WO2021087703A1 - 飞行器 - Google Patents

飞行器 Download PDF

Info

Publication number
WO2021087703A1
WO2021087703A1 PCT/CN2019/115455 CN2019115455W WO2021087703A1 WO 2021087703 A1 WO2021087703 A1 WO 2021087703A1 CN 2019115455 W CN2019115455 W CN 2019115455W WO 2021087703 A1 WO2021087703 A1 WO 2021087703A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
aircraft
aircraft according
support rod
mounting frame
Prior art date
Application number
PCT/CN2019/115455
Other languages
English (en)
French (fr)
Inventor
黄稀荻
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033699.2A priority Critical patent/CN112154100A/zh
Priority to PCT/CN2019/115455 priority patent/WO2021087703A1/zh
Publication of WO2021087703A1 publication Critical patent/WO2021087703A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas

Definitions

  • This application relates to the technical field of aircraft, and in particular to an aircraft.
  • the surrounding environment and obstacles need to be sensed by the sensors or obstacle avoidance radar installed on the UAV, so that the UAV can perform obstacle avoidance operations in time to ensure the safety of flight and operation.
  • current UAVs equipped with radar can only detect a limited area on the side of the UAV. As a result, the UAV's detection angle and detection coverage are limited, and the reliability of obstacle avoidance cannot be guaranteed.
  • this application provides an aircraft, which aims to expand the detection angle and detection coverage of the aircraft, and reduce the risk of the radar being collided by objects.
  • this application provides an aircraft, including:
  • Landing gear connected to the fuselage
  • the radar includes an antenna mechanism that can rotate relative to the fuselage around a preset rotation axis and is used to detect obstacles on the side of the aircraft;
  • An installation structure the radar is installed on the landing gear through the installation structure;
  • the radar is located under the bottom of the fuselage, and the rotation axis intersects a preset plane, and the preset plane is a plane where the pitch axis and the roll axis of the aircraft are located.
  • this application provides an aircraft, including:
  • the radar includes an antenna mechanism that can rotate relative to the body about a preset rotation axis and is used to detect obstacles on the side of the aircraft;
  • An installation structure, the radar is installed on the body through the installation structure;
  • the radar is located below the bottom of the aircraft body, and the rotation axis intersects a preset plane, and the preset plane is a plane where the pitch axis and the roll axis of the aircraft are located.
  • the embodiment of the present application provides an aircraft. Since the antenna mechanism of the radar can rotate around a rotation axis that intersects the plane where the pitch axis and the roll axis are located, it can not only detect the front view and the rear view of the aircraft to achieve front and rear obstacle avoidance, but also Moreover, it can detect the side vision of the aircraft in addition to the front vision and the rear vision, which expands the detection angle and detection coverage of the aircraft, and ensures the reliability of obstacle avoidance. In addition, since the radar is located under the bottom of the fuselage, compared with the radar on the side of the fuselage or the fuselage, during the user's use of the aircraft, it avoids or reduces the damage of the radar due to being kicked by the user or being collided by other objects. This improves the service life of the radar and the user experience.
  • Figure 1 is a schematic diagram of the scanning area of an existing UAV
  • Fig. 2 is a schematic structural diagram of an aircraft provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a landing gear provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a radar provided by an embodiment of the present application, in which the housing is not shown;
  • FIG. 5 is a cross-sectional view of a radar provided by an embodiment of the present application, in which the housing is not shown;
  • FIG. 6 is a schematic diagram of scanning the omnidirectional scanning area during the rotation of the radar antenna mechanism provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of the intersection of a rotation axis and a preset plane provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the omnidirectional scanning area of the antenna mechanism of the radar provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a part of the structure of an aircraft provided by an embodiment of the present application, which shows the landing gear and the radar;
  • FIG. 10 is a schematic diagram of a part of the structure of an aircraft provided by an embodiment of the present application, which shows the landing gear and the radar;
  • Fig. 11 is a schematic diagram of a part of the structure of an aircraft provided by an embodiment of the present application, which shows the landing gear and the radar;
  • FIG. 12 is a schematic diagram of a part of the structure of an aircraft provided by an embodiment of the present application, which shows the landing gear and the radar;
  • Figure 13 is a partial enlarged view of the aircraft at A in Figure 9;
  • Figure 14 is a partial enlarged view of the aircraft at B in Figure 10;
  • Figure 15 is a partial schematic diagram of Figure 9, which shows the radar, the mounting structure, the first crossbar and the second crossbar;
  • FIG. 16 is a schematic structural diagram of a first mounting frame provided by an embodiment of the present application.
  • Containment box 220.
  • Spraying mechanism 221. Nozzle;
  • Radar 400. Radar; 410, base; 420, antenna mechanism; 430, drive mechanism; 431, stator; 432, rotor; 440, sensing mechanism; 450, digital processing mechanism; 460, housing;
  • First mounting frame 511. Mounting frame body; 512, holding body; 5121, holding part; 5121a, first free end; 5121b, second free end; 5121c, through hole; 5122, locking part; 5123, Fasteners; 513, connecting body; 5131, abutting part; 5132, connecting part; 5133, locking member; 5134, reinforcing rib;
  • Second mounting frame R, rotating shaft; ⁇ , preset plane.
  • drones can be widely used in a variety of scenarios, such as crop monitoring, real estate photography, inspections of buildings and other structures, fire and security tasks, border patrols, and product delivery.
  • detection equipment such as radar, which is used to detect objects around the drone, for example, to detect obstacles around the drone to avoid collisions between the drone and obstacles.
  • the radar When the radar is installed on one side of the landing gear of the UAV, the radar can transmit microwave signals to the front and back of the UAV and receive the microwave signals reflected by the obstacles in the front and back. At this time, the radar can be used to realize the functions of forward obstacle avoidance and rear obstacle avoidance.
  • the radar is located on the outer surface of the drone's landing pad, that is, on the side of the body. When the user uses the drone, the radar is easily kicked by the user or easily collided by other objects. The radar is easily damaged and affects the user experience.
  • the radar When the radar is installed on the bottom of the drone's fuselage, when the sensing mechanism of the radar rotates around the pitch axis of the drone, the radar can transmit radar signals to the front and rear of the drone and receive obstacles from the front and rear. The echo signal reflected by the object. At this time, the radar can be used to realize the functions of forward obstacle avoidance and rear obstacle avoidance.
  • the obstacle avoidance field of view only includes the front field of view a for realizing front obstacle avoidance and the rear field of field b for realizing rear obstacle avoidance. Obstacles cannot be avoided in the side area c between the front view a and the rear view b (such as the left and right areas of the drone). When the drone moves in the side area c, the side area c may be ignored. Obstacles, causing the drone to explode.
  • the inventor of the present application has improved the aircraft to realize the omnidirectional obstacle avoidance of the aircraft, and avoid or reduce the possibility of the radar being susceptible to collision.
  • the present application provides an aircraft, including: a fuselage; a landing pad, mounted on the fuselage; a radar, including an antenna mechanism, which can rotate relative to the fuselage around a preset rotation axis, and is used to detect obstacles on the side of the aircraft ; Installation structure, the radar is installed on the landing gear through the installation structure; wherein the radar is located under the bottom of the fuselage, and the rotation axis intersects a preset plane, which is the plane where the pitch axis and roll axis of the aircraft are located.
  • the application also provides an aircraft, including: a body; a radar, including an antenna mechanism, the antenna mechanism can rotate relative to the body around a preset rotation axis for detecting obstacles on the side of the aircraft; a mounting structure, the radar is installed on the body through the mounting structure; Among them, the radar is located under the bottom of the airframe, and the rotation axis intersects a preset plane, which is the plane where the pitch axis and the roll axis of the aircraft are located.
  • an embodiment of the present application provides an aircraft 1000.
  • the aircraft 1000 may include a body 100, a spraying mechanism 220, a power system 300, and a flight control system.
  • the aircraft 1000 can wirelessly communicate with a control terminal, and the control terminal can display flight information of the aircraft 1000, and the control terminal can communicate with the aircraft 1000 in a wireless manner for remote control of the aircraft 1000.
  • the aircraft 1000 may be a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an unmanned helicopter, or a fixed-wing-rotor hybrid unmanned aerial vehicle, or the like.
  • the rotary-wing unmanned aircraft can be a single-rotor aircraft, a double-rotor aircraft, a three-rotor aircraft, a quad-rotor aircraft, a six-rotor aircraft, an eight-rotor aircraft, a ten-rotor aircraft, a twelve-rotor aircraft, etc.
  • the airframe 100 may include a fuselage 110 and a landing gear 120.
  • the fuselage 110 may include a center frame 111 and one or more arms 112 connected to the center frame 111, and the one or more arms 112 extend radially from the center frame 111.
  • the landing gear 120 is connected to the fuselage 110 for supporting the aircraft 1000 when it is landed.
  • the landing gear 120 includes a first support 121, a second support 122, a first crossbar 123 and a second crossbar 124.
  • the first bracket 121 and the second bracket 122 are oppositely disposed on the body 110.
  • the first cross bar 123 and the second cross bar 124 are arranged in parallel and spaced apart.
  • the first cross bar 123 is connected between the first support 121 and the second support 122, and the second cross bar 124 is connected between the first support 121 and the second support 122.
  • the radar 400 is connected to the mounting structure 500, and the first bracket 121 and the second bracket 122 are both connected to the mounting structure 500, so that the radar 400 is mounted on the first crossbar 123 and the second crossbar 124 through the mounting structure 500, and the The radar 400 is fixed under the bottom of the fuselage 110.
  • the first support 121 and the second support 122 each include a first support rod 125 and a second support rod 126.
  • the first support rod 125 and the second support rod 126 are oppositely disposed on the body 110.
  • the first crossbar 123 is connected between the first support rod 125 of the first support 121 and the first support rod 125 of the second support 122
  • the second crossbar 124 is connected to the second support rod 126 and the second support rod 126 of the first support 121.
  • both the first support rod 125 of the first support 121 and the first support rod 125 of the second support 122 may be detachably connected to the first cross rod 123, or may be the first cross rod 123 or the first support 121.
  • the first support rod 125 of the second bracket 122 and the first support rod 125 of the second bracket 122 are integrally formed, or partially integrally formed.
  • the detachable connection mode may include at least one of snap connection, threaded connection, screw connection, interference fit, and the like.
  • the mutual connection relationship between the second support rod 126 of the first support 121, the second support rod 126 and the second cross rod 124 of the second support 122 is the same as the first cross rod 123 and the first support
  • the mutual connection relationship between the first support rod 125 of the 121 and the first support rod 125 of the second bracket 122 is the same or similar, and will not be repeated here.
  • the first support rod 125 and the second support rod 126 are arranged facing and inclined symmetrically. Specifically, the distance between the upper end of the first support rod 125 and the upper end of the second support rod 126 is smaller than the distance between the lower end of the first support rod 125 and the lower end of the second support rod 126. That is, the lower end of the first support rod 125 extends diagonally downward in a direction away from the central axis of the body 110 relative to the upper end of the first support rod 125, so that the first bracket 121 is gradually inclined outward in a direction away from the body 110.
  • the landing gear 120 can be supported on the landing surface smoothly, and the aircraft 1000 can be safely landed.
  • the second support rod 126 is the same as or similar to the first support rod 125, which will not be repeated here.
  • both the first bracket 121 and the second bracket 122 further include a third support rod 127.
  • the third support rod 127 is connected to the bottoms of the first support rod 125 and the second support rod 126. Specifically, the third support rod 127 is connected to the lower ends of the first support rod 125 and the second support rod 126.
  • the third support rod 127 can contact the landing surface, increasing the contact area between the landing gear 120 and the landing surface, thereby further enabling the landing gear 120 to be supported on the landing surface smoothly.
  • the upper end and the lower end of a component refer to the end close to the landing surface as the lower end and the end away from the landing surface as the upper end when the aircraft 1000 normally lands on a flat landing surface.
  • first bracket 121 and the second bracket 122 are arranged facing and inclined symmetrically. Specifically, the distance between the upper end of the first bracket 121 and the upper end of the second bracket 122 is smaller than the distance between the lower end of the first bracket 121 and the lower end of the second bracket 122.
  • the first bracket 121 and the second bracket 122 are arranged in an "eight" shape. This arrangement design makes the first bracket 121 and the second bracket 122 gradually incline outward in the direction away from the fuselage 110 so that the landing bracket 120 can be further stably supported on the landing surface, and the aircraft 1000 can be safely landed.
  • the spraying mechanism 220 is provided on the body 110, and the spraying mechanism 220 is connected to the containing box 210 for spraying the objects to be sprayed in the containing box 210.
  • the object to be sprayed can be liquid medicine, water or fertilizer.
  • the spraying mechanism 220 includes a water pump and a spray head 221.
  • the accommodating box 210 is used to store liquid medicine or water.
  • the storage box 210 and the water pump are mounted on the body 110.
  • the spray head 221 is mounted on the end of the arm 112.
  • the liquid in the containing box 210 is pumped into the spray head 221 by a water pump, and sprayed out by the spray head 221.
  • the power system 300 can drive the body 100 to move, rotate, turn, etc., so as to drive the spray head 221 to move to different positions or different angles to perform spraying operations in a preset area.
  • the power system 300 may include one or more electronic governors (referred to as ESCs for short), one or more propellers 310, and one or more power motors 320 corresponding to the one or more propellers 310.
  • the power motor 320 is connected between the electronic governor and the propeller 310, the power motor 320 and the propeller 310 are arranged on the arm 112 of the aircraft 1000; the electronic governor is used to receive the driving signal generated by the flight control system, and drive according to The signal provides a driving current to the power motor 320 to control the speed of the power motor 320.
  • the power motor 320 is used to drive the propeller 310 to rotate, so as to provide power for the flight of the aircraft 1000, and the power enables the aircraft 1000 to achieve one or more degrees of freedom of movement.
  • the aircraft 1000 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (roll axis), a yaw axis (yaw axis), and a pitch axis (pitch axis).
  • the roll axis is the Y axis in FIG. 2
  • the pitch axis is the X axis in FIG. 2
  • the yaw axis is the Z axis in FIG. 2.
  • the power motor 320 may be a DC motor or an AC motor.
  • the power motor 320 may be a brushless motor or a brushed motor.
  • the flight control system may include a flight controller and a sensing system.
  • the sensing system is used to measure the attitude information of the unmanned aerial vehicle 1000, that is, the position information and state information of the aerial vehicle 1000 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller is used to control the flight of the aircraft 1000, for example, it can control the flight of the aircraft 1000 according to the attitude information measured by the sensing system. It should be understood that the flight controller may control the aircraft 1000 according to pre-programmed program instructions, or may control the aircraft 1000 by responding to one or more control instructions from the control terminal.
  • a radar 400 is mounted on the landing pad 120 of the aircraft 1000, and the radar 400 can detect objects, such as obstacles. Specifically, the radar 400 can measure the distance from the object to the launch point of the radar 400, the rate of change of the distance, the azimuth, the height, etc., so as to realize functions such as obstacle avoidance.
  • the radar 400 is a millimeter wave radar 400.
  • the radar 400 may also be an over-the-horizon radar, a microwave radar, a lidar, or the like.
  • the radar 400 includes a base 410, an antenna mechanism 420 and a driving mechanism 430.
  • the antenna mechanism 420 is capable of rotating about a preset rotation axis R relative to the fuselage 110, and is used to detect obstacles on the side of the aircraft 1000.
  • the base 410 is mounted on the landing gear 120.
  • the antenna mechanism 420 includes a transmitter (not labeled) and a receiver (not labeled).
  • the transmitter is used to generate and transmit radar signals.
  • the radar signals propagate forward in the transmitted direction and are reflected when they encounter obstacles.
  • the receiver is used to receive the echo signal that is reflected back.
  • the antenna mechanism 420 can rotate around the rotation axis R under the driving of the driving mechanism 430, so that the antenna mechanism 420 can selectively transmit signals in multiple directions and receive echo signals reflected from multiple directions. Therefore, one antenna mechanism 420 can selectively detect the distance between the aircraft 1000 and obstacles in multiple directions, and the structure of the aircraft 1000 is simple.
  • the rotation axis R intersects the preset plane ⁇ , that is, the rotation axis R and the preset plane ⁇ are arranged non-parallel.
  • the preset plane ⁇ is the plane where the pitch axis and the roll axis of the aircraft 1000 are located. Therefore, the radar 400 can not only detect the front and rear vision of the aircraft 1000 to achieve front and rear obstacle avoidance, but also can detect the side vision of the aircraft 1000 in addition to the front vision and the rear vision, expanding the detection angle and detection of the aircraft 1000 The coverage area ensures the reliability of obstacle avoidance.
  • the driving mechanism 430 is provided on the base 410.
  • the rotating part of the driving mechanism 430 is connected to the antenna mechanism 420 to drive the antenna mechanism 420 to rotate around the rotation axis R.
  • the driving mechanism 430 includes a motor, and the motor includes a stator 431 and a rotor 432.
  • the rotor 432 is a rotating part of the driving mechanism 430. The rotor 432 can rotate relative to the stator 431 to drive the antenna mechanism 420 to rotate.
  • stator 431 is mounted on the base 410
  • antenna mechanism 420 is mounted on the rotor 432 of the motor
  • the rotor 432 rotates relative to the base 410 so that the antenna mechanism 420 rotates about the rotation axis R relative to the base 410.
  • the antenna mechanism 420 of the radar 400 is driven by the rotor 432 to rotate in the forward or reverse direction around the rotation axis R based on the nose direction of the aircraft 1000, and scan a fan-shaped area within an angular range each time.
  • the antenna mechanism 420 rotates one circle, that is, 360°, and can scan a complete circular area with the center of the radar 400 as the center, so as to obtain the detection data of the circular omnidirectional scanning area.
  • the rotor 432 of the motor can rotate forward or backward for at least one turn, thereby driving the antenna mechanism 420 to rotate forward or backward at least 360° in all directions.
  • the rotation angle range of the antenna mechanism 420 around the rotation axis R is greater than or equal to 360°, such as 360°, 450°, 540°, 720°, 1080°, etc., to achieve continuous rotation, thereby increasing the data collection point of the antenna mechanism 420 , Improve the measurement accuracy of radar 400.
  • the angle ⁇ between the rotation axis R and the preset plane ⁇ is 60°-90°.
  • the included angle ⁇ between the rotation axis R and the preset plane ⁇ may be 60°, 65°, 70°, 80°, 85°, 90°, and any other suitable angles between 60° and 90°.
  • the angle ⁇ between the rotation axis R and the preset plane ⁇ is in the range of 60°-90°, so that the obstacle avoidance field of vision can include both the front field of vision and the rear field of vision, as well as other sides other than the front field of view and the rear field of vision. Field of view, so as to expand the detection angle and detection coverage of the aircraft 1000 as much as possible, and ensure the reliability of obstacle avoidance.
  • the rotation axis R roughly coincides with the center line of the fuselage 110 to avoid the problem of an unbalanced center of gravity of the aircraft 1000 due to the installation of the radar 400, thereby ensuring the reliability of the aircraft 1000 in flight.
  • substantially coincident means that the angle between the rotation axis R and the center line of the fuselage 110 is 0°-10°, that is, any angle between 0°, 10°, and 0°-10°.
  • the rotation axis R and the yaw axis of the aircraft 1000 are at an acute angle.
  • the acute angle can be any suitable angle, for example, 0°-30°, that is, any of 0°, 5°, 10°, 15°, 20°, 25°, 30°, and 0°-30° Other suitable angles.
  • the rotation axis R is substantially perpendicular to the preset plane ⁇ , or the rotation axis R is substantially parallel to the yaw axis of the aircraft 1000.
  • the omnidirectional scanning area of the radar 400 is a perfect circle with the center of the radar 400 as the center.
  • the shape is a 360° area surrounding the side of the aircraft 1000, which can reflect the ground detection information of the aircraft 1000 in different directions.
  • the omnidirectional scanning area of the radar 400 is the e area in FIG. 8, and the e area is located in the upper cone area. Between f and the lower cone area g, the e area can cover different directions such as front, rear, left, and right, so that omnidirectional obstacle avoidance on the side of the aircraft 1000 can be achieved.
  • the antenna mechanism 420 can transmit microwave signals to the left, right, front, and rear of the aircraft 1000 and receive echo signals reflected by obstacles on the left, right, front, and rear.
  • the radar 400 can be used to realize the left side. Obstacle avoidance, right obstacle avoidance, front obstacle avoidance, rear obstacle avoidance, left terrain prediction, right terrain prediction, front terrain prediction, rear terrain prediction and other functions.
  • the intersection of the rotation axis R of the rotor 432 with the plane where the pitch axis and the roll axis of the aircraft 1000 are located may also be other specific situations, which are not limited here.
  • the omnidirectional scanning area is not a perfect circle, but it is also a circle around the aircraft 1000.
  • the 360° area can reflect the ground detection information of the aircraft 1000 in different azimuths.
  • the above-mentioned rotation axis R may be a real axis or an imaginary axis.
  • the antenna mechanism 420 can rotate relative to the rotation axis R; or, the antenna mechanism 420 rotates along with the rotation axis R.
  • the antenna mechanism 420 is provided on the side of the base 410 away from the fuselage 110, so that the antenna mechanism 420 of the radar 400 is as far away from the sensor provided on the fuselage 110 as possible, and the radar generated by the antenna mechanism 420 is reduced. Signals (such as electromagnetic waves) interfere with sensors on the body 110.
  • the radar 400 further includes a sensing mechanism 440.
  • the sensing mechanism 440 is provided at an end of the antenna mechanism 420 far away from the base 410 for detecting the height of the aircraft 1000 relative to the ground.
  • the driving mechanism 430 drives the antenna mechanism 420 to rotate
  • the sensing mechanism 440 also rotates together with the antenna mechanism 420.
  • the sensing mechanism 440 includes at least one of a vision sensor, an ultrasonic ranging sensor, a depth camera, a radar antenna structure, and the like.
  • the shape of the antenna mechanism 420 and the sensing mechanism 440 can be designed in any suitable shape according to actual requirements, for example, a plate shape.
  • the antenna mechanism 420 and the sensing mechanism 440 are both substantially plate-shaped, the antenna mechanism 420 and the sensing mechanism 440 are substantially perpendicular.
  • the antenna mechanism 420 is substantially perpendicular to the plane where the pitch axis and the roll axis of the aircraft 1000 are located.
  • the sensing mechanism 440 is substantially parallel to the plane where the pitch axis and the roll axis of the aircraft 1000 are located.
  • the radar 400 further includes a digital processing mechanism 450.
  • the digital processing mechanism 450 and the antenna mechanism 420 are disposed on the base 410 opposite to the antenna mechanism 420 for processing the signal of the antenna mechanism 420.
  • the digital processing unit 450 can process the signal of the antenna unit 420, for example, amplify the echo signal; filter the interference signal; convert the echo signal into a radar data signal for the control of the back-end equipment, terminal observation and/or Records etc.
  • the digital processing mechanism 450 has a plate shape, but of course it can also be designed in any other suitable shape. Since the center of gravity of the antenna mechanism 420 deviates from the rotation axis R of the antenna mechanism 420, the center of gravity of the radar 400 deviates from the rotation axis R of the antenna mechanism 420, which in turn causes the center of gravity of the aircraft 1000 to be unbalanced, making the aircraft 1000 flight unreliable. To this end, the digital processing mechanism 450 and the antenna mechanism 420 are arranged at opposite ends of the sensing mechanism 440.
  • the digital processing mechanism 450 and the antenna mechanism 420 are arranged symmetrically about the rotation axis R, thereby balancing the center of the antenna mechanism 420 so that the center of the radar 400 It is roughly located on the rotation axis R of the antenna mechanism 420.
  • the antenna mechanism 420, the sensing mechanism 440, and the digital processing mechanism 450 form a “ ⁇ ” structure, and the opening of the “ ⁇ ” structure faces the body 110.
  • the radar 400 further includes a housing 460.
  • the housing 460 cooperates with the base 410 to form an accommodating space.
  • the antenna mechanism 420, the driving mechanism 430, the sensing mechanism 440 and the digital processing mechanism 450 are accommodated in The accommodating space is used to protect the antenna mechanism 420, the driving mechanism 430, the sensing mechanism 440, and the digital processing mechanism 450 from the external environment, and avoid the external environment from interfering with or damaging these components. It is understandable that the signals transmitted or received by the antenna mechanism 420 and the sensing mechanism 440 can be passed through the housing 460, that is, the housing 460 will not affect the normal transmission or reception of signals by the antenna mechanism 420 and the sensing mechanism 440.
  • the radar 400 is installed on the landing frame 120 through the installation structure 500.
  • the base 410 is installed on the landing stand 120 through the installation structure 500.
  • the radar 400 is located under the bottom of the fuselage 110. Compared with the radar 400 located on the side of the fuselage 110 or the fuselage 100, when the user uses the aircraft 1000, it avoids or reduces the radar 400 being kicked by the user or collided by other objects. The damage improves the service life of the radar 400 and the user experience.
  • the mounting structure 500 is located between the radar 400 and the fuselage 110. Specifically, after the radar 400 is connected to the mounting structure 500, the radar 400 is located on the side of the mounting structure 500 away from the fuselage 110, that is, under the mounting structure 500, so that the antenna mechanism 420 and the sensing mechanism 440 of the radar 400 are far away to the greatest extent.
  • the sensors provided on the body 110 reduce the interference of the signals generated by the antenna mechanism 420 and the sensing mechanism 440 to the sensors on the body 110.
  • the radar 400 is provided under the bottom of the receiving box 210 and/or the water pump. Specifically, the radar 400 is arranged directly below the bottom of the containing box 210 to make the rotation axis R of the antenna mechanism 420 roughly coincide with the center line of the fuselage 110 as much as possible, thereby balancing the center of gravity of the aircraft 1000 and ensuring the reliability of the aircraft 1000 flying. In addition, this arrangement can also reduce the interference of the signals generated by the antenna mechanism 420 and the sensing mechanism 440 to the sensors on the body 110.
  • the mounting structure 500 includes a first mounting frame 510 and a second mounting frame 520.
  • the second mounting frame 520 and the first mounting frame 510 are arranged independently of each other.
  • the first mounting frame 510 is connected to the first crossbar 123 and the radar 400
  • the second mounting frame 520 is connected to the second crossbar 124 and the radar 400 to fix the radar 400 on the landing frame 120.
  • the first mounting frame 510 includes a mounting frame body 511, a holding body 512 and a connecting body 513.
  • the holding body 512 is provided at one end of the mounting frame body 511 and connected to the first cross bar 123.
  • the connecting body 513 is provided at the other end of the mounting frame body 511 and connected to the radar 400.
  • the shape of the mounting frame body 511 can be designed according to actual needs, such as a rod shape.
  • the mounting bracket body 511 extends obliquely downward from the holding body 512 to the connecting body 513.
  • this design can prevent the mounting bracket body 511 from blocking the signals transmitted and/or received by the antenna mechanism 420, thereby improving the detection accuracy of the radar 400.
  • the included angle between the mounting bracket body 511 and the preset plane ⁇ is 5°-80°, that is, any suitable angle between 5°, 80°, and 5°-80°.
  • the angle between the mounting bracket body 511 and the preset plane ⁇ is within the above range.
  • the mounting structure 500 can not only reliably fix the radar 400 under the bottom of the fuselage 110, but also prevent the mounting bracket body 511 from blocking the transmission of the antenna mechanism 420. And/or received signal.
  • the holding body 512 is detachably connected to the first cross bar 123.
  • the holding body 512 can be detachably connected to the first crossbar 123 through at least one connection method of a snap connection, a threaded connection, a screw connection, an interference fit, and an adhesive connection.
  • the holding body 512 and the first cross bar 123 may also be integrally formed, which is not limited herein.
  • the holding body 512 has a non-closed ring structure.
  • the holding body 512 includes a holding portion 5121 and two locking portions 5122.
  • the holding portion 5121 has a first free end 5121a, a second free end 5121b and a through hole 5121c.
  • the through hole 5121c is used for the first cross bar 123 to pass through, and the first free end 5121a and the second free end 5121b are arranged at intervals along the circumferential direction of the through hole 5121c.
  • the two locking portions 5122 are respectively provided on the first free end 5121a and the second free end 5121b.
  • the two locking portions 5122 change the size of the through hole 5121c through the fastener 5123, so that the holding portion 5121 and the first cross bar 123 are firmly connected. Specifically, the two locking portions 5122 respectively extend outward from the first free end 5121a and the second free end 5121b of the holding portion 5121 along the radial direction of the through hole 5121c.
  • the fastener 5123 penetrates two locking portions 5122 so that the size of the through hole 5121 c is adapted to the first cross bar 123, so that the first mounting frame 510 is fastened to the first cross bar 123.
  • the fastener 5123 may be quick-release parts such as screws and bolts.
  • the connecting body 513 includes an abutting portion 5131 and two connecting portions 5132.
  • the abutting portion 5131 is connected to the other end of the mounting bracket body 511 and abuts against the radar 400.
  • the two connecting portions 5132 are oppositely arranged on both sides of the abutting portion 5131.
  • the two connecting parts 5132 are both fixedly connected to the radar 400.
  • the extending direction of the abutting portion 5131 and the mounting bracket body 511 are substantially the same.
  • the two connecting portions 5132 extend outward from opposite sides of the abutting portion 5131.
  • the locking member 5133 penetrates the connecting portion 5132 and the base 410 of the radar 400 to lock the first mounting frame 510 and the radar 400.
  • the top surface of the base 410 of the radar 400 is a plane, and the bottom surfaces of the abutment portion 5131 and the two connecting portions 5132 are on the same plane, so as to better fit and fix the base 410 of the radar 400.
  • the connecting body 513 further includes a reinforcing rib 5134.
  • the reinforcing rib 5134 is connected to the abutting portion 5131 and the connecting portion 5132 to increase the strength of the connecting body 513 and provide a guarantee for the reliable fixing of the radar 400.
  • the structure of the second mounting frame 520 may be the same as or different from the structure of the first mounting frame 510, as long as it can cooperate with the first mounting frame 510 to fix the radar 400 under the bottom of the fuselage 110.
  • the specific structure of the second mounting frame 520 and the connection mode of the second mounting frame 520 with the radar 400 and the second crossbar 124 refer to the first mounting frame 510, which will not be described here. Go into details again.
  • the distance between the upper end of the first mounting frame 510 and the upper end of the second mounting frame 520 is greater than the distance between the lower end of the first mounting frame 510 and the lower end of the second mounting frame 520.
  • the first mounting frame 510 and the second mounting frame 520 are arranged in an inverted "eight" shape, so that the radar 400 is as far away as possible from other sensors on the fuselage 110, so as to prevent the radar 400 from interfering with signals on other sensors on the fuselage 110.
  • the first mounting frame 510 and the second mounting frame 520 are symmetrically arranged, so that the radar 400 can be installed directly under the bottom of the fuselage 110.
  • the antenna mechanism 420 of the radar 400 can rotate around the rotation axis R, which intersects the plane where the pitch axis and the roll axis are located, it can not only detect the front and rear vision of the aircraft 1000 to achieve front and rear obstacle avoidance, but also It can detect the side view of the aircraft 1000 except for the front view and the rear view, which expands the detection angle and detection coverage of the aircraft 1000, and ensures the reliability of obstacle avoidance.
  • the radar 400 is located below the bottom of the fuselage 110, compared with the radar 400 located on the side of the fuselage 110 or the fuselage 100, during the user's use of the aircraft 1000, the radar 400 is prevented or reduced from being kicked or being kicked by the user. The damage caused by collision with other objects improves the service life of the radar 400 and the user experience.

Abstract

一种飞行器(1000),雷达(400)通过安装结构(500)安装在着陆架(120)上;雷达(400)位于机身(110)的底部下方,雷达(400)的天线机构(420)能够相对机身(110)绕预设转轴(R)旋转,用于探测飞行器(1000)侧面的障碍物,转轴(R)与预设平面(ω)相交,预设平面(ω)为飞行器(1000)的俯仰轴和横滚轴所在的平面。

Description

飞行器 技术领域
本申请涉及飞行器技术领域,尤其涉及一种飞行器。
背景技术
在无人机自动飞行过程中,需要通过无人机上设置的传感器或者避障雷达感测周围的环境及障碍物,以使无人机及时进行避障操作,保证飞行和作业安全。然而,目前装有雷达的无人机,雷达通常仅能探测无人机侧面的有限区域,由此造成无人机的探测角度和探测覆盖范围有限,无法保证避障的可靠性。
发明内容
基于此,本申请提供了一种飞行器,旨在扩大飞行器的探测角度和探测覆盖范围,并降低雷达受物体碰撞的风险。
根据本申请的第一方面,本申请提供了一种飞行器,包括:
机身;
着陆架,与所述机身连接;
雷达,包括天线机构,所述天线机构能够相对所述机身绕预设转轴旋转,用于探测所述飞行器侧面的障碍物;
安装结构,所述雷达通过所述安装结构安装在所述着陆架上;
其中,所述雷达位于所述机身的底部下方,且所述转轴与预设平面相交,所述预设平面为所述飞行器的俯仰轴和横滚轴所在的平面。
根据本申请的第二方面,本申请提供了一种飞行器,包括:
机体;
雷达,包括天线机构,所述天线机构能够相对所述机体绕预设转轴旋转,用于探测所述飞行器侧面的障碍物;
安装结构,所述雷达通过所述安装结构安装在所述机体上;
其中,所述雷达位于所述机体的底部下方,且所述转轴与预设平面相交,所述预设平面为所述飞行器的俯仰轴和横滚轴所在的平面。
本申请实施例提供了一种飞行器,由于雷达的天线机构能够绕转轴旋转,该转轴与俯仰轴和横滚轴所在的平面相交,不仅能够探测飞行器的前方视野和后方视野而实现前后避障,而且能够对飞行器侧面视野除了前方视野和后方视野以外的其他侧面视野进行探测,扩大了飞行器的探测角度和探测覆盖范围,保证了避障的可靠性。此外,由于雷达位于机身的底部下方,与雷达位于机身或机体的侧面相比,在用户使用飞行器的过程中,避免或减少了雷达因被用户踢到或者被其他物体碰撞而损坏,提高了雷达的使用寿命和用户的体验度。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有的无人机的扫描区域示意图;
图2是本申请一实施例提供的飞行器的结构示意图;
图3是本申请一实施例提供的着陆架的结构示意图;
图4是本申请一实施例提供的雷达的结构示意图,其中壳体未示出;
图5是本申请一实施例提供的雷达的剖视图,其中壳体未示出;
图6是本申请一实施例提供的雷达的天线机构在旋转过程中对全向扫描区域进行扫描的示意图;
图7是是本申请一实施例提供的转轴与预设平面相交的示意图;
图8是本申请一实施例提供的雷达的天线机构的全向扫描区域示意图;
图9是本申请一实施例提供的飞行器一角度的部分结构示意图,其中示出了着陆架和雷达;
图10是本申请一实施例提供的飞行器一角度的部分结构示意图,其中示出了着陆架和雷达;
图11是本申请一实施例提供的飞行器一角度的部分结构示意图,其中示出 了着陆架和雷达;
图12是本申请一实施例提供的飞行器一角度的部分结构示意图,其中示出了着陆架和雷达;
图13是图9中飞行器在A处的局部放大图;
图14是图10中飞行器在B处的局部放大图;
图15是图9中的部分示意图,其中示出了雷达、安装结构、第一横杆和第二横杆;
图16是本申请一实施例提供的第一安装架的结构示意图。
附图标记说明:
1000、飞行器;
100、机体;
110、机身;111、中心架;112、机臂;
120、着陆架;121、第一支架;122、第二支架;123、第一横杆;124、第二横杆;125、第一支撑杆;126、第二支撑杆;127、第三支撑杆;
210、容纳箱;220、喷洒机构;221、喷头;
300、动力系统;310、螺旋桨;320、动力电机;
400、雷达;410、底座;420、天线机构;430、驱动机构;431、定子;432、转子;440、感测机构;450、数字处理机构;460、壳体;
500、安装结构;
510、第一安装架;511、安装架本体;512、固持体;5121、固持部;5121a、第一自由端;5121b、第二自由端;5121c、通孔;5122、锁紧部;5123、紧固件;513、连接体;5131、抵接部;5132、连接部;5133、锁固件;5134、加强筋;
520、第二安装架;R、转轴;ω、预设平面。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的发明人发现,无人机可以广泛应用于多种场景,例如农作物监测、不动产摄影、建筑物和其他构造的检查、消防和安全任务、边境巡逻以及产品交付等。为了提高飞行安全并改善用户体验(例如,通过使飞行控制更容易),无人机能够独立检测障碍物和/或自动进行规避障碍物是非常重要的。为此,无人机上需要设置雷达等探测设备,该探测设备用于探测无人机周围的物体,例如探测无人机周围的障碍物,避免无人机与障碍物发生碰撞。
当雷达安装在无人机的着陆架的一侧时,雷达可向无人机的前方和后方发射的微波信号并接收被前方和后方的障碍物反射回的微波信号。此时雷达可用于实现前方避障和后方避障等功能。然而,在这种安装方式下,雷达位于无人机着陆架的外表面,即位于机体的侧面,在用户使用无人机的过程中,雷达容易被用户踢到或者容易受其他物体碰撞,不仅造成雷达容易损坏,而且影响用户的体验度。
当雷达安装在无人机的机身底部时,雷达的感测机构绕无人机的俯仰轴旋转时,雷达可向无人机的前方和后方发射的雷达信号并接收被前方和后方的障碍物反射的回波信号。此时雷达可用于实现前方避障和后方避障等功能。然而,请参阅图1,其避障视野仅包括用于实现前方避障的前方视野a和用于实现后方避障的后方视野b。对于前方视野a和后方视野b之间的侧面区域c(例如无人机的左侧区域和右侧区域)无法避障,当无人机在侧面区域c移动时,可能会忽视侧面区域c的障碍物,导致无人机炸机。
针对该发现,本申请的发明人对飞行器进行了改进,以实现飞行器的全向避障,并避免或降低了雷达容易受到碰撞的可能性。具体地,本申请提供一种飞行器,包括:机身;着陆架,安装在机身上;雷达,包括天线机构,天线机 构能够相对机身绕预设转轴旋转,用于探测飞行器侧面的障碍物;安装结构,雷达通过安装结构安装在着陆架上;其中,雷达位于机身的底部下方,且转轴与预设平面相交,预设平面为飞行器的俯仰轴和横滚轴所在的平面。
本申请还提供一种飞行器,包括:机体;雷达,包括天线机构,天线机构能够相对机体绕预设转轴旋转,用于探测飞行器侧面的障碍物;安装结构,雷达通过安装结构安装在机体上;其中,雷达位于机体的底部下方,且转轴与预设平面相交,预设平面为飞行器的俯仰轴和横滚轴所在的平面。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图2,本申请的实施例提供了一种飞行器1000,该飞行器1000可以包括机体100、喷洒机构220、动力系统300和飞行控制系统。飞行器1000可以与控制终端进行无线通信,该控制终端可以显示飞行器1000的飞行信息等,控制终端可以通过无线方式与飞行器1000进行通信,用于对飞行器1000进行远程操纵。
飞行器1000可以为旋翼无人飞行器、固定翼无人飞行器、无人直升机或者固定翼-旋翼混合的无人飞行器等。其中,旋翼无人飞行器可为单旋翼飞行器、双旋翼飞行器、三旋翼飞行器、四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十旋翼飞行器、十二旋翼飞行器等。
其中,机体100可以包括机身110和着陆架120。机身110可以包括中心架111以及与中心架111连接的一个或多个机臂112,一个或多个机臂112呈辐射状从中心架111延伸出。着陆架120与机身110连接,用于在飞行器1000着陆时起支撑作用。
请参阅图3,在一些实施例中,着陆架120包括第一支架121、第二支架122、第一横杆123和第二横杆124。第一支架121和第二支架122相对设置在机身110上。第一横杆123和第二横杆124平行间隔设置。第一横杆123连接于第一支架121和第二支架122之间,第二横杆124连接于第一支架121和第二支架122之间。雷达400与安装结构500连接,第一支架121和第二支架122均与安装结构500连接,从而通过该安装结构500将雷达400安装于第一横杆123和第二横杆124上,进而将雷达400固定于机身110的底部下方。
请参阅图3,在一些实施例中,第一支架121和第二支架122均包括第一 支撑杆125和第二支撑杆126。第一支撑杆125与第二支撑杆126相对设置于机身110上。第一横杆123连接于第一支架121的第一支撑杆125和第二支架122的第一支撑杆125之间,第二横杆124连接于第一支架121的第二支撑杆126和第二支架122的第二支撑杆126之间。
可以理解的,第一支架121的第一支撑杆125和第二支架122的第一支撑杆125均可以与第一横杆123可拆卸连接,也可以是第一横杆123、第一支架121的第一支撑杆125和第二支架122的第一支撑杆125一体成型,或者部分一体成型。可拆卸连接的方式可以包括卡扣连接、螺纹连接、螺丝连接、过盈配合等中的至少一种。在一些实施例中,第一支架121的第二支撑杆126、第二支架122的第二支撑杆126和第二横杆124之间的相互连接关系,与第一横杆123、第一支架121的第一支撑杆125和第二支架122的第一支撑杆125之间的相互连接关系相同或相似,在此不再赘述。
在一些实施例中,第一支撑杆125和第二支撑杆126相向且倾斜对称设置。具体地,第一支撑杆125的上端与第二支撑杆126的上端之间的距离小于第一支撑杆125的下端与第二支撑杆126的下端之间的距离。即第一支撑杆125的下端相对于第一支撑杆125的上端朝远离机身110的中心轴线的方向斜向下延伸,从而使得第一支架121朝远离机身110的方向逐渐向外倾斜以使得着陆架120能够平稳地支撑在着陆面,保证飞行器1000安全着陆。在一些实施例中,第二支撑杆126与第一支撑杆125相同或相似,在此不再赘述。
请参阅图3,在一些实施例中,第一支架121和第二支架122均还包括第三支撑杆127。该第三支撑杆127连接于第一支撑杆125和第二支撑杆126的底部。具体地,第三支撑杆127连接于第一支撑杆125和第二支撑杆126的下端。当飞行器1000着陆时,第三支撑杆127能够与着陆面接触,增大着陆架120与着陆面的接触面积,从而进一步使得着陆架120能够平稳地支撑在着陆面上。
需要说明的是,某部件的上端、下端是指飞行器1000在平坦的着陆面正常着陆时,靠近着陆面的一端为下端,远离着陆面的一端为上端。
在一些实施例中,第一支架121与第二支架122相向且倾斜对称设置。具体地,第一支架121的上端与第二支架122的上端之间的距离小于第一支架121的下端与第二支架122的下端之间的距离。第一支架121与第二支架122呈“八” 字形排布。这种排布设计使得第一支架121和第二支架122朝远离机身110的方向逐渐向外倾斜以使得着陆架120能够进一步平稳地支撑在着陆面,保证飞行器1000安全着陆。
在一些实施例中,喷洒机构220设于机身110上,且喷洒机构220与容纳箱210连接,用于将容纳箱210内的待喷洒物体喷出。待喷洒物体可以为药液、水或肥料等。具体地,请再次参阅图2,喷洒机构220包括水泵和喷头221。容纳箱210用于存储药液或者水。容纳箱210和水泵搭载于机身110上。喷头221搭载于机臂112的末端。容纳箱210中的液体通过水泵泵入至喷头221,由喷头221喷洒出去。动力系统300可以驱动机体100移动、转动、翻转等动作,从而带动喷头221运动到不同的位置或者不同的角度以在预设区域内进行喷洒作业。
请再次参阅图2,动力系统300可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨310以及与一个或多个螺旋桨310相对应的一个或多个动力电机320,其中动力电机320连接在电子调速器与螺旋桨310之间,动力电机320和螺旋桨310设置在飞行器1000的机臂112上;电子调速器用于接收飞行控制系统产生的驱动信号,并根据驱动信号提供驱动电流给动力电机320,以控制动力电机320的转速。动力电机320用于驱动螺旋桨310旋转,从而为飞行器1000的飞行提供动力,该动力使得飞行器1000能够实现一个或多个自由度的运动。在某些实施例中,飞行器1000可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(roll轴)、航向轴(yaw轴)和俯仰轴(pitch轴)。在一些实施例中,横滚轴为图2中的Y轴,俯仰轴为图2中的X轴,航向轴为图2中的Z轴。应理解,动力电机320可以是直流电机,也可以交流电机。另外,动力电机320可以是无刷电机,也可以是有刷电机。
飞行控制系统可以包括飞行控制器和传感系统。传感系统用于测量无人飞行器1000的姿态信息,即飞行器1000在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器用于控制飞行器1000的飞行,例如,可以根据传感系统测 量的姿态信息控制飞行器1000的飞行。应理解,飞行控制器可以按照预先编好的程序指令对飞行器1000进行控制,也可以通过响应来自控制终端的一个或多个控制指令对飞行器1000进行控制。
如图2所示,飞行器1000的着陆架120上搭载雷达400,该雷达400可以探测物体,例如障碍物等。具体地,雷达400可以测量物体至雷达400的发射点的距离、距离变化率、方位、高度等,从而实现避障等功能。在一些实施例中,雷达400为毫米波雷达400。当然,在其他实施例中,雷达400也可以为超视距雷达、微波雷达或激光雷达等。
请参阅图4和图5,其中,雷达400包括底座410、天线机构420和驱动机构430。天线机构420能够相对机身110绕预设转轴R旋转,用于探测飞行器1000侧面的障碍物。
在一些实施例中,底座410安装于着陆架120上。天线机构420包括发射器(未标示)和接收器(未标示)。发射器用于产生雷达信号并发射雷达信号,雷达信号沿被发射的方向向前传播,在遇到障碍物时被反射。接收器用于接收被反射回的回波信号。
天线机构420能够在驱动机构430的驱动下绕转轴R转动,以使得天线机构420能够可选择地朝向多个方向发射信号并接收从多个方向反射回的回波信号。因而,通过一个天线机构420就能够选择性地检测飞行器1000与多个方向上的障碍物的距离,飞行器1000的结构简单。
在一些实施例中,转轴R与预设平面ω相交,即该转轴R与预设平面ω非平行设置。预设平面ω为飞行器1000的俯仰轴和横滚轴所在的平面。由此,雷达400不仅能够探测飞行器1000的前方视野和后方视野而实现前后避障,而且能够对飞行器1000除了前方视野和后方视野以外的其他侧面视野进行探测,扩大了飞行器1000的探测角度和探测覆盖范围,保证了避障的可靠性。
在一些实施例中,驱动机构430设于底座410上。驱动机构430的转动部件连接于天线机构420,以驱动天线机构420绕转轴R转动。具体地,驱动机构430包括电机,电机包括定子431和转子432,该转子432即为驱动机构430的转动部件,转子432能够相对定子431转动,从而驱动天线机构420转动。更为具体地,定子431安装于底座410上,天线机构420安装于电机的转子432上,转子432相对于底座410旋转,使得天线机构420相对底座410绕转轴R 旋转。
请参阅图6,具体地,雷达400的天线机构420在转子432的带动下以飞行器1000的机头方向为基准绕转轴R正向或逆向旋转,每次扫描一个角度范围内的一个扇形区域。天线机构420旋转一圈即360°,可以扫描一个以雷达400中心为圆心的完整的圆形区域,从而得到圆形的全向扫描区域的探测数据。
在一些实施例中,电机的转子432能够正向或逆向旋转至少一圈,从而带动天线机构420正向或逆向全向旋转至少360°。具体地,天线机构420绕转轴R的旋转角度范围大于或等于360°,例如360°、450°、540°、720°、1080°等,实现连续地旋转,从而增加天线机构420的数据采集点,提高雷达400的测量精度。
在一些实施例中,请参阅图7,转轴R与预设平面ω之间的夹角α为60°-90°。具体地,转轴R与预设平面ω之间的夹角α可以为60°、65°、70°、80°、85°、90°以及60°至90°之间任意合适的其他角度。转轴R与预设平面ω之间的夹角α在60°-90°范围内,使得避障视野既能够包括前方视野和后方视野,又能够尽可能包括除前方视野和后方视野以外的其他侧面视野,从而尽可能扩大飞行器1000的探测角度和探测覆盖范围,保证避障的可靠性。
在一些实施例中,转轴R与机身110的中心线大致重合,避免由于装设雷达400而造成飞行器1000重心不平衡的问题,从而保证飞行器1000飞行的可靠性。其中,大致重合是指转轴R与机身110的中心线之间的夹角为0°-10°,即0°、10°以及0°-10°之间的任一角度。
在一些实施例中,转轴R与飞行器1000的航向轴呈锐角。其中,该锐角可以为任意合适的角度,例如为0°-30°,即0°、5°、10°、15°、20°、25°、30°以及0°至30°之间的任意其他合适角度。
在一些实施例中,转轴R与预设平面ω大致垂直,或者,转轴R与飞行器1000的航向轴大致平行,此时雷达400的全向扫描区域是一个以雷达400的中心为圆心的正圆形,是一个围绕飞行器1000侧面的360°的区域,可以体现飞行器1000前后左右不同方位的地面探测信息。
示例性的,当转轴R与预设平面ω大致垂直,或者,转轴R与飞行器1000的航向轴大致平行时,雷达400的全向扫描区域为图8中e区域,该e区域位于上圆锥区域f和下圆锥区域g之间,该e区域能够覆盖前后左右等不同方位, 因而可以实现飞行器1000侧面的全向避障。
当驱动机构430的转子432的转轴R与预设平面ω垂直时,即转子432的转轴R与飞行器1000的俯仰轴和横滚轴所在平面垂直时,通过调整天线机构420转动的角度,天线机构420可向飞行器1000的左侧、右侧、前方、后方发射微波信号并接收被左侧、右侧、前方、后方的障碍物反射回的回波信号,此时,雷达400可用于实现左侧避障、右侧避障、前方避障、后方避障、左侧地形预测、右侧地形预测、前方地形预测、后方地形预测等功能。当然,转子432的转轴R与飞行器1000的俯仰轴和横滚轴所在的平面相交还可以是其他具体情形,在此不作限定。
可以理解的,转轴R与预设平面ω之间存在预设的夹角,或者,转轴R与飞行器1000的航向轴呈锐角时,全向扫描区域不是一个正圆形,但也是一个围绕飞行器1000的360°的区域,可以体现飞行器1000前后左右不同方位的地面探测信息。
需要说明的是,上述转轴R可以为实轴,也可以为虚轴。当该转轴R为实轴时,天线机构420可相对于该转轴R旋转;或者,天线机构420跟随该转轴R一起旋转。
在一些实施例中,天线机构420设于底座410背离机身110的一侧,以使得雷达400的天线机构420最大程度地远离设置在机身110上的传感器,减少天线机构420所产生的雷达信号(例如电磁波)对机身110上的传感器的干扰。
请参阅图4和图5,在一些实施例中,雷达400还包括感测机构440。该感测机构440设于天线机构420远离底座410的一端,用于检测飞行器1000相对地面的高度。当驱动机构430驱动天线机构420旋转时,感测机构440也与天线机构420一起旋转。其中,感测机构440包括视觉传感器、超声波测距传感器、深度摄像头、雷达天线结构等中的至少一种。
可以理解的,天线机构420和感测机构440的形状可以根据实际需求设计为任意合适的形状,例如为板状。示例性的,天线机构420和感测机构440均大致呈板状时,天线机构420与感测机构440大致垂直。具体地,天线机构420大致垂直于飞行器1000的俯仰轴和横滚轴所在的平面。感测机构440大致平行于飞行器1000的俯仰轴和横滚轴所在的平面。
请参阅图4和图5,在一些实施例中,雷达400还包括数字处理机构450。 该数字处理机构450与天线机构420相对设置在底座410上,用于处理天线机构420的信号。具体地,数字处理机构450可以对天线机构420的信号进行处理,例如放大回波信号;过滤干扰信号;将回波信号转换成雷达数据信号,用于后端设备的控制、终端观测和/或记录等。
在一些实施例中,数字处理机构450呈板状,当然也可以设计为其他任意合适的形状。由于天线机构420的重心偏离天线机构420的转轴R,由此会造成雷达400的重心偏离天线机构420的转轴R,进而导致飞行器1000的重心不平衡,使得飞行器1000飞行不可靠。为此,将数字处理机构450与天线机构420相对设置于感测机构440的两端,数字处理机构450与天线机构420关于转轴R对称设置,从而平衡天线机构420的中心,使得雷达400的中心大致位于天线机构420的转轴R上。具体地,天线机构420、感测机构440和数字处理机构450形成“Π”结构,该“Π”结构的开口朝向机身110。
请再次参阅图2,在一些实施例中,雷达400还包括壳体460,壳体460与底座410配合形成容纳空间,天线机构420、驱动机构430、感测机构440和数字处理机构450容纳于容纳空间内,以保护天线机构420、驱动机构430、感测机构440和数字处理机构450不受外界环境的影响,避免外界环境干扰或损坏这些部件。可以理解的,天线机构420和感测机构440发射或接收的信号可以穿设该壳体460,即该壳体460不会影响天线机构420和感测机构440正常发射或接收信号。
请参阅图9至图12,结合图1,雷达400通过安装结构500安装在着陆架120上。具体地,底座410通过安装结构500安装在着陆架120上。雷达400位于机身110的底部下方,与雷达400位于机身110或机体100的侧面相比,在用户使用飞行器1000的过程中,避免或减少了雷达400因被用户踢到或者被其他物体碰撞而损坏,提高了雷达400的使用寿命和用户的体验度。
在一些实施例中,安装结构500位于雷达400与机身110之间。具体地,雷达400与安装结构500连接后,雷达400位于安装结构500远离机身110的一侧,即位于安装结构500的下方,使得雷达400的天线机构420和感测机构440最大程度地远离设置在机身110上的传感器,减少天线机构420和感测机构440所产生的信号对机身110上的传感器的干扰。
请参阅图9,结合图1,在一些实施例中,雷达400设于容纳箱210和/或 水泵的底部下方。具体地,雷达400设于容纳箱210的底部正下方,以尽可能使天线机构420的转轴R与机身110的中心线大致重合,从而平衡飞行器1000的重心,保证飞行器1000飞行的可靠性。此外,这种设置也可以减少天线机构420和感测机构440所产生的信号对机身110上的传感器的干扰。
请参阅图13至图15,在一些实施例中,安装结构500包括第一安装架510和第二安装架520。第二安装架520与第一安装架510相互独立设置。第一安装架510连接于第一横杆123和雷达400,第二安装架520连接于第二横杆124和雷达400,从而将雷达400固定在着陆架120上。
请参阅图16,其中,第一安装架510包括安装架本体511、固持体512和连接体513。固持体512设于安装架本体511的一端,并连接于第一横杆123。连接体513设于安装架本体511的另一端,并与雷达400连接。
安装架本体511的形状可以根据实际需求进行设计,例如杆状等。在一些实施例中,安装架本体511从固持体512向下倾斜延伸至连接体513。当雷达400与安安装结构500连接而固定于机身110的下方时,这种设计能够避免安装架本体511遮挡天线机构420发射和/或接收的信号,从而提高雷达400的探测精度。在一些实施例中,安装架本体511与预设平面ω之间的夹角,为5°-80°,即5°、80°以及5°-80°之间的任意合适的角度。安装架本体511与预设平面ω之间的夹角在上述范围内,安装结构500不仅能够可靠地将雷达400固定在机身110的底部下方,而且能够避免安装架本体511遮挡天线机构420发射和/或接收的信号。
在一些实施例中,固持体512与第一横杆123可拆卸连接。固持体512可以通过卡扣连接、螺纹连接、螺丝连接、过盈配合、胶粘连接等中的至少一种连接方式与第一横杆123可拆卸连接。在另一些实施例中,固持体512与第一横杆123也可以一体成型,在此不作限定。
请参阅图16,在一些实施例中,固持体512呈非封闭的环状结构。固持体512包括固持部5121和两个锁紧部5122。固持部5121具有第一自由端5121a、第二自由端5121b和通孔5121c。该通孔5121c用于供第一横杆123穿设,第一自由端5121a和第二自由端5121b沿通孔5121c的周向间隔设置。两个锁紧部5122分别设于第一自由端5121a和第二自由端5121b上。两个锁紧部5122通过紧固件5123改变通孔5121c的大小,以使固持部5121与第一横杆123紧 固连接。具体地,两个锁紧部5122分别从固持部5121的第一自由端5121a和第二自由端5121b沿通孔5121c的径向向外延伸。紧固件5123穿设两个锁紧部5122使通孔5121c的大小与第一横杆123适配,从而将第一安装架510紧固在第一横杆123上。紧固件5123可以为螺丝、螺栓等快拆件。
请参阅图16,在一些实施例中,连接体513包括抵接部5131和两个连接部5132。抵接部5131连接于安装架本体511的另一端,并抵接于雷达400。两个连接部5132相对设置于抵接部5131的两侧。两个连接部5132均与雷达400固定连接。
具体地,抵接部5131与安装架本体511的延伸方向大致相同。两个连接部5132从抵接部5131的相对两侧向外延伸。锁固件5133穿设连接部5132和雷达400的底座410,以锁固第一安装架510与雷达400。在一些实施例中,雷达400的底座410的顶面为平面,抵接部5131和两个连接部5132的底面在同一平面,以与雷达400的底座410更好地贴合固定。
请参阅图16,在一些实施例中,连接体513还包括加强筋5134。该加强筋5134连接于抵接部5131和连接部5132,以增强连接体513的强度,为可靠固定雷达400提供了保障。
可以理解的,第二安装架520的结构可以与第一安装架510的结构相同,也可以不同,只要能够与第一安装架510配合将雷达400固定于机身110的底部下方即可。第二安装架520的与第一安装架510相同时,第二安装架520具体结构以及第二安装架520与雷达400和第二横杆124的连接方式参照第一安装架510,在此不再赘述。在一些实施例中,具体地,第一安装架510的上端与第二安装架520的上端之间的距离大于第一安装架510的下端与第二安装架520的下端之间的距离。第一安装架510与第二安装架520呈倒“八”字形排布,以使得雷达400尽可能远离机身110上的其他传感器,避免雷达400干扰机身110上的其他传感器上的信号。在一些实施例中,第一安装架510与第二安装架520对称设置,以使得雷达400能够安装在机身110的底部正下方。
上述飞行器1000,由于雷达400的天线机构420能够绕转轴R旋转,该转轴R与俯仰轴和横滚轴所在的平面相交,不仅能够探测飞行器1000的前方视野和后方视野而实现前后避障,而且能够对飞行器1000侧面视野除了前方视野和后方视野以外的其他侧面视野进行探测,扩大了飞行器1000的探测角度和探测 覆盖范围,保证了避障的可靠性。此外,由于雷达400位于机身110的底部下方,与雷达400位于机身110或机体100的侧面相比,在用户使用飞行器1000的过程中,避免或减少了雷达400因被用户踢到或者被其他物体碰撞而损坏,提高了雷达400的使用寿命和用户的体验度。
需要说明的是,上述对于飞行器1000各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种飞行器,其特征在于,包括:
    机身;
    着陆架,与所述机身连接;
    雷达,包括天线机构,所述天线机构能够相对所述机身绕预设转轴旋转,用于探测所述飞行器侧面的障碍物;
    安装结构,所述雷达通过所述安装结构安装在所述着陆架上;
    其中,所述雷达位于所述机身的底部下方,且所述转轴与预设平面相交,所述预设平面为所述飞行器的俯仰轴和横滚轴所在的平面。
  2. 根据权利要求1所述的飞行器,其特征在于,所述转轴与所述预设平面之间的夹角为60°-90°。
  3. 根据权利要求2所述的飞行器,其特征在于,所述转轴与所述预设平面大致垂直;和/或,所述转轴与所述机身的中心线大致重合;和/或,所述安装结构位于所述雷达与所述机身之间。
  4. 根据权利要求1所述的飞行器,其特征在于,所述转轴与所述飞行器的航向轴呈锐角。
  5. 根据权利要求4所述的飞行器,其特征在于,所述锐角为0°-30°。
  6. 根据权利要求1所述的飞行器,其特征在于,所述天线机构绕所述转轴的旋转角度范围大于或等于360°。
  7. 根据权利要求1所述的飞行器,其特征在于,所述着陆架包括:
    第一支架和第二支架,相对设置于所述机身上;
    第一横杆和第二横杆,平行间隔设置且均连接于所述第一支架和所述第二支架,所述雷达通过所述安装结构安装于所述第一横杆和所述第二横杆上。
  8. 根据权利要求7所述的飞行器,其特征在于,所述安装结构包括:
    第一安装架,连接于所述第一横杆和所述雷达;
    第二安装架,连接于所述第二横杆和所述雷达,并与所述第一安装架相互独立设置。
  9. 根据权利要求8所述的飞行器,其特征在于,所述第一安装架包括:
    安装架本体;
    固持体,设于所述安装架本体的一端,连接于所述第一横杆;
    连接体,设于所述安装架本体的另一端,与所述雷达连接。
  10. 根据权利要求9所述的飞行器,其特征在于,所述安装架本体从所述固持体向下倾斜延伸至所述连接体。
  11. 根据权利要求10所述的飞行器,其特征在于,所述安装架本体与所述预设平面之间的夹角为5°-80°。
  12. 根据权利要求9所述的飞行器,其特征在于,所述固持体与所述第一横杆可拆卸连接。
  13. 根据权利要求12所述的飞行器,其特征在于,所述固持体呈非封闭的环状结构。
  14. 根据权利要求13所述的飞行器,其特征在于,所述固持体包括:
    固持部,具有第一自由端、第二自由端和用于供所述第一横杆穿设的通孔,所述第一自由端和所述第二自由端沿所述通孔的周向间隔设置;
    两个锁紧部,分别设于所述第一自由端和所述第二自由端上;两个所述锁紧部通过紧固件改变所述通孔的大小,以使所述固持部与所述第一横杆紧固连接。
  15. 根据权利要求8所述的飞行器,其特征在于,所述第一安装架的结构与所述第二安装架的结构相同。
  16. 根据权利要求8所述的飞行器,其特征在于,所述第一安装架与所述第二安装架对称设置。
  17. 根据权利要求7所述的飞行器,其特征在于,所述第一支架和所述第二支架均包括:
    第一支撑杆;
    第二支撑杆,与所述第一支撑杆相对设置于所述机身上;
    其中,所述第一横杆连接于所述第一支架的第一支撑杆和所述第二支架的第一支撑杆之间,所述第二横杆连接于所述第一支架的第二支撑杆和所述第二支架的第二支撑杆之间。
  18. 根据权利要求17所述的飞行器,其特征在于,所述第一支撑杆和所述第二支撑杆相向且倾斜对称设置。
  19. 根据权利要求18所述的飞行器,其特征在于,所述第一支撑杆的上端与所述第二支撑杆的上端之间的距离小于所述第一支撑杆的下端与所述第二支撑杆的下端之间的距离。
  20. 根据权利要求17所述的飞行器,其特征在于,所述第一支架和所述第二支架均还包括:
    第三支撑杆,连接于所述第一支撑杆和第二支撑杆的底部。
  21. 根据权利要求7所述的飞行器,其特征在于,所述第一支架与所述第二支架相向且倾斜对称设置。
  22. 根据权利要求1-21任一项所述的飞行器,其特征在于,所述雷达包括毫米波雷达、激光雷达、超视距雷达或微波雷达。
  23. 根据权利要求1-21任一项所述的飞行器,其特征在于,所述雷达还包括:
    底座,通过所述安装结构安装在所述着陆架上;
    驱动机构,设于所述底座上;所述驱动机构的转动部件连接于所述天线机构,以驱动所述天线机构绕所述转轴转动。
  24. 根据权利要求23所述的飞行器,其特征在于,所述天线机构设于所述底座背离所述机身的一侧。
  25. 根据权利要求23所述的飞行器,其特征在于,所述雷达还包括:
    感测机构,设于所述天线机构远离所述底座的一端,用于检测所述飞行器相对地面的高度。
  26. 根据权利要求25所述的飞行器,其特征在于,所述感测机构包括视觉传感器、超声波测距传感器、深度摄像头、雷达天线结构中的至少一种。
  27. 根据权利要求25所述的飞行器,其特征在于,所述天线机构与所述感测机构大致垂直。
  28. 根据权利要求23所述的飞行器,其特征在于,所述雷达还包括:
    数字处理机构,与所述天线机构相对设置在所述底座上,用于处理所述天线机构的信号。
  29. 根据权利要求1-21任一项所述的飞行器,其特征在于,所述飞行器还包括:
    容纳箱,设于所述机身上;
    喷洒机构,设于所述机身上,并与所述容纳箱连接,用于将所述容纳箱内的待喷洒物体喷出。
  30. 根据权利要求29所述的飞行器,其特征在于,所述雷达设于所述容纳箱的底部下方。
  31. 一种飞行器,其特征在于,包括:
    机体;
    雷达,包括天线机构,所述天线机构能够相对所述机体绕预设转轴旋转,用于探测所述飞行器侧面的障碍物;
    安装结构,所述雷达通过所述安装结构安装在所述机体上;
    其中,所述雷达位于所述机体的底部下方,且所述转轴与预设平面相交,所述预设平面为所述飞行器的俯仰轴和横滚轴所在的平面。
PCT/CN2019/115455 2019-11-04 2019-11-04 飞行器 WO2021087703A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033699.2A CN112154100A (zh) 2019-11-04 2019-11-04 飞行器
PCT/CN2019/115455 WO2021087703A1 (zh) 2019-11-04 2019-11-04 飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115455 WO2021087703A1 (zh) 2019-11-04 2019-11-04 飞行器

Publications (1)

Publication Number Publication Date
WO2021087703A1 true WO2021087703A1 (zh) 2021-05-14

Family

ID=73891520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115455 WO2021087703A1 (zh) 2019-11-04 2019-11-04 飞行器

Country Status (2)

Country Link
CN (1) CN112154100A (zh)
WO (1) WO2021087703A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279380A1 (en) * 2022-05-18 2023-11-22 Flyability SA Vtol uav with 3d lidar sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222246A1 (en) * 2011-11-18 2014-08-07 Farrokh Mohamadi Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems
CN206528629U (zh) * 2017-01-23 2017-09-29 深圳市大疆创新科技有限公司 无人飞行器
CN207000827U (zh) * 2017-07-25 2018-02-13 深圳市大疆创新科技有限公司 飞行器、地面站及射频检测系统
CN108513621A (zh) * 2017-12-18 2018-09-07 深圳市大疆创新科技有限公司 雷达装置及无人飞行器
CN209258386U (zh) * 2018-12-24 2019-08-16 沈阳旋飞航空技术有限公司 一种无人机起落架

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912513B1 (fr) * 2007-02-13 2009-04-17 Thales Sa Radar aeroporte notamment pour drone
IL192601A (en) * 2008-07-03 2014-07-31 Elta Systems Ltd Discovery / Transmission Device, System and Method
CN207389568U (zh) * 2017-07-13 2018-05-22 国网辽宁省电力有限公司检修分公司 一种装载有合成孔径雷达的无人机
US10754020B2 (en) * 2017-08-30 2020-08-25 Honeywell International Inc. Mechanically assisted phased array for extended scan limits
CN109720557A (zh) * 2017-10-27 2019-05-07 极翼机器人(上海)有限公司 一种无人飞行器及其飞行控制方法
CN113030869A (zh) * 2017-12-18 2021-06-25 深圳市大疆创新科技有限公司 旋转雷达及无人机
CN108693525B (zh) * 2018-03-23 2021-10-15 深圳高科新农技术有限公司 基于微波雷达的无人机避障仿地飞行系统
CN208299590U (zh) * 2018-06-27 2018-12-28 深圳市大疆创新科技有限公司 电机、雷达组件及无人机
CN208585419U (zh) * 2018-07-20 2019-03-08 深圳市大疆创新科技有限公司 测量组件和无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222246A1 (en) * 2011-11-18 2014-08-07 Farrokh Mohamadi Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems
CN206528629U (zh) * 2017-01-23 2017-09-29 深圳市大疆创新科技有限公司 无人飞行器
CN207000827U (zh) * 2017-07-25 2018-02-13 深圳市大疆创新科技有限公司 飞行器、地面站及射频检测系统
CN108513621A (zh) * 2017-12-18 2018-09-07 深圳市大疆创新科技有限公司 雷达装置及无人飞行器
CN209258386U (zh) * 2018-12-24 2019-08-16 沈阳旋飞航空技术有限公司 一种无人机起落架

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279380A1 (en) * 2022-05-18 2023-11-22 Flyability SA Vtol uav with 3d lidar sensor
WO2023222560A1 (en) * 2022-05-18 2023-11-23 Flyability Sa Vtol uav with 3d lidar sensor

Also Published As

Publication number Publication date
CN112154100A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US11474516B2 (en) Flight aiding method and system for unmanned aerial vehicle, unmanned aerial vehicle, and mobile terminal
EP2909689B1 (en) Micro unmanned aerial vehicle and method of control therefor
US11380995B2 (en) Two-dimensional antenna system and method and device for positioning a target
US20220355952A1 (en) Autonomous Aerial Vehicle Hardware Configuration
JP6100868B1 (ja) 無人移動体の操縦方法および無人移動体監視装置
US10683086B2 (en) Unmanned rotorcraft and method for measuring circumjacent object around rotorcraft
KR101574601B1 (ko) 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
AU2017366437A1 (en) Landing and payload loading structures
AU2018390751A1 (en) Dynamic UAV transport tasks
US9677564B1 (en) Magnetic propeller safety device
EP3278141A1 (en) Modular lidar system
WO2018094626A1 (zh) 无人飞行器的避障控制方法及无人飞行器
AU2021212167B2 (en) Delivery-location recharging during aerial transport tasks
JP2017193208A (ja) 小型無人航空機
US20200117197A1 (en) Obstacle detection assembly for a drone, drone equipped with such an obstacle detection assembly and obstacle detection method
WO2019127029A1 (zh) 一种闪避障碍物的方法、装置及飞行器
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
CN211766269U (zh) 多旋翼无人飞行器
CN112173096A (zh) 无人机
WO2021087703A1 (zh) 飞行器
CN211766270U (zh) 无人飞行器
KR102212029B1 (ko) 회전 비행체
WO2020220234A1 (zh) 无人机的控制方法和无人机
US10518892B2 (en) Motor mounting for an unmanned aerial system
WO2023155195A1 (zh) 一种障碍物的探测方法、装置、可移动平台及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951964

Country of ref document: EP

Kind code of ref document: A1