WO2021221036A1 - 組成物の供給方法、組成物及びドライエッチング方法 - Google Patents

組成物の供給方法、組成物及びドライエッチング方法 Download PDF

Info

Publication number
WO2021221036A1
WO2021221036A1 PCT/JP2021/016722 JP2021016722W WO2021221036A1 WO 2021221036 A1 WO2021221036 A1 WO 2021221036A1 JP 2021016722 W JP2021016722 W JP 2021016722W WO 2021221036 A1 WO2021221036 A1 WO 2021221036A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
supplying
trimethylamine
volume
gas
Prior art date
Application number
PCT/JP2021/016722
Other languages
English (en)
French (fr)
Inventor
敬寿 谷口
啓之 大森
章史 八尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US17/921,171 priority Critical patent/US20230167361A1/en
Priority to KR1020227041491A priority patent/KR20230005303A/ko
Priority to CN202180031263.7A priority patent/CN115461843A/zh
Priority to JP2022518071A priority patent/JPWO2021221036A1/ja
Publication of WO2021221036A1 publication Critical patent/WO2021221036A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/04Mono-, di- or tri-methylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/08Monoamines containing alkyl groups having a different number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present disclosure relates to a method for supplying a composition containing trimethylamine and dimethylethylamine, a composition containing trimethylamine and dimethylethylamine, and a dry etching method.
  • a raw material gas for semiconductor applications is required to be an ultra-high purity product in which impurity components are eliminated as much as possible.
  • Amines such as trimethylamine are being studied as gases for high-speed and high-selective etching of silicon oxide films, but large-scale equipment is required and enormous time is required to purify amines to ultra-high purity. Often does not meet the cost benefits.
  • trimethylamine forms a complicated azeotropic composition with dimethylamine and monomethylamine and is difficult to separate, and it is difficult to obtain only trimethylamine as a pure product (for example, Patent Document 1).
  • composition azeotrope As a supply method using composition azeotrope, a method of supplying a mixture of hydrogen fluoride and ethanol has been reported (for example, Patent Document 2). However, as a supply method for amines, a method using composition azeotrope has not been known so far.
  • the present inventors have formed a stable co-boiling composition with other methylamines such as monomethylamine and dimethylamine contained in a trace amount in trimethylamine by adding a small amount of dimethylethylamine to trimethylamine, and used it.
  • a stable gas composition can be supplied regardless of the amount, and have completed the present invention.
  • the method for supplying the composition of the present disclosure is a storage container in which a composition containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine is sealed in a gas phase at 10 ° C. or higher. It is characterized in that the gas of the above composition is supplied to a predetermined device while being kept at a constant temperature.
  • a composition containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine can be supplied in a stable gas composition regardless of the amount used. ..
  • the composition of the present disclosure is for use in the method for supplying the above-mentioned composition, and is characterized by containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine in the gas phase. And. Since the composition of the present disclosure contains dimethylethylamine, trimethylamine can be supplied with a stable gas composition even when trimethylamine contains dimethylamine and / or monomethylamine as impurities. Further, since dimethylethylamine has a structure similar to that of trimethylamine, there is an advantage that when it is used as an etching gas, the influence of containing dimethylethylamine is small.
  • the dry etching method of the present disclosure is characterized in that a gaseous composition and a gaseous hydrogen fluoride supplied by using the above-mentioned composition supply method are reacted with a silicon oxide without a plasma state. ..
  • the gas of the composition having a stable composition containing trimethylamine is reacted with the silicon oxide by using the above-mentioned method of supplying the composition, so that the etching process can be stably performed.
  • the method for supplying the composition of the present disclosure by adding a small amount of dimethylethylamine to trimethylamine, when trimethylamine is supplied at a temperature under a certain condition, the content of dimethylamine or monomethylamine contained as impurities is that of trimethylamine. Since it hardly fluctuates regardless of the amount used, trimethylamine can be supplied with a stable gas composition.
  • a storage container containing a composition containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine in the gas phase is kept warm at a constant temperature of 10 ° C. or higher.
  • the gas of the above composition is supplied to a predetermined device.
  • most of the weight of the composition containing trimethylamine or the like is in the liquid phase, and part of the composition is in the gas phase.
  • the gas phase in the storage container that is, the gas of the composition is supplied to a predetermined device.
  • the method for making this composition is particularly limited as long as the composition to be sealed in the storage container is a composition containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine in the gas phase.
  • the composition to be sealed in the storage container is a composition containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine in the gas phase.
  • dimethylethylamine it is preferable to add dimethylethylamine to trimethylamine.
  • Trimethylamine and dimethylethylamine may be obtained by synthesis or purchased, and the method of obtaining them is not particularly limited.
  • the trimethylamine used in the present disclosure those containing at least one of dimethylamine and monomethylamine as impurities can be used.
  • the amount of dimethylethylamine to be added is preferably 1 to 500 ppm by weight, with the total amount of the composition being 100% by weight. More preferably, it is 1 to 100 ppm by weight.
  • a method for adding dimethylethylamine to trimethylamine for example, a method known to those skilled in the art such as a pressure ratio mixing method, a gravimetric method, a half gravimetric method, and a flow-type mixing method is used. After adding trimethylamine and dimethylethylamine into the storage container, it is preferable to further mix them.
  • the above mixing can be performed by, for example, shaking mixing, overturning mixing, or the like.
  • the gas phase of the composition contains trimethylamine and dimethylethylamine, and further contains at least one of dimethylamine and monomethylamine. That is, the gas phase of the composition contains trimethylamine, dimethylethylamine and dimethylamine, contains trimethylamine, dimethylethylamine and monomethylamine, or contains trimethylamine, dimethylethylamine, dimethylamine and monomethylamine.
  • trimethylamine is preferably contained in an amount of 95% by volume or more, more preferably 98% by volume or more, and further preferably 99% by volume or more.
  • Dimethylethylamine is preferably contained in the gas phase of the above composition in an amount of 1 to 100% by volume, more preferably 1 to 50% by volume.
  • Dimethylamine is preferably contained in the gas phase of the above composition in an amount of 0 to 1000% by volume, more preferably 0 to 400% by volume.
  • the monomethylamine is preferably contained in the gas phase of the above composition in an amount of 0 to 100% by volume, more preferably 0 to 50% by volume.
  • the gas phase of the composition contains 95% by volume or more of trimethylamine, 1 to 100% by volume of dimethylethylamine, 0 to 1000% by volume of dimethylamine, and 0 to 100% by volume of monomethylamine.
  • the gas phase of the composition contains 95% by volume or more of trimethylamine, 1 to 50% by volume of dimethylethylamine, 0 to 400% by volume of dimethylamine, and 0 to 50% by volume of monomethylamine. ..
  • the gas phase of the above composition may contain impurities other than monomethylamine and dimethylamine, and other impurities include water, an inert gas, ammonia, carbon monoxide, carbon dioxide, and methane. , Methanol.
  • Moisture may be contained in the gas phase of the above composition in an amount of 1 to 1000 parts by volume ppm.
  • the content of the inert gas is preferably 5% by volume or less in the gas phase of the above composition. More preferably, it is 1% by volume or less.
  • the storage container in which the composition is sealed is kept at a constant temperature of 10 ° C. or higher. If the temperature is lower than 10 ° C., the gas composition in the gas phase in the storage container is not stable, and monomethylamine, dimethylamine, and dimethylethylamine before supplying the gas of the composition and after supplying a certain amount of gas. Concentration fluctuates greatly.
  • the temperature at which the storage container is stored is preferably 10 to 50 ° C, more preferably 15 to 40 ° C.
  • the storage container in which the above composition is sealed is not particularly limited, and any container may be used as long as it can store liquid trimethylamine or the like.
  • a storage container for example, a container made of stainless steel (SUS), manganese steel, nickel steel, chrome molybdenum steel or the like is used.
  • the method for keeping the storage container warm is not particularly limited, and a method known to those skilled in the art can be used.
  • the storage container containing the above composition is kept warm at a constant temperature of 10 ° C. or higher, and then the gas of the composition is supplied to a predetermined device.
  • the rate at which the gas of the composition is supplied is not particularly limited, and is preferably 1 to 5000 ml / min, more preferably 5 to 1000 ml / min.
  • a supply unit for connecting the storage container containing the composition and the predetermined device is provided, and the gas of the composition is supplied from the storage container to the predetermined device. Is used directly.
  • the predetermined device is not particularly limited, and examples thereof include an etching device for etching a silicon oxide film.
  • the increase or decrease in the contents of trimethylamine, dimethylethylamine, dimethylamine and monomethylamine in the gas phase is before the start of supply. It is preferably within 10% as compared with. That is, using the method for supplying the composition of the present disclosure, 90% by weight was supplied based on the respective contents of trimethylamine, dimethylethylamine, dimethylamine and monomethylamine in the gas phase before the start of supply and the total amount of the composition. The difference from the respective contents of trimethylamine, dimethylethylamine, dimethylamine and monomethylamine in the subsequent gas phase can be within 10%.
  • the present disclosure also relates to compositions containing trimethylamine, dimethylethylamine, and at least one of dimethylamine and monomethylamine in the gas phase for use in the methods of supplying the compositions described above.
  • the present disclosure also comprises a dry etching method in which a gaseous composition and gaseous hydrogen fluoride supplied using the method for supplying the composition described above are reacted with a silicon oxide without a plasma state.
  • the gas composition supplied by using the method for supplying the above-mentioned composition is the gas of the above-mentioned composition, which mainly contains trimethylamine, and further contains dimethylethylamine and at least one of dimethylamine and monomethylamine. include.
  • gaseous trimethylamine and gaseous hydrogen fluoride are reacted with silicon oxide without causing a plasma state, dry etching of silicon oxide is performed without generating gas plasma.
  • the dry etching method of the present disclosure is the first embodiment in which a gas of a composition containing gaseous hydrogen fluoride and trimethylamine is supplied to an etching apparatus and brought into contact with the silicon oxide to dry-etch the silicon oxide.
  • the gas of the composition containing trimethylamine and the gaseous hydrogen fluoride can be separately supplied to the etching apparatus to be divided into a second embodiment in which the silicon oxide is dry-etched.
  • the reaction compound finally produced is a trimethylamine salt of hexafluorosilicic acid, and the compound is sublimated into a gas at the same time as it is produced, or is thermally decomposed into a gas.
  • the gas of the composition containing gaseous hydrogen fluoride and trimethylamine may be a hydrogen fluoride salt of the composition containing trimethylamine in part or in whole.
  • the temperature at which the gas of the composition containing gaseous hydrogen fluoride and trimethylamine is brought into contact with the silicon oxide is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and 120 ° C. or lower. Is particularly preferable.
  • the contact temperature is preferably 20 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the mixing ratio of the gas of the composition containing hydrogen fluoride and trimethylamine is a value obtained by dividing the total number of moles of the composition containing trimethylamine by the number of moles of hydrogen fluoride, and is preferably 0.001 or more and 100 or less, preferably 0.01. More than 10 or less is more preferable, and 0.1 or more and 5 or less is particularly preferable.
  • the dry etching method of the present disclosure can be applied to etching a semiconductor substrate having a silicon oxide film.
  • a silicon oxide is applied to a substrate to be processed in which both a silicon oxide film and a silicon nitride film are exposed. Only the film can be selectively etched.
  • Example 1 A SUS container was filled with 1 kg of trimethylamine (TMA) having a purity of 99.9% by volume or more, and 15 mg of dimethylethylamine (DMEA) was added. While the container was kept at room temperature, the gas was discharged from the container after sufficient mixing, and the composition of the gas phase was analyzed. It contained a volume of ppm. The monomethylamine (MMA) concentration was less than 1 volume ppm. The composition analysis of the gas phase was performed by a gas chromatograph analyzer (GC-2014, manufactured by Shimadzu Corporation, detector: FID). The container was cooled to 15 ° C. and purged at a flow rate of 1000 ml / min.
  • TMA trimethylamine
  • DMEA dimethylethylamine
  • TMA concentration was 99.9% by volume or more
  • DMA concentration was 380% by volume ppm
  • MMA concentration was less than 1 volume ppm
  • DMEA concentration was 13% by volume ppm.
  • Example 2 A SUS container was filled with 1 kg of trimethylamine (TMA) having a purity of 99.9% by volume or more, which was different from that of Example 1, 15 mg of dimethylethylamine (DMEA) was added, and after sufficient mixing, gas was discharged from the container and the gas was discharged.
  • TMA trimethylamine
  • DMEA dimethylethylamine
  • the composition of the phase was analyzed. As a result, the composition was such that the DMA concentration of the gas phase was 12 volume ppm, the MMA concentration was less than 1 volume ppm, the DMEA concentration was 11 volume ppm, and the water concentration was 10 volume ppm. After that, purging was performed under the same conditions as in Example 1, and then composition analysis was performed. The results are shown in Table 1.
  • Example 3 1 kg of trimethylamine (TMA) having a purity of 99.9% by volume or more different from that of Examples 1 and 2 was filled in a SUS container, 15 mg of dimethylethylamine (DMEA) was added, and the gas was discharged from the container after sufficient mixing.
  • the composition of the gas phase was analyzed. As a result, the composition was such that the DMA concentration of the gas phase was 13 volume ppm, the MMA concentration was 45 volume ppm, the DMEA concentration was 5 volume ppm, and the water concentration was 1 volume ppm. Then, purging was performed under the same conditions as in Example 1 except that the container temperature was set to 40 ° C., and then composition analysis was performed. The results are shown in Table 1.
  • Example 1 In Examples 1 and 2 in which DMEA was added to set the purge temperature to 15 ° C. and Example 3 in which the purge temperature was set to 40 ° C., the gas composition was compared with the gas composition before purging even after purging 90% by weight.
  • the relative change amount ⁇ [(90% by weight post-use gas composition-pre-use gas composition) / pre-use gas composition] was increased or decreased by 0 to several%.
  • Comparative Example 1 the concentration of DMA decreased by about 75% as the relative change amount ⁇ , and in Comparative Example 2, DMA decreased by about 82% as the relative change amount ⁇ .
  • MMA decreased by about 79% as a relative change amount ⁇ . Further, in Comparative Example 3 in which DMEA was added but the purge temperature was 5 ° C., the concentration of DMA decreased by about 65% as the relative change amount ⁇ , and the concentration of DMEA increased by about 113% as the relative change amount ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

微量な不純物としてモノメチルアミンやジメチルアミンを含むトリメチルアミンを一定の組成で安定して供給する方法を提供する。 本発明は、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物を封入した保存容器を10℃以上の一定温度に保温して、上記組成物のガスを所定の装置に供給することを特徴とする組成物の供給方法である。

Description

組成物の供給方法、組成物及びドライエッチング方法
本開示は、トリメチルアミン及びジメチルエチルアミンを含む組成物の供給方法、トリメチルアミン及びジメチルエチルアミンを含む組成物、並びにドライエッチング方法に関する。
半導体分野では微細加工プロセスを一定にするため、原料ガスを一定組成で供給することが求められる。そのため、一般的に半導体用途の原料ガスは、不純物成分を可能な限り排除した超高純度品が必要である。
トリメチルアミン等のアミン類はシリコン酸化膜の高速・高選択エッチング用ガスとして検討されているが、アミン類を超高純度化するためには大型の設備が必要で、かつ膨大な時間を要するため、コストメリットに合わないことが多い。特にトリメチルアミンはジメチルアミンやモノメチルアミンと複雑な共沸組成を形成し分離困難であることが知られており、トリメチルアミンのみを純品として得ることが難しい(例えば、特許文献1)。
トリメチルアミンを使用する場合、供給時の圧力や使用量(パージ量)に応じて、不純物であるジメチルアミン及びモノメチルアミン濃度が変化するので、一定の組成でトリメチルアミンを供給し続けることは困難である。
特開2007-63159号公報 特開平3-241832号公報
組成共沸を利用した供給方法としては、フッ化水素とエタノールを混合して供給する方法が報告されている(例えば、特許文献2)。しかしながら、アミン類における供給方法では、組成共沸を利用する方法はこれまで知られていなかった。
本開示は、上記課題に鑑み、微量な不純物としてモノメチルアミンやジメチルアミンを含むトリメチルアミンを一定の組成で安定して供給する方法を提供することを目的とする。
本発明者らは、鋭意検討の結果、トリメチルアミンにジメチルエチルアミンを少量添加することで、トリメチルアミンに微量に含まれるモノメチルアミン、ジメチルアミン等の他のメチルアミンと安定な共沸組成を形成し、使用量によらず安定したガス組成で供給可能であることを見出し、本発明を完成させるに至った。
具体的には、本開示の組成物の供給方法は、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物を封入した保存容器を10℃以上の一定温度に保温して、上記組成物のガスを所定の装置に供給することを特徴とする。
本開示の組成物の供給方法によれば、トリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物を、使用量によらず安定したガス組成で供給することができる。
本開示の組成物は、上述の組成物の供給方法に使用するためのものであって、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含むことを特徴とする。
本開示の組成物は、ジメチルエチルアミンを含むので、トリメチルアミンが不純物としてジメチルアミン及び/又はモノメチルアミンを含む場合であっても、安定したガス組成でトリメチルアミンを供給することができる。また、ジメチルエチルアミンはトリメチルアミンと類似した構造であるため、エッチング用ガスとして用いた場合に、ジメチルエチルアミンを含有することによる影響が小さいという利点がある。
本開示のドライエッチング方法は、上述の組成物の供給方法を用いて供給された気体の組成物及び気体のフッ化水素を、プラズマ状態を伴わずにシリコン酸化物に反応させることを特徴とする。
本開示のドライエッチング方法は、上述の組成物の供給方法を用いてトリメチルアミンを含む安定した組成からなる組成物のガスをシリコン酸化物に反応させるので、エッチング処理を安定して行うことができる。
本開示の組成物の供給方法によれば、トリメチルアミンにジメチルエチルアミンを少量添加することで、トリメチルアミンを一定条件の温度で供給した場合に、不純物として含まれるジメチルアミンやモノメチルアミンの含有量がトリメチルアミンの使用量によらずほとんど変動しないため、安定したガス組成でトリメチルアミンを供給することができる。
以下、本開示について詳細に説明するが、以下に記載する構成要件の説明は本開示の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
本開示の組成物の供給方法は、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物を封入した保存容器を10℃以上の一定温度に保温して、上記組成物のガスを所定の装置に供給することを特徴とする。
トリメチルアミン等を含む組成物は、保存容器内ではその重量のうちほとんどが液相であり、一部が気相となっている。本開示の組成物の供給方法では、保存容器内の気相、すなわち組成物のガスを所定の装置に供給する。
本開示において保存容器に封入する組成物は、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物であれば、この組成物とする方法は特に限定されないが、トリメチルアミンにジメチルエチルアミンを添加したものが好ましい。トリメチルアミン及びジメチルエチルアミンは、それぞれ合成して得られたものであってもよいし、購入したものであってもよく、入手方法は特に限定されない。本開示で使用するトリメチルアミンは、ジメチルアミン及びモノメチルアミンの少なくとも1種を不純物として含むものを使用することができる。
添加するジメチルエチルアミンの量は、組成物の全量を100重量%として、1~500重量ppmが好ましい。より好ましくは1~100重量ppmである。トリメチルアミンにジメチルエチルアミンを添加する方法としては、例えば、圧力比混合法、重量法、半重量法、流通式混合法等の当業者に公知の方法が用いられる。
トリメチルアミン及びジメチルエチルアミンを保存容器内に添加した後は、更に混合することが好ましい。上記混合は、例えば、振とう混和、転倒混和等で行うことができる。
本開示において、上記組成物の気相中にはトリメチルアミン及びジメチルエチルアミンが含まれ、更にジメチルアミン及びモノメチルアミンの少なくとも1種を含む。すなわち、上記組成物の気相中にはトリメチルアミン、ジメチルエチルアミン及びジメチルアミンが含まれるか、トリメチルアミン、ジメチルエチルアミン及びモノメチルアミンが含まれるか、又はトリメチルアミン、ジメチルエチルアミン、ジメチルアミン及びモノメチルアミンが含まれる。
上記組成物の気相中において、トリメチルアミンは95体積%以上含まれることが好ましく、98体積%以上含まれることがより好ましく、99体積%以上含まれることが更に好ましい。
ジメチルエチルアミンは、上記組成物の気相中に1~100体積ppm含まれることが好ましく、1~50体積ppm含まれることがより好ましい。
ジメチルアミンは、上記組成物の気相中に0~1000体積ppm含まれることが好ましく、0~400体積ppm含まれることがより好ましい。
モノメチルアミンは、上記組成物の気相中に0~100体積ppm含まれることが好ましく、0~50体積ppm含まれることがより好ましい。
本開示の好ましい態様として、上記組成物の気相中にトリメチルアミンを95体積%以上、ジメチルエチルアミンを1~100体積ppm、ジメチルアミンを0~1000体積ppm及びモノメチルアミンを0~100体積ppm含む。
本開示のより好ましい態様として、上記組成物の気相中にトリメチルアミンを95体積%以上、ジメチルエチルアミンを1~50体積ppm、ジメチルアミンを0~400体積ppm及びモノメチルアミンを0~50体積ppm含む。
上記組成物の気相中には、モノメチルアミン、ジメチルアミン以外の他の不純物が含まれていてもよく、他の不純物としては、水分、不活性ガス、アンモニア、一酸化炭素、二酸化炭素、メタン、メタノールが挙げられる。水分は、上記組成物の気相中に1~1000体積ppm含まれていてもよい。不活性ガスの含有量は、上記組成物の気相中に5体積%以下が好ましい。より好ましくは1体積%以下である。
本開示の組成物の供給方法において、上記組成物を封入した保存容器は10℃以上の一定温度に保温する。10℃未満であると、保存容器内の気相中のガス組成が安定せず、組成物のガスを供給する前と、ガスを一定量供給した後とで、モノメチルアミン、ジメチルアミン、ジメチルエチルアミンの濃度が大きく変動する。保存容器を保存する温度は、10~50℃が好ましく、15~40℃がより好ましい。
上記組成物を封入する保存容器は特に限定されず、液体のトリメチルアミン等を保存可能な容器であればよい。このような保存容器としては、例えばステンレス鋼(SUS)製、マンガン鋼製、ニッケル鋼製、クロムモリブデン鋼製の容器等が用いられる。
保存容器を保温する方法としては特に限定されず、当業者に公知の方法等を用い得る。
本開示において、上記組成物を封入した保存容器を10℃以上の一定温度に保温して、その後組成物のガスを所定の装置に供給する。
組成物のガスを供給する速度は特に限定されず、1~5000ml/minが好ましく、5~1000ml/minがより好ましい。
組成物のガスを所定の装置に供給する方法としては、例えば、上記組成物を封入した保存容器と所定の装置とを連結する供給部を設けて、保存容器から所定の装置に組成物のガスを直接導入する方法が用いられる。
上記所定の装置としては特に限定されず、例えばシリコン酸化膜をエッチングするエッチング装置等が挙げられる。
本開示において、上記組成物のガスを組成物の全量を基準として90重量%供給した後の、気相中のトリメチルアミン、ジメチルエチルアミン、ジメチルアミン及びモノメチルアミンの各含有量の増減は、供給開始前と比較して10%以内であることが好ましい。つまり、本開示の組成物の供給方法を用いると、供給開始前の気相中のトリメチルアミン、ジメチルエチルアミン、ジメチルアミン及びモノメチルアミンの各含有量と、組成物の全量を基準として90重量%供給した後の気相中のトリメチルアミン、ジメチルエチルアミン、ジメチルアミン及びモノメチルアミンの各含有量との差を、10%以内とすることができる。
本開示はまた、上述の組成物の供給方法に使用するための、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物に関する。
本開示はまた、上述の組成物の供給方法を用いて供給された気体の組成物及び気体のフッ化水素を、プラズマ状態を伴わずにシリコン酸化物に反応させることを特徴とするドライエッチング方法に関する。上述の組成物の供給方法を用いて供給された気体の組成物とは、上記組成物のガスであり、主にトリメチルアミンを含み、更にジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む。
本開示のエッチング方法では、気体のトリメチルアミンと気体のフッ化水素とを、プラズマ状態を伴わずにシリコン酸化物に反応させるので、ガスプラズマを発生させることなく、シリコン酸化物のドライエッチングを行う。
本開示のドライエッチング方法は、気体のフッ化水素及びトリメチルアミンを含む組成物のガスをエッチング装置に供給し、シリコン酸化物に接触させることで、シリコン酸化物をドライエッチングする第1の実施形態と、トリメチルアミンを含む組成物のガスと、気体のフッ化水素とを分けてエッチング装置に供給して、シリコン酸化物をドライエッチングする第2の実施形態とに分けることができる。いずれの実施形態であっても、最終的に生成する反応化合物はヘキサフルオロケイ酸のトリメチルアミン塩であり、上記化合物は、生成すると同時に昇華して気体になるか、熱分解して気体になる。
第1の実施形態では、気体のフッ化水素及びトリメチルアミンを含む組成物のガスは、その一部又は全部がトリメチルアミンを含む組成物のフッ化水素塩となっていてもよい。
気体のフッ化水素及びトリメチルアミンを含む組成物のガスをシリコン酸化物に接触させる際の温度は、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが特に好ましい。また、接触温度は20℃以上であることが好ましく、50℃以上であることがより好ましく、80℃以上であることが特に好ましい。
フッ化水素とトリメチルアミンを含む組成物のガスの混合比は、トリメチルアミンを含む組成物の合計モル数をフッ化水素のモル数で除した値で、0.001以上100以下が好ましく、0.01以上10以下がより好ましく、0.1以上5以下が特に好ましい。
本開示のドライエッチング方法は、シリコン酸化物膜を有する半導体基板のエッチングに適用することができ、例えば、シリコン酸化物膜とシリコン窒化物膜の両方が露出した被処理基板に対し、シリコン酸化物膜のみを選択的にエッチングすることができる。
以下、本開示の実施形態をより具体的に開示した実施例を示す。なお、本開示はこれらの実施例のみに限定されるものではない。
[実施例1]
純度99.9体積%以上のトリメチルアミン(TMA)をSUS製容器に1kg充填し、15mgのジメチルエチルアミン(DMEA)を添加した。容器を室温に保った状態で、十分に混合した後に容器からガスを排出して気相の組成分析を行ったところ、DMEA濃度12体積ppm、ジメチルアミン(DMA)濃度387体積ppm、水分濃度410体積ppmを含んでいた。モノメチルアミン(MMA)濃度は1体積ppm未満であった。気相の組成分析は、ガスクロマトグラフ分析装置(GC-2014、株式会社島津製作所製、検出器:FID)で行った。容器を15℃まで冷却し、流量1000ml/minでパージを行った。容器中のTMAの残量が0.1kgとなったことを確認し(TMAを90重量%使用)、改めて気相の組成分析を行った。このときの気相の組成分析は、15℃に冷却した容器からパージしたガスについて、室温で行った。その結果、TMA濃度は99.9体積%以上、DMA濃度は380体積ppm、MMA濃度は1体積ppm未満、DMEA濃度は13体積ppmであった。結果を表1に示す。
[実施例2]
実施例1と異なる純度99.9体積%以上のトリメチルアミン(TMA)をSUS製容器に1kg充填し、15mgのジメチルエチルアミン(DMEA)を添加し、十分に混合した後に容器からガスを排出して気相の組成分析を行った。その結果、気相のDMA濃度が12体積ppm、MMA濃度が1体積ppm未満、DMEA濃度が11体積ppm、水分濃度が10体積ppmの組成となっていた。この後、実施例1と同様の条件でパージを行い、その後組成分析を行った。結果を表1に示す。
[実施例3]
実施例1及び2と異なる純度99.9体積%以上のトリメチルアミン(TMA)をSUS製容器に1kg充填し、15mgのジメチルエチルアミン(DMEA)を添加し、十分に混合した後に容器からガスを排出して気相の組成分析を行った。その結果、気相のDMA濃度が13体積ppm、MMA濃度が45体積ppm、DMEA濃度が5体積ppm、水分濃度が1体積ppmの組成となっていた。その後、容器温度を40℃とした以外は実施例1と同様の条件でパージを行い、その後組成分析を行った。結果を表1に示す。
[比較例1]
DMEAを添加しなかった以外は、実施例1と同じトリメチルアミン(TMA)を用い、実施例1と同様の条件でパージを行い、その後組成分析を行った。結果を表1に示す。
[比較例2]
DMEAを添加しなかった以外は、実施例3と同じトリメチルアミン(TMA)を用い、実施例1と同様の条件でパージを行い、その後組成分析を行った。結果を表1に示す。
[比較例3]
実施例1と同じトリメチルアミン(TMA)を用い、実施例1と同様にジメチルエチルアミン(DMEA)15mgを添加し、その組成を分析したところ、表1に示す値となった。この後、容器温度を5℃に冷却し、実施例1と同様の条件でパージを行い、その後組成分析を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
DMEAを添加してパージ温度を15℃とした実施例1、2及びパージ温度を40℃とした実施例3は、ガス組成物を90重量%パージした後も、パージ前のガス組成と比較してTMA、DMA、MMA及びDMEAのいずれも、相対変化量Δ[(90重量%使用後ガス組成-使用前ガス組成)/使用前ガス組成]として0~数%の増減であった。一方、DMEAを添加しなかった比較例1、2について、比較例1ではDMAの濃度が相対変化量Δとして約75%減少し、比較例2ではDMAが相対変化量Δとして約82%減少し、MMAが相対変化量Δとして約79%減少した。さらに、DMEAを添加したがパージ温度を5℃とした比較例3は、DMAの濃度が相対変化量Δとして約65%減少し、DMEAの濃度が相対変化量Δとして約113%増加した。

Claims (10)

  1. 気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物を封入した保存容器を10℃以上の一定温度に保温して、前記組成物のガスを所定の装置に供給することを特徴とする組成物の供給方法。
  2. 前記気相中にトリメチルアミンを95体積%以上、ジメチルエチルアミンを1~100体積ppm、ジメチルアミンを0~1000体積ppm及びモノメチルアミンを0~100体積ppm含むことを特徴とする請求項1に記載の組成物の供給方法。
  3. 前記気相中にトリメチルアミンを95体積%以上、ジメチルエチルアミンを1~50体積ppm、ジメチルアミンを0~400体積ppm及びモノメチルアミンを0~50体積ppm含むことを特徴とする請求項1又は2に記載の組成物の供給方法。
  4. 前記保存容器を10~50℃の一定温度に保温する請求項1~3のいずれか1項に記載の組成物の供給方法。
  5. 前記保存容器を15~40℃の一定温度に保温する請求項1~4のいずれか1項に記載の組成物の供給方法。
  6. 前記組成物のガスを組成物の全量を基準として90重量%供給した後の、気相中のトリメチルアミン、ジメチルエチルアミン、ジメチルアミン及びモノメチルアミンの各含有量の増減が、供給開始前と比較して10%以内である請求項1~5のいずれか1項に記載の組成物の供給方法。
  7. 前記気相中にさらに水分を1~1000体積ppm含むことを特徴とする請求項1~6のいずれか1項に記載の組成物の供給方法。
  8. 前記気相中にさらに不活性ガスを含むことを特徴とする請求項1~7のいずれか1項に記載の組成物の供給方法。
  9. 請求項1~8のいずれか1項に記載の組成物の供給方法に使用するための、気相中にトリメチルアミンと、ジメチルエチルアミンと、ジメチルアミン及びモノメチルアミンの少なくとも1種とを含む組成物。
  10. 請求項1~8のいずれか1項に記載の組成物の供給方法を用いて供給された気体の組成物及び気体のフッ化水素を、プラズマ状態を伴わずにシリコン酸化物に反応させることを特徴とするドライエッチング方法。
PCT/JP2021/016722 2020-04-28 2021-04-27 組成物の供給方法、組成物及びドライエッチング方法 WO2021221036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/921,171 US20230167361A1 (en) 2020-04-28 2021-04-27 Method for supplying composition, composition and dry etching method
KR1020227041491A KR20230005303A (ko) 2020-04-28 2021-04-27 조성물의 공급 방법, 조성물 및 드라이 에칭 방법
CN202180031263.7A CN115461843A (zh) 2020-04-28 2021-04-27 组合物的供给方法、组合物以及干蚀刻方法
JP2022518071A JPWO2021221036A1 (ja) 2020-04-28 2021-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079683 2020-04-28
JP2020079683 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021221036A1 true WO2021221036A1 (ja) 2021-11-04

Family

ID=78374162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016722 WO2021221036A1 (ja) 2020-04-28 2021-04-27 組成物の供給方法、組成物及びドライエッチング方法

Country Status (6)

Country Link
US (1) US20230167361A1 (ja)
JP (1) JPWO2021221036A1 (ja)
KR (1) KR20230005303A (ja)
CN (1) CN115461843A (ja)
TW (1) TW202146704A (ja)
WO (1) WO2021221036A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526611A (ja) * 2008-07-04 2011-10-13 アルケマ フランス 高純度n−エチルメチルアミンおよびこの調製方法
WO2017159544A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
WO2020054476A1 (ja) * 2018-09-13 2020-03-19 セントラル硝子株式会社 シリコン酸化物のエッチング方法及びエッチング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553946B2 (ja) 1990-02-20 1996-11-13 信淳 渡辺 基板表面処理用ガスの供給方法
JP2007063159A (ja) 2005-08-30 2007-03-15 Mitsubishi Rayon Co Ltd メチルアミン類の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526611A (ja) * 2008-07-04 2011-10-13 アルケマ フランス 高純度n−エチルメチルアミンおよびこの調製方法
WO2017159544A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
WO2020054476A1 (ja) * 2018-09-13 2020-03-19 セントラル硝子株式会社 シリコン酸化物のエッチング方法及びエッチング装置

Also Published As

Publication number Publication date
JPWO2021221036A1 (ja) 2021-11-04
KR20230005303A (ko) 2023-01-09
TW202146704A (zh) 2021-12-16
US20230167361A1 (en) 2023-06-01
CN115461843A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
KR20210131896A (ko) 조성물의 공급방법, 조성물, 공급장치 및 조성물의 충전방법
US20180127272A1 (en) Removal of moisture from hydrazine
US20120231180A1 (en) Process of purifying ruthenium precursors
WO2021221036A1 (ja) 組成物の供給方法、組成物及びドライエッチング方法
WO2017159544A1 (ja) ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
JP4399119B2 (ja) カルバジン酸メチルの製法
TW200936601A (en) Metal compound, chemical vapor deposition material containing the same, and method for producing metal-containing thin film
WO2017169809A1 (ja) フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法
JPH04318920A (ja) 気相結晶成長装置
TWI320035B (en) Process for producing perfluorocarbons and use thereof
TWI297324B (en) Removal of sulfur-containing impurities from volatile metal hydrides
EP3153473A1 (en) Method for purifying dodecacarbonyl triruthenium
JP7485922B2 (ja) 組成物の供給方法、組成物、供給装置及び組成物の充填方法
JP4505680B2 (ja) フッ化カルボニルの製造方法
JP4904032B2 (ja) 精製ボラジン化合物の製造方法
JP2019199444A (ja) ペンタンジイソシアネートの製造方法
JP2006063065A (ja) アルキルテトラゾール誘導体及び該誘導体を用いた窒素含有膜の製造方法並びにアルキルテトラゾール誘導体の精製方法
JP2013173716A (ja) コバルト化合物の混合物、及び当該コバルト化合物の混合物を用いたコバルト含有薄膜の製造方法
JP5842687B2 (ja) コバルト膜形成用原料及び当該原料を用いたコバルト含有薄膜の製造方法
JP5213408B2 (ja) 水素化ホウ素アルカリの取扱方法及びボラジン化合物の製造法
CN1310861C (zh) 3-氯丙炔的内在安全处理方法
US20240270764A1 (en) Method for purifying tin compounds
JP2021011414A (ja) 二酸化炭素安定同位体の製造装置、一酸化炭素安定同位体の製造装置
TW202406898A (zh) 製造實質上不含亞硝胺、實質上不含過氧化物、實質上無色之氧化胺之方法,以及可由該方法獲得之n—甲基𠰌啉n—氧化物
Lagrille et al. Investigation of N‐carbamoylamino acid nitrosation by {NO+ O2} in the solid‐gas phase. Effects of NOx speciation and kinetic evidence for a multiple‐stage process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227041491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796160

Country of ref document: EP

Kind code of ref document: A1