CN117535045A - 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法 - Google Patents

一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法 Download PDF

Info

Publication number
CN117535045A
CN117535045A CN202310849108.7A CN202310849108A CN117535045A CN 117535045 A CN117535045 A CN 117535045A CN 202310849108 A CN202310849108 A CN 202310849108A CN 117535045 A CN117535045 A CN 117535045A
Authority
CN
China
Prior art keywords
mof
thiamethoxam
aunps
dna aptamer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310849108.7A
Other languages
English (en)
Other versions
CN117535045B (zh
Inventor
黎舒怀
袁维维
王明月
马雄辉
庞朝海
吴雨薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analysis & Testing Center Chinese Academy Of Tropical Agricultural Sciences
Original Assignee
Analysis & Testing Center Chinese Academy Of Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analysis & Testing Center Chinese Academy Of Tropical Agricultural Sciences filed Critical Analysis & Testing Center Chinese Academy Of Tropical Agricultural Sciences
Priority to CN202310849108.7A priority Critical patent/CN117535045B/zh
Priority claimed from CN202310849108.7A external-priority patent/CN117535045B/zh
Publication of CN117535045A publication Critical patent/CN117535045A/zh
Application granted granted Critical
Publication of CN117535045B publication Critical patent/CN117535045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/10Insecticides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种痕量噻虫嗪检测用Zn‑MOF@AuNPS/DNA适配体荧光探针及其制备方法,包括以下步骤,步骤一,在反应容器中加入Zn(NO3)2·6H2O、6‑(4‑羧基苯基)烟酸试剂、4,4'‑双(1H‑咪唑‑1‑取代)‑1,1'‑联苯试剂、NaOH、H2O和乙醇在高温下反应一段时间,冷却后将产物干燥得Zn‑MOF;步骤二,将Zn‑MOF分散于HAuCl4·4H2O水溶液中,然后加入NaBH4溶液,在高温下反应一段时间,然后将产物溶液在PBS缓冲液中透析一段时间,得Zn‑MOF@AuNPs溶液;步骤三,在Zn‑MOF@AuNPs溶液中加入噻虫嗪的DNA适配体单链溶液,然后反应一段时间,得Zn‑MOF@AuNPs/DNA适配体荧光探针;本发明具有以下有益效果:本发明可以特异性识别噻虫嗪;本发明具有很高的选择性及抗干扰能力;本发明有高灵敏、高选择、操作简便的特点。

Description

一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针 及其制备方法
技术领域
本发明涉及农药残留检测领域,具体涉及一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法。
背景技术
噻虫嗪属于第二代新烟碱类杀虫剂,它能够特异性作用于害虫,同时减少对非目标生物的影响,具有高效、低毒、广谱等特点。但频繁使用会导致噻虫嗪在土壤和蔬菜中积累,增加了非目标生物暴露的可能性,同时对人类健康造成潜在危险。因此,有必要对噻虫嗪残留进行有效的监测。目前噻虫嗪的检测方法有色谱分析法、电化学检测法和荧光法等。其中,色谱分析法需要复杂的样品制备和昂贵的大型仪器,这限制了其进一步的应用。电化学检测法灵敏度较高,但是该方法的稳定性需要进一步提高。而在这些方法中,荧光分析法因其高灵敏度、成本低、响应速度快、操作简单等优点引起越来越多关注。
荧光发光试剂的性能决定了荧光探针检测平台灵敏度等检测能力。传统的荧光试剂主要包括了有机染料类荧光试剂,如罗丹明类;无机荧光材料,如量子点等。其中,染料类荧光试剂尽管发光效率和强度较高,但是往往具有毒性和致癌性;而金属量子点的生物毒性限制了其在分析检测中的应用。为了获得高发光效率、低生物毒性的性能优异的荧光试剂,近年来,具有荧光发光性能的纳米材料如碳量子点、金属有机框架材料等得到了越来越多的关注。目前,开发出了以下方法来检测农药残留,(1)用水热法合成具有蓝色荧光的阳离子碳点(cCD)并基于荧光法成功检测啶虫脒;(2)合成高结晶度的Zr-LMOFs并基于荧光法开发检测甲基对硫磷(m-PT)的便携式传感器。研究表明,荧光量子点在空气中易受到氧化而失去活性,降低其稳定性;量子产率通常较低;发光波长分布不均匀。相对于碳量子点而言,金属有机框架(MOFs)材料因其突出的孔径可控、大表面积和独特的发光特性而成为大众关注热点。这些特性使MOFs广泛用于生物医学,光催化和传感器领域。近年来研究发现,一些具有特殊结构的MOFs配合物拥有特征性高强度荧光发射,通过对比不同状态下荧光信号,可应用于污染物检测。该检测方法具有灵敏性高、检测速度快以及操作简便等优点。在最近的研究中,利用UiO-66-NH2荧光传感器检测噻虫嗪,发现随着浓度的增加,UiO-66-NH2发光强度随之增加,传感器在线性范围内定量限为3.36nM,回收率为93%-116%。该方法具有较高的灵敏度,但是由于没有结合特异性识别元件,材料选择识别噻虫嗪的能力有待进一步提高。因此,在荧光分析平台中,将荧光试剂结合特异性识别目标分子的识别元件(如适配体)可以有效提升平台的选择识别能力。研究表明,使用基于FAM-Thi13的荧光适配体传感器测量噻虫嗪的定量限(LOD)为1.23nM,回收率为97.3–102.1%;在最近的研究中,成功构建无标记荧光适配体传感器检测噻虫胺发现检出限低至22.1nM,回收率为81.99%-106.64%。
金属有机框架材料(MOFs)是由金属离子与有机配体通过自组装形成的具有周期性网络结构的新型多孔材料。与传统的多孔材料相比,MOFs不仅具有较高的比表面积和孔隙率、而且还表现出高度的结构可调节性和丰富的功能性。研究表明,通过配体和金属之间的协同作用,MOFs可以实现丰富的孔洞结构、较大的比表面积和独特的荧光性能,并容易构建发光性能和检测机制可调的发光平台,成为极具吸引力的荧光试剂。此外,通过对结构进行“后修饰”可以实现对MOFs材料的结构设计和功能修饰,从而完成对MOFs材料的物理化学性质的调控。当发光MOF对目标分析物产生富集或其他作用,会造成荧光基团的光物理性质发生改变,物质的荧光强度会发生明显的变化,可以通过这些变化来确定和检测某些特定物质。该方法因其灵敏度高、选择性强,从而具有非常高的应用价值。但是,MOFs作为单一材料其电子导电性和稳定性在实际应用中需要进一步提高。为了提高MOFs的性能可以将许多导电材料,如氧化石墨烯、大孔碳、金属纳米颗粒等与MOFs相结合,利用两者成分间的协同作用加强各自的优势并抵消缺点。研究表明,金纳米颗粒(AuNPs)在掺入MOFs时显示出更好的结果。因为AuNPs可以改善电子转移并放大埃检测信号,复合物(MOFs@AuNPs)也有更好的吸附能力、更高的催化性能。
目前,基于高性能MOFs@AuNPs结合DNA适配体的荧光探针用于农药残留的检测尚未见相关报道。
发明内容
为了解决上述现有技术存在的问题,本发明提供了一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法。
本发明以Zn为金属源,6-(4-羧基苯基)烟酸和4,4'-双(1H-咪唑-1-取代)-1,1'-联苯为前驱体,合成新型Zn-MOF荧光材料,然后在Zn-MOF表面还原生成Au NPS,得到Zn-MOF@Au NPS;同时,在Zn-MOF@Au NPS表面引入和修饰能够特异性识别噻虫嗪的DNA适配体作为识别元件,构建新型荧光探针。通过DNA适配体捕获目标噻虫嗪后,猝灭探针的荧光强度,从而建立检测噻虫嗪的新方法。由于Zn-MOF@AuNPS具有很强的稳定的荧光强度,探针具有很高的灵敏度;而DNA适配体能够特异性识别噻虫嗪,因此,探针还表现出很强的抗干扰能力。具体制备方法如下:
步骤一,在反应容器中加入Zn(NO3)2·6H2O固体、6-(4-羧基苯基)烟酸试剂、4,4'-双(1H-咪唑-1-取代)-1,1'-联苯试剂、NaOH固体、H2O和乙醇在高温下反应一段时间,冷却后将产物干燥得Zn-MOF;
优选的,反应容器优选内衬为聚四氟乙烯的反应釜;
优选的,Zn(NO3)2·6H2O固体、6-(4-羧基苯基)烟酸试剂、4,4'-双(1H-咪唑-1-取代)-1,1'-联苯试剂、NaOH固体、H2O、乙醇的比例为(28-30):(48-50):(28-30):10:(12-13):4(mg:mg:mg:mg:mL:mL);
优选的,温度为190-210℃,反应时间为45-50h,在75-85℃下真空干燥;
步骤二,将Zn-MOF分散于HAuCl4·4H2O水溶液中,然后加入NaBH4溶液,在高温下反应一段时间,然后将产物溶液在PBS缓冲液中透析一段时间,得Zn-MOF@AuNPs溶液;
优选的,HAuCl4·4H2O水溶液浓度为1mg/L,NaBH4溶液的浓度为1mmol/L,PBS缓冲液浓度为0.05mol/L,pH为7.4;
更优选的,Zn-MOF、HAuCl4·4H2O水溶液、NaBH4溶液的比例为10:5:2(mg:mL:mL);
优选的,温度为90-110℃,反应时间为1.5-2.5h,透析时间为2.5-3.5h;
步骤三,在Zn-MOF@AuNPs溶液中加入噻虫嗪的DNA适配体单链溶液,缓慢搅拌下充分溶解反应5min,让DNA适配体的-SH通过金-硫键组装到Zn-MOF@Au NPs上,从而得到可以特异性捕获噻虫嗪的Zn-MOF@Au NPs/DNA适配体荧光探针;
优选的,Zn-MOF@AuNPs溶液与噻虫嗪的DNA适配体单链溶液的体积比为25:1,反应时间为5-10min;
优选的,DNA适配体单链为5′-SH-TCCGTACGTCTGAGGTGTAGGATG TACGAGGGTCACTCTGATTCGGTCAGTGTTAACAGT-C-3′。
本发明有以下优点:
(1)本发明的Zn-MOF@AuNPs/DNA适配体荧光探针表现出了稳定且良好的荧光性能;
(2)DNA适配体的存在可以特异性识别噻虫嗪;
(3)本发明可以有效排除其它农药的干扰,具有很高的选择性及抗干扰能力;
(4)本发明有高灵敏、高选择、操作简便的特点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为Zn-MOF@Au NPs的表征图;
图2为探针的吸收光谱图、激发光谱图和发射光谱图;
图3为不同浓度的噻虫嗪对荧光探针的猝灭效果图;
图4为不同浓度噻虫嗪在探针上的荧光响应信号强度图和校准曲线图;
图5为pH值对探针荧光强度的影响图;
图6为反应时间对探针荧光强度的影响图;
图7为荧光探针的重现性图;
图8为荧光探针的稳定性图。
具体实施方式
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例与试验例均使用二次去离子水。
实施例1
步骤一,在内衬为聚四氟乙烯的反应釜中加入以下试剂:
将29.7mg Zn(NO3)2·6H2O固体,48.6mg 6-(4-羧基苯基)烟酸,28.6mg4,4'-双(1H-咪唑-1-取代)-1,1'-联苯,10.0mg NaOH固体12.5mL H2O和4mL乙醇装入内衬为聚四氟乙烯的25mL反应釜中,于200℃下反应48小时,冷却后,将产物置于80℃下真空干燥得到Zn-MOF;
步骤二,称取10mg Zn-MOF分散于5mL浓度为1mg/L的HAuCl4·4H2O水溶液中,然后加入2mL浓度为1mmol/L的NaBH4溶液,在100℃下反应2h后,将产物溶液在浓度为0.05mol/L的PBS缓冲液(pH=7.4)中透析3h得Zn-MOF@AuNPs溶液;
步骤三,取5mL Zn-MOF@Au NPs溶液,加入200μL噻虫嗪的DNA适配体单链5′-SH-TCCGTACGTCTGAGGTGTAGGATGTACGAGGGTCACTCT GATTCGGTCAGTGTTAACAGT-C-3′,缓慢搅拌下充分溶解反应5min,得可以特异性捕获噻虫嗪的Zn-MOF@Au NPs/DNA适配体荧光探针溶液。
以下试验例荧光检测的参数如下:激发波长Ex=480nm,发射光谱范围为480-700nm,狭缝均为5nm,光电倍增管为700V。
试验例1
分别采用扫描电子显微镜(SEM)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对制备的Zn-MOF@AuNPs材料进行分析,结果如图1所示。
如图1A和1B所示,Zn-MOF呈较为规则的多边形结构,粒径在8-10μm左右,而Au NPs呈球形结构,较为均匀地分布在Zn-MOF材料表面,AuNPs的粒径约在20nm左右。从图1C得到Zn-MOF的(011)、(002)、(112)、(022)、(013)、(223)、(114)、(233)、(004)晶面衍射峰。而在θ=38.20°、44.40°、64.50°得到的衍射峰分别对应金的(111)、(200)、(220)晶面。此外,从图1D的XPS谱图得到材料的元素组成。如图所示在1022eV和1046eV处观察到较强的峰对用Zn-MOF的Zn(2p);约在89eV处的峰对应AuNPs的Au(4f)。而285eV、399ev、532eV处的峰分别对应Zn-MOF中的C(1s)、N(1s)、O(1s)。以上结果均表明,Zn-MOF@AuNPs已经成功合成。
试验例2
利用紫外-可见吸收光谱法和荧光光谱法对制备的Zn-MOF@Au NPs/DNA适配体荧光探针的光学性质进行检测,紫外可见光谱仪的光谱带宽为5nm,扫描范围为200-700nm,结果如图2所示。
如图2A所示,Zn-MOF@AuNPs/DNA适配体荧光探针在539nm有较强的吸收。如图2B所示,Zn-MOF@AuNPs/DNA适配体荧光探针的最大激发波长在487nm附近(曲线a),采用487nm波长去激发探针,得到探针的最大发射波长在569nm左右(曲线b),探针较大的Stokes位移有效避免了激发和发射光谱之间的重叠。并且探针的发射光谱强度高,峰形对称并且较窄,这说明探针具有良好的荧光性能。
试验例3
取5份制备的Zn-MOF@AuNPs/DNA适配体荧光探针溶液,每份100μL,分别加入0、0.5、10、100、1000μL浓度为1×10-7mol/L的噻虫嗪,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL充分反应5min后,噻虫嗪的浓度a-e分别为0、2.5、50、500、5000×10-11mol/L,检测噻虫嗪加入前后的荧光强度,结果如图3所示。
根据图3可知,随着不同浓度噻虫嗪的加入,探针通过适配体捕获越来越多的噻虫嗪,Zn-MOF@AuNPs/DNA适配体探针的荧光强度不断降低,如图3所示,这说明噻虫嗪能够有效猝灭探针的荧光强度。因此,噻虫嗪对探针荧光猝灭的机理,目标物(猝灭剂)一般通过在结合位点与量子点以静电力、氢键、范德华相互作用或立体构象改变等作用影响荧光探针的荧光强度。首先测定在不同浓度噻虫嗪存在时探针的荧光寿命,检测结果表明,材料的本征寿命τ0为21.45ns,当加入2.5、50、500、5000×10-11mol/L的噻虫嗪到体系中时,C-dots荧光寿命分别为21.40、21.38、21.32、21.29ns,噻虫嗪浓度从0mol/L增加到5000×10-11mol/L时候,探针荧光寿命仅仅降低0.16ns,探针的寿命变化不大,因此噻虫嗪对Zn-MOF@AuNPs/DNA适配体探针荧光猝灭主要为静态过程。此外,噻虫嗪被DNA适配体捕获时,噻虫嗪会和适配体的碱基之间形成氢键,这种相互作用会改变适配体的构象,使两者之间的距离和角度发生改变,也会使两者之间的电荷转移受到影响,拉近了噻虫嗪与探针的距离,与探针的结合更加容易。
试验例4
取若干份制备的Zn-MOF@AuNPs/DNA适配体荧光探针溶液,每份100μL,分别加入加入0、0.5、1、5、20、40、100、300、400、500、800、1000、1200μL浓度为1×10-7mol/L的噻虫嗪,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL充分反应5min后,噻虫嗪浓度a-m分别为:0、2.5、5、25、100、200、500、1500、2000、2500、4000、5000、6000×10-11mol/L,检测噻虫嗪加入前后Zn-MOF@AuNPs/DNA适配体探针的荧光强度,计算荧光强度猝灭值△IF=F0-F1,绘制校准曲线,结果如图4所示。
如图4A所示,随着噻虫嗪浓度的增加,探针的荧光强度不断被猝灭。噻虫嗪浓度(c)在2.5-6000×10-11mol/L的范围内与探针的荧光猝灭强度(△IF)具有良好的线性关系,其线性回归方程为:△IF=7.3c(10-11mol/L)+126.7(图4B),R2=0.9966,检出限为8.33×10-12mol/L(D.L.=KSb/a,K=3)。这说明本方法制备的Zn-MOF@AuNPs/DNA适配体荧光探针检测噻虫嗪与现有技术比较具有更高的灵敏度。
试验例5
取若干份制备的Zn-MOF@Au NPs/DNA适配体荧光探针溶液,每份100μL,均加入100μL浓度为1×10-7mol/L的噻虫嗪,分别用不同pH值(pH=4.4-5.8)的乙酸-乙酸钠缓冲液进行定容至2mL,来检测缓冲液不同pH值以及反应时间对Zn-MOF@AuNPs/DNA适配体探针检测噻虫嗪的影响,结果如图5-6。
如图5所示,P为噻虫嗪加入前后探针荧光的比值(P=F0/F1,F0为加入噻虫嗪前的荧光强度,F1为噻虫嗪前的荧光强度)。随着pH值从4.4不断增大,P不断增大,直到pH=5.4时,P达到最大值,之后随着pH继续增大,P反而降低。因此,选用pH=5.4的乙酸-乙酸钠作为最佳体系缓冲液。如图6所示,噻虫嗪与探针反应时间在5min内完成,荧光强度猝灭值△IF(△IF=F0-F1,F0为加入噻虫嗪前的荧光强度,F1为噻虫嗪前的荧光强度)达到最大,并保持不变。因此,选择反应时间为5min。
试验例6
取两份制备的Zn-MOF@AuNPs/DNA适配体荧光探针溶液,每份100μL,在其中一份中加入100μL浓度为1×10-7mol/L的噻虫嗪,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL充分反应5min后,然后检测荧光强度(I0),在另一份中加入100μL浓度为1×10-7mol/L的噻虫嗪与100μL浓度为1×10-5mol/L的吡虫啉、啶虫脒、噻虫胺、呋虫胺、烯啶虫胺、氯霉素、阿特拉津、毒死蜱、甲基对硫磷9种农药混合物,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL充分反应5min后,然后检测荧光强度(I1)。
计算两次检测结果的相对偏差RD=[(I0-I1)/I0]×100%,结果得到RD为1.37%,这说明加入干扰物后,探针荧光强度几乎没有变化,以上结果说明了探针对噻虫嗪具有良好的选择性识别能力。
试验例7
取5份制备的Zn-MOF@AuNPs/DNA适配体荧光探针溶液,每份100μL,分别加入100μL浓度为1×10-7mol/L的噻虫嗪,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL充分反应5min后,检测加入噻虫嗪前后的荧光强度,计算△IF,结果如图7-8。
如图7-8所示,五次实验的△IF值的相对标准偏差(RSD)为0.22%。这表明该方法具有良好的重现性(图7)。此外,将制备的100μL的Zn-MOF@Au NPs/DNA适配体荧光探针与100μL浓度为1×10-7mol/L的噻虫嗪,用1mol/L乙酸-乙酸钠缓冲液(pH=5.4)定容至2mL,每隔5min检测一次荧光强度,结果表明,30min后的探针的荧光强度为反应完全后(5min)的94.47%(图8),这表明该荧光探针具有良好的稳定性。
试验例8
取破碎混匀的香蕉、豇豆、芒果和卷心菜样品各10g,分别做以下处理:加入20mL乙腈,高速匀浆5min后,用定性滤纸过滤,静止30min后,取上清5mL,在40℃下水浴下蒸干,最后用2mL浓度为1mol/L的乙酸-乙酸钠缓冲液(pH=5.4)定容待测;
取若干份制备的Zn-MOF@Au NPs/DNA适配体荧光探针溶液,每份100μL,分别加入上述待测溶液,并做加标回收试验,结果如表1。
表1
表1结果表明,本发明制备的Zn-MOF@AuNPs/DNA适配体荧光探针可用于实际样品检测。
综上所述,本发明提供了一种Zn-MOF@AuNPs/DNA适配体荧光探针,利用该探针实现了对香蕉等农产品中噻虫嗪残留的超灵敏检测。Zn-MOF的复合荧光探针表现出了稳定和良好的荧光性能;同时,探针引入了DNA适配体,使得探针对目标分子噻虫嗪表现出很好的选择识别能力。因此,探针在实际样品中的噻虫嗪残留检测应用中,具有高灵敏、高选择、操作简便的特点。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,包括以下步骤:
步骤一,在反应容器中加入Zn(NO3)2·6H2O、6-(4-羧基苯基)烟酸试剂、4,4'-双(1H-咪唑-1-取代)-1,1'-联苯试剂、NaOH、H2O和乙醇在高温下反应一段时间,冷却后将产物干燥得Zn-MOF;
步骤二,将Zn-MOF分散于HAuCl4·4H2O水溶液中,然后加入NaBH4溶液,在高温下反应一段时间,然后将产物溶液在PBS缓冲液中透析一段时间,得Zn-MOF@AuNPs溶液;
步骤三,在Zn-MOF@AuNPs溶液中加入噻虫嗪的DNA适配体单链溶液,然后反应一段时间,得Zn-MOF@AuNPs/DNA适配体荧光探针。
2.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤一中,Zn(NO3)2·6H2O、6-(4-羧基苯基)烟酸试剂、4,4'-双(1H-咪唑-1-取代)-1,1'-联苯试剂、NaOH、H2O、乙醇的比例为(28-30):(48-50):(28-30):10:(12-13):4(mg:mg:mg:mg:mL:mL)。
3.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤一中反应温度为190-210℃,反应时间为45-50h,在75-85℃下真空干燥。
4.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤二中,HAuCl4·4H2O水溶液浓度为1mg/L,NaBH4溶液的浓度为1mmol/L,PBS缓冲液的pH=7.4、浓度为0.05mol/L。
5.根据权利要求4所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,Zn-MOF、HAuCl4·4H2O水溶液、NaBH4溶液的比例为10:5:2(mg:mL:mL)。
6.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤二中反应温度为90-110℃,反应时间为1.5-2.5h,透析时间为2.5-3.5h。
7.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤三中,Zn-MOF@AuNPs溶液与噻虫嗪的DNA适配体单链溶液的体积比为25:1,反应时间为5-10min。
8.根据权利要求1所述的一种痕量噻虫嗪检测用Zn-MOF@AuNPS/DNA适配体荧光探针的制备方法,其特征在于,步骤三中,噻虫嗪的DNA适配体单链为5′-SH-TCCGTACGTCTGAGGTGTAGGATGTACGAGGGTCACTCTG ATTCGGTCAGTGTTAACAGT-C-3′。
9.权利要求1-8任一项所述方法制备的Zn-MOF@AuNPS/DNA适配体荧光探针。
CN202310849108.7A 2023-07-12 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法 Active CN117535045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310849108.7A CN117535045B (zh) 2023-07-12 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310849108.7A CN117535045B (zh) 2023-07-12 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法

Publications (2)

Publication Number Publication Date
CN117535045A true CN117535045A (zh) 2024-02-09
CN117535045B CN117535045B (zh) 2024-05-31

Family

ID=

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515541A (zh) * 1996-01-23 2004-07-28 ռ�˹ 利用非荧光标记检测配体对结合的方法和组合物
CN101754677A (zh) * 2007-02-01 2010-06-23 索尔-格尔科技有限公司 制备包含金属氧化物涂层的颗粒的方法和具有金属氧化物涂层的颗粒
CN111961462A (zh) * 2020-09-23 2020-11-20 南宁师范大学 Zif-8包覆的金纳米簇材料及其制备方法和应用
US10989711B1 (en) * 2020-11-25 2021-04-27 King Abdulaziz University Gold@zinc salen-based metal organic framework composite and methods of use thereof
CN113307245A (zh) * 2021-05-31 2021-08-27 北京化工大学 一种具备特定形貌和多重分形结构的多孔炭光热材料的制备方法
WO2021223317A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法
CN114113013A (zh) * 2021-11-12 2022-03-01 中国药科大学 一种荧光适配体探针及其在microRNA/ctDNA核酸分子检测中的应用
CN114965408A (zh) * 2022-05-24 2022-08-30 江南大学 应用比率型荧光适配体传感器检测氯丙嗪的方法
CN115015198A (zh) * 2022-06-10 2022-09-06 南宁师范大学 AuNCs@ZIF-8/I-荧光传感器及检测Cr3+的方法
CN115461351A (zh) * 2020-04-23 2022-12-09 埃克森美孚技术与工程公司 金属-有机骨架的高产量合成

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515541A (zh) * 1996-01-23 2004-07-28 ռ�˹ 利用非荧光标记检测配体对结合的方法和组合物
CN101754677A (zh) * 2007-02-01 2010-06-23 索尔-格尔科技有限公司 制备包含金属氧化物涂层的颗粒的方法和具有金属氧化物涂层的颗粒
CN115461351A (zh) * 2020-04-23 2022-12-09 埃克森美孚技术与工程公司 金属-有机骨架的高产量合成
WO2021223317A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法
CN111961462A (zh) * 2020-09-23 2020-11-20 南宁师范大学 Zif-8包覆的金纳米簇材料及其制备方法和应用
US10989711B1 (en) * 2020-11-25 2021-04-27 King Abdulaziz University Gold@zinc salen-based metal organic framework composite and methods of use thereof
CN113307245A (zh) * 2021-05-31 2021-08-27 北京化工大学 一种具备特定形貌和多重分形结构的多孔炭光热材料的制备方法
CN114113013A (zh) * 2021-11-12 2022-03-01 中国药科大学 一种荧光适配体探针及其在microRNA/ctDNA核酸分子检测中的应用
CN114965408A (zh) * 2022-05-24 2022-08-30 江南大学 应用比率型荧光适配体传感器检测氯丙嗪的方法
CN115015198A (zh) * 2022-06-10 2022-09-06 南宁师范大学 AuNCs@ZIF-8/I-荧光传感器及检测Cr3+的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUANJIE WANG等: "Multiplex strategy electrochemical platform based on self-assembly dual-site DNA tetrahedral scaffold for one-step detection of diazinon and profenofos", 《SCIENCE OF THE TOTAL ENVIRONMENT》, vol. 868, 20 January 2023 (2023-01-20), pages 161692 - 1 *

Similar Documents

Publication Publication Date Title
Guo et al. In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment
Yu et al. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles
Shirani et al. A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection
Ameen et al. Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality
He et al. Determination of trace elements in food samples by ICP-AES after preconcentration with p-toluenesulfonylamide immobilized on silica gel and nanometer SiO 2
Yang et al. Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters
Xie et al. Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos
Jalili et al. Surface molecular imprinting on silane-functionalized carbon dots for selective recognition of nifedipine
Qu et al. A turn-on fluorescence sensor for creatinine based on the quinoline-modified metal organic frameworks
Zhang et al. Application trends of nanofibers in analytical chemistry
CN112852418B (zh) 一种双发射比率荧光碳点及其制备方法和应用
Wu et al. Bimodal counterpropagating-responsive sensing material for the detection of histamine
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
CN107643271B (zh) 一种水杨酸-Mn掺杂ZnS量子点复合纳米粒子比率型荧光探针及其制备方法和应用
Li et al. Chiral drug fluorometry based on a calix [6] arene/molecularly imprinted polymer double recognition element grafted on nano-C-dots/Ir/Au
CN110018146A (zh) 一种基于荧光碳量子点检测钯离子的方法
CN117535045B (zh) 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法
CN114460054A (zh) 一种量子点-MXene荧光传感器及其制备方法和应用
Li et al. An electrochemiluminescence sensor based on Fe/Zn-BTC@ C-dots sensitisation for thiamethoxam detection
CN117535045A (zh) 一种痕量噻虫嗪检测用Zn-MOF@Au NPS/DNA适配体荧光探针及其制备方法
CN113624812A (zh) 一种基于铜金双金属核壳结构纳米粒子的适配体传感器的制备方法
CN109283163B (zh) 基于钙-金属有机骨架材料作为荧光探针检测l-半胱氨酸的方法
US11561193B1 (en) Surface modified electrodes, and methods of preparation thereof
Jamasbi et al. Highly silver-selective fluorescent sensor based on functionalized nanoporous silica (SBA-Pr-NMP) in aqueous media
CN113121541B (zh) 一种同时区分金离子Au3+与钯的荧光探针的合成及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant