CN111808610A - 类氮化碳富磷量子点荧光探针及其制备方法和应用 - Google Patents

类氮化碳富磷量子点荧光探针及其制备方法和应用 Download PDF

Info

Publication number
CN111808610A
CN111808610A CN202010198240.2A CN202010198240A CN111808610A CN 111808610 A CN111808610 A CN 111808610A CN 202010198240 A CN202010198240 A CN 202010198240A CN 111808610 A CN111808610 A CN 111808610A
Authority
CN
China
Prior art keywords
phosphorus
carbon nitride
rich
quantum dot
rich quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010198240.2A
Other languages
English (en)
Inventor
王富
武小侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Liangshan Technology Co ltd
Original Assignee
Guangdong Liangshan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Liangshan Technology Co ltd filed Critical Guangdong Liangshan Technology Co ltd
Priority to CN202010198240.2A priority Critical patent/CN111808610A/zh
Publication of CN111808610A publication Critical patent/CN111808610A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/097Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Abstract

本发明涉及类氮化碳富磷量子点的双光子荧光探针及其制备方法和应用。具体地,所述类氮化碳富磷量子点,是由富含磷元素的单体,通过水热或溶剂热方有光致发光的性质,可作为双光子荧光探针应用于双光子荧光成像。本发明还具体公开了该量子点的制备方法,前驱体和应用。

Description

类氮化碳富磷量子点荧光探针及其制备方法和应用
技术领域
本发明涉及类氮化碳富磷量子点的双光子荧光探针及其制备方法和应用,更具体地说本发明涉及一种具有光致发光性能的氮化碳富磷量子点双光子荧光探针其制备方法及其应用于双光子荧光成像。
技术背景
双光子成像(TPI)技术因具有较小的荧光背景、较大的组织穿透深度和近红外(NIR)激发的低光毒性,以及优异的时空分辨率使其已成为生物研究领域的一个强力手段。而TPI的重大突破和发展主要依赖于双光子荧光(TPF)探针的发展。特别是无金属的TPF纳米探针,由于具有无闪烁荧光发射、良好的稳定性好、优异的生物相容性等特点,引起了人们的广泛关注。人们已经探索了基于石墨烯的无金属纳米探针,但是该纳米探针的双光子荧光效率低于大多数传统有机染料和含有金属的荧光量子点。另外,石墨烯基纳米材料的制备过程复杂、不安全,进一步制约了其在生物医学领域的应用。因此,开发具有强双光子荧光和简易制备方法的新型荧光纳米探针是十分重要的。近年来,石墨相碳氮化物量子点(g-C3D4QDs) 是一种石墨烯基量子点的类似物,具有π共轭电子结构和C-N=C刚性平面也可以发射双光子荧光,并且其双光子吸收截面更高,作为TPF探针具有巨大的潜力以应用于双光子荧光成像。例如,Zhang等人在《Advanced Materials》开发了QDs量子点作为细胞核成像的TPF探针,但是其较低的水分散性和较弱的双光子发光限制 g-C3D4 QDs的应用。为解决发光弱的问题,人们报道了许多提高发光性能的方法 (包括各种元素掺杂)。在这些元素掺杂方法中,磷(P)掺杂是将P原子插入g- C3N4 QDs的网络结构中,以此改善氮化碳量子点的光致发光性能。Wu等人在《Advanced Optical Materials》报道了P掺杂的g-C3N4 QDs,通过改变P掺杂浓度来调节量子点的发光波长,在整个可见光范围(385-762nm)内就可以通过掺杂P 来实现,以此改善氮化碳量子点的发光性质。因此P掺杂取代氮化碳网络结构中的 C可有效改变其荧光性质,尤其是对双光子荧光性质的改善。
发明内容
本发明提供一种类氮化碳富磷量子点双光子荧光探针的制备方法,该类氮化碳富磷量子点作为双光子探针可应用于双光子荧光成像。
本发明的上述类氮化碳富磷量子点双光子荧光探针是由富含磷元素的单体,通过水热或溶剂热方法在高压高温下合成。其中所述的富磷单体选自六氯环三磷氰、六胺环三磷氰、六肼环三磷氰中的一种或几种;所述的水热或溶剂热溶剂选自水、乙醇、甲醇、苯、甲苯、异丙醇、丙三醇中的一种或几种,能够溶解富磷单体和氮化碳前驱体;所述的高压高温是在120-300℃范围内取一温度在反应釜中恒温反应而实现,能够形成类氮化碳富磷量子点。通过水热或溶剂热方法制备的类氮化碳富磷量子点具有良好的水分散性和稳定性,优异的双光子或单光子发光性质,优良的生物相容性,可作为双光子荧光探针应用于双光子荧光成像。
本发明的上述类氮化碳富磷量子点双光子荧光探针的制备和应用于细胞的双光子荧光成像如图1所示,富磷单体与氮化碳前驱体(有或无)通过水热或溶剂热反应生成类氮化碳富磷量子点,该类氮化碳富磷量子点在紫外光照下具有较强的荧光。类氮化碳富磷量子点与细胞培养,因其具有较小的尺寸(小于100nm) 易于进入细胞后,以实现双光子或单光子荧光成像。
本发明的目的还在于提供一种类氮化碳富磷量子点荧光探针,主要包括以下步骤:
(1)将富磷单体分子溶解在有机或无机溶剂中,如水、乙醇、甲醇、苯、甲苯、异丙醇、丙三醇;
(2)将(1)所述的溶液在聚四氟乙烯反应釜中高温高温反应以制备类氮化碳富磷量子点。
步骤(1)所述的富磷单体选自六氯环三磷氰、六胺环三磷氰、六肼环三磷氰中的一种或几种。
步骤(1)所述的所述的水热或溶剂热溶剂选自水、乙醇、甲醇、苯、甲苯、异丙醇、丙三醇中的一种或几种。
步骤(2)所述的高压高温是在120-300℃范围内在反应釜中实现。
附图说明
图1类氮化碳富磷量子点的制备及其应用于细胞的双光子荧光成像。
图2类氮化碳富磷量子点的TEM图。
图3类氮化碳富磷量子点的紫外光照射荧光图。
图4类氮化碳富磷量子点的红外光照射荧光图。
图5类氮化碳富磷量子点在紫外光照射不同时间的荧光图。
图6类氮化碳富磷量子点的红外光谱图。
具体实施方式
下面通过具体实施例进一步描述本发明,但不限制本发明的内容。
实施例1
(1)富磷单体分子的溶解
把20mg的六氯环三磷氰加入10mL乙醇中,超声溶解。
(2)类氮化碳富磷量子点的制备
把10mL六氯环三磷氰乙醇溶液加入10mL的聚四氟乙烯反应釜中,在180℃恒温干燥箱中反应12h。待冷却后,即可获得粒径小于100nm的单分散性的类氮化碳富磷量子点(如图2),该量子点在800nm近红外光激发下具有良好的双光光致发光性能,而且在紫外光照一定时间后,其荧光并无明显降低,表明此类氮化碳富磷量子点具有良好的光稳定性。如图5所示的红外光谱图结果表明类氮化碳富磷量子点表面含有氨基基团。
(3)类氮化碳富磷量子点的纯化
将所获得的类氮化碳富磷量子点加入500Da的透析袋中,在超纯水中透析三天,即可获得分散在水相中的六氯环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例2
将实施例1中富磷单体分子改为六胺环三磷氰,其他步骤与实施例1相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例3
将实施例1中富磷单体分子改为六肼环三磷氰,其他步骤与实施例1相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例4
将实施例1中的乙醇溶剂改为甲醇,其他步骤与实施例1相同,即可制得一种六氯环三磷氰氮化碳富磷量子点双光子荧光探针。
实施例5
将实施例2中的乙醇溶剂改为甲醇,其他步骤与实施例2相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例6
将实施例3中乙醇溶剂改为甲醇,其他步骤与实施例3相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例7
将实施例1中的乙醇溶剂改为苯,其他步骤与实施例1相同,即可制得一种六氯环三磷氰氮化碳富磷量子点双光子荧光探针。
实施例8
将实施例2中的乙醇溶剂改为苯,其他步骤与实施例2相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例9
将实施例3中乙醇溶剂改为苯,其他步骤与实施例3相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例10
将实施例1中的乙醇溶剂改为甲苯,其他步骤与实施例1相同,即可制得一种六氯环三磷氰氮化碳富磷量子点双光子荧光探针。
实施例11
将实施例2中的乙醇溶剂改为甲苯,其他步骤与实施例2相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例12
将实施例3中乙醇溶剂改为甲苯,其他步骤与实施例3相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例13
将实施例1中的乙醇溶剂改为异丙醇,其他步骤与实施例1相同,即可制得一种六氯环三磷氰氮化碳富磷量子点双光子荧光探针。
实施例14
将实施例2中的乙醇溶剂改为异丙醇,其他步骤与实施例2相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例15
将实施例3中乙醇溶剂改为异丙醇,其他步骤与实施例3相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例16
将实施例1中的乙醇溶剂改为丙三醇,其他步骤与实施例1相同,即可制得一种六氯环三磷氰氮化碳富磷量子点双光子荧光探针。
实施例17
将实施例2中的乙醇溶剂改为丙三醇,其他步骤与实施例2相同,即可制得一种六胺环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例18
将实施例3中乙醇溶剂改为丙三醇,其他步骤与实施例3相同,即可制得一种六肼环三磷氰类氮化碳富磷量子点双光子荧光探针。
实施例19
将纯化后的类氮化碳富磷量子点通过旋蒸法进行浓缩,并将其分散在PBS中 (pH=7.4),配置浓度为0.1mg/mL的分散液,与细胞进行培养4h后,使用PBS 清洗三次,进行双光子荧光成像。
实施例20
(1)类氮化碳富磷量子点与靶分子的联接
在EDAC(1-乙基-(3-二甲基氨基丙基)碳二亚胺)的催化下,利用靶分子的羧基与类氮化碳富磷量子点表面的氨基之间的化学反应,偶联能够特异性靶向细胞器的靶向分子。
(2)类氮化碳富磷量子点与靶分子复合物靶向定位细胞内细胞器或蛋白
将类氮化碳富磷量子点与靶分子复合物分散在PBS中(pH=7.4),配置浓度为0.1mg/mL的分散液,与细胞进行培养4h后,使用PBS清洗三次,进行双光子荧光成像。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.类氮化碳富磷量子点,其特征在于,是由富含磷元素的单体,通过水热或溶剂热方法在高压高温下合成类氮化碳富磷量子点。因前驱体具备π共轭电子结构,因此具有光致发光的性质,可作为双光子荧光探针应用于双光子荧光成像。
2.如权利要求1所述的类氮化碳富磷量子点,其特征在于,所述的富磷单体,是指含有磷元素且具有磷氰π共轭电子结构的分子,如六氯环三磷氰、六胺环三磷氰、六肼环三磷氰。
3.如权利要求1所述的类氮化碳富磷量子点,其特征在于,所述的类氮化碳富磷量子点具有π共轭电子结构,在激发光照射下发出荧光。
4.如权利要求1所述的类氮化碳富磷量子点应用,其特征在于,所述的类氮化碳富磷量子点进入细胞,并对细胞进行双光子荧光成像。
5.如权利要求1所述的类氮化碳富磷量子点,其特征在于,所述的富磷量子点的粒径小于100nm。
6.一种类氮化碳富磷量子点的制备方法,包括如下步骤:
(1)将富磷单体分子溶解在无机或有机溶剂中,如水、乙醇、甲醇、苯、甲苯、异丙醇、丙三醇;
(2)将(1)所述的溶液在聚四氟乙烯反应釜中高温高压反应以制备类氮化碳富磷量子点。
CN202010198240.2A 2020-03-19 2020-03-19 类氮化碳富磷量子点荧光探针及其制备方法和应用 Pending CN111808610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010198240.2A CN111808610A (zh) 2020-03-19 2020-03-19 类氮化碳富磷量子点荧光探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010198240.2A CN111808610A (zh) 2020-03-19 2020-03-19 类氮化碳富磷量子点荧光探针及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111808610A true CN111808610A (zh) 2020-10-23

Family

ID=72848035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010198240.2A Pending CN111808610A (zh) 2020-03-19 2020-03-19 类氮化碳富磷量子点荧光探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111808610A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842939A (zh) * 2021-09-24 2021-12-28 郑州大学 光催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670620A (zh) * 2016-03-14 2016-06-15 山东农业大学 一种掺杂氮化碳荧光量子点的制备方法
US20170174516A1 (en) * 2015-12-18 2017-06-22 Shenzhen Institutes Of Advanced Technology Titanium ligand-modified black phosphorus and preparation method and use thereof
CN108467728A (zh) * 2018-03-23 2018-08-31 宁波工程学院 一种水溶性磷、氮共掺杂碳量子点的制备方法
US20190381487A1 (en) * 2018-06-14 2019-12-19 Soochow University Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment
CN110849861A (zh) * 2019-08-27 2020-02-28 青岛大学 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170174516A1 (en) * 2015-12-18 2017-06-22 Shenzhen Institutes Of Advanced Technology Titanium ligand-modified black phosphorus and preparation method and use thereof
CN105670620A (zh) * 2016-03-14 2016-06-15 山东农业大学 一种掺杂氮化碳荧光量子点的制备方法
CN108467728A (zh) * 2018-03-23 2018-08-31 宁波工程学院 一种水溶性磷、氮共掺杂碳量子点的制备方法
US20190381487A1 (en) * 2018-06-14 2019-12-19 Soochow University Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment
CN110849861A (zh) * 2019-08-27 2020-02-28 青岛大学 双掺杂金属有机骨架复合物比率荧光黄岑苷探针制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOXIA WU等: "One-step synthesis of novel phosphorus nitride dots for two-photon imaging in living cells", 《CHEMCOMM》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842939A (zh) * 2021-09-24 2021-12-28 郑州大学 光催化剂及其制备方法
CN113842939B (zh) * 2021-09-24 2023-09-01 郑州大学 光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Ganguly et al. Advancement in science and technology of carbon dot-polymer hybrid composites: a review
Barman et al. Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots
Yao et al. Carbon dots: a small conundrum
Yang et al. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging
Sun et al. Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top‐down strategy for long‐time cellular imaging
Xia et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength
He et al. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction
Chen et al. Synthesis and unique photoluminescence properties of nitrogen‐rich quantum dots and their applications
Song et al. Bioimaging based on fluorescent carbon dots
Zuo et al. Preparation and application of fluorescent carbon dots
Ding et al. Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging
Sun et al. Realization of the photostable intrinsic core emission from carbon dots through surface deoxidation by ultraviolet irradiation
Magesh et al. Recent advances on synthesis and potential applications of carbon quantum dots
CN103160279A (zh) 一种功能性碳点及其制备和应用
Tang et al. A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+
CN108753283B (zh) 一种安全简单制备双掺杂氮和磷碳量子点的方法
Yang et al. Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide
Hallaji et al. Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review
CN105255487B (zh) 氨基醇功能化碳点及制备方法和其在测定铜离子中的应用
CN109468130A (zh) 一种金属掺杂的荧光碳量子点的制备方法
CN110759926A (zh) 基于水溶性的苯基吡啶衍生物-葫芦脲超分子假轮烷组装体及在细胞磷光成像的应用
Ghosh et al. Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022)
Yin et al. Hydrophobic carbon dots from aliphatic compounds with one terminal functional group
Abraham et al. Fluorescent mechanism in zero-dimensional carbon nanomaterials: a review
CN108359452B (zh) 一种水溶性类石墨烯量子点及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201023

RJ01 Rejection of invention patent application after publication