들 간의 위상차를 조절함으로써 상기 요구 전력값이 변경된 워킹 코일의 출력 전력값을 상기 제3 요구 전력값으로 변경하는 단계를 포함하는
    유도 가열 장치의 제어 방법.
PCT/KR2021/005645 2020-05-06 2021-05-06 유도 가열 장치 및 유도 가열 장치의 제어 방법 WO2021225373A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2021268495A AU2021268495A1 (en) 2020-05-06 2021-05-06 Induction heating device and method for controlling induction heating device
CN202180033396.8A CN115517016A (zh) 2020-05-06 2021-05-06 感应加热装置以及感应加热装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200054014A KR20210135854A (ko) 2020-05-06 2020-05-06 유도 가열 장치 및 유도 가열 장치의 제어 방법
KR10-2020-0054014 2020-05-06

Publications (1)

Publication Number Publication Date
WO2021225373A1 true WO2021225373A1 (ko) 2021-11-11

Family

ID=75825713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005645 WO2021225373A1 (ko) 2020-05-06 2021-05-06 유도 가열 장치 및 유도 가열 장치의 제어 방법

Country Status (6)

Country Link
US (1) US11882640B2 (ko)
EP (1) EP3908077A1 (ko)
KR (1) KR20210135854A (ko)
CN (1) CN115517016A (ko)
AU (1) AU2021268495A1 (ko)
WO (1) WO2021225373A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122021007351B1 (pt) * 2018-10-09 2022-09-20 Lg Electronics Inc Método de codificação de imagem baseado em predição intra usando lista de mpm e dispositivo para o mesmo
DE102022200166A1 (de) 2022-01-10 2023-07-13 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zum Messen einer Leistung an einer Induktionsheizspule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183781B2 (ja) * 2011-08-11 2013-04-17 三菱電機株式会社 誘導加熱調理器
KR20170075913A (ko) * 2015-12-23 2017-07-04 쿠쿠전자주식회사 유도 가열 조리기
KR20190040843A (ko) * 2017-10-11 2019-04-19 엘지전자 주식회사 유도 가열 장치
WO2020046048A1 (en) * 2018-08-30 2020-03-05 Lg Electronics Inc. Induction heating device and method of controlling the same
KR20200043624A (ko) * 2018-10-18 2020-04-28 삼성전자주식회사 조리 기기 및 이의 제어 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183781U (ko) 1974-12-27 1976-07-05
JP4521337B2 (ja) * 2005-09-16 2010-08-11 日立アプライアンス株式会社 誘導加熱調理器
US9634577B2 (en) * 2008-11-11 2017-04-25 Massachusetts Institute Of Technology Inverter/power amplifier with capacitive energy transfer and related techniques
JP2011150799A (ja) * 2010-01-19 2011-08-04 Panasonic Corp 誘導加熱装置
JP5832129B2 (ja) * 2011-04-18 2015-12-16 三菱電機株式会社 誘導加熱調理器
EP3133899B1 (en) * 2014-04-16 2019-01-16 Mitsubishi Electric Corporation Induction cooker and method for controlling same
KR102607284B1 (ko) 2018-08-30 2023-11-27 엘지전자 주식회사 유도 가열 장치 및 유도 가열 장치의 제어 방법
KR102178518B1 (ko) 2018-11-09 2020-11-13 한국생산기술연구원 수지 조성물 및 이를 이용한 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183781B2 (ja) * 2011-08-11 2013-04-17 三菱電機株式会社 誘導加熱調理器
KR20170075913A (ko) * 2015-12-23 2017-07-04 쿠쿠전자주식회사 유도 가열 조리기
KR20190040843A (ko) * 2017-10-11 2019-04-19 엘지전자 주식회사 유도 가열 장치
WO2020046048A1 (en) * 2018-08-30 2020-03-05 Lg Electronics Inc. Induction heating device and method of controlling the same
KR20200043624A (ko) * 2018-10-18 2020-04-28 삼성전자주식회사 조리 기기 및 이의 제어 방법

Also Published As

Publication number Publication date
KR20210135854A (ko) 2021-11-16
AU2021268495A1 (en) 2023-01-19
EP3908077A1 (en) 2021-11-10
CN115517016A (zh) 2022-12-23
US11882640B2 (en) 2024-01-23
US20210352773A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2021225376A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021225373A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2020046048A1 (en) Induction heating device and method of controlling the same
WO2015037949A1 (ko) 충전 제어 장치, 충전 제어 방법 및 이를 구비한 무선전력 수신장치
WO2021045402A1 (ko) 유도 가열 장치
WO2021225375A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2015105334A1 (ko) 무선 전력 송신 장치 및 무선 전력 전송 시스템
WO2020046068A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2011149275A2 (en) Cooking apparatus
WO2012030054A1 (en) Cooking apparatus
WO2019074246A1 (ko) 유도 가열 장치
WO2019135492A1 (ko) 제어 알고리즘이 개선된 유도 가열 장치
WO2020171418A1 (ko) 무선 유도가열 밥솥 및 이를 포함하는 무선 유도가열 시스템
WO2018199613A1 (en) Cooking apparatus and control method thereof
WO2020080725A1 (ko) 조리 기기 및 이의 제어 방법
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2019172643A1 (ko) 전원 장치
WO2022124816A1 (ko) 조리 기기
WO2020004892A1 (en) Cooking apparatus and method for controlling thereof
WO2021194302A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021071076A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2015020463A1 (ko) 전원 장치
WO2015060644A1 (ko) 단권변압기를 이용한 zvzcs 스위칭 컨버터
WO2023287121A1 (ko) 쉴드 장치, 유도 가열 방식의 쿡탑 및 이들을 포함하는 유도 가열 방식의 쿡탑 시스템
WO2019226019A1 (ko) 조리장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021268495

Country of ref document: AU

Date of ref document: 20210506

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21800473

Country of ref document: EP

Kind code of ref document: A1