WO2021223317A1 - 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 - Google Patents

基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 Download PDF

Info

Publication number
WO2021223317A1
WO2021223317A1 PCT/CN2020/100532 CN2020100532W WO2021223317A1 WO 2021223317 A1 WO2021223317 A1 WO 2021223317A1 CN 2020100532 W CN2020100532 W CN 2020100532W WO 2021223317 A1 WO2021223317 A1 WO 2021223317A1
Authority
WO
WIPO (PCT)
Prior art keywords
sqds
lactic acid
auncs
aqueous solution
bsa
Prior art date
Application number
PCT/CN2020/100532
Other languages
English (en)
French (fr)
Inventor
金辉
姜晓文
桂日军
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Publication of WO2021223317A1 publication Critical patent/WO2021223317A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Definitions

  • the invention belongs to the technical field of preparation of novel fluorescent nanocomposites and ratio fluorescent nano probes, and specifically relates to a method for preparing ratio fluorescent lactic acid probes based on a novel nanocomposite system and an enzyme-catalyzed reaction.
  • the prepared probes can be used in biology Highly sensitive and selective quantitative detection of lactic acid in fluid samples.
  • Lactic acid is one of the final products of glycolysis in the human body. When oxygen is insufficient, reduced coenzyme I will accumulate, which in turn activates the glycolysis pathway, leading to the production of lactic acid.
  • Human lactic acidosis is one of the most common types of metabolic acidosis. The increase in blood lactic acid concentration is closely related to respiratory diseases and diabetic ketonemia. In addition, bacterial meningitis, brain trauma, etc. can also cause an increase in the concentration of lactic acid in the cerebrospinal fluid. Based on this, the implementation of quantitative detection of lactic acid concentration in human biological fluid samples is of great significance for early screening, accurate diagnosis and clinical treatment of lactic acid-related diseases.
  • the previous literature For the detection of lactic acid with traditional instrumental analysis techniques, the previous literature generally has problems such as harsh conditions, complicated procedures, time-consuming operations, high costs, and lack of specificity.
  • the previous literature For the detection of lactic acid by biochemical probe and sensor technology, the previous literature has adopted a single-signal output mode, which relies on the accurate measurement of the intensity of a single response signal.
  • the measurement of response signal intensity will be interfered by internal and external factors, such as changes in the surrounding environment, instrument efficiency, system measurement errors, probe and sensor material usage, etc., which may cause inconsistencies in the measurement results. Stability and random fluctuations weaken the feasibility and practicability of the detection technology.
  • the dual signal peak intensity ratio method is used to detect lactic acid, which not only has the advantages of biochemical probe and sensor technology, but also overcomes the problems of unstable and random measurement results.
  • the ratio method takes the ratio of the peak intensity of the double signal to the response signal output, and has a built-in calibration function, which effectively avoids the interference of the background signal and improves the accuracy of the detection result.
  • the invention discloses a method for preparing a ratio fluorescent nano probe which is novel in design, simple and efficient, and can be used for quantitative detection of lactic acid.
  • the purpose of the present invention is to overcome the above-mentioned problems in the prior art, and develop a novel and simple and efficient method for preparing a fluorescent lactic acid probe based on a novel nanocomposite system and an enzyme-catalyzed reaction ratio.
  • the prepared probe can be used for Highly sensitive and selective quantitative detection of lactic acid in biological fluid samples.
  • the present invention relates to a method for preparing a fluorescent lactic acid probe based on the ratio of a novel nanocomposite system and an enzyme-catalyzed reaction.
  • the preparation method includes the following steps:
  • SQDs Preparation of sulfur quantum dots SQDs: Weigh 1g sublimed sulfur, 2mL polyethylene glycol PEG400 and 3g sodium hydroxide, respectively add 50mL double distilled water under magnetic stirring to form a homogeneous mixed solution; transfer to 100mL In a polytetrafluoroethylene-lined mini-high pressure reactor, the reaction was stirred at 70°C for 6 hours; after the reaction, 2 mL of the product solution was taken, and 2 mL of hydrogen peroxide aqueous solution with a mass concentration of 7 wt% was added to it, and stirred well to mix evenly. Prepare SQDs water dispersion for use;
  • BSA/AuNCs Preparation of bovine serum albumin-stabilized gold nanoclusters BSA/AuNCs: prepare 40mg/mL BSA aqueous solution, 5mmol/L chloroauric acid aqueous solution, 0.5mol/L sodium hydroxide aqueous solution and 2mol/L mercaptopropionic acid aqueous solution; Under magnetic stirring, add 5mL chloroauric acid aqueous solution and 0.5mL sodium hydroxide aqueous solution to 5mL BSA aqueous solution in sequence to form a homogeneous mixture; then add 0.5mL mercaptopropionic acid aqueous solution, and incubate the mixture at 4°C for 1h; After the end, the product solution is transferred to a dialysis bag with a molecular weight cutoff of 5000kDa, and the dialysis process is performed for 24 hours to remove unreacted raw materials and small molecular impurities; the dialyzed solution is rotary
  • the effect of the present invention is to disclose a method for preparing a fluorescent lactic acid probe based on the ratio of a novel nano composite system and an enzyme-catalyzed reaction.
  • the outer electronic structure of Fe 3+ is 3d 5 4s 0 , and the 5 d orbitals are half-filled, resulting in higher
  • Figure 1 The preparation method of fluorescent lactic acid probe based on the ratio of novel nanocomposite system and enzyme-catalyzed reaction and the principle schematic diagram of quantitative detection of lactic acid;
  • Fig. 1 The method for preparing a fluorescent lactic acid probe based on the ratio of a novel nanocomposite system and an enzyme-catalyzed reaction and the principle schematic diagram of quantitative detection of lactic acid related to this embodiment are shown in Fig. 1.
  • the specific preparation steps are as follows:
  • SQDs Preparation of sulfur quantum dots SQDs: Weigh 1g sublimed sulfur, 2mL polyethylene glycol PEG400 and 3g sodium hydroxide, respectively add 50mL double distilled water under magnetic stirring to form a homogeneous mixed solution; transfer to 100mL PTFE In an ethylene-lined mini-high pressure reactor, the reaction was stirred at 70°C for 6 hours; after the reaction, 2 mL of the product solution was taken, and 2 mL of hydrogen peroxide aqueous solution with a mass concentration of 7 wt% was added to it. Stir fully to mix evenly to obtain SQDs Water dispersion for use;
  • BSA/AuNCs Preparation of bovine serum albumin-stabilized gold nanoclusters BSA/AuNCs: prepare 40mg/mL BSA aqueous solution, 5mmol/L chloroauric acid aqueous solution, 0.5mol/L sodium hydroxide aqueous solution and 2mol/L mercaptopropionic acid aqueous solution; stir under magnetic force Next, add 5mL chloroauric acid aqueous solution and 0.5mL sodium hydroxide aqueous solution to 5mL BSA aqueous solution in turn to form a homogeneous mixture; then add 0.5mL mercaptopropionic acid aqueous solution, and incubate the mixture for 1h at 4°C; after the reaction, the product The solution was transferred to a dialysis bag with a molecular weight cutoff of 5000kDa and treated for 24 hours to remove unreacted raw materials and small molecular impurities; the dialyzed solution was rotary evaporated to remove
  • This embodiment relates to a method for preparing a fluorescent lactic acid probe based on the ratio of a novel nanocomposite system and an enzyme-catalyzed reaction and a schematic diagram of the principle of quantitative detection of lactic acid as shown in Fig. 1.
  • SQDs, SQDs/MOF and BSA/AuNCs The preparation steps are the same as in Example 1, and other specific preparation steps are as follows:
  • This embodiment relates to a method for preparing a fluorescent lactic acid probe based on the ratio of a novel nanocomposite system and an enzyme-catalyzed reaction and a schematic diagram of the principle of quantitative detection of lactic acid as shown in Fig. 1.
  • SQDs, SQDs/MOF and BSA/AuNCs The preparation steps are the same as in Example 1, and other specific preparation steps are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法,制备硫量子点内包覆的金属有机骨架复合物SQDs/MOF,牛血清白蛋白稳定的金纳米簇BSA/AuNCs,配制SQDs/MOF、BSA/AuNCs、乳酸氧化酶LOD和Fe2+的混合溶液体系,加入乳酸LA后,LOD催化LA生成H2O2,H2O2催化Fe2+成Fe3+,Fe3+引发的电子转移导致AuNCs荧光减弱,而包覆在MOF结构中的SQDs荧光变化甚微,拟合AuNCs与SQDs荧光发射峰强度比率IAuNCs/ISQDs与LA浓度对数之间的线性关系,构建新型比率荧光纳米探针,用于乳酸的高灵敏和选择性定量检测。

Description

基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 技术领域
本发明属于新型荧光纳米复合物和比率荧光纳米探针的制备技术领域,具体涉及一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法,该制备的探针可用于生物流体样品中乳酸的高灵敏和选择性定量检测。
背景技术
乳酸(Lactic acid,LA)是人体内糖酵解的最终产物之一,当氧气不足时,会出现还原型辅酶I积累,进而启动了糖酵解途径,导致乳酸的产生。人体乳酸性酸中毒是一种最常见的代谢性酸中毒类型,血液中乳酸浓度的升高与呼吸系统疾病、糖尿病酮血症等密切相关。此外,细菌性脑膜炎、脑外伤等也可以引起脑脊液中乳酸浓度的升高。基于此,执行人体生物流体样品中乳酸浓度的定量检测,对于乳酸相关疾病的早期筛查、精准诊断和临床治疗都具有重要意义。
在先前的文献资料中,已经开发了不同的分析技术用于乳酸的检测,如比色法、分光光度法、高效液相色谱法、气相色谱法、酶法、电化学法等。例如,韦真博等制备了聚金属酞菁-碳纳米管复合材料修饰电极,用于电催化乳酸和乳酸检测(韦真博;杨亚男;康志伟;王俊;程邵明,一种检测乳酸浓度的复合材料修饰电极的制备方法及应用,中国发明专利公开号CN110186966A);Sidra Amin等制备氧化镍纳米颗粒修饰的玻碳电极,用于构建非酶电化学传感器检测乳酸(Sidra Amin,Aneela Tahira,Amber Solangi,Raffaello Mazzaro,Zafar Hussain Ibupoto,Alberto Vomiero,A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles forpractical applications,AnalyticalMethods,2019,11,3578–3583)。
对于传统仪器分析技术检测乳酸,先前文献普遍存在条件苛刻,程序复杂,操作费时,成本较高,缺乏特异性等问题。对于生化探针和传感器技术检测乳酸,先前文献均采用了单信号输出模式,依赖于单一响应信号强度的精确测量。在实际样品中检测乳酸的过程中,响应信号强度的测量会受到内外和外因素的干扰,如周围环境变化,仪器工作效率,系统测量误差,探针和传感器材料用量等,引起测量结果的不稳定和随机波动,进而削弱了检测技术的可行性和实用性。
相比先前报导的乳酸检测方法,采用双信号峰值强度比率法检测乳酸,既具备了生化探针和传感器技术的优势,又能克服测量结果不稳定和随机波动的问题。比率法以双信号峰值强度的比值为响应信号输出,具备内置校准功能,有效避免了背景信号的干扰,提升了检测结果的准确度。截止目前,尚未有采 用双信号峰值强度比率法来定量检测乳酸的国内外文献和专利报道。本发明公开了一种设计新型,简单高效,可用于乳酸定量检测的比率荧光纳米探针的制备方法。制备硫量子点SQDs内包覆的金属有机骨架MOF复合物,即SQDs/MOF;制备牛血清白蛋白BSA稳定的金纳米簇BSA/AuNCs;将SQDs/MOF的水分散液与BSA/AuNCs的水分散液混合,再依次加入乳酸氧化酶LOD和亚铁离子Fe 2+,最终形成均质混合液。向混合液中加入乳酸LA,引起AuNCs荧光减弱而SQDs荧光变化甚微,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数之间的线性关系,可构建用于乳酸定量检测的新型比率荧光纳米探针。
发明内容
本发明的目的在于克服上述现有技术存在的问题,发展了一种设计新颖和简单高效的基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法,该制备的探针可用于生物流体样品中乳酸的高灵敏和选择性定量检测。
为实现上述目的,本发明涉及的一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法,其制备方法包括以下步骤:
(1)硫量子点SQDs的制备:称取1g升华硫,2mL聚乙二醇PEG400和3g氢氧化钠,在磁力搅拌下分别加入50mL二次蒸馏水中,形成均质混合溶液;转入含100mL聚四氟乙烯内衬的微型高压反应釜中,在70℃下搅拌反应6h;反应结束后取2mL产物溶液,向其中加入2mL质量浓度为7wt%的过氧化氢水溶液,充分搅拌以混合均匀,制得SQDs水分散液备用;
(2)硫量子点内包覆的金属有机骨架复合物SQDs/MOF的制备:将4mL SQDs水分散加入20mL的2-甲基咪唑的乙醇溶液中,磁力搅拌10min以形成均质混合液;加入15mL硝酸锌水溶液,磁力搅拌30min,制得含有沉淀物的混合液;在3000rpm转速下离心20min,沉淀物用乙醇和二次蒸馏水交替洗涤两次,经冷冻干燥得到干燥产物SQDs/MOF,在室温避光处保存备用;
(3)牛血清白蛋白稳定的金纳米簇BSA/AuNCs的制备:配制40mg/mL BSA水溶液,5mmol/L氯金酸水溶液,0.5mol/L氢氧化钠水溶液和2mol/L巯基丙酸水溶液;在磁力搅拌下,向5mL BSA水溶液中依次加入5mL氯金酸水溶液和0.5mL氢氧化钠水溶液,形成均质混合液;再加入0.5mL巯基丙酸水溶液,混合液在4℃下孵育1h;反应结束后产物溶液转入5000kDa截留分子量的透析袋中,透析处理24h,除去未反应的原料和小分子杂质;透析后的溶液经旋转蒸发除去大部分溶剂,然后冷冻干燥处理,得到干燥产物BSA/AuNCs;
(4)分别配制浓度为5~10mg/mL的SQDs/MOF水分散液,浓度为5~10mg/mL的BSA/AuNCs水分散液;在磁力搅拌下,将5~10mL的SQDs/MOF水分散液与5~10mL的BSA/AuNCs水分散液进行充分混合,形成均质混合液; 向混合液中加入浓度为10mmol/L硝酸盐铁水溶液1~5mL,然后加入1~2mL浓度为5~10U/mL乳酸氧化酶LOD溶液,充分搅拌混合均匀,形成混合溶液体系;向该混合溶液体系中加入乳酸LA,其中LA浓度调整为0.1μmol/L至20mmol/L,测量“混合溶液体系+乳酸”的荧光发射光谱,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系,构建用于乳酸定量检测的新型比率荧光纳米探针;该探针对LA浓度的线性检测范围为0.1μmol/L至20mmol/L,检测限为0.05~0.5μmol/L。
本发明的效果是公开了一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法。水热制备硫量子点SQDs;SQDs与2-甲基咪唑及硝酸锌共混,一锅合成硫量子点内包覆金属有机骨架复合物SQDs/MOF;水相制备牛血清白蛋白稳定金纳米簇BSA/AuNCs;配制SQDs/MOF、BSA/AuNCs、LOD和Fe 2+混合溶液体系;加入乳酸LA,乳酸氧化酶LOD催化氧化LA生成丙酮酸和过氧化氢H 2O 2,H 2O 2催化氧化Fe 2+成Fe 3+;Fe 3+外层电子结构为3d 54s 0,5个d轨道是半填充的,导致较高电荷密度和较强吸电子能力;当Fe 3+与BSA/AuNCs共存时,Fe 3+快速吸附在BSA/AuNCs表面,发生非辐射电子转移,电子从BSA/AuNCs激发态到Fe 3+出现的d轨道,故Fe 3+引发的电子转移引起了BSA/AuNCs荧光猝灭(响应信号);AuNCs表面巯基丙酸的功能基团与Fe 3+结合,形成有效的结合位点,而Fe 3+与BSA之间仅仅存在较弱的配位结合作用;SQDs包覆在MOF结构中,其荧光几乎不受周围物质的影响(参比信号);拟合AuNCs与SQDs荧光发射峰强度比率I AuNCs/I SQDs与LA浓度对数之间的线性关系,可构建新型比率荧光纳米探针,用于生物流体样品中乳酸的高灵敏和选择性定量检测。
附图说明
图1.基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法及其定量检测乳酸的原理示意图;
图2.在乳酸LA不同存在浓度下,测量“混合溶液体系+乳酸”荧光发射光谱,拟合AuNCs与SQDs荧光发射峰强度比率I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系;
具体实施方式
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法及其定量检测乳酸的原理示意图如图1所示,具体制备步骤如下:
硫量子点SQDs的制备:称取1g升华硫,2mL聚乙二醇PEG400和3g氢氧化钠,在磁力搅拌下分别加入50mL二次蒸馏水中,形成均质混合溶液;转入含100mL聚四氟乙烯内衬的微型高压反应釜中,在70℃下搅拌反应6h;反应结束后取2mL产物溶液,向其中加入2mL质量浓度为7wt%的过氧化氢水溶液,充分搅拌以混合均匀,制得SQDs水分散液备用;
硫量子点内包覆的金属有机骨架复合物SQDs/MOF的制备:将4mL SQDs水分散加入20mL的2-甲基咪唑的乙醇溶液中,磁力搅拌10min以形成均质混合液;加入15mL硝酸锌水溶液,磁力搅拌30min,制得含有沉淀物的混合液;在3000rpm转速下离心20min,沉淀物用乙醇和二次蒸馏水交替洗涤两次,经冷冻干燥得到干燥产物SQDs/MOF,在室温避光处保存备用;
牛血清白蛋白稳定的金纳米簇BSA/AuNCs的制备:配制40mg/mL BSA水溶液,5mmol/L氯金酸水溶液,0.5mol/L氢氧化钠水溶液和2mol/L巯基丙酸水溶液;在磁力搅拌下,向5mL BSA水溶液中依次加入5mL氯金酸水溶液和0.5mL氢氧化钠水溶液,形成均质混合液;再加入0.5mL巯基丙酸水溶液,混合液在4℃下孵育1h;反应结束后产物溶液转入5000kDa截留分子量的透析袋中,透析处理24h,除去未反应的原料和小分子杂质;透析后的溶液经旋转蒸发除去大部分溶剂,然后冷冻干燥处理,得到干燥产物BSA/AuNCs;
分别配制浓度为5mg/mL SQDs/MOF水分散液,浓度为5mg/mL BSA/AuNCs水分散液;在磁力搅拌下,将5mL SQDs/MOF水分散液与5mL BSA/AuNCs水分散液进行充分混合,形成均质混合液;向混合液中加入浓度为10mmol/L硝酸盐铁水溶液1mL,然后加入1mL浓度为5U/mL乳酸氧化酶LOD溶液,充分搅拌混合均匀,形成混合溶液体系;向该混合溶液体系中加入乳酸LA,其中LA浓度调整为1μmol/L至10mmol/L,测量“混合溶液体系+乳酸”荧光发射光谱,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系(如图2所示),构建用于乳酸定量检测的新型比率荧光纳米探针;该探针对LA浓度的线性检测范围为1μmol/L至10mmol/L,检测限为0.4μmol/L。
实施例2
本实施例涉及的一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法及于定量检测乳酸的原理示意图如图1所示,其中的SQDs、SQDs/MOF和BSA/AuNCs的制备步骤同实施例1,其它具体制备步骤如下:
分别配制浓度为6mg/mL SQDs/MOF水分散液,浓度为6mg/mL BSA/AuNCs水分散液;在磁力搅拌下,将6mL SQDs/MOF水分散液与6mL BSA/AuNCs水分散液进行充分混合,形成均质混合液;向混合液中加入浓度为10mmol/L硝酸盐铁水溶液2mL,然后加入1.2mL浓度为6U/mL乳酸氧化酶 LOD溶液,充分搅拌混合均匀,形成混合溶液体系;向该混合溶液体系中加入乳酸LA,其中LA浓度调整为0.1μmol/L至1mmol/L,测量“混合溶液体系+乳酸”荧光发射光谱,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系,构建用于乳酸定量检测的新型比率荧光纳米探针;该探针对LA浓度的线性检测范围为0.1μmol/L至1mmol/L,检测限为0.08μmol/L。
实施例3
本实施例涉及的一种基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法及于定量检测乳酸的原理示意图如图1所示,其中的SQDs、SQDs/MOF和BSA/AuNCs的制备步骤同实施例1,其它具体制备步骤如下:
分别配制浓度为8mg/mL SQDs/MOF水分散液,浓度为8mg/mL BSA/AuNCs水分散液;在磁力搅拌下,将8mL SQDs/MOF水分散液与8mL BSA/AuNCs水分散液进行充分混合,形成均质混合液;向混合液中加入浓度为10mmol/L硝酸盐铁水溶液4mL,然后加入1.5mL浓度为8U/mL乳酸氧化酶LOD溶液,充分搅拌混合均匀,形成混合溶液体系;向该混合溶液体系中加入乳酸LA,其中LA浓度调整为1μmol/L至15mmol/L,测量“混合溶液体系+乳酸”荧光发射光谱,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系,构建用于乳酸定量检测的新型比率荧光纳米探针;该探针对LA浓度的线性检测范围为1μmol/L至15mmol/L,检测限为0.5μmol/L。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法,其制备方法包括以下步骤:
    (1)硫量子点SQDs的制备:称取1g升华硫,2mL聚乙二醇PEG400和3g氢氧化钠,在磁力搅拌下分别加入50mL二次蒸馏水中,形成均质混合溶液;转入含100mL聚四氟乙烯内衬的微型高压反应釜中,在70℃下搅拌反应6h;反应结束后取2mL产物溶液,向其中加入2mL质量浓度为7wt%的过氧化氢水溶液,充分搅拌以混合均匀,制得SQDs水分散液备用;
    (2)硫量子点内包覆的金属有机骨架复合物SQDs/MOF的制备:将4mL SQDs水分散加入20mL的2-甲基咪唑的乙醇溶液中,磁力搅拌10min以形成均质混合液;加入15mL硝酸锌水溶液,磁力搅拌30min,制得含有沉淀物的混合液;在3000rpm转速下离心20min,沉淀物用乙醇和二次蒸馏水交替洗涤两次,经冷冻干燥得到干燥产物SQDs/MOF,在室温避光处保存备用;
    (3)牛血清白蛋白稳定的金纳米簇BSA/AuNCs的制备:配制40mg/mL BSA水溶液,5mmol/L氯金酸水溶液,0.5mol/L氢氧化钠水溶液和2mol/L巯基丙酸水溶液;在磁力搅拌下,向5mL BSA水溶液中依次加入5mL氯金酸水溶液和0.5mL氢氧化钠水溶液,形成均质混合液;再加入0.5mL巯基丙酸水溶液,混合液在4℃下孵育1h;反应结束后产物溶液转入5000kDa截留分子量的透析袋中,透析处理24h,除去未反应的原料和小分子杂质;透析后的溶液经旋转蒸发除去大部分溶剂,然后冷冻干燥处理,得到干燥产物BSA/AuNCs;
    (4)分别配制浓度为5~10mg/mL的SQDs/MOF水分散液,浓度为5~10mg/mL的BSA/AuNCs水分散液;在磁力搅拌下,将5~10mL的SQDs/MOF水分散液与5~10mL的BSA/AuNCs水分散液进行充分混合,形成均质混合液;向混合液中加入浓度为10mmol/L硝酸盐铁水溶液1~5mL,然后加入1~2mL浓度为5~10U/mL乳酸氧化酶LOD溶液,充分搅拌混合均匀,形成混合溶液体系;向该混合溶液体系中加入乳酸LA,其中LA浓度调整为0.1μmol/L至20mmol/L,测量“混合溶液体系+乳酸”的荧光发射光谱,通过拟合AuNCs与SQDs的荧光发射峰强度比率即I AuNCs/I SQDs与LA浓度对数LgC LA之间的线性关系,构建用于乳酸定量检测的新型比率荧光纳米探针;该探针对LA浓度的线性检测范围为0.1μmol/L至20mmol/L,检测限为0.05~0.5μmol/L。
PCT/CN2020/100532 2020-05-07 2020-07-07 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 WO2021223317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010377074.2 2020-05-07
CN202010377074.2A CN111458316B (zh) 2020-05-07 2020-05-07 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法

Publications (1)

Publication Number Publication Date
WO2021223317A1 true WO2021223317A1 (zh) 2021-11-11

Family

ID=71682983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100532 WO2021223317A1 (zh) 2020-05-07 2020-07-07 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法

Country Status (2)

Country Link
CN (1) CN111458316B (zh)
WO (1) WO2021223317A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432459A (zh) * 2022-02-15 2022-05-06 吉林大学 一种过氧化物纳米酶-葡萄糖氧化酶双酶复合物、制备方法及其应用
CN114702950A (zh) * 2022-04-21 2022-07-05 重庆师范大学 一种荧光金纳米簇材料的制备方法及其产品和应用
CN115078612A (zh) * 2022-06-01 2022-09-20 长沙理工大学 一种基于改性Cr-MOF检测化学品的分析方法
CN116120921A (zh) * 2023-01-06 2023-05-16 南方科技大学 一种基于发光金纳米簇的荧光-比色双模态氯离子探针及其制备方法和应用
CN116179193A (zh) * 2022-12-15 2023-05-30 大理大学 一种基于硫量子点的荧光探针及其应用
CN116948634A (zh) * 2023-07-25 2023-10-27 曲阜师范大学 温度响应型发光mof及其制备方法和应用
CN117399635A (zh) * 2023-12-15 2024-01-16 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用
CN117535045A (zh) * 2023-07-12 2024-02-09 中国热带农业科学院分析测试中心 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557357B (zh) * 2020-11-24 2023-12-08 青岛大学 树叶状金属有机骨架纳米人工酶杂化物及其串联催化型荧光探针的制备方法
CN112390963B (zh) * 2020-11-26 2021-11-19 北京大学 一种发光金属有机框架材料的制备方法及其应用
CN113072924B (zh) * 2021-04-12 2023-08-22 青岛大学 基于mof模板化硫量子点阵列检测外泌体的免标记荧光适体探针的制备方法
CN113310960B (zh) * 2021-05-26 2022-06-28 四川中科微纳科技有限公司 硫量子点的合成方法及基于硫量子点测定Fe2+和H2O2的方法
CN114487061A (zh) * 2022-01-05 2022-05-13 军事科学院军事医学研究院环境医学与作业医学研究所 一种基于金属有机框架杂化纳米片的电化学生物传感器及其用于检测汗液中乳酸含量的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300458A (zh) * 2018-04-11 2018-07-20 南京邮电大学 一种金属卟啉有机框架量子点及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518895B (zh) * 2016-09-12 2017-12-19 青岛大学 基于同时封装靶物质并合成具有氧化还原活性MOFs的制法
CN110938420A (zh) * 2018-09-21 2020-03-31 北京大学 一种还原响应性荧光探针的结构、制备及应用
CN110376176A (zh) * 2019-08-27 2019-10-25 青岛大学 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300458A (zh) * 2018-04-11 2018-07-20 南京邮电大学 一种金属卟啉有机框架量子点及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG HENGGANG, WANG ZHENGUANG, XIONG YUAN, KERSHAW STEPHEN V, LI TIANZI, WANG YUE, ZHAI YONGQING, ROGACH ANDREY L: "Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 58, no. 21, 20 May 2019 (2019-05-20), pages 7040 - 7044, XP055864699, ISSN: 1433-7851, DOI: 10.1002/anie.201902344 *
WANG, LIJUN: "Preparation of Complex of Graphene Quantum Dots and Metal Organic Frames and Its Application in Optical Field", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE &TECHNOLOGY II, no. 1, 15 January 2019 (2019-01-15), CN, XP009531573, ISSN: 1674-0246 *
ZHAO, HAILING: "Research on Preparation of Graphene Quantum Dots and Applications Thereof", MASTER THESIS, no. 1, 15 January 2020 (2020-01-15), CN, pages 1 - 110, XP009532125, ISSN: 1674-0246 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432459A (zh) * 2022-02-15 2022-05-06 吉林大学 一种过氧化物纳米酶-葡萄糖氧化酶双酶复合物、制备方法及其应用
CN114432459B (zh) * 2022-02-15 2024-02-23 吉林大学 一种过氧化物纳米酶-葡萄糖氧化酶双酶复合物、制备方法及其应用
CN114702950A (zh) * 2022-04-21 2022-07-05 重庆师范大学 一种荧光金纳米簇材料的制备方法及其产品和应用
CN115078612A (zh) * 2022-06-01 2022-09-20 长沙理工大学 一种基于改性Cr-MOF检测化学品的分析方法
CN116179193A (zh) * 2022-12-15 2023-05-30 大理大学 一种基于硫量子点的荧光探针及其应用
CN116120921A (zh) * 2023-01-06 2023-05-16 南方科技大学 一种基于发光金纳米簇的荧光-比色双模态氯离子探针及其制备方法和应用
CN116120921B (zh) * 2023-01-06 2024-01-30 南方科技大学 一种基于发光金纳米簇的荧光-比色双模态氯离子探针及其制备方法和应用
CN117535045A (zh) * 2023-07-12 2024-02-09 中国热带农业科学院分析测试中心 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法
CN117535045B (zh) * 2023-07-12 2024-05-31 中国热带农业科学院分析测试中心 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法
CN116948634A (zh) * 2023-07-25 2023-10-27 曲阜师范大学 温度响应型发光mof及其制备方法和应用
CN117399635A (zh) * 2023-12-15 2024-01-16 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用
CN117399635B (zh) * 2023-12-15 2024-03-29 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用

Also Published As

Publication number Publication date
CN111458316A (zh) 2020-07-28
CN111458316B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021223317A1 (zh) 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法
Liu et al. Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications
CN109266332B (zh) 一种用于定量检测血液中AChE和BChE的比率型荧光探针的制备方法
CN110220888A (zh) 一种三联吡啶钌功能化mof检测降钙素原的电化学发光免疫传感器的制备方法
Ma et al. Copper (II) ions enhance the peroxidase-like activity and stability of keratin-capped gold nanoclusters for the colorimetric detection of glucose
Ge et al. Human serum albumin templated MnO 2 nanosheets as an efficient biomimetic oxidase for biomolecule sensing
CN103712983A (zh) 基于磁性石墨烯仿酶性质的乙酰胆碱可视化检测方法
CN112763484B (zh) 一种基于比色生物传感器检测谷胱甘肽和/或过氧化氢的方法
Liu et al. A polymyxin B–silver nanoparticle colloidal system and the application of lipopolysaccharide analysis
Wu et al. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight
Ma et al. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes
Shin et al. Enzyme-free colorimetric detection of glucose using a composite entrapping gold and magnetic nanoparticles within an agarose gel matrix
Wang et al. Fluorescent/electrochemical dual-signal response biosensing strategy mediated by DNAzyme-ferrocene-triggered click chemistry for simultaneous rapid screening and quantitative detection of Vibrio parahaemolyticus
Finny et al. Cerium oxide nanoparticles for chemical and biological sensors: properties, sensing designs, and applications
Song et al. Oxidation activity modulation of a single atom Ce-NC nanozyme enabling a time-resolved sensor to detect Fe 3+ and Cr 6+
CN113912134B (zh) 一种手性氢氧化钴纳米粒子及其制备方法与应用
Wang et al. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants
Jiang et al. A low-background aptasensor based on enzyme-linked multifunctional carbon nanosheets for the detection of Salmonella
Niu et al. Pyrophosphate-Mediated On–Off–On Oxidase-Like Activity Switching of Nanosized MnFe 2 O 4 for Alkaline Phosphatase Sensing
Fatoni et al. Glucose biosensor based on activated carbon–NiFe2O4 nanoparticles composite modified carbon paste electrode
CN116003818A (zh) 一种制备功能化多金属有机骨架纳米酶的方法及其过氧化物酶活性的应用
CN106872430B (zh) 半胱氨酸荧光分析方法
CN114609068A (zh) 一种基于比色/电化学双模传感器高灵敏检测过氧化氢的方法
CN112538518A (zh) 一种基于纳米酶检测组蛋白乙酰转移酶的方法
CN109632732B (zh) 一种近红外荧光增敏法测定葡萄糖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934475

Country of ref document: EP

Kind code of ref document: A1