WO2019119242A1 - 雷达装置及无人飞行器 - Google Patents

雷达装置及无人飞行器 Download PDF

Info

Publication number
WO2019119242A1
WO2019119242A1 PCT/CN2017/117039 CN2017117039W WO2019119242A1 WO 2019119242 A1 WO2019119242 A1 WO 2019119242A1 CN 2017117039 W CN2017117039 W CN 2017117039W WO 2019119242 A1 WO2019119242 A1 WO 2019119242A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
radar
slip ring
antenna assembly
rotating
Prior art date
Application number
PCT/CN2017/117039
Other languages
English (en)
French (fr)
Inventor
王佳迪
王春明
匡亮亮
谭洪仕
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/117039 priority Critical patent/WO2019119242A1/zh
Priority to CN201780006002.3A priority patent/CN108513621A/zh
Publication of WO2019119242A1 publication Critical patent/WO2019119242A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the invention relates to the field of aircrafts, and in particular to a radar device and an unmanned aerial vehicle.
  • automatic control equipment such as unmanned aerial vehicles may realize automatic flight during operation.
  • automatic flight it is necessary to rely on the sensors or obstacle-avoidance radars provided on the UAV to sense the surrounding environment and obstacles, so that the UAV can perform obstacle avoidance operations in time to ensure flight and operation safety.
  • a single obstacle avoidance radar usually only has a limited detection angle, so the detection angle and detection coverage of the UAV are limited, and it is difficult to ensure the reliability of the obstacle avoidance.
  • the invention provides a radar device and an unmanned aerial vehicle, which can realize circumferential 360° omnidirectional detection coverage.
  • the present invention provides a radar apparatus including a radar base, an antenna assembly disposed on the radar base, and an electrical connection assembly electrically connected to the antenna assembly, the electrical connection assembly including an electric slip ring and an output unit, the antenna assembly being opposite
  • the radar base rotates about a rotating shaft, and one of the antenna assembly and the output unit is electrically connected to the rotating portion of the electric slip ring, and the other is electrically connected to the fixed portion of the electric slip ring.
  • the present invention provides an unmanned aerial vehicle comprising a body and a radar device as described above, the radar device being disposed on the body, and the antenna assembly in the radar device being disposed toward an outer side of the body.
  • the radar device specifically comprises a radar base, an antenna assembly disposed on the radar base, and an electrical connection component electrically connected to the antenna assembly, the electrical connection component
  • the utility model comprises an electric slip ring and an output unit, wherein the antenna assembly is rotatable relative to the radar base about a rotating shaft, and one of the antenna assembly and the output unit is electrically connected with the rotating portion of the electric slip ring, and the other is fixed with the rotating portion of the electric slip ring Electrical connection.
  • the antenna assembly in the radar device can be rotated in the circumferential direction to scan the 360° omnidirectional range, and the radar device can detect a wider range, achieve a larger detection and coverage angle, and the detection data is updated faster.
  • FIG. 1 is a schematic structural diagram of a radar apparatus according to Embodiment 1 of the present invention.
  • Figure 2 is a partial enlarged view of the portion A in Figure 1;
  • FIG. 3 is a schematic exploded view of a radar device according to Embodiment 1 of the present invention.
  • FIG. 4 is a bottom view of a radar apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of another radar apparatus according to Embodiment 2 of the present invention.
  • Figure 6 is a partial enlarged view of the portion B in Figure 5;
  • FIG. 7 is a schematic exploded view of another radar device according to Embodiment 2 of the present invention.
  • FIG. 8 is a bottom view of another radar device according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 3 of the present invention.
  • FIG. 1 is a schematic structural diagram of a radar apparatus according to Embodiment 1 of the present invention.
  • Fig. 2 is a partially enlarged schematic view showing a portion A in Fig. 1.
  • FIG. 3 is a schematic exploded view of a radar apparatus according to Embodiment 1 of the present invention.
  • 4 is a bottom view of a radar apparatus according to Embodiment 1 of the present invention.
  • the radar apparatus provided in this embodiment specifically includes a radar base 1 , an antenna assembly 2 disposed on the radar base 1 , and an electrical connection component 3 electrically connected to the antenna assembly 2 , and the electrical connection component 3 .
  • the electric slip ring 31 and the output unit 32 are included.
  • the antenna assembly 2 is rotatable relative to the radar base 1 about a rotating shaft, and one of the antenna assembly 2 and the output unit 32 is electrically connected to the rotating portion of the electric slip ring 31, and the other It is electrically connected to a fixed portion of the electric slip ring 31.
  • the radar device is mainly used to transmit the detection wave.
  • the detection wave encounters an obstacle when it advances, it will generate reflection and fold back, so that the radar device can know the surrounding environment or obstacle by receiving the echo signal.
  • the radar device is usually for detecting in different directions and angles, and the antenna assembly 2 in the radar device usually includes a directional antenna or other directional detecting device, that is, the energy emitted by the antenna assembly 2. Focus on a specific range of angles and directions.
  • the antenna assembly 2 in the radar device can be rotated about a rotation axis with respect to the radar base such that the antenna assembly 2 can be rotated circumferentially to scan an 360-degree omnidirectional range. In this way, the radar device can detect a relatively wide range and achieve a large detection and coverage angle.
  • the rotating shaft around the antenna assembly 2 can be a solid rotating shaft.
  • the antenna assembly 2 can be mounted on the radar base 1 through the shaft member. Alternatively, it can be a virtual axis. In this case, the antenna assembly 2 can pass through the connecting arm. The components are mounted on the radar base 1, and the antenna assembly 2 is rotated around a certain straight line.
  • the rotating shaft around which the antenna assembly 2 rotates generally has an end that is directed toward the radar base 1 at one end and a direction away from the radar base 1 at the other end. Thus, when the antenna assembly 2 is rotated, it is difficult to interfere with the radar base 1.
  • the rotation axis of the antenna assembly 2 is generally perpendicular to the direction of the maximum size of the radar base 1.
  • the range of rotation angle of the antenna assembly 2 about the rotation axis is greater than or equal to 360°.
  • the antenna assembly 2 can cover the 360° full-angle range around the rotating shaft, and no dead angle occurs during the detection, and the detection coverage and detection reliability of the radar device are good.
  • the antenna assembly 2 compared with the antenna rotation mode whose coverage is less than 360°, since the antenna assembly 2 can realize infinite rotation about the rotation axis and rotate to an arbitrary angle without considering the stop of the antenna assembly 2 at the critical angle, the antenna assembly 2 The rotation can be achieved at a faster speed, and the radar device can maintain a higher data acquisition speed and update rate, improving detection accuracy and reliability.
  • the antenna assembly 2 in the radar device needs to exchange signals with external components such as the output unit 32 to realize the operation parameter control of the antenna assembly 2 and the transmission of the echo signal
  • the antenna assembly 2 usually utilizes electrical connectors and external components such as cables. Realize electrical connections.
  • an electric slip ring 31 is provided in the radar device, and the electric slip ring 31 has a relative rotation fixed.
  • the rotating portion is connected to an external component such as the output unit 32, and relies on an electrical connection between the fixed portion and the rotating portion of the electric slip ring 31 to realize electrical connection and signal transmission between the antenna assembly 2 and the output unit 32.
  • the fixed portion and the rotating portion of the electric slip ring 31 are generally both of a rotating body, and the fixed portion and the rotating portion are disposed coaxially, and the fixed portion and the rotating portion may be located at a relative rotating shaft.
  • the same height of the heart is nested inside and outside.
  • the structure for maintaining electrical connection between the fixed portion and the rotating portion may be in various forms.
  • a contact and an electrical connection can be achieved between the fixed portion of the electric slip ring 31 and the rotating portion of the electric slip ring by relative rotation of the brush.
  • the inside of the electric slip ring 31 may be electrically connected by means of a flow dielectric such as mercury or an optical fiber.
  • the electrical slip ring 31 can also achieve electrical connection between the fixed portion and the rotating portion by other means commonly used by those skilled in the art, and details are not described herein.
  • the output unit 32 can integrate the processor for signal processing, thereby controlling the operation of the antenna assembly 2, and can also serve as a signal transmission intermediary to realize electrical connection and signal transmission between the antenna assembly 2 and other external components. .
  • the antenna assembly 2 and the rotating portion of the electric slip ring 31 may be electrically connected, and the output unit 32 and the fixed portion of the electric slip ring 31 are respectively Electrical connection.
  • the rotating portion of the electric slip ring 31 generally has a lighter weight and does not cause excessive obstruction to the rotation of the antenna assembly 2, and the fixed portion of the electric slip ring 31 generally has a relatively regular shape, so that it can be easily fixed. On the radar device.
  • the radar device can also be connected to the fixed portion of the electric slip ring 31 by the antenna assembly 2 and the connection between the rotating portion of the electric slip ring 31 and the output unit 32 according to different situations such as the use scene. .
  • the radar device may further include a motor 4 for driving the rotation of the antenna assembly 2, wherein the motor 4 includes a stator 41 and is rotatable relative to the stator 41.
  • the rotor 42, the antenna assembly 2 and the rotor 42 are fixedly connected, and the stator 41 and the radar base 1 are relatively fixed.
  • the motor 4 when the motor 4 is energized, the rotor 42 in the motor 4 can be rotated relative to the stator 41 by the electromagnetic field, thereby driving the antenna assembly 2 to rotate about the rotation axis.
  • the stator 41 of the motor 4 may be provided with an excitation component such as a coil 411, and the rotor 42 usually includes a core or the like, so that when the stator 41 generates an electromagnetic field, the rotor 42 can be pushed and rotated by the electromagnetic field to generate sufficient The driving force for driving the rotation of the antenna assembly 2.
  • the motor 4 may be an inner rotor motor.
  • the stator 41 is disposed outside the rotor 42.
  • the stator 41 of the motor 4 can be conveniently connected to the radar base 1, and the rotor 42 is located at the center of the stator 41, and can be used to drive the antenna assembly 2 to rotate about the rotating shaft.
  • the axis of the rotor 42 is generally the axis of rotation of the antenna assembly 2. Located on the same line.
  • the antenna assembly 2 is typically located on a different side of the radar base 1 than the motor 4.
  • the radar base 1 may be provided with a through hole through which the rotor 42 can pass.
  • the rotor 42 in the motor 4 can pass through the through hole and make a connection with the antenna assembly 2.
  • a structure such as a bearing 412 may be disposed in the motor 4 to enable the rotor 42 to freely rotate relative to the stator 41.
  • the antenna assembly 2 can be electrically connected through the rotor 42 and the electric slip ring 31 as an optional connection.
  • the antenna assembly 2 is connected to the rotor 42 of the motor 4 and is rotated by the rotor 42, and the rotor 42 is simultaneously connectable to the rotating portion of the electric slip ring 31. Therefore, the antenna assembly 2 and the rotor 42 can be electrically connected, and the rotor 42 can be used as a medium to communicate the antenna assembly 2 and the rotating portion of the electric slip ring 31 to achieve electrical connection between the antenna assembly 2 and the electric slip ring 31. Connection and signal transmission.
  • the rotor 42 and the electric slip ring 31 can have various connection manners. The following is a specific connection between the rotor 42 and the electric slip ring 31. The method and structure are described in detail.
  • the rotor 42 is a hollow shaft having a hollow cavity 421. Since the rotor 42 has a hollow structure, the hollow cavity 421 of the rotor 42 can be used for accommodating the connecting cable, and the rotating portion of the electric slip ring 31 can also be at least partially accommodated in the hollow cavity 421 with the rotor. 42 rotates together. At this time, the cable inside the rotor 42 and the rotating portion of the electric slip ring 31 can be connected.
  • the electric slip ring 31 for connection with the rotor 42 may be a cap slip ring.
  • the electric slip ring 31 may include a cover 311 and a rotating shaft 312 disposed in the cover 311.
  • the rotating shaft 312 is rotatable relative to the cover 311, so that the cover 311 can serve as a fixed portion of the electric slip ring 31.
  • the rotating shaft 312 serves as a rotating portion of the electric slip ring 31.
  • the cover 311 of the electric slip ring 31 can be generally in the shape of a hollow cylinder or the like, and the rotating shaft 312 is located at the center of the casing 311 and is generally concentric with the casing 311 so that the rotating shaft 312 can rotate smoothly. Rotating within the casing 311 without interference and obstruction by the casing 311.
  • the cover 311 and the radar base 1 The connection is typically made by snapping or by threaded fasteners.
  • the electric slip ring 31 can be easily disassembled and replaced from the radar base 1 for convenient maintenance and maintenance.
  • the rotating shaft 312 serves as a rotating portion of the electric slip ring 31, the rotor 42 generally rotates in synchronization with the rotating shaft 312.
  • the rotor 42, the antenna assembly 2, and the rotating shaft 312 are all kept in synchronous rotation, the angle of rotation thereof is always uniform, and the cable located inside the hollow cavity 421 of the rotor 42 is also connected to the rotating shaft 312. In a relatively static space, no twisting or the like occurs.
  • the end of the rotating shaft 312 protrudes from the inside of the casing 311 and projects into the hollow cavity 421 of the rotor 42. At this time, the end portion of the rotating shaft 312 is exposed, and thus can be inserted into the inside of the rotor 42 to be connected to the rotor 42.
  • the rotor 42 of the motor 4 does not need to be exposed outside the stator 41, so that the rotor 42 is better protected, and the structure of the electric slip ring 31 is simpler and lower in cost.
  • the rotating portion of the electric slip ring 31 can be connected to the antenna assembly 2 through the first rotor connection line 313.
  • the first rotor connection line 313 may include one or more cables for respectively transmitting different signals.
  • the fixed portion of the electric slip ring 31 can be connected to the output unit 32 via the first stator connection line 314.
  • the first stator connection line 314 may also include one or more cables to transmit different signals, respectively.
  • the number of cables included in the first stator connection line 314 should be the same as the number of cables included in the first rotor connection line 313.
  • first rotor connection line 313 and the first stator connection line 314 may be used simultaneously or separately.
  • the fixed portion of the electric slip ring 31 can be connected to the output unit 32 by other electrical connections, such as a plug terminal or the like.
  • the electric slip ring 31 is connected to the antenna assembly 2 and the output unit 32 in various ways, and the connection mode is flexible, and can be applied to many different use occasions.
  • the first rotor connecting line 313 is disposed on the rotating shaft 312 and protrudes into the hollow cavity 421 of the rotor 42.
  • the hollow cavity 421 of the rotor 42 can accommodate the end of the rotating shaft 312 and the first rotor.
  • the connecting wire 313 allows the first rotor connecting wire 313 to be connected to the antenna assembly 2 through the hollow cavity 421, and the first rotor connecting wire 313 can be protected from the rotor structure and is less likely to be damaged.
  • the first rotor connecting line 313 or other cables are prevented from being twisted due to the relative rotation of the rotor 42 and the rotating shaft 312, and the end of the rotor 42 is further
  • a limiting member 43 is provided for engaging with the rotating shaft 312, and the limiting member 43 is configured to drive the rotating shaft 312 to rotate.
  • the rotating shaft 312 can achieve synchronous rotation with the rotation of the rotor 42.
  • the rotating shaft 312 may have an outer edge shape that matches the engaging portion, or has an engaging structure that can be engaged with the limiting member 43, such as a card protrusion or the like.
  • the limiting member 43 has a non-circular hole
  • the rotating shaft 312 is a non-circular shaft matching the non-circular hole shape
  • the rotating shaft 312 is locked in the non-circular hole.
  • the rotating shaft 312 since the rotating shaft 312 is a non-circular axis, the rotating shaft 312 has different radial sizes at different rotation angles, and under the limitation of the non-circular hole, the rotating shaft 312 cannot be relatively non-aligned due to the limitation of the radial size.
  • the circular hole is rotated, so that the rotation of the rotating shaft 312 with respect to the rotor 42 can be prevented, and the rotating shaft 312 can be synchronously rotated with the rotor 42.
  • the cross-sectional profile of the rotating shaft 312 may be elliptical, polygonal or other non-circular type well known to those skilled in the art, and the non-circular hole on the limiting member 43 may have a matching shape with the cross section of the rotating shaft 312.
  • the limiting member 43 has a profiled hole, and the rotating shaft 312 is a profiled shaft.
  • the shaped hole may be a D-shaped hole or the like, and the rotating shaft 312 is a D-shaped axis.
  • the limiting member 43 and the rotor 42 may be a split structure or a one-piece structure.
  • the stop member 43 is typically a separate component that is detachably coupled to the rotor 42.
  • connection between the limiting member 43 and the end of the rotor 42 can be achieved by a threaded fastener, such that the limiting member 43 and the rotor 42
  • the connection between the two is relatively reliable and is not easily loosened or dropped by the rotation of the rotor 42.
  • the output circuit board 321 typically includes a variety of functional circuits, such as an electronic governor for controlling the rotation of the motor 4, and an output circuit for signal interaction with the antenna assembly 2.
  • the output circuit board 321 may also be integrated with other functional circuits that need to interact with components such as the antenna assembly 2, and the output unit 32 may also include other components known to those skilled in the art, such as cables, and will not be described herein. .
  • the output circuit board 321 in the output unit 32 is connected to the radar base 1. Since the radar base 1 does not rotate, and the radar base 1 generally has a large fixing structure and a seating space, the output circuit board 321 can be relatively reliably fixed.
  • the output unit 32 further includes a bracket 322 or a slot disposed on the radar base 1 for mounting the output circuit board 321.
  • the output circuit board 321 is generally located on the side of the radar base 1 remote from the antenna assembly 2.
  • the output circuit board 321 is disposed away from the antenna assembly 2, and the peripheral side of the antenna assembly 2 is not shielded from the structure, thereby ensuring the scanning and detecting effect of the antenna assembly 2 in the radar device.
  • the antenna assembly 2 may specifically include a radiation piece 21, a radar control board 22 and an antenna frame 23, and the antenna frame 23 and the rotor 42 are connected and rotatable with the rotation of the rotor 42, the radiation piece 21
  • the antenna frame 23 is disposed on the antenna frame 23, so that the antenna frame 23 can serve as a connection structure for supporting the radiation piece 21, and carries and drives the radiation piece 21 to realize rotation detection;
  • the radar control board 22 is electrically connected to the radiation piece 21 and the electric slip ring 31, respectively, so that The radiation piece 21 is caused to emit a detection signal by feeding the radiation piece 21, and controls the operating state and operating parameters of the entire antenna assembly 2.
  • the radar device may also generally include a radome 5 disposed on the radar base 1 and enclosed with the radar base 1 for receiving The space of the antenna assembly 2.
  • the radome 5 can protect the antenna assembly 2 located inside thereof, preventing external water vapor, dust, and the like from being contaminated on the antenna assembly 2, and also avoiding direct collision between the external object and the antenna assembly 2.
  • the radome 5 is generally made of a material that allows the detection wave emitted by the radar device to pass through.
  • the radar device can be detected by a plurality of different types of probe waves.
  • the radar device can be a commonly used microwave radar to detect by transmitting radio waves.
  • the measurement work, or the radar device can also be a laser radar, and rely on the emission of the laser beam for detection and target ranging.
  • the antenna assembly 2 should also include components such as a laser transmitter and a laser receiver, and rely on the circumferential rotation of the antenna assembly 2 to achieve omnidirectional coverage of the laser beam.
  • the radar device can also perform detection by using a detection mode and a detection wave type commonly used by those skilled in the art, such as sound waves or other wavelengths of radio waves, etc., and details are not described herein again.
  • the radar device specifically includes a radar base, an antenna assembly disposed on the radar base, and an electrical connection assembly electrically connected to the antenna assembly.
  • the electrical connection assembly includes an electric slip ring and an output unit, and the antenna assembly is relative to the radar base. Rotating about a rotating shaft, and one of the antenna assembly and the output unit is electrically connected to the rotating portion of the electric slip ring, and the other is electrically connected to the fixed portion of the electric slip ring.
  • the antenna assembly in the radar device can be rotated in the circumferential direction to scan the 360° omnidirectional range, and the radar device can detect a wider range, achieve a larger detection and coverage angle, and the detection data is updated faster.
  • FIG. 5 is a schematic structural diagram of another radar apparatus according to Embodiment 2 of the present invention.
  • Fig. 6 is a partially enlarged schematic view showing a portion B in Fig. 5.
  • FIG. 7 is a schematic exploded view of another radar device according to Embodiment 2 of the present invention.
  • FIG. 8 is a bottom view of another radar apparatus according to Embodiment 2 of the present invention.
  • the overall structure and working principle of the radar device in this embodiment are substantially the same as those of the radar device in the first embodiment. The difference is that, in order to facilitate the disassembly and replacement, the embodiment is adopted in the first embodiment.
  • Different electric slip ring structures can be used to make a quick release structure on the connection between the electric slip ring and the rotor of the motor.
  • the electric slip ring 31 includes a first rotating ring 315 and a second rotating ring 316 which are concentrically arranged and relatively rotatable, and the first rotating ring 315 Located on the inner side of the second rotating ring 316, and as a rotating portion of the electric slip ring 31, the second rotating ring 316 serves as a fixed portion of the electric slip ring 31.
  • the electric slip ring 31 adopts an annular hollow structure, so that the rotor 42 of the motor 4 can be passed through the central through hole of the electric slip ring 31.
  • the end of the rotor 42 passes through the interior of the first rotating ring 315 and is coupled to the first rotating ring 315.
  • the rotor 42 of the motor 4 has a long length so that the end of the rotor 42 can protrude from the stator 41 and protrude outward, and the electric slip ring 31 can be sleeved on the end of the rotor 42. .
  • the length of the rotor 42 can be lengthened by providing the extension shaft 422 coaxially connected to the rotor 42 at the end of the rotor 42.
  • Extended shaft The 422 can be connected to the rotor 42 in a detachable manner or in a fixed manner.
  • the motor 4 and the electric slip ring 31 should normally be disposed away from the antenna assembly 2.
  • the end of the rotor 41 may be connected to the side of the first rotating ring 315 remote from the antenna assembly 2. Therefore, when the electric slip ring 31 and the rotor 42 are connected, they are also away from the antenna assembly 2, thereby avoiding interference with the rotation and normal detection of the antenna assembly 2.
  • the end of the rotor 42 or the end of the elongated shaft 422 may be coupled to the first rotating ring 315 by a threaded fastener.
  • the first rotating ring 315 of the electric slip ring 31 can also form a reliable connection with the rotor 42, and the electric slip ring 31 can be easily detached from the rotor 42, and maintenance and replacement are relatively simple.
  • the connection between the rotor 42 and the first rotating ring 315 can also be realized by a connection method commonly used by those skilled in the art, such as a snap connection, and details are not described herein again.
  • the end of the rotor 42 is provided with an adapter 44 electrically connected to the antenna assembly 2, and the first rotating ring 315 is provided with
  • the second rotor connection line 317, the adapter 44 and the second rotor connection line 317 are pluggable electrical connections.
  • the antenna assembly 2 and the electric slip ring 31 can be conveniently connected by the plug-in connection between the adapter 44 and the second rotor connecting line 317, and the plug-in connection can realize quick connection and disconnection.
  • the quick-release installation of the electric slip ring 31 is facilitated.
  • the adapter 44 can be coupled to the antenna assembly 2 by a cable or other electrical connection on the surface or interior of the rotor 42.
  • a first terminal may be disposed on the adapter 44, the first end of the second rotor connection line 317 is electrically connected to the first rotating ring 315, and the second end of the second rotor connecting line 317 is between the first terminal and the first terminal Pluggable connection.
  • the pluggable connection can be realized between the first terminal and the second rotor connecting line 317, and the disassembly and assembly is convenient.
  • the second rotating ring 316 can also be provided with a second stator connecting line 318, and the second stator connecting line 318 and the output unit 32 can be plugged and electrically connected. Therefore, the electric slip ring 31 can be electrically connected to the output unit 32, and the electrical connection is convenient and convenient.
  • the output unit 32 can also be provided with a second terminal, the first end of the second stator connection line 318 is electrically connected to the second rotating ring 316, and the second end of the second stator connecting line 318 is The two terminals can be plugged and connected. In this way, the pluggable connection can also be realized between the second terminal and the second stator connecting line 318, which has the advantages of convenient assembly and disassembly.
  • first terminal and the second terminal may be connected in the form of a commonly used plug-in terminal, for example, between the first terminal and the second rotor connecting line 317, and between the second terminal and the second stator connecting line 318.
  • the connection can be made by the structure of the plug and the socket.
  • the electric slip ring 31 can be directly sleeved at the end position of the rotor 42 and connected by a threaded fastener, and then the second rotor connecting line 317 and The second stator connecting wires 318 are respectively connected to the corresponding terminals; and when the electric slip ring 31 is to be removed, the second rotor connecting wires 317 and the second stator connecting wires 318 may be first unplugged from the corresponding terminals.
  • the threaded fastener at the end of the rotor 42 is then unscrewed and the electric slip ring 31 can then be removed from the rotor 42. Therefore, the disassembly and replacement of the electric slip ring 31 can be performed relatively quickly, achieving a quick disassembly and assembly effect.
  • the radar device specifically includes a radar base, an antenna assembly disposed on the radar base, and an electrical connection assembly electrically connected to the antenna assembly.
  • the electrical connection assembly includes an electric slip ring and an output unit, and the antenna assembly is relative to the radar base. Rotating about a rotating shaft, and one of the antenna assembly and the output unit is electrically connected to the rotating portion of the electric slip ring, and the other is electrically connected to the fixed portion of the electric slip ring; wherein the electric slip ring includes concentrically arranged and relatively rotatable The first rotating ring and the second rotating ring are located inside the second rotating ring and serve as a rotating portion of the electric slip ring, and the second rotating ring serves as a fixed portion of the electric slip ring.
  • the antenna assembly in the radar device can be rotated in the circumferential direction to scan the 360° omnidirectional range, and the radar device can detect a wider range, achieving a larger detection and coverage angle and a faster detection data update speed. Can be quickly disassembled.
  • FIG. 9 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 3 of the present invention.
  • the unmanned aerial vehicle 200 provided in this embodiment specifically includes a body 101 and a radar device 100 according to the first embodiment or the second embodiment.
  • the radar device 100 is disposed on the body 101, and the antenna assembly in the radar device 100 It is disposed toward the outside of the body 101.
  • the structure, function and working principle of the radar device 100 have been described in detail in the foregoing embodiments, and are not described herein again.
  • the antenna assembly in the radar device 100 faces the outside of the body 101, and the peripheral side of the antenna assembly is generally an open space without other shielding structures, so that the antenna assembly can rotate around the rotating shaft and form a 360-degree detection coverage range.
  • the body 101 generally includes a center body 1011, an arm 1012, and a landing gear 1013.
  • the arm 1012 and the landing gear 1013 are both connected to the center body 1011.
  • the arm 1012 is used to connect the power unit, and the radar device 100 is disposed on the landing gear.
  • the radar device 100 is disposed at the lower portion of the UAV 200, and thus has a better lower field of view, and has better detection capabilities for surrounding terrain and obstacles.
  • the radar device 100 can also be disposed on the central body 1011 or on the arm 1012, and the specific setting position on the UAV 200 can be set according to the actual use scenario, where No longer.
  • the unmanned aerial vehicle specifically includes a body and a radar device.
  • the radar device is disposed on the body, and the antenna assembly in the radar device is disposed toward an outer side of the body; wherein the radar device specifically includes a radar base and is disposed on the radar base.
  • the rotating portion is electrically connected and the other is electrically connected to the fixed portion of the electric slip ring.
  • the antenna assembly in the radar device of the UAV can be rotated circumferentially to scan the 360° omnidirectional range, and the radar device can detect a relatively wide range, achieving a large detection and coverage angle, and the detection data is updated. fast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

一种雷达装置及无人飞行器。本发明的雷达装置(100),包括雷达底座(1)、设置在雷达底座(1)上的天线组件(2)和与天线组件(2)电连接的电连接组件(3),电连接组件(3)包括电滑环(31)和输出单元(32),天线组件(2)可相对于雷达底座(1)绕一转轴转动,且天线组件(2)和输出单元(32)中的一者与电滑环(31)的转动部分电连接,另一者与电滑环(31)的固定部分电连接。本发明能够实现周向360°全向探测覆盖范围。

Description

雷达装置及无人飞行器 技术领域
本发明涉及飞行器领域,尤其涉及一种雷达装置及无人飞行器。
背景技术
随着科技的不断发展,越来越多的自动控制设备应用在人们的工作和生活中。
目前,无人飞行器等自动控制设备在运行时,可能会实现自动飞行。在自动飞行过程中,需要依靠无人飞行器上设置的传感器或者避障雷达感测周围的环境及障碍物,以使无人飞行器及时进行避障操作,确保飞行和作业安全。
然而,单个的避障雷达通常只具有有限的探测角度,因此造成无人飞行器的探测角度和探测覆盖范围有限,难以保证避障的可靠性。
发明内容
本发明提供一种雷达装置及无人飞行器,能够实现周向360°全向探测覆盖范围。
第一方面,本发明提供一种雷达装置,包括雷达底座、设置在雷达底座上的天线组件和与天线组件电连接的电连接组件,电连接组件包括电滑环和输出单元,天线组件可相对于雷达底座绕一转轴转动,且天线组件和输出单元中的一者与电滑环的转动部分电连接,另一者与电滑环的固定部分电连接。
第二方面,本发明提供一种无人飞行器,包括机体和如上所述的雷达装置,雷达装置设置在机体上,且雷达装置中的天线组件朝向机体的外侧设置。
本发明的雷达装置及无人飞行器,雷达装置具体包括雷达底座、设置在雷达底座上的天线组件和与天线组件电连接的电连接组件,电连接组件 包括电滑环和输出单元,天线组件可相对于雷达底座绕一转轴转动,且天线组件和输出单元中的一者与电滑环的转动部分电连接,另一者与电滑环的固定部分电连接。这样雷达装置中的天线组件可以呈周向转动,从而扫描360°的全向范围,雷达装置可以探测较为广阔的范围,达到较大的探测和覆盖角度,且探测数据更新较快。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的雷达装置的结构示意图;
图2是图1中A处的局部放大示意图;
图3是本发明实施例一提供的雷达装置的爆炸示意图;
图4是本发明实施例一提供的雷达装置的仰视图;
图5是本发明实施例二提供的另一种雷达装置的结构示意图;
图6是图5中B处的局部放大示意图;
图7是本发明实施例二提供的另一种雷达装置的爆炸示意图;
图8是本发明实施例二提供的另一种雷达装置的仰视图;
图9是本发明实施例三提供的一种无人飞行器的结构示意图。
附图标记说明:
1—雷达底座;2—天线组件;3—电连接组件;4—电机;5—雷达罩;21—辐射片;22—雷达控制板;23—天线架;31—电滑环;32—输出单元;41—定子;42—转子;43—限位件;44—转接件;100—雷达装置;101—机体;200—无人飞行器;311—罩壳;312—旋转轴;313—第一转子连接线;314—第一定子连接线;315—第一旋转环;316—第二旋转环;317—第二转子连接线;318—第二定子连接线;321—输出电路板;322—支架;411—线圈;412—轴承;421—中空腔体;422—加长轴;1011—中心体;1012—机臂;1013—起落架。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例一提供的雷达装置的结构示意图。图2是图1中A处的局部放大示意图。图3是本发明实施例一提供的雷达装置的爆炸示意图。图4是本发明实施例一提供的雷达装置的仰视图。如图1至图4所示,本实施例提供的雷达装置,具体包括雷达底座1、设置在雷达底座1上的天线组件2和与天线组件2电连接的电连接组件3,电连接组件3包括电滑环31和输出单元32,天线组件2可相对于雷达底座1绕一转轴转动,且天线组件2和输出单元32中的一者与电滑环31的转动部分电连接,另一者与电滑环31的固定部分电连接。
其中,雷达装置主要用于发射探测波,当探测波前进时碰到障碍物,就会产生反射并向后折回,因而雷达装置即可通过接受回波信号而获知周围环境或者障碍物的情况。而为了保证较远的探测距离和探测效果,雷达装置通常为为了向不同方向和角度进行探测,雷达装置中的天线组件2通常包括定向天线或者其它定向探测装置,即天线组件2所发出的能量集中在某个特定角度范围及方向。因而为了让雷达装置具有较广的探测覆盖范围,雷达装置中的天线组件2可以相对于雷达底座绕一转轴转动,这样天线组件2可以呈周向转动,从而扫描360°的全向范围。这样雷达装置可以探测较为广阔的范围,达到较大的探测和覆盖角度。
其中,天线组件2所围绕转动的转轴既可以为实体转轴,例如可以是天线组件2通过轴状部件安装在雷达底座1上;也可以是虚拟的轴线,此时,天线组件2可以通过连接臂等部件安装在雷达底座1上,且天线组件2以某一直线为中心环绕旋转。
具体的,一般天线组件2所围绕转动的转轴,其朝向通常为一端指向雷达底座1,而另一端指向远离雷达底座1的方向。这样天线组件2在旋转时,不易和雷达底座1发生干涉。
进一步的,由于雷达底座1一般为较为扁平的形状,所以天线组件2所绕的转轴一般和雷达底座1的最大尺寸的方向之间呈相互垂直的状态。此时,天线组件2在绕转轴旋转时,天线组件2在各个旋转角度上与雷达底座1之间的间距均保持一致,因而雷达底座1不会干涉到天线组件2的旋转,天线组件2能够保持绕转轴的周向转动。
具体的,为了让天线组件2的覆盖角度和探测范围最大化,天线组件2绕转轴的旋转角度范围大于或等于360°。此时,天线组件2可覆盖转轴周围的360°全角度范围,探测时不会出现死角,雷达装置的探测覆盖范围和探测可靠性均较好。此外,和覆盖范围小于360°的天线旋转方式相比,由于天线组件2可以绕转轴实现无限旋转并转至任意角度,而不需要考虑到天线组件2在临界角度的止动,所以天线组件2可以以较快的转速实现转动,而雷达装置也可以保持较高的数据采集速度和更新率,提高探测精度及可靠性。
由于雷达装置中的天线组件2需要和输出单元32等外界部件进行信号交换,以实现天线组件2的工作参数控制和回波信号的传输,因而天线组件2通常利用电缆等电连接件和外部部件实现电连接。而为了在天线组件2相对于雷达底座1绕轴线旋转时,避免电缆等随天线组件2的转动而发生扭转,在雷达装置中设置有电滑环31,电滑环31具有可相对转动的固定部分以及转动部分,且固定部分和转动部分之间具有电性连接,这样可以将天线组件2与电滑环31中的固定部分或者转动部分连接,而电滑环31中可相对于天线组件2转动的部分和输出单元32等外界部件连接,并依靠电滑环31中固定部分和转动部分之间的电性连接,实现天线组件2与输出单元32之间的电性连接和信号传输。
具体的,电滑环31的固定部分与电滑环31的转动部分之间通常具有电连接。这样电滑环31的固定部分和转动部分之间相对转动时,电信号仍然能够在电滑环31的固定部分和转动部分之间传递,从而让固定部分和转动部分相对转动时,仍保持正常的电性连接。
一般的,为了方便和其它部件的连接,电滑环31的固定部分和转动部分通常均为回转体,且固定部分和转动部分保持同轴心设置,且固定部分和转动部分可以位于相对回转轴心的同一高度并内外嵌套设置。
可选的,电滑环31中,固定部分和转动部分之间用于维持电连接的结构可以为多种形式。例如,电滑环31的固定部分与电滑环的转动部分之间可以通过电刷在相对转动时实现接触与电性连接。或者,电滑环31内部也可以利用水银等流动电介质或者是光纤等手段实现电连接。此外,电滑环31也可以利用其它本领域技术人员常用的方式实现固定部分和转动部分之间的电性连接,此处不再赘述。
而相应的,输出单元32可以自身集成处理器进行信号处理,从而对天线组件2的工作进行控制,也可以作为信号传输中介,实现天线组件2和其它外界部件之间的电性连接和信号传输。
其中,可选的,为了方便电滑环31与雷达装置的其它结构之间的固定,可以让天线组件2与电滑环31的转动部分电连接,输出单元32与电滑环31的固定部分电连接。其中,电滑环31的转动部分一般具有较轻的质量,不会对天线组件2的转动造成过多阻碍,而电滑环31的固定部分一般具有较为规则的外形,因而能够较为容易的固定在雷达装置上。
此外,可以理解的是,雷达装置也可以根据使用场景等不同情况,而采用天线组件2与电滑环31的固定部分连接,而电滑环31的转动部分和输出单元32之间连接的方式。
为了驱动天线组件2绕转轴转动,作为一种可选的实施方式,雷达装置中还可以包括用于驱动天线组件2转动的电机4,其中,电机4包括定子41和可相对于定子41旋转的转子42,天线组件2和转子42固定连接,定子41和雷达底座1相对固定。这样,当电机4通电时,电机4中的转子42即可在电磁场作用下相对于定子41旋转,从而驱动天线组件2绕转轴转动。
其中,电机4的定子41上可以设置有线圈411等励磁部件,而转子42通常包括有铁芯等,这样当定子41产生电磁场时,转子42即可在电磁场的作用下被推动旋转,产生足以驱动天线组件2旋转的驱动力。
可选的,电机4可以为内转子电机,此时,定子41围设在转子42的外侧。此时,电机4的定子41可以方便的和雷达底座1连接,而转子42位于定子41中央,可以用于驱动天线组件2绕转轴转动,此时,转子42的轴线一般和天线组件2的转轴位于同一直线上。
一般的,由于雷达底座1的空间有限,天线组件2通常和电机4位于雷达底座1的不同侧。此时,为了连接电机4的转子42与天线组件2,可选的,雷达底座1上可以设置有能够容转子42穿过的通孔。这样电机4中的转子42能够穿过通孔,并与天线组件2之间实现连接。
其中,为了保证转子42的正常转动,电机4内还可以设置轴承412等结构,以使转子42能够相对于定子41自如的旋转。
由于天线组件2和电机4连接并依靠电机4带动旋转,因而作为一种可选的连接方式,天线组件2可以通过转子42和电滑环31电连接。此时,天线组件2和电机4的转子42相连并依靠转子42带动旋转,而转子42同时能够和电滑环31的转动部分连接。因而可以让天线组件2和转子42之间实现电性连接,并依靠转子42作为媒介连通天线组件2以及电滑环31的转动部分,以实现天线组件2与电滑环31之间的电性连接和信号传输。
而具体的,天线组件2通过转子42和电滑环31进行电连接时,转子42和电滑环31之间可以具有多种连接方式,以下对于转子42和电滑环31之间的具体连接方式和结构进行详细说明。
作为其中一种可选的连接结构,转子42为具有中空腔体421的中空轴。由于转子42为中空结构,因而转子42的中空腔体421内可以用于容置连接线缆,且电滑环31的转动部分也可以至少部分的容纳在该中空腔体421中,并随转子42一同旋转。此时,即可让转子42内部的线缆与电滑环31的转动部分之间进行连接。
而与中空结构的转子42相对应,用于和转子42连接的电滑环31可以为帽式滑环。具体的,电滑环31可以包括罩壳311和设置在罩壳311内的旋转轴312,旋转轴312可相对于罩壳311转动,这样,罩壳311可以作为电滑环31的固定部分,而旋转轴312作为电滑环31的转动部分。
此时,电滑环31的罩壳311一般可以为中空圆柱状等外形,而旋转轴312位于罩壳311中央位置,并与罩壳311通常呈同心设置,这样旋转轴312转动时,能够顺畅的在罩壳311内转动而不会受到罩壳311的干涉和阻碍。
一般的,为了便于电滑环31的安装和连接,罩壳311和雷达底座1 之间一般通过卡接或者通过螺纹紧固件实现连接。这样电滑环31可以较为方便的从雷达底座1上进行拆装及更换,维修和保养较为方便。
其中,由于旋转轴312作为电滑环31的转动部分,所以转子42一般会和旋转轴312同步转动。这样,由于转子42、天线组件2以及旋转轴312均保持同步转动,因而其所转动的角度始终保持一致,位于转子42的中空腔体421内部的线缆在连接至旋转轴312上时,也处于相对静止的空间内,不会发生扭转等现象。
进一步的,为了让旋转轴312和转子42进行连接,作为一种可选的方式,旋转轴312的端部从罩壳311内伸出,并伸入转子42的中空腔体421内。此时,旋转轴312的端部外露,因而可以伸入转子42内部,从而与转子42实现连接。该种连接方式中,电机4的转子42不需要敞露在定子41的外部,因而对转子42的保护较好,且电滑环31的结构较为简单,成本较低。
具体的,为了实现天线组件2与电滑环31之间的电性连接,可以让电滑环31的转动部分通过第一转子连接线313与天线组件2连接。其中,第一转子连接线313可以包括一根或多根线缆,以分别用于传输不同的信号。
此外,为了实现电滑环31与输出单元32之间的电性连接,电滑环31的固定部分可以通过第一定子连接线314与输出单元32连接。第一定子连接线314同样可以包括一根或多根线缆,以分别传输不同的信号。通常的,第一定子连接线所314包括的线缆数应该和第一转子连接线313包括的线缆数相同。
需要说明的是,第一转子连接线313和第一定子连接线314既可同时使用,也可以单独使用。例如,当第一转子连接线313单独使用时,电滑环31的固定部分可以通过其它电连接方式与输出单元32实现连接,例如是插接端子等。这样让电滑环31采用多种方式与天线组件2以及输出单元32之间的连接,连接方式较为灵活,可以适用于多种不同的使用场合。
为了让电滑环31的旋转轴312和天线组件2连接,可选的,第一转子连接线313设置在旋转轴312上,并伸入转子42的中空腔体421内。这样,转子42的中空腔体421即可容纳旋转轴312的端部以及第一转子 连接线313,让第一转子连接线313能够通过中空腔体421而与天线组件2之间实现连接,且第一转子连接线313能够得到转子结构的保护,不易发生损坏。
可选的,为了让转子42和旋转轴312之间保持同步转动,避免第一转子连接线313或者是其它线缆因转子42和旋转轴312的相对旋转而发生扭转,转子42的端部还设置有可与旋转轴312卡合的限位件43,限位件43用于带动旋转轴312旋转。这样在限位件43的限制下,旋转轴312能够随着转子42的转动而实现同步转动。其中,为了和限位件43卡合,旋转轴312可以具有与卡合部分相互吻合的外缘形状,或者具有能够和限位件43卡合的卡合结构,例如是卡突等。
例如,作为一种可选的卡合方式,限位件43具有非圆孔,旋转轴312为与非圆孔形状匹配的非圆轴,且旋转轴312卡设在非圆孔中。此时,由于旋转轴312为非圆轴,因而旋转轴312在不同旋转角度具有不同的径向尺寸,且在非圆孔的限制下,旋转轴312因径向尺寸的限制而无法相对于非圆孔转动,从而可以避免旋转轴312相对于转子42自由转动,保证旋转轴312能够和转子42实现同步旋转。
其中,旋转轴312的截面轮廓可以为椭圆形、多边形或者其它本领域技术人员所熟知的非圆形式,且限位件43上的非圆孔可以和旋转轴312的截面具有相匹配的形状。
具体的,作为一种常用的卡合轮廓形状,限位件43具有异型孔,旋转轴312为异型轴。其中,异型孔可以为D型孔等形状,而旋转轴312为D型轴。这样旋转轴312穿入限位件43的异型孔中后,会在异型孔的孔壁限制下无法转动,从而让旋转轴312和转子42之间实现同步转动。
其中,需要说明的是,限位件43与转子42之间可以为分体式结构或者一体式结构。通常为了简化电机4的整体结构,限位件43通常为和转子42可拆卸连接的独立部件。
此时,由于电机4的转子42在工作时保持不停的旋转状态,因而限位件43和转子42的端部之间可以通过螺纹紧固件实现连接,这样限位件43与转子42之间的连接较为可靠,不易因转子42的旋转而松脱或掉落。
而为了接受天线组件2通过电滑环31所输出的信号,输出单元32包 括输出电路板321。输出电路板321通常包括有多种功能电路,例如是用于控制电机4转动的电子调速器,以及用于和天线组件2进行信号交互的输出电路等。此外,输出电路板321上也可以集成有其它需要和天线组件2等部件进行交互的功能电路,且输出单元32也可以包括线缆等其它本领域技术人员所熟知的部件,此处不再赘述。
为了对输出电路板321进行定位和固定,输出单元32中的输出电路板321连接在雷达底座1上。由于雷达底座1不会转动,且雷达底座1通常具有较大的固定结构和安置空间,因而输出电路板321能够得到较为可靠的固定。一般的,输出单元32还包括有设置在雷达底座1上,并用于安设输出电路板321的支架322或者槽位。
此外,可选的,输出电路板321一般位于雷达底座1的远离天线组件2的一侧。这样输出电路板321远离天线组件2设置,天线组件2的周侧不会有结构进行遮挡,从而保证了雷达装置中天线组件2的扫描和探测效果。
为了实现天线组件2对周围的扫描探测,天线组件2具体可以包括辐射片21、雷达控制板22和天线架23,天线架23和转子42连接并可随转子42的带动而旋转,辐射片21位于天线架23上,这样天线架23可以作为支撑辐射片21的连接结构,承载并带动辐射片21实现旋转探测;雷达控制板22分别和辐射片21以及电滑环31电连接,因而可以向通过向辐射片21馈电以使辐射片21发出探测信号,并控制整个天线组件2的工作状态及工作参数。
此外,可选的,为了对始终处于转动状态的天线组件2进行保护,雷达装置通常还可以包括雷达罩5,雷达罩5设置在雷达底座1上,并和雷达底座1共同围成用于容纳天线组件2的空间。雷达罩5可以保护位于其内部的天线组件2,防止外界的水汽、灰尘等沾染在天线组件2上,也能够避免外界物体和天线组件2之间发生直接碰撞。其中,为了保证雷达装置的正常工作,雷达罩5一般选用可以允许雷达装置所发出的探测波穿过的材料制成。
可以理解的是,雷达装置可以通过多种不同类型的探测波进行探测。例如雷达装置可以为常用的微波雷达,以通过发射无线电波的方式进行探 测工作,或者,雷达装置也可以为激光雷达,并依靠发射激光束进行探测以及目标的测距工作。当雷达装置为激光雷达时,天线组件2相应的也应包括激光发射器以及激光接收机等部件,并依靠天线组件2整体的周向旋转而实现激光束的全向覆盖。此外,雷达装置也可以利用本领域技术人员所常用的探测方式和探测波类型实现探测,例如声波或者其它波段的无线电波等,此处不再赘述。
本实施例中,雷达装置,具体包括雷达底座、设置在雷达底座上的天线组件和与天线组件电连接的电连接组件,电连接组件包括电滑环和输出单元,天线组件可相对于雷达底座绕一转轴转动,且天线组件和输出单元中的一者与电滑环的转动部分电连接,另一者与电滑环的固定部分电连接。这样,雷达装置中的天线组件可以呈周向转动,从而扫描360°的全向范围,雷达装置可以探测较为广阔的范围,达到较大的探测和覆盖角度,且探测数据更新较快。
图5是本发明实施例二提供的另一种雷达装置的结构示意图。图6是图5中B处的局部放大示意图。图7是本发明实施例二提供的另一种雷达装置的爆炸示意图。图8是本发明实施例二提供的另一种雷达装置的仰视图。本实施例中的雷达装置,其整体结构和工作原理均和前述实施例一中的雷达装置大致相同,不同之处在于,为了便于拆装和更换,本实施例中采用了和实施例一中不同的电滑环结构,从而可以在电滑环和电机的转子的连接方式上使用较为方便的快拆结构。具体的,如图5至图8所示,本实施例中的雷达装置中,电滑环31包括同心设置并可相对旋转的第一旋转环315和第二旋转环316,第一旋转环315位于第二旋转环316的内侧,且作为电滑环31的转动部分,第二旋转环316作为电滑环31的固定部分。
这样电滑环31采用了环状的中空式结构,因而可以让电机4的转子42穿设在电滑环31的中央通孔中。具体的,作为其中一种可选的方式,转子42的端部穿过第一旋转环315内部,并与第一旋转环315连接。此时,电机4的转子42具有较长的长度,从而可让转子42的端部从定子41中伸出并向外突出设置,而电滑环31即可套设在转子42的端部上。
其中,由于转子42需要较长的长度,所以可以通过在转子42的端部设置与转子42同轴连接的加长轴422,从而延长转子42的长度。加长轴 422可以和转子42之间通过可拆卸方式或者固定方式实现连接。
其中,一般由于天线组件2在工作时,周侧需要较为开阔的空间,因而电机4和电滑环31通常应远离天线组件2设置。此时,转子41的端部可以与第一旋转环315的远离天线组件2的一侧连接。因而电滑环31和转子42连接时,也会远离天线组件2,避免干涉到天线组件2的转动和正常探测。
可选的,转子42的端部或者加长轴422的端部可以与第一旋转环315之间通过螺纹紧固件连接。这样在转子42转动时,电滑环31的第一旋转环315也能够和转子42之间形成可靠的连接,且电滑环31便于从转子42上拆卸下来,维护和更换较为简便。此外,也可以采用卡接等本领域技术人员常用的连接方式实现转子42与第一旋转环315之间的连接,此处不再赘述。
而此时为了通过转子42而实现天线组件2与电滑环31之间的电连接,转子42的端部设置有与天线组件2电连接的转接件44,第一旋转环315上设置有第二转子连接线317,转接件44和第二转子连接线317可插拔的电连接。这样通过转接件44和第二转子连接线317之间的插拔式连接,即可方便的将天线组件2与电滑环31连接起来,且插拔式连接能够实现快速的连接和脱离连接,便于实现电滑环31的快拆式安装。一般的,转接件44可以通过转子42表面或内部的线缆或者其它电连接方式实现和天线组件2之间的连接。
具体的,可以在转接件44上设置第一端子,第二转子连接线317的第一端与第一旋转环315导通,第二转子连接线317的第二端和第一端子之间可插拔连接。这样第一端子和第二转子连接线317之间即可实现可插拔式连接,拆装较为方便。
此外,类似的,第二旋转环316上也可设置有第二定子连接线318,第二定子连接线318和输出单元32之间可插拔电连接。这样电滑环31可以方便的和输出单元32之间实现电性连接,且电性连接的接通和断开均较为方便。
具体的,输出单元32上同样可以设置有第二端子,第二定子连接线318的第一端与第二旋转环316导通,第二定子连接线318的第二端和第 二端子之间可插拔连接。这样第二端子和第二定子连接线318之间也可以实现可插拔连接,具有拆装方便快捷的优点。
其中,第一端子和第二端子均可以为常用的插拔式端子形式进行连接,例如第一端子和第二转子连接线317之间,以及第二端子和第二定子连接线318之间均可以采用插头和插座的结构进行连接。
具体的,当想要进行电滑环31的安装时,可以直接将电滑环31套设在转子42的端部位置,并利用螺纹紧固件进行连接,然后将第二转子连接线317以及第二定子连接线318分别和对应的端子连接接通;而想要拆下电滑环31时,可以先将第二转子连接线317以及第二定子连接线318从对应的端子上拔下,再将转子42端部的螺纹紧固件拧下,然后即可将电滑环31从转子42上取下。因而电滑环31的拆装和更换均可较为快速的进行,实现快速拆装效果。
本实施例中,雷达装置,具体包括雷达底座、设置在雷达底座上的天线组件和与天线组件电连接的电连接组件,电连接组件包括电滑环和输出单元,天线组件可相对于雷达底座绕一转轴转动,且天线组件和输出单元中的一者与电滑环的转动部分电连接,另一者与电滑环的固定部分电连接;其中,电滑环包括同心设置并可相对旋转的第一旋转环和第二旋转环,第一旋转环位于第二旋转环的内侧,且作为电滑环的转动部分,第二旋转环作为电滑环的固定部分。这样,雷达装置中的天线组件可以呈周向转动,从而扫描360°的全向范围,雷达装置可以探测较为广阔的范围,达到较大的探测和覆盖角度和较快的探测数据更新速度,同时能够实现快速拆装。
图9是本发明实施例三提供的一种无人飞行器的结构示意图。如图9所示,本实施例提供的无人飞行器200,具体包括机体101和前述实施例一或二中的雷达装置100,雷达装置100设置在机体101上,且雷达装置100中的天线组件朝向机体101的外侧设置。其中,雷达装置100的结构、功能及工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
其中,雷达装置100中的天线组件朝向机体101的外侧,且天线组件的周侧一般为没有其它遮挡结构的开阔空间,这样天线组件能够绕转轴旋转,并形成360°全方位的探测覆盖范围,为无人飞行器200提供可靠的探测、测距和避障功能。
具体的,机体101一般可以包括中心体1011、机臂1012和起落架1013,机臂1012和起落架1013均与中心体1011连接,机臂1012用于连接动力装置,雷达装置100设置在起落架1013上。这样雷达装置100设置在无人飞行器200的下部,因而具有较好的下方视野,对周围地形和障碍物的探测能力较好。
此外,根据雷达装置100的不同作用,也可以让雷达装置100设置在中心体1011上或者机臂1012上,其在无人飞行器200上的具体设置位置可根据实际使用场景而设定,此处不再赘述。
本实施例中,无人飞行器具体包括机体和雷达装置,雷达装置设置在机体上,且雷达装置中的天线组件朝向机体的外侧设置;其中,雷达装置具体包括雷达底座、设置在雷达底座上的天线组件和与天线组件电连接的电连接组件,电连接组件包括电滑环和输出单元,天线组件可相对于雷达底座绕一转轴转动,且天线组件和输出单元中的一者与电滑环的转动部分电连接,另一者与电滑环的固定部分电连接。这样,无人飞行器的雷达装置中的天线组件可以呈周向转动,从而扫描360°的全向范围,雷达装置可以探测较为广阔的范围,达到较大的探测和覆盖角度,且探测数据更新较快。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (73)

  1. 一种雷达装置,包括雷达底座、设置在所述雷达底座上的天线组件和与所述天线组件电连接的电连接组件,其特征在于,所述电连接组件包括电滑环和输出单元,所述天线组件可相对于所述雷达底座绕一转轴转动,且所述天线组件和所述输出单元中的一者与所述电滑环的转动部分电连接,另一者与所述电滑环的固定部分电连接。
  2. 根据权利要求1所述的雷达装置,其特征在于,所述天线组件与所述电滑环的转动部分电连接,所述输出单元与所述电滑环的固定部分电连接。
  3. 根据权利要求2所述的雷达装置,其特征在于,还包括电机,所述电机包括定子和可相对于所述定子旋转的转子,所述天线组件和所述转子固定连接,所述定子和所述雷达底座相对固定。
  4. 根据权利要求3所述的雷达装置,其特征在于,所述雷达底座上设置有可容所述转子穿过的通孔。
  5. 根据权利要求3所述的雷达装置,其特征在于,所述定子围设在所述转子的外侧。
  6. 根据权利要求3-5任一项所述的雷达装置,其特征在于,所述天线组件通过所述转子和所述电滑环电连接。
  7. 根据权利要求6所述的雷达装置,其特征在于,所述转子为具有中空腔体的中空轴。
  8. 根据权利要求7所述的雷达装置,其特征在于,所述电滑环包括罩壳和设置在所述罩壳内的旋转轴,所述旋转轴可相对于所述罩壳转动,所述罩壳作为所述电滑环的固定部分,所述旋转轴作为所述电滑环的转动部分。
  9. 根据权利要求8所述的雷达装置,其特征在于,所述转子和所述旋转轴同步转动。
  10. 根据权利要求8所述的雷达装置,其特征在于,所述旋转轴的端部从所述罩壳内伸出,并伸入所述转子的中空腔体内。
  11. 根据权利要求8-10任一项所述的雷达装置,其特征在于,所述电滑环的转动部分通过第一转子连接线与所述天线组件连接;和/或,所述电 滑环的固定部分通过第一定子连接线与所述输出单元连接。
  12. 根据权利要求11所述的雷达装置,其特征在于,所述第一转子连接线设置在所述旋转轴上,并伸入所述转子的中空腔体内。
  13. 根据权利要求9所述的雷达装置,其特征在于,所述转子的端部还设置有可与所述旋转轴卡合的限位件,所述限位件用于带动所述旋转轴旋转。
  14. 根据权利要求13所述的雷达装置,其特征在于,所述限位件具有非圆孔,所述旋转轴为与所述非圆孔形状匹配的非圆轴,且所述旋转轴卡设在所述非圆孔中。
  15. 根据权利要求14所述的雷达装置,其特征在于,所述限位件具有异型孔,所述旋转轴为异型轴。
  16. 根据权利要求13-15任一项所述的雷达装置,其特征在于,所述限位件和所述转子的端部之间通过螺纹紧固件连接。
  17. 根据权利要求8-10任一项所述的雷达装置,其特征在于,所述罩壳和所述雷达底座之间卡接或者通过螺纹紧固件连接。
  18. 根据权利要求6所述的雷达装置,其特征在于,所述电滑环包括同心设置并可相对旋转的第一旋转环和第二旋转环,所述第一旋转环位于所述第二旋转环的内侧,且作为所述电滑环的转动部分,所述第二旋转环作为所述电滑环的固定部分。
  19. 根据权利要求18所述的雷达装置,其特征在于,所述转子的端部穿过所述第一旋转环内部,并与所述第一旋转环连接。
  20. 根据权利要求19所述的雷达装置,其特征在于,所述转子的端部与所述第一旋转环的远离所述天线组件的一侧连接。
  21. 根据权利要求20所述的雷达装置,其特征在于,所述转子的端部与所述第一旋转环之间通过螺纹紧固件连接。
  22. 根据权利要求18-21任一项所述的雷达装置,其特征在于,所述转子的端部设置有与所述天线组件电连接的转接件,所述第一旋转环上设置有第二转子连接线,所述转接件和所述第二转子连接线可插拔电连接。
  23. 根据权利要求22所述的雷达装置,其特征在于,所述转接件上设置有第一端子,所述第二转子连接线的第一端与所述第一旋转环导通, 所述第二转子连接线的第二端和所述第一端子之间可插拔连接。
  24. 根据权利要求22所述的雷达装置,其特征在于,所述第二旋转环上设置有第二定子连接线,所述第二定子连接线和所述输出单元之间可插拔电连接。
  25. 根据权利要求24所述的雷达装置,其特征在于,所述输出单元上设置有第二端子,所述第二定子连接线的第一端与所述第二旋转环导通,所述第二定子连接线的第二端和所述第二端子之间可插拔连接。
  26. 根据权利要求3-5任一项所述的雷达装置,其特征在于,所述输出单元包括输出电路板。
  27. 根据权利要求26所述的雷达装置,其特征在于,所述输出电路板和所述雷达底座连接。
  28. 根据权利要求27所述的雷达装置,其特征在于,所述输出电路板位于所述雷达底座的远离所述天线组件的一侧。
  29. 根据权利要求1-5任一项所述的雷达装置,其特征在于,所述天线组件绕所述转轴的旋转角度范围大于或等于360°。
  30. 根据权利要求1-5任一项所述的雷达装置,其特征在于,所述电滑环的固定部分与所述电滑环的转动部分之间具有电连接。
  31. 根据权利要求30所述的雷达装置,其特征在于,所述电滑环的固定部分与所述电滑环的转动部分之间通过电刷、流动电介质或者光纤实现电连接。
  32. 根据权利要求3-5任一项所述的雷达装置,其特征在于,所述天线组件包括辐射片、雷达控制板和天线架,所述天线架和所述转子连接并可随所述转子的带动而旋转,所述辐射片位于所述天线架上,所述雷达控制板分别和所述辐射片以及所述电滑环电连接。
  33. 根据权利要求32所述的雷达装置,其特征在于,还包括雷达罩,所述雷达罩设置在所述雷达底座上,并和所述雷达底座共同围成用于容纳所述天线组件的空间。
  34. 根据权利要求1-5任一项所述的雷达装置,其特征在于,所述转轴一端指向所述雷达底座,另一端指向远离所述雷达底座的方向。
  35. 根据权利要求34所述的雷达装置,其特征在于,所述转轴和所 述雷达底座的最大尺寸方向相互垂直。
  36. 根据权利要求1-5任一项所述的雷达装置,其特征在于,所述雷达装置为激光雷达或者微波雷达。
  37. 一种无人飞行器,其特征在于,包括机体和雷达装置,所述雷达装置设置在所述机体上,且所述雷达装置中的天线组件朝向所述机体的外侧设置;
    所述雷达装置包括雷达底座、设置在所述雷达底座上的所述天线组件和与所述天线组件电连接的电连接组件,其特征在于,所述电连接组件包括电滑环和输出单元,所述天线组件可相对于所述雷达底座绕一转轴转动,且所述天线组件和所述输出单元中的一者与所述电滑环的转动部分电连接,另一者与所述电滑环的固定部分电连接。
  38. 根据权利要求37所述的无人飞行器,其特征在于,所述天线组件与所述电滑环的转动部分电连接,所述输出单元与所述电滑环的固定部分电连接。
  39. 根据权利要求38所述的无人飞行器,其特征在于,还包括电机,所述电机包括定子和可相对于所述定子旋转的转子,所述天线组件和所述转子固定连接,所述定子和所述雷达底座相对固定。
  40. 根据权利要求39所述的无人飞行器,其特征在于,所述雷达底座上设置有可容所述转子穿过的通孔。
  41. 根据权利要求39所述的无人飞行器,其特征在于,所述定子围设在所述转子的外侧。
  42. 根据权利要求39-41任一项所述的无人飞行器,其特征在于,所述天线组件通过所述转子和所述电滑环电连接。
  43. 根据权利要求42所述的无人飞行器,其特征在于,所述转子为具有中空腔体的中空轴。
  44. 根据权利要求43所述的无人飞行器,其特征在于,所述电滑环包括罩壳和设置在所述罩壳内的旋转轴,所述旋转轴可相对于所述罩壳转动,所述罩壳作为所述电滑环的固定部分,所述旋转轴作为所述电滑环的转动部分。
  45. 根据权利要求44所述的无人飞行器,其特征在于,所述转子和 所述旋转轴同步转动。
  46. 根据权利要求44所述的无人飞行器,其特征在于,所述旋转轴的端部从所述罩壳内伸出,并伸入所述转子的中空腔体内。
  47. 根据权利要求44-46任一项所述的无人飞行器,其特征在于,所述电滑环的转动部分通过第一转子连接线与所述天线组件连接;和/或,所述电滑环的固定部分通过第一定子连接线与所述输出单元连接。
  48. 根据权利要求47所述的无人飞行器,其特征在于,所述第一转子连接线设置在所述旋转轴上,并伸入所述转子的中空腔体内。
  49. 根据权利要求45所述的无人飞行器,其特征在于,所述转子的端部还设置有可与所述旋转轴卡合的限位件,所述限位件用于带动所述旋转轴旋转。
  50. 根据权利要求49所述的无人飞行器,其特征在于,所述限位件具有非圆孔,所述旋转轴为与所述非圆孔形状匹配的非圆轴,且所述旋转轴卡设在所述非圆孔中。
  51. 根据权利要求50所述的无人飞行器,其特征在于,所述限位件具有异型孔,所述旋转轴为异型轴。
  52. 根据权利要求49-51任一项所述的无人飞行器,其特征在于,所述限位件和所述转子的端部之间通过螺纹紧固件连接。
  53. 根据权利要求44-46任一项所述的无人飞行器,其特征在于,所述罩壳和所述雷达底座之间卡接或者通过螺纹紧固件连接。
  54. 根据权利要求42所述的无人飞行器,其特征在于,所述电滑环包括同心设置并可相对旋转的第一旋转环和第二旋转环,所述第一旋转环位于所述第二旋转环的内侧,且作为所述电滑环的转动部分,所述第二旋转环作为所述电滑环的固定部分。
  55. 根据权利要求54所述的无人飞行器,其特征在于,所述转子的端部穿过所述第一旋转环内部,并与所述第一旋转环连接。
  56. 根据权利要求55所述的无人飞行器,其特征在于,所述转子的端部与所述第一旋转环的远离所述天线组件的一侧连接。
  57. 根据权利要求56所述的无人飞行器,其特征在于,所述转子的端部与所述第一旋转环之间通过螺纹紧固件连接。
  58. 根据权利要求54-57任一项所述的无人飞行器,其特征在于,所述转子的端部设置有与所述天线组件电连接的转接件,所述第一旋转环上设置有第二转子连接线,所述转接件和所述第二转子连接线可插拔电连接。
  59. 根据权利要求58所述的无人飞行器,其特征在于,所述转接件上设置有第一端子,所述第二转子连接线的第一端与所述第一旋转环导通,所述第二转子连接线的第二端和所述第一端子之间可插拔连接。
  60. 根据权利要求58所述的无人飞行器,其特征在于,所述第二旋转环上设置有第二定子连接线,所述第二定子连接线和所述输出单元之间可插拔电连接。
  61. 根据权利要求60所述的无人飞行器,其特征在于,所述输出单元上设置有第二端子,所述第二定子连接线的第一端与所述第二旋转环导通,所述第二定子连接线的第二端和所述第二端子之间可插拔连接。
  62. 根据权利要求39-41任一项所述的无人飞行器,其特征在于,所述输出单元包括输出电路板。
  63. 根据权利要求62所述的无人飞行器,其特征在于,所述输出电路板和所述雷达底座连接。
  64. 根据权利要求63所述的无人飞行器,其特征在于,所述输出电路板位于所述雷达底座的远离所述天线组件的一侧。
  65. 根据权利要求39-43任一项所述的无人飞行器,其特征在于,所述天线组件绕所述转轴的旋转角度范围大于或等于360°。
  66. 根据权利要求39-43任一项所述的无人飞行器,其特征在于,所述电滑环的固定部分与所述电滑环的转动部分之间具有电连接。
  67. 根据权利要求66所述的无人飞行器,其特征在于,所述电滑环的固定部分与所述电滑环的转动部分之间通过电刷、流动电介质或者光纤实现电连接。
  68. 根据权利要求41-43任一项所述的无人飞行器,其特征在于,所述天线组件包括辐射片、雷达控制板和天线架,所述天线架和所述转子连接并可随所述转子的带动而旋转,所述辐射片位于所述天线架上,所述雷达控制板分别和所述辐射片以及所述电滑环电连接。
  69. 根据权利要求68所述的无人飞行器,其特征在于,还包括雷达 罩,所述雷达罩设置在所述雷达底座上,并和所述雷达底座共同围成用于容纳所述天线组件的空间。
  70. 根据权利要求39-43任一项所述的无人飞行器,其特征在于,所述转轴一端指向所述雷达底座,另一端指向远离所述雷达底座的方向。
  71. 根据权利要求70所述的无人飞行器,其特征在于,所述转轴和所述雷达底座的最大尺寸方向相互垂直。
  72. 根据权利要求39-43任一项所述的无人飞行器,其特征在于,所述雷达装置为激光雷达或者微波雷达。
  73. 根据权利要求39-43任一项所述的无人飞行器,其特征在于,所述机体包括中心体、机臂和起落架,所述机臂和所述起落架均与所述中心体连接,所述雷达装置设置在所述起落架上。
PCT/CN2017/117039 2017-12-18 2017-12-18 雷达装置及无人飞行器 WO2019119242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/117039 WO2019119242A1 (zh) 2017-12-18 2017-12-18 雷达装置及无人飞行器
CN201780006002.3A CN108513621A (zh) 2017-12-18 2017-12-18 雷达装置及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117039 WO2019119242A1 (zh) 2017-12-18 2017-12-18 雷达装置及无人飞行器

Publications (1)

Publication Number Publication Date
WO2019119242A1 true WO2019119242A1 (zh) 2019-06-27

Family

ID=63374711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117039 WO2019119242A1 (zh) 2017-12-18 2017-12-18 雷达装置及无人飞行器

Country Status (2)

Country Link
CN (1) CN108513621A (zh)
WO (1) WO2019119242A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552579A (zh) * 2020-04-14 2021-10-26 上海禾赛科技有限公司 一种激光雷达
CN113991303B (zh) * 2021-10-29 2024-06-04 中国电子科技集团公司第三十八研究所 一种具有限位装置的雷达天线转台

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208746A (zh) * 2019-03-18 2019-09-06 西安天伟电子系统工程有限公司 雷达装置
CN110514910A (zh) * 2019-09-04 2019-11-29 中山香山微波科技有限公司 一种射频测试机器人系统
KR20210040950A (ko) * 2019-09-30 2021-04-14 에스지 디제이아이 테크놀러지 코., 엘티디 레이더 장치 및 이동식 플랫폼
WO2021087703A1 (zh) * 2019-11-04 2021-05-14 深圳市大疆创新科技有限公司 飞行器
WO2021128023A1 (zh) * 2019-12-24 2021-07-01 深圳市大疆创新科技有限公司 驱动电机、扫描模组及激光雷达
CN110927672A (zh) * 2019-12-25 2020-03-27 中国有色金属长沙勘察设计研究院有限公司 一种改进的山谷型高陡边坡雷达监测系统
CN112595733A (zh) * 2020-12-18 2021-04-02 北京城市排水集团有限责任公司 一种基于探地雷达的摇摆控制数据采集方法
CN115616479A (zh) * 2022-12-19 2023-01-17 成都空御科技有限公司 一种固定式无人机监测设备及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108963A1 (en) * 2002-08-20 2004-06-10 Aerosat Corporation Communication system with broadband antenna
CN201060923Y (zh) * 2007-07-06 2008-05-14 陈小峰 一种移动式卫星电视接收天线装置
CN101312092A (zh) * 2007-05-22 2008-11-26 晶睿通讯股份有限公司 可转动的电子装置
CN102544961A (zh) * 2012-01-16 2012-07-04 深圳市晶沛电子有限公司 一种滑环
CN103412348A (zh) * 2013-08-01 2013-11-27 北京青云航空仪表有限公司 跑道异物检测雷达扫描器方位部件
CN103560315A (zh) * 2013-10-15 2014-02-05 北京航天福道高技术股份有限公司 一种动中通卫星天线
CN205646128U (zh) * 2016-04-20 2016-10-12 海中信(北京)卫星通信股份公司 一种车载高效电极化平板卫星通信天线
CN205828652U (zh) * 2016-07-08 2016-12-21 深圳市宏腾通电子有限公司 一种车载移动自动跟踪天线
CN205911424U (zh) * 2016-07-15 2017-01-25 协同通信技术有限公司 用于移动载体的卫星天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912513B1 (fr) * 2007-02-13 2009-04-17 Thales Sa Radar aeroporte notamment pour drone
US9322912B2 (en) * 2012-01-20 2016-04-26 Enterprise Electronics Corporation Transportable radar utilizing harmonic drives for anti-backlash antenna movement
CN205404791U (zh) * 2016-02-16 2016-07-27 江苏好的节能光电科技有限公司 一种防水雷达旋转台
CN109212539A (zh) * 2016-03-01 2019-01-15 北醒(北京)光子科技有限公司 一种具有多传感器的光探测与测量雷达
CN110832794A (zh) * 2018-08-10 2020-02-21 深圳市大疆创新科技有限公司 可旋转通信连接器及具有其的雷达、无人飞行器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108963A1 (en) * 2002-08-20 2004-06-10 Aerosat Corporation Communication system with broadband antenna
CN101312092A (zh) * 2007-05-22 2008-11-26 晶睿通讯股份有限公司 可转动的电子装置
CN201060923Y (zh) * 2007-07-06 2008-05-14 陈小峰 一种移动式卫星电视接收天线装置
CN102544961A (zh) * 2012-01-16 2012-07-04 深圳市晶沛电子有限公司 一种滑环
CN103412348A (zh) * 2013-08-01 2013-11-27 北京青云航空仪表有限公司 跑道异物检测雷达扫描器方位部件
CN103560315A (zh) * 2013-10-15 2014-02-05 北京航天福道高技术股份有限公司 一种动中通卫星天线
CN205646128U (zh) * 2016-04-20 2016-10-12 海中信(北京)卫星通信股份公司 一种车载高效电极化平板卫星通信天线
CN205828652U (zh) * 2016-07-08 2016-12-21 深圳市宏腾通电子有限公司 一种车载移动自动跟踪天线
CN205911424U (zh) * 2016-07-15 2017-01-25 协同通信技术有限公司 用于移动载体的卫星天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552579A (zh) * 2020-04-14 2021-10-26 上海禾赛科技有限公司 一种激光雷达
CN113991303B (zh) * 2021-10-29 2024-06-04 中国电子科技集团公司第三十八研究所 一种具有限位装置的雷达天线转台

Also Published As

Publication number Publication date
CN108513621A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019119242A1 (zh) 雷达装置及无人飞行器
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
WO2018113162A1 (zh) 基于光通信的激光雷达
WO2018187946A1 (zh) 雷达组件及无人机
US10710711B2 (en) Systems and methods for UAV sensor placement
KR20160034719A (ko) 라이다 시스템
US20130128258A1 (en) Helicopter obstacle detection and information system
CN109073742B (zh) 雷达装置、无线旋转装置及无人机
WO2018120001A1 (zh) 动力装置、动力套装及无人飞行器
CN209071604U (zh) 天线罩、雷达和无人机
CN110809863A (zh) 通信链路系统、数据传输方法、无人飞行器和存储介质
CN110832794A (zh) 可旋转通信连接器及具有其的雷达、无人飞行器
CN108454869B (zh) 一种无人机机载超声波旋转测距模块
KR101715637B1 (ko) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
US9910147B2 (en) Radar antenna
EP4039592A2 (en) Unmanned aerial vehicle
WO2021223082A1 (zh) 旋转雷达及可移动平台
WO2021062657A1 (zh) 雷达装置及可移动平台
WO2020107378A1 (zh) 天线罩、雷达和可移动设备
CN110832887B (zh) 内部通信链路系统和无人飞行器
WO2021087703A1 (zh) 飞行器
CN213259496U (zh) 中空雷达装置及机器人
CN217213137U (zh) 雷达及无人车
CN216285699U (zh) 一种激光雷达
CN216595492U (zh) 旋转式激光测距雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935297

Country of ref document: EP

Kind code of ref document: A1