CN110376176A - 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 - Google Patents
双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 Download PDFInfo
- Publication number
- CN110376176A CN110376176A CN201910795692.6A CN201910795692A CN110376176A CN 110376176 A CN110376176 A CN 110376176A CN 201910795692 A CN201910795692 A CN 201910795692A CN 110376176 A CN110376176 A CN 110376176A
- Authority
- CN
- China
- Prior art keywords
- bpqds
- agncs
- mof
- scutellaria glycosides
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/02—Preparation of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/58—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及基于银纳米簇AgNCs/黑磷量子点BPQDs双掺杂金属有机骨架MOF复合物的比率荧光黄岑苷探针的制备方法。将蓝荧光BPQDs与MOF前驱体一起反应制备BPQDs/MOF复合物,加入红荧光AgNCs继续反应,将BPQDs包封在MOF中,AgNCs吸附在MOF孔隙中。在含有过氧化氢酶的AgNCs/BPQDs/MOF复合物水分散液中加入黄岑苷,黄岑苷在过氧化氢酶的作用下生成H2O2,H2O2引起AgNCs荧光淬灭,对包封在MOF中BPQDs的荧光影响甚微。拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系,构建比率荧光探针,用于黄岑苷的高效检测。
Description
技术领域:
本发明属于金属有机骨架复合材料和比率荧光探针的制备技术领域,具体涉及一种基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备方法,其制备的探针可用于黄岑苷的高灵敏和选择性定量检测。
背景技术:
黄芩苷是从植物黄芩的干燥根茎中提取分离出来的一种黄酮类化合物。黄岑苷具有显著的生物活性,具有抑菌、抗炎、降胆固醇、抗血栓形成、缓解哮喘、泻火解毒、止血、解痉等作用。黄岑苷是一种哺乳动物肝脏涎酶的特异性抑制剂,具有调节某些疾病的作用,也具有较强的抗癌反应生理效能。黄岑苷对人体也存在一定的副作用,主要体现在苦寒伤胃,脾胃虚寒者不宜食用。黄岑苷毒性很低,一般剂量下不会对人体有明显的不良反应,对于特定病人可能出现胃部不适、腹泻等反应,过敏体质者可能出现大水疱样药疹。在黄岑苷注射类制剂大剂量使用时,人体会出现低热、肌肉酸痛、白细胞下降等现象。药物中非法添加过量的黄岑苷成分,会对人体造成损伤,其对进行精准检测是十分必要的。
检测黄岑苷的分析方法主要包括电化学法、色谱法等。经查阅文献后发现,Sheng等制备了钴纳米颗粒掺杂的氨基化石墨烯改性的电极,用于黄岑苷的电化学检测(KaiSheng,Lu Wang,Huichao Li,Lina Zou,Baoxian Ye.Green synthesized Conanoparticles doped amino-graphene modified electrode and its applicationtowards determination ofbaicalin.Talanta,2017,164,249–256);Wang等采用液相色谱-质谱/质谱联用技术测定大鼠血浆中的黄岑苷(YingWang,Yifan Zhang,Juan Xiao,Ranchi Xu,Qiangli Wang,Xinhong Wang.Simultaneous determination of baicalin,baicalein,wogonoside,wogonin,scutellarin,berberine,coptisine,ginsenosideRb1and ginsenoside Re of Banxia xiexin decoction in rat plasma by LC-MS/MSand its application to a pharmacokinetic study.Biomedical Chromatography,2018,32,e4083)。截至目前,尚未检索到有关黄岑苷定量检测的国内外专利报道。
当前检测黄岑苷的分析方法主要是色谱法,但该方法普遍存在耗时较长、操作复杂、条件苛刻、成本较高等问题。相比而言,化学和生物传感器检测方法如电化学传感器,具有操作简便、灵敏度高、选择性好等优异性能。当前用于检测黄岑苷主要是电化学传感器方法,其中对黄岑苷的检测依赖单一的电化学信号输出。通常,单一信号强度易受背景、试剂、系统和环境条件等因素的干扰,引起测定结果的波动。然而,采用双重信号的比值处理来获得信号强度的比率值,可具备自校准功能,有效消除了自体和背景信号的干扰,进而提高检测结果的准确性和可靠性。
基于此,本发明报道了一种基于银纳米簇AgNCs/黑磷量子点BPQDs双掺杂金属有机骨架MOF复合物AgNCs/BPQDs/MOF的比率荧光探针用于检测黄岑苷。在含有过氧化氢酶的该复合物水分散体系,加入黄岑苷,黄岑苷在过氧化氢酶的催化作用下产生过氧化氢,导致复合物中AgNCs的荧光淬灭,但此过程对BPQDs的荧光影响甚微,由此,以BPQDs的荧光为参比信号,AgNCs的荧光为响应信号,拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系,构建比率荧光黄岑苷探针。迄今为止,尚未有银纳米簇/黑磷量子点双掺杂的金属有机骨架复合物,以及采用比率荧光探针来检测黄岑苷的国内外文献和专利的报道。
发明内容:
本发明的目的在于克服上述现有技术存在的不足,设计一种方法简便、成本低、高灵敏和高选择性的一种基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备方法。
为了实现上述目的,本发明涉及的一种基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备工艺包括以下步骤:
1.双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法,其特征在于,该方法具体包括以下步骤:
(1)黑磷量子点BPQDs的制备:称取10mg黑磷晶体加入30mL氮甲基吡咯烷酮中,超声处理30min形成分散液,将此分散液转入微型高压反应釜中,在氮气保护下加热至140℃,连续搅拌反应12h。反应混合物在3500rpm转速下离心15min,去除尺寸较大的产物,然后在13000rpm转速下离心15min,获得沉淀物。将此沉淀物用乙醇和蒸馏水洗涤三次,真空干燥后得到BPQDs,在避光和氮气下保存备用,BPQDs的平均尺寸为1~5nm。
(2)银纳米簇AgNCs的制备:称取40mg硫辛酸粉末加入20mL蒸馏水中,搅拌均匀后加入新鲜配制浓度为2mol L-1的硼氢化钠0.1mL,快速搅拌30min,形成均质混合液,在快速搅拌下向此混合液中加入浓度为0.05mol L-1的硝酸银0.4mL,然后逐滴加入浓度为2mol L-1的硼氢化钠0.3mL,保持快速搅拌反应90min,制得产物AgNCs分散液,在避光和4℃下保存备用,AgNCs的平均尺寸为10~20nm。
(3)银纳米簇/黑磷量子点/金属有机骨架AgNCs/BPQDs/MOF复合物的制备:称取2mg BPQDs加入10mL 2-甲基咪唑的乙醇溶液中,搅拌10min形成混合液,加入10mL六水合硝酸锌水溶液,搅拌30min制得棕色沉淀物,用乙醇和蒸馏水洗涤三次,在3500rpm转速下离心15min,配制BPQDs/MOF复合物的水分散液。向此分散液中逐滴加入5mLAgNCs分散液,搅拌反应2h,产物溶液经离心得到沉淀物,沉淀物经洗涤、干燥后制得AgNCs/BPQDs/MOF复合物,将其在避光、氮气保护和4℃下保存备用。其中2-甲基咪唑、六水合硝酸锌和AgNCs的质量浓度分别为1~5g L-1、1~10g L-1和1~10mg L-1。
(4)向AgNCs/BPQDs/MOF复合物水分散液中加入过氧化氢酶,搅拌均匀,用磷酸盐水缓冲液调节pH为7.4,然后加入黄岑苷,搅拌均匀形成均质混合液,在避光处稳定5min后,测定不同黄岑苷浓度下均质混合液的荧光发射光谱,拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系,构建比率荧光探针,用于黄岑苷的定量检测。其中AgNCs/BPQDs/MOF复合物、过氧化氢酶和黄岑苷的浓度分别为1~10mg mL-1、5~10mU L-1和0.01~100μg mL-1,黄岑苷浓度的线性检测范围为0.01~100μg mL-1,检测限为1~10ng mL-1。
本发明的效果是:报道了一种基于银纳米簇/黑磷量子点双掺杂的金属有机骨架AgNCs/BPQDs/MOF复合物的比率荧光探针,用于定量检测黄岑苷。先将蓝荧光的BPQDs与MOF前驱体一起反应制备BPQDs/MOF复合物,再加入红荧光的AgNCs继续反应,逐步将BPQDs和AgNCs嵌入MOF结构中。BPQDs被包封在MOF中,而AgNCs吸附在MOF孔隙中。在添加了过氧化氢酶的AgNCs/BPQDs/MOF复合物水分散液中加入黄岑苷,黄岑苷在过氧化氢酶的催化作用下生成过氧化氢,过氧化氢的氧化作用导致AgNCs荧光淬灭,BPQDs被包封在MOF中,对其荧光影响甚微。以BPQDs的荧光为参比,AgNCs的荧光为响应信号,拟合荧光发射峰强度的比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系,构建比率荧光黄岑苷探针。与现有技术相比,本发明方法操作简便,比率荧光信号抗干扰能力强,灵敏度高和选择性好,可作为一种新颖的比率荧光探针用于黄岑苷的高灵敏和选择性检测。
附图说明:
图1为基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光探针的制备与黄岑苷检测的原理示意图;
图2(a)为测定不同黄岑苷浓度下该比率荧光探针体系的荧光发射光谱;
图2(b)为不同黄岑苷浓度对应荧光发射峰强度比率IBPQDs/IAgNCs即I530/I630,拟合不同比率值与黄岑苷浓度之间的线性关系。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例涉及的基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备方法,其制备工艺和比率荧光检测黄岑苷的原理示意图如图1所示,具体工艺步骤如下:
BPQDs的制备:称取10mg黑磷晶体加入30mL氮甲基吡咯烷酮中,超声处理30min形成分散液,将此分散液转入微型高压反应釜中,在氮气保护下加热至140℃,连续搅拌反应12h。反应混合物在3500rpm转速下离心15min,去除尺寸较大的产物,然后在13000rpm转速下离心15min,获得沉淀物。将此沉淀物用乙醇和蒸馏水洗涤三次,真空干燥后得到BPQDs,在避光和氮气下保存备用,BPQDs的平均尺寸为2nm。
AgNCs的制备:称取40mg硫辛酸粉末加入20mL蒸馏水中,搅拌均匀后加入新鲜配制浓度为2mol L-1的硼氢化钠0.1mL,快速搅拌30min,形成均质混合液,在快速搅拌下向此混合液中加入浓度为0.05mol L-1的硝酸银0.4mL,然后逐滴加入浓度为2mol L-1的硼氢化钠0.3mL,保持快速搅拌反应90min,制得产物AgNCs分散液,在避光和4℃下保存备用,AgNCs的平均尺寸为10nm。
AgNCs/BPQDs/MOF复合物的制备:称取2mg BPQDs加入10mL浓度为1g L-1的2-甲基咪唑乙醇溶液中,搅拌10min形成混合液,加入10mL浓度为2g L-1的六水合硝酸锌水溶液,搅拌30min制得棕色沉淀物,用乙醇和蒸馏水洗涤三次,在3500rpm转速下离心15min,配制BPQDs/MOF复合物的水分散液。向此分散液中逐滴加入5mL浓度为2mg L-1的水AgNCs分散液,搅拌反应2h,产物溶液经离心得到沉淀物,沉淀物经洗涤、干燥后制得AgNCs/BPQDs/MOF复合物,将其在避光、氮气保护和4℃下保存备用。
向AgNCs/BPQDs/MOF复合物水分散液中加入过氧化氢酶,搅拌均匀,用磷酸盐水缓冲液调节pH为7.4,然后加入黄岑苷,搅拌均匀形成均质混合液,在避光处稳定5min后,测定不同黄岑苷浓度下均质混合液的荧光发射光谱(如图2(a)所示),拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系(如图2(b)所示),构建比率荧光探针,用于黄岑苷的定量检测。其中AgNCs/BPQDs/MOF复合物、过氧化氢酶和黄岑苷的浓度分别为1mg mL-1、5mU L-1和0.1~50μg mL-1,黄岑苷浓度的线性检测范围为0.1~50μg mL-1,检测限为4ngmL-1。
实施例2:本实施例涉及的基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备工艺和比率荧光检测黄岑苷的原理示意图,BPQDs和AgNCs制备的工艺步骤同实施例1,其中BPQDs平均尺寸为3nm,AgNCs平均尺寸为12nm。其它具体工艺步骤如下:
AgNCs/BPQDs/MOF复合物的制备:称取2mg BPQDs加入10mL浓度为2g L-1的2-甲基咪唑乙醇溶液中,搅拌10min形成混合液,加入10mL浓度为3g L-1的六水合硝酸锌水溶液,搅拌30min制得棕色沉淀物,用乙醇和蒸馏水洗涤三次,在3500rpm转速下离心15min,配制BPQDs/MOF复合物的水分散液。向此分散液中逐滴加入5mL浓度为3mg L-1的水AgNCs分散液,搅拌反应2h,产物溶液经离心得到沉淀物,沉淀物经洗涤、干燥后制得AgNCs/BPQDs/MOF复合物,将其在避光、氮气保护和4℃下保存备用。
向AgNCs/BPQDs/MOF复合物水分散液中加入过氧化氢酶,搅拌均匀,用磷酸盐水缓冲液调节pH为7.4,然后加入黄岑苷,搅拌均匀形成均质混合液,在避光处稳定5min后,测定不同黄岑苷浓度下均质混合液的荧光发射光谱(如图2(a)所示),拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系(如图2(b)所示),构建比率荧光探针,用于黄岑苷的定量检测。其中AgNCs/BPQDs/MOF复合物、过氧化氢酶和黄岑苷的浓度分别为2mg mL-1、7mU L-1和0.1~100μg mL-1,黄岑苷浓度的线性检测范围为0.1~100μg mL-1,检测限为5ngmL-1。
实施例3:本实施例涉及的基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备工艺和比率荧光检测黄岑苷的原理示意图,BPQDs和AgNCs制备的工艺步骤同实施例1,其中BPQDs平均尺寸为5nm,AgNCs平均尺寸为15nm。其它具体工艺步骤如下:
AgNCs/BPQDs/MOF复合物的制备:称取2mg BPQDs加入10mL浓度为4g L-1的2-甲基咪唑乙醇溶液中,搅拌10min形成混合液,加入10mL浓度为5g L-1的六水合硝酸锌水溶液,搅拌30min制得棕色沉淀物,用乙醇和蒸馏水洗涤三次,在3500rpm转速下离心15min,配制BPQDs/MOF复合物的水分散液。向此分散液中逐滴加入5mL浓度为8mg L-1的水AgNCs分散液,搅拌反应2h,产物溶液经离心得到沉淀物,沉淀物经洗涤、干燥后制得AgNCs/BPQDs/MOF复合物,将其在避光、氮气保护和4℃下保存备用。
向AgNCs/BPQDs/MOF复合物水分散液中加入过氧化氢酶,搅拌均匀,用磷酸盐水缓冲液调节pH为7.4,然后加入黄岑苷,搅拌均匀形成均质混合液,在避光处稳定5min后,测定不同黄岑苷浓度下均质混合液的荧光发射光谱(如图2(a)所示),拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系(如图2(b)所示),构建比率荧光探针,用于黄岑苷的定量检测。其中AgNCs/BPQDs/MOF复合物、过氧化氢酶和黄岑苷的浓度分别为5mg mL-1、10mU L-1和0.01~50μg mL-1,黄岑苷浓度的线性检测范围为0.01~50μg mL-1,检测限为2ngmL-1。
Claims (1)
1.一种基于银纳米簇/黑磷量子点双掺杂金属有机骨架复合物的比率荧光黄岑苷探针的制备方法,其特征在于,该方法具体包括以下步骤:
(1)黑磷量子点BPQDs的制备:称取10mg黑磷晶体加入30mL氮甲基吡咯烷酮中,超声处理30min形成分散液,将此分散液转入微型高压反应釜中,在氮气保护下加热至140℃,连续搅拌反应12h,反应混合物在3500rpm转速下离心15min,去除尺寸较大的产物,然后在13000rpm转速下离心15min,获得沉淀物,将此沉淀物用乙醇和蒸馏水洗涤三次,真空干燥后得到BPQDs,在避光和氮气下保存备用,BPQDs的平均尺寸为1~5nm;
(2)银纳米簇AgNCs的制备:称取40mg硫辛酸粉末加入20mL蒸馏水中,搅拌均匀后加入新鲜配制浓度为2mol L-1的硼氢化钠0.1mL,快速搅拌30min,形成均质混合液,在快速搅拌下向此混合液中加入浓度为0.05mol L-1的硝酸银0.4mL,然后逐滴加入浓度为2mol L-1的硼氢化钠0.3mL,保持快速搅拌反应90min,制得产物AgNCs分散液,在避光和4℃下保存备用,AgNCs的平均尺寸为10~20nm;
(3)银纳米簇/黑磷量子点/金属有机骨架AgNCs/BPQDs/MOF复合物的制备:称取2mgBPQDs加入10mL 2-甲基咪唑的乙醇溶液中,搅拌10min形成混合液,加入10mL六水合硝酸锌水溶液,搅拌30min制得棕色沉淀物,用乙醇和蒸馏水洗涤三次,在3500rpm转速下离心15min,配制BPQDs/MOF复合物的水分散液,向此分散液中逐滴加入5mL AgNCs分散液,搅拌反应2h,产物溶液经离心得到沉淀物,沉淀物经洗涤、干燥后制得AgNCs/BPQDs/MOF复合物,将其在避光、氮气保护和4℃下保存备用,其中2-甲基咪唑、六水合硝酸锌和AgNCs的质量浓度分别为1~5g L-1、1~10g L-1和1~10mg L-1;
(4)向AgNCs/BPQDs/MOF复合物水分散液中加入过氧化氢酶,搅拌均匀,用磷酸盐水缓冲液调节pH为7.4,然后加入黄岑苷,搅拌均匀形成均质混合液,在避光处稳定5min后,测定不同黄岑苷浓度下均质混合液的荧光发射光谱,拟合荧光发射峰强度比率IBPQDs/IAgNCs与黄岑苷浓度之间的线性关系,构建比率荧光探针,用于黄岑苷的定量检测,其中AgNCs/BPQDs/MOF复合物、过氧化氢酶和黄岑苷的浓度分别为1~10mg mL-1、5~10mU L-1和0.01~100μgmL-1,黄岑苷浓度的线性检测范围为0.01~100μg mL-1,检测限为1~10ng mL-1。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910795692.6A CN110376176A (zh) | 2019-08-27 | 2019-08-27 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
PCT/CN2019/103465 WO2021035654A1 (zh) | 2019-08-27 | 2019-08-30 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
CN201911353040.3A CN110849861B (zh) | 2019-08-27 | 2019-12-25 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910795692.6A CN110376176A (zh) | 2019-08-27 | 2019-08-27 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110376176A true CN110376176A (zh) | 2019-10-25 |
Family
ID=68260877
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910795692.6A Pending CN110376176A (zh) | 2019-08-27 | 2019-08-27 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
CN201911353040.3A Active CN110849861B (zh) | 2019-08-27 | 2019-12-25 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911353040.3A Active CN110849861B (zh) | 2019-08-27 | 2019-12-25 | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN110376176A (zh) |
WO (1) | WO2021035654A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110835528A (zh) * | 2019-11-22 | 2020-02-25 | 南宁师范大学 | 复合荧光纳米探针的制备及其对过氧化氢的检测方法 |
CN110846026A (zh) * | 2019-12-02 | 2020-02-28 | 青岛大学 | 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 |
CN111458316A (zh) * | 2020-05-07 | 2020-07-28 | 青岛大学 | 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 |
CN111739998A (zh) * | 2020-07-03 | 2020-10-02 | 青岛科技大学 | 一种基于银团簇的高显色性白光led及其制备方法 |
CN114045172A (zh) * | 2021-09-15 | 2022-02-15 | 青海大学 | 一种新型亲水性黑磷量子点-沸石咪唑酯骨架荧光探针材料的制备方法 |
CN116445158A (zh) * | 2023-04-13 | 2023-07-18 | 中国科学院苏州生物医学工程技术研究所 | 一种葡萄糖探针及其制备方法和应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111808610A (zh) * | 2020-03-19 | 2020-10-23 | 广东两山科技有限公司 | 类氮化碳富磷量子点荧光探针及其制备方法和应用 |
CN113695585B (zh) * | 2021-08-23 | 2023-07-28 | 南通大学 | 一种酪蛋白保护的金银纳米簇的制备方法及其在金霉素检测中的应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497663A (zh) * | 2008-01-29 | 2009-08-05 | 北京中医药大学 | 用于检测和测定黄芩苷的抗体、方法和试剂盒 |
-
2019
- 2019-08-27 CN CN201910795692.6A patent/CN110376176A/zh active Pending
- 2019-08-30 WO PCT/CN2019/103465 patent/WO2021035654A1/zh active Application Filing
- 2019-12-25 CN CN201911353040.3A patent/CN110849861B/zh active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110835528A (zh) * | 2019-11-22 | 2020-02-25 | 南宁师范大学 | 复合荧光纳米探针的制备及其对过氧化氢的检测方法 |
CN110846026A (zh) * | 2019-12-02 | 2020-02-28 | 青岛大学 | 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 |
WO2021109381A1 (zh) * | 2019-12-02 | 2021-06-10 | 青岛大学 | 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 |
CN111458316A (zh) * | 2020-05-07 | 2020-07-28 | 青岛大学 | 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 |
CN111458316B (zh) * | 2020-05-07 | 2021-03-23 | 青岛大学 | 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法 |
CN111739998A (zh) * | 2020-07-03 | 2020-10-02 | 青岛科技大学 | 一种基于银团簇的高显色性白光led及其制备方法 |
CN114045172A (zh) * | 2021-09-15 | 2022-02-15 | 青海大学 | 一种新型亲水性黑磷量子点-沸石咪唑酯骨架荧光探针材料的制备方法 |
CN116445158A (zh) * | 2023-04-13 | 2023-07-18 | 中国科学院苏州生物医学工程技术研究所 | 一种葡萄糖探针及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110849861B (zh) | 2020-06-16 |
CN110849861A (zh) | 2020-02-28 |
WO2021035654A1 (zh) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110376176A (zh) | 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法 | |
Guo et al. | Turn-on fluorescence detection of β-glucuronidase using RhB@ MOF-5 as an ultrasensitive nanoprobe | |
Liao et al. | A novel acylhydrazone-based derivative as dual-mode chemosensor for Al3+, Zn2+ and Fe3+ and its applications in cell imaging | |
Li et al. | Sensitive detection of glucose based on gold nanoparticles assisted silver mirror reaction | |
An et al. | Multichannel ratiometric fluorescence sensor arrays for rapid visual monitoring of epinephrine, norepinephrine, and levodopa | |
Hu et al. | Highly chemoselective fluorescent probe for the detection of tyrosinase in living cells and zebrafish model | |
Sun et al. | The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo | |
Yu et al. | A selective dual-response biosensor for tyrosinase monophenolase activity based on lanthanide metal-organic frameworks assisted boric acid-levodopa polymer dots | |
Hao et al. | A highly selective and ratiometric fluorescent probe for cyanide by rationally altering the susceptible H-atom | |
Liu et al. | A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples | |
Dong et al. | Significant fluorescence enhancement by supramolecular complex formation between berberine chloride and cucurbit (n= 7) uril and its analytical application | |
Enbanathan et al. | A phenanthridine-based probe for selective detection of hypochlorite ions | |
Liu et al. | Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe | |
Arslan et al. | Fast responsive colorimetric and ratiometric fluorescence chemoprobe based on a 1, 8–naphthalimide for nM recognition of Cu2+ and its application in real food and drinkable water samples | |
Wang et al. | Imaging the dynamic processes of hydrogen sulfide using a rapid “turn-on” mitochondria-targeting fluorescent probe | |
Mostafa et al. | Lucigenin-pyrogallol chemiluminescence for the multiple detection of pyrogallol, cobalt ion, and tyrosinase | |
Yuan et al. | A ratiometric fluorescence probe for selective and sensitive detection of leucine aminopeptidase in lysosome | |
Li et al. | Ratiometric fluorescence and chromaticity dual-readout assay for β-glucuronidase activity based on luminescent lanthanide metal-organic framework | |
Xu et al. | A novel “turn-on” fluorescent probe based on naphthalimide for the tracking of lysosomal Cu 2+ in living cells | |
Meenu et al. | A protoberberine alkaloid based ratiometric pH-responsive probe for the detection of diabetic ketoacidosis | |
Wang et al. | Electron-deficient moiety regulated structure: an efficient strategy for the design of a highly sensitive cyanide “turn-on” fluorescent probe | |
Gu et al. | A novel near-infrared “turn-on” fluorescent probe for selective detection of Fe3+ and its application in vitro imaging | |
Kempahanumakkagaari et al. | A new rhodamine B based fluorometric chemodosimeter for Cu2+ ion in aqueous and cellular media | |
Jiang et al. | WO3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening | |
Li et al. | Aquamarine blue emitting silver nanoparticles as fluorescent sensor for melamine detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191025 |
|
WD01 | Invention patent application deemed withdrawn after publication |