WO2021223082A1 - 旋转雷达及可移动平台 - Google Patents

旋转雷达及可移动平台 Download PDF

Info

Publication number
WO2021223082A1
WO2021223082A1 PCT/CN2020/088677 CN2020088677W WO2021223082A1 WO 2021223082 A1 WO2021223082 A1 WO 2021223082A1 CN 2020088677 W CN2020088677 W CN 2020088677W WO 2021223082 A1 WO2021223082 A1 WO 2021223082A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
base
radar
rotating
motor
Prior art date
Application number
PCT/CN2020/088677
Other languages
English (en)
French (fr)
Inventor
周万仁
张文康
孙维忠
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080030084.7A priority Critical patent/CN113767299A/zh
Priority to PCT/CN2020/088677 priority patent/WO2021223082A1/zh
Publication of WO2021223082A1 publication Critical patent/WO2021223082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present invention generally relates to the field of radar technology, and more specifically to a rotating radar and a movable platform.
  • radar In the detection and ranging application fields of drones, automobiles and other industries, radar has been widely used due to its advantages of high detection accuracy, long detection distance, and high environmental tolerance.
  • the existing radar has the disadvantages of large volume due to the complicated internal wiring, and the poor shielding effect of the internal circuit system leads to strong interference to the outside world or susceptibility to external interference. This is because in the existing radar design, since the connections of the internal circuit systems are mostly connected by conventional cables, they occupy a large volume, reduce the effective utilization of the internal space of the radar, and increase the difficulty of miniaturization and light weight of the radar. .
  • existing radars especially omnidirectional radars whose antennas can achieve multi-turn 360° rotation, have unreliable shielding of their internal circuit systems, resulting in strong external interference from the radar and susceptibility to interference from the external electromagnetic environment.
  • the present invention is proposed in order to solve at least one of the above-mentioned problems.
  • the invention provides a rotating radar and a movable platform, which realizes the compactness of the radar internal wiring through FPC flexible connection, realizes the effective shielding of the radar internal circuit system through the connection design of metal structural parts and conductive glue, and reduces external interference .
  • the first aspect of the present invention provides a rotating radar, including:
  • a rotating antenna assembly the rotating antenna assembly includes a rotating mounting seat and an antenna circuit board, a signal processing circuit board, and a signal transmission circuit board mounted on the rotating mounting seat, and the signal processing circuit board and the signal transmission circuit board pass through the first A flexible circuit board is electrically connected, and the antenna circuit board and the signal processing circuit board are electrically connected through a second flexible circuit board;
  • the driving assembly includes a motor and a motor control circuit board for driving the motor, and the motor is mechanically coupled to the rotating mounting base to drive the rotating mounting base to rotate;
  • a radar base the radar base is fixedly connected to a motor, and is used to support the motor, a cavity is formed in the radar base, a base circuit board is arranged in the cavity, the motor control circuit board and the base The circuit board is electrically connected through the third flexible circuit board,
  • the rotating mounting seat, the motor and the radar base form a conductive continuous closed cavity.
  • the antenna circuit board and the signal processing circuit board are arranged relatively spaced apart, and are respectively installed on opposite sides of the rotating mounting seat, and the first flexible circuit board is arranged on the antenna In the space between the circuit board and the signal processing circuit board.
  • the signal transmission circuit board is arranged above the rotary mounting seat, and a shielding cover is arranged above the signal transmission circuit board.
  • the shielding cover is in direct or indirect electrical contact with the rotating mounting seat, and the shielding cover and the rotating mounting seat together form a shielding cavity for accommodating the signal transmission circuit board .
  • a groove surrounding the outer circumference is formed on the side of the rotating mounting seat and the shielding cover opposite to each other, and a position corresponding to the groove is formed on the upper and lower surfaces of the signal transmission circuit board.
  • Surrounding the outer periphery of the pad, and filling conductive glue between the groove and the pad, and the pad is electrically connected to the shielding cover and the rotary mounting seat through the conductive glue.
  • the signal processing circuit board and the signal transmission circuit board are provided with sockets for inserting the first flexible circuit board, and both ends of the first flexible circuit board are respectively provided with The plug matched with the socket is used to insert into the socket on the signal processing circuit board and the signal transmission circuit board to realize the electrical connection between the signal processing circuit board and the signal transmission circuit board.
  • the first flexible circuit board is pressed and fixed by a conductive sheet on the signal processing circuit board, and the first flexible circuit board is pressed and fixed by the shield cover on the signal transmission circuit board.
  • a flexible circuit board is pressed and fixed by a conductive sheet on the signal processing circuit board, and the first flexible circuit board is pressed and fixed by the shield cover on the signal transmission circuit board.
  • the first flexible circuit board is arranged obliquely with respect to the rotation axis of the motor.
  • the antenna circuit board and the signal processing circuit board are provided with sockets for inserting the second flexible circuit board, and both ends of the second flexible circuit board are respectively provided with sockets.
  • the plug matched with the socket is used to insert into the socket on the antenna circuit board and the signal processing circuit board to realize the electrical connection between the antenna circuit board and the signal processing circuit board.
  • the second flexible circuit board is pressed and fixed by a conductive sheet on the signal processing circuit board, and the second flexible circuit is tightly fixed by a conductive sheet on the antenna circuit board plate;
  • the second flexible circuit board includes a base portion and a connecting portion extending perpendicular to the base portion, and the plug is disposed on the connecting portion.
  • the motor includes:
  • the motor stator is installed on the motor base;
  • a motor rotor the motor rotor is rotatably connected with the motor base so as to be able to rotate around the motor stator, and the motor rotor is also connected with the rotating mount to drive the rotating antenna assembly to rotate;
  • the motor base and the rotating mounting seat form a cavity, and the motor rotor, the motor stator, and the motor control circuit board are arranged in the cavity.
  • the motor control circuit board is arranged on the motor base, and is used for supplying power to the motor and controlling the operation of the motor.
  • the radar base includes a first radar base, a second radar base, and a third radar base that are sequentially connected, and the second radar base is located between the first radar base and the third radar base. Between the bases.
  • the first radar base is connected to the motor, the first radar base is formed with a first cavity, a first wireless coil and a second wireless coil are arranged in the first cavity, and a first wireless transmission An antenna and a second wireless transmission antenna,
  • the first wireless coil is electrically connected to the signal transmission circuit board
  • the second wireless coil is electrically connected to the base circuit board
  • the base circuit board is driven by the first wireless coil and the second wireless coil.
  • the antenna circuit board, the signal processing circuit board and the signal transmission circuit board supply power;
  • the first wireless transmission antenna is electrically connected to the signal transmission circuit board
  • the second wireless transmission antenna is electrically connected to the base circuit board
  • the base circuit board is electrically connected to the base circuit board through the first wireless transmission antenna and the second wireless transmission antenna.
  • the transmission antenna communicates with the antenna circuit board, the signal processing circuit board, and the signal transmission circuit board.
  • the first wireless transmission antenna and the second wireless transmission antenna include a Wifi antenna or a Bluetooth antenna.
  • the second radar base and the third radar base jointly form a second cavity
  • the base circuit board is disposed in the second cavity
  • the second radar base is formed with An opening communicating the first cavity and the second cavity
  • the third radar base is formed with an opening communicating the second cavity and the outside.
  • annular protrusion is provided inside the opening of the third radar base, and a groove is formed on the annular protrusion;
  • a ring-shaped pad is formed on the base circuit board at a position corresponding to the ring-shaped bump, and the third radar base is electrically connected to the third radar base by filling conductive glue between the groove and the ring-shaped pad.
  • the base circuit board is formed on the base circuit board at a position corresponding to the ring-shaped bump, and the third radar base is electrically connected to the third radar base by filling conductive glue between the groove and the ring-shaped pad.
  • one end of the third flexible circuit board is connected to the motor control circuit board, and then extends downward from the outer wall of the first radar base and passes through a slot in the side wall of the first radar base It enters the inside of the first cavity, and then enters the second cavity through the opening connecting the first cavity and the second cavity through the bottom of the first radar base, and is electrically connected to the circuit board of the base.
  • a metal shield is provided at the slot of the side wall of the first radar base for sealing.
  • the third flexible circuit board is in the shape of a broken line.
  • the motor control circuit board and the base circuit board are provided with sockets for inserting the third flexible circuit board, and both ends of the third flexible circuit board are respectively provided with sockets.
  • the plug matched with the socket is used to insert into the socket on the motor control circuit board and the base circuit board to realize the electrical connection between the motor control circuit board and the base circuit board.
  • the rotating mount includes:
  • the first bracket is used to carry the antenna circuit board
  • a second bracket for carrying the signal processing circuit board, the second bracket and the first bracket are relatively spaced apart;
  • An intermediate support for connecting with the drive assembly is located between the first support and the second support, and is fixedly connected to the first support and the second support, respectively,
  • the motor drives the first support and the second support to rotate through the intermediate support, thereby driving the antenna circuit board and the signal processing circuit board.
  • the intermediate bracket is used to carry the signal transmission circuit board.
  • the two ends of the middle bracket are respectively fixedly connected to the middle of the first bracket and the second bracket to form an H-shaped structure together, thereby forming two independent accommodating grooves, wherein One of the accommodating grooves is used for accommodating the signal transmission circuit board, and the other of the accommodating grooves is used for accommodating the driving assembly.
  • the two ends of the intermediate bracket are respectively fixedly connected with the ends of the first bracket and the second bracket to form a receiving groove for receiving the driving assembly.
  • the second aspect of the present invention provides a movable platform, which is characterized in that it includes:
  • the power plant is installed on the fuselage and provides moving power for the fuselage
  • the rotating radar according to the first aspect of the present invention is installed on the fuselage;
  • the control system is electrically connected to the rotating radar,
  • the rotating radar obtains position information of obstacles around the movable platform, and sends the position information of the obstacles to the control system;
  • the control system controls the power device according to the position information of the obstacle to change the moving direction of the movable platform to avoid the obstacle.
  • the movable platform is an unmanned aerial vehicle, an autonomous vehicle or a ground remote control robot.
  • the flexible connection between the various circuit systems is realized through FPC (flexible circuit board) and the occupied space of the connecting line is compressed; at the same time, a closed design is formed by the connection design of metal structural parts and conductive glue
  • the cavity improves the shielding effect of the circuit system, that is, the internal wiring of the radar is compacted through FPC flexible connection, which reduces the volume of the radar, and the effective shielding of the radar internal circuit system is realized through the connection design of metal structural parts and conductive glue , Reduced external interference.
  • Fig. 1 is a schematic cross-sectional view of a rotating radar according to an embodiment of the present invention
  • Fig. 2 is a schematic perspective view of the rotating radar shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a rotating antenna assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the connection of a third flexible circuit board according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of first to third flexible circuit boards according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the shielding structure of the rotating radar shown in FIG. 1;
  • FIG. 7 is a schematic diagram of the shielding structure of the third radar base of the rotating radar shown in FIG. 1;
  • FIG. 8 is a schematic diagram of the shielding structure of the shielding cover of the rotating radar shown in FIG. 1;
  • Fig. 9 is a schematic diagram of the shielding structure of the rotary mounting seat of the rotary radar shown in Fig. 1;
  • Fig. 10 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • Fig. 1 is a schematic cross-sectional view of a rotating radar according to an embodiment of the present invention
  • Fig. 2 is a schematic perspective view of the rotating radar shown in Fig. 1
  • Fig. 3 is a schematic structural diagram of a rotating antenna assembly according to an embodiment of the present invention
  • 4 is a schematic diagram of the connection of the third flexible circuit board according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the structure of the first to third flexible circuit boards according to an embodiment of the present invention.
  • the rotary radar 100 provided in the embodiment of the present invention includes an optional rotary antenna assembly 110, a driving assembly 130 and a radar base 140.
  • the rotating antenna assembly 110 is used to realize multi-turn 360-degree omnidirectional rotation, so as to transmit the radar signal 360-degree omnidirectionally, and receive the radar signal 360-degree omnidirectionally.
  • the rotating antenna assembly 110 includes a rotating mounting base 111 and an antenna circuit board 112, a signal processing circuit board 113, and a signal transmission circuit board 114 mounted on the rotating mounting base 111.
  • the antenna circuit board 112 can be made of various printed circuit boards.
  • the antenna circuit board 112 is provided with a radar antenna and its corresponding antenna circuit, such as a microwave array antenna and corresponding amplification and noise reduction circuits, for transmitting and Receive radar signals (such as microwave signals).
  • the signal processing circuit board 113 may be made of various printed circuit boards, and various circuits and units for processing radar signals are provided on it, and may include processing chips or circuit structures.
  • the signal transmission circuit board 114 can be made of various printed circuit boards, and various transmission circuits are provided on it to realize signal transmission between the antenna circuit board 112 and the signal processing circuit board 113, as well as the antenna circuit board 112 and the signal processing circuit board 113. Processing the signal transmission between the circuit board and the base circuit board 144.
  • the rotating mounting base 111 is roughly H-shaped, and it can be made of metal materials.
  • the rotating mounting seat 111 includes a first bracket, a second bracket, and an intermediate bracket.
  • the second bracket is spaced apart from the first bracket, and the intermediate bracket is located between the first bracket and the second bracket. Between the brackets, and are respectively fixedly connected with the first bracket and the second bracket.
  • the first bracket is used to carry the antenna circuit board 112
  • the second bracket is used to carry the signal processing circuit board 113
  • the middle bracket is used to connect to the drive assembly 130, where the motor (including the drive In the component 130, the first support and the second support are driven to rotate through the intermediate support, thereby driving the antenna circuit board 112 and the signal processing circuit board 113.
  • the middle bracket is also used to carry the signal transmission circuit board 114.
  • the two ends of the middle bracket are respectively fixedly connected to the middle of the first bracket and the second bracket to form an H-shaped structure, thereby forming two independent accommodating grooves, one of the accommodating grooves
  • the slot is used for receiving the signal transmission circuit board 114, and the other receiving slot is used for receiving the driving assembly 130.
  • the two ends of the middle bracket are respectively fixedly connected to the ends of the first bracket and the second bracket to form a receiving groove for receiving the driving assembly 130.
  • the signal transmission circuit board 114 is arranged above the rotary mounting base 111, and a shielding cover 117 is arranged above the signal transmission circuit board 114 for shielding the signal transmission circuit board. 114 to prevent external signals from interfering with the signal transmission circuit board 114 and signals on the signal transmission circuit board 114 from interfering with the outside world.
  • the shielding cover 117 is in direct or indirect electrical contact with the rotating mounting base 111, and the shielding cover 117 and the rotating mounting base 111 together form a shielding cavity for accommodating the signal transmission circuit board 114.
  • the shielding cover 117 can be made of various metal shielding materials, such as stainless steel or copper.
  • the shape of the shielding cover 117 corresponds to the shape of the transmission circuit board 114, for example, a board-mounted structure.
  • the antenna circuit board 112 and the signal processing circuit board 113 are arranged opposite to each other, and are respectively installed on opposite sides of the rotating mounting base 111, specifically, on the antenna circuit board 112 and the signal processing circuit board 113.
  • the signal processing circuit board 113 is provided with a first mounting base 115 and a second mounting base 116, and the antenna circuit board 112 and the signal processing circuit board 113 are mounted on the first mounting base 115 and the second mounting base 116.
  • the rotating mounting seat 111 is mounted on it. Exemplarily, the rotating mounting seat 111 is vertically arranged with the antenna circuit board 112 and the signal processing circuit board 113.
  • the signal processing circuit board 113 and the signal transmission circuit board 114 are electrically connected through a first flexible circuit board 118, and the antenna circuit board 112 and the signal processing circuit board 113 are electrically connected through a second flexible circuit board 119.
  • Electric connection The first flexible circuit board 118 is disposed in the space between the antenna circuit board 112 and the signal processing circuit board 113, and the second flexible circuit board 119 is disposed on the antenna circuit board 112 and the signal processing circuit board 113. Handle the side walls of the circuit board 113.
  • the signal processing circuit board 113 and the signal transmission circuit board are provided with sockets for inserting the first flexible circuit board 117, and both ends of the first flexible circuit board 117 are respectively provided with sockets corresponding to the sockets.
  • the mating plug is used to plug into sockets on the signal processing circuit board 113 and the signal transmission circuit board 114 to realize the electrical connection between the signal processing circuit board 113 and the signal transmission circuit board 114.
  • the first flexible circuit board 118 is pressed and fixed on the signal processing circuit board 113 by the conductive sheet 120 to achieve fixation, and the signal transmission circuit board 114 is fixed by the shielding cover 117.
  • the first flexible circuit board 118 is pressed and fixed to achieve fixation. Exemplarily, as shown in FIG.
  • the first flexible circuit board 117 is arranged obliquely with respect to the rotation axis of the motor, and because it is located on the antenna circuit board 112 and the signal processing circuit board 113 In the space between, and close to the signal processing circuit board 113 and the signal transmission circuit board 114, the shielding cover 117 is arranged, which greatly reduces the space occupancy rate.
  • the antenna circuit board 112 and the signal processing circuit board 113 are provided with sockets for inserting the second flexible circuit board 119, and both ends of the second flexible circuit board 119 are respectively provided with The plug matched with the socket is used to insert into the socket on the antenna circuit board 112 and the signal processing circuit board 113 to realize the electrical connection between the antenna circuit board 112 and the signal processing circuit board 113.
  • the second flexible circuit board 119 is pressed and fixed on the signal processing circuit board 113 by a conductive sheet 121, and the antenna circuit board is tightly fixed by a conductive sheet or glue.
  • the second flexible circuit board 119 Exemplarily, as shown in FIGS. 3 and 5, the second flexible circuit board 119 includes a base portion and a connecting portion extending perpendicular to the base portion, and the plug is provided on the connecting portion.
  • the driving assembly 130 is connected to the rotating mounting base 111 to drive the rotating mounting base 111 to rotate, thereby driving the rotating antenna assembly 110 to rotate.
  • the driving assembly 130 includes a motor and a motor control circuit board 134.
  • the motor includes a motor base 131, a motor stator, and a motor rotor 132.
  • the motor stator is mounted on the motor base 131.
  • the motor rotor 132 is rotatably connected to the motor base 131 so as to be able to surround the motor stator.
  • the motor rotor 132 is also connected to the rotating mounting base 111 to drive the rotating antenna assembly 110 to rotate.
  • the motor rotor 132 is connected to the motor base 131 through the motor rolling bearing 133 to enable the motor stator to rotate.
  • the motor base 131 and the rotating mounting base 111 form a cavity, and the motor rotor 132, the motor stator, and the motor control circuit board 134 are arranged in the cavity.
  • the motor control circuit board 134 can be made of various printed circuit boards, and various motor control circuits and power supply circuits are provided on the motor control circuit board 134 for supplying power to the motor and controlling the operation of the motor.
  • the motor control circuit board 134 is disposed on the motor base 131.
  • the radar base 140 is connected to the motor base 131 for supporting the motor and the rotating antenna assembly 110.
  • a cavity is formed inside the radar base 140, and a base circuit board 144 is arranged in the cavity.
  • the motor control circuit board 134 and the base circuit board 144 are electrically connected through a third flexible circuit board 145, thereby passing through the base.
  • the circuit board 144 supplies power to the motor control circuit board 134.
  • the motor control circuit board 134 and the base circuit board 144 are provided with sockets for inserting the third flexible circuit board 145, and both ends of the third flexible circuit board 145 are respectively provided with The plug matched with the socket is used to insert into the socket on the motor control circuit board 134 and the base circuit board 144 to realize the electrical connection between the motor control circuit board 134 and the base circuit board 144.
  • the base circuit board 144 provides high voltage for the motor control circuit board through the third flexible circuit board 145.
  • the radar base 140 includes a first radar base 141, a second radar base 142, and a third radar base 143 that are sequentially connected.
  • the second radar base 142 is located between the first radar base 141 and the third radar base 143.
  • the first radar base 141 is connected to the motor and has a substantially cylindrical structure, and includes a first cylindrical structure located above and a second cylindrical structure located below. The diameter of the first cylindrical structure is larger than that of the second cylindrical structure. The diameter of the cylindrical structure.
  • the first radar base 141 is formed with a first cavity, in which a first wireless coil 146 and a second wireless coil 147, and a first wireless transmission antenna 148 and The second wireless transmission antenna 149, the first wireless coil 146 is electrically connected to the signal transmission circuit board 114, the second wireless coil 147 is electrically connected to the base circuit board 144, and the base circuit board 144 is electrically connected to the base circuit board 144.
  • the first wireless coil 146 and the second wireless coil 147 supply power to the antenna circuit board 112, the signal processing circuit board 113, and the signal transmission circuit board 114.
  • the base circuit board 144 provides the antenna circuit board 112, the signal processing circuit board 113 and the signal transmission circuit board 114 with low voltage energy through the first wireless coil 146 and the second wireless coil 147.
  • the first wireless transmission antenna 148 is electrically connected to the signal transmission circuit board 114
  • the second wireless transmission antenna 149 is electrically connected to the base circuit board 144
  • the base circuit board 144 transmits through the first wireless transmission
  • the antenna 148 and the second wireless transmission antenna 149 communicate with the antenna circuit board 112, the signal processing circuit board 113, and the signal transmission circuit board 114.
  • the data and commands between the base circuit board 144 and the antenna circuit board 112, the signal processing circuit board 113, and the signal transmission circuit board 114 are performed through the first wireless transmission antenna 148 and the second wireless transmission antenna 149.
  • the first wireless transmission antenna 148 and the second wireless transmission antenna 149 include a Wifi antenna or a Bluetooth antenna.
  • the second radar base 142 and the third radar base 143 jointly form a second cavity
  • the base circuit board 144 is disposed in the second cavity
  • the second radar base 142 An opening connecting the first cavity and the second cavity is formed
  • the third radar base 143 is formed with an opening connecting the second cavity and the outside. In this way, external electric energy and signals can be transmitted into the inside of the radar base through these openings, and then transmitted to each circuit board.
  • Fig. 4 shows the opening A at the bottom of the first radar base 141 and the opening B on the side wall, as well as partial enlarged views of A and B.
  • one end of the third flexible circuit board 145 is connected to the motor control circuit board 134, and then extends downward from the outer wall of the first radar base 141 and passes through the side wall of the first radar base 141. Slotted into the inside of the first cavity, and then enters the second cavity through the openings connecting the first cavity and the second cavity through the bottom of the first radar base 141, and then enters the second cavity through the base circuit board 144 The central opening is electrically connected to the socket on the back of the base circuit board 144.
  • This wiring method is completely performed inside or on the side wall of the radar base 140, and does not occupy the external space of the structural member, thereby improving the space utilization rate of the radar.
  • a metal shield is provided at the slot on the side wall of the first radar base 141 for sealing to prevent electromagnetic signal leakage.
  • the shield is, for example, copper foil, which can be pasted on the slot. Closed at the place.
  • the third flexible circuit board 145 is in the shape of a broken line.
  • the third radar base 143 is connected to the second radar base 142, the second radar base 142 is connected to the first radar base 141, the first radar base 141 is connected to the motor base 131, and the motor base 131
  • the motor roller bearing 133 is connected to the motor rotor 132, and then the motor rotor 132 is connected to the rotating mount 111. Since these are connected by metal parts, the entire link is conductive and continuous.
  • the electrical connection between the circuit boards is realized through the flexible circuit board, thereby reducing the space occupancy rate and reducing the volume of the radar.
  • a shielding structure is added at the openings and gaps where the cavity exists, which will be described below with reference to FIGS. 6-9.
  • FIG. 6 is a schematic diagram of the shielding structure of the rotating radar shown in FIG. 1;
  • FIG. 7 is a schematic diagram of the shielding structure of the third radar base of the rotating radar shown in FIG. 1;
  • FIG. 8 is a shielding cover of the rotating radar shown in FIG. Schematic diagram of the shielding structure;
  • Figure 9 is a schematic diagram of the shielding structure of the rotating mount of the rotating radar shown in Figure 1.
  • FIGS. 6-9 in this example, since an opening for connecting with the outside is provided at the bottom of the third radar base, and there is a gap between the shielding cover 117, the signal transmission circuit board 114, and the rotating mount 111, This may cause interference from external signals. Therefore, in order to form a closed shielding space, in this embodiment, shielding structures are added at these two locations (A and B in FIG. 6).
  • FIG. 6 shows the position of the additional shielding structure of the rotating radar 100 and a partial enlarged view thereof.
  • the third radar base 143 has a hole C at the bottom so that the base circuit board 144 can be connected to the outside to obtain power and transmit signals.
  • An elliptical ring-shaped protrusion is added to the inside of the hole C, and a ring-shaped semi-circular groove 150 is made on the protrusion and a ring-shaped exposed copper pad is made on the corresponding PCB surface on the base circuit board 144, and then the two The third radar base 143 and the base circuit board 144 are electrically connected by filling conductive glue between them.
  • a ground hole can also be opened around the pad to realize the grounding of the internal circuit.
  • a groove around the outer circumference is formed on the side of the rotating mount 111 and the shield cover 117 opposite to each other, such as a ring-shaped semicircular groove (160, 170) ( Figures 8 and 9 shows the semicircular grooves D and E and the enlarged view).
  • the connection between the semicircular groove and the exposed copper pad of the PCB, the annular semicircular groove of the shielding cover 117 and the exposed copper pad of the PCB is connected by filling conductive glue, and the pad is connected to the shield through the conductive glue.
  • the cover 117 and the rotating mounting seat 111 are electrically connected.
  • a ground hole can also be opened around the pad to realize the grounding of the internal circuit.
  • the rotor 132, the rotating mounting seat 111, the signal transmission circuit board 114, and the shielding cover 117 form a conductive continuous closed cavity, thereby connecting the signal transmission circuit board 114 (containing the WiFi chip) and the base circuit board 144 ( Containing WiFi chip), wireless coil and wireless transmission antenna for shielding, so as to avoid external interference, and will not interfere with the outside world.
  • Fig. 10 is a schematic block diagram of a movable platform according to an embodiment of the present invention.
  • the movable platform 300 is depicted as an unmanned aerial vehicle, this depiction is not intended to be limiting, and any suitable type of movable object may be used.
  • the movable platform 300 may be a drone or an autonomous vehicle. Or ground remote control robot.
  • the movable platform 300 includes a fuselage 301 and a rotating radar 200, and the microwave rotating radar 200 is installed on the fuselage 301.
  • the body 301 includes a frame 302 and a stand 303 installed on the frame 302.
  • the frame 302 can be used as an installation carrier for the flight control system, processor, video camera, camera, etc. of the movable platform 300.
  • the tripod 303 is installed under the frame 302, and the rotating radar 200 is installed on the tripod 303.
  • the tripod 303 can be used to provide support for the movable platform 300 when it is landed.
  • the tripod 303 can also carry a water tank and be used to spray pesticides and fertilizers on plants through a nozzle.
  • the structure of the rotating radar 200 is the same as the rotating radar 100 described above, and will not be repeated here.
  • the movable platform 300 further includes an arm 304 extending from the fuselage 301, and the arm 304 can be used to carry a power device 305 to provide the movable platform 300 with flying power.
  • the onboard power device 305 may include one or more of a rotor, a propeller, a blade, an engine, a motor, a wheel, a axle, a magnet, or a nozzle.
  • the movable platform 300 may have one or more, two or more, three or more, or four or more powered devices 305 onboard.
  • the power devices 305 may all be of the same type. Alternatively, the one or more power devices 305 may be different types of power devices 305.
  • the power device 305 can be installed on the movable platform 300 using any suitable device.
  • the movable platform 300 also controls a system, which is electrically connected to the rotating radar 200.
  • the rotating radar 200 obtains the position information of obstacles around the movable platform 300, and combines the position information of the obstacles. It is sent to the control system, and the control system controls the power device 305 according to the position information of the obstacle to change the moving direction of the movable platform 300 to avoid the obstacle.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种旋转雷达(100)及可移动平台(300),该旋转雷达(100)包括:旋转天线组件(110),其包括旋转安装座(111)以及安装在旋转安装座(111)上的天线电路板(112)、信号处理电路板(113)和信号传输电路板(114),信号处理电路板(113)和信号传输电路板(114)通过第一柔性电路板(118)电连接,天线电路板(112)和信号处理电路板(113)通过第二柔性电路板(119)电连接;驱动组件(130),其包括电机以及用于驱动电机的电机控制电路板(134),电机与旋转安装座(111)机械耦合连接;雷达底座(140),与电机固定连接,雷达底座(140)内部形成有腔体,在腔体内设置有底座电路板(144),电机控制电路板(134)和底座电路板(144)通过第三柔性电路板(145)电连接,其中,旋转安装座(111)、电机以及雷达底座(140)形成一个导电连续的封闭腔体。该旋转雷达(100)可以实现雷达内部走线的紧凑化以及内部电路系统的有效屏蔽。

Description

旋转雷达及可移动平台
说明书
技术领域
本发明总地涉及雷达技术领域,更具体地涉及一种旋转雷达及可移动平台。
背景技术
在无人机、汽车以及其他行业的探测和测距应用领域中,雷达由于探测精度较高、探测距离远、环境容忍度高等优点,得到了较广泛的应用。然而,现有雷达由于内部走线复杂导致雷达体积大,同时内部的电路系统屏蔽效果差导致对外界干扰强或者易受外界干扰等缺点。这是因为在现有雷达设计中,由于内部电路系统的连接多采用常规线缆连接,所以占用体积较大,降低了雷达内部空间的有效利用率,增大了雷达小型化、轻量化的难度。同时,现有雷达,尤其是天线可以实现多圈360°旋转的全向雷达,其内部电路系统的屏蔽不可靠,导致雷达对外干扰强,且也易受外界电磁环境的干扰。
发明内容
为了解决上述问题中的至少一个而提出了本发明。本发明提供一种旋转雷达及可移动平台,其通过FPC柔性连接实现雷达内部走线的紧凑化,通过金属结构件以及导电胶的连接设计实现雷达内部电路系统的有效屏蔽,减小了外界干扰。
具体地,本发明第一方面提供一种旋转雷达,包括:
旋转天线组件,所述旋转天线组件包括旋转安装座以及安装在所述旋转安装座上的天线电路板、信号处理电路板和信号传输电路板,所述信号处理电路板和信号传输电路板通过第一柔性电路板电连接,所述天线电路板和所述信号处理电路板通过第二柔性电路板电连接;
驱动组件,包括电机以及用于驱动所述电机的电机控制电路板,所述电机与所述旋转安装座机械耦合连接,以带动所述旋转安装座转动;
雷达底座,所述雷达底座与电机固定连接,用于支撑所述电机,所述雷达底座内部形成有腔体,在所述腔体内设置有底座电路板,所述电机控制电路板和所述底座电路板通过第三柔性电路板电连接,
其中,所述旋转安装座、所述电机以及所述雷达底座形成一个导电连续的封闭腔体。
在本发明一个实施例中,所述天线电路板和所述信号处理电路板相对间隔设置,并且分别安装在所述旋转安装座的相对侧上,所述第一柔性电路板设置在所述天线电路板和所述信号处理电路板之间的空间中。
在本发明一个实施例中,所述信号传输电路板设置在所述旋转安装座的上方,且在所述信号传输电路板的上方设置有屏蔽罩。
在本发明一个实施例中,所述屏蔽罩与所述旋转安装座直接或间接地电接触,所述屏蔽罩与所述旋转安装座共同形成一个用于收纳所述信号传输电路板的屏蔽腔。
在本发明一个实施例中,在所述旋转安装座和所述屏蔽罩彼此相对的一侧形成环绕外周的槽,在所述信号传输电路板上的上下表面的与所述槽对应的位置形成环绕外周的焊盘,且在所述槽和焊盘之间填充导电胶,所述焊盘通过所述导电胶与所述屏蔽罩以及所述旋转安装座电导通。
在本发明一个实施例中,所述信号处理电路板和信号传输电路板上设置有供所述第一柔性电路板插入的插座,所述第一柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述信号处理电路板和信号传输电路板上的插座来实现所述信号处理电路板和信号传输电路板的电连接。
在本发明一个实施例中,在所述信号处理电路板上通过导电压片压紧固定所述第一柔性电路板,在所述信号传输电路板上通过所述屏蔽罩压紧固定所述第一柔性电路板。
在本发明一个实施例中,所述第一柔性电路板相较于所述电机的旋转轴倾斜设置。
在本发明一个实施例中,所述天线电路板和所述信号处理电路板上设 置有供所述第二柔性电路板插入的插座,所述第二柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述天线电路板和所述信号处理电路板上的插座来实现所述天线电路板和所述信号处理电路板的电连接。
在本发明一个实施例中,在所述信号处理电路板上通过导电压片压紧固定所述第二柔性电路板,在所述天线电路板上通过导电压片紧固定所述第二柔性电路板;
或/及,所述第二柔性电路板包括基体部和垂直所述基体部延伸的连接部,所述插头设置在所述连接部上。
在本发明一个实施例中,所述电机包括:
电机底座,
电机定子,安装在所述电机底座上;
电机转子,所述电机转子与电机底座可旋转地连接,以能够围绕所述电机定子旋转,所述电机转子还与所述旋转安装座连接,以带动所述旋转天线组件转动;
所述电机底座与所述旋转安装座形成腔体,所述电机转子、电机定子、电机控制电路板设置在所述腔体中。
在本发明一个实施例中,所述电机控制电路板设置在所述电机底座上,用于为电机供电并控制所述电机的工作。
在本发明一个实施例中,所述雷达底座包括依次连接的第一雷达底座、第二雷达底座和第三雷达底座,所述第二雷达底座位于所述第一雷达底座与所述第三雷达底座之间。
在本发明一个实施例中,
所述第一雷达底座与所述电机连接,所述第一雷达底座形成有第一腔体,在所述第一腔体中设置有第一无线线圈和第二无线线圈,以及第一无线传输天线和第二无线传输天线,
所述第一无线线圈与所述信号传输电路板电连接,所述第二无线线圈与所述底座电路板电连接,所述底座电路板通过所述第一无线线圈和第二无线线圈为所述天线电路板、信号处理电路板和信号传输电路板供电;
所述第一无线传输天线与所述信号传输电路板电连接,所述第二无线 传输天线与所述底座电路板电连接,所述底座电路板通过所述第一无线传输天线和第二无线传输天线与所述天线电路板、信号处理电路板和信号传输电路板进行通信。
在本发明一个实施例中,所述第一无线传输天线和第二无线传输天线包括Wifi天线或蓝牙天线。
在本发明一个实施例中,所述第二雷达底座和第三雷达底座共同形成第二腔体,所述底座电路板设置在所述第二腔体中,所述第二雷达底座上形成有连通所述第一腔体和第二腔体的开孔,所述第三雷达底座形成有连通所述第二腔体和外部的开孔。
在本发明一个实施例中,在所述第三雷达底座的开孔的内侧设置环状凸起,并且在所述环状凸起上形成槽;
在所述底座电路板上对应所述环状凸起的位置形成环状焊盘,且通过在所述槽和所述环状焊盘之间填充导电胶来电连接所述第三雷达底座和所述底座电路板。
在本发明一个实施例中,所述第三柔性电路板一端与所述电机控制电路板连接,然后自所述第一雷达底座外壁向下延伸并经由所述第一雷达底座侧壁的开槽进入所述第一腔体内部,然后经由所述第一雷达底座底部连通所述第一腔体和第二腔体的开孔进入所述第二腔体,与所述底座电路板电连接。
在本发明一个实施例中,在所述第一雷达底座侧壁的开槽处设置金属屏蔽件进行封闭。
在本发明一个实施例中,所述第三柔性电路板呈折线状。
在本发明一个实施例中,所述电机控制电路板和所述底座电路板上设置有供所述第三柔性电路板插入的插座,所述第三柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述电机控制电路板和所述底座电路板上的插座来实现所述电机控制电路板和所述底座电路板的电连接。
在本发明一个实施例中,所述旋转安装座包括:
第一支架,用于承载所述天线电路板;
第二支架,用于承载所述信号处理电路板,所述第二支架与所述第一 支架相对间隔设置;
中间支架,用于与所述驱动组件连接,所述中间支架位于所述第一支架与所述第二支架之间,并且分别与所述第一支架以及所述第二支架固定连接,
其中,所述电机通过所述中间支架带动所述第一支架以及所述第二支架转动,从而带动天线电路板以及信号处理电路板。
在本发明一个实施例中,所述中间支架用于承载所述信号传输电路板。
在本发明一个实施例中,所述中间支架的两端分别与所述第一支架以及所述第二支架的中部固定连接,以共同形成H型结构,进而形成两个独立的容纳槽,其中一个所述容纳槽用于所述收容信号传输电路板,另外一个所述容纳槽用于收容所述驱动组件。
在本发明一个实施例中,所述中间支架的两端分别与所述第一支架以及所述第二支架的端部固定连接,以形成一个用于收容所述所述驱动组件的容纳槽。
本发明第二方面提供一种可移动平台,其特征在于,包括:
机身;
动力装置,安装在所述机身上,并且为所述机身提供移动动力;
根据本发明第一方面所述的旋转雷达,安装在所述机身上;以及
控制系统,与所述旋转雷达电连接,
其中,所述旋转雷达获取所述可移动平台周围的障碍物的位置信息,并将所述障碍物的位置信息发送给所述控制系统;
所述控制系统根据所述障碍物的位置信息,控制所述动力装置,以改变所述可移动平台的移动方向,以避开所述障碍物。
在本发明一个实施例中,所述可移动平台为无人机、自动驾驶汽车或地面遥控机器人。
根据本发明的旋转雷达及可移动平台,通过FPC(柔性电路板)实现各电路系统之间的柔性连接并压缩连接线的占用空间;同时通过金属结构件以及导电胶的连接设计形成一个封闭的腔体,改善对电路系统的屏蔽效果,即,通过FPC柔性连接实现雷达内部走线的紧凑化,减小了雷达体积, 通过金属结构件以及导电胶的连接设计实现雷达内部电路系统的有效屏蔽,减小了外界干扰。
附图说明
图1是根据本发明一实施例的旋转雷达的示意性剖视图;
图2是图1所示的旋转雷达的示意性立体图;
图3是根据本发明一实施例的旋转天线组件的结构示意图;
图4是根据本发明一实施例的第三柔性电路板的连接示意图;
图5是根据本发明一实施例的第一至第三柔性电路板的结构示意图;
图6是图1所示的旋转雷达的屏蔽结构的示意图;
图7是图1所示的旋转雷达的第三雷达底座的屏蔽结构的示意图;
图8是图1所示的旋转雷达的屏蔽罩的屏蔽结构的示意图;
图9是图1所示的旋转雷达的旋转安装座的屏蔽结构的示意图;
图10是根据本发明一实施例的可移动平台的示意性结构图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的 限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
图1是根据本发明一实施例的旋转雷达的示意性剖视图;图2是图1所示的旋转雷达的示意性立体图;图3是根据本发明一实施例的旋转天线组件的结构示意图;图4是根据本发明一实施例的第三柔性电路板的连接示意图;图5是根据本发明一实施例的第一至第三柔性电路板的结构示意图。
请参阅图1至图5,在本发明实施例中提供的旋转雷达100包括选旋转天线组件110、驱动组件130和雷达底座140。
其中,旋转天线组件110用于实现多圈360度的全向旋转,以将雷达信号360度全向发射出去,并360度全向接收雷达信号。在本实施例中,旋转天线组件110包括旋转安装座111以及安装在所述旋转安装座111上的天线电路板112、信号处理电路板113和信号传输电路板114。天线电路板112可以采用各种印刷电路板制作,在天线电路板112上设置有雷达天线及其相应的天线电路,例如设置有微波阵列天线以及相应的放大、降噪电路等,用于发射和接收雷达信号(例如微波信号)。信号处理电路板113可以采用各种印刷电路板制作,其上设置有各种用于处理雷达信号的电路和单元,可以包括处理芯片或电路结构。信号传输电路板114可以采用各种印刷电路板制作,其上设置有各种传输电路,用于实现在天线电路板112和信号处理电路板113之间的信号传输,以及天线电路板112和信号处理电路板、与底座电路板144之间的信号传输。
在本实施例中,旋转安装座111大致呈H型结构,其可以采用金属材料制作。示例性地,旋转安装座111包括第一支架、第二支架和中间支架, 所述第二支架与所述第一支架相对间隔设置,所述中间支架位于所述第一支架与所述第二支架之间,并且分别与所述第一支架以及所述第二支架固定连接。所述第一支架用于承载所述天线电路板112,所述第二支架用于承载信号处理电路板113,所述中间支架用于与所述驱动组件130连接,其中,电机(包括在驱动组件130内)通过所述中间支架带动所述第一支架以及所述第二支架转动,从而带动天线电路板112以及信号处理电路板113。所述中间支架还用于承载所述信号传输电路板114。
作为一个示例,所述中间支架的两端分别与所述第一支架以及所述第二支架的中部固定连接,以共同形成H型结构,进而形成两个独立的容纳槽,其中一个所述容纳槽用于所述收容信号传输电路板114,另外一个所述容纳槽用于收容所述驱动组件130。作为另一个示例,所述中间支架的两端分别与所述第一支架以及所述第二支架的端部固定连接,以形成一个用于收容所述所述驱动组件130的容纳槽。
在本实施例中,所述信号传输电路板114设置在所述旋转安装座111的上方,且在所述信号传输电路板114的上方设置有屏蔽罩117,用于屏蔽所述信号传输电路板114,以防止外部信号对信号传输电路板114的信号干扰,以及信号传输电路板114上信号对外界的干扰。所述屏蔽罩117与所述旋转安装座111直接或间接地电接触,所述屏蔽罩117与所述旋转安装座111共同形成一个用于收纳所述信号传输电路板114的屏蔽腔。屏蔽罩117可以由各种金属屏蔽材料制作,例如由不锈钢或铜制作。在本实施例中,屏蔽罩117的形状与传输电路板114的形状相对应,例如为板装结构。
在本实施例中,所述天线电路板112和所述信号处理电路板113相对设置,并且分别安装在所述旋转安装座111的相对侧上,具体地,在所述天线电路板112和所述信号处理电路板113设置第一安装座115和第二安装座116,通过所述第一安装座115和第二安装座116将所述天线电路板112和所述信号处理电路板113安装在所述旋转安装座111上。示例性地,旋转安装座111与所述天线电路板112和所述信号处理电路板113垂直设置。
在本实施例中,所述信号处理电路板113和信号传输电路板114通过 第一柔性电路板118电连接,所述天线电路板112和所述信号处理电路板113通过第二柔性电路板119电连接。所述第一柔性电路板118设置在所述天线电路板112和所述信号处理电路板113之间的空间中,所述第二柔性电路板119设置在所述天线电路板112和所述信号处理电路板113的侧壁上。具体地,所述信号处理电路板113和信号传输电路板上设置有供所述第一柔性电路板117插入的插座,所述第一柔性电路板117的两端分别设置有与所述插座相配合的插头,用于插入所述信号处理电路板113和信号传输电路板114上的插座来实现所述信号处理电路板113和信号传输电路板114的电连接。在本实施例中,在所述信号处理电路板113上通过导电压片120压紧固定所述第一柔性电路板118来实现固定,在所述信号传输电路板114上通过所述屏蔽罩117压紧固定所述第一柔性电路板118来实现固定。示例性地,如图3所示,在本实施例中,所述第一柔性电路板117相对电机的旋转轴倾斜设置,且由于其位于所述天线电路板112和所述信号处理电路板113之间的空间中,并且紧贴所述信号处理电路板113和信号传输电路板114以屏蔽罩117设置,极大地减少了空间占用率。
进一步地,所述天线电路板112和所述信号处理电路板113上设置有供所述第二柔性电路板119插入的插座,所述第二柔性电路板119的两端分别设置有与所述插座相配合的插头,用于插入所述天线电路板112和所述信号处理电路板113上的插座来实现所述天线电路板112和所述信号处理电路板113的电连接。在本实施例中,在所述信号处理电路板113上通过导电压片121压紧固定所述第二柔性电路板119,在所述天线电路板上通过导电压片或打胶紧固定所述第二柔性电路板119。示例性地,如图3和图5所示,所述第二柔性电路板119包括基体部和垂直所述基体部延伸的连接部,所述插头设置在所述连接部上。
如图1和图2所示,在本实施例中,驱动组件130与所述旋转安装座111连接,以带动所述旋转安装座111转动,进而带动旋转天线组件110旋转。在本实施例中,驱动组件130包括电机和电机控制电路板134。所述电机包括电机底座131、电机定子和和电机转子132,所述电机定子安装在所述电机底座131上,所述电机转子132与电机底座131可旋转地连接,以能够围绕所述电机定子旋转,所述电机转子132还与所述旋转安装座111 连接,以带动所述旋转天线组件110转动。示例性地,所述电机转子132通过电机滚动轴承133与电机底座131连接,以能够所述电机定子旋转。在本实施例中,所述电机底座131与所述旋转安装座111形成腔体,所述电机转子132、电机定子、电机控制电路板134设置在所述腔体中。所述电机控制电路板134可以采用各种印刷电路板制作,其上设置有各种电机控制电路和供电电路,用于为电机供电,并控制电机的工作。示例性地,在本实施例中,所述电机控制电路板134设置在所述电机底座131上。
如图1和图2所示,雷达底座140与电机底座131连接,用于支撑所述电机以及旋转天线组件110。所述雷达底座140内部形成有腔体,在所述腔体内设置有底座电路板144,所述电机控制电路板134和所述底座电路板144通过第三柔性电路板145电连接,从而通过底座电路板144为电机控制电路板134供电。在本实施例中,所述电机控制电路板134和所述底座电路板144上设置有供所述第三柔性电路板145插入的插座,所述第三柔性电路板145的两端分别设置有与所述插座相配合的插头,用于插入所述电机控制电路板134和所述底座电路板144上的插座来实现所述电机控制电路板134和所述底座电路板144的电连接。示例性地,底座电路板144通过第三柔性电路板145为电机控制电路板提供高压电。
在本实施例中,所述雷达底座140包括依次连接的第一雷达底座141、第二雷达底座142和第三雷达底座143,所述第二雷达底座142位于所述第一雷达底座141与所述第三雷达底座143之间。所述第一雷达底座141与所述电机连接,其大致呈筒状结构,且包括位于上方的第一筒状结构和位于下方的第二筒状结构,第一筒状结构的直径大于第二筒状结构的直径。在本实施例中,所述第一雷达底座141形成有第一腔体,在所述第一腔体中设置有第一无线线圈146和第二无线线圈147,以及第一无线传输天线148和第二无线传输天线149,所述第一无线线圈146与所述信号传输电路板114电连接,所述第二无线线圈147与所述底座电路板144电连接,所述底座电路板144通过所述第一无线线圈146和第二无线线圈147为所述天线电路板112、信号处理电路板113和信号传输电路板114供电。示例性地,底座电路板144通过所述第一无线线圈146和第二无线线圈147为所述天线电路板112、信号处理电路板113和信号传输电路板114提供低 压电能。所述第一无线传输天线148与所述信号传输电路板114电连接,所述第二无线传输天线149与所述底座电路板144电连接,所述底座电路板144通过所述第一无线传输天线148和第二无线传输天线149与所述天线电路板112、信号处理电路板113和信号传输电路板114进行通信。换言之,所述底座电路板144与所述天线电路板112、信号处理电路板113和信号传输电路板114之间的数据和命令通过所述第一无线传输天线148和第二无线传输天线149进行传输。示例性地,在本实施例中,所述第一无线传输天线148和第二无线传输天线149包括Wifi天线或蓝牙天线。
在本实施例中,所述第二雷达底座142和第三雷达底座143共同形成第二腔体,所述底座电路板144设置在所述第二腔体中,所述第二雷达底座142上形成有连通所述第一腔体和第二腔体的开孔,所述第三雷达底座143形成有连通所述第二腔体和外部的开孔。这样通过这些开孔可以将外部电能和信号传输进入雷达底座内部,然后再传输至各电路板。
如图1和图4所示,其中图4中示出了第一雷达底座141在底部的开开孔A和侧壁上的开槽B,以及A和B处的局部放大图。在本实施例中,所述第三柔性电路板145一端与所述电机控制电路板134连接,然后自所述第一雷达底座141外壁向下延伸并经由所述第一雷达底座141侧壁的开槽进入所述第一腔体内部,然后经由所述第一雷达底座141底部连通所述第一腔体和第二腔体的开孔进入所述第二腔体,再经由底座电路板144中央开孔与所述底座电路板144背面的插座电连接。这种走线方式完全在雷达底座140内部或侧壁上进行,没有占用结构件的外部空可见,从而提高了雷达的空间利用率。并且,在本实施例中,在所述第一雷达底座141侧壁的开槽处设置金属屏蔽件进行封闭,以防止电磁信号泄露,所述屏蔽件例如为铜箔,其可以粘贴在开槽处进行封闭。
示例性地,如图5所示,在本实施例中,所述第三柔性电路板145呈折线状。
应当了解,在本实施例中,第三雷达底座143与第二雷达底座142相连,第二雷达底座142与第一雷达底座141相连,第一雷达底座141又与电机底座131相连,电机底座131通过电机滚动轴承133与电机转子132相连,然后电机转子132与旋转安装座111相连,由于以上这些是金属件 连接,因此整个链路都是导电连续的。
在本实施例中,通过柔性电路板来实现各电路板之间的电连接,从而降低了空间占用率,减小了雷达体积。并且,为了实现更好地更屏蔽效果,在存在腔体的开口和间隙处增加了屏蔽结构,下面结合图6至图9进行说明。
图6是图1所示的旋转雷达的屏蔽结构的示意图;图7是图1所示的旋转雷达的第三雷达底座的屏蔽结构的示意图;图8是图1所示的旋转雷达的屏蔽罩的屏蔽结构的示意图;图9是图1所示的旋转雷达的旋转安装座的屏蔽结构的示意图。
如图6至图9所示,在本示例中,由于在第三雷达底座底部设置与外部连接的开孔,并且在屏蔽罩117、信号传输电路板114和旋转安装座111之间存在空隙,这都可能导致外部信号的干扰,因此为了形成封闭的屏蔽空间,在本实施例中,在这两处(图6中A和B)增加了屏蔽结构。图6示出了旋转雷达100增设屏蔽结构的位置及局部放大图。
如图6和图7所示,第三雷达底座143为了使得底座电路板144可以与外部连接获得电能以及传输信号,在底部开有孔C,此时为了保证可以形成封闭的屏蔽空间,在开孔C处的内部增加椭圆形环状的凸起,同时在突起上做环状的半圆形槽150以及在底座电路板144上对应的PCB表面做环状的露铜焊盘,然后在两者之间通过填充导电胶来电连接所述第三雷达底座143和所述底座电路板144。并且,在本实施例中,还可以在焊盘周围的开地孔,以实现内部电路的接地。
如图6、图8和图9所示,在旋转安装座111和屏蔽罩117彼此相对的一侧形成环绕外周的槽,例如环状的半圆形槽(160、170)(图8和图9中示出了半圆形槽D、E的局部以及放大图),同时在信号传输电路板114的上下表面对应位置做环状的露铜焊盘,后在分别在旋转安装座111的环状半圆形槽和PCB露铜焊盘、屏蔽罩117的环状半圆形槽和PCB露铜焊盘之间通过填充导电胶进行连接,所述焊盘通过所述导电胶与所述屏蔽罩117以及所述旋转安装座111电导通。并且,在本实施例中,还可以在焊盘周围的开地孔,以实现内部电路的接地。
应当理解,在本实施例中,经过以上措施,从上到下(第三雷达底座 143、底座电路板144、第二雷达底座142、第一雷达底座141、电机底座131、电机滚动轴承133、电机转子132、旋转安装座111、信号传输电路板114、屏蔽罩117)形成了一个导电连续的封闭空腔,从而将空腔内部的信号传输电路板114(含有WiFi芯片)、底座电路板144(含有WiFi芯片)、以及无线线圈和无线传输天线进行屏蔽,使其避免外界的干扰,并且也不会对外界进行干扰。
图10是根据本发明一实施例的可移动平台的示意性框图。虽然可移动平台300被描绘为无人飞行器,但这种描绘并不旨在是限制性的,其可以使用任何合适类型的可移动物体,例如可移动平台300可以为无人机、自动驾驶汽车或地面遥控机器人。
如图10所示,可移动平台300包括机身301和旋转雷达200,微波旋转雷达200安装在机身301上。具体地,机身301包括机架302和安装在机架302上的脚架303。机架302可作为可移动平台300的飞行控制系统、处理器、摄像机、照相机等的安装载体。脚架303安装在机架302的下方,旋转雷达200安装在脚架303上。脚架303可用于为可移动平台300降落时提供支撑,在一个实施例中,脚架303还可以搭载水箱,并用于通过喷头对植物喷洒农药和肥料等。旋转雷达200的结构如前所述旋转雷达100,在此不再赘述。
进一步地,可移动平台300还包括自机身301延伸的机臂304,机臂304可用于搭载动力装置305以为可移动平台300提供飞行的动力。搭载动力装置305可以包括旋翼、螺旋桨、桨叶、引擎、电机、轮子、轮轴、磁体或喷嘴中的一种或多种。可移动平台300可以具有一个或多个、两个或更多个、三个或更多个或者四个或更多个搭载动力装置305。动力装置305可以全都是同一类型。备选地,一个或多个动力装置305可以是不同类型的动力装置305。动力装置305可以使用任何合适的装置来安装在可移动平台300上。
进一步地,可移动平台300还控制系统,其与所述旋转雷达200电连接,所述旋转雷达200获取所述可移动平台300周围的障碍物的位置信息,并将所述障碍物的位置信息发送给所述控制系统,所述控制系统根据所述障碍物的位置信息,控制所述动力装置305,以改变所述可移动平台300 的移动方向,以避开所述障碍物。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有 特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种旋转雷达,其特征在于,包括:
    旋转天线组件,所述旋转天线组件包括旋转安装座以及安装在所述旋转安装座上的天线电路板、信号处理电路板和信号传输电路板,所述信号处理电路板和信号传输电路板通过第一柔性电路板电连接,所述天线电路板和所述信号处理电路板通过第二柔性电路板电连接;
    驱动组件,包括电机以及用于驱动所述电机的电机控制电路板,所述电机与所述旋转安装座机械耦合连接,以带动所述旋转安装座转动;
    雷达底座,所述雷达底座与电机固定连接,用于支撑所述电机,所述雷达底座内部形成有腔体,在所述腔体内设置有底座电路板,所述电机控制电路板和所述底座电路板通过第三柔性电路板电连接,
    其中,所述旋转安装座、所述电机以及所述雷达底座形成一个导电连续的封闭腔体。
  2. 根据权利要求1所述的旋转雷达,其特征在于,所述天线电路板和所述信号处理电路板相对间隔设置,并且分别安装在所述旋转安装座的相对侧上,所述第一柔性电路板设置在所述天线电路板和所述信号处理电路板之间的空间中。
  3. 根据权利要求1所述的旋转雷达,其特征在于,所述信号传输电路板设置在所述旋转安装座的上方,且在所述信号传输电路板的上方设置有屏蔽罩。
  4. 根据权利要求3所述的旋转雷达,其特征在于,所述屏蔽罩与所述旋转安装座直接或间接地电接触,所述屏蔽罩与所述旋转安装座共同形成一个用于收纳所述信号传输电路板的屏蔽腔。
  5. 根据权利要求4所述的旋转雷达,其特征在于,在所述旋转安装座和所述屏蔽罩彼此相对的一侧形成环绕外周的槽,在所述信号传输电路板上的上下表面的与所述槽对应的位置形成环绕外周的焊盘,且在所述槽和焊盘之间填充导电胶,所述焊盘通过所述导电胶与所述屏蔽罩以及所述旋转安装座电导通。
  6. 根据权利要求4所述的旋转雷达,其特征在于,所述信号处理电路板和信号传输电路板上设置有供所述第一柔性电路板插入的插座,所述第一柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述信号处理电路板和信号传输电路板上的插座来实现所述信号处理电路板和信号传输电路板的电连接。
  7. 根据权利要求6所述的旋转雷达,其特征在于,在所述信号处理电路板上通过导电压片压紧固定所述第一柔性电路板,在所述信号传输电路板上通过所述屏蔽罩压紧固定所述第一柔性电路板。
  8. 根据权利要求1所述的旋转雷达,其特征在于,所述第一柔性电路板相较于所述电机的旋转轴倾斜设置。
  9. 根据权利要求1所述的旋转雷达,其特征在于,所述天线电路板和所述信号处理电路板上设置有供所述第二柔性电路板插入的插座,所述第二柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述天线电路板和所述信号处理电路板上的插座来实现所述天线电路板和所述信号处理电路板的电连接。
  10. 根据权利要求9所述的旋转雷达,其特征在于,在所述信号处理电路板上通过导电压片压紧固定所述第二柔性电路板,在所述天线电路板上通过导电压片紧固定所述第二柔性电路板;
    或/及,所述第二柔性电路板包括基体部和垂直所述基体部延伸的连接部,所述插头设置在所述连接部上。
  11. 根据权利要求1所述的旋转雷达,其特征在于,所述电机包括:
    电机底座,
    电机定子,安装在所述电机底座上;
    电机转子,所述电机转子与电机底座可旋转地连接,以能够围绕所述电机定子旋转,所述电机转子还与所述旋转安装座连接,以带动所述旋转天线组件转动;
    所述电机底座与所述旋转安装座形成腔体,所述电机转子、电机定子、电机控制电路板设置在所述腔体中。
  12. 根据权利要求1所述的旋转雷达,其特征在于,所述电机控制电路板设置在所述电机底座上,用于为电机供电并控制所述电机的工作。
  13. 根据权利要求1所述的旋转雷达,其特征在于,所述雷达底座包括依次连接的第一雷达底座、第二雷达底座和第三雷达底座,所述第二雷达底座位于所述第一雷达底座与所述第三雷达底座之间。
  14. 根据权利要求13所述的旋转雷达,其特征在于,
    所述第一雷达底座与所述电机连接,所述第一雷达底座形成有第一腔体,在所述第一腔体中设置有第一无线线圈和第二无线线圈,以及第一无线传输天线和第二无线传输天线,
    所述第一无线线圈与所述信号传输电路板电连接,所述第二无线线圈与所述底座电路板电连接,所述底座电路板通过所述第一无线线圈和第二无线线圈为所述天线电路板、信号处理电路板和信号传输电路板供电;
    所述第一无线传输天线与所述信号传输电路板电连接,所述第二无线传输天线与所述底座电路板电连接,所述底座电路板通过所述第一无线传输天线和第二无线传输天线与所述天线电路板、信号处理电路板和信号传输电路板进行通信。
  15. 根据权利要求14所述的旋转雷达,其特征在于,所述第一无线传输天线和第二无线传输天线包括Wifi天线或蓝牙天线。
  16. 根据权利要求14所述的旋转雷达,其特征在于,所述第二雷达底座和第三雷达底座共同形成第二腔体,所述底座电路板设置在所述第二腔体中,所述第二雷达底座上形成有连通所述第一腔体和第二腔体的开孔,所述第三雷达底座形成有连通所述第二腔体和外部的开孔。
  17. 根据权利要求16所述的旋转雷达,其特征在于,在所述第三雷达底座的开孔的内侧设置环状凸起,并且在所述环状凸起上形成槽;
    在所述底座电路板上对应所述环状凸起的位置形成环状焊盘,且通过在所述槽和所述环状焊盘之间填充导电胶来电连接所述第三雷达底座和所述底座电路板。
  18. 根据权利要求16所述的旋转雷达,其特征在于,所述第三柔性电路板一端与所述电机控制电路板连接,然后自所述第一雷达底座外壁向下延伸并经由所述第一雷达底座侧壁的开槽进入所述第一腔体内部,然后经由所述第一雷达底座底部连通所述第一腔体和第二腔体的开孔进入所述第二腔体,与所述底座电路板电连接。
  19. 根据权利要求18所述的旋转雷达,其特征在于,在所述第一雷达底座侧壁的开槽处设置金属屏蔽件进行封闭。
  20. 根据权利要求1所述的旋转雷达,其特征在于,所述第三柔性电路板呈折线状。
  21. 根据权利要求1所述的旋转雷达,其特征在于,所述电机控制电路板和所述底座电路板上设置有供所述第三柔性电路板插入的插座,所述第三柔性电路板的两端分别设置有与所述插座相配合的插头,用于插入所述电机控制电路板和所述底座电路板上的插座来实现所述电机控制电路板和所述底座电路板的电连接。
  22. 根据权利要求1所述的旋转雷达,其特征在于,所述旋转安装座包括:
    第一支架,用于承载所述天线电路板;
    第二支架,用于承载所述信号处理电路板,所述第二支架与所述第一支架相对间隔设置;
    中间支架,用于与所述驱动组件连接,所述中间支架位于所述第一支架与所述第二支架之间,并且分别与所述第一支架以及所述第二支架固定连接,
    其中,所述电机通过所述中间支架带动所述第一支架以及所述第二支架转动,从而带动天线电路板以及信号处理电路板。
  23. 根据权利要求22所述的旋转雷达,其特征在于,所述中间支架用于承载所述信号传输电路板。
  24. 根据权利要求22所述的旋转雷达,其特征在于,所述中间支架的两端分别与所述第一支架以及所述第二支架的中部固定连接,以共同形成H型结构,进而形成两个独立的容纳槽,其中一个所述容纳槽用于所述收容信号传输电路板,另外一个所述容纳槽用于收容所述驱动组件。
  25. 根据权利要求22所述的旋转雷达,其特征在于,所述中间支架的两端分别与所述第一支架以及所述第二支架的端部固定连接,以形成一个用于收容所述所述驱动组件的容纳槽。
  26. 一种可移动平台,其特征在于,包括:
    机身;
    动力装置,安装在所述机身上,并且为所述机身提供移动动力;
    权利要求1-25任一项所述的旋转雷达,安装在所述机身上;以及
    控制系统,与所述旋转雷达电连接,
    其中,所述旋转雷达获取所述可移动平台周围的障碍物的位置信息,并将所述障碍物的位置信息发送给所述控制系统;
    所述控制系统根据所述障碍物的位置信息,控制所述动力装置,以改变所述可移动平台的移动方向,以避开所述障碍物。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述可移动平台为无人机、自动驾驶汽车或地面遥控机器人。
PCT/CN2020/088677 2020-05-06 2020-05-06 旋转雷达及可移动平台 WO2021223082A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080030084.7A CN113767299A (zh) 2020-05-06 2020-05-06 旋转雷达及可移动平台
PCT/CN2020/088677 WO2021223082A1 (zh) 2020-05-06 2020-05-06 旋转雷达及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088677 WO2021223082A1 (zh) 2020-05-06 2020-05-06 旋转雷达及可移动平台

Publications (1)

Publication Number Publication Date
WO2021223082A1 true WO2021223082A1 (zh) 2021-11-11

Family

ID=78467721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088677 WO2021223082A1 (zh) 2020-05-06 2020-05-06 旋转雷达及可移动平台

Country Status (2)

Country Link
CN (1) CN113767299A (zh)
WO (1) WO2021223082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598607A (zh) * 2022-10-12 2023-01-13 扬州宇安电子科技有限公司(Cn) 一种可重构雷达通信一体化信号测向定位设备调试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN103983950A (zh) * 2014-05-08 2014-08-13 成都雷电微力科技有限公司 T/r模块安装pcb板结构件
CN108513620A (zh) * 2017-04-11 2018-09-07 深圳市大疆创新科技有限公司 雷达组件及无人机
CN108700657A (zh) * 2017-12-18 2018-10-23 深圳市大疆创新科技有限公司 雷达和具有该雷达的可移动设备
CN211180184U (zh) * 2019-11-04 2020-08-04 深圳市大疆创新科技有限公司 机械旋转微波雷达及可移动平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN103983950A (zh) * 2014-05-08 2014-08-13 成都雷电微力科技有限公司 T/r模块安装pcb板结构件
CN108513620A (zh) * 2017-04-11 2018-09-07 深圳市大疆创新科技有限公司 雷达组件及无人机
CN108700657A (zh) * 2017-12-18 2018-10-23 深圳市大疆创新科技有限公司 雷达和具有该雷达的可移动设备
CN211180184U (zh) * 2019-11-04 2020-08-04 深圳市大疆创新科技有限公司 机械旋转微波雷达及可移动平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598607A (zh) * 2022-10-12 2023-01-13 扬州宇安电子科技有限公司(Cn) 一种可重构雷达通信一体化信号测向定位设备调试装置
CN115598607B (zh) * 2022-10-12 2023-10-27 扬州宇安电子科技有限公司 一种可重构雷达通信一体化信号测向定位设备调试装置

Also Published As

Publication number Publication date
CN113767299A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2019119242A1 (zh) 雷达装置及无人飞行器
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
CN205554624U (zh) 拍摄设备及无人机
CN108885248B (zh) 雷达装置、雷达的无线旋转装置及无人机
US11281076B2 (en) Three-axis gimbal and three-axis gimbal photographing apparatus
WO2021223082A1 (zh) 旋转雷达及可移动平台
CN103972652B (zh) 一种低轮廓移动卫星通信天线伺服机构
CN211505864U (zh) 雷达及可移动平台
CN205565057U (zh) 电连接组件、云台及无人飞行器
CN108008741A (zh) 无人飞行器跟踪天线,遥控器套件以及无人飞行器套件
CN110829027B (zh) 天线部件和客户终端设备
CN108767435A (zh) 天线及无人飞行器
CN208284644U (zh) 一种无人机用自动追踪天线
CN211180184U (zh) 机械旋转微波雷达及可移动平台
CN210490561U (zh) 无线供电与通信的集成系统、雷达装置和无人机
WO2023116450A1 (zh) 一种雷达装置及无人机
CN213457345U (zh) 旋转雷达及可移动平台
WO2023046172A1 (zh) 一种云台以及无人机
WO2021087697A1 (zh) 传感器及可移动平台
CN110931977A (zh) 天线部件和客户终端设备
WO2021081904A1 (zh) 微波天线结构、微波旋转雷达及可移动平台
CN216928924U (zh) 一种天线、无线信号处理设备及无人机
WO2021056430A1 (zh) 无线供电与通信的集成系统、雷达装置和无人机
CN113258291B (zh) 摄像设备
US20210104816A1 (en) Combination driven and parasitic element circularly polarized antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934522

Country of ref document: EP

Kind code of ref document: A1