WO2021128023A1 - 驱动电机、扫描模组及激光雷达 - Google Patents
驱动电机、扫描模组及激光雷达 Download PDFInfo
- Publication number
- WO2021128023A1 WO2021128023A1 PCT/CN2019/128049 CN2019128049W WO2021128023A1 WO 2021128023 A1 WO2021128023 A1 WO 2021128023A1 CN 2019128049 W CN2019128049 W CN 2019128049W WO 2021128023 A1 WO2021128023 A1 WO 2021128023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- iron core
- yoke
- prism
- support
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
Definitions
- This application relates to the technical field of laser detection, and in particular to a driving motor, a scanning module and a laser radar.
- Lidar is a radar system that emits a laser beam to detect the target's position, speed and other characteristic quantities. Its working principle is to first emit a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal. After proper processing, relevant information about the target can be obtained, such as the target's distance, azimuth, height, speed, posture, and even shape parameters.
- Lidar generally uses a motor to drive a prism to rotate to change the laser offset direction, forming a spatial scan, so as to scan different points in the space.
- the prism and the motor are independent of each other in space.
- the motor needs to go through a transmission link to drive the prism to rotate.
- There is a transmission gap in the transmission link which will cause scanning errors, and the structure is more complex, and the volume is The quality is too large, which is not conducive to the application of driver assistance systems, unmanned driving systems and mobile robots, unmanned aircraft obstacle avoidance and navigation.
- This application provides a driving motor, a scanning module and a lidar.
- a driving motor By fixing the prism on the hollow part of the rotor assembly, not only can the scanning error caused by the transmission link be avoided, and the scanning accuracy of the lidar can be improved;
- the overall structure of the lidar is more compact, so that the lightweight design of the lidar can be realized.
- the present application provides a lidar, including:
- Launching device for launching laser beams
- Scanning module used to change the exit direction of the laser beam emitted by the laser
- the scanning module includes a drive motor
- the drive motor includes a rotating shaft, a rotor assembly rotating around the rotating shaft, and a stator assembly for driving the rotor assembly to rotate, the rotor assembly having a hollow structure, including:
- a yoke arranged in parallel with the magnet
- the prism inscribed in the hollow structure and the first bearing connected between the prism and the rotating shaft, the stator assembly is provided with a rotating shaft support, and the rotating shaft is fixed on the rotating shaft support so that The prism can rotate within the stator assembly.
- the present application provides a scanning module for lidar, including:
- the motor assembly includes a drive motor, the drive motor includes a rotating shaft, a rotor assembly that rotates around the rotating shaft, and a stator assembly for driving the rotor assembly to rotate;
- the rotor assembly has a hollow structure and includes: a magnet;
- a yoke arranged in parallel with the magnet
- the prism inscribed in the hollow structure and the first bearing connected between the prism and the rotating shaft, the stator assembly is provided with a rotating shaft support, and the rotating shaft is fixed on the rotating shaft support so that The prism can rotate within the stator assembly.
- the control component includes a motor driver which is electrically connected to the stator component, and the motor driver controls the rotation speed and direction of the rotor component through a program.
- the present application provides a driving motor used for lidar, including:
- a rotor assembly that rotates around the rotating shaft
- a stator assembly for driving the rotation of the rotor assembly wherein,
- the rotor assembly is a hollow structure and includes a magnet
- a yoke arranged in parallel with the magnet
- the prism inscribed in the hollow structure and the first bearing connected between the prism and the rotating shaft, the stator assembly is provided with a rotating shaft support, and the rotating shaft is fixed on the rotating shaft support so that The prism can rotate within the stator assembly.
- the present application designs a driving motor, a scanning module, and a lidar, where the driving motor includes a rotating shaft, a rotor assembly that rotates around the rotating shaft, and a drive motor
- the driving motor includes a rotating shaft, a rotor assembly that rotates around the rotating shaft, and a drive motor
- the stator assembly of the rotor assembly can not only avoid errors caused by the drive motor driving the prism to rotate through the transmission link, but also make the overall structure of the lidar more compact, thereby realizing the lightweight design of the lidar.
- FIG. 1 is a schematic structural diagram of a lidar provided by an embodiment of the present application.
- Fig. 2 is a front view of the driving motor in Fig. 1 of the present application;
- Fig. 3 is a bottom view of the driving motor in Fig. 2 of the present application.
- FIG. 4 is a schematic diagram of the structure of the driving motor in FIG. 2 of the present application.
- Fig. 5 is an exploded schematic diagram of the driving motor in Fig. 2 of the present application.
- Fig. 6 is a schematic structural diagram of the end cover of the housing in Fig. 5 of the present application.
- FIG. 7 is a schematic diagram of the structure of the housing body in FIG. 5 of the present application.
- FIG. 8 is a schematic diagram of the structure of the driving motor in FIG. 5 of the present application.
- Fig. 9 is an enlarged schematic diagram of Fig. 8 of the present application at A;
- Fig. 10 is an exploded schematic diagram of the rotor assembly in Fig. 5 of the present application.
- FIG. 11 is a schematic diagram of the structure of the prism in FIG. 5 of the present application.
- Figure 12 is an exploded schematic view of the bearing support seat in Figure 5 of the present application
- Figures 13(a)-13(e) are schematic diagrams of scanning with different combinations of prism groups provided by examples of this specification.
- Fig. 14 is a partial structural diagram of the second insulating support in Fig. 5 of the present application.
- Stator assembly 11, stator support; 12, coil support; 121, stator core; 1211, stator tooth; 12111, tooth shoe part; 12112, tooth part; 1212, yoke part; 1213, stator slot; 122, stator Winding; 13, support; 131, shaft mounting part; 20, rotor assembly; 21, magnetic yoke, 211, first groove, 212, hollow part, 22, magnet, 23, code disc, 30, prism, 31, Prism perforation; 40. Adapter; 41. Input end; 50. Rotation shaft; 60. First bearing; 61. Bearing support seat; 611. Fixation perforation; 70. Insulation bracket; 71. First insulation bracket; 72 , The second insulating support.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
- the lidar of this application belongs to the field of laser detection technology. It emits a laser beam to detect the position and speed of an object. Its working principle is to first emit the laser beam to the object, and then the received signal reflected from the object and the emission After the signals are compared and properly processed, relevant information about the object can be obtained, such as the distance, orientation, height, speed, posture, and shape of the object.
- Lidar usually includes a transmitting device, a receiving device, and a scanning module.
- the transmitting device is used to emit a laser beam onto an object
- the receiving device is used to receive the laser beam reflected by the object
- the scanning module is used to change the laser beam.
- the exit direction of the emitted laser beam is used to change the laser beam.
- the scanning module includes a control component, a driving motor and at least one prism.
- the prism is used to realize the directional deviation of the laser.
- the control component controls the rotation speed and direction of the driving motor through a program, and the driving motor drives one or more prisms through the transmission component. Rotate to change the deviation direction of the laser beam to form a spatial scan.
- the prism and the driving motor as the light propagation path are independent of each other in space.
- the driving motor is only used as a power source and needs to be transmitted to the prism to be scanned through a transmission assembly.
- the structure is not compact enough, and the transmission assembly is There will be a transmission gap during the transmission process, which will cause scanning errors.
- the transmission components are prone to mechanical wear, resulting in a decrease in efficiency.
- the rotation speed limit of the drive motor not only requires lubrication, but also the wear debris, grease or lubricating fluid of the transmission components can easily pollute the prism.
- the lidar provided by this application includes a transmitting device, a receiving device, and a scanning module.
- the transmitting device is used to transmit a laser beam to an object
- the receiving device is used to receive
- the scanning module 100 is used to change the exit direction of the laser beam emitted by the laser.
- the scanning module 100 includes a motor assembly and a control assembly for controlling the rotation speed and direction of the motor assembly.
- the motor assembly includes a drive motor 110.
- the drive motor 110 includes a rotating shaft 50, a rotor assembly 20 that rotates around the rotating shaft 50, and The stator assembly 10 used to drive the rotor assembly 20 to rotate.
- the rotor assembly 20 is a hollow structure 212 and includes a yoke 21, a magnet 22, a prism 30 and a first bearing 60.
- the yoke 21 is arranged parallel to the magnet 22, and the prism 30 is internally connected
- the first bearing 60 is installed in the middle of the prism 30, one end of the rotating shaft 50 is installed on the stator assembly 10, and the other end of the rotating shaft 50 passes through the first bearing 60 so that the prism 30 can be in the stator assembly 10. Rotate.
- control assembly 120 includes a driver, which is electrically connected to the input 41 of the scanning module 100, so that the driver can control the speed and direction of the rotor assembly 20 through a program, so that the rotor assembly 20 can be used to drive
- the prism 30 rotates to change the exit direction of the laser beam emitted by the laser.
- stator assembly 10 is sleeved on the outer side of the rotor assembly 20 to restrict the rotation of the rotor assembly 20 in the direction of the rotating shaft 50, that is, the rotor assembly 20 rotates around the rotating shaft 50, and the direction of the rotating shaft 50 is fixed.
- the stator assembly 10 has a hollow cylindrical structure, a rotating shaft support 13 is provided at the open end of the stator assembly 10, a rotating shaft mounting portion 131 is provided in the middle of the rotating shaft support 13, and one end of the rotating shaft 50 is mounted On the rotating shaft mounting portion 131, the other end of the rotating shaft 50 passes through the first bearing 60, so that the prism 30 can rotate in the stator assembly 10.
- the rotating shaft 50 and the rotating shaft mounting portion 131 may be rotationally connected or fixedly connected.
- the rotating shaft 50 and the rotating shaft mounting portion 131 may be connected by a bearing, such as a rolling bearing. Or oil-free bearings, etc.
- the rotating shaft 50 and the rotating shaft mounting portion 131 are fixedly connected, so that the shaking error of the rotating shaft 50 can be reduced, and the transmission accuracy of the prism 30 can be improved.
- the prism 30 is provided with a prism hole 31, the outer ring of the first bearing member 60 is mounted on the prism hole 31, and the inner ring of the first bearing member 60 is connected to the rotating shaft 50.
- the rotor assembly 20 further includes a hollow cylindrical bearing support seat 61, the bearing support seat 61 is installed on the prism perforation 31, and the first bearing member 60 is installed in the hollow cylindrical shape of the bearing support seat 61.
- the middle part of the bearing support seat 61 is provided with a fixing piece through hole 611, the number of the first bearing piece 60 is two, and the two first bearing pieces 60 are separately installed at both ends of the fixing piece through hole 611, namely When the bearing support 61 is installed in the prism perforation 31, the two first bearing members 60 are located at both ends of the prism 30, so that the force balance of the prism 30 can be ensured.
- the clearance between the inner ring of the first bearing member 60 and the outer ring of the first bearing member 60 can be selected according to the rotation speed of the driving motor 110, and try to avoid excessive clearance of the first bearing member 60
- the transmission accuracy of the prism 30 is reduced, or the clearance of the first bearing member 60 is too small, which causes the temperature of the first bearing member 60 to increase sharply during operation, thereby reducing the service life of the first bearing member 60. Therefore, the clearance of the first bearing member 60 can be reasonably selected according to the rotation speed of the driving motor 110, and there is no limitation in this application.
- the outer edge of the prism 30 abuts the inner edge of the rotor assembly 20, thereby avoiding measurement errors caused by the transmission gap of the prism 30 relative to the stator assembly 10.
- the hollow structure 212 is provided with a prism mounting part capable of mounting a prism, and the prism 30 is mounted on the prism mounting part.
- the diameter of the prism is approximately equal to the outer diameter of the rotor assembly.
- the control assembly includes a motor driver, which is electrically connected to the input terminal 41 on the adapter 40, so that the motor driver can control the rotor assembly 20 through a program.
- the rotor assembly 20 is used to drive the prism 30 to rotate to change the direction of the laser beam emitted by the laser.
- the stator assembly 10 has a hollow cylindrical structure, and the stator assembly 10 is sleeved on the outer side of the rotor assembly 20 to restrict the rotation of the rotor assembly 20 in the direction of the rotating shaft, that is, the rotor assembly 20 always rotates on the rotating shaft 50. Rotate for the center.
- the lidar further includes an adapter 40, wherein there are a plurality of scanning modules 100, and the plurality of scanning modules 100 are connected together by the adapter 40.
- the number of scanning modules 100 may also be multiple, and the shape of the prisms 30 on each scanning module 100 may be different or the same.
- the prisms 30 may include wedge prisms, cylindrical prisms, or trapezoidal prisms.
- the stator assembly 10 includes a coil support 12 and a stator support 11 in a hollow cylindrical structure.
- the coil support 12 is sleeved inside the stator support 11, the coil support 12, and the rotor assembly 20 is mounted on the coil support 12. Inside.
- the prism 30 When the prism 30 is installed in the hollow structure 212, the prism 30 rotates around the rotating shaft with the first bearing 60 as a supporting point, because the first bearing 60 is disposed between the prism 30 and the rotating shaft 50. Therefore, after adopting the above solution, the centrifugal force of the prism 30 can be effectively transmitted to the rotating shaft 50 through the first bearing member 60, and the output efficiency of the driving motor 110 can be effectively improved.
- the stator assembly 10 further includes an insulating support 70, which is sleeved on both sides of the coil support 12 to fix the coil support 12 on the stator support 11.
- the insulating support 70 includes a first insulating support 71 and a second insulating support 72, wherein the first insulating support 71 is arranged on one side of the coil support 12, and the second insulating support 72 is arranged on the other side of the coil support 12. As a result, the coil support 12 is clamped and installed on the stator support 11.
- stator support 11 is provided with a stator mounting part
- first insulating support 71 is provided with an insulating support mounting part
- the coil support 12 is mounted on the stator mounting part through the insulating support mounting part.
- Figure 18 exemplarily depicts a part of the installation.
- the ring-shaped frame of the first insulating bracket 71 has a winding part extending toward the center of the ring in the radial direction.
- the end of the winding part has a baffle, the baffle
- the lower edge has a bifurcated plug structure, and the plug structure is inserted into the slot of the coil support and fixed with the coil support.
- the second insulating support 72 has a slot structure, and the slot structure is connected to the slot of the coil support and fixed to the coil support.
- the first insulating support 71, the second insulating support 72 and the coil support 12 are combined into a whole through the slot and the plug structure, and the first insulating support 71 and the second insulating support 72 are respectively located on the coil support. 12 ends.
- the coil module is wound on the coil support.
- first insulating support 71 and the second insulating support 72 fix the coil support in a snap-fitting manner.
- the structure is simple but practical, and the coil support 12 is also easy to disassemble.
- one of the first insulating bracket 71 and the second insulating bracket 72 has a first buckling portion
- the other of the first insulating bracket 71 and the second insulating bracket 72 has a second buckling portion
- the first buckling portion Buckle with the second buckling part.
- an encoder 23 is connected between the stator assembly 10 and the rotor assembly 20, and a second groove is provided on the stator assembly 10.
- the encoder 23 can Moving in the second groove, the speed of the rotor assembly can be monitored and controlled in real time through the code disc 23.
- the code disc 23, the first bearing member 60, and the bearing support seat 61 are all made of non-magnetic materials to prevent interference with the magnetic field between the rotor assembly 20 and the stator assembly 10.
- the rotor assembly 20 and the stator assembly 10 in the drive motor 110 rotate relative to each other.
- the rotor assembly 20 may be a magnetic element.
- the stator assembly 10 is a coil winding that generates an electromagnetic field when energized; otherwise, the rotor assembly 20 is also It may be a coil winding that generates an electromagnetic field when energized, and the stator assembly 10 is a magnetic element.
- the drive motor is energized, the coil winding generates an electromagnetic field to drive the rotor assembly to rotate around the shaft.
- each of the coil support 12 includes a stator core 121 and a stator winding 122, and the stator winding 122 is arranged on the stator core 121.
- the number of the stator core 121 can be one, two or even more than two.
- the stator core 121 can be a hollow ring shape or a hollow cylindrical shape, and the stator winding 122 can be wound.
- the position of the rotor assembly 30 corresponds to the position of the stator winding 122 on the inner side of the stator core 121 or around the upper and lower positions of the axis of the stator core 121, so that the coil winding 122 generates an electromagnetic field and drives the rotor assembly 20 to rotate.
- the rotation direction or rotation speed of the rotor assembly 20 on each scanning module 100 can be controlled by changing the direction of the current or the magnitude of the current on the coil support 12, so that it can be changed.
- the exit direction of the laser beam emitted by the laser is the same, for example, it rotates in the same direction around the axis 50, counterclockwise or clockwise at the same time.
- the number of prisms 30 may be multiple, and each prism 30 is provided with one prism perforation 31 described above, that is, the number of the first bearing 60 and the number of the prisms 30 match.
- two first bearing members 60 are installed at both ends of each second bearing fixing member 61, which not only ensures the balance of the forces on each prism 30, but also improves the first bearing member. The service life of the bearing 60.
- the first bearing member 60 includes a deep groove ball bearing, but is not limited to a deep groove ball bearing.
- the first bearing member 60 can also be other bearings, such as an oil-free lubrication bearing, a self-aligning bearing, etc. .
- the stator iron core 121 includes an iron core body surrounded by a plurality of iron cores, and the distance between two adjacent iron cores is equal to a first preset distance. Can be any constant greater than 0.
- the stator bracket 11 is provided with iron core mounting parts arranged at intervals, and the iron cores are mounted on the iron core mounting parts.
- the iron core mounting parts are respectively arranged on the above-mentioned stator mounting parts at intervals, and a plurality of iron cores are correspondingly mounted on each iron core mounting part to form a hollow iron core body, and the rotor assembly is mounted on the iron core body Hollow in.
- the stator support 11 has a square shape, and the iron core mounting parts are arranged at four corner positions of the stator housing.
- the stator support 11 is provided with a rounded corner structure at the four corner positions, and the iron core is fitted on the iron core mounting parts at the four corner positions to ensure that the stator iron core 121 is driven When the rotor assembly 20 rotates, the circumferential forces of the rotor assembly 20 are balanced.
- the stator core 121 includes an iron core body formed of a plurality of iron cores integrally, and the stator support 11 is provided with an iron core mounting part, and the iron core is mounted on the iron core mounting part.
- a plurality of iron cores are integrally formed to form a hollow square or cylindrical iron core body, the iron core body is sleeved in the first stator mounting part and the second stator mounting part, and the rotor assembly 20 is mounted on the iron core body The hollow shape inside.
- the iron core is provided with a plurality of stator teeth 1211 distributed in the circumferential direction, and every two adjacent stator teeth are surrounded to form a stator slot 1213, and the stator teeth 1211 extend from the outside to the inside in the radial direction. It includes a tooth part 12112 and a tooth shoe part 12111 in turn.
- the stator winding 122 is wound on the tooth part 12112.
- the rotor assembly 20 is arranged on the inner side of the tooth shoe part 12111, so that the positions of the tooth part 12112, the tooth shoe part 12111 and the iron core are reliable. Fixed, at the same time, can improve the magnetization effect of the iron core, which is beneficial to improve the performance of the driving motor 110.
- the iron core includes a plurality of sub-sections laminated by punching sheets, each sub-section has the above-mentioned stator tooth 1211 and a section of yoke 1212, and two adjacent sub-sections are connected to each other, which is not only convenient for iron
- the production of the core improves the production efficiency, and the utilization rate of the material is high, which is conducive to reducing the production cost.
- the width of the tooth portion 12112 is 1.8-3mm; and/or the height of the tooth shoe portion 12111 is 0.5-1mm; the closest distance between the two tooth shoe portions 12111 is 1.8-3mm, that is, the stator slot
- the short distance of the opening of the 1213 is 1.8-3mm; and/or the thickness of the yoke 1212 is 1.5-3mm, which not only reduces the iron loss of the drive motor 110, but also ensures the power required when the drive motor 110 starts.
- the width of the tooth part 12112 is 1.8mm
- the height of the tooth shoe part 12111 is 0.5mm
- the closest distance between the two tooth shoe parts 12111 is 1.8mm
- the thickness of the yoke part 1212 is 1.5mm.
- the iron core body is formed by stacking and riveting silicon steel punching sheets, and the thickness of the silicon steel punching sheets is approximately equal to 0.2 mm, so as to improve the production efficiency of the iron core.
- the iron core body may be formed by stacking round silicon steel punching sheets in sequence, or the iron core body may be formed by laminating strip punching sheets to form a strip structure, and then bending the strip structure to form the core body, etc.
- the iron core body can also adopt other suitable structures, and this application does not make any limitation.
- the number of magnets is 20, and the number of stator slots is 24. This not only ensures that the drive motor 110 can have a large output torque, but also ensures that the space in the middle structure is large enough, that is, When the rotor assembly 10 has a large enough space, the drive motor 110 can have a large enough output torque to drive the prism 30 to rotate at a high speed.
- the number of magnets is 20 and the number of stator slots is 27. This not only ensures that the drive motor 110 can have a large output torque, but also ensures that the space in the middle structure is large enough, that is, When the rotor assembly 10 has a large enough space, the drive motor 110 can have a large enough output torque to drive the prism 30 to rotate at a high speed.
- the stator core 121 includes a toroidal core body, which is integrally formed by a plurality of cores, wherein the stator winding is composed of multiple sets of hollow-cup windings to facilitate the stator winding It can be fitted inside the core body.
- the rotor assembly is arranged on the inner side of the stator winding, and the iron core body is made of silicon steel sheet.
- the stator core 121 includes a toroidal core body, which is surrounded by a plurality of core split bodies, wherein the stator winding 122 is formed by multiple sets of hollow-cup windings arranged at intervals. So that the stator winding 122 can be sleeved inside the core body.
- the rotor assembly 20 is arranged inside the stator winding 122, wherein the core body is made of silicon steel sheet.
- the stator core 121 includes a ring-shaped core body, which is surrounded by a plurality of core split bodies, wherein the core body is provided with stator teeth in the axial direction so as to The stator winding can be wound on the stator teeth.
- the iron core body is made of iron-based soft magnetic soft magnetic composite material, and the rotor assembly 20 is installed in the axial direction of the stator winding 122.
- the stator teeth are located at the upper or lower end of the core body, and the rotor assembly 20 is installed above or below the stator winding 122.
- the structure is very compact, which facilitates driving the motor 110. Lightweight design.
- the stator core 121 includes a ring-shaped core body, which is integrally formed by a plurality of cores, wherein stator teeth are provided in the axial direction of the core body to facilitate the stator winding 122 can be wound around the stator teeth.
- the iron core body is made of iron-based soft magnetic soft magnetic composite material, and the rotor assembly 20 is installed in the axial direction of the stator winding 122.
- the stator teeth are located at the upper or lower end of the core body, and the rotor assembly 20 is installed above or below the stator windings.
- the structure is very compact, which facilitates the lightness of the drive motor. design.
- the stator core 121 includes a ring-shaped core body, and the core body is integrally formed by a plurality of cores, wherein the stator winding 122 is formed by multiple sets of hollow-cup windings arranged at intervals, and The stator winding is located in the axial direction of the iron core.
- the core body is made of silicon steel sheet, and the rotor assembly 20 is installed in the axial direction of the stator winding 122.
- the stator teeth are located on the core body.
- the upper or lower end, and the rotor assembly 20 is installed above or below the stator windings, and the structure is very compact, which facilitates the lightweight design of the drive motor.
- the stator core 121 includes a ring-shaped core body, the core body is surrounded by a plurality of core splits, wherein the stator winding 122 is formed by multiple sets of hollow-cup windings arranged at intervals. , And the stator winding 122 is located in the axial direction of the iron core.
- the core body is made of silicon steel sheet, and the rotor assembly 20 is installed in the axial direction of the stator winding 122.
- the stator teeth are located on the core body.
- the upper or lower end, and the rotor assembly 20 is installed above or below the stator windings, and the structure is very compact, which facilitates the lightweight design of the drive motor.
- the outer diameter of the stator core 121 is 70-75 mm, and/or the height of the stator core 121 is 3-7 mm.
- the outer diameter of the stator core 121 is 71 mm, and the height of the stator core 121 is 3 mm, which not only ensures the output torque of the drive motor, but also ensures the miniaturization of the drive motor.
- the rotor assembly 20 includes a magnetic yoke 21 and a plurality of magnets 22, wherein a part of the magnetic yoke 21 is located inside the stator assembly 10, and the plurality of magnets 22 are arranged outside the partial magnetic yoke 21, and They are arranged at intervals along the axial direction of the yoke 21.
- the yoke 21 is in the shape of a hollow cylinder as a whole, and has an annular inner wall constituting the above-mentioned hollow portion 212.
- the prism 30 is rigidly connected to the inner wall. On the one hand, it can avoid the gap between the rotor assembly 20 and the stator assembly 10 when the drive motor 110 rotates. On the other hand, it can reduce the resistance of the drive motor 110 to run, reduce the volume ratio of the drive motor 110, and further reduce the structure.
- a plurality of magnets 22 are coupled to the outer periphery of the yoke 21, and the positions of the magnets 22 correspond to the positions of the stator winding 122, so that the stator winding 122 can generate an electromagnetic field when the stator winding 122 is energized to drive the magnet to drive the rotor assembly 20 Rotate.
- the area of the magnet 22 may cover the entire outer periphery of the yoke 21, that is, the side of the magnet 22 is opposite to the stator winding 10, or the stator winding 10 is opposite to the side of part of the magnet 22; or the area of the magnet 22 may only cover Part of the outer periphery of the yoke 21, for example, the area of the magnet 22 only covers the upper half of the yoke 21, and the stator winding 10 is only installed on the upper half of the stator assembly 12, that is, the side of the magnet 22 and the stator winding 10. relatively.
- a plurality of magnets 22 are separately spliced to form a ring structure, so that the magnets 22 can be sleeved on the outside of the yoke 21.
- the yoke 21 is provided with a first groove 211, and the magnet 22 is mounted on the first groove 211.
- the rotor assembly 20 further includes a connecting piece whose shape matches the shape of the first groove 211, and the magnet 22 is mounted on the first groove 211 through the connecting piece 24.
- the first groove 211 is located on one or both ends of the yoke 21 so that the magnet 22 can be installed on one or both ends of the yoke 21.
- the inner diameter of the magnetic yoke 21 is 53-57mm; and/or the thickness of the magnetic yoke 21 is 1-1.5mm; and/or the thickness of the magnet 22 is 1-1.3mm; and/or the magnetic The height of the yoke 21 and the magnet 22 are both 3-5 mm.
- the inner diameter of the yoke 21 is 55mm; and/or the thickness of the yoke 21 is 1.25mm; and/or the thickness of the magnet 22 is 1.15mm; and/or the height of the yoke 21 and the magnet 22 are both 3mm, so Not only can the output torque of the drive motor be ensured, but also the miniaturization of the drive motor can be ensured.
- the yoke 21 is made of SPCE material, or the yoke 21 is made of SPCC material, or the yoke 21 is made of 10 gauge steel material.
- the magnet 22 is made of sintered neodymium iron boron material, or the magnet 22 is made of bonded neodymium iron boron material.
- the hollow part 212 includes a partial yoke 21 arranged inside the stator assembly 10, wherein the prism 30 is installed at an end of the hollow part 212 away from the magnet 22.
- the prism 30 includes a wedge-shaped prism, and the wedge-shaped prism 30 is installed in the middle of the hollow portion 212.
- each yoke 21 is hollow, that is, the hollow portion 212 is formed by the hollow of two yokes 21, so the number of wedge prisms 30 is also two.
- Each wedge prism 30 is correspondingly installed at one end of the yoke 21 away from the magnet 22.
- the prism 30 can also be a cylindrical prism.
- the cylindrical prism 30 is divided into two parts, one of which can be installed in one of the two yokes 21, and the other part is installed in the other of the two yokes 21. .
- the gap between the rotor assembly 20 and the stator assembly 10 is 0.5-0.8 mm, which not only ensures the transmission accuracy of the prism 30, but also ensures that the rotor assembly 20 can rotate relative to the stator assembly 10.
- each scanning module 100 is an independent individual, and the rotor assembly 20 on the scanning module 100 has a large enough hollow structure 212 to accommodate a prism 30 of a larger size. It can avoid reducing the error caused by the transmission problem of the scanning module 100, and also can ensure the scanning space of the scanning module 100.
- a plurality of scanning modules 100 can be combined in different ways to change the exit direction of the laser beam emitted by the laser, thereby improving the scope of application of the laser radar.
- each scanning module is an independent scanning entity, different modes of scanning can be realized.
- the prisms can be arranged along the same optical axis or along different optical axes; or, the rotation axes of the prisms may or may not overlap; or, the rotation directions of the prisms may be the same or different; or, the rotation speed of the prisms It can be the same or different; or, the prism can be wedge-shaped, trapezoidal, cylindrical, etc.; or, the incident light can be incident from the optical axis, or non-optical axis; or, the incident direction can be parallel to the optical axis, or it can be parallel to the optical axis.
- the optical axis forms an angle and is incident obliquely; or, the optical path can be all rotating prisms, or it can have a fixed optical system; and so on.
- the following will exemplify the description based on Figs. 13(a)-13(e).
- the centers of the prisms are arranged along the same optical axis, and the rotation directions of the two can be the same or opposite, and the rotation speeds of the two can be the same or different. According to the two scanning modes, different scanning patterns can be obtained.
- Fig. 13(b) it exemplarily shows a scanning system with three prisms.
- the two small prisms scan at a constant speed and reverse, while the third prism rotates at a certain rate.
- the rotation of the third prism causes the outgoing beam to move along a circular or elliptical ring.
- the two prisms in opposite directions at the same speed will cause the beam to vibrate linearly.
- the cooperation of the three prisms can make the scanning beam vibrate along a closed loop, so as to realize the scanning of the detected area.
- the optical axis of the prism is along the same straight line.
- the rotation axis of the prism can be on a different axis.
- the incident direction of the scanning beam can be incident along the optical axis, such as the direction a in Figure 13(c); or not along the optical axis, such as the direction b in Figure 13(c); or it can be incident obliquely, such as The c direction in Figure 13(c).
- the prism can also be a wedge-shaped prism, a trapezoidal prism, a cylindrical prism, etc., and different prisms cooperate with each other to realize different scanning patterns, as shown in FIG. 13(d), for example.
- the position of the dashed frame in FIG. 13(e) may be a fixed lens or a lens group, a fixed prism or a prism group.
- the scanning system can be a combination of multiple optical systems, which is not used to limit the number, type, or type of light source devices in the optical system.
- Arrangement for example, the prisms in Figure 13(a) can also be arranged in other ways, and there are also combinations of prisms that can be arranged in other ways in the figure.
- connection should be understood in a broad sense, unless otherwise clearly specified and limited.
- it can be a fixed connection or a detachable connection.
- It can be a mechanical connection or an electrical connection.
- It can be directly connected, or indirectly connected through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
- the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
- the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
- “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
- the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种驱动电机(110)、扫描模组(100)及激光雷达,激光雷达包括发射装置、接收装置和扫描模组(100),扫描模组(100)包括具有转轴(50)、转子组件(20)和定子组件(10)的驱动电机(110),转子组件(20)为安装有棱镜(30)的中空结构,棱镜(30)与转轴(50)之间连接有第一轴承件(60),转轴(50)安装在定子组件(10)上。
Description
本申请涉及激光探测技术领域,尤其涉及一种驱动电机、扫描模组及激光雷达。
激光雷达是以发射激光光束来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数。
激光雷达一般通过电机带动棱镜旋转来改变激光偏移方向,形成空间扫描,以实现对空间中不同点的扫描。但是现有的设计中,棱镜与电机在空间上是相互独立的,电机需要经过传动环节才能带动棱镜转动,在传动环节中存在传动间隙,因而会造成扫描的误差,而且结构较为复杂,体积和质量偏大,不利于在驾驶辅助系统、无人驾驶系统及移动机器人、无人驾驶飞机避障与导航领域的应用。
发明内容
本申请提供了一种驱动电机、扫描模组及激光雷达,通过将棱镜固定在转子组件的中空部上,不仅可以避免因传动环节而带来的扫描误差,提高激光雷达的扫描精度;而且使得激光雷达的整体结构更为紧凑,从而可以实现激光雷达的轻巧设计。
根据本申请实施例的第一方面,本申请提供了一种激光雷达,包括:
发射装置,用于发射激光光束;
接收装置,用于接收被反射的激光光束;
扫描模组,用于改变所述激光器发射的激光光束的出射方向;
其中,所述扫描模组包括驱动电机,所述驱动电机包括转轴、围绕所述转 轴旋转的转子组件和用于驱动所述转子组件转动的定子组件,所述转子组件为中空结构,包括,
磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。
根据本申请实施例的第二方面,本申请提供了一种扫描模组,用于激光雷达,包括:
电机组件,包括驱动电机,所述驱动电机包括转轴、围绕所述转轴旋转的转子组件和用于驱动所述转子组件转动的定子组件;所述转子组件为中空结构,包括:磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。
控制组件,包括电机驱动器,所述电机驱动器与所述定子组件电连接,所述电机驱动器通过程序控制所述转子组件的转速和方向。
根据本申请实施例的第三方面,本申请提供了一种驱动电机,用于激光雷达,包括:
转轴;
围绕所述转轴旋转的转子组件;
用于驱动所述转子组件转动的定子组件;其中,
所述转子组件为中空结构,包括:磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。
本申请实施例提供的技术方案可以包括以下有益效果:本申请设计了一种驱动电机、扫描模组及激光雷达,其中,驱动电机包括转轴、围绕所述转轴旋 转的转子组件和用于驱动所述转子组件转动的定子组件,这样不仅可以避免了驱动电机因经过传动环节带动棱镜转动而产生的误差,而且可以使得激光雷达的整体结构更为紧凑,从而可以实现激光雷达的轻巧设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的激光雷达的结构示意图;
图2是本申请图1中的驱动电机的主视图;
图3是本申请图2中的驱动电机的仰视图;
图4是本申请图2中的驱动电机的结构示意图;
图5是本申请图2中的驱动电机的分解示意图;
图6是本申请图5中的壳体端盖的结构示意图;
图7是本申请图5中的壳体本体的结构示意图;
图8是本申请图5中的驱动电机的结构示意图;
图9是本申请图8在A处的放大示意图;
图10是本申请图5中的转子组件的分解示意图;
图11是本申请图5中的棱镜的结构示意图;
图12是本申请图5中的轴承支撑座的分解示意图
图13(a)-13(e)是本说明书实例提供的不同棱镜组组合进行扫描的示意图;
图14是本申请图5中的第二绝缘支架的部分结构示意图。
附图标记说明:
100、扫描模组;110、驱动电机;
10、定子组件;11、定子支架;12、线圈支架;121、定子铁芯;1211、定子齿;12111、齿靴部;12112、齿部;1212、轭部;1213、定子槽;122、定子 绕组;13、支撑件;131、转轴安装部;20、转子组件;21、磁轭;211、第一凹槽;212、中空部;22、磁铁;23、码盘;30、棱镜;31、棱镜穿孔;40、转接件;41、输入端;50、转轴;60、第一轴承件;61、轴承支撑座;611、固定件穿孔;70、绝缘支架;71、第一绝缘支架;72、第二绝缘支架。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的激光雷达属于激光探测技术领域,以发射激光光束来探测对象的位置、速度等特征量,其工作原理是先向对象发射激光光束,然后将接受到的从对象反射回来的信号与发射信号进行比较,作适当处理后,就可获得对象的有关信息,如对象的距离、方位、高度、速度、姿态及形状等参数。
激光雷达通常包括发射装置、接收装置和扫描模组,其中,发射装置用于发射激光光束到对象上,接收装置用于接收被所述对象反射的激光光束,扫描模组用于改变所述激光器发射的激光光束的出射方向。
具体的,扫描模组包括控制组件、驱动电机和至少一片棱镜,棱镜用于实 现激光的定向偏移,控制组件通过程序控制驱动电机的转速和方向,驱动电机通过传动组件带动一片或多片棱镜旋转,以改变激光光束的偏移方向,形成空间扫描。但是,作为光传播通路的棱镜与驱动电机在空间上的位置上是互相独立,其中,驱动电机仅作为动力源,需要通过传动组件传动到需要扫描的棱镜上,结构不够紧凑,而且传动组件在传动过程中会有传动间隙,从而造成扫描的误差。此外,传动组件容易产生机械磨损,造成效率降低,对驱动电机的转速限制,不仅需要润滑,而且传动组件的磨屑、润滑脂或润滑液容易对棱镜造成污染。
如图1至图12所示,本申请提供的一种激光雷达,包括发射装置、接收装置和扫描模组,其中,发射装置用于发射激光光束到对象上,接收装置用于接收被所述对象反射的激光光束,扫描模组100用于改变所述激光器发射的激光光束的出射方向。在本实施方式中,扫描模组100包括电机组件和用于控制电机组件的转速和方向的控制组件,电机组件包括驱动电机110,驱动电机110包括转轴50、围绕转轴50旋转的转子组件20和用于驱动转子组件20转动的定子组件10,转子组件20为中空结构212,包括磁轭21、磁铁22、棱镜30和第一轴承件60,磁轭21与磁铁22平行设置,棱镜30内接于中空结构212,第一轴承件60安装在棱镜30的中部,转轴50的一端安装在定子组件10,转轴50的另一端穿过第一轴承件60,以使得棱镜30能够在定子组件10内转动。
在一个可选的实施方式中,控制组件120包括驱动器,驱动器与扫描模组100的输入端41电连接,以便驱动器能够通过程序来控制转子组件20的转速和方向,从而可以利用转子组件20带动棱镜30旋转来改变所述激光器发射的激光光束的出射方向。
具体的,定子组件10套设在转子组件20的外侧,用于限制转子组件20在转轴50的方向上转动,即转子组件20以转轴50为中心旋转,且转轴50的方向是固定的。
在一个可选的实施方式中,定子组件10呈中空筒状结构,在定子组件10的开口端设有转轴支架上13,转轴支架上13的中间设有转轴安装部131,转轴50的一端安装在转轴安装部131上,转轴50的另一端穿过第一轴承件60,以使得棱镜30能够在定子组件10内转动。
转轴50与转轴安装部131可以为转动连接,也可以为固定连接,其中,转 轴50与转轴安装部131为转动连接时,转轴50与转轴安装部131之间可以通过轴承件进行连接,例如滚动轴承或无油润滑轴承等。在本实施方式中,转轴50与转轴安装部131为固定连接,以便可以减少转轴50的晃动误差,提高棱镜30的传动精度。
在一个可选的实施方式中,棱镜30上设有棱镜穿孔31,第一轴承件60的外圈安装在棱镜穿孔31上,第一轴承件60的内圈与转轴50连接。
具体的,转子组件20还包括呈中空柱状的轴承支撑座61,轴承支撑座61安装在棱镜穿孔31上,第一轴承件60安装在轴承支撑座61的中空柱状内。在本实施方式中,轴承支撑座61的中部设有固定件穿孔611,第一轴承件60的数量为两个,两个第一轴承件60分部安装在固定件穿孔611的两端,即当轴承支撑座61安装在棱镜穿孔31时,两个第一轴承件60位于棱镜30的两端,从而可以确保棱镜30的受力平衡。
为了提高棱镜30的传动精度,第一轴承件60的内圈与第一轴承件60的外圈的游隙可以根据驱动电机110的转速进行选择,尽量避免第一轴承件60的游隙过大而降低棱镜30的传动精度,或者第一轴承件60的游隙过小而导致第一轴承件60在运转时温度急剧增加,从而降低第一轴承件60的使用寿命。因此,第一轴承件60的游隙可以根据驱动电机110的转速进行合理选择,在本申请中不做任何限制。
在一个可选的实施方式中,棱镜30的外边沿与转子组件20的内边沿相抵接,从而避免了棱镜30相对定子组件10传动间隙带来的测量误差。
在一个可选的实施方式中,中空结构212上设有能够用于安装棱镜的棱镜安装部,棱镜30安装在棱镜安装部上。在本实施方式中,棱镜的直径与转子组件的外径大致相等,控制组件包括电机驱动器,电机驱动器与转接件40上的输入端41电连接,以便电机驱动器能够通过程序来控制转子组件20的转速和方向,利用转子组件20带动棱镜30旋转来改变激光器发射的激光光束的出射方向。
在一个可选的实施方式中,定子组件10呈中空筒状结构,定子组件10套装在转子组件20的外侧,用于限制转子组件20在转轴的方向上转动,即转子组件20始终以转轴50为中心旋转。
在一个可选的实施方式中,激光雷达还包括转接件40,其中,扫描模组100 的数量多个,多个扫描模组100通过转接件40连接在一起。
此外,扫描模组100的数量还可以为多个,且每个扫描模组100上的棱镜30的形状可以不相同或者相同,其中,棱镜30可以包括楔形棱镜、柱状棱镜或梯形棱镜等。当多个扫描模组100通过转接件40连接在一起时,每个扫描模组100在转接件40上的位置可以不确定,具体可以根据需要进行放置,以实现不同模态的扫描,其原理与积木类似,本申请不做任何限制。
在一个可选的实施方式中,定子组件10包括线圈支架12和呈中空筒状结构的定子支架11,线圈支架12套设于定子支架11内部,线圈支架12,转子组件20安装在线圈支架12的内侧。
当棱镜30安装在中空结构212时,棱镜30以第一轴承件60为支撑点绕转轴转动,由于第一轴承件60设置在棱镜30与转轴50之间。因此,采用上述方案后,能够有效将棱镜30的离心力通过第一轴承件60传递至转轴50中,有效提高了驱动电机110的输出效率。
在一个可选的实施方式中,定子组件10还包括绝缘支架70,绝缘支架70套设于线圈支架12的两侧,用于将线圈支架12固定在定子支架11上。
具体的,绝缘支架70包括第一绝缘支架71和第二绝缘支架72,其中,第一绝缘支架71设置在线圈支架12的一侧,第二绝缘支架72设置在线圈支架12的另一侧,以致将线圈支架12夹紧并安装在定子支架11上。
其中,定子支架11上设有定子安装部,第一绝缘支架71上设有绝缘支架安装部,线圈支架12通过绝缘支架安装部安装在定子安装部上。
图18示例性地描述了安装的局部,第一绝缘支架71的呈环状的架体,其沿径向有向环形圆心延伸的绕线部,绕线部的末端具有一挡片,挡片下边缘具有分叉的插头结构,插头结构会插入到线圈支架的槽口内,并与线圈支架固定。第二绝缘支架72具有插槽结构,插槽结构与线圈支架的槽口连接,并与线圈支架固定。即在该实施例中,第一绝缘支架71、第二绝缘支架72与线圈支架12三者通过插槽和插头结构结合成为一个整体,第一绝缘支架71和第二绝缘支架72分别位于线圈支架12两端。线圈模组则绕在线圈支架上。
在一个可选的实施方式中,第一绝缘支架71与第二绝缘支架72通过扣合方式固定线圈支架,结构简单却实用,而且也便于线圈支架12的拆卸。
具体的,第一绝缘支架71和第二绝缘支架72的其中一个具有第一扣合部, 第一绝缘支架71和第二绝缘支架72的另一个具有第二扣合部,第一扣合部与第二扣合部相互扣合。
在一个可选的实施方式中,定子组件10与转子组件20之间连接有码盘23,定子组件10上设有第二凹槽,当转子组件20安装在定子组件10后,码盘23可活动于第二凹槽内,通过码盘23可以对转子组件的转速进行实时监控与控制。
在一个可选的实施方式中,码盘23、第一轴承件60和轴承支撑座61均为非导磁材料制成,以防止对转子组件20与定子组件10之间的磁场产生干扰。
其中,驱动电机110中的转子组件20与定子组件10是相对转动的,其中,转子组件20可以为磁性元件,对应地,定子组件10为通电时产生电磁场的线圈绕组;反之,转子组件20也可以为通电时产生电磁场的线圈绕组,定子组件10为磁性元件。当驱动电机通电时,线圈绕组产生电磁场从而驱动转子组件以转轴为中心转动。
在一个可选的实施方式中,线圈支架12均包括定子铁芯121和定子绕组122,定子绕组122设置在定子铁芯121上。其中,定子铁芯121的数量可以为一个、两个甚至两个以上,当定子铁芯121为一个时,定子铁芯121可以为中空环状,也可以为中空柱状,定子绕组122可以绕设在定子铁芯121的内侧或绕设在定子铁芯121轴线方向的上下位置,转子组件30的位置与定子绕组122的位置相对应,以便线圈绕组122工作时产生电磁场后驱动转子组件20转动。
由于扫描模组100的数量可以为多个,从而可以通过改变线圈支架12上电流的方向或电流的大小,来控制每个扫描模组100上转子组件20的转动方向或转动速度,以便可以改变激光器发射的激光光束的出射方向。当然,每个扫描模组100上转子组件20的转动方向一致,例如绕轴线50的同一方向转动,同时逆时针或同时顺时针。
在一个可选的实施方式中,棱镜30的数量可以为多片,每一片棱镜30上均设有一个上述的棱镜穿孔31,即第一轴承件60固定件的数量与棱镜30的数量相匹配。在本实施方式中,每个第二轴承固定件61的两端均安装有两个上述的第一轴承件60,这样不仅可以确保每一片棱镜30受力的平衡性,同时也可以提高第一轴承件60的使用寿命。
在一个可选的实施方式中,第一轴承件60包括深沟球轴承,但不仅仅限于深沟球轴承,第一轴承件60还可以为其他轴承,例如无油润滑轴承、调心轴承 等。
在一个可选的实施方式中,定子铁芯121包括由多个铁芯分体围成的铁芯本体,相邻两个铁芯之间的距离等于第一预设距离,第一预设距离可以为大于0的任何常数。在本实施方式中,定子支架11上设有间隔设置的铁芯安装部,铁芯安装在铁芯安装部上。
具体的,铁芯安装部分别间隔设置在上述的定子安装部上,多个铁芯对应安装在每一个铁芯安装部上以形成具有中空状的铁芯本体,转子组件安装在铁芯本体的中空状中。
在一个可选的实施方式中,定子支架11呈方形形状,铁芯安装部设置在定子壳体的四个边角位置上。在本实施方案中,定子支架11在四个边角位置上均设有倒圆角结构,铁芯嵌合在四个边角位置上的铁芯安装部上,以确保定子铁芯121在驱动转子组件20转动时,转子组件20的周向受力平衡。
在一个可选的实施方式中,定子铁芯121包括由多个铁芯一体成型的铁芯本体,定子支架11设有铁芯安装部,铁芯安装在铁芯安装部。具体的,多个铁芯一体成型形成具有中空状的方形或圆柱形铁芯本体,铁芯本体套设在第一定子安装部和第二定子安装部中,转子组件20安装在铁芯本体的中空状内。
在一个可选的实施方式中,铁芯上设有多个沿周向分布的定子齿1211,每两个相邻的定子齿围设形成定子槽1213,定子齿1211沿径向从外至内依次包括齿部12112与齿靴部12111,定子绕组122绕设在齿部12112上,转子组件20设置在齿靴部12111的内侧,以便将齿部12112、齿靴部12111和铁芯的位置可靠固定,同时可以提高铁芯的聚磁效果,有利于提高驱动电机110的性能。
具体的,铁芯包括多个由冲片层叠而成的分部,每个分部均具有一个上述的定子齿1211和一段轭部1212,相邻两个分部之间相互连接,不仅便于铁芯的生产,提高生产效率,而且材料的利用率高,有利于降低生产成本。
在一个可选的实施方式中,齿部12112的宽度为1.8-3mm;和/或齿靴部12111的高度为0.5-1mm;两个齿靴部12111的最近距离为1.8-3mm,即定子槽1213的开口短距离为1.8-3mm;和/或轭部1212的厚度为1.5-3mm,这样不仅可以降低驱动电机110的铁损耗,而且也确保了驱动电机110启动时所需要的功率。
具体的,齿部12112的宽度为1.8mm,齿靴部12111的高度为0.5mm,两个 齿靴部12111的最近距离1.8mm,轭部1212的厚度为1.5mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。
在一个可选的实施方式中,铁芯本体采用硅钢冲片层叠并铆接而成,硅钢冲片的厚度大致等于0.2mm,以便提高铁芯的生产效率。
具体的,铁芯本体可以采用圆形硅钢冲片依次层叠形成,或者,铁芯本体可以采用条形冲片层叠后形成条形结构,再将条形结构弯折合围成铁芯本体等等,可以理解地,铁芯本体还可以采用其他合适的结构,本申请不做任何限制。
在一个可选的实施方式中,磁铁的数量为20个,定子槽的数量为24个,这样不仅可以确保驱动电机110能够有较大的输出扭矩,而且也确保中部结构的空间足够大,即在转子组件10具有足够大的空间下,驱动电机110能够有足够大的输出扭矩来带动棱镜30高速旋转。
在一个可选的实施方式中,磁铁的数量为20个,定子槽的数量为27个,这样不仅可以确保驱动电机110能够有较大的输出扭矩,而且也确保中部结构的空间足够大,即在转子组件10具有足够大的空间下,驱动电机110能够有足够大的输出扭矩来带动棱镜30高速旋转。
在一个可选的实施方式中,定子铁芯121包括由呈圆环状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,定子绕组由多组空心杯绕组构成,以便定子绕组能够套装在铁芯本体的内侧。在本实施方式中,转子组件设置在定子绕组的内侧,其中,铁芯本体采用硅钢片制成。
在一个可选的实施方式中,定子铁芯121包括呈圆环状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,定子绕组122由多组空心杯绕组间隔设置而成,以便定子绕组122能够套装在铁芯本体的内侧。在本实施方式中,转子组件20设置在定子绕组122的内侧,其中,铁芯本体采用硅钢片制成。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,铁芯本体在轴线方向上设有定子齿,以便定子绕组能够绕设在定子齿上。在本实施方式中,铁芯本体采用铁基软磁软磁复合材料制成,转子组件20安装在定子绕组122的轴线方向上。例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而转子组件20则安装在定子绕组122的上方或下方,结构非常紧凑,从而便于驱动电机110的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,铁芯本体的轴线方向上设有定子齿,以便定子绕组122能够绕设在定子齿上。在本实施方式中,铁芯本体采用铁基软磁软磁复合材料制成,转子组件20安装在定子绕组122的轴线方向上。例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而转子组件20则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,定子绕组122由多组空心杯绕组间隔设置而成,且定子绕组位于铁芯的轴线方向上。在本实施方式中,铁芯本体采用硅钢片制成,转子组件20安装在定子绕组122的轴线方向上,例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而转子组件20则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,定子绕组122由多组空心杯绕组间隔设置而成,且定子绕组122位于铁芯的轴线方向上。在本实施方式中,铁芯本体采用硅钢片制成,转子组件20安装在定子绕组122的轴线方向上,例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而转子组件20则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121的外径为70-75mm,和/或定子铁芯121的高度为3-7mm。
具体的,定子铁芯121的外径为71mm,定子铁芯121的高度为3mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。
在一个可选的实施方式中,转子组件20包括磁轭21和多个磁铁22,其中,磁轭21的部分位于定子组件10的内侧,多个磁铁22设置在部分磁轭21的外侧,并沿磁轭21的轴向间隔排列设置。
具体的,磁轭21整体呈中空圆筒形状,具有构成上述中空部212的环形内壁,棱镜30与内壁刚性连接,一方面可以避免了驱动电机110转动时,转子组 件20与定子组件10之间的间隙而带来的测量误差;另一方面可以减少驱动电机110运转的阻力,降低了驱动电机110的体积占比,使结构进一步缩小。在本实施方式中,多个磁铁22耦合在磁轭21的外周缘上,且磁铁22的位置与定子绕组122的位置相对应,以便定子绕组122在通电时能够产生电磁场驱动磁铁带动转子组件20转动。
此外,磁铁22的面积可以覆盖磁轭21的全部外周缘,也即磁铁22的侧面与定子绕组10相对,或者定子绕组10与部分磁铁22的侧面相对;或者,磁铁22的面积也可以只覆盖磁轭21的部分外周缘,例如,磁铁22的面积只覆盖磁轭21的上半周缘,而定子绕组10也只是安装在定子组件12的上半部分,也就是磁铁22的侧面与定子绕组10相对。
在一个可选的实施方式中,如图10所示,多个磁铁22分体拼接形成环状结构,以使得磁铁22能够套设在磁轭21的外侧。在本实施方式中,磁轭21上设有第一凹槽211,磁铁22安装在第一凹槽211上。
具体的,转子组件20还包括连接件,连接件的形状与第一凹槽211的形状相适配,磁铁22通过连接件24安装在第一凹槽211上。
在一个可选的实施方式中,如图5至图10所示,第一凹槽211位于磁轭21的一端或两端上,以便磁铁22能够安装在磁轭21的一端或两端上。
在一个可选的实施方式中,磁轭21的内径为53-57mm;和/或磁轭21的厚度为1-1.5mm;和/或磁铁22的厚度为1-1.3mm;和/或磁轭21和磁铁22的高度均为3-5mm。
具体的,磁轭21的内径为55mm;和/或磁轭21的厚度为1.25mm;和/或磁铁22的厚度为1.15mm;和/或磁轭21和磁铁22的高度均为3mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。
在一个可选的实施方式中,磁轭21采用SPCE材料制成,或磁轭21采用SPCC材料制成,或磁轭21采用成10号钢材料制成。
在一个可选的实施方式中,磁铁22采用烧结钕铁硼材料制成,或磁铁22采用粘结钕铁硼材料制成。
在一个可选的实施方式中,中空部212包括设置在定子组件10内侧的部分磁轭21,其中,棱镜30安装在中空部212远离磁铁22的一端。
在一个可选的实施方式中,棱镜30包括楔形棱镜,楔形棱镜30安装在中 空部212的中部。具体的,由于磁轭21的数量为两个,每一个磁轭21均为中空状,即中空部212由两个磁轭21的中空状构成,因此,楔形棱镜30的数量也为两个,每一个楔形棱镜30对应安装在其中一个磁轭21远离磁铁22的一端。当然,棱镜30也可以为柱形棱镜,柱形棱镜30分为两部分,其中一部分可以安装在两个磁轭21中的一个内,另一部分则安装在两个磁轭21中的另一个内。
在一个可选的实施方式中,转子组件20与定子组件10之间的间隙为0.5-0.8mm,不仅确保棱镜30传动的精度,同时也确保了转子组件20能够相对定子组件10进行转动。
采用以上技术方案后,由于每个扫描模组100都是相互独立的个体,同时扫描模组100上的转子组件20具有足够大的中空结构212,从而可以容纳更大尺寸的棱镜30,这样不仅可以避免减少扫描模组100因为传动问题带来的误差,而且也可以确保扫描模组100的扫描空间。此外,还可以通过多个扫描模组100进行不同的组合来改变激光器发射的激光光束的出射方向,提高激光雷达的适用范围。
在一个可选的实施方式中,由于每个扫描模组作为独立的扫描个体,可以实现不同模式的扫描。例如,棱镜可以沿着同一光轴布置,也可以沿着不同光轴布置;或者,棱镜的转动轴可以重合也可以不重合;或者,棱镜转动方向可以相同,也可以不同;或者,棱镜的转速可以相同,也可以不同;或者,棱镜可以楔形、梯形、柱形等;或者,入射光线可以从光轴入射,或者非光轴入射;或者,入射方向可以是平行光轴入射,也可以是与光轴形成一夹角,倾斜入射;或者,光路中可以都是旋转的棱镜,也可以具有固定的光学系统;等等。下面将根据图13(a)-13(e)示例性进行说明。
如图13(a)所示,棱镜中心沿同一光轴布置,二者旋转方向可以相同,也可以相反,二者转速可以相同也可以不同。根据二者扫描模式,可以得到不同的扫描图案。
如图13(b)所示,其示例性地表示了三个棱镜配合的扫描系统。两个小棱镜以等速反向的方式扫描,而第三个棱镜以一定速率旋转,当光束从第三个棱镜斜面入射时,第三棱镜的转动导致出射光束沿着一个圆环或者椭圆环移动,而等速反向的两个棱镜会使光束线性振动。三个棱镜配合,可以使扫描光束沿着一个闭合环形振动,从而实现被探测区域的扫描。
图13(a)和图13(b)中,棱镜光轴沿同一直线。如图13(c)所示,棱镜的旋转轴可以在不同轴线。扫描光束的入射方向可以是沿着光轴入射,例如图13(c)中的a方向;也可以不沿着光轴,例如图13(c)中的b方向;也可以是倾斜入射,例如图13(c)中的c方向。
棱镜也可以是楔形棱镜、梯形棱镜、圆柱形棱镜等,不同棱镜相互配合,用于实现不同扫描的图案,例如图13(d)所示。
除旋转棱镜外,在光路中还可以有固定的光学系统,例如图13(e)中虚线框的位置可以是固定透镜或者透镜组,固定的棱镜或者棱镜组。
上述图13(a)至13(e)是示例性地说明,基于本说明书的实施例,扫描系统可以是多种光学系统的组合,其不用于限定光学系统中光源器件的个数,类型或者排列方式。例如图13(a)中的棱镜也可以有其它的排布方式,图中也有可以有其它方式的棱镜组合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定 的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (109)
- 一种激光雷达,其特征在于,包括:发射装置,用于发射激光光束;接收装置,用于接收被反射的激光光束;扫描模组,用于改变激光器发射的激光光束的出射方向;其中,所述扫描模组包括驱动电机,所述驱动电机包括转轴、围绕所述转轴旋转的转子组件和用于驱动所述转子组件转动的定子组件,所述转子组件为中空结构,包括,磁铁;与所述磁铁平行设置的磁轭;以及,内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。
- 根据权利要求1所述的激光雷达,其特征在于,所述棱镜上设有棱镜穿孔,所述第一轴承件的外圈安装在所述棱镜穿孔上,所述第一轴承件的内圈与所述转轴连接。
- 根据权利要求2所述的激光雷达,其特征在于,所述转子组件还包括:轴承支撑座,呈中空柱状,安装在所述棱镜穿孔上,所述第一轴承件安装在所述轴承支撑座的中空柱状内。
- 根据权利要求3所述的激光雷达,其特征在于,所述第一轴承件的数量为两个,两个所述第一轴承件安装所述轴承支撑座的两端。
- 根据权利要求1所述的激光雷达,其特征在于,所述第一轴承件包括深沟球轴承。
- 根据权利要求1所述的激光雷达,其特征在于,所述定子组件包括:定子支架,呈中空筒状结构;线圈支架,套设于所述定子支架内部。
- 根据权利要求6所述的激光雷达,其特征在于,所述定子组件还包括:绝缘支架,套设于所述线圈支架两侧。
- 根据权利要求7所述的激光雷达,其特征在于,所述绝缘支架包括:第一绝缘支架,设置在所述线圈支架的一侧;第二绝缘支架,设置在所述线圈支架的另一侧。
- 根据权利要求8所述的激光雷达,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
- 根据权利要求8所述的激光雷达,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
- 根据权利要求6所述的激光雷达,其特征在于,所述线圈支架包括:定子铁芯,安装在所述定子支架的中空筒状结构中;定子绕组,设置在所述定子铁芯上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,相邻两个所述铁芯之间的距离等于第一预设距离。
- 根据权利要求12所述的激光雷达,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,具有环形一体结构的铁芯构成,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
- 根据权利要求12至14中任一项所述的激光雷达,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
- 根据权利要求15所述的激光雷达,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
- 根据权利要求15所述的激光雷达,其特征在于,所述齿部的宽度为1.8-3mm。
- 根据权利要求15所述的激光雷达,其特征在于,所述齿靴部的高度为0.5-1mm。
- 根据权利要求15所述的激光雷达,其特征在于,两个所述齿靴部的最 近距离为1.8-3mm。
- 根据权利要求16所述的激光雷达,其特征在于,所述轭部的厚度为1.5-3mm。
- 根据权利要求15所述的激光雷达,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为24个;或所述磁铁的数量为20个,所述定子槽的数量为27个。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求11所述的激光雷达,其特征在于,所述定子铁芯的外径为70-75mm,和/或所述定子铁芯的高度为3-7mm。
- 根据权利要求1所述的激光雷达,其特征在于,多个所述磁铁设置在所述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
- 根据权利要求1所述的激光雷达,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
- 根据权利要求1所述的激光雷达,其特征在于,所述磁轭的内径为53-57mm。
- 根据权利要求1所述的激光雷达,其特征在于,所述磁轭的厚度为1-1.5mm。
- 根据权利要求1所述的激光雷达,其特征在于,所述磁铁的厚度为1-1.3mm。
- 根据权利要求1所述的激光雷达,其特征在于,所述磁轭和磁铁的高度均为3-5mm。
- 根据权利要求1所述的激光雷达,其特征在于,所述磁铁与所述定子组件之间的间隙为0.5-0.8mm。
- 根据权利要求1所述的激光雷达,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
- 根据权利要求1-36中任一项所述的激光雷达,其特征在于,所述激光雷达还包括转接件,所述扫描模组的数量多个,多个所述扫描模组通过所述转接件连接以实现不同模态的扫描。
- 一种扫描模组,用于激光雷达,其特征在于,包括:电机组件,包括驱动电机,所述驱动电机包括转轴、围绕所述转轴旋转的转子组件和用于驱动所述转子组件转动的定子组件;所述转子组件为中空结构,包括:磁铁;与所述磁铁平行设置的磁轭;以及,内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。控制组件,包括电机驱动器,所述电机驱动器与所述定子组件电连接,所 述电机驱动器通过程序控制所述转子组件的转速和方向。
- 根据权利要求38所述的扫描模组,其特征在于,所述棱镜上设有棱镜穿孔,所述第一轴承件的外圈安装在所述棱镜穿孔上,所述第一轴承件的内圈与所述转轴连接。
- 根据权利要求39所述的扫描模组,其特征在于,所述转子组件还包括:轴承支撑座,呈中空柱状,安装在所述棱镜穿孔上,所述第一轴承件安装在所述轴承支撑座的中空柱状内。
- 根据权利要求40所述的扫描模组,其特征在于,所述第一轴承件的数量为两个,两个所述第一轴承件安装所述轴承支撑座的两端。
- 根据权利要求38所述的扫描模组,其特征在于,所述第一轴承件包括深沟球轴承。
- 根据权利要求38所述的扫描模组,其特征在于,所述定子组件包括:定子支架,呈中空筒状结构;线圈支架,套设于所述定子支架内部。
- 根据权利要求43所述的扫描模组,其特征在于,所述定子组件还包括:绝缘支架,套设于所述线圈支架两侧。
- 根据权利要求44所述的扫描模组,其特征在于,所述绝缘支架包括:第一绝缘支架,设置在所述线圈支架的一侧;第二绝缘支架,设置在所述线圈支架的另一侧。
- 根据权利要求45所述的扫描模组,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
- 根据权利要求45所述的扫描模组,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
- 根据权利要求43所述的扫描模组,其特征在于,所述线圈支架包括:定子铁芯,安装在所述定子支架的中空筒状结构中;定子绕组,设置在所述定子铁芯上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,相邻两个所述铁芯之间的距离等于第一 预设距离。
- 根据权利要求49所述的扫描模组,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,具有环形一体结构的铁芯构成,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
- 根据权利要求49至51中任一项所述的扫描模组,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
- 根据权利要求52所述的扫描模组,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
- 根据权利要求52所述的扫描模组,其特征在于,所述齿部的宽度为1.8-3mm。
- 根据权利要求52所述的扫描模组,其特征在于,所述齿靴部的高度为0.5-1mm。
- 根据权利要求52所述的扫描模组,其特征在于,两个所述齿靴部的最近距离为1.8-3mm。
- 根据权利要求53所述的扫描模组,其特征在于,所述轭部的厚度为1.5-3mm。
- 根据权利要求52所述的扫描模组,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为24个;或所述磁铁的数量为20个,所述定子槽的数量为27个。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求48所述的扫描模组,其特征在于,所述定子铁芯的外径为70-75mm,和/或所述定子铁芯的高度为3-7mm。
- 根据权利要求38所述的扫描模组,其特征在于,多个所述磁铁设置在所述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
- 根据权利要求38所述的扫描模组,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
- 根据权利要求38所述的扫描模组,其特征在于,所述磁轭的内径为53-57mm。
- 根据权利要求38所述的扫描模组,其特征在于,所述磁轭的厚度为1-1.5mm。
- 根据权利要求38所述的扫描模组,其特征在于,所述磁铁的厚度为1-1.3mm。
- 根据权利要求38所述的扫描模组,其特征在于,所述磁轭和磁铁的高度均为3-5mm。
- 根据权利要求38所述的扫描模组,其特征在于,所述磁铁与所述定子组件之间的间隙为0.5-0.8mm。
- 根据权利要求38所述的扫描模组,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
- 一种驱动电机,其特征在于,包括:转轴;围绕所述转轴旋转的转子组件;用于驱动所述转子组件转动的定子组件;其中,所述转子组件为中空结构,包括:磁铁;与所述磁铁平行设置的磁轭;以及,内接于所述中空结构的棱镜和连接在所述棱镜与所述转轴之间的第一轴承件,所述定子组件上设有转轴支架,所述转轴固定在所述转轴支架上,以使得所述棱镜能够在所述定子组件内转动。
- 根据权利要求74所述的驱动电机,其特征在于,所述棱镜上设有棱镜穿孔,所述第一轴承件的外圈安装在所述棱镜穿孔上,所述第一轴承件的内圈与所述转轴连接。
- 根据权利要求75所述的驱动电机,其特征在于,所述转子组件还包括:轴承支撑座,呈中空柱状,安装在所述棱镜穿孔上,所述第一轴承件安装在所述轴承支撑座的中空柱状内。
- 根据权利要求76所述的驱动电机,其特征在于,所述第一轴承件的数量为两个,两个所述第一轴承件安装所述轴承支撑座的两端。
- 根据权利要求74所述的驱动电机,其特征在于,所述第一轴承件包括深沟球轴承。
- 根据权利要求74所述的驱动电机,其特征在于,所述定子组件包括:定子支架,呈中空筒状结构;线圈支架,套设于所述定子支架内部。
- 根据权利要求79所述的驱动电机,其特征在于,所述定子组件还包括:绝缘支架,套设于所述线圈支架两侧。
- 根据权利要求80所述的驱动电机,其特征在于,所述绝缘支架包括:第一绝缘支架,设置在所述线圈支架的一侧;第二绝缘支架,设置在所述线圈支架的另一侧。
- 根据权利要求81所述的驱动电机,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
- 根据权利要求81所述的驱动电机,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
- 根据权利要求79所述的驱动电机,其特征在于,所述线圈支架包括:定子铁芯,安装在所述定子支架的中空筒状结构中;定子绕组,设置在所述定子铁芯上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,相邻两个所述铁芯之间的距离等于第一预设距离。
- 根据权利要求85所述的驱动电机,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,具有环形一体结构的铁芯构成,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
- 根据权利要求85至87中任一项所述的驱动电机,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
- 根据权利要求88所述的驱动电机,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
- 根据权利要求88所述的驱动电机,其特征在于,所述齿部的宽度为1.8-3mm。
- 根据权利要求88所述的驱动电机,其特征在于,所述齿靴部的高度为 0.5-1mm。
- 根据权利要求88所述的驱动电机,其特征在于,两个所述齿靴部的最近距离为1.8-3mm。
- 根据权利要求89所述的驱动电机,其特征在于,所述轭部的厚度为1.5-3mm。
- 根据权利要求88所述的驱动电机,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为24个;或所述磁铁的数量为20个,所述定子槽的数量为27个。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯包括:铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯 绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
- 根据权利要求84所述的驱动电机,其特征在于,所述定子铁芯的外径为70-75mm,和/或所述定子铁芯的高度为3-7mm。
- 根据权利要求74所述的驱动电机,其特征在于,多个所述磁铁设置在所述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
- 根据权利要求74所述的驱动电机,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
- 根据权利要求74所述的驱动电机,其特征在于,所述磁轭的内径为53-57mm。
- 根据权利要求74所述的驱动电机,其特征在于,所述磁轭的厚度为1-1.5mm。
- 根据权利要求74所述的驱动电机,其特征在于,所述磁铁的厚度为1-1.3mm。
- 根据权利要求74所述的驱动电机,其特征在于,所述磁轭和磁铁的高度均为3-5mm。
- 根据权利要求74所述的驱动电机,其特征在于,所述磁铁与所述定子组件之间的间隙为0.5-0.8mm。
- 根据权利要求74所述的驱动电机,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128049 WO2021128023A1 (zh) | 2019-12-24 | 2019-12-24 | 驱动电机、扫描模组及激光雷达 |
CN201980086673.4A CN113302509B (zh) | 2019-12-24 | 2019-12-24 | 驱动电机、扫描模组及激光雷达 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128049 WO2021128023A1 (zh) | 2019-12-24 | 2019-12-24 | 驱动电机、扫描模组及激光雷达 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128023A1 true WO2021128023A1 (zh) | 2021-07-01 |
Family
ID=76575722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/128049 WO2021128023A1 (zh) | 2019-12-24 | 2019-12-24 | 驱动电机、扫描模组及激光雷达 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113302509B (zh) |
WO (1) | WO2021128023A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115500734A (zh) * | 2022-09-23 | 2022-12-23 | 深圳市八达威科技有限公司 | 一种带分体式激光雷达的扫地机 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021062735A1 (zh) * | 2019-09-30 | 2021-04-08 | 深圳市大疆创新科技有限公司 | 驱动电机、扫描模组及激光雷达 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103212795A (zh) * | 2013-02-04 | 2013-07-24 | 张立国 | 一种基于空心电主轴的激光光束旋转装置 |
US20150323350A1 (en) * | 2014-05-12 | 2015-11-12 | Faro Technologies, Inc. | Robust index correction of an angular encoder based on read head runout |
CN105738912A (zh) * | 2016-02-05 | 2016-07-06 | 上海思岚科技有限公司 | 一种激光测距设备 |
CN106249248A (zh) * | 2016-08-31 | 2016-12-21 | 北京创想智控科技有限公司 | 旋转光学扫描测距装置及方法 |
CN108513621A (zh) * | 2017-12-18 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 雷达装置及无人飞行器 |
CN109375192A (zh) * | 2018-12-12 | 2019-02-22 | 广州维思车用部件有限公司 | 自动驾驶系统、激光雷达及其激光发射结构 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940002358B1 (ko) * | 1990-04-03 | 1994-03-23 | 도오꾜오 덴끼 가부시끼가이샤 | 광주사 장치 |
EP1421402A2 (de) * | 2001-08-31 | 2004-05-26 | Automotive Distance Control Systems GmbH | Abtastvorrichtung |
US7587832B2 (en) * | 2007-09-10 | 2009-09-15 | Trimble Navigation Limited | Rotating laser transmitter |
CN108474654B (zh) * | 2017-03-29 | 2021-05-04 | 深圳市大疆创新科技有限公司 | 激光测量装置和移动平台 |
CN110266123A (zh) * | 2019-06-27 | 2019-09-20 | 珠海凯邦电机制造有限公司 | 定子及电机 |
-
2019
- 2019-12-24 WO PCT/CN2019/128049 patent/WO2021128023A1/zh active Application Filing
- 2019-12-24 CN CN201980086673.4A patent/CN113302509B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103212795A (zh) * | 2013-02-04 | 2013-07-24 | 张立国 | 一种基于空心电主轴的激光光束旋转装置 |
US20150323350A1 (en) * | 2014-05-12 | 2015-11-12 | Faro Technologies, Inc. | Robust index correction of an angular encoder based on read head runout |
CN105738912A (zh) * | 2016-02-05 | 2016-07-06 | 上海思岚科技有限公司 | 一种激光测距设备 |
CN106249248A (zh) * | 2016-08-31 | 2016-12-21 | 北京创想智控科技有限公司 | 旋转光学扫描测距装置及方法 |
CN108513621A (zh) * | 2017-12-18 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 雷达装置及无人飞行器 |
CN109375192A (zh) * | 2018-12-12 | 2019-02-22 | 广州维思车用部件有限公司 | 自动驾驶系统、激光雷达及其激光发射结构 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115500734A (zh) * | 2022-09-23 | 2022-12-23 | 深圳市八达威科技有限公司 | 一种带分体式激光雷达的扫地机 |
CN115500734B (zh) * | 2022-09-23 | 2024-01-30 | 深圳市八达威科技有限公司 | 一种带分体式激光雷达的扫地机 |
Also Published As
Publication number | Publication date |
---|---|
CN113302509A (zh) | 2021-08-24 |
CN113302509B (zh) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021062735A1 (zh) | 驱动电机、扫描模组及激光雷达 | |
CN108351508B (zh) | 紧凑楔形棱镜光束控制 | |
US11469655B2 (en) | Driving device, laser measurement device and movable platform | |
JP7140980B2 (ja) | 回転往復駆動アクチュエーター | |
WO2021128023A1 (zh) | 驱动电机、扫描模组及激光雷达 | |
JP5765671B2 (ja) | モータ | |
JP6021459B2 (ja) | ステッピングモータ、レンズ装置、および、撮像装置 | |
JP2013150483A (ja) | モータ | |
CN210693579U (zh) | 驱动电机 | |
CN110870181B (zh) | 电机定位装置、电机及云台 | |
CN110323919B (zh) | 一种基于正应力电磁驱动的微定位装置 | |
CN212410851U (zh) | 驱动电机 | |
JP2002199682A (ja) | 中空モータおよび光波距離計 | |
US20190004309A1 (en) | Housing and housing unit | |
CN211958894U (zh) | 激光雷达及其旋转驱动组件 | |
EP1220421A2 (en) | Small size rotory motor | |
JP6192788B2 (ja) | ステッピングモータ、レンズ装置、および、撮像装置 | |
CN220040770U (zh) | 雷达装置及移动机器人 | |
CN218866096U (zh) | 转镜组件及激光雷达 | |
EP4113806A1 (en) | Rotary reciprocating driving actuator | |
EP4307524A1 (en) | Rotary reciprocating drive actuator | |
CN113552579B (zh) | 一种激光雷达 | |
EP4307526A1 (en) | Rotary reciprocating drive actuator | |
US20240019684A1 (en) | Rotary reciprocating drive actuator | |
CN113555987A (zh) | 激光雷达及其旋转驱动组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19957671 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19957671 Country of ref document: EP Kind code of ref document: A1 |