WO2021109381A1 - 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 - Google Patents

基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 Download PDF

Info

Publication number
WO2021109381A1
WO2021109381A1 PCT/CN2020/083118 CN2020083118W WO2021109381A1 WO 2021109381 A1 WO2021109381 A1 WO 2021109381A1 CN 2020083118 W CN2020083118 W CN 2020083118W WO 2021109381 A1 WO2021109381 A1 WO 2021109381A1
Authority
WO
WIPO (PCT)
Prior art keywords
bpqds
nss
coooh
gsh
minutes
Prior art date
Application number
PCT/CN2020/083118
Other languages
English (en)
French (fr)
Inventor
桂日军
姜晓文
金辉
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Publication of WO2021109381A1 publication Critical patent/WO2021109381A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Definitions

  • Black phosphorous quantum dots are zero-dimensional black phosphorous nanomaterials prepared by liquid-phase ultrasonic stripping and solvent heat treatment of black phosphorous bulk.
  • BPQDs have a higher energy band gap and a smaller energy band gap compared to other dimensional black phosphorous materials. Larger size, larger specific surface area, more marginal active sites per unit mass, etc. As the number of layers decreases, the black phosphorous material becomes more unstable, and is easily oxidized and degraded in the air or water.
  • the preparation steps of Zn-BPQDs and CoOOH NSs involved in this example are the same as in Example 1.
  • the other specific steps are as follows: Preparation of Zn-BPQDs/CoOOH NSs composite: under magnetic stirring, prepare 0.5 mg/mL Zn-BPQDs water dispersion , Prepare 1mmol/L CoOOH NSs water dispersion, add 0.2mL Zn-BPQDs water dispersion dropwise to 5mL of CoOOH NSs water dispersion, and stir continuously for 20 minutes to form an aqueous dispersion of Zn-BPQDs/CoOOH NSs complex; Add the GSH aqueous solution to the aqueous dispersion of the complex and stir it evenly to form a homogeneous mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了基于锌掺杂黑磷量子点(Zn-BPQDs)的谷胱甘肽(GSH)荧光纳米探针的制备方法,采用超声和溶剂热法制备Zn-BPQDs,采用液相超声和溶液反应制备羟基氧化钴纳米片(CoOOH NSs),通过超声辅助在溶液中自组装制备Zn-BPQDs/CoOOH NSs复合物的水分散液。由于荧光共振能量转移(FRET)效应,Zn-BPQDs荧光被淬灭,谷胱甘肽GSH将CoOOH NSs还原成Co 2+,导致片层结构破坏,抑制了FRET效应,引起Zn-BPQDs荧光恢复。拟合混合分散液的荧光发射峰强度与GSH浓度之间的线性关系,构建荧光纳米探针,该探针可用于生物医学样品中GSH的高灵敏和选择性检测。

Description

基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 技术领域
本发明属于功能纳米材料和荧光纳米探针的制备技术领域,具体涉及一种基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针的制备方法,其制备的探针可用于生物医学样品中谷胱甘肽的高灵敏和选择性定量检测。
背景技术
谷胱甘肽(GSH)是一种含γ-酰胺键和巯基的三态,由谷氨酸、半胱氨酸及甘氨酸组成。GSH几乎存在于身体的每一个细胞中,它能帮助保持正常的免疫系统功能,具有抗氧化和整合解毒作用。半胱氨酸上的巯基为其活性基团,可与某些药物、毒素等结合,使其具有整合解毒作用。谷胱甘肽不仅可用于药物,也可作为功能性食品的基料,在延缓衰老、增强免疫力、抗肿瘤等功能性食品领域具有广阔的应用前景。GSH作为一种细胞内重要的调节代谢物质,参与体内三羧酸循环及糖代谢,并能激活多种酶,从而促进糖类、脂肪和蛋白质代谢。GSH分子含有活性巯基,可参与机体多种重要的生化反应,保护体内重要酶蛋白巯基不被氧化、灭活,保证能量代谢、细胞利用等。同时,其通过巯基与体内的自由基结合,可直接使自由基还原成酸性物质,加速自由基的排泄,并对抗自由基对重要脏器的损害。GSH含量的降低是一种潜在的凋亡早期激活信号,随后产生的氧自由基促使细胞发生凋亡。
黑磷量子点(BPQDs)是将黑磷块体通过液相超声剥离和溶剂热处理制备的零维黑磷纳米材料,相比其它维度的黑磷材料,BPQDs具有更高的能带隙,更小的尺寸,更大的比表面积,单位质量上更多边缘活性位点等。黑磷材料随着层数减少,变得越不稳定,在空气中或水中易被氧化而降解。锌原子的空轨道可与黑磷的孤对电子配位,配位后的磷原子其孤对电子被占据,不在与氧气反应,有效防止了黑磷的氧化和降解。本发明制备了锌离子掺杂的黑磷量子点(Zn-BPQDs),其具有优异的胶体和荧光稳定性,将其与羟基氧化钴纳米片(CoOOH NSs)复合,可发生荧光共振能量转移(FRET),引起Zn-BPQDs荧光淬灭。GSH可将CoOOH NSs还原成Co 2+,引起CoOOH NSs结构的破坏,进而使FRET被抑制,故Zn-BPQDs荧光恢复。在制备的Zn-BPQDs/CoOOH NSs复合物中,外加一定量GSH,拟合Zn-BPQDs荧光强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针。
经文献检索发现,Gu等制备BPQDs用于构建比率荧光探针检测汞离子(Wei Gu,Xueyu Pei,Yuxiao Cheng,Cuiling Zhang,Jidong Zhang,Yinghan Yan,Caiping Ding,Yuezhong Xian,Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect,ACS  Sensors,2017,2,576-582);Gu等制备荧光BPQDs用作免标记传感探针用于乙酰胆碱酯酶活性评估(Wei Gu,Yinghan Yan,Xueyu Pei,Cuiling Zhang,Caiping Ding,Yuezhong Xian,Fluorescent black phosphorus quantum dots as label-free sensingprobes for evaluation of acetyl cholinesterase activity,Sensors and Actuators B:Chemical,2017,250,601–607);李晓春等发明了“一种基于适体链-黑磷纳米片荧光能量共振转移的砷离子检测方法”(李晓春,李海琴,张校亮,于化忠.公开号:CN109239040A);李桢等发明了“基于黑磷的近红外二区荧光纳米探针及其制备和应用”(李桢,徐一帆,赵崇军.公开号:CN109913201A)。截止目前,尚未检索到基于锌掺杂黑磷量子点的荧光纳米探针及其谷胱甘肽检测的国内外文献和专利的报道。
发明内容
本发明的目在于克服上述现有技术存在的不足,设计一种方法简便、高灵敏和高选择性的一种基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法。
为了实现上述目的,本发明涉及的一种基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针,其制备方法具体包括以下步骤:
1.基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法,其特征在于,该方法具体包括以下步骤:
(1)Zn-BPQDs的制备:将20mg黑磷块体加入30mL氮甲基吡咯烷酮中,再加入1mmol/L的硝酸锌水溶液,用细胞粉碎机超声4h,然后用水浴超声10小时。将超声分散液转入高压反应釜中,在N 2保护下加热至140℃,连续搅拌反应12h。反应混合物在3500rpm转速下离心20min,然后取上清液在12000rpm转速下离心20min,将沉淀物用乙醇和蒸馏水洗涤3次,真空干燥后得到Zn-BPQDs。
(2)CoOOH NSs的制备:分别配制1mol/L、10mmol/L、1mol/L的氢氧化钠、氯化钴和次氯酸钠水溶液,量取1mL氢氧化钠水溶液加入10mL氯化钴水溶液中,水浴超声5min,在4000rpm转速下离心20min,得到深黄色沉淀,将其分散在50mL蒸馏水中。在磁力搅拌下,向其中逐滴加入2.5mL次氯酸钠水溶液,水浴超声20min,在12000rpm转速下离心10min,得到棕色沉淀,用乙醇和蒸馏水洗涤3次,真空干燥后得到CoOOH NSs。
(3)制备Zn-BPQDs/CoOOH NSs复合物:在磁力搅拌下,配制0.5mg/mL Zn-BPQDs水分散液,配制1mmol/L CoOOH NSs水分散液,向1~10mL CoOOH NSs水分散液逐滴加入0.1~1mL Zn-BPQDs水分散液,连续搅拌20min后形成Zn-BPQDs/CoOOH NSs复合物的水分散液。
(4)向上述复合物的水分散液中加入GSH水溶液,搅拌均匀以形成均质 混合液,在避光处孵育5min后,测定不同GSH浓度下,均质混合液的荧光发射光谱,拟合荧光发射峰强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针。其中GSH浓度的线性范围0.01~1μmol/L,检测限0.01~0.05μmol/L。
本发明的效果是:报道了一种基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法,用于定量检测谷胱甘肽。采用超声和溶剂热的一锅法制备了Zn-BPQDs,采用液相超声和溶液反应制备了CoOOH NSs,通过超声辅助在溶液中自组装制备了Zn-BPQDs/CoOOH NSs复合物的水分散液。由于FRET效应,Zn-BPQDs荧光被CoOOH NSs淬灭;外加的GSH可将CoOOH NSs还原成Co 2+,导致片层结构破坏,抑制了FRET效应,进而引起Zn-BPQDs荧光恢复。拟合混合分散液的荧光发射峰强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针。与现有技术相比,本发明方法操作简便,灵敏度高和选择性好,可作为一种新颖的荧光纳米探针用于生物医学样品中谷胱甘肽的高灵敏和选择性检测。
附图说明
图1为基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法的原理示意图;
图2为测定不同谷胱甘肽浓度下该荧光纳米探针体系的荧光发射光谱;
图3为不同谷胱甘肽浓度所对应的荧光发射峰相对强度F/F 0(F 0和F分别表示谷胱甘肽加入前和加入后的荧光发射峰强度),拟合不同F/F 0与谷胱甘肽浓度之间的线性关系。
具体实施方式
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法,其制备步骤和荧光检测谷胱甘肽的原理示意图,如图1所示,具体制备步骤如下:
Zn-BPQDs的制备:将20mg黑磷块体加入30mL氮甲基吡咯烷酮中,再加入1mmol/L的硝酸锌水溶液,用细胞粉碎机超声4h,然后用水浴超声10小时;将超声分散液转入高压反应釜中,在N 2保护下加热至140℃,连续搅拌反应12h;反应混合物在3500rpm转速下离心20min,然后取上清液在12000rpm转速下离心20min,将沉淀物用乙醇和蒸馏水洗涤3次,真空干燥后得到Zn-BPQDs;
CoOOH NSs的制备:分别配制1mol/L、10mmol/L、1mol/L的氢氧化钠、 氯化钴和次氯酸钠水溶液,量取1mL氢氧化钠水溶液加入10mL氯化钴水溶液中,水浴超声5min,在4000rpm转速下离心20min,得到深黄色沉淀,将其分散在50mL蒸馏水中;在磁力搅拌下,向其中逐滴加入2.5mL次氯酸钠水溶液,水浴超声20min,在12000rpm转速下离心10min,得到棕色沉淀,用乙醇和蒸馏水洗涤3次,真空干燥后得到CoOOH NSs;
制备Zn-BPQDs/CoOOH NSs复合物:在磁力搅拌下,配制0.5mg/mL Zn-BPQDs水分散液,配制1mmol/L CoOOH NSs水分散液,向2mL CoOOH NSs水分散液逐滴加入0.1mL Zn-BPQDs水分散液,连续搅拌20min后形成Zn-BPQDs/CoOOH NSs复合物的水分散液;
向上述复合物的水分散液中加入GSH水溶液,搅拌均匀以形成均质混合液,在避光处孵育5min后,测定不同GSH浓度下,均质混合液的荧光发射光谱(如图2所示),拟合荧光发射峰强度与GSH浓度之间的线性关系(如图3所示),构建定量检测GSH的荧光纳米探针;其中GSH浓度的线性范围0.01~0.4μmol/L,检测限0.01μmol/L。
实施例2
本实施例涉及的Zn-BPQDs和CoOOH NSs的制备步骤同实施例1,其它具体步骤如下:制备Zn-BPQDs/CoOOH NSs复合物:在磁力搅拌下,配制0.5mg/mL Zn-BPQDs水分散液,配制1mmol/L CoOOH NSs水分散液,向5mL CoOOH NSs水分散液逐滴加入0.2mL Zn-BPQDs水分散液,连续搅拌20min后形成Zn-BPQDs/CoOOH NSs复合物的水分散液;向上述复合物的水分散液中加入GSH水溶液,搅拌均匀以形成均质混合液,在避光处孵育5min后,测定不同GSH浓度下,均质混合液的荧光发射光谱,拟合荧光发射峰强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针;其中GSH浓度的线性范围0.05~0.5μmol/L,检测限0.03μmol/L。
实施例3
本实施例涉及的Zn-BPQDs和CoOOH NSs的制备步骤同实施例1,其它具体步骤如下:制备Zn-BPQDs/CoOOH NSs复合物:在磁力搅拌下,配制0.5mg/mL Zn-BPQDs水分散液,配制1mmol/L CoOOH NSs水分散液,向8mL CoOOH NSs水分散液逐滴加入0.5mL Zn-BPQDs水分散液,连续搅拌20min后形成Zn-BPQDs/CoOOH NSs复合物的水分散液;向上述复合物的水分散液中加入GSH水溶液,搅拌均匀以形成均质混合液,在避光处孵育5min后,测定不同GSH浓度下,均质混合液的荧光发射光谱,拟合荧光发射峰强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针;其中GSH浓度的线性范围0.05~1μmol/L,检测限0.04μmol/L。

Claims (1)

  1. 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法,其特征在于,该方法具体包括以下步骤:
    (1)锌掺杂黑磷量子点Zn-BPQDs的制备:将20mg黑磷块体加入30mL氮甲基吡咯烷酮中,再加入1mmol/L的硝酸锌水溶液,用细胞粉碎机超声4h,然后用水浴超声10小时;将超声分散液转入高压反应釜中,在N 2保护下加热至140℃,连续搅拌反应12h;反应混合物在3500rpm转速下离心20min,然后取上清液在12000rpm转速下离心20min,将沉淀物用乙醇和蒸馏水洗涤3次,真空干燥后得到Zn-BPQDs;
    (2)羟基氧化钴纳米片CoOOH NSs的制备:分别配制1mol/L、10mmol/L、1mol/L的氢氧化钠、氯化钴和次氯酸钠水溶液,量取1mL氢氧化钠水溶液加入10mL氯化钴水溶液中,水浴超声5min,在4000rpm转速下离心20min,得到深黄色沉淀,将其分散在50mL蒸馏水中;在磁力搅拌下,向其中逐滴加入2.5mL次氯酸钠水溶液,水浴超声20min,在12000rpm转速下离心10min,得到棕色沉淀,用乙醇和蒸馏水洗涤3次,真空干燥后得到CoOOH NSs;
    (3)制备锌掺杂黑磷量子点/羟基氧化钴纳米片Zn-BPQDs/CoOOH NSs复合物:在磁力搅拌下,配制0.5mg/mL Zn-BPQDs水分散液,配制1mmol/L CoOOH NSs水分散液,向1~10mL CoOOH NSs水分散液逐滴加入0.1~1mL Zn-BPQDs水分散液,连续搅拌20min后形成Zn-BPQDs/CoOOH NSs复合物的水分散液;
    (4)向上述复合物的水分散液中加入谷胱甘肽GSH水溶液,搅拌均匀以形成均质混合液,在避光处孵育5min后,测定不同GSH浓度下,均质混合液的荧光发射光谱,拟合荧光发射峰强度与GSH浓度之间的线性关系,构建定量检测GSH的荧光纳米探针;其中GSH浓度的线性范围0.01~1μmol/L,检测限0.01~0.05μmol/L。
PCT/CN2020/083118 2019-12-02 2020-04-03 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法 WO2021109381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911210474.8 2019-12-02
CN201911210474.8A CN110846026B (zh) 2019-12-02 2019-12-02 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Publications (1)

Publication Number Publication Date
WO2021109381A1 true WO2021109381A1 (zh) 2021-06-10

Family

ID=69606921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083118 WO2021109381A1 (zh) 2019-12-02 2020-04-03 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Country Status (2)

Country Link
CN (1) CN110846026B (zh)
WO (1) WO2021109381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699556A (zh) * 2021-08-27 2021-11-26 常州大学 CoNiMOF-BP QDs/b-CNF复合材料电催化剂及其制备方法
CN115571868A (zh) * 2022-09-26 2023-01-06 贵州省烟草科学研究院 一种检测并清除汞离子的碳点的制备方法及其应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846026B (zh) * 2019-12-02 2020-05-19 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法
CN111426833B (zh) * 2020-04-07 2021-04-23 青岛大学 可视化检测肿瘤外泌体的纳米杂化物探针的制备方法
CN111334284A (zh) * 2020-04-08 2020-06-26 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
CN111366625B (zh) * 2020-05-07 2021-04-02 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法
CN113292989B (zh) * 2021-06-04 2023-06-16 青岛大学 钴离子配位型硼量子点基于酶催化反应的乳酸荧光纳米生物探针的制备方法
CN114045172B (zh) * 2021-09-15 2022-07-19 青海大学 一种新型亲水性黑磷量子点-沸石咪唑酯骨架荧光探针材料的制备方法
CN114045524B (zh) * 2021-12-03 2023-04-21 中国科学技术大学 一种铱单原子催化剂、其制备方法及应用
CN114134533B (zh) * 2021-12-03 2023-06-16 中国科学技术大学 一种氧空位锚定的铱单原子催化剂、其制备方法及应用
CN114965402B (zh) * 2022-05-17 2024-02-27 安徽大学 一种CdTe量子点-L-精氨酸荧光探针及其应用
CN116590012B (zh) * 2023-05-17 2024-04-16 贵州大学 一种检测噻菌灵的CoO/BPNs发光探针及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416783A (zh) * 2017-09-21 2017-12-01 深圳大学 一种钝化黑磷纳米材料的方法
CN109580939A (zh) * 2018-12-05 2019-04-05 吉林大学 一种基于金纳米簇锚定羟基氧化钴纳米片的吡虫啉荧光免疫分析方法
CN109724949A (zh) * 2019-03-25 2019-05-07 青岛大学 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法
CN110376176A (zh) * 2019-08-27 2019-10-25 青岛大学 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法
CN110846026A (zh) * 2019-12-02 2020-02-28 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109602919B (zh) * 2018-11-30 2021-06-11 东南大学 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
CN109852383B (zh) * 2018-12-26 2022-08-12 中国药科大学 基于富勒烯的快速高效响应谷胱甘肽的荧光探针及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416783A (zh) * 2017-09-21 2017-12-01 深圳大学 一种钝化黑磷纳米材料的方法
CN109580939A (zh) * 2018-12-05 2019-04-05 吉林大学 一种基于金纳米簇锚定羟基氧化钴纳米片的吡虫啉荧光免疫分析方法
CN109724949A (zh) * 2019-03-25 2019-05-07 青岛大学 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法
CN110376176A (zh) * 2019-08-27 2019-10-25 青岛大学 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法
CN110846026A (zh) * 2019-12-02 2020-02-28 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUI RIJUN , JIN HUI , WANG ZONGHUA , LI JINGHONG: "Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications", CHEMICAL SOCIETY REVIEWS, vol. 17, no. 47, 17 July 2018 (2018-07-17), pages 6795 - 6823, XP055817691, ISSN: 0306-0012, DOI: 10.1039/c8cs00387d *
LI GUOLIANG, KONG WEIHENG, ZHAO MEI, LU SHUAIMIN, GONG PEIWEI, CHEN GUANG, XIA LIAN, WANG HUA, YOU JINMAO, WU YONGNING: "A fluorescence resonance energy transfer (FRET) based "Turn-On" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening", BIOSENSORS AND BIOELECTRONICS, vol. 79, 15 May 2016 (2016-05-15), pages 728 - 735, XP055817686, ISSN: 0956-5663, DOI: 10.1016/j.bios.2015.12.094 *
ZHINAN GUO, CHEN SI, WANG ZHONGZHENG, YANG ZHENYU, LIU FEI, XU YANHUA, WANG JIAHONG, YI YA, ZHANG HAN, LIAO LEI, CHU PAUL K., YU X: "Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance", ADVANCED MATERIALS, vol. 29, no. 42, 1 September 2017 (2017-09-01), pages 1 - 8, XP055644379, ISSN: 0935-9648, DOI: 10.1002/adma.201703811 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699556A (zh) * 2021-08-27 2021-11-26 常州大学 CoNiMOF-BP QDs/b-CNF复合材料电催化剂及其制备方法
CN115571868A (zh) * 2022-09-26 2023-01-06 贵州省烟草科学研究院 一种检测并清除汞离子的碳点的制备方法及其应用
CN115571868B (zh) * 2022-09-26 2023-09-01 贵州省烟草科学研究院 一种检测并清除汞离子的碳点的制备方法及其应用

Also Published As

Publication number Publication date
CN110846026A (zh) 2020-02-28
CN110846026B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021109381A1 (zh) 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法
CN111458316B (zh) 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法
CN108802133B (zh) 一种检测胃癌肿瘤标志物夹心型免疫传感器的制备方法及应用
WO2019237769A1 (zh) 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
Zhao et al. Co3O4-Au polyhedron mimic peroxidase-and cascade enzyme-assisted cycling process-based photoelectrochemical biosensor for monitoring of miRNA-141
Zhang et al. Metal-organic gel and metal-organic framework based switchable electrochemiluminescence RNA sensing platform for Zika virus
CN110849861B (zh) 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法
Li et al. Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2+
CN110702910B (zh) 一种检测dna甲基化酶活性的光电化学免疫传感器及其制备方法和应用
CN108929672B (zh) 一种以虾壳为碳源的碳量子点及其制备方法和在检测抗坏血酸中的应用
Wang et al. Dual-signal amplified cathodic electrochemiluminescence aptsensor based on a europium-porphyrin coordination polymer for the ultrasensitive detection of zearalenone in maize
Pan et al. Emerging nanolabels-based immunoassays: Principle and applications in food safety
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
Wang et al. A signal-off photoelectrochemical aptasensor for highly sensitive detection of T-2 toxin using 3D CdS/CdIn2S4 heterostructured nanostars by in-situ generated electron donor strategy
Ling et al. ZIF-8@ GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity
Chen et al. " Light-on" Colorimetric Assay for Ascorbic Acid Detection via Boosting the Peroxidase-like Activity of Fe-MIL-88
CN114989813B (zh) 一种沸石咪唑金属有机骨架包覆的电化学发光探针的制备方法及其产品和应用
CN111235234A (zh) 一种基于酶催化产物裂解二氧化锰纳米花@硫化镉核壳结构的光电化学检测马拉硫磷的方法
Hu et al. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@ Au for sensitive detection of procalcitonin
Xiao et al. A ratiometric fluorescent probe for simultaneous detection of L-ascorbic acid and alkaline phosphatase activity based on red carbon dots/polydopamine nanocomposite
Leng et al. THCH as electron donor in controlled-release system for procalcitonin analysis based on Bi2Sn2O7 photoanode
Yao et al. A covalent organic framework rich in lanthanide Eu3+ binding sites for sensitive and selective determination of tetracycline
Liu et al. A label-free “turn-on” fluorescence platform for glucose based on AuNCs@ MnO 2 nanocomposites
Ren et al. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds
Du et al. Ultrasensitive cortisol electrochemical immunosensor amplifying by Au single-atom nanozymes and HRP enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895122

Country of ref document: EP

Kind code of ref document: A1