WO2019119198A1 - 雷达和具有该雷达的可移动设备 - Google Patents

雷达和具有该雷达的可移动设备 Download PDF

Info

Publication number
WO2019119198A1
WO2019119198A1 PCT/CN2017/116897 CN2017116897W WO2019119198A1 WO 2019119198 A1 WO2019119198 A1 WO 2019119198A1 CN 2017116897 W CN2017116897 W CN 2017116897W WO 2019119198 A1 WO2019119198 A1 WO 2019119198A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna assembly
antenna
base
main control
radar
Prior art date
Application number
PCT/CN2017/116897
Other languages
English (en)
French (fr)
Inventor
王佳迪
王春明
匡亮亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780010584.2A priority Critical patent/CN108700657B/zh
Priority to CN202210754105.0A priority patent/CN115173061A/zh
Priority to PCT/CN2017/116897 priority patent/WO2019119198A1/zh
Publication of WO2019119198A1 publication Critical patent/WO2019119198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the present invention relates to the field of obstacle avoidance, and in particular to a radar and a movable device having the same.
  • Mobile devices such as drones, unmanned vehicles and unmanned vehicles may encounter obstacles during the movement, in which case the safety of the mobile device and the execution of the task will be greatly affected.
  • obstacle avoidance is achieved by setting a radar on a mobile device, detecting obstacles by radar, and timely notifying the control system of the mobile device.
  • the antenna component directly affects the detection accuracy of obstacles.
  • the driving mechanism is required to drive the antenna assembly to rotate around a rotating shaft to detect obstacles in different directions, and the stability of the rotation of the antenna assembly has a great influence on the performance of the antenna.
  • the present invention provides a radar and a mobile device having the same.
  • a radar includes: a base; an antenna assembly disposed above the base, the antenna assembly being rotatable relative to the base about a rotation axis; and a drive mechanism disposed on the a rotating member of the driving mechanism fixedly coupled to the antenna assembly to drive the antenna assembly to rotate around the rotating shaft, and a weight member disposed on the antenna assembly to center the antenna assembly Close to the rotating shaft, wherein when the rotating member of the driving mechanism drives the antenna assembly to rotate, the weight member rotates together with the antenna assembly, so that the antenna assembly stably rotates around the rotating shaft.
  • a mobile device includes a housing, a control system, and a radar disposed on the housing, the radar including a base, an antenna assembly disposed above the base, and a drive mechanism on the base and a weight member disposed on the antenna assembly; wherein the antenna assembly is rotatable about a rotation axis with respect to the base, and the antenna assembly is in communication with the control system Transmitting the detected obstacle information to the control system; the rotating member of the driving mechanism fixedly connects the antenna assembly to drive the antenna assembly to rotate about the rotating shaft; the weight member can enable The center of gravity of the antenna assembly is adjacent to the rotating shaft, and when the rotating member of the driving mechanism drives the antenna assembly to rotate, the weight member rotates together with the antenna assembly, so that the antenna assembly stably rotates around the rotating shaft .
  • the present invention provides a weight member on the antenna assembly such that the center of gravity of the antenna assembly approaches a certain rotating shaft, so that the antenna assembly always rotates around the rotating shaft, thereby ensuring rotation of the antenna assembly. Balance, avoiding the imbalance of the rotation of the antenna assembly on its pattern, so that the performance of the antenna assembly is optimized.
  • FIG. 1 is a partial schematic structural view of a radar in an embodiment of the present invention
  • Figure 2 is a partial enlarged view of a radar in an embodiment of the present invention
  • FIG. 3 is a perspective view showing a partial structure of a radar in an embodiment of the present invention.
  • FIG. 4 is a split diagram of a radar in an embodiment of the present invention.
  • Figure 5 is a perspective view of an electric slip ring in accordance with an embodiment of the present invention.
  • Figure 6 is a perspective view of a radome in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a radome according to an embodiment of the present invention.
  • Figure 8 is a perspective view of a mobile device in accordance with an embodiment of the present invention.
  • 100 housing; 110: fuselage; 120: tripod; 130: arm;
  • 200 radar; 1: base; 2: antenna assembly; 21: base; 211: mounting portion; 22: main control board; 23: antenna; 24: antenna bracket; 25: connecting portion; 26: wrap angle; : weight member; 4: grating switch; 5: code wheel; 6: radome; 61: polypropylene cover; 611: first opening; 612: second opening; 62: cover; 63: chamfer Department; 7: back cover; 71: accommodation space; 8: electric slip ring; 81: core; 82: outer casing; 83: first connecting line; 84: second connecting line;
  • a first embodiment of the present invention provides a radar 200, which may include a base 1, an antenna assembly 2, a driving mechanism, and a weight member 3.
  • the antenna assembly 2 is disposed above the base 1 , and the antenna assembly 2 is rotatable relative to the base 1 about a rotating shaft.
  • the rotating shaft may be an imaginary axis or a real axis.
  • the driving mechanism of this embodiment is disposed on the base 1.
  • the drive mechanism includes a rotating member that is fixedly coupled to the antenna assembly 2 to drive the antenna assembly 2 to rotate about the rotating shaft.
  • the weight member 3 is disposed on the antenna assembly 2 such that the center of gravity of the antenna assembly 2 (referred to herein as the center of gravity when the antenna assembly 2 and the weight member 3 are combined) is close to the Rotating shaft.
  • the rotating member of the driving mechanism drives the antenna assembly 2 to rotate
  • the weight member 3 rotates together with the antenna assembly 2, so that the antenna assembly 2 stably rotates around the rotating shaft.
  • the base 1 is stationary, the driving mechanism rotates, and the rotating component drives the antenna assembly 2 and the weight member 3 to rotate together, so that the antenna assembly 2 and the weight member 3 are opposite. Rotating the base 1 .
  • the weight member 3 and the antenna assembly 2 cooperate to enable the center of gravity of the antenna assembly 2 to be located on the rotating shaft, and the antenna assembly 2 can achieve rotational dynamic balance.
  • the center of gravity of the antenna assembly 2 is difficult to be completely located on the rotating shaft, so that the center of gravity of the antenna assembly 2 is deviated from the rotating shaft within a certain error range, and the center of gravity of the antenna assembly 2 is considered to be located.
  • the center of gravity of the antenna assembly 2 of the present embodiment is close to the rotating shaft to enable the antenna assembly 2 to achieve rotational dynamic balance.
  • the center of gravity of the antenna assembly 2 is brought close to a certain rotating shaft, so that the antenna assembly 2 is always rotated around the rotating shaft, thereby ensuring the balance of rotation of the antenna assembly 2, The effect of the imbalance of the rotation of the antenna assembly 2 on its pattern is avoided, so that the performance of the antenna assembly 2 is optimized.
  • the antenna assembly 2 may include a base 21, a main control board 22 mounted on the base 21, and an antenna 23 electrically connected to the main control board 22.
  • the rotating member is connected to the base 21 to drive the base 21 to rotate, thereby driving the main control board 22, the antenna 23, the weight member 3, and the like to rotate together.
  • the antenna 23 is mounted on one side of the main control board 22, the weight member 3 is mounted on the other side of the main control board 22, and the antenna 23 and the weight member 3 are respectively disposed on the main control board 22. Both sides of the antenna assembly 2 are brought closer to the rotating shaft to maintain the rotational balance of the antenna assembly 2.
  • the shape of the antenna 23 can be set according to the performance requirements of the antenna 23, and the weight member 3 can be of any shape.
  • the antenna 23 and the weight member 3 are both in a sheet structure, and the plane of the antenna 23, the plane where the main control board 22 is located, and the plane of the weight member 3 are parallel to each other.
  • the thickness of the antenna assembly 2 is small.
  • the plane of the main control board 22 is vertically connected to the base 21 to further ensure the dynamic balance of the rotation of the antenna assembly 2.
  • the antenna 23 can be mounted to the main control board 22 by any quick release member.
  • the antenna 23 can be mounted to the main control board 22 by bolts.
  • the antenna 23 is spaced apart from the main control board 22 to prevent electromagnetic interference caused by the electronic components on the main control board 22 to the antenna 23.
  • the antenna assembly 2 may further include an antenna bracket 24 disposed on two sides of the main control board 22.
  • the antenna 23 is mounted on a side of one of the antenna supports 24 away from the main control board 22, and the weight member 3 is mounted on a side of the other antenna holder 24 away from the main control board 22.
  • the electromagnetic interference to the antenna 23 on the main control board 22 is prevented by the antenna 23 and the main control board 22 being spaced apart by the antenna holder 24.
  • an antenna bracket 24 is disposed on both sides of the main control board 22 to ensure that the center of gravity of the antenna assembly 2 is close to the rotating shaft.
  • the main control board 22 is housed in a space between the two antenna holders 24, and the antenna holder 24 can form an advantageous protection for the electronic components on the main control board 22.
  • the antenna holder 24 can also be of any shape. In this embodiment, the shape of the main control board 22 and the antenna 23 is matched.
  • the antenna holder 24 of the embodiment is also a sheet-like structure, and the plane of the antenna holder 24 is The planes of the main control boards 22 are parallel to each other.
  • the size of the antenna mount 24 is slightly larger than the size of the main control panel 22 to separate the antenna 23 from the main control panel 22 as much as possible.
  • the two antenna brackets 24 can be fixedly connected by a fixing member such as a bolt or a snap structure.
  • the base 21 is provided with a mounting portion 211, and a bottom portion of the main control panel 22 and a bottom portion of the antenna bracket 24 are provided with a connecting portion 25.
  • the connecting portion 25 is fitted to the mounting portion 211 to mount the antenna assembly 2 to the base 21, and the antenna assembly 2 rotates together when the rotating member drives the base 21 to rotate.
  • the mounting portion 211 is a mounting hole
  • the connecting portion 25 is a protrusion, and the protrusion is mated with the mounting hole.
  • the antenna assembly 2 may further include a wrap portion 26, a corner portion of the antenna 23, a corner portion of the main control panel 22, and a corner portion of the weight member 3 are assembled in the package
  • the main portion 22, the antenna 23, the weight member 3 and the antenna holder 24 are integrally assembled to prevent the main control board 22, the antenna 23, and the The weight member 3 and the antenna holder 24 are shaken during the rotation to cause a large error in the center of gravity of the antenna assembly 2 from the rotation axis.
  • the main control board 22, the antenna 23, the weight member 3 and the antenna holder 24 form an approximately square structure
  • the corner portion 26 is four.
  • the four corner portions 26 respectively wrap the four corners of the square structure, so that the main control board 22, the antenna 23, the weight member 3 and the antenna holder 24 are integrally assembled.
  • the radar 200 may further include an angle detecting mechanism for detecting the rotation angle ⁇ of the antenna assembly 2, so that the radar 200 to the obstacle distance S detected by the antenna assembly 2 and the rotation angle ⁇ can be obtained.
  • the location of the obstacle can be any angle sensor in the prior art.
  • the angle detecting mechanism may include a grating switch 4 and a code wheel 5 for mating with the grating switch 4. 1 to 3, the grating switch 4 can be disposed on the base 21, and the code wheel 5 is disposed on the base 1.
  • the grating switch 4 can be fixedly connected to the base 21 via a bracket.
  • the code wheel 5 is fixedly connected to a side of the base 1 facing the base 21, and a central portion of the code wheel 5 is provided with a permanent perforation, and the base 21 and the rotating member pass through the The through hole is fixedly connected, and the base 21 and the rotating member are not in contact with the code wheel 5, that is, the code wheel 5 is stationary.
  • the code wheel 5 is provided with alternating light-transmissive areas and non-light-transmissive areas, which are distributed along the circumferential direction of the code wheel 5 and close to the code wheel 5.
  • the grating switch 4 is a slot type photoelectric switch, which comprises a support base (not shown), a launch tube (not shown), and a receiving tube (not shown). The transmitting tube and the receiving tube are respectively disposed at two ends of the supporting base.
  • the transmitting tube and the receiving tube are symmetrically disposed on two sides of the code wheel 5, and the centers of the transmitting tube and the receiving tube are located on the circumference of the light transmitting area and the non-light transmitting area to achieve The cooperation of the light transmitting region and the non-light transmitting region is described.
  • the support base is disposed at a predetermined interval of the outer circumference of the code wheel 5, thereby preventing the support base from colliding with the outer circumferential surface of the code wheel 5 when the grating switch 4 is rotated together with the base 21.
  • the rotating member rotates to drive the base 21 to rotate at the same speed, thereby driving the grating switch 4 to rotate synchronously, and the code wheel 5 is stationary, so the grating switch 4 can detect the pulse sequence of alternating high and low levels.
  • the high level corresponds to the light transmission area
  • the low level corresponds to the non-light transmission area, so that the rotation angle of the base 21 is obtained according to the pulse sequence
  • the rotation angle of the base 21 is the rotation angle ⁇ of the antenna assembly 2.
  • the grating switch 4 of the present embodiment is electrically connected to the main control board 22, so that the main control board 22 obtains the rotation angle ⁇ of the antenna assembly 2 detected by the grating switch 4 in time, thereby calculating the position of the obstacle.
  • the through hole of the code wheel 5 can be sleeved and fixed on the outer sidewall of the base 21, and the grating switch 4 is fixedly connected to the side of the base 1 near the base 21.
  • the code wheel 5 is caused to rotate together with the base 21, and the grating switch 4 is stationary. And by the cooperation of the grating switch 4 and the code wheel 5, the rotation angle of the base 21 is detected, thereby obtaining the rotation angle ⁇ of the antenna assembly 2.
  • the type of the driving mechanism can also be selected according to requirements.
  • the driving mechanism is a motor
  • the rotating component is a driving shaft of the motor
  • the driving shaft extends along the rotating shaft.
  • Direction setting is a motor
  • the drive mechanism is an outer rotor motor
  • the rotating component is a rotor case of the motor
  • the rotor case drives the antenna assembly 2 to rotate together.
  • the power supply mode of the antenna assembly 2 is connected to the antenna assembly 2 and an external power source by a cable, and the antenna assembly 2 is powered by an external power source.
  • the drive mechanism in the radar 200 cannot achieve 360° rotation.
  • the driving mechanism in the radar 200 can achieve 270° rotation. Due to the limitation of the rotation angle, the driving mechanism needs to continuously rotate back and forth, which causes the driving mechanism to continuously accelerate and decelerate, the driving mechanism has a lower rotation speed, and the data points are collected. small.
  • the cable relies on its own elastic force to bear the torsional force of the drive mechanism. After a period of operation, the cable may be worn, the metal may be fatigued and easily broken, and the radar 200 may not work.
  • the power supply of the antenna assembly 2 can be an electric slip ring 8 or a wireless power supply module, and the driving mechanism can rotate 360°, thereby driving the antenna assembly 2 to achieve 360° rotation, and the antenna assembly 2 can realize multiple rotations, the antenna Component 2 is capable of achieving a wider range of work areas.
  • the driving mechanism is a motor
  • the rotating component is a driving shaft of the motor
  • the driving shaft can be provided with an electric slip ring 8 through which the antenna assembly 2 passes
  • the ring 8 is electrically connected to an external power source to achieve an electrical connection between the external power source and the antenna assembly 2.
  • the electric slip ring 8 may include a housing 82 fixedly coupled to the drive shaft, a core 81 disposed in the housing 82 and electrically connected to the housing 82, and a connection with the housing 82.
  • At least a portion of the first connection line 83 is a power line
  • at least a portion of the second connection line 84 is also a power line
  • the first connection line 83 is connected to the antenna assembly 2, and the second connection line 84 Connected to the external power source.
  • the core portion 81 is disposed in the outer casing 82 and is rotatably and electrically connected to the outer casing 82.
  • the outer casing 82 is fixedly connected to the driving shaft, and the first connecting wire 83 is connected to the outer casing 82, and the second The connecting wire 84 is connected to the core 81, and the first connecting wire 83 and the second connecting wire 84 are electrically connected by electrical connection between the core 81 and the outer casing 82.
  • the driving shaft rotates to drive the outer casing 82 to rotate
  • the first connecting wire 83 rotates together with the outer casing 82
  • the first connecting wire 83 and the antenna assembly 2 rotate synchronously, thereby avoiding the winding of the first connecting wire 83.
  • the second connecting line 84 is connected to the core 81. Since the core 81 is stationary, the second connecting line 84 is also stationary. The second connecting line 84 of the embodiment is fixed on the base 1. The first connection of this embodiment Neither the line 83 nor the second connection line 84 affects the 360° rotation of the antenna assembly.
  • the outer casing 82 is provided with a brush (not shown) facing the core portion 81, and the core portion 81 is provided with a contact (not shown) toward the outer casing 82.
  • the motor rotates, its drive shaft will drive the outer casing 82 to rotate, and the core 81 is in a stationary state, so that the outer casing 82 and the core 81 are relatively rotated.
  • the contacts are in contact with the brush, and after the corresponding contacts are in contact with the brush, the corresponding first connecting line 83 and the second connecting line are caused.
  • 84 is turned on to pass current, thereby powering the antenna assembly 2.
  • the antenna assembly 2 is further electrically connected to an external device through the electric slip ring 8 to implement an external device (for example, a mobile device such as a drone, an unmanned vehicle, an unmanned ship, etc.).
  • an external device for example, a mobile device such as a drone, an unmanned vehicle, an unmanned ship, etc.
  • another part of the first connection line 83 is a signal line
  • another part of the second connection line 84 is also a signal line
  • the first connection line 83 is connected to the antenna assembly 2
  • the second The connection line 84 is connected to an external device.
  • the radar 200 may further include a wireless power supply module, and the wireless power supply module may include a power emission module and an electrical connection module.
  • the power emitting module is disposed on the base 1 , and the power emitting module is configured to be electrically connected to an external power source.
  • the power receiving module is disposed on the antenna component 2 , and the power emitting module of the embodiment It is spaced apart from the power receiving module, and the power receiving module rotates together with the antenna assembly 2.
  • the power generation module and the power receiving module are wirelessly matched to supply power to the antenna assembly 2.
  • the power emission module may include a transmitting coil
  • the power receiving module may include a receiving coil electrically connected to the external power source, and the receiving coil is electrically connected to the antenna assembly 2.
  • the transmitting coil and the receiving coil are spaced apart, and the receiving coil rotates together with the antenna assembly 2.
  • the antenna assembly 2 of the present embodiment is wirelessly powered by magnetic induction, and the rotation of the antenna assembly 2 is not disturbed by the cable.
  • the power transmitting module may further include a transmitting end adjusting circuit, the transmitting coil is connected to the external power source via the transmitting end adjusting circuit, and the direct current power of the external power source is converted into an alternating current through the transmitting end adjusting circuit, and the current is adjusted by the transmitting end regulating circuit. The frequency, thereby adjusting the electromagnetic emissions emitted by the transmitting coil.
  • the power receiving module may further include a receiving end adjusting circuit, and the receiving coil is connected to the antenna component 2 via the receiving end adjusting circuit, and converts the alternating current into direct current through the receiving end adjusting circuit, thereby supplying power to the antenna component 2.
  • the receiving end adjusting circuit is a rectifying circuit.
  • a wireless communication module may be disposed on the base 1 , and the antenna assembly 2 is communicably connected to an external device through a wireless communication module disposed on the base 1 .
  • the wireless communication module is communicably connected to the antenna component 2 based on a wireless communication manner, and the wireless communication module is communicably connected with an external device based on a wireless communication manner to detect the antenna component 2 based on a wireless communication manner.
  • the obstacle information is sent to the external device.
  • the wireless communication method may be Wifi, Bluetooth or other wireless communication methods.
  • the radar 200 may further include a radome 6, which ensures physical isolation of the antenna assembly 2 from the external environment, thereby ensuring physical reliability of the antenna assembly 2 such as dustproof and waterproof.
  • the radome 6 is internally provided with a receiving space for accommodating the antenna assembly 2 .
  • the radome 6 cooperates with the base 1 to cover the antenna assembly 2 on the base 1 to prevent dust, moisture, etc. from entering the antenna assembly 2 and affecting the performance of the antenna 23.
  • the radome 6 and the base 1 form a sealed space, and the antenna assembly 2 is sealed in the sealed space.
  • the main factors affecting the performance of the antenna cover 6 include the dielectric constant and loss tangent (i.e., dielectric loss) and the curvature of the radome 6.
  • the dielectric constant and loss tangent i.e., dielectric loss
  • the curvature of the radome 6 directly interferes with the formation of plane waves of the antenna 23, resulting in deterioration of the side lobes.
  • the radome 6 of the present embodiment is selected as a polypropylene cover 61 having a truncated cone structure.
  • the polypropylene cover 61 has a small dielectric constant and dielectric loss, good toughness, excellent chemical properties, structure and electrical properties, and is light and beautiful, and low in cost. Further, the polypropylene cover 61 has good wave transmission performance and little signal interference with the antenna assembly 2.
  • the top surface of the polypropylene cover 61 is provided with a first opening portion 611, and the bottom surface of the polypropylene cover 61 is provided with a second opening portion 612.
  • the first opening 611 is provided with a cover 62, and the second opening 612 is used for the antenna 23 to pass through and enter the receiving space.
  • the antenna 23 of the present embodiment extends into the accommodating space from the second opening portion 612, so that the antenna 23 is placed in the radome 6 to protect the antenna 23.
  • the side wall of the polypropylene cover 61 of the present embodiment is inclined with respect to the bottom surface of the polypropylene cover 61.
  • the side wall of the polypropylene cover 61 By arranging the side wall of the polypropylene cover 61 obliquely with respect to the bottom surface of the polypropylene cover 61, the influence on the pattern of the antenna 23 is small, and the structure is simple, which facilitates injection molding and facilitates production.
  • the radome 6 of the polypropylene cover 61 the antenna 23 can achieve 360° omnidirectional uniform scanning in a single direction, and the gain and side lobes of the antenna 23 can meet the actual use requirements.
  • the radome 6 of the present invention can be applied to the 24-24.24 GHz (unit: GHz) and 76-81 GHz frequency bands, and has a wide frequency range.
  • the angle between the outer peripheral surface of the side wall of the polypropylene cover 61 and the bottom surface of the polypropylene cover 61 can be set according to the performance requirements of the antenna 23.
  • the angle between the outer peripheral surface of the side wall of the polypropylene cover 61 and the bottom surface of the polypropylene cover 61 is greater than 90° (unit: degree), in fact, the side wall of the polypropylene cover 61
  • the angle between the outer peripheral surface and the bottom surface of the polypropylene cover 61 is slightly larger than 90°.
  • an angle between an outer circumferential surface of the side wall of the polypropylene cover 61 and a bottom surface of the polypropylene cover 61 is 91°.
  • the diameter of the first opening portion 611 is smaller than the diameter of the second opening portion 612.
  • the diameters of the first opening portion 611 and the second opening portion 612 can be set according to factors such as the size of the antenna 23 and the performance requirement of the antenna 23, so that the pattern, the transmitting and the receiving gain of the antenna 23 are optimized.
  • the diameter of the second opening portion 612 is 110 ⁇ 5 mm (unit: mm).
  • the diameter of the second opening portion 612 may be selected to be other values between 105 mm, 110 mm, 115 mm, or 105-115 mm.
  • the diameter of the first opening portion 611 is greater than or equal to the diameter of the cover 62.
  • the diameter of the first opening portion 611 is larger than the diameter of the cover body 62.
  • the diameter of the cover 62 can also be set according to factors such as the size of the antenna 23 and the performance requirements of the antenna 23.
  • the cover 62 may have a diameter of 90 ⁇ 5 mm.
  • the diameter of the cover 62 may be selected to be other values between 85 mm, 90 mm, 95 mm, or 85-95 mm.
  • a chamfered portion 63 may be disposed between the sidewall of the polypropylene cover 61 and the cover 62 , and one end of the chamfered portion 63 is connected to the polypropylene cover 61 .
  • the side wall is adjacent to one side of the first opening portion 611, and the other end is connected to the cover body 62.
  • the size of the chamfered portion 63 can be determined according to the size of the cover body 62, the size of the first opening, the size of the antenna 23, the performance requirements of the antenna 23, and the like, so that the antenna 23 satisfies the demand.
  • the chamfered portion 63 may have a radius of 10 ⁇ 5 mm.
  • the radius of the chamfered portion 63 may be other values between 5 mm, 10 mm, 15 mm, or 5-15 mm.
  • the first opening portion 611 has a diameter of 100 mm
  • the second opening portion 612 has a diameter of 110 mm
  • the cover body 62 has a diameter of 90 mm
  • the chamfered portion 63 has a radius of 10 mm.
  • the radome 6 covers the antenna 23, and the pattern, transmission and reception gain of the antenna 23 are optimized.
  • the side wall of the polypropylene cover 61, the cover 62 and the chamfered portion 63 are integrally formed, and the radome 6 has a strong structural stability.
  • the side wall of the polypropylene cover 61, the cover 62 and the chamfered portion 63 may be respectively connected by bonding or other means, or the polypropylene cover 61 may be separately connected.
  • the side wall and the chamfered portion 63 are integrally formed, and the cover body 62 and the chamfered portion 63 are joined by bonding or other means, or the cover body 62 and the chamfered portion 63 are integrally formed.
  • the side wall of the polypropylene cover 61 and the chamfered portion 63 are joined by bonding or other means, but the structural stability of the radome 6 obtained in these combinations is poor.
  • the thickness of the side wall of the polypropylene cover 61 of the present embodiment can be set according to factors such as heat dissipation performance, performance requirements of the antenna 23, and the like.
  • the side wall of the polypropylene cover 61 may have a thickness of 0.5 ⁇ 0.2 mm. Among them, ⁇ 0.2 mm is an allowable error range of the thickness of the side wall of the polypropylene cover 61, which facilitates the processing of the polypropylene cover 61.
  • the thickness of the side wall of the polypropylene cover 61 is 0.5 mm, which has less influence on the performance of the antenna 23, and heat dissipation is fast.
  • the central axis of the side wall of the polypropylene cover 61 coincides with the rotating shaft to reduce the influence of the radome 6 on the performance of the antenna 23, so that the performance of the antenna 23 is optimized.
  • the inner side wall of the polypropylene cover 61 is further provided with a fixing portion for connecting the base 1.
  • the fixing portion is a thread, and an inner side wall of the polypropylene cover 61 is threadedly engaged with the base 1.
  • the fixing portion may also be a snap portion that is snapped onto the base 1 to fix the polypropylene cover 61 to the base 1.
  • the radar 200 may further include a back cover 7, which further ensures physical isolation of the internal structure of the base 1 from the external environment, thereby ensuring physical reliability such as dustproof and waterproof of the internal structure of the base 1.
  • the rear cover 7 is provided with a receiving space 71. The one end of the base 1 away from the antenna assembly 2 is received in the receiving space 71.
  • the back cover 7 can be surrounded by the base 1 to form a sealed space, and the wireless power supply module, the wireless communication module, and the like are all accommodated in the sealed space, thereby implementing a wireless power supply module, a wireless communication module, and the like. Waterproof and dustproof features.
  • the wireless power supply module is a magnetic induction type wireless power supply module
  • the cooperation of the rear cover 7 and the base 1 can also prevent wireless electromagnetic leakage.
  • a second embodiment of the present invention provides a mobile device that can include a housing 100, a control system, and a radar 200.
  • a housing 100 can include a housing 100, a control system, and a radar 200.
  • a radar 200 can include a radar 200.
  • the radar 200 is disposed on the housing 100, and the antenna assembly 2 of the radar 200 is communicatively coupled to the control system to transmit the detected obstacle information to the control system.
  • the control system can control the flight of the mobile device according to the received obstacle information, and realize the obstacle avoidance of the movable device.
  • the mobile device can be a drone, an unmanned vehicle, an unmanned boat, or other mobile device.
  • the housing 100 may include a body 110 and a stand 120 connected to both sides of the bottom of the body 110. Further, the housing 100 may further include a robot arm 130 connected to both sides of the body 110.
  • the radar 200 is fixedly coupled to the stand 120. Of course, the radar 200 can also be fixedly coupled to the body 110 or the arm 130.
  • the drone of this embodiment may be a quadrotor drone or an eight-rotor drone.
  • the end of the arm 130 away from the body 110 can be connected with a propeller 300 to provide flight power for the drone.
  • the drone is a plant protection drone, and a bottom of the fuselage 110 is provided with a bin 400 for installing pesticides or seeds.
  • a spreading mechanism (not shown) may be provided on the magazine 400, and the spreading mechanism cooperates with the magazine 400. Seeds can be placed in the bin 400 and then spread by a spreading mechanism to automate agricultural operations.
  • a spray mechanism 500 may also be disposed at one end of the arm 130 away from the body 110, and the spray mechanism 500 also cooperates with the bin 400. The pesticide can be installed in the tank 400, and then the pesticide is sprayed by the spray mechanism 500 to realize automated agricultural operations.

Abstract

本发明提供一种雷达和具有该雷达的可移动设备,其中,所述雷达包括:底座;天线组件,设于底座的上方,天线组件相对于底座绕一转轴可旋转;驱动机构,设于底座上,驱动机构的转动部件固定连接天线组件,以驱动天线组件绕转轴转动;以及配重件,设于天线组件上,以使天线组件的重心靠近转轴,驱动机构的转动部件驱动天线组件旋转时,配重件随天线组件一起旋转,使得天线组件稳定地绕转轴旋转。通过在天线组件上设置配重件,使得天线组件的重心靠近某一转轴,从而使得天线组件始终绕着该转轴旋转,保障天线组件旋转的平衡性,避免天线组件旋转的不平衡对其方向图的影响,使得天线组件的性能达到最优。

Description

雷达和具有该雷达的可移动设备 技术领域
本发明涉及避障领域,尤其涉及一种雷达和具有该雷达的可移动设备。
背景技术
无人机、无人车和无人船等可移动设备在移动的过程中可能会遇到障碍物,在这种情况下,可移动设备的安全以及任务的执行会受到很大的影响。目前,通过在可移动设备上设置雷达,通过雷达对障碍物进行检测并及时告知可移动设备的控制系统,以实现避障。天线组件作为雷达的核心元件,其性能直接影响障碍物的检测精度。雷达在工作时,需要通过驱动机构来驱动天线组件绕一转轴旋转,以探测不同方向上的障碍物,天线组件旋转的稳定性对天线性能影响较大。
发明内容
本发明提供一种雷达和具有该雷达的可移动设备。
根据本发明的第一方面,提供一种雷达,包括:底座;天线组件,设于所述底座的上方,所述天线组件相对于所述底座绕一转轴可旋转;驱动机构,设于所述底座上,所述驱动机构的转动部件固定连接所述天线组件,以驱动所述天线组件绕所述转轴转动;以及配重件,设于所述天线组件上,以使所述天线组件的重心靠近所述转轴,其中,所述驱动机构的转动部件驱动所述天线组件旋转时,所述配重件随所述天线组件一起旋转,使得所述天线组件稳定地绕所述转轴旋转。
根据本发明的第二方面,提供一种可移动设备,包括壳体、控制系统和设于所述壳体上的雷达,所述雷达包括底座、设于所述底座的上方的天线组件、设于所述底座上的驱动机构和设于所述天线组件上的配重件;其中,所述天线组件相对于所述底座绕一转轴可旋转,并且所述天线组件与所述控制系统通信连接,以将检测到的障碍物信息发送至所述控制系统;所述驱动机构的转动部件固定连接所述天线组件,以驱动所述天线组件绕所述转轴转动;所述配重件能够使得所述天线组件的重心靠近所述转轴,所述驱动机构的转动部件驱动所述天线组件旋转时,所述配重件随所述天线组件一起旋转,使得所述天线组件稳定地绕所述转轴旋转。
由以上本发明实施例提供的技术方案可见,本发明通过在天线组件上设置配重件,使得天线组件的重心靠近某一转轴,从而使得天线组件始终绕着该转轴旋转,保障天线组件旋转的平衡性,避免天线组件旋转的不平衡对其方向图的影响,使得天线组件的性能达到最优。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中雷达的部分结构示意图;
图2是本发明一实施例中雷达的局部放大图;
图3是本发明一实施例中雷达的部分结构的拆分图;
图4是本发明一实施例中雷达的拆分图;
图5是本发明一实施例中电滑环的立体图;
图6是本发明一实施例中天线罩的立体图;
图7是本发明一实施例中天线罩的结构示意图;
图8是本发明一实施例中可移动设备的立体图。
附图标记:
100:壳体;110:机身;120:脚架;130:机臂;
200:雷达;1:底座;2:天线组件;21:基座;211:安装部;22:主控板;23:天线;24:天线支架;25:连接部;26:包角部;3:配重件;4:光栅开关;5:码盘;6:天线罩;61:聚丙烯罩体;611:第一开口部;612:第二开口部;62:盖体;63:倒角部;7:后盖;71:容纳空间;8:电滑环;81:芯部;82:外壳;83:第一连接线;84:第二连接线;
300:螺旋桨;
400:料箱;
500:喷洒机构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的雷达和具有该雷达的可移动设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
结合图1至图4,本发明实施例一提供一种雷达200,该雷达200可包括底座1、天线组件2、驱动机构和配重件3。其中,所述天线组件2设于所述底座1的上方,所述天线组件2相对于所述底座1绕一转轴可旋转。本实施例中,所述转轴可以为一虚轴,也可以为实轴。当所述转轴为实轴时,所述天线组件2相对于所述转轴旋转,或者,所述天线组件2跟随所述转轴一起旋转。本实施例的驱动机构设于所述底座1上。所述驱动机构包括转动部件,所述转动部件固定连接所述天线组件2,以驱动所述天线组件2绕所述转轴转动。
进一步地,所述配重件3设于所述天线组件2上,以使所述天线组件2的重心(本文指天线组件2和配重件3两者组合在一起时的重心)靠近所述转轴。其中,所述驱动机构的转动部件驱动所述天线组件2旋转时,所述配重件3随所述天线组件2一起旋转,使得所述天线组件2稳定地绕所述转轴旋转。本实施例中,所述底座1为静止的,所述驱动机构转动,通过转动部件带动天线组件2和配重件3一起旋转,从而使得所述天线组件2和所述配重件3均相对于所述底座1旋转。在理想情况下,所述配重件3和所述天线组件2配合,能够使得所述天线组件2的重心位于所述转轴上,所述天线组件2能够实现旋转动平衡。但实际情况中,所述天线组件2的重心难以做到完全位于所述转轴上,故将天线组件2的重心偏离所述转轴的距离在一定误差范围内均认为所述天线组件2的重心位于所述转轴上。本实施例的天线组件2的重心靠近所述转轴,以使得所述天线组件2实现旋转动平衡。
本发明实施例中,通过在天线组件2上设置配重件3,使得天线组件2的重心靠近某一转轴,从而使得天线组件2始终绕着该转轴旋转,保障天线组件2旋转的平衡性,避免天线组件2旋转的不平衡对其方向图的影响,使得天线组件2的性能达到最优。
参见图3,本实施例中,所述天线组件2可包括基座21、安装在所述基座21上的主控板22和与所述主控板22电连接的天线23。其中,所述转动部件与所述基座21相连接,以驱动所述基座21转动,从而带动主控板22、天线23和配重件3等一起旋转。所述天线23安装于所述主控板22的一侧,所述配重件3安装于所述主控板22的另一侧,将天线23和配重件3分别设于主控板22的两侧,从而使得天线组件2的重心靠近转轴,以维持天线组件2的旋转动平衡。
进一步地,天线23的形状可根据天线23的性能需求设定,而配重件3可以为任意形状。在一具体实现方式中,所述天线23和所述配重件3均为片状结构,所述天线23所在平面、所述主控板22所在平面和所述配重件3所在平面相互平行,天线组件2的厚度较小。而所述主控板22所在平面垂直连接与所述基座21上,进一步保障天线组件2旋转的动平衡。
其中,可采用任意快拆件将天线23安装至主控板22上,例如,可采用螺栓将天线23安装至主控板22上。同时,天线23与主控板22间隔设置,以防止主控板22上的电子元件对天线23造成的电磁干扰。本实施例中,又参见图3,所述天线组件2还可包括设于主控板22两侧的天线支架24。所述天线23安装于其中一个天线支架24远离所述主控板22的一侧,所述配重件3安装于另外一个天线支架24远离所述主控板22的一侧。通过天线23和主控板22通过天线支架24间隔开,防止主控板22上对天线23的电磁干扰。并且,在主控板22的两侧均设置天线支架24,保障天线组件2的重心靠近转轴。另外,将主控板22收容在两个天线支架24之间的空间,天线支架24能够对主控板22上的电子元件形成有利的保护。
而天线支架24也可为任意形状,本实施例中,为与主控板22、天线23的形状匹配,本实施例的天线支架24也为片状结构,并且所述天线支架24所在平面与所述主控板22所在平面相互平行。优选地,所述天线支架24的尺寸稍大于所述主控板22的尺寸,从而尽可能地将天线23和主控板22隔开。此外,两块天线支架24之间可以通过固定件(比如螺栓、卡扣结构)固定连接。
又参见图3,所述基座21上设有安装部211,所述主控板22的底部和所述天线支架24的底部均设有连接部25。所述连接部25装配在所述安装部211上,从而将天线组件2装配至基座21上,在转动部件驱动基座21转动时,天线组件2会一起转动。可选地,所述安装部211为一安装孔,所述连接部25为一凸起,所述凸起与所述安装孔插接配合。
更进一步地,所述天线组件2还可包括包角部26,所述天线23的角部、所述主控板22的角部和所述配重件3的角部均装配在所述包角部26上,从而将所述主控板22、所述天线23、所述配重件3和所述天线支架24装配成一体,防止所述主控板22、所述天线23、所述配重件3和所述天线支架24在旋转的过程中晃动而导致天线组件2的重心偏离所述转轴的误差较大。结合图1和图3,本实施例中,所述主控板22、所述天线23、所述配重件3和所述天线支架24形成一近似方形的结构,包角部26为4个,4个包角部26分别包裹方形结构的四角,使得所述主控板22、所述天线23、所述配重件3和所述天线支架24装配成一体。
此外,所述雷达200还可包括角度检测机构,用于检测所述天线组件2的转动角度θ,从而可根据天线组件2探测的雷达200至障碍物的距离S和该转动角度θ来获得该障碍物的位置。所述角度检测机构可为现有技术中任意角度传感器。
在一具体实现方式中,所述角度检测机构可包括光栅开关4和用以与所述光栅开关4相配合的码盘5。结合图1至图3,所述光栅开关4可设于所述基座21上,所述码盘5设于所述底座1上。本实施例中,光栅开关4可通过一支架固定连接在所述基座21上。而所述码盘5与所述底座1朝向所述基座21的一侧固定连接,并且所述 码盘5的中部设有一贯穿孔,所述基座21和所述转动部件穿设所述贯穿孔固定连接,并且所述基座21和所述转动部件与所述码盘5均不接触,即码盘5为静止的。进一步地,码盘5设有交替分布的透光区和非透光区,所述交替分布的透光区和非透光区沿着所述码盘5的周向分布且靠近码盘5的外边缘。本实施例中,所述光栅开关4为槽式光电开关,其包括支撑座(图中未标出)、发射管(图中未标出)和接收管(图中未标出)。其中,所述发射管和所述接收管分别设于所述支撑座的两端。所述发射管和所述接收管对称设于所述码盘5的两侧,且所述发射管和所述接收管的中心位于所述透光区和非透光区所在圆周,以实现与述透光区和非透光区的配合。所述支撑座位于所述码盘5外圆周预设间距处设置,从而防止光栅开关4跟随基座21一起转动时,支撑座碰撞到码盘5的外圆周面。本实施例中,转动部件转动带动基座21同速转动,从而带动光栅开关4同步转动,所述码盘5为静止的,故光栅开关4能够检测出高、低电平交替的脉冲序列,其中,高电平对应透光区,低电平对应非透光区,从而根据脉冲序列获得基座21的转动角度,而基座21的转动角度即为天线组件2的转动角度θ。另外,本实施例的光栅开关4与所述主控板22电连接,使得主控板22及时获得所述光栅开关4检测的天线组件2的转动角度θ,从而计算出障碍物的位置。
而在其他实施例中,也可将码盘5的贯穿孔套设固定在基座21的外侧壁上,而将光栅开关4固定连接在所述底座1靠近所述基座21的一侧,使得所述码盘5跟随所述基座21一起转动,而所述光栅开关4静止。并通过光栅开关4和码盘5的配合,检测基座21的转动角度,从而获得天线组件2的转动角度θ。
此外,驱动机构的类型也可根据需要选择,例如,在其中一实施例中,所述驱动机构为电机,所述转动部件为所述电机的驱动轴,所述驱动轴沿所述转轴的延伸方向设置。
在另外一实施例中,所述驱动机构为外转子电机,所述转动部件为所述电机的转子壳,所述转子壳带动所述天线组件2一起旋转。
现有技术中,天线组件2的供电方式采用电缆连接天线组件2和外部电源,通过外部电源对天线组件2供电。由于电缆的限制,雷达200中的驱动机构无法实现360°旋转。目前雷达200中的驱动机构可实现270°的旋转,由于旋转角度的限制,驱动机构需要不断地往返转动,这就使得驱动机构不断地加速和减速,驱动机构的转速较低,采集数据点较小。此外,电缆是靠自身的弹性力来承担驱动机构的扭转力的,在工作一段时间后,电缆会存在磨损、金属疲劳而容易断裂,导致雷达200无法工作。
本实施例中,所述天线组件2的供电可采用电滑环8或者无线供电模块,驱动机构能够360°转动,从而带动天线组件2实现360°转动,天线组件2可实现多圈旋转,天线组件2能够实现更大范围的工作区域。例如,在一实施例中,所述驱动机构为电机,所述转动部件为所述电机的驱动轴,所述驱动轴内可设有电滑环8,所述天 线组件2通过所述电滑环8电连接外部电源,从而实现外部电源和天线组件2之间的电连接。
参见图5,所述电滑环8可包括与驱动轴固定连接的外壳82、设于所述外壳82内并与所述外壳82转动电连接的芯部81、与所述外壳82连接的第一连接线83和与所述芯部81连接的第二连接线84。所述第一连接线83至少一部分为电源线,所述第二连接线84的至少一部分也为电源线,所述第一连接线83连接至所述天线组件2,所述第二连接线84连接至所述外部电源。
所述芯部81设于所述外壳82内并与所述外壳82转动电连接,所述外壳82与驱动轴固定连接,所述第一连接线83与所述外壳82连接,所述第二连接线84与所述芯部81连接,第一连接线83和第二连接线84通过芯部81和外壳82之间的电连接而形成电连接。电机工作时,驱动轴转动而带动外壳82转动,第一连接线83会跟随外壳82一起转动,第一连接线83和天线组件2同步转动,从而避免第一连接线83的缠绕。第二连接线84与芯部81连接,由于芯部81静止,所以第二连接线84也为静止的,本实施例的第二连接线84固定在底座1上,本实施例的第一连接线83和第二连接线84均不会影响天线组件2360°旋转。
本实施例中,所述外壳82朝向所述芯部81设有电刷(未显示),所述芯部81朝向所述外壳82设有触点(未显示)。雷达200工作时,所述电机转动,其驱动轴会带动所述外壳82转动,而所述芯部81处于静止状态,从而使得所述外壳82与所述芯部81之间相对转动。在所述芯部81与所述外壳82相对运动的过程中,触点与电刷能够接触,相应的触点与电刷相接触后,会使得对应的第一连接线83和第二连接线84导通,从而传递电流,进而对天线组件2供电。
进一步地,所述天线组件2还通过所述电滑环8电连接外部设备,实现外部设备(例如无人机、无人车、无人船等可移动设备)。具体地,所述第一连接线83另一部分为信号线,所述第二连接线84的另一部分也为信号线,所述第一连接线83连接至所述天线组件2,所述第二连接线84连接至外部设备。
在另一实施例中,所述雷达200还可包括无线供电模块,所述无线供电模块可包括电量发射模块和电连接收模块。其中,所述电量发射模块设于所述底座1上,并且所述电量发射模块用以与外部电源电连接,所述电量接收模块设于所述天线组件2上,本实施例的电量发射模块与电量接收模块间隔设置,电量接收模块跟随天线组件2一起转动。本实施例中,所述电量发射模块和所述电量接收模块无线配合,以对所述天线组件2供电。可选地,所述电量发射模块可包括发射线圈,所述电量接收模块可包括接收线圈,所述发射线圈与所述外部电源电连接,所述接收线圈与所述天线组件2电连接。发射线圈和接收线圈间隔设置,接收线圈跟随天线组件2一起转动,本实施例的天线组件2通过磁感应方式无线供电,天线组件2的旋转不会受到电缆的干 扰。进一步地,所述电量发射模块还可包括发射端调节电路,发射线圈经发射端调节电路连接外部电源,通过发射端调节电路将外部电源的直流电转变成交流电,并可通过发射端调节电路调节电流的频率,从而调节发射线圈发射的电磁。所述电量接收模块还可包括接收端调节电路,接收线圈经接收端调节电路连接天线组件2,通过接收端调节电路将交流电转换成直流电,从而对天线组件2供电。可选地,所述接收端调节电路为整流电路。
此外,所述底座1上还可设有无线通信模块,所述天线组件2通过设于所述底座1上的无线通信模块与外部设备通信连接。其中,所述无线通信模块与所述天线组件2基于无线通信方式通信连接,并且所述无线通信模块与外部设备基于无线通信方式通信连接,以基于无线通信方式将所述天线组件2检测到的障碍物信息发送至所述外部设备。所述无线通信方式可为Wifi、蓝牙或其他无线通信方式。
参见图4,所述雷达200还可包括天线罩6,保证了天线组件2与外界环境的物理隔离,从而保证了天线组件2的防尘、防水等物理可靠性。其中,所述天线罩6内部设有用于收容所述天线组件2的收容空间。本实施例中,所述天线罩6与所述底座1配合,将所述天线组件2盖设在所述底座1上,防止灰尘、水汽等进入天线组件2而影响天线23性能。具体地,所述天线罩6和所述底座1所形成一密封空间,所述天线组件2密封在所述密闭空间内。
天线罩6影响天线23性能主要因素包括介电常数和损耗角正切(即介电损耗)、天线罩6曲率。其中,介电常数越大,电磁波在空气与天线罩6的侧壁分界面上的反射就越大。损耗角正切越大,电磁波能量在穿透天线罩6过程中转化为热量而损耗的能量就越多。天线罩6曲率越大直接干扰天线23平面波的形成,导致副瓣恶化。对于此,本实施例的天线罩6选择为呈圆台型结构的聚丙烯罩体61。采用聚丙烯罩体61,介电常数和介电损耗均较小,韧性好,化学性能、结构和电性能上表现优异,同时轻巧美观,成本低廉。此外,聚丙烯罩体61的透波性能好,对于天线组件2的信号干扰较小。
所述聚丙烯罩体61的顶面设有第一开口部611,所述聚丙烯罩体61的底面设有第二开口部612。其中,第一开口部611上设有盖体62,第二开口部612用于供天线23穿设而进入所述收容空间。本实施例的天线23从第二开口部612伸入所述收容空间内,从而将天线23罩设在天线罩6中,实现对天线23的保护。
此外,本实施例的聚丙烯罩体61的侧壁相对于所述聚丙烯罩体61的底面倾斜设置。通过将聚丙烯罩体61的侧壁相对于聚丙烯罩体61的底面倾斜设置,对天线23方向图的影响较小,结构简单,利于注塑拔模且方便生产。使用聚丙烯罩体61的天线罩6,天线23能够实现单一方向360°全向均匀扫描的需求,天线23的增益、副瓣均能满足实际使用需求。此外,本实用新型的天线罩6能够适用于24-24.24GHz(单位: 吉赫)和76-81GHz频段,适用频段范围广。
聚丙烯罩体61的侧壁的外周面与聚丙烯罩体61的底面之间的夹角可根据天线23的性能需求来设定。本实施例中,聚丙烯罩体61的侧壁的外周面与聚丙烯罩体61的底面之间的夹角大于90°(单位:度),实际上,聚丙烯罩体61的侧壁的外周面与聚丙烯罩体61的底面之间的夹角略大于90°。优选地,所述聚丙烯罩体61的侧壁的外周面与所述聚丙烯罩体61的底面之间的夹角为91°。
本实施例中,所述第一开口部611的直径小于所述第二开口部612的直径。其中,第一开口部611和第二开口部612的直径均可根据天线23的尺寸、天线23的性能需求等因素进行设定,从而使得天线23的方向图、发射和接收增益均达到最优。可选地,所述第二开口部612的直径为110±5mm(单位:毫米),比如,第二开口部612的直径可选择为105mm、110mm、115mm或者105-115mm之间的其他数值。
进一步地,第一开口部611的直径大于或等于盖体62的直径。优选地,第一开口部611的直径大于盖体62的直径。所述盖体62的直径也可根据天线23的尺寸、天线23的性能需求等因素进行设定。可选地,所述盖体62的直径可为90±5mm,比如,盖体62的直径可选择为85mm、90mm、95mm或者85-95mm之间的其他数值。
又结合图6至图7,所述聚丙烯罩体61的侧壁和所述盖体62之间可设有倒角部63,所述倒角部63一端连接所述聚丙烯罩体61的侧壁靠近所述第一开口部611的一侧,另一端连接所述盖体62。倒角部63的尺寸可根据盖体62尺寸、第一开口尺寸、天线23的尺寸、天线23的性能需求等决定,使得天线23满足需求。可选地,所述倒角部63的半径可为10±5mm,比如,倒角部63的半径可为5mm、10mm、15mm或者5-15mm之间的其他数值。在一具体实现方式中,第一开口部611的直径为100mm,第二开口部612的直径为110mm,盖体62的直径为90mm,倒角部63的半径为10mm,使用该尺寸配置下的天线罩6来罩设天线23,天线23的方向图、发射和接收增益均达到最优。
此外,本实施例中,所述聚丙烯罩体61的侧壁、所述盖体62和所述倒角部63是一体成型的,天线罩6的结构稳定性强。当然,在其他实施例中,所述聚丙烯罩体61的侧壁、所述盖体62和所述倒角部63可通过粘接或其他方式分别连接,或者,所述聚丙烯罩体61的侧壁和所述倒角部63一体成型,而所述盖体62和所述倒角部63通过粘接或其他方式连接,或者,所述盖体62和所述倒角部63一体成型,所述聚丙烯罩体61的侧壁和所述倒角部63通过粘接或其他方式连接,但这些组合方式下所获得的天线罩6的结构稳定性均较差。
由于天线罩6的厚度越大,电磁波的损耗和反射率越大,直接干扰天线23平面波的形成,导致副瓣恶化。本实施例的聚丙烯罩体61的侧壁的厚度可根据散热性能、天线23的性能需求等因素来设定。可选地,所述聚丙烯罩体61的侧壁的厚度可为0.5 ±0.2mm。其中,±0.2mm为聚丙烯罩体61的侧壁的厚度可允许的误差范围,方便聚丙烯罩体61的加工。优选地,聚丙烯罩体61的侧壁的厚度为0.5mm,对天线23性能影响越小,且散热快。
本实施例中,所述聚丙烯罩体61的侧壁的中轴线与所述转轴重合,减小天线罩6对天线23性能的影响,使得天线23的性能达到最优。
进一步地,所述聚丙烯罩体61的内侧壁还设有固定部,用于连接所述底座1。在一实施例中,所述固定部为螺纹,所述聚丙烯罩体61的内侧壁与所述底座1通过螺纹配合。在其他实施例中,所述固定部也可为卡接部,所述卡接部卡接在所述底座1上,从而将聚丙烯罩体61固定在所述底座1上。
参见图1和图4,所述雷达200还可包括后盖7,进一步保证底座1的内部结构与外界环境的物理隔离,从而保证底座1的内部结构的防尘、防水等物理可靠性。其中,所述后盖7设有一容纳空间71,所述底座1远离所述天线组件2的一端收容在所述容纳空间71中。在本实施例中,所述后盖7可与所述底座1包围形成一密闭空间,无线供电模块、无线通信模块等均收容在该密闭空间内,从而实现对无线供电模块、无线通信模块等的防水、防尘的功能。同时,无线供电模块为磁感应式无线供电模块时,后盖7和底座1的配合还能防止无线电磁泄漏。
实施例二
参见图8,本发明实施例二提供一种可移动设备,其可包括壳体100、控制系统和雷达200。其中,所述雷达200的结构、功能、工作原理及效果可参见实施例一的描述,此处不再赘述。
本实施例中,所述雷达200设于所述壳体100上,所述雷达200的天线组件2与所述控制系统通信连接,以将检测到的障碍物信息发送至所述控制系统,所述控制系统可根据接收到的障碍物信息控制可移动设备的飞行,实现可移动设备的避障。
所述可移动设备可为无人机、无人车、无人船或其他可移动设备。
本实施例以可移动设备为无人机为例进一步说明。其中,所述控制系统为所述无人机的飞行控制系统。参见图8,所述壳体100可包括机身110和连接在所述机身110底部两侧的脚架120。进一步地,所述壳体100还可包括连接在机身110两侧的机臂130。可选地,所述雷达200固定连接在所述脚架120上。当然,所述雷达200也可固定连接在所述机身110或所述机臂130上。
本实施例的无人机可为四旋翼无人机或八旋翼无人机。又参见图8,所述机臂130远离所述机身110的一端可连接有螺旋桨300,为无人机提供飞行动力。
可选地,所述无人机为植保无人机,所述机身110的底部设有料箱400,用于装设农药或种子。所述料箱400上可设有播撒机构(未显示),所述播撒机构与所述 料箱400配合。可在所述料箱400中装设种子,然后通过播撒机构进行播撒,实现自动化农业作业。更进一步地,所述机臂130远离所述机身110的一端还可设有喷洒机构500,所述喷洒机构500也与所述料箱400配合。可在所述料箱400中装设农药,然后通过喷洒机构500喷洒农药,实现自动化农业作业。
在本发明的描述中,“上”、“下”、“前”、“后”、“左”、“右”应当理解为从上至下依次天线组件2和底座1所形成的雷达200的“上”、“下”、“前”、“后”、“左”、“右”方向。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的雷达和具有该雷达的可移动设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (48)

  1. 一种雷达,其特征在于,包括:
    底座;
    天线组件,设于所述底座的上方,所述天线组件相对于所述底座绕一转轴可旋转;
    驱动机构,设于所述底座上,所述驱动机构的转动部件固定连接所述天线组件,以驱动所述天线组件绕所述转轴转动;以及
    配重件,设于所述天线组件上,以使所述天线组件的重心靠近所述转轴,
    其中,所述驱动机构的转动部件驱动所述天线组件旋转时,所述配重件随所述天线组件一起旋转,使得所述天线组件稳定地绕所述转轴旋转。
  2. 根据权利要求1所述的雷达,其特征在于,所述驱动机构为电机,所述转动部件为所述电机的驱动轴,所述驱动轴沿所述转轴的延伸方向设置。
  3. 根据权利要求2所述的雷达,其特征在于,所述雷达还包括收容在所述驱动轴内的电滑环,所述天线组件通过所述电滑环电连接外部电源或外部设备。
  4. 根据权利要求3所述的雷达,其特征在于,所述电滑环包括与驱动轴固定连接的外壳、设于所述外壳内并与所述外壳转动电连接的芯部、与所述外壳连接的第一连接线和与所述芯部连接的第二连接线;
    所述第一连接线至少一部分为电源线,所述第二连接线的至少一部分也为电源线,所述第一连接线连接至所述天线组件,所述第二连接线连接至所述外部电源。
  5. 根据权利要求4所述的雷达,其特征在于,所述第一连接线另一部分为信号线,所述第二连接线的另一部分也为信号线,所述第一连接线连接至所述天线组件,所述第二连接线连接至外部设备。
  6. 根据权利要求1所述的雷达,其特征在于,所述驱动机构为外转子电机,所述转动部件为所述电机的转子壳,所述转子壳带动所述天线组件一起旋转。
  7. 根据权利要求1所述的雷达,其特征在于,还包括无线供电模块,所述无线供电模块包括设于所述底座上的用以与外部电源电连接的电量发射模块和设于所述天线组件上的电量接收模块;
    所述电量发射模块和所述电量接收模块无线配合,以对所述天线组件供电。
  8. 根据权利要求7所述的雷达,其特征在于,所述电量发射模块包括发射线圈,所述电量接收模块包括接收线圈,所述发射线圈与所述外部电源电连接,所述接收线圈与所述天线组件电连接。
  9. 根据权利要求7所述的雷达,其特征在于,所述底座上还设有无线通信模块,所述天线组件通过设于所述底座上的无线通信模块与外部设备通信连接;
    其中,所述无线通信模块与所述天线组件基于无线通信方式通信连接,并且所述无线通信模块与外部设备基于无线通信方式通信连接,以基于无线通信方式将所述天线组件检测到的障碍物信息发送至所述外部设备。
  10. 根据权利要求1所述的雷达,其特征在于,所述天线组件包括基座、安装在 所述基座上的主控板和与所述主控板电连接的天线;
    所述转动部件与所述基座相连接,所述天线安装于所述主控板的一侧,所述配重件安装于所述主控板的另一侧。
  11. 根据权利要求10所述的雷达,其特征在于,所述天线和所述配重件均为片状结构,所述天线所在平面、所述主控板所在平面和所述配重件所在平面相互平行;
    所述主控板所在平面垂直连接与所述基座上。
  12. 根据权利要求11所述的雷达,其特征在于,所述天线组件还包括设于主控板两侧的天线支架;
    所述天线安装于其中一个天线支架远离所述主控板的一侧,所述配重件安装于另外一个天线支架远离所述主控板的一侧。
  13. 根据权利要求12所述的雷达,其特征在于,所述天线支架也为片状结构,并且所述天线支架所在平面与所述主控板所在平面相互平行。
  14. 根据权利要求11所述的雷达,其特征在于,所述天线组件还包括包角部,所述天线的角部、所述主控板的角部和所述配重件的角部均装配在所述包角部上。
  15. 根据权利要求11所述的雷达,其特征在于,所述基座上设有安装部,所述主控板的底部和所述天线支架的底部均设有连接部,所述连接部装配在所述安装部上。
  16. 根据权利要求10所述的雷达,其特征在于,所述基座上设有光栅开关,所述光栅开关跟随所述基座同步旋转,所述光栅开关与所述主控板电连接;
    所述底座上设有用以与所述光栅开关配合的码盘。
  17. 根据权利要求1所述的雷达,其特征在于,所述雷达还包括天线罩,所述天线罩内部设有用于收容所述天线组件的收容空间;
    所述天线罩与所述底座配合,将所述天线组件盖设在所述底座上。
  18. 根据权利要求17所述的雷达,其特征在于,所述天线罩为呈圆台型结构的聚丙烯罩体。
  19. 根据权利要求18所述的雷达,其特征在于,所述聚丙烯罩体的顶面设有第一开口部,所述聚丙烯罩体的底面设有用于供天线组件穿设而进入所述收容空间的第二开口部,所述第一开口部上设有盖体;
    所述聚丙烯罩体的侧壁相对于所述聚丙烯罩体的底面倾斜设置。
  20. 根据权利要求19所述的雷达,其特征在于,所述第一开口部的直径小于所述第二开口部的直径。
  21. 根据权利要求19所述的雷达,其特征在于,所述聚丙烯罩体的侧壁的中轴线与所述转轴重合。
  22. 根据权利要求18所述的雷达,其特征在于,所述聚丙烯罩体的内侧壁还设有固定部,用于连接所述底座。
  23. 根据权利要求1所述的雷达,其特征在于,所述雷达还包括后盖,所述后盖设有一容纳空间,所述底座远离所述天线组件的一端收容在所述容纳空间中。
  24. 一种可移动设备,其特征在于,包括壳体、控制系统和设于所述壳体上的雷达,所述雷达包括底座、设于所述底座的上方的天线组件、设于所述底座上的驱动机构和设于所述天线组件上的配重件;
    其中,所述天线组件相对于所述底座绕一转轴可旋转,并且所述天线组件与所述控制系统通信连接,以将检测到的障碍物信息发送至所述控制系统;
    所述驱动机构的转动部件固定连接所述天线组件,以驱动所述天线组件绕所述转轴转动;
    所述配重件能够使得所述天线组件的重心靠近所述转轴,所述驱动机构的转动部件驱动所述天线组件旋转时,所述配重件随所述天线组件一起旋转,使得所述天线组件稳定地绕所述转轴旋转。
  25. 根据权利要求24所述的可移动设备,其特征在于,所述驱动机构为电机,所述转动部件为所述电机的驱动轴,所述驱动轴沿所述转轴的延伸方向设置。
  26. 根据权利要求25所述的可移动设备,其特征在于,所述雷达还包括收容在所述驱动轴内的电滑环,所述天线组件通过所述电滑环电连接外部电源或外部设备。
  27. 根据权利要求26所述的可移动设备,其特征在于,所述电滑环包括与驱动轴固定连接的外壳、设于所述外壳内并与所述外壳转动电连接的芯部、与所述外壳连接的第一连接线和与所述芯部连接的第二连接线;
    所述第一连接线至少一部分为电源线,所述第二连接线的至少一部分也为电源线,所述第一连接线连接至所述天线组件,所述第二连接线连接至所述外部电源。
  28. 根据权利要求27所述的可移动设备,其特征在于,所述第一连接线另一部分为信号线,所述第二连接线的另一部分也为信号线,所述第一连接线连接至所述天线组件,所述第二连接线连接至外部设备。
  29. 根据权利要求24所述的可移动设备,其特征在于,所述驱动机构为外转子电机,所述转动部件为所述电机的转子壳,所述转子壳带动所述天线组件一起旋转。
  30. 根据权利要求24所述的可移动设备,其特征在于,还包括无线供电模块,所述无线供电模块包括设于所述底座上的用以与外部电源电连接的电量发射模块和设于所述天线组件上的电量接收模块;
    所述电量发射模块和所述电量接收模块无线配合,以对所述天线组件供电。
  31. 根据权利要求30所述的可移动设备,其特征在于,所述电量发射模块包括发射线圈,所述电量接收模块包括接收线圈,所述发射线圈与所述外部电源电连接,所述接收线圈与所述天线组件电连接。
  32. 根据权利要求30所述的可移动设备,其特征在于,所述底座上还设有无线通信模块,所述天线组件通过设于所述底座上的无线通信模块与外部设备通信连接;
    其中,所述无线通信模块与所述天线组件基于无线通信方式通信连接,并且所述无线通信模块与外部设备基于无线通信方式通信连接,以基于无线通信方式将所述天线组件检测到的障碍物信息发送至所述外部设备。
  33. 根据权利要求24所述的可移动设备,其特征在于,所述天线组件包括基座、安装在所述基座上的主控板和与所述主控板电连接的天线;
    所述转动部件与所述基座相连接,所述天线安装于所述主控板的一侧,所述配重件安装于所述主控板的另一侧。
  34. 根据权利要求33所述的可移动设备,其特征在于,所述天线和所述配重件均为片状结构,所述天线所在平面、所述主控板所在平面和所述配重件所在平面相互平行;
    所述主控板所在平面垂直连接与所述基座上。
  35. 根据权利要求34所述的可移动设备,其特征在于,所述天线组件还包括设于主控板两侧的天线支架;
    所述天线安装于其中一个天线支架远离所述主控板的一侧,所述配重件安装于另外一个天线支架远离所述主控板的一侧。
  36. 根据权利要求35所述的可移动设备,其特征在于,所述天线支架也为片状结构,并且所述天线支架所在平面与所述主控板所在平面相互平行。
  37. 根据权利要求34所述的可移动设备,其特征在于,所述天线组件还包括包角部,所述天线的角部、所述主控板的角部和所述配重件的角部均装配在所述包角部上。
  38. 根据权利要求34所述的可移动设备,其特征在于,所述基座上设有安装部,所述主控板的底部和所述天线支架的底部均设有连接部,所述连接部装配在所述安装部上。
  39. 根据权利要求33所述的可移动设备,其特征在于,所述基座上设有光栅开关,所述光栅开关跟随所述基座同步旋转,所述光栅开关与所述主控板电连接;
    所述底座上设有用以与所述光栅开关配合的码盘。
  40. 根据权利要求24所述的可移动设备,其特征在于,所述雷达还包括天线罩,所述天线罩内部设有用于收容所述天线组件的收容空间;
    所述天线罩与所述底座配合,将所述天线组件盖设在所述底座上。
  41. 根据权利要求40所述的可移动设备,其特征在于,所述天线罩为呈圆台型结构的聚丙烯罩体。
  42. 根据权利要求41所述的可移动设备,其特征在于,所述聚丙烯罩体的顶面设有第一开口部,所述聚丙烯罩体的底面设有用于供天线组件穿设而进入所述收容空间的第二开口部,所述第一开口部上设有盖体;
    所述聚丙烯罩体的侧壁相对于所述聚丙烯罩体的底面倾斜设置。
  43. 根据权利要求42所述的可移动设备,其特征在于,所述第一开口部的直径小于所述第二开口部的直径。
  44. 根据权利要求42所述的可移动设备,其特征在于,所述聚丙烯罩体的侧壁的中轴线与所述转轴重合。
  45. 根据权利要求41所述的可移动设备,其特征在于,所述聚丙烯罩体的内侧壁 还设有固定部,用于连接所述底座。
  46. 根据权利要求24所述的可移动设备,其特征在于,所述雷达还包括后盖,所述后盖设有一容纳空间,所述底座远离所述天线组件的一端收容在所述容纳空间中。
  47. 根据权利要求24所述的可移动设备,其特征在于,所述可移动设备为无人机,所述控制系统为所述无人机的飞行控制系统。
  48. 根据权利要求24所述的可移动设备,其特征在于,所述可移动设备为无人车或无人船。
PCT/CN2017/116897 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备 WO2019119198A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780010584.2A CN108700657B (zh) 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备
CN202210754105.0A CN115173061A (zh) 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备
PCT/CN2017/116897 WO2019119198A1 (zh) 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116897 WO2019119198A1 (zh) 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备

Publications (1)

Publication Number Publication Date
WO2019119198A1 true WO2019119198A1 (zh) 2019-06-27

Family

ID=63843841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116897 WO2019119198A1 (zh) 2017-12-18 2017-12-18 雷达和具有该雷达的可移动设备

Country Status (2)

Country Link
CN (2) CN115173061A (zh)
WO (1) WO2019119198A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444980A (zh) * 2019-07-18 2019-11-12 深圳市道通智能航空技术有限公司 旋转传输信号机构以及无人机云台
CN112363162A (zh) * 2020-11-02 2021-02-12 上海无线电设备研究所 一种内置微型自吸泵的海面雷达结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770973A (zh) * 2018-11-30 2020-02-07 深圳市大疆创新科技有限公司 天线罩、雷达和可移动设备
WO2020113448A1 (zh) * 2018-12-04 2020-06-11 深圳市大疆创新科技有限公司 旋转系统和传感器
CN109725315B (zh) * 2018-12-26 2020-10-16 成都优艾维智能科技有限责任公司 一种用于电力巡检无人机的避障探测装置
CN110018444A (zh) * 2019-03-14 2019-07-16 安徽天兵电子科技股份有限公司 一种往返式自转旋转雷达
KR20210040950A (ko) * 2019-09-30 2021-04-14 에스지 디제이아이 테크놀러지 코., 엘티디 레이더 장치 및 이동식 플랫폼
CN112236649A (zh) * 2019-11-04 2021-01-15 深圳市大疆创新科技有限公司 传感器、可移动平台及微波雷达传感器
WO2021223082A1 (zh) * 2020-05-06 2021-11-11 深圳市大疆创新科技有限公司 旋转雷达及可移动平台
CN111525228B (zh) * 2020-05-18 2021-08-13 Oppo广东移动通信有限公司 天线模块和电子设备
CN111755817B (zh) * 2020-08-03 2021-04-20 中国人民解放军63963部队 车载雷达天线防护系统
CN113764853B (zh) * 2021-09-10 2024-02-06 安徽信息工程学院 雷达天线调节机构
CN113690610B (zh) * 2021-10-27 2021-12-31 江苏宇博智能科技有限公司 一种信号接收天线及天线装配座

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN104205488A (zh) * 2012-04-02 2014-12-10 古野电气株式会社 天线装置
CN206134939U (zh) * 2016-09-21 2017-04-26 安徽四创电子股份有限公司 一种雷达天线传动系统
CN206311975U (zh) * 2016-12-27 2017-07-07 成都国卫通信技术有限公司 一种雷达转台装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340729A (ja) * 2003-05-15 2004-12-02 Hitachi Ltd 移動体検知レーダー装置
CN204188806U (zh) * 2014-10-23 2015-03-04 唐毅成 一种用于检测信号的360度旋转智能雷达
CN105914467B (zh) * 2016-06-08 2019-07-09 京信通信技术(广州)有限公司 天线旋转机构及天线
CN205880217U (zh) * 2016-07-19 2017-01-11 上海擎朗智能科技有限公司 旋转式测距雷达
CN206180708U (zh) * 2016-10-28 2017-05-17 深圳市镭神智能系统有限公司 一种具有无线传电功能的激光雷达
CN106842170B (zh) * 2017-03-16 2023-04-07 西安交通大学 一种新型多线360°扫描式激光雷达及其实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN104205488A (zh) * 2012-04-02 2014-12-10 古野电气株式会社 天线装置
CN206134939U (zh) * 2016-09-21 2017-04-26 安徽四创电子股份有限公司 一种雷达天线传动系统
CN206311975U (zh) * 2016-12-27 2017-07-07 成都国卫通信技术有限公司 一种雷达转台装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444980A (zh) * 2019-07-18 2019-11-12 深圳市道通智能航空技术有限公司 旋转传输信号机构以及无人机云台
CN112363162A (zh) * 2020-11-02 2021-02-12 上海无线电设备研究所 一种内置微型自吸泵的海面雷达结构
CN112363162B (zh) * 2020-11-02 2022-10-18 上海无线电设备研究所 一种内置微型自吸泵的海面雷达结构

Also Published As

Publication number Publication date
CN108700657B (zh) 2022-07-19
CN108700657A (zh) 2018-10-23
CN115173061A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
WO2019119242A1 (zh) 雷达装置及无人飞行器
CN107323666B (zh) 无人飞行器
US10418698B2 (en) Omnidirectional antenna using rotation body
WO2018187946A1 (zh) 雷达组件及无人机
WO2019119226A1 (zh) 雷达装置、雷达的无线旋转装置及无人机
WO2017018267A1 (ja) 飛行妨害装置
CN106655535A (zh) 基于无线传输的360°tof激光扫描雷达
WO2019119193A1 (zh) 雷达装置、无线旋转装置及无人机
CN214409297U (zh) 距离测量装置
JP2020051926A (ja) センサ用プロテクタ
CN210490561U (zh) 无线供电与通信的集成系统、雷达装置和无人机
WO2020107378A1 (zh) 天线罩、雷达和可移动设备
WO2017175415A1 (ja) センサモジュールおよび無線センサ装置
WO2018072067A1 (zh) 天线组件及无人机
CN211417624U (zh) 雷达组件及无人机
CN208241412U (zh) 一种无线输电装置及具有该装置的激光雷达
CN112166334B (zh) 雷达装置及可移动平台
WO2021223082A1 (zh) 旋转雷达及可移动平台
JP2001042024A (ja) 船舶レーダ用アンテナ
KR20220122846A (ko) 무접점 전력공급 및 데이터통신 장치와 이를 이용하는 회전구동 라이다 시스템
CN207550497U (zh) 一种无人机
CN109709528B (zh) 电机、电机组件及激光发射组件
WO2021087703A1 (zh) 飞行器
WO2016072159A1 (ja) アクティブアンテナシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935555

Country of ref document: EP

Kind code of ref document: A1