WO2021223573A1 - 新增暗挖通道与既有站厅层连通接驳施工结构 - Google Patents

新增暗挖通道与既有站厅层连通接驳施工结构 Download PDF

Info

Publication number
WO2021223573A1
WO2021223573A1 PCT/CN2021/086346 CN2021086346W WO2021223573A1 WO 2021223573 A1 WO2021223573 A1 WO 2021223573A1 CN 2021086346 W CN2021086346 W CN 2021086346W WO 2021223573 A1 WO2021223573 A1 WO 2021223573A1
Authority
WO
WIPO (PCT)
Prior art keywords
old
new
connection
ring beam
existing station
Prior art date
Application number
PCT/CN2021/086346
Other languages
English (en)
French (fr)
Inventor
黄欣
张京京
赵静波
冀国栋
陈一夫
岳长城
陈霞飞
彭澍
陈自龙
高飞鹏
Original Assignee
中铁十八局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十八局集团有限公司 filed Critical 中铁十八局集团有限公司
Publication of WO2021223573A1 publication Critical patent/WO2021223573A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/008Driving transverse tunnels starting from existing tunnels

Definitions

  • connection connection interface structure for shallow-buried urban underground space, in particular to a connection connection interface structure form of newly-added digging channels in shallow-buried urban underground space and existing station hall floors, belonging to urban rail transit connections Technical field.
  • Chinese patent 201710115981.8 discloses a block for constructing a guide wall and a construction method for the block to construct a guide wall, which belongs to the field of construction of a guide wall for buildings.
  • the block has a rectangular strip structure, including an upper connecting surface and The lower bonding surface and the left and right sides, the upper connecting surface has a curved surface structure, and the block is provided with vertical through holes along its axial direction.
  • prefabricated blocks are used, which eliminates the tedious steps of on-site construction.
  • the site only needs to be bonded and fixed to complete the guide wall process, which saves time and effort, and the use of prefabricated guide walls avoids the on-site During the construction, the guide wall and the wall are cracked due to the guide wall not being completely dry, which affects the beauty and moisture-proof and waterproof problems.
  • the present invention relates to the removal of the connection structure of the existing station hall layer, so as to realize the connection and connection with the newly-added underground excavation channel, and the removal of the existing station hall layer wall structure, thereby realizing the connection and connection with the newly-added underground excavation channel (tunnel). change.
  • the technical solution adopted by the present invention is to add a new underground excavation channel to the existing station hall floor to connect and connect the construction structure.
  • the details are as follows: a reinforced ring beam 21 and a new
  • the added surface layer 107 is connected to the existing station hall layer 1.
  • the structure of the connecting joint includes the planting bar 103, the interface between the new and the old structure 104, the rebar lap 105 between the old and the new structure, and the anchor bar 106.
  • the anchor bars are arranged in a plum blossom shape on one side horizontally, and the other side is used as a plant bar to be implanted in the existing station hall floor 1 breaking opening.
  • a reinforced structural stirrup 110 is added to the newly added surface layer 107, and the two outermost rows are welded to the main reinforcement in the existing station hall floor 1 to form a new and old structural reinforcement overlap 105; the middle two rows of reinforced structural stirrups 110 extend the planting Enter the existing station hall floor 1, as the planting bar 103 of the old structure.
  • the main reinforcement 108 of the buried channel is extended and buried in the top plate reinforced ring beam 101 and the bottom plate reinforced ring beam 102.
  • the main reinforcement structure 109 and the reinforcement structure stirrup 110 are arranged; the old structure side of the new and old structure interface 104 is smeared with an interface agent to enhance the bonding performance with the new structure.
  • the concrete for strengthening the ring beam 21 and the concrete for the newly added surface layer 107 are poured to complete the connection structure construction.
  • the welding length of the overlap 105 of the new and old structural steel bars is not less than 120 mm.
  • the interface agent adopts materials such as polymer-modified cement mortar sand, epoxy mortar or 1:1 cement mortar.
  • connection form of the docking structure involved in the present invention adopts a symmetrical form up and down, and the structural connection is stable and beautiful; at the same time, the new and old docking structures are effectively connected to ensure the consistency between the new and the old structures.
  • the newly-added reinforced ring beam and the newly-added surface layer effectively and firmly connect the barge interface to ensure that there will be no bumps or water seepage in the subsequent practical process.
  • the structure between the newly-added structure and the existing structure is effectively used, and the integrated structure of the invention is added. form.
  • Figure 1 is a flow chart of the implementation of the present invention.
  • Figure 2 is a schematic diagram of the connection side wall structure connecting the newly built transfer hall and the existing tunnel.
  • (a), (b), (c) are the schematic diagrams of the connection implementation process respectively.
  • Figure 3 is a schematic diagram of a flow chart of broken grouting.
  • Figure 4 is a schematic diagram I of the connection structure.
  • Figure 5 is a schematic diagram of the connection structure II.
  • the roof reinforcement ring beam 101 is set at the vault interface of the newly-added concealed tunnel, the size is 450mm*800mm, the upper two rows of main reinforcement 8C22, waist reinforcement 2C22, stirrup A12@ 150. Between the new and old structures, 150mm*300mm plum blossoms are arranged with 850mm long C20 anchor bars 106, which are anchored into the existing station hall floor 1 by 400mm.
  • the top surface layer 107 is 500mm*150mm in size, C40 self-compacting concrete is poured, the bottom is equipped with reinforced structural main reinforcement 1095C22, and the reinforced structural stirrup 110C12@100/200 is newly added, and the reinforced structural stirrup 110 is used as a planting bar to be embedded in the existing station hall Layer 1, the anchorage length is not less than 250mm;
  • the size is 450*1100mm, the main reinforcement, waist reinforcement C22, stirrup A12@150; horizontal arrangement length 850mm C20 anchor reinforcement between the existing station hall floor 1 106, 150mm*300mm plum blossom layout, anchored into the existing station hall floor 1 length not less than 400mm.
  • the size of the new surface layer 107 at the bottom is 500*150mm, C40 self-compacting concrete is poured, the top is equipped with C20 main reinforcement, and the reinforcement structure stirrup 110C12@100/200 is added to pass through the interface 104 of the new and old structure, and is buried in the existing station hall layer 1.
  • a construction method for connecting new underground tunnels with the existing station hall layer is used to construct the new underground tunnel without affecting the normal operation of the existing station hall floor 1.
  • Dig channel 2, and the connection steps are as follows:
  • the first step use deep hole grouting to penetrate the newly-added undercut channel. Deep-hole grouting is carried out on the grouting range 3 of the undercut channel 2 from the ground, and the connecting connection is pre-reinforced to protect the surrounding structure of the station connection from damage and improve the safety of connection construction.
  • the earthwork of the newly-increased tunnel 2 is excavated by the CRD method. During the earthwork excavation, a step distance of 1.5 times the diameter of each pilot hole shall be maintained. When the earthwork is excavated, enough core soil shall be left as a stable support to keep the newly added The soil in the tunnel is balanced. Go through No. 1 cavern 4, No. 2 cavern 5, No. 3 cavern 6, and No. 4 cavern 7 of the newly-added underground tunnel 2 in sequence, and then spray the first branch 14 of the underground tunnel inside the newly-added underground tunnel.
  • Step 2 Destroy the temporary middle wall and temporary invert of the newly-added digging tunnel, and erect a full house.
  • the temporary intermediate wall 9 and the temporary invert 8 between the new tunnels of No. 1 cavern 4, No. 2 cavern 5, No. 3 cavern 6 and No. 4 cavern 7 are removed by segmentation, and synchronized Set up full red scaffolding 10 to ensure the stability of the internal structure of the newly-added concealed tunnel 2.
  • the third step implement waterproofing, secondary lining and steel joints for newly-added digging channels.
  • Step 4 Dismantle the 1.2m range of the scaffolding on the 1 side of the existing station hall floor to provide space for the construction of the connection, that is, the opening range17.
  • the opening range 17 is broken to correspond to the side walls of the newly-added undercut passage and the surface of the first branch 14 of the undercut passage and the first branch 15 of the existing station hall floor, and the surface of the first branch 14 of the undercut passage and the first branch 15 of the existing station hall floor.
  • Do waterproof lap joints Adopt double-sided butyl adhesive tape to bond the waterproof 11 of the digging channel and the waterproof 16 of the existing station hall.
  • Step 5 Destroy the concrete structure of the opening area 17 section by section, and penetrate through the existing station hall floor 1 and the newly-added underground excavation channel 2.
  • the cutting method of stripping and block breaking adopts the wire saw cutting method.
  • the support of the opening area 17 and the cutting and breaking are carried out at the same time, and the preliminary breaking of the connection port is completed.
  • Step 6 Chiseling the top and bottom of the connection port completed in Step 5, planting ribs 20 and pouring the reinforced ring beam 21.
  • Figure 3 is a schematic diagram of a flow chart of broken grouting.
  • the deep hole grouting process is as follows:
  • the deep hole grouting is carried out in groups, each group has a grouting length of 12m, the overlap between the previous group and the next group is 2m, and the effective reinforcement length is 10m.
  • Grouting holes are arranged at 0.8*0.8m spacing, plum blossom-shaped arrangement, and surface grouting method is adopted.
  • AC slurry cement + water glass + filler
  • cement + water glass + filler cement + water glass + filler
  • the setting time of the slurry is shortened by adjusting the filler to drain and squeeze out the water in the grouting area.
  • AC grout is suitable for geological conditions such as silty clay layer, medium coarse sand layer, silty fine sand layer, etc.
  • Grouting After the injection pipe is set, close the end point and switch the horizontal injection. Apply pressure to the sprayed material to achieve a horizontal penetration effect.
  • the grouting pressure P in the water stop reinforcement range is controlled at 0.8-1.0Mpa, and a new round of grouting is started by controlling the segmented solidification time to control the spray positions of the slurry at different distances in the longitudinal direction.
  • the length of the drawn-back drill pipe (grouting pipe) is controlled within the range of 0.3-0.5m.
  • the main grouting parameters are as follows:
  • Grouting depth depth 0 ⁇ 2m; drilling diameter: 42mm; grout diffusion radius: 0.6m ⁇ 0.8m;
  • the face of the excavation before grouting needs to be double-layered with netting and spray anchors to form a grouting layer and form strength before drilling holes can be drilled and grouted.
  • the thickness of the spray-anchored surface of the grout retaining layer is not less than 300mm.
  • the solidification time of the grout ratio should be flexibly adjusted according to the actual conditions of the site. For example, when the pebble layer on site is poor in pourability, the grout setting time can be appropriately reduced to increase the pourability; when there is a bright water flow, the grout can be adjusted according to the size of the water flow.
  • the appropriate setting time is 6 ⁇ 10s.
  • Figure 4 is a schematic diagram I of the connection structure.
  • Figure 5 is a schematic diagram of the connection structure II.
  • a reinforced ring beam 21 and a new surface layer 107 are installed at the connection port of the newly-added underground excavation hall 2 to connect to the existing station hall floor 1.
  • the structure of the connecting joint includes the planting bar 103, the interface between the new and the old structure 104, the rebar lap 105 between the old and the new structure, and the anchor bar 106.
  • the anchor bars are arranged in a plum blossom shape on one side horizontally, and the other side is used as a plant bar to be implanted in the existing station hall floor 1 breaking opening.
  • a reinforced structural stirrup 110 is added to the newly added surface layer 107, and the two outermost rows are welded to the main reinforcement in the existing station hall floor 1 to form a new and old structural reinforcement overlap 105; the middle two rows of reinforced structural stirrups 110 extend the planting Enter the existing station hall floor 1, as the planting bar 103 of the old structure.
  • the main ribs 108 of the tunnel excavated are extended and embedded in the top plate reinforced ring beam 101 and the bottom plate reinforced ring beam 102.
  • the main reinforcement structure 109 and the reinforcement structure stirrup 110 are arranged; the old structure side of the new and old structure interface 104 is smeared with an interface agent to enhance the bonding performance with the new structure.
  • the concrete for strengthening the ring beam 21 and the concrete for the newly added surface layer 107 are poured to complete the connection structure construction.
  • the welding length of the new and old structural steel bar overlap 105 is not less than 120mm.
  • the interface agent adopts materials such as polymer modified cement mortar sand, epoxy mortar or 1:1 cement mortar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Elevator Control (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

新增暗挖通道与既有站厅层(1)连通接驳施工结构,在新增暗挖厅(2)接驳口处设置加强环梁(21)和新增面层(107),与既有站厅层(1)进行连通接驳。在加强环梁(21)和新增面层(107)中布置加强结构主筋(109)、加强结构箍筋(110);新旧结构交界面(104)的旧结构一侧涂抹界面剂,增强与新增结构的粘接性能。驳接结构连接形式采用上下对称的形式,结构连接稳定、美观;同时对新旧驳接结构进行有效连接,保证了新旧结构之间的一致。新增的加强环梁(21)和新增面层(107)对驳接口进行了有效稳固连接,保证后续使用过程中不出现凸起、渗水。

Description

新增暗挖通道与既有站厅层连通接驳施工结构 技术领域
本发明涉及一种针对浅埋城市地下空间连通接驳接口结构,特别是一种浅埋城市地下空间中新增暗挖通道与既有站厅层连通接驳接口结构形式,属于城市轨道交通连接技术领域。
背景技术
随着经济的发展、时代形式的变迁,既有地铁运营能力差、既有地下空间拥挤等城市矛盾爆发,开发拓展地下空间是缓解城市发展瓶颈的有效措施,因此引发出既有结构拓建的需求。施工中通常采用的方法是先建新结构,在新老结构衔接处破除老结构侧墙,从而实现搭接。
中国专利201710115981.8公开了一种构筑导墙用的砌块及该砌块构筑导墙的施工方法,属于建筑用导墙施工领域,具体的,砌块呈矩形条状结构,包括上接驳面和下粘接面及左、右侧面,所述的上接驳面为曲面结构,砌块沿其轴向设置有竖直的通孔。其设计的接驳结构中,采用预制的砌块,省去在现场施工的繁琐步骤,现场只需要进行粘接固定就完成导墙的工序,省时省力,并且采用预制导墙,避免了现场施工中导墙未干透造成的导墙与墙体开裂,影响美观及防潮防水性的问题。
发明内容
本发明涉及破除既有站厅层的连通结构,从而实现与新增暗挖通道连通接驳,破除既有站厅层墙体结构,从而实现与新增暗挖通道(隧道)连通接驳一体化。
为了实现上述目的,本发明采用的技术方案为新增暗挖通道与既有站厅层连通接驳施工结构,具体如下,在新增暗挖厅2接驳口处设置加强环梁21和新增面层107,与既有站厅层1进行连通接驳。连通接驳处的结构包括植筋103、新旧结构交界面104、新旧结构钢筋搭接105和锚筋106。在顶板加强环梁101、底板加强环梁102中水平向一侧采用梅花形布置锚筋,另一侧作为植筋植入既有站厅层1破除口。在新增面层107中新增加强结构箍筋110,最外侧两排与既有站厅层1中的主筋进行焊接,形成新旧结构钢筋搭接105;中间两排加强结构箍筋110延长植入既有站厅层1中,作为老结构的植筋103。暗挖通道主筋108延 长埋入顶板加强环梁101和底板加强环梁102中。在加强环梁21和新增面层107中布置加强结构主筋109、加强结构箍筋110;新旧结构交界面104的旧结构一侧涂抹界面剂,增强与新增结构的粘接性能。浇筑加强环梁21的混凝土和新增面层107的混凝土,完成接驳口结构施工。
进一步地,新旧结构钢筋搭接105的焊接长度不小于120mm。
进一步地,界面剂采用聚合物改性水泥浆沙、环氧砂浆或1:1水泥砂浆等材料。
与现有技术相比较,本发明涉及的驳接结构连接形式采用上下对称的形式,结构连接稳定、美观;同时对新旧驳接结构进行有效连接,保证了新旧结构之间的一致。新增的加强环梁和新增面层对驳接口进行了有效稳固连接,保证后续实用过程中不出现凸起、渗水,新增结构与既有结构之间结构有效利用,增加了发明的一体化结构形式。
附图说明
图1是本发明的实施流程图。
图2是新建换乘厅与既有隧道连通的接驳侧墙结构示意图,(a)、(b)、(c)分别为接驳实施流程示意图。
图3是破注浆流程图示意图。
图4是接驳结构示意图I。
图5是接驳结构示意图II。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明的实施例,而不能理解为对本发明的限制。
以下结合附图和实施例对本发明进行详细说明。
以某市地铁十字交叉换乘线路的结构为例,在新增暗挖通道拱顶接口处设置顶板加强环梁101,尺寸450mm*800mm,上部两排主筋8C22,腰筋2C22,箍筋A12@150,新老结构之间150mm*300mm梅花型布置850mm长C20锚筋106,锚入既有站厅层1中400mm。
顶部新增面层107尺寸500mm*150mm,浇筑C40自密实混凝土,底部配置加强结构主筋1095C22,新增加强结构箍筋110C12@100/200,加强结构箍筋110作为植筋埋入既有站厅层1,锚固长度不小于250mm;
在新增暗挖通道仰拱接口处设置底板加强环梁102,尺寸450*1100mm,主筋、腰筋C22,箍筋A12@150;与既有站厅层1之间水平向布置长度850mmC20锚筋106,150mm*300mm梅花布置,锚入既有站厅层1长度不少于400mm。
底部新增面层107尺寸500*150mm,浇筑C40自密实混凝土,顶部配置C20主筋,增设加强结构箍筋110C12@100/200穿过新旧结构交界面104,埋入既有站厅层1。
如图1-2所示,一种新增暗挖通道与既有站厅层连通接驳施工方法,在不影响既有站厅层1正常运营的条件下采用暗挖法施做新增暗挖通道2,连通接驳步骤如下:
第一步:采用深孔注浆、贯通新增暗挖通道。从地面对暗挖通道2的注浆范围3进行深孔注浆,对连通接驳口进行预加固,保护车站驳接口周边结构不受破坏,提高接驳施工作业安全性。新增暗挖通道2的土方采用CRD法开挖,土方开挖过程中的各导洞间保持步距为1.5倍的洞径,土方开挖时要留够核心土作为稳固支撑,保持新增暗挖通道内的土体平衡。依次贯通新增暗挖通道2的1号洞室4、2号洞室5、3号洞室6、4号洞室7,然后在新增暗挖通道的内部喷射暗挖通道初支14。
第二步:破除新增暗挖通道的临时中隔壁、临时仰拱,并架设满堂红。采用分段分部破除新增暗挖通道的1号洞室4、2号洞室5、3号洞室6和4号洞室7之间的临时中隔壁9和临时仰拱8,并同步设置满堂红脚手架10,以保障新增暗挖通道2内部结构稳定。
第三步:施做新增暗挖通道的防水、二衬、钢筋接头。在满堂红脚手架10的支撑作用下,施做暗挖通道防水11、暗挖通道二衬12,暗挖通道防水11预留防水接头,暗挖通道二衬12预留钢筋接驳器13,用作接驳口的防水和二衬新老结构连接。
第四步:拆除既有站厅层1侧处1.2m范围的脚手架,为接驳的施工作业提供空间即开洞范围17。破除开洞范围17对应新增暗挖通道的侧墙以及暗挖通道 初支14和既有站厅层初支15,并在暗挖通道初支14和既有站厅层初支15的表面施做防水搭接。采用双面丁基胶粘带对暗挖通道防水11和既有站厅防水16进行粘接。
第五步:分条分块破除开洞范围17的混凝土结构,贯通既有站厅层1和新增暗挖通道2。分条分块破除的切割方法采用绳锯切割法,开洞范围17的支护与切割破除同时进行,完成接驳口的初步破除。
第六步:对第五步施作完成的接驳口顶部和底部进行凿毛植筋20以及浇筑加强环梁21。
图3是破注浆流程图示意图。深孔注浆工艺如下::
深孔注浆采用分组进行,每组注浆长度12m,上一组与下一组之间的搭接2m,有效加固长度10m。注浆孔布置间距0.8*0.8m,梅花形布置,采用地表注浆方式。
采用钻机引流钻孔,后退式注浆,以压注WSS无收缩双液浆为主;均匀布孔,纵向钻孔,易控制,浆液扩散分布比较均匀,在卵石层加固效果好。
(1)浆材分类
采用AC浆液(水泥+水玻璃+填加剂),当加固土体区域有明流水时则通过调整填加剂缩短浆液凝固时间达到注浆区域内沥干和挤出水份。AC浆液适用于粉质黏土层、中粗砂层、粉细砂层等地质条件。
(2)施工工序流程
1)布孔:利用既有站厅层初支做为注浆止浆墙,采用深孔注浆加固区域内梅花形布孔,由测量人员在通道内放出的注浆区域轮廓线,按设计要求进行注浆加固,编号后由专人做孔位预检记录。
2)成孔:孔径42mm,每次纵向水平深度为2m(以现场技术交底为准),当孔位遇隔栅主筋时应在3~5cm范围内调整,使注浆孔位避开钢筋。
3)配浆:浆液必须严格按配比调配,搅拌必须有足够的时间以保证浆液浓度均匀。
4)注浆:喷入管设置完毕后,将端点进行关闭而进行横喷射切换。将喷入材料施加压力,实现水平渗透效果。止水加固范围内注浆压力P值控制在0.8~1.0Mpa,通过控制分段凝固时间来控制纵向不同距离的浆液喷射位置而开始新一 轮注浆。回抽钻杆(注浆管)长度控制在0.3~0.5m范围内。
5)结束:当所有布置的注浆孔位注浆完毕且探孔确定无明水后,则注浆结束。
主要注浆参数如下:
注浆深度:纵深0~2m;钻孔直径:42mm;浆液扩散半径:0.6m~0.8m;
浆液凝结时间:8s~20s;注浆压力0.3~0.5Mpa。
注浆加固注意事项如下:
1)如果在导洞开挖过程中遇明流水需深孔注浆加固时,注浆前开挖掌子面需双层挂网喷锚形成挡浆层并形成强度后方可布孔钻孔注浆;挡浆层喷锚面厚度不小于300mm。
2)浆液配比凝固时间应根据现场实际条件灵活调整,如现场卵石层可灌性较差时,可适当降低浆液凝固时间,增加可灌性;当遇明水流时,可根据水流大小,浆液凝固时间以6~10s为宜。
3)地下实际岩土层标高和水位条件会因汛期及枯水期而与勘探报告有出入,施工时要依据实际水文地质条件灵活调整灌浆材料,加大注浆量,保证注浆加固效果。
4)注浆加固过程中,定时排查地下管线的地面检查井;及时监测监控点的标高变化,注浆地面抬升控制在允许的安全范围内。严禁跑浆冒浆发生;对既有管线管沟在注浆范围及接近注浆范围的区域,应适当调整钻杆角度,保证钻杆离既有管线管沟有足够的安全距离,采取减小注浆压力、浆液配比延长凝固时间和减小注浆量等综合措施减小注浆对既有管线管沟的扰动。
图4是接驳结构示意图I。
图5是接驳结构示意图II。
在新增暗挖厅2接驳口处设置加强环梁21和新增面层107,与既有站厅层1进行连通接驳。连通接驳处的结构包括植筋103、新旧结构交界面104、新旧结构钢筋搭接105和锚筋106。在顶板加强环梁101、底板加强环梁102中水平向一侧采用梅花形布置锚筋,另一侧作为植筋植入既有站厅层1破除口。在新增面层107中新增加强结构箍筋110,最外侧两排与既有站厅层1中的主筋进行焊接,形成新旧结构钢筋搭接105;中间两排加强结构箍筋110延长植入既有站厅层1 中,作为老结构的植筋103。暗挖通道主筋108延长埋入顶板加强环梁101和底板加强环梁102中。在加强环梁21和新增面层107中布置加强结构主筋109、加强结构箍筋110;新旧结构交界面104的旧结构一侧涂抹界面剂,增强与新增结构的粘接性能。浇筑加强环梁21的混凝土和新增面层107的混凝土,完成接驳口结构施工。
新旧结构钢筋搭接105的焊接长度不小于120mm。
界面剂采用聚合物改性水泥浆沙、环氧砂浆或1:1水泥砂浆等材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

  1. 新增暗挖通道与既有站厅层连通接驳施工结构,其特征在于:在新增暗挖厅(2)接驳口处设置加强环梁(21)和新增面层(107),与既有站厅层(1)进行连通接驳;连通接驳处的结构包括植筋(103)、新旧结构交界面(104)、新旧结构钢筋搭接(105)和锚筋(106);在顶板加强环梁(101)、底板加强环梁(102)中水平向一侧采用梅花形布置锚筋,另一侧作为植筋植入既有站厅层(1)破除口;在新增面层(107)中新增加强结构箍筋(110),最外侧两排加强结构箍筋(110)与既有站厅层(1)中的主筋进行焊接,形成新旧结构钢筋搭接(105);中间两排加强结构箍筋(110)延长植入既有站厅层(1)中,作为旧结构的植筋(103);暗挖通道主筋(108)延长埋入顶板加强环梁(101)和底板加强环梁(102)中;在加强环梁(21)和新增面层(107)中布置加强结构主筋(109)、加强结构箍筋(110);新旧结构交界面(104)的旧结构一侧涂抹界面剂,增强与新增结构的粘接性能;浇筑加强环梁(21)的混凝土和新增面层(107)的混凝土。
  2. 根据权利要求1所述的新增暗挖通道与既有站厅层连通接驳施工结构,其特征在于:新旧结构钢筋搭接(105)的焊接长度不小于120mm。
  3. 根据权利要求1所述的新增暗挖通道与既有站厅层连通接驳施工结构,其特征在于:界面剂采用聚合物改性水泥浆沙、环氧砂浆或1:1水泥砂浆材料。
PCT/CN2021/086346 2020-05-07 2021-04-12 新增暗挖通道与既有站厅层连通接驳施工结构 WO2021223573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010378233.0A CN111594181B (zh) 2020-05-07 2020-05-07 新增暗挖通道与既有站厅层连通接驳施工方法
CN202010378233.0 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021223573A1 true WO2021223573A1 (zh) 2021-11-11

Family

ID=72183890

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/086346 WO2021223573A1 (zh) 2020-05-07 2021-04-12 新增暗挖通道与既有站厅层连通接驳施工结构
PCT/CN2021/086344 WO2021223571A1 (zh) 2020-05-07 2021-04-12 一种地铁交叉线单向循环快速换乘结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086344 WO2021223571A1 (zh) 2020-05-07 2021-04-12 一种地铁交叉线单向循环快速换乘结构

Country Status (2)

Country Link
CN (1) CN111594181B (zh)
WO (2) WO2021223573A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114108617A (zh) * 2021-11-12 2022-03-01 山西机械化建设集团有限公司 一种用潜孔钻对基坑支护桩剔槽植筋的方法
CN114263215A (zh) * 2021-12-21 2022-04-01 中铁十四局集团隧道工程有限公司 明暗挖合建地铁车站增层连接处防水结构的施工方法
CN114320378A (zh) * 2021-12-16 2022-04-12 中铁十局集团第三建设有限公司 破碎带支洞挑顶快速施工装置及方法
CN115404871A (zh) * 2022-10-11 2022-11-29 中建八局第一建设有限公司 一种深基坑近接既有地下结构连通接驳施工方法
CN117948150A (zh) * 2024-03-27 2024-04-30 北京城建道桥建设集团有限公司 一种节约材料及工时的地铁站风道组合开挖施工方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594181B (zh) * 2020-05-07 2021-12-10 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工方法
CN111706351B (zh) * 2020-05-07 2022-03-11 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工结构
CN112483094B (zh) * 2020-12-09 2023-03-31 中国铁路设计集团有限公司 老旧隧道加固开马头门结构的施工方法
CN112855213B (zh) * 2021-01-26 2022-05-27 中建八局轨道交通建设有限公司 既有车站处换乘通道的初支结构的施工方法
CN114624039B (zh) * 2022-01-21 2023-10-20 石家庄铁道大学 模拟地下工程结构开口破除的模型试验方法及装置
CN115027507B (zh) * 2022-06-07 2024-05-28 中铁二院工程集团有限责任公司 一种既有铁路用地边界内增设铁路线构造及列车运行方法
CN115233733B (zh) * 2022-09-01 2023-06-06 广州珠江建设发展有限公司 一种狭小空间下穿越厚重地连墙的地下结构接驳方法
CN116838382B (zh) * 2023-09-01 2023-12-05 中国铁路设计集团有限公司 一种暗挖地铁车站主体与附属结构的连接型式及施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854253A (zh) * 2019-03-20 2019-06-07 中国铁路设计集团有限公司 一种既有地铁暗挖叠岛换乘车站的扩建方法
JP2019157502A (ja) * 2018-03-13 2019-09-19 ▲濱▼新 正博 路盤構築方法
CN210013697U (zh) * 2019-05-21 2020-02-04 中铁十一局集团城市轨道工程有限公司 地铁车站出入口暗挖段近穿建筑物的施工结构
CN111594181A (zh) * 2020-05-07 2020-08-28 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工方法
CN111706351A (zh) * 2020-05-07 2020-09-25 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工结构
CN213063578U (zh) * 2020-05-07 2021-04-27 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709573A (zh) * 2009-12-15 2010-05-19 田耕 并联高架路岛式车站的阶梯形站台
CN206841421U (zh) * 2016-11-17 2018-01-05 长安大学 分离式站厅的城市轨道交通换乘站
CN106640121B (zh) * 2017-01-11 2023-06-27 中铁第六勘察设计院集团有限公司 一种六导洞大断面地铁车站下穿既有线的支护结构
KR101772362B1 (ko) * 2017-03-14 2017-09-05 홍순례 대심도 지하철 정거장 구조
CN208039306U (zh) * 2018-02-22 2018-11-02 中铁第一勘察设计院集团有限公司 一种新建地铁线车站与既有车站的施工联通体系
CN209290386U (zh) * 2018-09-28 2019-08-23 广州地铁设计研究院股份有限公司 一种地铁车站的换乘结构
CN111688724B (zh) * 2020-05-07 2021-11-05 中铁十八局集团有限公司 一种地铁交叉线单向循环快速换乘结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157502A (ja) * 2018-03-13 2019-09-19 ▲濱▼新 正博 路盤構築方法
CN109854253A (zh) * 2019-03-20 2019-06-07 中国铁路设计集团有限公司 一种既有地铁暗挖叠岛换乘车站的扩建方法
CN210013697U (zh) * 2019-05-21 2020-02-04 中铁十一局集团城市轨道工程有限公司 地铁车站出入口暗挖段近穿建筑物的施工结构
CN111594181A (zh) * 2020-05-07 2020-08-28 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工方法
CN111706351A (zh) * 2020-05-07 2020-09-25 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工结构
CN213063578U (zh) * 2020-05-07 2021-04-27 中铁十八局集团有限公司 新增暗挖通道与既有站厅层连通接驳施工结构

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114108617A (zh) * 2021-11-12 2022-03-01 山西机械化建设集团有限公司 一种用潜孔钻对基坑支护桩剔槽植筋的方法
CN114320378A (zh) * 2021-12-16 2022-04-12 中铁十局集团第三建设有限公司 破碎带支洞挑顶快速施工装置及方法
CN114263215A (zh) * 2021-12-21 2022-04-01 中铁十四局集团隧道工程有限公司 明暗挖合建地铁车站增层连接处防水结构的施工方法
CN114263215B (zh) * 2021-12-21 2023-05-02 中铁十四局集团隧道工程有限公司 明暗挖合建地铁车站增层连接处防水结构的施工方法
CN115404871A (zh) * 2022-10-11 2022-11-29 中建八局第一建设有限公司 一种深基坑近接既有地下结构连通接驳施工方法
CN115404871B (zh) * 2022-10-11 2023-07-25 中建八局第一建设有限公司 一种深基坑近接既有地下结构连通接驳施工方法
CN117948150A (zh) * 2024-03-27 2024-04-30 北京城建道桥建设集团有限公司 一种节约材料及工时的地铁站风道组合开挖施工方法

Also Published As

Publication number Publication date
CN111594181B (zh) 2021-12-10
WO2021223571A1 (zh) 2021-11-11
CN111594181A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021223573A1 (zh) 新增暗挖通道与既有站厅层连通接驳施工结构
CN104612162B (zh) 一种地铁车站深基坑开挖施工方法
CN106907159B (zh) 一种浅埋暗挖地铁车站分离开敞式结构及其施工方法
CN210013697U (zh) 地铁车站出入口暗挖段近穿建筑物的施工结构
CN110821503B (zh) 一种超深盾构区间风井先隧后主体施工方法
CN109026064B (zh) 一种大跨度连拱隧道半明半暗的施工方法
CN108677924B (zh) 双排微型钢管桩注浆成墙隔断结构及方法
CN205742213U (zh) 基坑支护结构
CN104389610B (zh) 一种穿越运营高速公路隧道超短台阶施工方法
CN105201516B (zh) 一种地铁车站主体结构及其四联拱pba暗挖施工方法
CN110067563A (zh) 临近城市建筑及道路的车站出入口主体结构施工方法
CN101280568A (zh) 对相邻已运营地铁区间隧道形成保护的车站基坑施工方法
CN108797641A (zh) 一种地铁暗挖车站施工期间全车站止水的结构及其施工方法
WO2022100346A1 (zh) 一种富水砂层大直径顶管群进出洞加固结构及施工方法
CN213063578U (zh) 新增暗挖通道与既有站厅层连通接驳施工结构
CN107091101A (zh) 海域中部矿山盾构交接隧道叠合型接头结构及施工方法
CN113669073B (zh) 一种控制临近建筑变形的富水砂性地层先隧后站施工方法
CN105464685A (zh) 一种洞桩法暗挖隧道止水帷幕及其施工方法
CN110004991A (zh) 基于外凸式翼脚板的地下结构抗浮体系及构建方法
CN111455977A (zh) 一种地下连续墙施工方法
CN106065628B (zh) 基于永临结合理念的大直径自来水管安全防护施工方法
CN115182737A (zh) 深埋地铁车站竖向正交顶出式风道结构及施工方法
CN207033463U (zh) 海域中部矿山盾构交接隧道叠合型接头结构
CN206888990U (zh) 一种浅埋暗挖地铁车站分离开敞式结构
CN109610473A (zh) 一种市政大型池体构筑物基坑支护体系的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800378

Country of ref document: EP

Kind code of ref document: A1