WO2021223322A1 - 一种斜坡补偿控制电路及斜坡补偿控制方法 - Google Patents

一种斜坡补偿控制电路及斜坡补偿控制方法 Download PDF

Info

Publication number
WO2021223322A1
WO2021223322A1 PCT/CN2020/101133 CN2020101133W WO2021223322A1 WO 2021223322 A1 WO2021223322 A1 WO 2021223322A1 CN 2020101133 W CN2020101133 W CN 2020101133W WO 2021223322 A1 WO2021223322 A1 WO 2021223322A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuit
loop
signal
slope
Prior art date
Application number
PCT/CN2020/101133
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
张昌盛
敖华
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2021223322A1 publication Critical patent/WO2021223322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • This application belongs to the technical field of DC/DC circuit control, and in particular relates to a slope compensation control circuit and a slope compensation control method.
  • High-power vehicle-mounted DCDC is an important part of electric vehicles. Because the load on the vehicle has the characteristics of large dynamic jumps, the dynamic response capability of DCDC is relatively high. Peak current control has the characteristics of fast dynamic response, large gain bandwidth, and small output inductance. Therefore, the peak current control mode is very suitable for automotive DCDC. Slope compensation is a necessary module of the peak current control mode. When the duty cycle of the modulated pulse is greater than 50%, the slope compensation signal needs to be superimposed on the sampling signal of the inductor peak current, otherwise the inductor will cause sub-harmonic oscillation.
  • the commonly used slope compensation method is linear compensation, that is, starting from the starting point of the switching cycle, the compensation amount decreases linearly, which will cause the slope compensation amount to be too large and the maximum duty cycle limited at certain times.
  • Vehicle-mounted DCDC has the characteristics of a wide input voltage range. After the maximum duty cycle is limited, it will inevitably affect the load capacity and transient response of the power supply.
  • this application proposes a slope compensation control circuit and a slope compensation control method.
  • a slope compensation control circuit which includes a sampling circuit for collecting electrical information in a DC/DC circuit, a control circuit connected to the sampling circuit, and the control circuit includes: a loop Circuit compensation circuit, connected to the sampling circuit, used to generate a loop output signal according to the electrical information; ramp modulation circuit, connected to the loop compensation circuit, used to receive the loop output signal and adjust the current comparison Threshold to achieve slope compensation control.
  • the adjusting the current comparison threshold includes adjusting the value of the synchronization point of the current comparison threshold and/or adjusting the value of the compensation slope k according to the electrical information of the DC/DC circuit, and The current comparison threshold is reset to the value of the slope compensation starting point.
  • the ramp modulation circuit includes: a ramp generator, connected to the loop compensation circuit, for generating according to the loop output signal to compensate for the current comparison threshold value of the decrease of the slope k; Connected to the ramp generator and the primary current collector in the sampling circuit, respectively, and used to generate a trigger signal according to the current comparison threshold and the input current of the primary conversion circuit in the electrical information, and Sending the trigger signal to the ramp generator, and the ramp generator resets the current comparison threshold; a PWM generator, connected to the comparator, for performing wave configuration according to the trigger signal; It is connected to the ramp generator, generates a synchronization signal and outputs it to the ramp generator, and is used to synchronously update the starting point of the slope compensation of the current comparison threshold to start the slope compensation.
  • the PWM generator includes: a PWM counter for counting the time for generating the synchronization signal.
  • the ramp modulation circuit further includes: a digital/analog converter connected to the ramp generator and the comparator, which is used to convert the current comparison threshold value output by the ramp generator into The analog signal is sent to the comparator.
  • the loop compensation circuit includes: a voltage calculator, which is respectively connected to the secondary side voltage collector and the reference voltage source in the sampling circuit, and is used to connect the secondary side voltage collector collected by the secondary side voltage collector.
  • the output voltage of the side conversion circuit is compared with the reference value of the voltage loop to generate a voltage error signal;
  • a voltage compensator connected to the voltage calculator, is used to compensate the voltage error signal to generate a voltage loop signal;
  • a current calculator Respectively connected with the secondary side current collector and the reference current source in the sampling circuit, and used to compare the output current of the secondary side conversion circuit collected by the secondary side current collector with the current loop reference value to generate a current error Signal;
  • a current compensator connected to the current calculator, for compensating the current error signal to generate a current loop signal;
  • a second comparator connected to the voltage compensator and current compensator, respectively, for According to the voltage loop signal and the current loop signal, the loop output signal is generated.
  • a slope compensation control method of the above-mentioned slope compensation control circuit which is characterized in that it includes: Step S1: Collecting electrical information in the DC/DC circuit; Step S2: According to the electrical information Information generates a loop output signal; Step S3: Generate a current comparison threshold according to the loop output signal, and adjust the current comparison threshold according to the electrical information to achieve slope compensation control.
  • the step S3 includes: step S31: generating a current comparison threshold value that compensates for the decrease in slope k according to the loop output signal; step S32: according to the current comparison threshold value and the electrical information
  • the input current of the primary-side conversion circuit generates a trigger signal;
  • Step S33 Wave configuration is performed based on the trigger signal, and a synchronization signal is generated to synchronously update the slope compensation starting point of the current comparison threshold to enable slope compensation.
  • the step S32 generating a trigger signal based on the current comparison threshold value and the input current of the primary conversion circuit in the electrical information includes: when the primary conversion circuit rises When the input current is equal to the falling current comparison threshold, the trigger signal is generated.
  • the generating of the synchronization signal in step S33 includes: counting to the synchronization point A of the positive half cycle to generate the first synchronization signal SYNC1; and/or counting to the synchronization point B of the negative half cycle to generate the second synchronization Signal SYNC2.
  • the present invention has at least the following advantages:
  • the electrical information in the DC/DC circuit is collected through the sampling circuit; then, the collected electrical information is input to the loop compensation circuit in the control circuit connected to the sampling circuit, so that the loop compensation circuit is based on the collected electrical information. Electric information generates a loop output signal; finally, the generated loop output signal is input to a ramp modulation circuit connected to the loop compensation circuit, so that the ramp modulation circuit receives the loop output signal and adjusts the current Compare the thresholds to achieve slope compensation control, thereby effectively improving the load capacity and transient response rate of the switching power supply.
  • FIG. 1 is a schematic structural diagram of a slope compensation control circuit in an embodiment of the application
  • Figure 2 is a schematic diagram of the specific structure of the slope compensation control circuit in Figure 1;
  • FIG. 3 is a wave sending sequence diagram of a slope compensation control method in an embodiment of the application.
  • FIG. 4 is a timing diagram of wave generation of a slope compensation control method in another embodiment of the application.
  • This application proposes a slope compensation control circuit, which includes a sampling circuit for collecting electrical information in a DC/DC circuit, and a control circuit connected to the sampling circuit.
  • the control circuit includes: loop compensation circuit , Connected with the sampling circuit, used to generate the loop output signal according to the electrical information; the slope modulation circuit, connected with the loop compensation circuit, used to receive the loop output signal and adjust the current comparison threshold to achieve slope compensation control.
  • the DC/DC circuit includes a transformer T1, a primary conversion circuit and a secondary conversion circuit connected to windings on both sides of the transformer T1.
  • the primary conversion circuit includes a switching tube Q1, a switching tube Q2, a switching tube Q3, and a switching tube Q4.
  • the source of the switching tube Q1 is connected to the drain of the switching tube Q3 to form a first bridge arm
  • the source of the switching tube Q2 is connected to the drain of the switching tube Q4 to form a second bridge arm.
  • the drain of the switching tube Q1 is connected to the drain of the switching tube Q2 and the drain of the switching tube Q2 is connected to the positive electrode of the input terminal of the primary switching circuit
  • the source of the switching tube Q3 is connected to the switching tube Q4
  • the source of the switching tube Q4 is connected to the negative terminal of the input terminal of the primary switching circuit.
  • the midpoint of the first bridge arm is connected to the first end of the primary first winding W1 of the transformer T1
  • the midpoint of the second bridge arm is connected to the second end of the primary second winding W2 of the transformer T1.
  • the secondary side conversion circuit includes a switch tube Q5, a switch tube Q6, an inductor L1, and a capacitor C1.
  • the drain of the switching tube Q5 is connected to the first end of the secondary winding W2, and the source of the switching tube Q5 is connected to the negative electrode of the output terminal Vo of the secondary switching circuit.
  • the source of the switching tube Q6 is connected to the negative electrode of the output terminal Vo
  • the drain of the switching tube Q6 is connected to the second end of the secondary side third winding W3, and the first end of the secondary side third winding W3 is connected to the secondary side second winding
  • the second terminal of W2 is connected to the inductor L1 and then connected to the positive pole of the output terminal Vo of the secondary side conversion circuit.
  • a capacitor C1 is also connected between the positive and negative poles of the output terminal Vo.
  • the DC/DC circuit may be a half-bridge circuit, a full-bridge circuit, or a two-phase circuit, a three-phase circuit, or a multi-phase circuit.
  • multiple capacitors and/or inductors may be connected to form a filter circuit and/or a resonance circuit.
  • the sampling circuit includes a primary side current collector, a primary side voltage collector, a secondary side current collector, and a secondary side voltage collector.
  • the primary side current collector is connected to the input end of the primary side conversion circuit and is used to collect the input current Ip of the primary side conversion circuit.
  • the primary side voltage collector is connected to the input terminal of the primary side conversion circuit and is used to collect the input voltage Vin of the primary side conversion circuit.
  • the secondary side current collector is connected to the output terminal of the secondary side conversion circuit, and is used to collect the output current Io of the secondary side conversion circuit.
  • the secondary side voltage collector is connected to the output terminal of the secondary side conversion circuit, and is used to collect the output voltage Vo of the secondary side conversion circuit.
  • the sampling circuit transmits the input current Ip, the input voltage Vin, the output current Io, and the output voltage Vo to the control circuit.
  • control circuit includes a loop compensation circuit and a ramp modulation circuit connected to the loop compensation circuit.
  • the loop compensation circuit is connected to the secondary side voltage collector and the secondary side current collector to receive the output current Io and the output voltage Vo.
  • the ramp modulation circuit is connected to the primary current collector and is used to receive the input current Ip.
  • the loop compensation circuit uses voltage and current loops in parallel.
  • the loop compensation circuit includes a voltage calculator, a voltage compensator (in Fig. 2: 2p2z Compensation), a current calculator, a current compensator (in Fig. 2: 2p2z Compensation), and a second comparator (in Fig. 2: MIN2).
  • the voltage calculator is respectively connected to the secondary voltage collector (in Figure 2: Sensing&Scaling) and the reference voltage source (in Figure 2: Vref Softstart).
  • the voltage calculator is used to compare the output voltage Vo of the secondary conversion circuit collected by the secondary voltage collector with the voltage ring reference value Vref to generate a voltage error signal Verr.
  • the voltage compensator is connected to the voltage calculator, and is used to compensate the voltage error signal Verr to generate a voltage loop signal Vloop_out.
  • the current calculator is connected to the secondary current collector ( Figure 2: Sensing&Scaling) and the reference current source (Figure 2: Iref Softstart)) to compare the output current Io with the current loop reference value Iref to generate current error Signal Ierr.
  • the current compensator is connected to the current calculator, and is used to compensate the current error signal Ierr to generate the current loop signal Iloop_out.
  • the second comparator is respectively connected to the voltage compensator and the current compensator, and is used to generate the loop output signal loop_out according to the voltage loop signal Vloop_out and the current loop signal Iloop_out. In an embodiment, from the voltage loop signal Vloop_out and the current loop signal Iloop_out, a signal with a smaller signal value is selected as the loop output signal loop_out.
  • the loop compensation circuit may also use a voltage outer loop nested current inner loop circuit or a current outer loop nested voltage outer loop circuit to replace the voltage and current loop parallel circuits in the foregoing embodiments.
  • the ramp modulation circuit includes a ramp generator (Figure 2: Ramp Generator), a digital/analog converter ( Figure 2: DAC), a comparator (Figure 2: Comparator), and a PWM generator (Figure 2: Ramp Generator). 3: PWM Module).
  • the ramp generator is connected to the loop compensation circuit. It is used to generate the current comparison threshold Ip_ref according to the loop output signal loop_out.
  • the digital/analog converter is connected to the ramp generator, and is used to convert the current comparison threshold Ip_ref in the form of a digital signal output by the ramp generator into an analog signal.
  • the comparator is respectively connected with the digital/analog converter and the primary side current collector to receive the current comparison threshold value Ip_ref and the input current Ip of the primary side conversion circuit, and compare the current comparison threshold value Ip_ref and the input current of the primary side conversion circuit The size of the Ip. When the current comparison threshold Ip_ref is equal to the input current Ip, a trigger signal is generated.
  • the ramp generator resets the current comparison threshold Ip_ref to the slope compensation starting point according to the trigger signal, and the value of the current comparison threshold Ip_ref at this time is the value of the loop output signal loop_out.
  • the PWM generator is respectively connected with the comparator, the ramp generator and the driver (in Figure 2: DRIVER) to generate a synchronization signal SYNC (including SYNC1 and SYNC2) to output to the ramp generator, and to update the slope of the current comparison threshold Ip_ref synchronously Compensation start point, so that the current comparison threshold Ip_ref starts from the slope compensation start point to decrease with the slope compensation slope k, that is, the slope compensation control is turned on when the slope compensation start point is updated.
  • the PWM generator receives the trigger signal output by the comparator and controls the driver based on the trigger signal.
  • the driver drives the switch tube to perform wave configuration.
  • the PWM generator includes a PWM counter (in Figure 3: PWMCountr), which is used to count the time when the synchronization signal SYNC is generated.
  • the application also provides a slope compensation control method.
  • the slope compensation control method includes: Step S1: Collect electrical information in the DC/DC circuit; Step S2: Generate a loop output signal based on the electrical information; Step S3: Generate a current comparison threshold based on the loop output signal, and The electrical information adjusts the current comparison threshold to achieve slope compensation control.
  • the electrical information in the DC/DC circuit is collected through the sampling circuit.
  • the electrical information includes the input current Ip and the input voltage Vin of the primary conversion circuit, and the output current Io and the output voltage Vo of the secondary conversion circuit.
  • the sampling circuit transmits the electrical information to the loop compensation circuit, and the loop compensation circuit receives and generates the loop output signal Vloop_out according to the electrical information.
  • the loop compensation circuit transmits the loop output signal Vloop_out to the ramp modulation circuit, and the ramp modulation circuit generates a current comparison threshold according to the loop output signal Vloop_out, and adjusts the current comparison threshold according to the electrical information to achieve slope compensation control.
  • Step S3 includes: Step S31: Generate a current comparison threshold value to compensate for the decrease in slope k according to the loop output signal; Step S32: According to the current comparison threshold value and the primary conversion circuit in the electrical information Step S33: Perform wave configuration based on the trigger signal, and generate a synchronization signal (including the first synchronization signal SYNC1 and the second synchronization signal SYNC2) to update the slope of the current comparison threshold synchronously Compensate the starting point to enable slope compensation.
  • Step S31 Generate a current comparison threshold value to compensate for the decrease in slope k according to the loop output signal
  • Step S32 According to the current comparison threshold value and the primary conversion circuit in the electrical information
  • Step S33 Perform wave configuration based on the trigger signal, and generate a synchronization signal (including the first synchronization signal SYNC1 and the second synchronization signal SYNC2) to update the slope of the current comparison threshold synchronously Compensate the starting point to enable slope compensation.
  • generating a trigger signal based on the current comparison threshold Ip_ref and the input current Ip of the primary conversion circuit in the electrical information in step S32 includes: when the rising input current Ip of the primary conversion circuit is equal to the falling current comparison threshold Ip_ref When, a trigger signal is generated.
  • generating the synchronization signal in step S33 includes: generating the first synchronization signal SYNC1 at the synchronization point A counting to the positive half cycle; and/or generating the second synchronization signal SYNC2 at the synchronization point B counting to the negative half cycle.
  • Ts represents the switching cycle, including positive half cycle and negative half cycle.
  • the PWM counter is used to count the time when the synchronization signal SYNC is generated.
  • the counting method adopted by the PWM counter is: 0->PRD->0 up and down counting method. Among them, PRD is the period value.
  • PWM SYNC1 represents the first synchronization signal SYNC1 issued when the PWM counter counts to the synchronization point A of the positive half cycle (in Figure 3: including A1, A2, A3, and A4) during the upward counting process.
  • the switching tubes Q1 and Q4 of the primary side conversion circuit are turned on, and the switching tube Q5 of the secondary side conversion circuit is turned off.
  • the PWM counter continues to count up to a specific synchronization point A
  • the first synchronization signal SYNC1 is generated.
  • the ramp generator determines the starting point of the slope compensation of the current comparison threshold Ip_ref.
  • the value of the current comparison threshold Ip_ref at this time is the value of the loop output signal loop_out.
  • the slope compensation starts from the starting point of the slope compensation.
  • the current comparison threshold Ip_ref decreases with a slope K from the starting point of the slope compensation.
  • the current comparison threshold Ip_ref is turned off.
  • the switch tubes Q1 and Q4 of the primary side conversion circuit turn on the synchronous rectifier tube Q5 of the secondary side conversion circuit.
  • the switching tubes Q2 and Q3 of the primary side conversion circuit are turned on, and the synchronous rectifier tube Q6 of the secondary side conversion circuit is turned off.
  • the second synchronization signal SYNC2 is generated.
  • the ramp generator determines the starting point of the ramp compensation of the current comparison threshold Ip_ref.
  • the value of the current comparison threshold Ip_ref at this time is the value of the loop output signal loop_out. Slope compensation starts from the starting point of slope compensation.
  • the current comparison threshold Ip_ref decreases with a slope K from the starting point of slope compensation.
  • the current comparison threshold Ip_ref is turned off.
  • the switch tubes Q2 and Q3 of the primary-side conversion circuit simultaneously turn on the synchronous rectifier tube Q6 in the secondary-side conversion circuit.
  • the current peak value of the output current Ip of the primary side conversion circuit is adjusted, and the position of the intersection point of the negative half-cycle current comparison threshold Ip_ref and the input current Ip is changed, thereby changing and improving the primary side conversion circuit.
  • the maximum duty cycle of the pulse signal of the switch tube realizes the adjustment of the output voltage Vo and/or the output current Io of the secondary side conversion circuit.
  • the current comparison threshold value Ip_ref and the input current Ip of the positive half cycle and/or negative half cycle can be changed.
  • the position can then adjust the current peak value of the output current Ip of the primary switching circuit in the positive half cycle and the negative half cycle respectively, thereby realizing the adjustment and control of the duty ratio of the pulse signal of the primary switching circuit.
  • the value of A should be between 0 and PRD/2, and the value of B should be between PRD and PRD/2, that is, the adjustable range of point A is t0 in Figure 3 -t1, the adjustable range of point B is t2-t3 in Figure 3. It should be noted that the value of point A can be adjusted in real time according to the current input current/input voltage of the primary side conversion circuit and the output current/output voltage of the secondary side conversion circuit.
  • the electrical information in the DC/DC circuit is collected through the sampling circuit; then, the collected electrical information is input to the loop compensation circuit in the control circuit connected to the sampling circuit, so that the loop compensation circuit collects
  • the loop output signal is generated by the electrical information; finally, the generated loop output signal is input to the slope modulation circuit connected to the loop compensation circuit, so that the slope modulation circuit turns on the slope compensation control according to the loop output signal, and through the synchronization point Dynamic adjustment, thereby effectively improving the maximum duty cycle of the primary side drive, and improving the load capacity and transient response of the power supply.
  • the control logic of the switching transistors Q1 to Q6 is similar to that of FIG. 3 in the foregoing embodiment.
  • the difference lies in keeping the two points of synchronization point A and synchronization point B fixed, and by adjusting the value of the slope compensation slope k of the current comparison threshold Ip_ref (in Figure 4: including k1, k2, and k3, that is, k1 ⁇ k2 ⁇ k3), change the position of the intersection of the positive half-cycle and/or negative half-cycle current comparison threshold Ip_ref and the input current Ip, so as to increase the maximum duty cycle of the pulse signal of the switch tube that controls the primary conversion circuit and increase the power supply Load capacity and transient response.
  • the slope compensation slope k can be adjusted in real time according to the current input current/voltage of the primary side conversion circuit and the output current/voltage of the secondary side conversion circuit.
  • the synchronization point (the first synchronization point A and/or the second synchronization point B) and the slope compensation slope can be dynamically adjusted at the same time to increase the maximum duty cycle of the primary side drive and increase the load capacity of the power supply And transient response.
  • circuit structure is a full-bridge topology.
  • Other similar topological structures such as half-bridge topologies, are also covered by the technical solution of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请属于DC/DC电路控制技术领域,提供了一种斜坡补偿控制电路及斜坡补偿控制方法,该控制电路包括:用于采集DC/DC电路中的电信息的采样电路,与所述采样电路连接的控制电路,所述控制电路包括环路补偿电路,与所述采样电路连接,用于根据所述电信息生成环路输出信号;斜坡调制电路,与所述环路补偿电路连接,用于接收所述环路输出信号并调节电流比较阀值以实现斜坡补偿控制。本申请解决了现有斜坡补偿控制方法存在的斜坡补偿量过剩、占空比受限的技术问题,提升了开关电源的带载能力和瞬态响应速率。

Description

一种斜坡补偿控制电路及斜坡补偿控制方法 技术领域
本申请属于DC/DC电路控制技术领域,尤其涉及一种斜坡补偿控制电路及斜坡补偿控制方法。
背景技术
随着新能源汽车逐渐在市场商用,电动汽车成为新能源汽车的主力军。大功率的车载DCDC是电动汽车中重要的组成部分,由于车上负载具有大动态跳变的特性,因此对DCDC的动态响应能力要求较高。峰值电流控制具有动态响应快、增益带宽大、输出电感小等特点,因此峰值电流控制模式很适用于车载DCDC。斜坡补偿是峰值电流控制模式的必需模块,当调制脉冲的占空比大于50%时,需要在电感峰值电流的采样信号上叠加斜坡补偿信号,否则电感将会引起次谐波震荡。
常用的斜坡补偿方法为线性补偿,即从开关周期的起始点开始补偿,补偿量线性下降,这将导致某些时候的斜坡补偿量过大和最大占空比受限。车载DCDC具有输入电压范围宽的特点,最大占空比受限后,必将影响电源的带载能力和瞬态响应。
发明内容
本申请为了解决上述斜坡补偿控制方法存在的斜坡补偿量过剩、占空比受限的技术问题,提出了一种斜坡补偿控制电路及斜坡补偿控制方法。
在本申请的第一个方面,提供一种斜坡补偿控制电路,包括用于采集DC/DC电路中的电信息的采样电路,与所述采样电路连接的控制电路,所述 控制电路包括:环路补偿电路,与所述采样电路连接,用于根据所述电信息生成环路输出信号;斜坡调制电路,与所述环路补偿电路连接,用于接收所述环路输出信号并调节电流比较阀值以实现斜坡补偿控制。
在一实施例中,所述调节电流比较阀值包括根据所述DC/DC电路的所述电信息调节所述电流比较阀值的同步点的值及/或调节其补偿斜率k的值,并将所述电流比较阀值复位为斜坡补偿起始点的值。
在一实施例中,所述斜坡调制电路包括:斜坡发生器,与所述环路补偿电路连接,用于根据所述环路输出信号生成以补偿斜率k下降的所述电流比较阀值;比较器,分别与所述斜坡发生器、采样电路中的原边电流采集器连接,用于根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号,并将所述触发信号发送给所述斜坡发生器,所述斜坡发生器将所述电流比较阀值复位;PWM发生器,连接于所述比较器,用于根据所述触发信号进行发波配置;连接于斜坡发生器,生成同步信号输出至斜坡发生器,用于同步更新所述电流比较阀值的斜坡补偿起始点以开启斜坡补偿。
在一实施例中,所述PWM发生器包括:PWM计数器,用于计数产生所述同步信号的时间。
在一实施例中,所述斜坡调制电路还包括:与所述斜坡发生器及所述比较器连接的数字/模拟转换器,其用于将所述斜坡发生器输出的电流比较阀值转换为模拟信号后输送给所述比较器。
在一实施例中,所述环路补偿电路包括:电压运算器,分别与所述采样电路中的副边电压采集器、基准电压源连接,用于将所述副边电压采集器采集的副边转换电路的输出电压与压环基准值进行比较,生成电压误差信号;电压补偿器,与所述电压运算器连接,用于对所述电压误差信号进行补偿, 生成电压环信号;电流运算器,分别与所述采样电路中的副边电流采集器、基准电流源连接,用于将所述副边电流采集器采集的副边转换电路的输出电流与电流环基准值进行比较,生成电流误差信号;电流补偿器,与所述电流运算器连接,用于对所述电流误差信号进行补偿,生成电流环信号;第二比较器,分别与所述电压补偿器、电流补偿器连接,用于根据所述电压环信号和所述电流环信号,生成所述环路输出信号。
在本申请的第二个方面,还提供一种上述斜坡补偿控制电路的斜坡补偿控制方法,其特征在于,包括:步骤S1:采集DC/DC电路中的电信息;步骤S2:根据所述电信息生成环路输出信号;步骤S3:根据所述环路输出信号生成电流比较阀值,并根据所述电信息调节电流比较阀值以实现斜坡补偿控制。
在一实施例中,所述步骤S3包括:步骤S31:根据所述环路输出信号生成以补偿斜率k下降的电流比较阀值;步骤S32:根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号;步骤S33:基于所述触发信号进行发波配置,并生成同步信号以同步更新所述电流比较阀值的斜坡补偿起始点以开启斜坡补偿。
在一实施例中,所述步骤S32的所述根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号包括:当上升的所述原边转换电路的输入电流等于下降的所述电流比较阈值时,生成所述触发信号。
在一实施例中,所述步骤S33的所述生成同步信号包括:计数至正半周期的同步点A产生第一同步信号SYNC1;及/或计数至负半周期的同步点B产生第二同步信号SYNC2。
与现有技术比较,本发明至少具有如下优点:
通过采样电路采集DC/DC电路中的电信息;接着,将采集的所述电信息输入到与所述采样电路连接的控制电路中的环路补偿电路,以便所述环路补偿电路根据采集的电信息生成环路输出信号;最后,将生成的所述环路输出信号输入到与所述环路补偿电路连接的斜坡调制电路,以便所述斜坡调制电路接收所述环路输出信号并调节电流比较阀值以实现斜坡补偿控制,从而有效提升了开关电源的带载能力和瞬态响应速率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中斜坡补偿控制电路的结构示意图;
图2为图1中斜坡补偿控制电路的具体结构示意图;
图3为本申请一实施例中斜坡补偿控制方法的发波时序图;
图4为本申请另一实施例中斜坡补偿控制方法的发波时序图。
具体实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本申请。
下面结合图1-4以及实施例对本申请的结构、方法及相关原理进行详细说明。
请参阅图1-2,本申请提出了一种斜坡补偿控制电路,包括用于采集DC/DC电路中的电信息的采样电路,与采样电路连接的控制电路,控制电路 包括:环路补偿电路,与采样电路连接,用于根据电信息生成环路输出信号;斜坡调制电路,与环路补偿电路连接,用于接收所述环路输出信号并调节电流比较阀值以实现斜坡补偿控制。
下面对上述的斜坡补偿控制电路进行详细说明:
请参阅图1,DC/DC电路包括变压器T1、连接于变压器T1两边绕组的原边转换电路及副边转换电路。具体地,原边转换电路包括开关管Q1、开关管Q2、开关管Q3、开关管Q4。开关管Q1的源极连接于开关管Q3的漏极组成第一桥臂,开关管Q2的源极连接于开关管Q4的漏极组成第二桥臂。开关管Q1的漏极连接于开关管Q2的漏极连接于原边转换电路输入端的正极,开关管Q3的源极连接于开关管Q4的源极连接于原边转换电路输入端的负极。第一桥臂的中点连接于变压器T1的原边第一绕组W1的第一端,第二桥臂的中点连接于变压器T1的原边第二绕组W2的第二端。副边转换电路包括开关管Q5、开关管Q6、电感L1、电容C1。开关管Q5的漏极连接于副边第二绕组W2的第一端,开关管Q5的源极连接于副边转换电路的输出端Vo的负极。开关管Q6的源极连接于输出端Vo的负极,开关管Q6的漏极连接于副边第三绕组W3的第二端,副边第三绕组W3的第一端连接于副边第二绕组W2的第二端,并连接于电感L1后连接到副边转换电路的输出端Vo的正极。输出端Vo的正负极之间还连接有电容C1。
在另外的实施例中,DC/DC电路可以是半桥电路、全桥电路,也可以是二相电路、三相电路、多相电路。在另外的实施例中,变压器T1的两边绕组连接于原边转换电路及/或副边转换电路处还可以连接多个电容及/或电感,以组成滤波电路及/或谐振电路。
请参阅图1或2,采样电路包括原边电流采集器、原边电压采集器、副边电流采集器及副边电压采集器。原边电流采集器连接于原边转换电路的输入端,用于采集原边转换电路输入电流Ip。原边电压采集器连接于原边转换电路的输入端,用于采集原边转换电路输入电压Vin。副边电流采集器连接于副边转换电路的输出端,用于采集副边转换电路输出电流Io。副边电压采集器连接于副边转换电路的输出端,用于采集副边转换电路输出电压Vo。采样电路将输入电流Ip、输入电压Vin、输出电流Io、输出电压Vo传递给控制电路。
请参阅图2,控制电路包括环路补偿电路及连接于环路补偿电路的斜坡调制电路。环路补偿电路连接于副边电压采集器及副边电流采集器,以接收输出电流Io及输出电压Vo。斜坡调制电路连接于原边电流采集器,用于接收输入电流Ip。
环路补偿电路采用电压、电流环路并联电路。环路补偿电路包括电压运算器、电压补偿器(图2中:2p2z Compensation)、电流运算器、电流补偿器(图2中:2p2z Compensation)及第二比较器(图2中:的MIN2)。
具体的,电压运算器分别连接于副边电压采集器(图2中:Sensing&Scaling)及基准电压源(图2中:Vref Softstart)。电压运算器用于将副边电压采集器采集的副边转换电路的输出电压Vo与压环基准值Vref进行比较,生成电压误差信号Verr。电压补偿器与电压运算器连接,用于对电压误差信号Verr进行补偿,生成电压环信号Vloop_out。电流运算器分别与副边电流采集器(图2中:Sensing&Scaling)、基准电流源(图2中:Iref Softstart))连接,用于将输出电流Io与电流环基准值Iref进行比较,生成电流误差信号Ierr。电流补偿器与电流运算器连接,用于对电流误差信号Ierr进行补偿,生成电流环信号Iloop_out。 第二比较器分别与电压补偿器、电流补偿器连接,用于根据电压环信号Vloop_out和电流环信号Iloop_out,生成环路输出信号loop_out。在一实施例中,从电压环信号Vloop_out和电流环信号Iloop_out中,选取信号值较小的信号,作为环路输出信号loop_out。
在其他实施例中,环路补偿电路也可以用电压外环嵌套电流内环电路或电流外环嵌套电压外环电路代替上述实施例中的电压、电流环路并联电路。
请继续参阅图2,斜坡调制电路包括斜坡发生器(图2中:Ramp Generator)、数字/模拟转换器(图2中:DAC)、比较器(图2中:Comparator)及PWM发生器(图3:PWM Module)。
具体地,斜坡发生器与环路补偿电路连接。用于根据环路输出信号loop_out,生成电流比较阀值Ip_ref。数字/模拟转换器与斜坡发生器连接,用于将斜坡发生器输出的数字信号形式的电流比较阀值Ip_ref转换为模拟信号。比较器分别与数字/模拟转换器、原边电流采集器连接,用于接收电流比较阀值Ip_ref和原边转换电路的输入电流Ip,并比电流比较阀值Ip_ref和原边转换电路的输入电流Ip的大小。在电流比较阀值Ip_ref等于输入电流Ip时,生成触发信号。并将触发信号发送给斜坡发生器及PWM发生器。以便斜坡发生器根据触发信号将电流比较阀值Ip_ref复位至斜坡补偿起始点,此时的电流比较阀值Ip_ref的值即为环路输出信号loop_out的值。PWM发生器分别与比较器、斜坡发生器及驱动器(图2中:DRIVER)连接,用于生成同步信号SYNC(包括SYNC1及SYNC2)输出至斜坡发生器,并同步更新电流比较阀值Ip_ref的斜坡补偿起始点,使得电流比较阈值Ip_ref从斜坡补偿起始点开始以斜坡补偿斜率k下降,即在更新该斜坡补偿起始点时开启斜坡补偿控制。PWM发生器接收比较器输出的触发信号,并基于触发信号控制驱动器,驱动 器驱动开关管动作,从而进行发波配置。PWM发生器包括有PWM计数器(图3中:PWM Countr),用于计数产生同步信号SYNC的时间。
本申请还提供了一种斜坡补偿控制方法。该斜坡补偿控制方法包括:步骤S1:采集DC/DC电路中的电信息;步骤S2:根据电信息生成环路输出信号;步骤S3:根据所述环路输出信号生成电流比较阀值,并根据所述电信息调节电流比较阀值以实现斜坡补偿控制。
可以理解,首先,通过采样电路采集DC/DC电路中的电信息,电信息包括原边转换电路的输入电流Ip、输入电压Vin,副边转换电路的输出电流Io、输出电压Vo。然后,采样电路将电信息传输给环路补偿电路,环路补偿电路接收并根据电信息生成环路输出信号Vloop_out。最后,环路补偿电路将环路输出信号Vloop_out传递给斜坡调制电路,斜坡调制电路根据环路输出信号Vloop_out生成电流比较阀值,并根据该电信息调节电流比较阀值以实现斜坡补偿控制。
具体地,步骤S3包括:步骤S31:根据所述环路输出信号生成以补偿斜率k下降的电流比较阀值;步骤S32:根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号;步骤S33:基于所述触发信号进行发波配置,并生成同步信号(包括第一同步信号SYNC1、第二同步信号SYNC2)以同步更新所述电流比较阀值的斜坡补偿起始点以开启斜坡补偿。
更具体地,步骤S32的根据电流比较阀值Ip_ref和电信息中的原边转换电路的输入电流Ip,生成触发信号包括:当上升的原边转换电路的输入电流Ip等于下降的电流比较阈值Ip_ref时,生成触发信号。
更具体地,步骤S33的生成同步信号包括:计数至正半周期的同步点A产生第一同步信号SYNC1;及/或计数至负半周期的同步点B产生第二同步信号SYNC2。
下面结合图3-4进行详细说。
请参阅图3,Ts表示开关周期,包括正半周期和负半周期。PWM计数器用于计数产生同步信号SYNC的时间。PWM计数器采用的计数方式为:0->PRD->0的上下计数法。其中,PRD为周期值。PWM SYNC1表示PWM计数器在向上计数过程中计数到正半周期的同步点A(图3中:包括A1、A2、A3、A4)时发出的第一同步信号SYNC1。PWM SYNC2表示PWM计数器在向下计数过程中计数到负半周期的同步点B(图3中:包括B1、B2、B3、B4)点发出的第二同步信号SYNC2,其中B=PRD-A。
在开关周期Ts的正半周期内,当PWM计数器的计数过零时,原边转换电路的开关管Q1和Q4开通,副边转换电路的开关管Q5关断。PWM计数器继续向上计数到特定同步点A时,产生第一同步信号SYNC1。斜坡发生器在接收到PWM产生的第一同步信号SYNC1后,确定电流比较阀值Ip_ref的斜坡补偿起始点。此时的电流比较阀值Ip_ref的值即为环路输出信号loop_out的值。从斜坡补偿起始点开始进行斜坡补偿,电流比较阀值Ip_ref从斜坡补偿起始点起以斜率K下降减小,当原边转换电路的输入电流Ip上升至等于电流比较阀值Ip_ref的时刻,关断原边转换电路的开关管Q1和Q4,开通副边转换电路的同步整流管Q5。通过调节同步点A的值,改变正半周期的电流比较阀值Ip_ref与输入电流Ip交会点的位置,从而调节原边转换电路的输出电流Ip的电流峰值,改变及提高原边转换电路中的开关管的脉冲信号的最大占空比,实现副边转换电路的输出电压Vo及/或输出电流Io的调节。
在开关周期Ts的负半周期内,当PWM计数器的计数值达到周期值PRD时,原边转换电路的开关管Q2和Q3开通,副边转换电路的同步整流管Q6关断。PWM计数器继续向下计数到同步点B时,产生第二同步信号SYNC2。斜坡发生器在接收到第二同步信号SYNC2后,确定电流比较阀值Ip_ref的斜坡补偿起始点。此时的电流比较阀值Ip_ref的值即为环路输出信号loop_out的值。从斜坡补偿起始点开始进行斜坡补偿,电流比较阀值Ip_ref从斜坡补偿起始点起以斜率K下降减小,当原边转换电路的输入电流Ip上升至等于电流比较阀值Ip_ref的时刻,关断原边转换电路的开关管Q2和Q3,同时开通副边转换电路中的同步整流管Q6。通过调节同步点B的值,从而调节原边转换电路的输出电流Ip的电流峰值,改变负半周期的电流比较阀值Ip_ref与输入电流Ip交会点的位置,从而改变及提高原边转换电路中的开关管的脉冲信号的最大占空比,实现副边转换电路的输出电压Vo及/或输出电流Io的调节。
在环路输出信号loop_out的值恒定的条件下,通过调节同步点A及/或同步点B的值,改变正半周期及/或负半周期的电流比较阀值Ip_ref与输入电流Ip交会点的位置,进而可分别调节正半周期、负半周期内原边转换电路的输出电流Ip的电流峰值,从而实现了调节控制原边转换电路的脉冲信号的占空比。当A值越大、B值越小时,原边转换电路的输入电流Ip的电流峰值越高,占空比越大。为了保证占空比大于50%时斜坡补偿有效,A值应在0到PRD/2之间,B值应在PRD到PRD/2之间,即A点的可调节范围为图3中的t0-t1,B点的可调范围为图3中的t2-t3。需要说明的是,A点的值可根据当前原边转换电路的输入电流/输入电压及副边转换电路的输出电流/输出电压的情况进行实时调节。
在本申请实施例中,通过采样电路采集DC/DC电路中的电信息;接着,将采集的电信息输入到与采样电路连接的控制电路中的环路补偿电路,以便环路补偿电路根据采集的电信息生成环路输出信号;最后,将生成的环路输出信号输入到与环路补偿电路连接的斜坡调制电路,以便斜坡调制电路根据环路输出信号开启斜坡补偿控制,通过对同步点的动态调整,从而有效提高了原边驱动的最大占空比,提高电源的带载能力和瞬态响应。
请参阅图4,在本申请的另一实施例中,开关管Q1~Q6的控制逻辑与上述实施例中的图3类似。区别在于保持同步点A、同步点B两点固定不变,而通过调节电流比较阀值Ip_ref的斜坡补偿斜率k的值(图4中:包括k1、k2、k3,即通过调节使得k1≠k2≠k3),改变正半周期及/或负半周期的电流比较阀值Ip_ref与输入电流Ip交会点的位置,从而提高控制原边转换电路的开关管的脉冲信号的最大占空比,提高电源的带载能力和瞬态响应。需要说明的是,斜坡补偿斜率k可根据当前原边转换电路的输入电流/电压及副边转换电路的输出电流/电压的情况进行实时调节。
在另外的实施例中,可同时动态调节同步点(第一同步点A及/或第二同步点B)和斜坡补偿斜率,以提高原边驱动的最大占空比,提高电源的带载能力和瞬态响应。
需要再次强调的是,在本申请实施例中,电路结构为全桥拓扑。其他类似的拓扑结构,比如半桥拓扑,亦为本申请技术方案所覆盖。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种斜坡补偿控制电路,包括用于采集DC/DC电路中的电信息的采样电路,与所述采样电路连接的控制电路,其特征在于,所述控制电路包括:
    环路补偿电路,与所述采样电路连接,用于根据所述电信息生成环路输出信号;
    斜坡调制电路,与所述环路补偿电路连接,用于接收所述环路输出信号并调节电流比较阀值以实现斜坡补偿控制。
  2. 根据权利要求1所述的斜坡补偿控制电路,其特征在于,所述调节电流比较阀值包括根据所述DC/DC电路的所述电信息调节所述电流比较阀值的同步点的值及/或调节其补偿斜率k的值,并将所述电流比较阀值复位为斜坡补偿起始点的值。
  3. 根据权利要求2所述的斜坡补偿控制电路,其特征在于,所述斜坡调制电路包括:
    斜坡发生器,与所述环路补偿电路连接,用于根据所述环路输出信号生成以补偿斜率k下降的所述电流比较阀值;
    比较器,分别与所述斜坡发生器、采样电路中的原边电流采集器连接,用于根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号,并将所述触发信号发送给所述斜坡发生器,所述斜坡发生器将所述电流比较阀值复位;
    PWM发生器,连接于所述比较器,用于根据所述触发信号进行发波配置;连接于斜坡发生器,生成同步信号输出至斜坡发生器,用于同步更新所述电流比较阀值的斜坡补偿起始点以开启斜坡补偿。
  4. 根据权利要求3所述的斜坡补偿控制电路,其特征在于,所述PWM发生器包括:PWM计数器,用于计数产生所述同步信号的时间。
  5. 根据权利要求3所述的斜坡补偿控制电路,其特征在于,所述斜坡调制电路还包括:与所述斜坡发生器及所述比较器连接的数字/模拟转换器,其用于将所述斜坡发生器输出的电流比较阀值转换为模拟信号后输送给所述比较器。
  6. 根据权利要求1所述的斜坡补偿控制电路,其特征在于,所述环路补偿电路包括:
    电压运算器,分别与所述采样电路中的副边电压采集器、基准电压源连接,用于将所述副边电压采集器采集的副边转换电路的输出电压与压环基准值进行比较,生成电压误差信号;
    电压补偿器,与所述电压运算器连接,用于对所述电压误差信号进行补偿,生成电压环信号;
    电流运算器,分别与所述采样电路中的副边电流采集器、基准电流源连接,用于将所述副边电流采集器采集的副边转换电路的输出电流与电流环基准值进行比较,生成电流误差信号;
    电流补偿器,与所述电流运算器连接,用于对所述电流误差信号进行补偿,生成电流环信号;
    第二比较器,分别与所述电压补偿器、电流补偿器连接,用于根据所述电压环信号和所述电流环信号,生成所述环路输出信号。
  7. 一种如权利要求6所述斜坡补偿控制电路的斜坡补偿控制方法,其特征在于,包括:
    步骤S1:采集DC/DC电路中的电信息;
    步骤S2:根据所述电信息生成环路输出信号;
    步骤S3:根据所述环路输出信号生成电流比较阀值,并根据所述电信息调节电流比较阀值以实现斜坡补偿控制。
  8. 根据权利要求7所述的斜坡补偿控制方法,其特征在于,所述步骤S3包括:
    步骤S31:根据所述环路输出信号生成以补偿斜率k下降的电流比较阀值;
    步骤S32:根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号;
    步骤S33:基于所述触发信号进行发波配置,并生成同步信号以同步更新所述电流比较阀值的斜坡补偿起始点以开启斜坡补偿。
  9. 根据权利要求8所述的斜坡补偿控制方法,其特征在于,所述步骤S32的所述根据所述电流比较阀值和所述电信息中的原边转换电路的输入电流,生成触发信号包括:
    当上升的所述原边转换电路的输入电流等于下降的所述电流比较阈值时,生成所述触发信号。
  10. 根据权利要求8所述的斜坡补偿控制方法,其特征在于,所述步骤S33的所述生成同步信号包括:
    计数至正半周期的同步点A产生第一同步信号SYNC1;及/或计数至负半周期的同步点B产生第二同步信号SYNC2。
PCT/CN2020/101133 2020-05-08 2020-07-09 一种斜坡补偿控制电路及斜坡补偿控制方法 WO2021223322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010383084.7A CN111446865B (zh) 2020-05-08 2020-05-08 一种斜坡补偿控制电路及斜坡补偿控制方法
CN202010383084.7 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223322A1 true WO2021223322A1 (zh) 2021-11-11

Family

ID=71653831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101133 WO2021223322A1 (zh) 2020-05-08 2020-07-09 一种斜坡补偿控制电路及斜坡补偿控制方法

Country Status (2)

Country Link
CN (1) CN111446865B (zh)
WO (1) WO2021223322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977974A (zh) * 2024-03-28 2024-05-03 武汉麦格米特电气有限公司 谐振变换器的电流控制方法、装置及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117277787B (zh) * 2023-09-25 2024-06-21 苏州博沃创新能源科技有限公司 一种高压宽电压范围输入电源dc-dc变换器及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025274A (zh) * 2009-09-18 2011-04-20 Det国际控股有限公司 用于电流模式控制的数字斜率补偿
CN104935063A (zh) * 2015-06-18 2015-09-23 电子科技大学 一种蓄电池脉正负冲充电变换器
CN104953829A (zh) * 2015-05-21 2015-09-30 西南交通大学 一种应用于buck电路的准定频峰值电流控制方法
CN105958820A (zh) * 2016-06-07 2016-09-21 广东希荻微电子有限公司 迟滞式控制器pwm和pfm模式下的控制方法
CN109245593A (zh) * 2018-10-19 2019-01-18 台达电子企业管理(上海)有限公司 适用于双向直流变换器的控制电路及方法
US20190181754A1 (en) * 2017-12-08 2019-06-13 Cirrus Logic International Semiconductor Ltd. Digital-to-analog converter with embedded minimal error adaptive slope compensation for digital peak current controlled switched mode power supply

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126318B2 (en) * 2004-08-25 2006-10-24 Matsushita Electric Industrial Co., Ltd. Higher order slope compensation for fixed frequency current mode switching regulators
US9184659B2 (en) * 2010-11-12 2015-11-10 Integrated Device Technology, Inc. Self-adaptive current-mode-control circuit for a switching regulator
CN103296888A (zh) * 2013-01-31 2013-09-11 合肥盛强数控设备有限公司 一种全桥电路
US9705403B2 (en) * 2013-02-23 2017-07-11 Texas Instruments Incorporated Apparatus and method for selective and adaptive slope compensation in peak current mode controlled power converters
CN103516217B (zh) * 2013-09-29 2015-11-18 东南大学 一种可调整斜波补偿斜率的开关电源
CN103532381A (zh) * 2013-10-23 2014-01-22 深圳市安派电子有限公司 斜坡补偿电路
CN106329924B (zh) * 2016-05-30 2019-03-12 武汉新芯集成电路制造有限公司 一种提高负载瞬态响应性能的系统
CN109149931B (zh) * 2018-08-29 2019-10-11 北京机械设备研究所 用于峰值电流控制buck变换器的斜坡-误差补偿电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025274A (zh) * 2009-09-18 2011-04-20 Det国际控股有限公司 用于电流模式控制的数字斜率补偿
CN104953829A (zh) * 2015-05-21 2015-09-30 西南交通大学 一种应用于buck电路的准定频峰值电流控制方法
CN104935063A (zh) * 2015-06-18 2015-09-23 电子科技大学 一种蓄电池脉正负冲充电变换器
CN105958820A (zh) * 2016-06-07 2016-09-21 广东希荻微电子有限公司 迟滞式控制器pwm和pfm模式下的控制方法
US20190181754A1 (en) * 2017-12-08 2019-06-13 Cirrus Logic International Semiconductor Ltd. Digital-to-analog converter with embedded minimal error adaptive slope compensation for digital peak current controlled switched mode power supply
CN109245593A (zh) * 2018-10-19 2019-01-18 台达电子企业管理(上海)有限公司 适用于双向直流变换器的控制电路及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977974A (zh) * 2024-03-28 2024-05-03 武汉麦格米特电气有限公司 谐振变换器的电流控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN111446865B (zh) 2021-06-25
CN111446865A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
KR20190089119A (ko) 이중 출력포트 충전회로 및 그 제어 방법
CN112234835B (zh) 一种可变结构组合型llc谐振变换器
CN110855163A (zh) 一种单级式隔离型三相整流器及其控制方法
CN108880268B (zh) 电压源型半有源桥dc-dc变换器的多模式控制方法
CN110620517B (zh) 一种并联输入串联输出的老化电源装置
CN111431415B (zh) 一种并联输入串联输出的高升压隔离型直流变换器
WO2021223322A1 (zh) 一种斜坡补偿控制电路及斜坡补偿控制方法
CN112928919A (zh) 宽输出电压范围的隔离型高频谐振式直流-直流变换器及方法
TW202247587A (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
CN110509796B (zh) 一种电动汽车的车载双向充电机电路
CN111917300A (zh) 一种次级控制隔离型dc/dc变换器电路拓扑结构
CN103441690B (zh) 高频交流侧串联实现紧调整输出的组合变流器的控制方法
CN219287377U (zh) 一种双向dc转换电路及相应的装置
CN109742957B (zh) 一种双环全谐振型软开关变换器
CN116613993A (zh) 一种谐振变换器的控制方法、电路及谐振变换器
CN107147325B (zh) 电流馈电型高功率脉冲电流源
CN115811241A (zh) 单级无桥交错并联Boost-LLC AC-DC变换器混合控制方法
CN115549490A (zh) 柔性多状态开关拓扑电路及其控制方法
US20240072676A1 (en) Power conversion apparatus and power conversion system
CN112491162B (zh) 一种无线电能传输装置
CN111987913B (zh) 可实现有源功率解耦的准单级ac/dc变换器电路
CN113472215A (zh) 一种拓宽llc输出电压范围控制方法、电路及装置
CN111277137A (zh) 一种dcdc变换器
CN111030471B (zh) 一种llc变换器的降增益控制方法
CN213125854U (zh) 零电流准谐振dc-dc升压电源变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934355

Country of ref document: EP

Kind code of ref document: A1