WO2021062735A1 - 驱动电机、扫描模组及激光雷达 - Google Patents

驱动电机、扫描模组及激光雷达 Download PDF

Info

Publication number
WO2021062735A1
WO2021062735A1 PCT/CN2019/109652 CN2019109652W WO2021062735A1 WO 2021062735 A1 WO2021062735 A1 WO 2021062735A1 CN 2019109652 W CN2019109652 W CN 2019109652W WO 2021062735 A1 WO2021062735 A1 WO 2021062735A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
iron core
yoke
drive motor
scanning module
Prior art date
Application number
PCT/CN2019/109652
Other languages
English (en)
French (fr)
Inventor
黄宏升
王昊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033665.3A priority Critical patent/CN114341663A/zh
Priority to PCT/CN2019/109652 priority patent/WO2021062735A1/zh
Publication of WO2021062735A1 publication Critical patent/WO2021062735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • This application relates to the technical field of lidar, and in particular to a driving motor, scanning module and lidar.
  • Lidar is a radar system that emits a laser beam to detect the target's position, speed and other characteristic quantities. Its working principle is to first emit a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal. After proper processing, relevant information about the target can be obtained, such as parameters such as target distance, azimuth, height, speed, posture, and even shape.
  • the laser scanning radar generally uses a motor to drive a prism to rotate to change the laser offset direction, forming a spatial scan, so as to scan different points in the space.
  • the prism and the motor are independent of each other in space.
  • the motor needs to go through a transmission link to drive the prism to rotate.
  • There is a transmission gap in the transmission link which will cause scanning errors, and the structure is more complex, and the volume is The quality is too large, which is not conducive to the application of driver assistance systems, unmanned driving systems and mobile robots, unmanned aircraft obstacle avoidance and navigation.
  • This application provides a driving motor, a scanning module and a lidar.
  • the present application provides a lidar, including:
  • Launching device for launching laser beams
  • Scanning module for changing the exit direction of the laser beam emitted by the emitting device
  • the scanning module includes a driving motor
  • the driving motor includes a rotor assembly and a stator assembly for driving the rotor assembly to rotate
  • the rotor assembly is a hollow structure and includes:
  • a yoke arranged in parallel with the magnet
  • the prism inscribed in the hollow structure and the first bearing member sleeved on the outer side of the yoke; the first bearing member is in contact with the inner side of the stator assembly, so that the rotor assembly can be mounted on the stator assembly Turn inside.
  • the present application provides a scanning module for lidar, including:
  • the motor assembly includes a drive motor, the drive motor includes a rotor assembly and a stator assembly for driving the rotor assembly to rotate; the rotor assembly has a hollow structure and includes a magnet;
  • a yoke arranged in parallel with the magnet
  • the prism inscribed in the hollow structure and the first bearing member sleeved on the outer side of the yoke; the first bearing member is in contact with the inner side of the stator assembly, so that the rotor assembly can be mounted on the stator assembly Inside rotation
  • the control component includes a motor driver which is electrically connected to the stator component, and the motor driver controls the rotation speed and direction of the rotor component through a program.
  • the present application provides a drive motor, including:
  • a stator assembly for driving the rotation of the rotor assembly wherein,
  • the rotor assembly is a hollow structure and includes a magnet
  • a yoke arranged in parallel with the magnet
  • the prism inscribed in the hollow structure and the first bearing member sleeved on the outer side of the yoke; the first bearing member is in contact with the inner side of the stator assembly, so that the rotor assembly can be mounted on the stator assembly Turn inside.
  • the present application designs a drive motor, a scanning module, and a laser radar, wherein the rotor assembly has a hollow structure capable of mounting a prism, and the outer side of the hollow structure and the stator
  • the first bearing member is connected between the inner sides of the assembly, which not only avoids the size of the first bearing member being restricted by the size of the prism, but also installs the prism in the hollow structure to avoid the drive motor from driving the prism through the transmission link to rotate.
  • the resulting error also makes the overall structure of the lidar more compact, so that the lightweight design of the lidar can be realized.
  • Fig. 1 is a schematic structural diagram of a lidar provided by an embodiment of the present application
  • Fig. 2 is a front view of the driving motor in Fig. 1 of the present application;
  • Fig. 3 is a cross-sectional view of the driving motor in Fig. 2 of the present application.
  • Fig. 4 is an exploded schematic diagram of the driving motor in Fig. 2 of the present application.
  • Fig. 5 is a partial exploded schematic diagram of the driving motor in Fig. 4 of the present application.
  • Fig. 6 is a front view of the stator assembly in Fig. 4 of the present application.
  • Fig. 7 is a partial exploded schematic view of the stator assembly in Fig. 4 of the present application.
  • FIG. 8 is a schematic diagram of the structure of the driving motor in FIG. 4 of the present application.
  • Fig. 9 is an enlarged schematic diagram of Fig. 8 of the present application at A;
  • Fig. 10 is a schematic structural diagram of the stator in Fig. 4 of the present application.
  • Fig. 11 is an exploded schematic diagram of the stator and the insulating support in Fig. 4 of the present application;
  • FIG. 12 is a schematic diagram of the structure of the first insulating support in FIG. 4 of the present application.
  • FIG. 13 is a schematic diagram of the structure of the housing body in FIG. 4 of the present application.
  • FIG. 14 is a schematic diagram of the structure of the stator support in FIG. 4 of the present application.
  • FIG. 15 is a schematic diagram of the structure of the rotor assembly in FIG. 4 of the present application.
  • Fig. 16 is a schematic diagram of the structure of the prism in Fig. 4 of the present application.
  • Figures 17(a)-17(e) are schematic diagrams of scanning with different combinations of prism groups provided in the examples of this specification;
  • Fig. 18 is a partial structural diagram of the second insulating support in Fig. 4 of the present application.
  • Stator assembly 11, stator support; 111, housing body; 12, coil support; 121, stator core; 1211, stator teeth; 12111, tooth shoe; 12112, teeth; 1212, yoke; 1213, Stator slot; 122, stator winding; 20, rotor assembly; 21, magnet; 211, bearing fixing part; 212, hollow structure; 22, yoke; 23, code disc; 30, prism; 40, first bearing part; 41.
  • the first deep groove ball bearing; 42 the second deep groove ball bearing; 50, the insulating support; 51, the first insulating support; 511, the insulating support mounting part; 52, the second insulating support; 60, the motor input end; 70.
  • Adapter the first deep groove ball bearing; 42, the second deep groove ball bearing; 50, the insulating support; 51, the first insulating support; 511, the insulating support mounting part; 52, the second insulating support; 60, the motor input end; 70.
  • the lidar of this application belongs to the field of laser detection technology. It emits a laser beam to detect the position and speed of an object. Its working principle is to first emit the laser beam to the object, and then the received signal reflected from the object and the emission After the signals are compared and properly processed, relevant information about the object can be obtained, such as the distance, orientation, height, speed, posture and shape of the object.
  • Lidar usually includes a transmitting device, a receiving device, and a scanning module.
  • the transmitting device is used to emit a laser beam onto an object
  • the receiving device is used to receive the laser beam reflected by the object
  • the scanning module is used to change the laser beam.
  • the exit direction of the emitted laser beam is used to change the laser beam.
  • the scanning module includes a control component, a driving motor and at least one prism.
  • the prism is used to realize the directional deviation of the laser.
  • the control component controls the rotation speed and direction of the driving motor through a program, and the driving motor drives one or more prisms through the transmission component. Rotate to change the deviation direction of the laser beam to form a spatial scan.
  • the prism and the driving motor as the light propagation path are independent of each other in space.
  • the driving motor is only used as a power source and needs to be transmitted to the prism to be scanned through a transmission assembly.
  • the structure is not compact enough, and the transmission assembly is There will be a transmission gap during the transmission process, which will cause scanning errors.
  • the transmission components are prone to mechanical wear, resulting in a decrease in efficiency.
  • the rotation speed limit of the drive motor not only requires lubrication, but also the wear debris, grease or lubricant of the transmission components can easily pollute the prism.
  • the bearing on the drive motor is arranged outside the prism, so the size of the prism directly restricts the size of the bearing.
  • the lidar provided by the present application includes a transmitting device, a receiving device and a scanning module 100, wherein the transmitting device is used to transmit a laser beam to an object, and the receiving device is used to receive the object.
  • the reflected laser beam, the scanning module 100 is used to change the exit direction of the laser beam emitted by the emitting device.
  • the scanning module 100 includes a motor assembly and a control assembly for controlling the speed and direction of the motor assembly.
  • the motor assembly includes a drive motor 110.
  • the drive motor 110 includes a rotor assembly 20 that rotates around a rotating shaft and a control assembly for driving the rotor.
  • the stator assembly 10 in which the assembly 20 rotates around a rotating shaft.
  • the rotor assembly 20 is a hollow structure 212, and includes a yoke 21, a magnet 22, a prism 30, and a first bearing 40.
  • the yoke 21 is arranged parallel to the magnet 22, and the prism 30 is internally connected
  • the first bearing member 40 is sleeved on the outside of the yoke 21, and the first bearing member 40 is in contact with the inner side of the stator assembly 10 so that the rotor assembly 20 can rotate inside the stator assembly 10.
  • the first bearing member 40 Since the first bearing member 40 is arranged between the outer side surface of the yoke 21 and the inner side surface of the stator assembly 10, the first bearing member 40 can be prevented from being affected by the size of the prism 30. For example, if the size of the prism 30 is too small, This will cause the prism perforation provided on the prism 30 to shrink, so the bearing member installed on the prism perforation should not be too large; or the size of the prism 30 is too large, a bearing large enough to carry the prism 30 needs to be installed. However, the larger the bearing, the greater the friction, and the lower the temperature of the bearing, the greater the resistance. Therefore, the bearing installed on the drive motor 110 needs a reasonable size so that the electromagnetic properties of the drive motor 110 can achieve a large torque output.
  • the prism 30 is installed in a hollow structure, which can avoid the drive motor 110 from driving the prism 30 through the transmission link to rotate. Errors can also make the overall structure of the lidar more compact, so as to realize the lightweight design of the lidar.
  • the outer edge of the prism 30 abuts against the inner edge of the rotor assembly 20, thereby avoiding measurement errors caused by the transmission gap of the prism 30 relative to the stator assembly 10.
  • the magnet 22 and the yoke 21 have substantially the same outer diameter and thickness.
  • the motor assembly further includes a prism 30, the hollow structure 212 is provided with a prism mounting part capable of mounting a prism, and the prism 30 is mounted on the prism mounting part.
  • the diameter of the prism is approximately equal to the outer diameter of the rotor assembly.
  • the control assembly includes a motor driver, which is electrically connected to the motor input terminal 60 on the adapter 70, so that the motor driver can control the rotor assembly through a program.
  • the rotation speed and direction of the rotor assembly 20 are used to drive the prism 30 to rotate to change the direction of the laser beam emitted by the laser.
  • the ratio of the diameter of the magnet to the inner ring of the hollow structure after being fixed on the peripheral wall of the yoke is 1/10 to 1/6, or the ratio of the diameter of the magnet to the inner ring of the hollow structure 212 after being fixed on the peripheral wall of the yoke is 1/10 to 1/7 in order to have a hollow structure 212 large enough to accommodate the prism 30.
  • stator assembly 10 is sleeved on the outer side of the rotor assembly 20 to restrict the rotation of the rotor assembly 20 in the direction of the rotating shaft, that is, the rotor assembly 20 rotates around the rotating shaft, and the direction of the rotating shaft is fixed.
  • the rotating shaft may be a physical element, or may not be a physical element, but is only a virtual concept of the rotation center of the rotor assembly.
  • the stator assembly 10 has a hollow cylindrical structure, the inner side of the stator assembly 10 is provided with a bearing member mounting portion, and the outer side of the hollow structure 212 is provided with a bearing member In the fixing part 211, the inner ring of the first bearing member 40 is mounted on the bearing member fixing part, and the outer ring of the first bearing member 40 is mounted on the bearing member mounting part 211.
  • the lidar further includes an adapter 70, wherein there are a plurality of scanning modules 100, and the plurality of scanning modules 100 are connected together by the adapter 70.
  • the number of scanning modules 100 is two, the number of adapter 70 is one, and the two scanning modules 100 are respectively installed at both ends of the adapter 70, and each scanning module 100 is provided with A first bearing member 40, the first bearing member 40 may be a deep groove ball bearing.
  • the first bearing member 40 on the two scanning modules 10 is a first bearing 41 and a second bearing 42 respectively, wherein the first bearing 41 and the second bearing 42 are respectively located on the scanning module 10 near the adapter 70 To ensure the stability of the rotation of the prism 30.
  • the number of scanning modules 100 may also be multiple, and the shape of the prisms 30 on each scanning module 100 may be different or the same.
  • the prisms 30 may include wedge prisms, cylindrical prisms, or trapezoidal prisms.
  • the stator assembly 10 includes a coil support 12 and a stator support 11 in a hollow barrel structure.
  • the coil support 12 is sleeved inside the stator support 11, the coil support 12, and the rotor assembly 20 is mounted on the coil support 12. Inside.
  • the prism 30 When the prism 30 is installed in the hollow structure 212, the prism 30 rotates around the shaft with the first bearing 41 or the second bearing 42 as the supporting point, because the first bearing 41 and the second bearing 42 are both arranged between the stator assembly 10 and the rotor assembly 20 between.
  • the force arm of the prism 30 to the first bearing 41 or the second bearing 42 can be effectively shortened, so that the influence of the prism 30 on the first bearing 41 or the second bearing 42 can be reduced, especially the prism 30 follows the hollow
  • the first bearing 41 or the second bearing 42 can directly transmit the load of the prism 30 to the stator assembly 10, thereby reducing the pressure applied by the prism 30 to the first bearing 41 or the second bearing 42, and thereby The output efficiency of the driving motor 110 can be improved.
  • the stator assembly 10 further includes an insulating support 50, and the insulating support 50 is sleeved on both sides of the coil support 12 to fix the coil support 12 on the stator support 11.
  • the insulating support 50 includes a first insulating support 51 and a second insulating support 52, wherein the first insulating support 51 is arranged on one side of the coil support 12, and the second insulating support 52 is arranged On the other side of the coil support 12 so that the coil support 12 is clamped and installed on the stator support 11.
  • the two coil supports 12 are respectively arranged on the stator supports 11 at both ends of the adapter 70 through the insulating supports 50. Specifically, a stator mounting portion is provided on the stator support 11, an insulating support mounting portion 511 is provided on the first insulating support 51, and the coil support 12 is mounted on the stator mounting portion through the insulating support mounting portion 511.
  • FIG. 18 exemplarily depicts a part of the installation.
  • the frame 1806 of the first insulating bracket 51 is in a ring shape, and it has a winding portion 1801 extending toward the center of the ring in the radial direction, and the end of the winding portion 1801 has a baffle 1802. ,
  • the lower edge of the baffle has a bifurcated plug structure 1803, and the plug structure 1803 will be inserted into the slot of the coil support 12 and fixed with the coil support.
  • the second insulating support has a slot structure, and the slot structure is connected to the slot of the coil support 12 and fixed to the coil support 12.
  • the first insulating support 51, the second insulating support 52 and the coil support 12 are combined into a whole through the slot and plug structure, and the first insulating support 51 and the second insulating support 52 are respectively located on the coil support Both ends.
  • the coil module 1805 is wound on the coil support.
  • the first insulating support and the second insulating support are used to fix the coil support in a snap-fitting manner.
  • the structure is simple but practical, and it is also convenient to disassemble the coil support 12.
  • one of the first insulating support and the second insulating support has a first buckling part
  • the other of the first insulating support and the second insulating support has a second buckling part
  • the first buckling part and the second buckle The joints are buckled with each other.
  • an encoder 23 is connected between the stator assembly 10 and the rotor assembly 20, and a second groove is provided on the stator assembly 10.
  • the encoder 23 can Moving in the second groove, the encoder 23 can monitor and control the rotation speed of the rotor assembly in real time.
  • the first bearing member 40, the code disc 23, and the insulating support 50 are all made of non-magnetic materials, and specifically can be made of insulating materials to prevent interference between the rotor assembly 20 and the stator assembly 10 Interference between the magnetic field.
  • the rotor assembly 20 and the stator assembly 10 in the drive motor 110 rotate relative to each other.
  • the rotor assembly 20 may be a magnetic element.
  • the stator assembly 10 is a coil winding that generates an electromagnetic field when energized; otherwise, the rotor assembly 20 It may also be a coil winding that generates an electromagnetic field when energized, and the stator assembly 10 is a magnetic element. When the drive motor is energized, the coil winding generates an electromagnetic field to drive the rotor assembly to rotate around the shaft.
  • each coil support 12 includes a stator core 121 and a stator winding 122, and the stator winding 122 is arranged on the stator core 121.
  • the number of the stator core 121 can be one, two or even more than two.
  • the stator core 121 can be a hollow ring shape or a hollow cylindrical shape, and the stator winding 122 can be wound.
  • the position of the rotor assembly 30 corresponds to the position of the stator winding 122 on the inner side of the stator core 121 or around the upper and lower positions of the axis of the stator core 121, so that the coil winding 122 generates an electromagnetic field and drives the rotor assembly 20 to rotate.
  • the direction of current or the magnitude of the current on the coil support 12 can be changed to control the rotation direction or speed of the rotor assembly 20 on each scanning module 100, so that it can be changed.
  • the exit direction of the laser beam emitted by the laser is the same, for example, it rotates in the same direction around the axis 50, counterclockwise or clockwise at the same time.
  • the stator iron core 121 includes an iron core body surrounded by a plurality of iron cores, and the distance between two adjacent iron cores is equal to a first preset distance. It can be any constant greater than 0.
  • the stator bracket 11 is provided with iron core mounting parts arranged at intervals, and the iron cores are mounted on the iron core mounting parts.
  • the iron core mounting parts are respectively arranged on the above-mentioned stator mounting parts at intervals, and a plurality of iron cores are correspondingly mounted on each iron core mounting part to form a hollow iron core body, and the rotor assembly is mounted on the iron core body Hollow in.
  • the stator support 11 has a square shape, and the iron core mounting parts are arranged at four corner positions of the stator support.
  • the stator support 11 is provided with a rounded corner structure at the four corner positions, and the iron core is fitted on the iron core mounting parts at the four corner positions to ensure that the stator iron core 121 is driven When the rotor assembly 20 rotates, the circumferential forces of the rotor assembly 20 are balanced.
  • the stator core 121 has a ring-shaped integrated structure, and the stator bracket 11 is provided with an iron core mounting portion, and the iron core is mounted on the iron core mounting portion.
  • a plurality of iron cores are integrally formed to form a hollow square or cylindrical iron core body, the iron core body is sleeved in the first stator mounting part and the second stator mounting part, and the rotor assembly 20 is mounted on the iron core body The hollow shape inside.
  • the iron core is provided with a plurality of stator teeth 1211 distributed in the circumferential direction, and every two adjacent stator teeth are surrounded to form a stator slot 1213, and the stator teeth 1211 extend from the outside to the inside in the radial direction. It includes a tooth part 12112 and a tooth shoe part 12111 in turn.
  • the stator winding 122 is wound on the tooth part 12112.
  • the rotor assembly 20 is arranged on the inner side of the tooth shoe part 12111, so that the positions of the tooth part 12112, the tooth shoe part 12111 and the iron core are reliable. Fixed, at the same time, can improve the magnetization effect of the iron core, which is beneficial to improve the performance of the driving motor 110.
  • the iron core includes a plurality of sub-sections laminated by punching sheets, each sub-section has the above-mentioned stator tooth 1211 and a section of yoke 1212, and two adjacent sub-sections are connected to each other, which is not only convenient for iron
  • the production of cores improves production efficiency, and the utilization rate of materials is high, which is conducive to reducing production costs.
  • the width of the tooth portion 12112 is 1.8-3mm; and/or the height of the tooth shoe portion 12111 is 0.5-1mm; the closest distance between the two tooth shoe portions 12111 is 1.2-1.8mm, that is, the stator The short distance of the opening of the slot 1213 is 1.2-1.8mm; and/or the thickness of the yoke 1212 is 1.3-2mm, which not only reduces the iron loss of the drive motor 110, but also ensures the power required for the drive motor 110 to start.
  • the width of the tooth portion 12112 is 1.8mm or 3mm
  • the height of the tooth shoe portion 12111 is 0.5mm or 1mm
  • the closest distance between the two tooth shoe portions 12111 is 1.4mm
  • the thickness of the yoke portion 1212 is 1.5mm.
  • the iron core body is formed by stacking and riveting silicon steel punching sheets, and the thickness of the silicon steel punching sheets is approximately equal to 0.2 mm, so as to improve the production efficiency of the iron core.
  • the iron core body may be formed by stacking round silicon steel punching sheets in sequence, or the iron core body may be formed by laminating strip punching sheets to form a strip structure, and then bending the strip structure to form the core body, etc.
  • the iron core body can also adopt other suitable structures, and this application does not make any limitation.
  • the number of magnets is 16 and the number of stator slots is 20. This not only ensures that the drive motor 110 can have a large output torque, but also ensures that the space of the middle structure is large enough, that is, When the rotor assembly 10 has a large enough space, the driving motor 110 can have a large enough output torque to drive the prism 30 to rotate at a high speed.
  • the stator core 121 includes a toroidal core body, which is integrally formed by a plurality of cores, wherein the stator winding is composed of multiple sets of hollow-cup windings to facilitate the stator winding It can be fitted inside the core body.
  • the rotor assembly is arranged on the inner side of the stator winding, and the iron core body is made of silicon steel sheet.
  • the stator core 121 includes a toroidal core body, which is surrounded by a plurality of core split bodies, wherein the stator winding 122 is formed by multiple sets of hollow-cup windings arranged at intervals. So that the stator winding 122 can be sleeved inside the core body.
  • the rotor assembly 20 is arranged inside the stator winding 122, and the iron core body is made of silicon steel sheet.
  • the stator core 121 includes a ring-shaped core body, which is surrounded by a plurality of core split bodies, wherein the core body is provided with stator teeth in the axial direction so as to The stator winding can be wound on the stator teeth.
  • the iron core body is made of iron-based soft magnetic soft magnetic composite material, and the rotor assembly 20 is installed in the axial direction of the stator winding 122.
  • the stator teeth are located at the upper or lower end of the core body, while the yoke 21 and the magnet 22 are installed above or below the stator winding 122.
  • the structure is very compact, which facilitates Lightweight design of the drive motor 20.
  • the stator core 121 includes a ring-shaped core body, which is integrally formed by a plurality of cores, wherein stator teeth are provided in the axial direction of the core body to facilitate the stator winding 122 can be wound around the stator teeth.
  • the iron core body is made of iron-based soft magnetic soft magnetic composite material, and the yoke and the magnet are installed in the axial direction of the stator winding 122.
  • the stator teeth are located at the upper or lower end of the core body, while the yoke 21 and magnet 22 are installed above or below the stator windings.
  • the structure is very compact and facilitates driving.
  • the lightweight design of the motor is very compact and facilitates driving. The lightweight design of the motor.
  • the stator core 121 includes a ring-shaped core body, and the core body is integrally formed of a plurality of cores, wherein the stator winding 20 is formed by multiple sets of hollow-cup windings arranged at intervals, and The stator winding is located in the axial direction of the iron core.
  • the iron core body is made of silicon steel sheet, and the yoke 21 and the magnet 22 are installed in the axial direction of the stator winding 122.
  • the opening direction of the stator support 11 is upward or downward, the stator teeth are located on the iron.
  • the stator core 121 includes a ring-shaped core body, which is surrounded by a plurality of cores, wherein the stator winding 20 is formed by multiple sets of hollow-cup windings arranged at intervals. , And the stator winding 20 is located in the axial direction of the iron core.
  • the iron core body is made of silicon steel sheet, and the yoke 21 and the magnet 22 are installed in the axial direction of the stator winding 122.
  • the opening direction of the stator support 11 is upward or downward, the stator teeth are located in the iron.
  • the outer diameter of the stator core 121 is 40-50 mm, and/or the height of the stator core 121 is 2.5-5 mm.
  • the outer diameter of the stator core 121 is 43 mm, and the height of the stator core 121 is 3 mm. This not only ensures the output torque of the drive motor, but also ensures the miniaturization of the drive motor.
  • the rotor assembly 20 includes a yoke 21 and a plurality of magnets 22, wherein a part of the yoke 21 is located inside the stator assembly 10, and a plurality of magnets 22 are provided in the part
  • the outer side of the yoke 21 is arranged at intervals along the axial direction of the yoke 21.
  • the yoke 21 is in the shape of a hollow cylinder as a whole, and has an annular inner wall constituting the above-mentioned hollow structure 212.
  • the prism 30 is rigidly connected to the inner wall. On the one hand, it can avoid the gap between the rotor assembly 20 and the stator assembly 10 when the drive motor 110 rotates. On the other hand, it can reduce the resistance of the drive motor 110 to operate, reduce the volume ratio of the drive motor 110, and further reduce the structure.
  • a plurality of magnets 22 are coupled to the outer periphery of the yoke 21, and the positions of the magnets 22 correspond to the positions of the stator winding 122, so that the stator winding 122 can generate an electromagnetic field when the stator winding 122 is energized to drive the magnet to drive the rotor assembly 20 Rotate.
  • the area of the magnet 22 may cover the entire outer periphery of the yoke 21, that is, the side of the magnet 22 is opposite to the stator winding 122, or the stator winding 122 is opposite to the side of a part of the magnet 22; or the area of the magnet 22 may only cover Part of the outer periphery of the yoke 21, for example, the area of the magnet 22 only covers the upper half of the periphery of the yoke 21, and the stator winding 122 is only installed on the upper half of the stator assembly 10, that is, the side of the magnet 22 and the stator winding 122 relatively.
  • a plurality of magnets 22 are separately spliced to form a ring structure, so that the magnet 22 can be sleeved on the outside of the yoke 21.
  • the yoke 21 is provided with a first groove, and the magnet 22 is mounted on the first groove.
  • the rotor assembly 20 further includes a connecting piece, the shape of the connecting piece matches the shape of the first groove, and the magnet 22 is installed on the first groove through the connecting piece.
  • the first groove is located on one or both ends of the yoke 21 so that the magnet 22 can be installed on one or both ends of the yoke 21.
  • the inner diameter of the yoke 21 is 25-30 mm; and/or the thickness of the yoke 21 is 0.7-1.2 mm; and/or the thickness of the magnet 22 is 0.8-1.3 mm; and/or the thickness of the magnet 22 is 0.8-1.3 mm; and/or the thickness of the yoke 21 is 0.7-1.2 mm; and/or the thickness of the magnet 22 is 0.8-1.3 mm; and/or the thickness of the yoke 21 is 0.7-1.2 mm; and/or the thickness of the magnet 22 is 0.8-1.3 mm; and/or the thickness of the yoke 21 is 0.7-1.2 mm; and/or the thickness of the magnet 22 is 0.8-1.3 mm;
  • the height of the yoke 21 and the magnet 22 are both 2.5-5 mm.
  • the inner diameter of the yoke 21 is 27.8 mm; and/or the thickness of the yoke 21 is 0.9 mm; and/or the thickness of the magnet 22 is 1 mm; and/or the height of the yoke 21 and the magnet 22 are both 3 mm, so Not only can the output torque of the drive motor be ensured, but also the miniaturization of the drive motor can be ensured.
  • the magnetic yoke 21 is made of SPCE material, or the magnetic yoke 21 is made of SPCC material, or the magnetic yoke 21 is made of 10 gauge steel material.
  • the magnet 22 is made of bonded neodymium iron boron material BNM-12 with a magnetic energy product of 12MGsOe.
  • the hollow structure 212 includes a partial magnetic yoke 21 arranged inside the stator assembly 10, wherein the prism 30 is installed at an end of the hollow structure 212 away from the magnet 22.
  • the prism 30 is a wedge prism, and the wedge prism 30 is mounted on the hollow structure 212.
  • the gap between the rotor assembly 20 and the stator assembly 10 is 0.3-0.5mm, specifically 0.35mm, which not only ensures the transmission accuracy of the prism 30, but also ensures that the rotor assembly 20 can be opposed to the stator The assembly 10 rotates.
  • each scanning module 100 is an independent individual, and the rotor assembly 20 on the scanning module 100 has a large enough hollow structure 212 to accommodate a prism 30 of a larger size. It can avoid reducing the error caused by the transmission problem of the scanning module 100, and also can ensure the scanning space of the scanning module 100.
  • a plurality of scanning modules 100 can also be combined in different ways to change the direction of the laser beam emitted by the laser, thereby improving the scope of application of the laser radar.
  • each scanning module is an independent scanning entity, different modes of scanning can be realized.
  • the prisms can be arranged along the same optical axis or along different optical axes; or, the rotation axes of the prisms may or may not overlap; or, the rotation directions of the prisms may be the same or different; or, the rotation speed of the prisms It can be the same or different; or, the prism can be wedge-shaped, trapezoidal, cylindrical, etc.; or, the incident light can be incident from the optical axis, or non-optical axis; or, the incident direction can be parallel to the optical axis, or it can be parallel to the optical axis.
  • the optical axis forms an angle and is incident obliquely; or, the optical path can be all rotating prisms, or it can have a fixed optical system; and so on.
  • the following will exemplify the description based on Figs. 17(a)-17(e).
  • the centers of the prisms are arranged along the same optical axis, and the rotation directions of the two can be the same or opposite, and the rotation speeds of the two can be the same or different. According to the two scanning modes, different scanning patterns can be obtained.
  • Fig. 17(b) it exemplarily shows a scanning system with three prisms.
  • the two small prisms scan at a constant speed and reverse, while the third prism rotates at a certain rate.
  • the rotation of the third prism causes the outgoing beam to move along a circular or elliptical ring.
  • the two prisms in opposite directions at constant velocity will make the beam linearly vibrate.
  • the cooperation of the three prisms can make the scanning beam vibrate along a closed loop, so as to realize the scanning of the detected area.
  • the optical axis of the prism is along the same straight line.
  • the rotation axis of the prism can be on a different axis.
  • the incident direction of the scanning beam can be incident along the optical axis, such as the direction a in Figure 17(c); or not along the optical axis, such as the direction b in Figure 17(c); or it can be incident obliquely, such as The c direction in Figure 17(c).
  • the prisms can also be wedge-shaped prisms, trapezoidal prisms, cylindrical prisms, etc., and different prisms cooperate with each other to realize different scanning patterns, for example, as shown in FIG. 17(d).
  • the position of the dashed frame in FIG. 17(e) may be a fixed lens or a lens group, a fixed prism or a prism group.
  • Figures 17(a) to 17(e) are exemplary illustrations.
  • the scanning system can be a combination of multiple optical systems, which is not used to limit the number, type, or type of light source devices in the optical system.
  • Arrangement for example, the prisms in Figure 17(a) can also be arranged in other ways, and there are also prism combinations that can be arranged in other ways in the figure.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • It can be a mechanical connection or an electrical connection.
  • It may be directly connected, or indirectly connected through an intermediate medium, and it may be the internal communication between two elements or the interaction relationship between two elements.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or only that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种驱动电机(110)、扫描模组(100)及激光雷达。激光雷达包括发射装置(200)、接收装置(300)和扫描模组(100),扫描模组(100)包括具有转子组件(20)和定子组件(10)的驱动电机(110),转子组件(20)为安装有棱镜(30)的中空结构,包括磁轭(21)和套设于磁轭(21)与定子组件(10)之间的第一轴承件(40)。

Description

驱动电机、扫描模组及激光雷达 技术领域
本申请涉及激光雷达技术领域,尤其涉及一种驱动电机、扫描模组及激光雷达。
背景技术
激光雷达是以发射激光光束来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数。
激光扫描雷达一般通过电机带动棱镜旋转来改变激光偏移方向,形成空间扫描,以实现对空间中不同点的扫描。但是现有的设计中,棱镜与电机在空间上是相互独立的,电机需要经过传动环节才能带动棱镜转动,在传动环节中存在传动间隙,因而会造成扫描的误差,而且结构较为复杂,体积和质量偏大,不利于在驾驶辅助系统、无人驾驶系统及移动机器人、无人驾驶飞机避障与导航领域的应用。
发明内容
本申请提供了一种驱动电机、扫描模组及激光雷达,通过将棱镜固定在转子组件的中空结构上,不仅可以避免因传动环节而带来的扫描误差,提高激光雷达的扫描精度;而且使得激光雷达的整体结构更为紧凑,从而可以实现激光雷达的轻巧设计。
根据本申请实施例的第一方面,本申请提供了一种激光雷达,包括:
发射装置,用于发射激光光束;
接收装置,用于接收被反射的激光光束;
扫描模组,用于改变所述发射装置发射的激光光束的出射方向;
其中,所述扫描模组包括驱动电机,所述驱动电机包括转子组件和用于驱动所述转子组件转动的定子组件;
所述转子组件为中空结构,包括:
磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动。
根据本申请实施例的第二方面,本申请提供了一种扫描模组,用于激光雷达,包括:
电机组件,包括驱动电机,所述驱动电机包括转子组件和用于驱动所述转子组件转动的定子组件;所述转子组件为中空结构,包括:磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动;
控制组件,包括电机驱动器,所述电机驱动器与所述定子组件电连接,所述电机驱动器通过程序控制所述转子组件的转速和方向。
根据本申请实施例的第三方面,本申请提供了一种驱动电机,包括:
转子组件;
用于驱动所述转子组件转动的定子组件;其中,
所述转子组件为中空结构,包括:磁铁;
与所述磁铁平行设置的磁轭;以及,
内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动。
本申请实施例提供的技术方案可以包括以下有益效果:本申请设计了一种驱动电机、扫描模组及激光雷达,其中,转子组件上具有能够安装棱镜的中空结构,中空结构的外侧面与定子组件的内侧面之间连接有第一轴承件,不仅可以避免第一轴承件的大小受到棱镜尺寸的制约,而且将棱镜安装在中空结构中, 能够避免了驱动电机因经过传动环节驱动棱镜转动而产生的误差,同时也使得激光雷达的整体结构更为紧凑,从而可以实现激光雷达的轻巧设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的激光雷达的结构示意图;
图2是本申请图1中的驱动电机的主视图;
图3是本申请图2中的驱动电机的剖面图;
图4是本申请图2中的驱动电机的分解示意图;
图5是本申请图4中的驱动电机的部分分解示意图;
图6是本申请图4中的定子组件的主视图;
图7是本申请图4中的定子组件的部分分解示意图;
图8是本申请图4中的驱动电机的结构示意图;
图9是本申请图8在A处的放大示意图;
图10是本申请图4中的定子的结构示意图;
图11是本申请图4中的定子与绝缘支架的分解示意图;
图12是本申请图4中的第一绝缘支架的结构示意图;
图13是本申请图4中的壳体本体的结构示意图;
图14是本申请图4中的定子支架的结构示意图;
图15是本申请图4中的转子组件的结构示意图;
图16是本申请图4中的棱镜的结构示意图;
图17(a)-17(e)是本说明书实例提供的不同棱镜组组合进行扫描的示意图;
图18是本申请图4中的第二绝缘支架的部分结构示意图。
附图标记说明:
100、扫描模组;110、驱动电机;
10、定子组件;11、定子支架;111、壳体本体;12、线圈支架;121、定子铁芯;1211、定子齿;12111、齿靴部;12112、齿部;1212、轭部;1213、定子槽;122、定子绕组;20、转子组件;21、磁铁;211、轴承件固定部;212、中空结构;22、磁轭;23、码盘;30、棱镜;40、第一轴承件;41、第一深沟球轴承;42、第二深沟球轴承;50、绝缘支架;51、第一绝缘支架;511、绝缘支架安装部;52、第二绝缘支架;60、电机输入端;70、转接件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的激光雷达属于激光探测技术领域,以发射激光光束来探测对象的位置、速度等特征量,其工作原理是先向对象发射激光光束,然后将接受到的从对象反射回来的信号与发射信号进行比较,作适当处理后,就可获得对象的有关信息,如对象的距离、方位、高度、速度、姿态及形状等参数。
激光雷达通常包括发射装置、接收装置和扫描模组,其中,发射装置用于发射激光光束到对象上,接收装置用于接收被所述对象反射的激光光束,扫描模组用于改变所述激光器发射的激光光束的出射方向。
具体的,扫描模组包括控制组件、驱动电机和至少一片棱镜,棱镜用于实现激光的定向偏移,控制组件通过程序控制驱动电机的转速和方向,驱动电机通过传动组件带动一片或多片棱镜旋转,以改变激光光束的偏移方向,形成空间扫描。但是,作为光传播通路的棱镜与驱动电机在空间上的位置上是互相独立,其中,驱动电机仅作为动力源,需要通过传动组件传动到需要扫描的棱镜 上,结构不够紧凑,而且传动组件在传动过程中会有传动间隙,从而造成扫描的误差。此外,传动组件容易产生机械磨损,造成效率降低,对驱动电机的转速限制,不仅需要润滑,而且传动组件的磨屑、润滑脂或润滑液容易对棱镜造成污染。
其中,驱动电机上的轴承设置在棱镜的外侧,因此,棱镜的大小直接制约着轴承的大小。
如图1至图16所示,本申请提供的一种激光雷达,包括发射装置、接收装置和扫描模组100,其中,发射装置用于发射激光光束到对象上,接收装置用于接收被对象反射的激光光束,扫描模组100用于改变发射装置发射的激光光束的出射方向。在本实施方式中,扫描模组100包括电机组件和用于控制电机组件的转速和方向的控制组件,电机组件包括驱动电机110,驱动电机110包括围绕转轴旋转的转子组件20和用于驱动转子组件20围绕转轴转动的定子组件10,其中,转子组件20为中空结构212,包括磁轭21、磁铁22、棱镜30和第一轴承件40,磁轭21与磁铁22平行设置,棱镜30内接于中空结构212,第一轴承件40套设于磁轭21的外侧,且第一轴承件40与定子组件10内侧接触,以使得转子组件20能够在定子组件10内侧转动。
由于第一轴承件40设置在磁轭21的外侧面与定子组件10的内侧面之间,从而可以避免第一轴承件40受到棱镜30的尺寸的影响,例如,棱镜30的尺寸偏小,则会导致开设在棱镜30上的棱镜穿孔缩小,因此安装在棱镜穿孔的轴承件不能太大;或者棱镜30的尺寸偏大,则需要安装足够大的轴承来承载棱镜30的运转。但是,轴承越大摩擦力越大,轴承的温度越低阻力越大,因此,安装在驱动电机110上的轴承需要一个合理的尺寸,以便驱动电机110的电磁性能够追求一个能输出大扭矩,这样可以确保驱动电机110稳定运转后的高效率及低损耗。本申请采用上述方案后,不仅避免了第一轴承件40受到棱镜30尺寸的制约,而且将棱镜30安装在中空结构中,能够避免了驱动电机110因经过传动环节驱动棱镜30的转动而产生的误差,同时也可以使得激光雷达的整体结构更为紧凑,以便实现激光雷达的轻巧设计。
在一个可选的实施方式中,棱镜30的外边沿与转子组件20的内边沿相抵接,从而避免了棱镜30相对定子组件10传动间隙带来的测量误差。
在一个可选的实施方式中,磁铁22和磁轭21具有基本相同的外径和厚度。
在一个可选的实施方式中,电机组件还包括棱镜30,中空结构212上设有能够用于安装棱镜的棱镜安装部,棱镜30安装在棱镜安装部上。在本实施方式中,棱镜的直径与转子组件的外径大致相等,控制组件包括电机驱动器,电机驱动器与转接件70上的电机输入端60电连接,以便电机驱动器能够通过程序来控制转子组件20的转速和方向,利用转子组件20带动棱镜30旋转来改变激光器发射的激光光束的出射方向。此外,磁铁固设在磁轭周壁后与中空结构内环的直径比例为1/10~1/6,或者磁铁固设在磁轭周壁后与中空结构212内环的直径比例为1/10~1/7,以便有足够大的中空结构212来容纳棱镜30。
具体的,定子组件10套装在转子组件20的外侧,用于限制转子组件20在转轴的方向上转动,即转子组件20以转轴为中心旋转,且转轴的方向是固定的。需要说明的,转轴可以为实体存在的元件,也可以不是实体存在的元件,仅是转子组件旋转中心的虚拟概念。
在一个可选的实施方式中,如图3至图16所示,定子组件10呈中空筒状结构,定子组件10的内侧面设有轴承件安装部,中空结构212的外侧面设有轴承件固定部211,第一轴承件40的内圈安装在轴承件固定部上,第一轴承件40的外圈安装在轴承件安装部211上。
在一个可选的实施方式中,激光雷达还包括转接件70,其中,扫描模组100的数量多个,多个扫描模组100通过转接件70连接在一起。
在本实施方式中,扫描模组100的数量为两个,转接件70的数量为一个,两个扫描模组100分别安装在转接件70两端,每个扫描模组100均设有一个第一轴承件40,第一轴承件40可以深沟球轴承。具体地,两个扫描模组10上的第一轴承件40分别为第一轴承41和第二轴承42,其中,第一轴承41和第二轴承42分别位于扫描模组10靠近转接件70的一侧,以确保棱镜30转动的稳定性。
此外,扫描模组100的数量还可以为多个,且每个扫描模组100上的棱镜30的形状可以不相同或者相同,其中,棱镜30可以包括楔形棱镜、柱状棱镜或梯形棱镜等。当多个扫描模组100通过转接件70连接在一起时,每个扫描模组100在转接件70上的位置可以不确定,具体可以根据需要进行放置,以实现不同模态的扫描,其原理与积木类似,本申请不做任何限制。
在一个可选的实施方式中,定子组件10包括线圈支架12和呈中空桶状结 构的定子支架11,线圈支架12套设于定子支架11内部,线圈支架12,转子组件20安装在线圈支架12的内侧。
当棱镜30安装在中空结构212时,棱镜30以第一轴承41或第二轴承42为支撑点绕转轴转动,由于第一轴承41和第二轴承42均设置在定子组件10与转子组件20之间。因此,采用上述方案后,能够有效缩短棱镜30到第一轴承41或第二轴承42的力臂,从而可以降低棱镜30对第一轴承41或第二轴承42的影响,尤其棱镜30跟随着中空结构212进行高速旋转时,第一轴承41或第二轴承42能够直接将棱镜30的负载传递到定子组件10上,从而可以减轻棱镜30施加给第一轴承41或第二轴承42的压力,进而可以提高驱动电机110的输出效率。
在一个可选的实施方式中,定子组件10还包括绝缘支架50,绝缘支架50套设于线圈支架12的两侧,用于将线圈支架12固定在定子支架11上。
具体的,如图4至图12所示,绝缘支架50包括第一绝缘支架51和第二绝缘支架52,其中,第一绝缘支架51设置在线圈支架12的一侧,第二绝缘支架52设置在线圈支架12的另一侧,以致将线圈支架12夹紧并安装在定子支架11上。
由于本申请的扫描模组100的数量为两个,因此两个线圈支架12分别通过绝缘支架50分别设置在转接件70两端的定子支架11上。具体的,定子支架11上设有定子安装部,第一绝缘支架51上设有绝缘支架安装部511,线圈支架12通过绝缘支架安装部511安装在定子安装部上。
图18示例性地描述了安装的局部,第一绝缘支架51的架体1806呈环状,其沿径向有向环形圆心延伸的绕线部1801,绕线部1801的末端具有一挡片1802,挡片下边缘具有分叉的插头结构1803,插头结构1803会插入到线圈支架12的槽口内,并与线圈支架固定。第二绝缘支架具有插槽结构,插槽结构与线圈支架12的槽口连接,并与线圈支架12固定。即在该实施例中,第一绝缘支架51,第二绝缘支架52与线圈支架12三者通过插槽和插头结构结合成为一个整体,第一绝缘支架51和第二绝缘支架52分别位于线圈支架两端。线圈模组1805则绕在线圈支架上。在一个可选的实施方式中,第一绝缘支架与第二绝缘支架通过扣合方式固定线圈支架,结构简单却实用,而且也便于线圈支架12的拆卸。
具体的,第一绝缘支架和第二绝缘支架的其中一个具有第一扣合部,第一 绝缘支架和第二绝缘支架的另一个具有第二扣合部,第一扣合部与第二扣合部相互扣合。
在一个可选的实施方式中,定子组件10与转子组件20之间连接有码盘23,定子组件10上设有第二凹槽,当转子组件20安装在定子组件10后,码盘23可活动于第二凹槽内,通过码盘23可以对转子组件的转速进行实时监控与控制。
在一个可选的实施方式中,第一轴承件40、码盘23和绝缘支架50均为非导磁材料制成,具体的可以为绝缘材料制成,以防止对转子组件20与定子组件10之间的磁场产生干扰。
具体的,驱动电机110中的转子组件20与定子组件10是相对转动的,其中,转子组件20可以为磁性元件,对应地,定子组件10为通电时产生电磁场的线圈绕组;反之,转子组件20也可以为通电时产生电磁场的线圈绕组,定子组件10为磁性元件。当驱动电机通电时,线圈绕组产生电磁场从而驱动转子组件以转轴为中心转动。
在一个可选的实施方式中,每一个线圈支架12均包括定子铁芯121和定子绕组122,定子绕组122设置在定子铁芯121上。其中,定子铁芯121的数量可以为一个、两个甚至两个以上,当定子铁芯121为一个时,定子铁芯121可以为中空环状,也可以为中空柱状,定子绕组122可以绕设在定子铁芯121的内侧或绕设在定子铁芯121轴线方向的上下位置,转子组件30的位置与定子绕组122的位置相对应,以便线圈绕组122工作时产生电磁场后驱动转子组件20转动。
由于,扫描模组100的数量为多个,从而可以通过改变线圈支架12上电流的方向或电流的大小,来控制每个扫描模组100上转子组件20的转动方向或转动速度,以便可以改变激光器发射的激光光束的出射方向。当然,每个扫描模组100上转子组件20的转动方向一致,例如绕轴线50的同一方向转动,同时逆时针或同时顺时针。
在一个可选的实施方式中,定子铁芯121包括由多个铁芯分体围成的铁芯本体,相邻两个铁芯之间的距离等于第一预设距离,第一预设距离可以为大于0的任何常数。在本实施方式中,定子支架11上设有间隔设置的铁芯安装部,铁芯安装在铁芯安装部上。
具体的,铁芯安装部分别间隔设置在上述的定子安装部上,多个铁芯对应 安装在每一个铁芯安装部上以形成具有中空状的铁芯本体,转子组件安装在铁芯本体的中空状中。
在一个可选的实施方式中,定子支架11呈方形形状,铁芯安装部设置在定子支架的四个边角位置上。在本实施方案中,定子支架11在四个边角位置上均设有倒圆角结构,铁芯嵌合在四个边角位置上的铁芯安装部上,以确保定子铁芯121在驱动转子组件20转动时,转子组件20的周向受力平衡。
在一个可选的实施方式中,定子铁芯121具有环形一体结构,定子支架11设有铁芯安装部,铁芯安装在铁芯安装部。具体的,多个铁芯一体成型形成具有中空状的方形或圆柱形铁芯本体,铁芯本体套设在第一定子安装部和第二定子安装部中,转子组件20安装在铁芯本体的中空状内。
在一个可选的实施方式中,铁芯上设有多个沿周向分布的定子齿1211,每两个相邻的定子齿围设形成定子槽1213,定子齿1211沿径向从外至内依次包括齿部12112与齿靴部12111,定子绕组122绕设在齿部12112上,转子组件20设置在齿靴部12111的内侧,以便将齿部12112、齿靴部12111和铁芯的位置可靠固定,同时可以提高铁芯的聚磁效果,有利于提高驱动电机110的性能。
具体的,铁芯包括多个由冲片层叠而成的分部,每个分部均具有一个上述的定子齿1211和一段轭部1212,相邻两个分部之间相互连接,不仅便于铁芯的生产,提高生产效率,而且材料的利用率高,有利于降低生产成本。
在一个可选的实施方式中,齿部12112的宽度为1.8-3mm;和/或齿靴部12111的高度为0.5-1mm;两个齿靴部12111的最近距离为1.2-1.8mm,即定子槽1213的开口短距离为1.2-1.8mm;和/或轭部1212的厚度为1.3-2mm,这样不仅可以降低驱动电机110的铁损耗,而且也确保了驱动电机110启动时所需要的功率。
具体的,齿部12112的宽度为1.8mm或3mm,齿靴部12111的高度为0.5mm或1mm,两个齿靴部12111的最近距离1.4mm,轭部1212的厚度为1.5mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。在一个可选的实施方式中,铁芯本体采用硅钢冲片层叠并铆接而成,硅钢冲片的厚度大致等于0.2mm,以便提高铁芯的生产效率。
具体的,铁芯本体可以采用圆形硅钢冲片依次层叠形成,或者,铁芯本体可以采用条形冲片层叠后形成条形结构,再将条形结构弯折合围成铁芯本体等等,可以理解地,铁芯本体还可以采用其他合适的结构,本申请不做任何限制。
在一个可选的实施方式中,磁铁的数量为16个,定子槽的数量为20个,这样不仅可以确保驱动电机110能够有较大的输出扭矩,而且也确保中部结构的空间足够大,即在转子组件10具有足够大的空间下,驱动电机110能够有足够大的输出扭矩来带动棱镜30高速旋转。
在一个可选的实施方式中,定子铁芯121包括由呈圆环状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,定子绕组由多组空心杯绕组构成,以便定子绕组能够套装在铁芯本体的内侧。在本实施方式中,转子组件设置在定子绕组的内侧,其中,铁芯本体采用硅钢片制成。
在一个可选的实施方式中,定子铁芯121包括呈圆环状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,定子绕组122由多组空心杯绕组间隔设置而成,以便定子绕组122能够套装在铁芯本体的内侧。在本实施方式中,转子组件20设置在定子绕组122的内侧,其中,铁芯本体采用硅钢片制成。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,铁芯本体在轴线方向上设有定子齿,以便定子绕组能够绕设在定子齿上。在本实施方式中,铁芯本体采用铁基软磁软磁复合材料制成,转子组件20安装在定子绕组122的轴线方向上。例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而磁轭21和磁铁22则安装在定子绕组122的上方或下方,结构非常紧凑,从而便于驱动电机20的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,铁芯本体的轴线方向上设有定子齿,以便定子绕组122能够绕设在定子齿上。在本实施方式中,铁芯本体采用铁基软磁软磁复合材料制成,磁轭和磁铁安装在定子绕组122的轴线方向上。例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而磁轭21和磁铁22则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯一体成型,其中,定子绕组20由多组空心杯绕组间隔设置而成,且定子绕组位于铁芯的轴线方向上。在本实施方式中,铁芯本体采用硅钢片制成,磁轭21和磁铁22安装在定子绕组122的轴线方向上,例如,定子支架11 的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而磁轭21和磁铁22则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121包括呈环形状的铁芯本体,铁芯本体由多个铁芯分体围成,其中,定子绕组20由多组空心杯绕组间隔设置而成,且定子绕组20位于铁芯的轴线方向上。在本实施方式中,铁芯本体采用硅钢片制成,磁轭21和磁铁22安装在定子绕组122的轴线方向上,例如,定子支架11的开口方向朝上或朝下时,定子齿位于铁芯本体的上端或下端,而磁轭21和磁铁22则安装在定子绕组的上方或下方,结构非常紧凑,从而便于驱动电机的轻巧设计。
在一个可选的实施方式中,定子铁芯121的外径为40-50mm,和/或定子铁芯121的高度为2.5-5mm。
具体的,定子铁芯121的外径为43mm,定子铁芯121的高度为3mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。
在一个可选的实施方式中,如图4至图16,转子组件20包括磁轭21和多个磁铁22,其中,磁轭21的部分位于定子组件10的内侧,多个磁铁22设置在部分磁轭21的外侧,并沿磁轭21的轴向间隔排列设置。
具体的,磁轭21整体呈中空圆筒形状,具有构成上述中空结构212的环形内壁,棱镜30与内壁刚性连接,一方面可以避免了驱动电机110转动时,转子组件20与定子组件10之间的间隙而带来的测量误差;另一方面可以减少驱动电机110运转的阻力,降低了驱动电机110的体积占比,使结构进一步缩小。在本实施方式中,多个磁铁22耦合在磁轭21的外周缘上,且磁铁22的位置与定子绕组122的位置相对应,以便定子绕组122在通电时能够产生电磁场驱动磁铁带动转子组件20转动。
此外,磁铁22的面积可以覆盖磁轭21的全部外周缘,也即磁铁22的侧面与定子绕组122相对,或者定子绕组122与部分磁铁22的侧面相对;或者,磁铁22的面积也可以只覆盖磁轭21的部分外周缘,例如,磁铁22的面积只覆盖磁轭21的上半周缘,而定子绕组122也只是安装在定子组件10的上半部分,也就是磁铁22的侧面与定子绕组122相对。
在一个可选的实施方式中,多个磁铁22分体拼接形成环状结构,以使得磁 铁22能够套设在磁轭21的外侧。在本实施方式中,磁轭21上设有第一凹槽,磁铁22安装在第一凹槽上。
具体的,转子组件20还包括连接件,连接件的形状与第一凹槽的形状相适配,磁铁22通过连接件安装在第一凹槽上。
在一个可选的实施方式中,如图5至图10所示,第一凹槽位于磁轭21的一端或两端上,以便磁铁22能够安装在磁轭21的一端或两端上。
在一个可选的实施方式中,磁轭21的内径为25-30mm;和/或磁轭21的厚度为0.7-1.2mm;和/或磁铁22的厚度为0.8-1.3mm;和/或磁轭21和磁铁22的高度均为2.5-5mm。
具体的,磁轭21的内径为27.8mm;和/或磁轭21的厚度为0.9mm;和/或磁铁22的厚度为1mm;和/或磁轭21和磁铁22的高度均为3mm,这样不仅可以确保驱动电机的输出扭矩,而且也保证了驱动电机的小型化。
在一个可选的实施方式中,磁轭21采用SPCE材料制成,或磁轭21采用SPCC材料制成,或磁轭21采用成10号钢材料制成。
在一个可选的实施方式中,磁铁22的材料为磁能积12MGsOe的粘结钕铁硼材料BNM-12制成。
在一个可选的实施方式中,中空结构212包括设置在定子组件10内侧的部分磁轭21,其中,棱镜30安装在中空结构212远离磁铁22的一端。
在一个可选的实施方式中,棱镜30为楔形棱镜,楔形棱镜30安装在中空结构212上。
在一个可选的实施方式中,转子组件20与定子组件10之间的间隙为0.3-0.5mm,具体为0.35mm,这样不仅确保棱镜30传动的精度,同时也确保了转子组件20能够相对定子组件10进行转动。
采用以上技术方案后,由于每个扫描模组100都是相互独立的个体,同时扫描模组100上的转子组件20具有足够大的中空结构212,从而可以容纳更大尺寸的棱镜30,这样不仅可以避免减少扫描模组100因为传动问题带来的误差,而且也可以确保扫描模组100的扫描空间。此外,还可以通过多个扫描模组100进行不同的组合来改变激光器发射的激光光束的出射方向,提高激光雷达的适用范围。
在一个可选的实施方式中,由于每个扫描模组作为独立的扫描个体,可以 实现不同模式的扫描。例如,棱镜可以沿着同一光轴布置,也可以沿着不同光轴布置;或者,棱镜的转动轴可以重合也可以不重合;或者,棱镜转动方向可以相同,也可以不同;或者,棱镜的转速可以相同,也可以不同;或者,棱镜可以楔形、梯形、柱形等;或者,入射光线可以从光轴入射,或者非光轴入射;或者,入射方向可以是平行光轴入射,也可以是与光轴形成一夹角,倾斜入射;或者,光路中可以都是旋转的棱镜,也可以具有固定的光学系统;等等。下面将根据图17(a)-17(e)示例性进行说明。
如图17(a)所示,棱镜中心沿同一光轴布置,二者旋转方向可以相同,也可以相反,二者转速可以相同也可以不同。根据二者扫描模式,可以得到不同的扫描图案。
如图17(b)所示,其示例性地表示了三个棱镜配合的扫描系统。两个小棱镜以等速反向的方式扫描,而第三个棱镜以一定速率旋转,当光束从第三个棱镜斜面入射时,第三棱镜的转动导致出射光束沿着一个圆环或者椭圆环移动,而等速反向的两个棱镜会使光束线性振动。三个棱镜配合,可以使扫描光束沿着一个闭合环形振动,从而实现被探测区域的扫描。
图17(a)和图17(b)中,棱镜光轴沿同一直线。如图17(c)所示,棱镜的旋转轴可以在不同轴线。扫描光束的入射方向可以是沿着光轴入射,例如图17(c)中的a方向;也可以不沿着光轴,例如图17(c)中的b方向;也可以是倾斜入射,例如图17(c)中的c方向。
棱镜也可以是楔形棱镜、梯形棱镜、圆柱形棱镜等,不同棱镜相互配合,用于实现不同扫描的图案,例如图17(d)所示。
除旋转棱镜外,在光路中还可以有固定的光学系统,例如图17(e)中虚线框的位置可以是固定透镜或者透镜组,固定的棱镜或者棱镜组。
上述图17(a)至17(e)是示例性地说明,基于本说明书的实施例,扫描系统可以是多种光学系统的组合,其不用于限定光学系统中光源器件的个数,类型或者排列方式。例如图17(a)中的棱镜也可以有其它的排布方式,图中也有可以有其它方式的棱镜组合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连, 也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (106)

  1. 一种激光雷达,其特征在于,包括:
    发射装置,用于发射激光光束;
    接收装置,用于接收被反射的激光光束;
    扫描模组,用于改变所述发射装置发射的激光光束的出射方向;
    其中,所述扫描模组包括驱动电机,所述驱动电机包括转子组件和用于驱动所述转子组件转动的定子组件;
    所述转子组件为中空结构,包括:
    磁铁;
    与所述磁铁平行设置的磁轭;以及,
    内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述定子组件呈中空筒状结构;所述定子组件的内侧面设有轴承件安装部,所述中空结构的外侧面设有轴承件固定部,所述第一轴承件的内圈安装在所述轴承件固定部上,所述第一轴承件的外圈安装在所述轴承件安装部上。
  3. 根据权利要求1所述的激光雷达,其特征在于,所述磁铁和磁轭具有基本相同的外径和厚度。
  4. 根据权利要求1所述的激光雷达,其特征在于,所述磁轭的厚度与所述中空结构的半径比例为1/10~1/6。
  5. 根据权利要求1所述的激光雷达,其特征在于,所述定子组件包括:
    定子支架,呈中空桶状结构;
    线圈支架,套设于所述定子支架内部。
  6. 根据权利要求5所述的激光雷达,其特征在于,所述定子组件还包括:
    绝缘支架,套设于所述线圈支架两侧。
  7. 根据权利要求6所述的激光雷达,其特征在于,所述绝缘支架包括:
    第一绝缘支架,设置在所述线圈支架的一侧;
    第二绝缘支架,设置在所述线圈支架的另一侧。
  8. 根据权利要求7所述的激光雷达,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
  9. 根据权利要求7所述的激光雷达,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
  10. 根据权利要求5所述的激光雷达,其特征在于,所述线圈支架包括:
    定子铁芯,安装在所述定子支架的中空桶状结构中;
    定子绕组,设置在所述定子铁芯上。
  11. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,相邻两个所述铁芯之间的距离等于第一预设距离。
  12. 根据权利要求11所述的激光雷达,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
  13. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,具有环形一体结构的铁芯构成,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
  14. 根据权利要求11至13中任一项所述的激光雷达,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
  15. 根据权利要求14所述的激光雷达,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
  16. 根据权利要求14所述的激光雷达,其特征在于,所述齿部的宽度为1.8-3mm。
  17. 根据权利要求14所述的激光雷达,其特征在于,所述齿靴部的高度为0.5-1mm。
  18. 根据权利要求14所述的激光雷达,其特征在于,两个所述齿靴部的最近距离为1.2-1.8mm。
  19. 根据权利要求14所述的激光雷达,其特征在于,所述轭部的厚度为 1.3-2mm。
  20. 根据权利要求14所述的激光雷达,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为20个。
  21. 根据权利要求10所述的激光雷达,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  22. 根据权利要求10所述的激光雷达,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  23. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  24. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  25. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  26. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  27. 根据权利要求10所述的激光雷达,其特征在于,所述定子铁芯的外径为40-50mm,和/或所述定子铁芯的高度为2.5-5mm。
  28. 根据权利要求1所述的激光雷达,其特征在于,多个所述磁铁设置在所 述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
  29. 根据权利要求28所述的激光雷达,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
  30. 根据权利要求1所述的激光雷达,其特征在于,所述磁轭的内径为25-30mm。
  31. 根据权利要求1所述的激光雷达,其特征在于,所述磁轭的厚度为0.7-1.2mm。
  32. 根据权利要求1所述的激光雷达,其特征在于,所述磁铁的厚度为0.8-1.3mm。
  33. 根据权利要求1所述的激光雷达,其特征在于,所述磁轭和磁铁的高度均为2.5-5mm。
  34. 根据权利要求1所述的激光雷达,其特征在于,所述磁铁与所述定子组件之间的间隙为0.3-0.5mm。
  35. 根据权利要求1所述的激光雷达,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
  36. 根据权利要求1-35中任一项所述的激光雷达,其特征在于,所述激光雷达还包括转接件,所述扫描模组的数量多个,多个所述扫描模组通过所述转接件连接以实现不同模态的扫描。
  37. 一种扫描模组,用于激光雷达,其特征在于,包括:
    电机组件,包括驱动电机,所述驱动电机包括转子组件和用于驱动所述转子组件转动的定子组件;所述转子组件为中空结构,包括:磁铁;
    与所述磁铁平行设置的磁轭;以及,
    内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动;
    控制组件,包括电机驱动器,所述电机驱动器与所述定子组件电连接,所述电机驱动器通过程序控制所述转子组件的转速和方向。
  38. 根据权利要求37所述的扫描模组,其特征在于,所述定子组件呈中空筒状结构;所述定子组件的内侧面设有轴承件安装部,所述中空结构的外侧面设有轴承件固定部,所述第一轴承件的内圈安装在所述轴承件固定部上,所述 第一轴承件的外圈安装在所述轴承件安装部上。
  39. 根据权利要求37所述的扫描模组,其特征在于,所述磁铁和磁轭具有基本相同的外径和厚度。
  40. 根据权利要求37所述的扫描模组,其特征在于,所述磁轭的厚度与所述中空结构的半径比例为1/10~1/6。
  41. 根据权利要求37所述的扫描模组,其特征在于,所述定子组件包括:
    定子支架,呈中空桶状结构;
    线圈支架,套设于所述定子支架内部。
  42. 根据权利要求41所述的扫描模组,其特征在于,所述定子组件还包括:
    绝缘支架,套设于所述线圈支架两侧。
  43. 根据权利要求42所述的扫描模组,其特征在于,所述绝缘支架包括:
    第一绝缘支架,设置在所述线圈支架的一侧;
    第二绝缘支架,设置在所述线圈支架的另一侧。
  44. 根据权利要求43所述的扫描模组,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
  45. 根据权利要求43所述的扫描模组,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
  46. 根据权利要求41所述的扫描模组,其特征在于,所述线圈支架包括:
    定子铁芯,安装在所述定子支架的中空桶状结构中;
    定子绕组,设置在所述定子铁芯上。
  47. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,具有环形一体结构的铁芯构成,相邻两个所述铁芯之间的距离等于第一预设距离。
  48. 根据权利要求47所述的扫描模组,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
  49. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
  50. 根据权利要求47至49中任一项所述的扫描模组,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
  51. 根据权利要求50所述的扫描模组,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
  52. 根据权利要求50所述的扫描模组,其特征在于,所述齿部的宽度为1.8-3mm,
  53. 根据权利要求50所述的扫描模组,其特征在于,所述齿靴部的高度为0.5-1mm,
  54. 根据权利要求50所述的扫描模组,其特征在于,两个所述齿靴部的最近距离为1.2-1.8mm,
  55. 根据权利要求50所述的扫描模组,其特征在于,所述轭部的厚度为1.3-2mm。
  56. 根据权利要求50所述的扫描模组,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为20个。
  57. 根据权利要求46所述的扫描模组,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  58. 根据权利要求46所述的扫描模组,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  59. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  60. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  61. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  62. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  63. 根据权利要求46所述的扫描模组,其特征在于,所述定子铁芯的外径为40-50mm,和/或所述定子铁芯的高度为2.5-5mm。
  64. 根据权利要求37所述的扫描模组,其特征在于,多个所述磁铁设置在所述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
  65. 根据权利要求64所述的扫描模组,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
  66. 根据权利要求37所述的扫描模组,其特征在于,所述磁轭的内径为25-30mm。
  67. 根据权利要求37所述的扫描模组,其特征在于,所述磁轭的厚度为0.7-1.2mm。
  68. 根据权利要求37所述的扫描模组,其特征在于,所述磁铁的厚度为0.8-1.3mm。
  69. 根据权利要求37所述的扫描模组,其特征在于,所述磁轭和磁铁的高度均为2.5-5mm。
  70. 根据权利要求37所述的扫描模组,其特征在于,所述磁铁与所述定子组件之间的间隙为0.3-0.5mm。
  71. 根据权利要求37所述的扫描模组,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
  72. 一种驱动电机,其特征在于,包括:
    转子组件;
    用于驱动所述转子组件转动的定子组件;其中,
    所述转子组件为中空结构,包括:磁铁;
    与所述磁铁平行设置的磁轭;以及,
    内接于所述中空结构的棱镜和套设于所述磁轭外侧的第一轴承件;所述第一轴承件与所述定子组件内侧接触,以使得所述转子组件能够在所述定子组件内侧转动。
  73. 根据权利要求72所述的驱动电机,其特征在于,所述定子组件呈中空筒状结构;所述定子组件的内侧面设有轴承件安装部,所述中空结构的外侧面设有轴承件固定部,所述第一轴承件的内圈安装在所述轴承件固定部上,所述第一轴承件的外圈安装在所述轴承件安装部上。
  74. 根据权利要求72所述的驱动电机,其特征在于,所述磁铁和磁轭具有基本相同的外径和厚度。
  75. 根据权利要求72所述的驱动电机,其特征在于,所述磁轭的厚度与所述中空结构的半径比例为1/10~1/6。
  76. 根据权利要求72所述的驱动电机,其特征在于,所述定子组件包括:
    定子支架,呈中空桶状结构;
    线圈支架,套设于所述定子支架内部。
  77. 根据权利要求76所述的驱动电机,其特征在于,所述定子组件还包括:
    绝缘支架,套设于所述线圈支架两侧。
  78. 根据权利要求77所述的驱动电机,其特征在于,所述绝缘支架包括:
    第一绝缘支架,设置在所述线圈支架的一侧;
    第二绝缘支架,设置在所述线圈支架的另一侧。
  79. 根据权利要求78所述的驱动电机,其特征在于,所述第一绝缘支架与第二绝缘支架通过扣合方式固定所述线圈支架。
  80. 根据权利要求78所述的驱动电机,其特征在于,所述第一绝缘支架和所述第二绝缘支架的其中一个具有第一扣合部,所述第一绝缘支架和所述第二绝缘支架的另一个具有第二扣合部,所述第一扣合部与所述第二扣合部相互扣合。
  81. 根据权利要求76所述的驱动电机,其特征在于,所述线圈支架包括:
    定子铁芯,安装在所述定子支架的中空桶状结构中;
    定子绕组,设置在所述定子铁芯上。
  82. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,相邻两个所述铁芯之间的距离等于第一预设距离。
  83. 根据权利要求82所述的驱动电机,其特征在于,所述定子支架上均设有间隔设置的铁芯安装部,所述铁芯对应安装在所述铁芯安装部上。
  84. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,具有环形一体结构的铁芯构成,所述定子支架上设有铁芯安装部,所述铁芯安装在所述铁芯安装部。
  85. 根据权利要求82至84中任一项所述的驱动电机,其特征在于,所述铁芯上设有多个沿周向分布的定子齿,每两个相邻的所述定子齿围设形成定子槽,所述定子齿沿径向从外至内依次包括齿部与齿靴部,所述定子绕组绕设在所述齿部上,所述转子组件设置在所述齿靴部的内侧。
  86. 根据权利要求85所述的驱动电机,其特征在于,所述铁芯包括多个由冲片层叠而成的分部,每个所述分部均具有一个所述定子齿和一段轭部,相邻两个所述分部之间相互连接。
  87. 根据权利要求85所述的驱动电机,其特征在于,所述齿部的宽度为1.8-3mm。
  88. 根据权利要求85所述的驱动电机,其特征在于,所述齿靴部的高度为0.5-1mm。
  89. 根据权利要求85所述的驱动电机,其特征在于,两个所述齿靴部的最近距离为1.2-1.8mm。
  90. 根据权利要求85所述的驱动电机,其特征在于,所述轭部的厚度为1.3-2mm。
  91. 根据权利要求85所述的驱动电机,其特征在于,所述磁铁的数量为16个,所述定子槽的数量为20个。
  92. 根据权利要求81所述的驱动电机,其特征在于,所述定子绕组由多组空心杯绕组构成,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈圆环状,所述定子绕组套装在所述铁 芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  93. 根据权利要求81所述的驱动电机,其特征在于,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈圆环状,所述定子绕组套装在所述铁芯本体的内侧,所述转子组件设置在所述定子绕组的内侧。
  94. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  95. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述铁芯本体的轴线方向上设有定子齿,所述定子绕组绕设在所述定子齿上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  96. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯一体成型,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  97. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯包括:
    铁芯本体,由多个铁芯分体围成,呈环形状,所述定子绕组由多组空心杯绕组间隔设置而成,所述定子绕组位于所述铁芯的轴线方向上,所述磁轭和磁铁设置在所述定子绕组的轴线方向上。
  98. 根据权利要求81所述的驱动电机,其特征在于,所述定子铁芯的外径为40-50mm,和/或所述定子铁芯的高度为2.5-5mm。
  99. 根据权利要求72所述的驱动电机,其特征在于,多个所述磁铁设置在所述磁轭的外侧并沿所述磁轭的轴向间隔排列设置。
  100. 根据权利要求99所述的驱动电机,其特征在于,多个所述磁铁分体拼接形成环状结构,所述环状结构套设在所述磁轭的外侧。
  101. 根据权利要求72所述的驱动电机,其特征在于,所述磁轭的内径为25-30mm。
  102. 根据权利要求72所述的驱动电机,其特征在于,所述磁轭的厚度为 0.7-1.2mm,
  103. 根据权利要求72所述的驱动电机,其特征在于,所述磁铁的厚度为0.8-1.3mm。
  104. 根据权利要求72所述的驱动电机,其特征在于,所述磁轭和磁铁的高度均为2.5-5mm。
  105. 根据权利要求72所述的驱动电机,其特征在于,所述磁铁与所述定子组件之间的间隙为0.3-0.5mm。
  106. 根据权利要求72所述的驱动电机,其特征在于,所述棱镜包括楔形棱镜、柱状棱镜。
PCT/CN2019/109652 2019-09-30 2019-09-30 驱动电机、扫描模组及激光雷达 WO2021062735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033665.3A CN114341663A (zh) 2019-09-30 2019-09-30 驱动电机、扫描模组及激光雷达
PCT/CN2019/109652 WO2021062735A1 (zh) 2019-09-30 2019-09-30 驱动电机、扫描模组及激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109652 WO2021062735A1 (zh) 2019-09-30 2019-09-30 驱动电机、扫描模组及激光雷达

Publications (1)

Publication Number Publication Date
WO2021062735A1 true WO2021062735A1 (zh) 2021-04-08

Family

ID=75337679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109652 WO2021062735A1 (zh) 2019-09-30 2019-09-30 驱动电机、扫描模组及激光雷达

Country Status (2)

Country Link
CN (1) CN114341663A (zh)
WO (1) WO2021062735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900075A (zh) * 2021-09-07 2022-01-07 武汉天眸光电科技有限公司 一种棱镜、棱镜组件及激光雷达
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663570B (zh) * 2022-12-14 2023-03-31 成都量芯集成科技有限公司 一种激光光点散布调整结构及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201378231Y (zh) * 2009-03-31 2010-01-06 北京北科天绘科技有限公司 一种光学扫描装置
CN206331180U (zh) * 2016-08-31 2017-07-14 武汉高思光电科技有限公司 一种具有空心轴的激光扫描装置
CN207516546U (zh) * 2017-12-18 2018-06-19 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置
CN108474654A (zh) * 2017-03-29 2018-08-31 深圳市大疆创新科技有限公司 激光测量装置和移动平台
KR20190066349A (ko) * 2017-12-05 2019-06-13 광주과학기술원 라이다 장치
CN110266123A (zh) * 2019-06-27 2019-09-20 珠海凯邦电机制造有限公司 定子及电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201378231Y (zh) * 2009-03-31 2010-01-06 北京北科天绘科技有限公司 一种光学扫描装置
CN206331180U (zh) * 2016-08-31 2017-07-14 武汉高思光电科技有限公司 一种具有空心轴的激光扫描装置
CN108474654A (zh) * 2017-03-29 2018-08-31 深圳市大疆创新科技有限公司 激光测量装置和移动平台
KR20190066349A (ko) * 2017-12-05 2019-06-13 광주과학기술원 라이다 장치
CN207516546U (zh) * 2017-12-18 2018-06-19 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置
CN110266123A (zh) * 2019-06-27 2019-09-20 珠海凯邦电机制造有限公司 定子及电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900075A (zh) * 2021-09-07 2022-01-07 武汉天眸光电科技有限公司 一种棱镜、棱镜组件及激光雷达
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置

Also Published As

Publication number Publication date
CN114341663A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2021062735A1 (zh) 驱动电机、扫描模组及激光雷达
US9971148B2 (en) Compact wedge prism beam steering
US11664713B2 (en) Rotary reciprocating drive actuator having magnets and coils, capable of attaching a movable object
US20200067390A1 (en) Driving device, laser measurement device and movable platform
JP2022140492A (ja) 回転往復駆動アクチュエータ
JP6021459B2 (ja) ステッピングモータ、レンズ装置、および、撮像装置
CN210693579U (zh) 驱动电机
WO2021128023A1 (zh) 驱动电机、扫描模组及激光雷达
JP2013150483A (ja) モータ
CN110870181B (zh) 电机定位装置、电机及云台
CN110323919B (zh) 一种基于正应力电磁驱动的微定位装置
CN212410851U (zh) 驱动电机
JP2002199682A (ja) 中空モータおよび光波距離計
US20190004309A1 (en) Housing and housing unit
CN211958894U (zh) 激光雷达及其旋转驱动组件
US20020079767A1 (en) Small size rotary motor
CN220040770U (zh) 雷达装置及移动机器人
JP6192788B2 (ja) ステッピングモータ、レンズ装置、および、撮像装置
CN218866096U (zh) 转镜组件及激光雷达
EP4113806A1 (en) Rotary reciprocating driving actuator
US20240168134A1 (en) Driving assembly, lidar, and carrier assembly
CN216209896U (zh) 用于激光雷达的扫描装置、激光雷达
US20240019686A1 (en) Rotary reciprocating drive actuator
CN115642769A (zh) 旋转往复驱动促动器
CN113555987A (zh) 激光雷达及其旋转驱动组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947720

Country of ref document: EP

Kind code of ref document: A1