WO2021220730A1 - 成分測定方法および成分測定用ストリップ - Google Patents

成分測定方法および成分測定用ストリップ Download PDF

Info

Publication number
WO2021220730A1
WO2021220730A1 PCT/JP2021/014544 JP2021014544W WO2021220730A1 WO 2021220730 A1 WO2021220730 A1 WO 2021220730A1 JP 2021014544 W JP2021014544 W JP 2021014544W WO 2021220730 A1 WO2021220730 A1 WO 2021220730A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
pad
strip
liquid sample
reagent pad
Prior art date
Application number
PCT/JP2021/014544
Other languages
English (en)
French (fr)
Inventor
亮二 阿部
裕也 石井
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2021220730A1 publication Critical patent/WO2021220730A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements

Definitions

  • the present invention relates to a component measuring method for measuring a component in a liquid sample and a component measuring strip.
  • Patent Document 1 discloses a technique for detecting a physical quantity of a nutrient solution in hydroponic cultivation adopting a circulation method and adjusting cultivation environment conditions such as pH and nutrient concentration of the nutrient solution based on the detection result. There is.
  • HPLC liquid chromatography
  • the color development reaction chemical reaction accompanied by color development or discoloration
  • the components in the sample are analyzed.
  • a colorimetric method, a spectrophotometric method, or the like is adopted. Such measurements are particularly useful for early screening tests on liquid samples.
  • the color reaction does not occur only by mixing one kind of reagent with the liquid sample, and in order to cause the color reaction, the first reagent is further added. It may be necessary to mix a second reagent different from the above.
  • a test paper holding the first reagent is immersed in the liquid sample to generate a chemical reaction product between the liquid sample and the first reagent.
  • the test paper on which the chemical reaction product is produced is immersed or added in the second reagent to cause a chemical reaction between the chemical reaction product and the second reagent, and a predetermined value is determined according to the component concentration of the liquid sample.
  • Produces a colored reaction product The component concentration in the liquid sample is measured by performing optical measurement (spectral measurement or the like) on the test paper on which this reaction product is produced.
  • an object of the present invention is to provide a component measuring method and a component measuring strip capable of measuring a component in a liquid sample in a short time and easily.
  • a first reagent pad for holding the first reagent and a second reagent pad for holding the second reagent are provided on the base sheet.
  • the first reagent pad holding the first reagent and the second reagent pad holding the second reagent are brought into contact with the liquid sample only once with the strip provided on one base sheet.
  • a color reaction can be generated in. Therefore, even when it is necessary to generate a color reaction using the first reagent and the second reagent, the measurement can be performed in a short time.
  • the first reagent and the second reagent are each held in the reagent pad, handling of both reagents (for example, prevention of leakage to the outside), labor for disposal, and a container for holding both reagents are not required. Therefore, reagent management becomes easy.
  • the third step includes a step of generating a first reaction between the liquid sample and the first reagent, a reaction product produced by the first reaction, and the second reagent.
  • the second reaction may be the result of the color reaction, including the step of generating the second reaction.
  • the result of the color reaction can be appropriately obtained according to the component concentration in the liquid sample.
  • the strip in which the first reagent pad and the second reagent pad are provided adjacent to each other on the base material sheet may be prepared. ..
  • the liquid sample, the first reagent, and the second reagent can be easily mixed in the second step.
  • the strip in which the first reagent pad and the second reagent pad are overlapped on the base material sheet may be prepared.
  • the liquid sample, the first reagent and the second reagent can be mixed more appropriately.
  • the second reagent may be either an acid reagent or an alkaline reagent.
  • the pH such as acidity and alkalinity can be adjusted by mixing the second reagent, a pH-dependent color reaction can be appropriately generated in the third step.
  • the second reagent may be a non-volatile acid. In this case, the components can be appropriately measured by using the strip fixed to the reagent pad without volatilizing the second reagent.
  • the first reagent or the second reagent may be either an oxidizing agent or a reducing agent.
  • the oxidation and reduction actions can be appropriately generated in the third step.
  • the first reagent may be a chlorination reagent.
  • the oxidizing agent is often unstable in an aqueous solution, but since the chlorinated reagent is relatively stable, a strip fixed to the reagent pad without being decomposed can be used. It can be used to appropriately measure the components.
  • one aspect of the component measurement strip according to the present invention is a first reagent pad provided on the base sheet for holding the first reagent and adjacent to the first reagent pad on the base sheet.
  • the first reagent pad and the second reagent pad are provided with a second reagent pad for holding the second reagent, and when the liquid sample is brought into contact with the first reagent pad, the liquid sample and the second reagent pad are provided.
  • the first reagent held by the 1 reagent pad and the second reagent held by the second reagent pad are mixed and arranged so that a color-developing reaction occurs.
  • the strip for measuring the components is provided.
  • the color reaction can be appropriately generated by just contacting the liquid sample once. Therefore, it is possible to obtain a strip capable of measuring the components in the liquid sample in a short time and easily.
  • the first reagent pad and the second reagent pad may be made of test paper. In this case, the reagent can be appropriately retained. Further, in the above strip for component measurement, when the first reagent pad and the second reagent pad are brought into contact with each other, a first reaction between the liquid sample and the first reagent first occurs. Then, it may be arranged so that the second reaction between the reactant produced by the first reaction and the second reagent occurs. In this case, the color reaction can be appropriately generated according to the component concentration in the liquid sample.
  • the first reagent pad and the second reagent pad may be provided so as to be overlapped on the base material sheet.
  • the liquid sample, the first reagent, and the second reagent can be appropriately mixed when they are brought into contact with the liquid sample.
  • the first reagent pad and the second reagent pad are provided on the base material sheet in the order of the second reagent pad and the first reagent pad. You may.
  • the first reagent pad in which the coloration region appears is arranged on the outermost surface. Therefore, it becomes easy to compare the colors in the coloration region.
  • the first reagent pad and the second reagent pad may be provided side by side on the same surface of the base material sheet in contact with each other.
  • the liquid sample, the first reagent, and the second reagent can be appropriately mixed when they are brought into contact with the liquid sample.
  • each of the plurality of first reagent pads holding the different first reagent is provided, and each of the plurality of first reagent pads and the second reagent pad are mutually exclusive. It may be provided on the base material sheet in contact with the base sheet. In this case, it is possible to measure a plurality of different components at once. Moreover, since the second reagent pad is shared, the cost can be reduced accordingly.
  • the second reagent may be either an acid reagent or an alkaline reagent. In this case, a pH-dependent color reaction can be appropriately generated.
  • the second reagent may be a non-volatile acid. In this case, the strip can be a strip fixed to the reagent pad without volatilizing the second reagent.
  • the first reagent or the second reagent may be either an oxidizing agent or a reducing agent.
  • the oxidation or reduction action can be appropriately generated in the third step.
  • the first reagent may be a chlorinating reagent.
  • the oxidizing agent is often unstable in an aqueous solution, but since the chlorinated reagent is relatively stable, a strip fixed to the reagent pad without being decomposed is used. , The component can be measured appropriately.
  • one aspect of the method for producing a component measurement strip is a first step of producing a first reagent pad for holding a first reagent and a second reagent pad for producing a second reagent.
  • the second step includes a third step of installing the first reagent pad and the second reagent pad adjacent to each other on the base sheet, and the third step includes when the liquid samples are brought into contact with each other.
  • the first reagent pad and the first reagent pad are mixed so that the liquid sample, the first reagent held by the first reagent pad, and the second reagent held by the second reagent pad are mixed to generate a coloring reaction.
  • a second reagent pad is installed. This makes it possible to manufacture a strip capable of measuring the components in a liquid sample in a short time and easily.
  • the second step includes a step of impregnating the main body of the second reagent pad with the solution of the second reagent and the step of impregnating the main body of the second reagent with the solution of the second reagent.
  • the second reagent may be a non-volatile acid, comprising the step of drying the second reagent pad.
  • the second reagent in the second step of producing the second reagent pad, the second reagent can be appropriately fixed to the reagent pad even after the drying step.
  • one aspect of the component measuring apparatus is a strip in which a first reagent pad for holding a first reagent and a second reagent pad for holding a second reagent hold a strip provided on a base sheet.
  • It is provided with a measuring unit for comparing the colors of the reagents and measuring the concentration of the components in the liquid sample. Thereby, the component concentration in the liquid sample can be appropriately measured.
  • the components in the liquid sample can be measured easily in a short time.
  • a component measuring device for measuring a component in a liquid sample by using a color reaction between a color-developing reagent and a liquid sample will be described.
  • This component measuring device is used, for example, in a liquid analysis system that analyzes the components of a nutrient solution in which nutrients required for plants (crops such as vegetables) are dissolved in water in a plant factory.
  • FIG. 9 is a diagram showing an example of a liquid analysis system in a plant factory.
  • nutrient solution cultivation is carried out using a nutrient solution in which nutrients necessary for plants (crops such as vegetables) are dissolved in water.
  • FIG. 9 shows an example of circulation type hydroponics in which the nutrient solution 91 is circulated as the nutrient solution cultivation.
  • the nutrient solution 91 supplied to the cultivation tank 93 in which the crop 92 is grown is circulated by the liquid supply pump 94 via the circulation flow path 95.
  • a part of the circulating nutrient solution 91 is automatically collected, for example, through a liquid sampling flow path 96 branched from a part of the circulation flow path 95, and the collected nutrient solution 91 is a component of the liquid analyzer 97. Be analyzed.
  • the liquid analyzer 97 can be, for example, a component measurement analyzer that employs high performance liquid chromatography (HPLC) for the analysis of the nutrient solution 91. In this case, the liquid analyzer 97 can accurately analyze the components of a large number of items in the nutrient solution 91, but the measurement takes time and the apparatus itself becomes large-scale.
  • HPLC high performance liquid chromatography
  • a method of measuring the components in the nutrient solution 91 is used by using the color reaction between the color-developing reagent and the nutrient solution 91.
  • a strip (test piece) holding the reagent is prepared. Structural examples of the strip are shown in FIGS. 10A and 10B. As shown in FIGS. 10A and 10B, the strip 10'has a structure in which a reagent pad 11 for holding a reagent is provided on one side surface of the strip-shaped base sheet 13 in the vicinity of one end of the base sheet 13. Has.
  • a liquid sample 31 for example, a nutrient solution 91 for hydroponics shown in FIG. 9 held in the sample container 31a is prepared.
  • the strip 10'shown in FIGS. 10A and 10B is immersed in the liquid sample 31 (contact step). At this time, at least a part of the reagent pad 11 is sure to be immersed in the liquid sample 31. It is preferable that all the reagent pads 11 are immersed in the liquid sample 31.
  • the reagent pad 11 is located on the upper surface side, and the liquid sample 31 is used as a reagent using a pipette or the like. It may be dropped onto the pad 11 portion.
  • the liquid sample 31 and the reagent react on the reagent pad 11, and a color reaction occurs according to the concentration of the components in the liquid sample 31. Therefore, the concentration of the component in the liquid sample 31 can be measured based on the degree of color of the reagent pad 11.
  • a strip 10'with a reagent pad 11 holding the first reagent is prepared. Then, as shown in FIG. 11A or FIG. 11B described above, the strip 10'is immersed in the liquid sample 31 (first contact step). As a result, the liquid sample 31 and the first reagent are reacted.
  • the second reagent 22 held in the second reagent container 22a is prepared.
  • the strip 10'that has undergone the step shown in FIG. 11A or FIG. 11B is dried, and the dried strip 10'is immersed in the second reagent 22 (second contact step).
  • the strip 10' is arranged so that the reagent pad 11 is located on the upper surface side, and the second reagent 22 is placed on the reagent pad 11 portion using a pipette or the like. You may drop it in.
  • a chemical reaction between the liquid sample 31 and the first reagent and the second reagent 22 occurs, and a reaction product is produced.
  • the produced reaction product exhibits a predetermined color depending on the component concentration of the liquid sample 31.
  • a pH adjusting agent such as an acid reagent or an alkaline reagent, an oxidation-reducing agent, or the like can be used.
  • the strip 10 ′ obtained from the color reaction is set in the component measuring device 100 ′ as shown in FIG. 13, and the component concentration in the liquid sample 31 is measured (color ratio step).
  • the component measuring device 100' is, for example, an optical measuring device (spectrophotometer).
  • the component measuring device 100' can measure the component concentration in the liquid sample 31 by comparing the color of the coloring region on the reagent pad 11 of the strip 10'. When the color of the colorimetric region is to be compared, the colorimetric region may be visually observed and the component concentration in the liquid sample 31 may be estimated by referring to, for example, a colorimetric table.
  • the components in the liquid sample 31 are measured easily in a short time without requiring complicated management of the liquid.
  • a first reagent pad (test paper in this embodiment) holding the first reagent on one strip-shaped base material sheet and a second reagent holding the second reagent.
  • a strip provided with a pad (test strip in this embodiment) is used.
  • FIGS. 1A and 1B are diagrams showing a configuration example of the strip 10 for component measurement in the present embodiment.
  • the strip 10 is a first test paper (No. 1) that holds the first reagent on one side surface of the strip-shaped base sheet 13 in the vicinity of one end of the base sheet 13.
  • 1 Reagent pad) 11 and a second test strip (second reagent pad) 12 holding the second reagent are provided adjacent to each other.
  • the first test paper 11 and the second test paper 12 are provided on the base sheet 13 in the order of the second test paper 12 and the first test paper 11 from the bottom.
  • the base sheet 13 can be made of, for example, polyester.
  • the main body of the first test paper 11 and the pad main body serving as the main body of the second test paper 12 can be composed of a hygroscopic sheet (hygroscopic small piece sheet).
  • a hygroscopic sheet for example, a filter paper made of cellulose, cellulose nanofibers (CNF), glass fiber, or the like, a porous film, or the like is used.
  • the manufacturing steps shown in FIG. 2 include [A] a manufacturing step of the first test paper 11 (first step), [B] a manufacturing step of the second test paper 12 (second step), and [C] the first test paper.
  • the installation step (third step) of 11 and the second test paper 12 is included.
  • the first test paper 11 is manufactured through the following steps. First, the test paper main body 11a made of a hygroscopic small piece sheet is immersed in the solution of the first reagent 21 held in the first reagent container 21a to impregnate the test paper main body 11a with the solution of the first reagent 21. (Immersion step). In this impregnation step, the solution of the first reagent 21 may be dropped onto the test paper body 11a to impregnate the test paper body 11a with the solution of the first reagent 21. Next, the test paper 11b impregnated with the solution of the first reagent 21 is dried to remove the solvent 21b (drying step).
  • the drying method for example, a heat drying method can be adopted.
  • the drying may be performed at room temperature.
  • the drying method is not limited to the above, and for example, freeze-drying, vacuum drying, blast drying by blowing dry air, or the like can be adopted. In this way, the first test paper 11 holding the first reagent 21 is produced through the impregnation step and the drying step.
  • the second test paper 12 is manufactured through the following steps. First, the test paper main body 12a made of a hygroscopic small piece sheet is immersed in the solution of the second reagent 22 held in the second reagent container 22a to impregnate the test paper main body 12a with the solution of the second reagent 22. (Immersion step). In this impregnation step, the solution of the second reagent 22 may be dropped onto the test paper body 12a to impregnate the test paper body 12a with the solution of the second reagent 22. Next, the test paper 12b impregnated with the solution of the second reagent 22 is dried to remove the solvent 22b (drying step).
  • the drying method for example, a heat drying method can be adopted.
  • the drying may be performed at room temperature.
  • the drying method is not limited to the above, and for example, freeze-drying, vacuum drying, blast drying by blowing dry air, or the like can be adopted. In this way, the second test paper 12 holding the second reagent 22 is produced through the impregnation step and the drying step.
  • the first test paper 11 obtained in the step [A] and the second test paper 12 obtained in the step [B] are installed adjacent to one side of the base sheet 13. Specifically, it is installed on one side surface of the base sheet 13 so as to be laminated in the order of the second test paper 12 and the first test paper 11 from the bottom near one end of the base sheet 13.
  • the first test paper 11 and the second test paper 12 are fixed to the base sheet 13 with, for example, an adhesive.
  • the adhesive may be any adhesive that does not affect the reaction between the liquid sample 31 and the first reagent 21, or the reaction between the chemical reaction product between the liquid sample 31 and the first reagent 21 and the second reagent 22. Any type is acceptable.
  • the components to be measured are potassium (K), phosphorus (P), ammonium (NH 4 ), nitrate (NO 3 ), and calcium (Ca). , Magnesium (Mg), Boron (B), Iron (Fe) and the like.
  • the first reagent 21 held by the first test paper 11 is dipicrylamine sodium (Dipicrylamine). Sodium Salt) and sodium hydroxide (NaOH) are used.
  • a non-volatile acid such as trichloroacetic acid (CCl 3 COOH) is used as the second reagent 22 held by the second test paper 12.
  • CCl 3 COOH trichloroacetic acid
  • Some acid reagents are volatile, but when a volatile acid reagent is used as the second reagent 22, the drying step in the preparation step (step [B]) of the second test paper 12 shown in FIG. In addition to the solvent 22b, the second reagent 22 itself volatilizes. As a result, the amount of the second reagent 22 held by the second test paper 12 is reduced or eliminated. Therefore, in the present embodiment, when an acid reagent is used as the second reagent 22, a non-volatile acid is used. For the same reason, it is preferable to use a non-volatile reagent for the first reagent 21.
  • non-volatile acids examples include boric acid, metasilicic acid, phosphoric acid, sulfuric acid, thiosulfate, perchloric acid, chloric acid, chromic acid, dichromic acid, arsenic, and arsenic, in addition to the above trichloroacetic acid.
  • examples thereof include acids, bromic acids, iodic acids, hexachloride platinum (IV) acids and tetrachloride (III) acids.
  • liquid sample 31 is a nutrient solution for hydroponics
  • trichloroacetic acid, metasilicic acid, thiosulfuric acid, bromic acid, and iodine do not affect the nutrient solution analysis (do not overlap with the components in the nutrient solution). Acids are preferred.
  • a pH adjuster for adjusting the acidity can be used as the second reagent 22 as the second reagent 22 as the second reagent 22, a pH adjuster for adjusting the acidity can be used as the second reagent 22.
  • the first reagent 21 held by the first test paper 11 is heptamolybdic acid six.
  • ammonium (English chemical name: ammonium molybdate tetrahydrate: (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O) is, and trichloroacetic acid is used.
  • a reducing agent such as tin (II) chloride (STANNOUS CHLORIDE: SnCl 2 ), hydrazine sulfate, ascorbic acid, tetramethylbenzidine, hydroquinone, and sodium sulfite is used. Be done.
  • the first reagent 21 held by the first test paper 11 is sodium dichloroisocyanurate.
  • trichloroisocyanuric acid C 3 Cl 3 N 3 O 3
  • other chlorinating reagents that are oxidizing agents are used.
  • the second reagent 22 held by the second test paper 12 includes sodium salicylate (C 7 H 5 NaO 3 ), phenol (Phenol: C 6 H 5 OH), and naphthol (Naphthol: C 10 H 8). O) is used.
  • the first reagent 21 and the second reagent 22 can be appropriately selected according to the components to be measured.
  • the component to be measured is potassium
  • an acid reagent is used as the second reagent 22
  • an alkaline reagent may be used depending on the component to be measured.
  • the strip 10 shown in FIGS. 1A and 1B is prepared.
  • the strip 10 is immersed in the liquid sample 31 held in the sample container 31a, and the liquid sample 31 is brought into contact with the strip 10. At this time, at least a part of the first test paper 11 and at least a part of the second test paper 12 are sure to be immersed in the liquid sample 31. It is preferable that the first test paper and the second test paper 12 are all immersed in the liquid sample 31.
  • the liquid sample 31 may be dropped onto the first test paper 11 and the second test paper 12 portion using the above. Specifically, in the case of the strip 10 shown in FIGS. 1A and 1B, the liquid sample 31 is dropped onto the first test paper 11 which is the test paper on the outermost surface side.
  • the liquid sample 31, the first reagent 21, and the second reagent 22 are mixed with the laminated first test paper 11 and second test paper 12 to generate a chemical reaction to generate a color reaction. Specifically, first, a chemical reaction (first reaction) between the liquid sample 31 and the first reagent 21 is generated, and then the chemical reaction product and the second reagent 22 produced by this chemical reaction (first reaction) are generated. A chemical reaction with (second reaction) is generated. The reaction product produced by this chemical reaction (second reaction) exhibits a predetermined color depending on the concentration of the components in the liquid sample 31. In this way, the liquid sample 31, the first reagent 21, and the second reagent 22 are mixed and colored by only passing through one step (second step) of bringing the liquid sample 31 into contact with the test paper provided on the strip 10. A reaction can be generated.
  • the measurement target is potassium in the nutrient solution.
  • sodium dipicrylamine is used as the first reagent 21, and trichloroacetic acid is used as the second reagent 22.
  • dipicrylamine sodium itself is a red reagent, and the reaction product produced by reacting with potassium is also red.
  • trichloroacetic acid which is the second reagent 22
  • a color change appears. Specifically, it changes from red to yellow to orange. At this time, the color after the change is determined according to the degree of reaction between sodium dipicrylamine and potassium.
  • the mixture of sodium dipicrylamine and trichloroacetic acid results in a change from red to yellow.
  • potassium when potassium is present in the nutrient solution, it changes from red to orange by mixing with trichloroacetic acid.
  • the shade of orange is determined by the degree of reaction between potassium and sodium dipicrylamine, that is, the concentration of potassium.
  • the component measuring device 100 includes a holding unit 101 that holds the strip 10, and a measuring unit 102 that performs optical measurement on the strip 10 held by the holding unit 101 and measures the concentration in the liquid sample 31.
  • the measuring unit 102 includes an optical measuring device. As the optical measuring instrument, an RGB camera or a spectrophotometer can be used.
  • the measuring unit 102 measures the color of the colored region colored on the first test paper 11 of the strip 10 with an optical measuring instrument, and measures the concentration of the liquid sample 31 by the colorimetric method. When a color reaction occurs in STEP 3, the color reaction region appears on the first test paper 11.
  • the strip 10 is held by the holding portion 101 so that the first test paper 11 and the second test paper 12 are located on the upper surface side, and the measuring unit 102 displays the color of the color-developing region from the first test paper 11 side. taking measurement.
  • the colorimetric region may be visually observed and the component concentration in the liquid sample 31 may be estimated by referring to, for example, a colorimetric table.
  • the first step of preparing the strip 10 the second step of bringing the liquid sample 31 into contact with the strip 10, the liquid sample 31, and the first test paper 11 are used.
  • the fourth step is included.
  • the "contact" in the second step includes at least one of an operation of immersing the strip 10 in the liquid sample 31 and an operation of dropping the liquid sample 31 onto the strip 10.
  • the strip 10 in which the first test paper 11 holding the first reagent 21 and the second test paper 12 holding the second reagent 22 are provided on one side surface is in the liquid sample 31. Used for measuring the components of. Therefore, the first reaction between the liquid sample 31 and the first reagent 21 is first generated, and then the reactants produced by the first reaction and the first reaction are generated by only one step of bringing the liquid sample 31 into contact with the strip 10. 2 A second reaction with the reagent 22 can be generated. Then, the result of the second reaction can be obtained as the result of the color reaction.
  • ammonium molybdate is used as the first reagent 21 and tin chloride is used as the second reagent 22 as described above.
  • Ammonium molybdate contained in the first reagent 21 is reduced first if it is mixed with tin chloride before it reacts with phosphorus. Therefore, ammonium molybdate and tin chloride should be mixed in advance. Can not.
  • the first test paper 11 and the second test paper 12 hold the strip 10 so that the first reagent 21 and the second reagent 22 are not mixed with each other.
  • the strip 10 is configured so that the samples 21 and 22 and the liquid sample 31 are mixed only when the liquid sample 31 is brought into contact with the strip 10. Therefore, the color reaction can be appropriately generated.
  • the color reaction can be appropriately generated only by bringing the liquid sample 31 into contact with the strip 10 once, and the strip 10 shown in FIGS. 10A and 10B described above can be appropriately generated. Compared with the measurement method using ⁇ , the measurement can be performed in a short time. Further, since the first reagent 21 and the second reagent 22 are each held on the test paper, handling of both reagents (for example, prevention of leakage to the outside), labor for disposal, and a container for holding both reagents are unnecessary. Become. Therefore, reagent management becomes easy.
  • the strip 10 used for component measurement in the present embodiment is specifically based on a first test paper 11 holding the first reagent 21 and a second test paper 12 holding the second reagent 22. It has a structure provided adjacent to the material sheet 13. That is, the first test in which the strip 10 is arranged so that the liquid sample 31, the first reagent 21, and the second reagent 22 are mixed to generate a color reaction when the liquid sample 31 is brought into contact with the strip 10.
  • a paper 11 and a second test paper 12 are provided.
  • the first test paper 11 and the second test paper 12 can be provided on the base sheet 13 in an overlapping manner.
  • the first test paper 11 and the second test paper 12 can be provided on the base sheet 13 in the order of the second test paper 12 and the first test paper 11.
  • the color reaction region appears on the first test paper 11. Therefore, by superimposing the first test paper 11 and the second test paper 12 on the base sheet 13 so that the first test paper 11 is on the outermost surface, it is easy to color-match the color of the color-developing region.
  • the base sheet 13 is made of a transparent material
  • the first test paper 11 and the second test paper 12 may be stacked on the base sheet 13 in this order. In this case, the color of the color-developing region can be compared from the back surface side of the base sheet 13 (the surface side on which the test papers 11 and 12 are not provided).
  • the method for producing the strip 10 includes a first step of preparing the first test paper 11 holding the first reagent 21, a second step of preparing the second test paper 12 holding the second reagent 22, and the second step. It includes a third step of installing the first test paper 11 and the second test paper 12 adjacent to each other on the base sheet 13.
  • the steps of preparing the first test paper 11 and the second test paper 12 are a step of impregnating the test paper body with the reagent solution and a step of drying the test paper impregnated with the reagent solution. And, including.
  • the step of producing the first test paper 11 and the second test paper 12 includes a drying step. Therefore, if a volatile reagent is used, the reagent will volatilize during the strip manufacturing process and will not be fixed on the test paper. Therefore, in the present embodiment, non-volatile reagents are used as the first reagent 21 and the second reagent 22. For example, when an acid reagent is used as the second reagent 22, a non-volatile acid is used. As a result, the second reagent 22 can be appropriately fixed to the test paper, and can be held on the strip 10 together with the first test paper 11 that holds the first reagent 21.
  • the components in the liquid sample can be easily measured in a short time, and the management of the reagent solution can be unnecessary.
  • the component measurement strip is not limited to the above configuration, and in the contact step of the liquid sample 31 shown in FIGS. 3A and 3B, the liquid sample 31 is at least a part of the first test paper 11 and the second test paper 11. Any structure may be used as long as it is surely absorbed by at least a part of the test paper 12 and a color reaction can occur.
  • the first test paper 11 and the second test paper 12 are formed on one side surface of the strip-shaped base material sheet 13 in the vicinity of one end of the base material sheet 13. It may have a structure in which the above are arranged side by side. In this case, as shown in FIGS. 5A and 5B, the first test paper 11 and the second test paper 12 can be arranged side by side on the same surface of the base sheet 13 in contact with each other. Although not particularly shown, a slight gap may be formed between the first test paper 11 and the second test paper 12. As shown in FIGS.
  • a plurality of first test papers 11 and second test papers 11 and second test papers are provided on one side surface of the strip-shaped base material sheet 13 near one end of the base material sheet 13. 12 may be arranged adjacent to each other. In this case, as shown in FIGS. 6A and 6B, the second test paper 12 may be sandwiched between the plurality of first test papers 11.
  • the plurality of first test strips 11 may hold the same first reagent, or may hold different first reagents.
  • the first reagent used for component measurement is different, and the second reagent is the same, a plurality of first test strips 11 holding different first reagents and
  • the strip 10B provided with one common second test paper 12 it is possible to measure a plurality of components with one strip. In this case as well, a slight gap may be formed between the first test paper 11 and the second test paper 12.
  • the configuration using the common second test paper 12 is not limited to the configurations shown in FIGS. 6A and 6B described above.
  • a plurality of first test papers 11 may be arranged on one second test paper 12 in an overlapping manner.
  • three or more first test strips 11 may be arranged on one second test strip 12.
  • one first test paper 11 is placed on top of the second test paper 12, and the other first test paper 11 is placed on the second test paper 12. It may be arranged side by side next to. In this case, a slight gap may be formed between the adjacent first test paper 11 and the second test paper 12.
  • FIGS. 6 to 8 show an example in which two first test papers 11 are used, it is also possible to use three or more first test papers 11 and one second test paper 12 in common. ..

Abstract

短時間かつ簡便に液体試料中の成分を測定することができる成分測定方法および成分測定用ストリップを提供する。 成分測定方法は、第1試薬を保持する第1試薬パッド(第1試験紙)と第2試薬を保持する第2試薬パッド(第2試験紙)とが基材シート上に設けられたストリップを準備する第1工程と、ストリップに液体試料を接触させる第2工程と、液体試料と、第1試薬パッドが保持する第1試薬と、第2試薬パッドが保持する第2試薬とを混合させて呈色反応を発生させる第3工程と、呈色反応が発生した呈色領域の色を比色する第4工程と、を含む。

Description

成分測定方法および成分測定用ストリップ
 本発明は、液体試料中の成分を測定する成分測定方法および成分測定用ストリップに関する。
 一般に、植物工場においては、植物(野菜等の作物)に必要な養分を水に溶かした養液による養液栽培が行われる。養液栽培としては、養液が循環する循環式の水耕栽培がある。
 このような循環式の水耕栽培の場合、養液が循環するにつれ栽培槽に保持される養液の組成が変化する。植物の生育は養液成分に影響されるので、養液分析の結果に基づき、必要に応じて適宜、養液の調整が行われる。
 特許文献1には、循環式を採用した水耕栽培において、養液の物理量を検出し、その検出結果をもとに養液のPHや養分濃度といった栽培環境条件を調整する技術が開示されている。
特開2015-53882号公報
 液体分析装置としては、液体試料に含まれる多項目の成分を分析することができる高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatograpy)装置がある。しかしながら、HPLC装置は、装置自体が大掛かりであるので、測定対象である液体試料を一旦採取して、分析機器が装備されている分析サイトに送る必要がある。また、HPLC測定にも時間がかかる。
 よって、特に液体試料が扱われる現場の近くで、比較的短時間に成分分析を行いたい場合は、例えば、液体試料中の成分の呈色反応(発色または変色を伴う化学反応)を用いて液体試料中の成分を分析することが行われる。分析手法としては、比色法、分光測色法等が採用される。このような測定は、特に液体試料の初期段階のスクリーニング検査に有効である。
 ところが、呈色反応を用いた液体試料の成分測定方法では、液体試料に1種類の試薬を混合させるだけでは呈色反応が発生せず、呈色反応を発生させるためには、さらに第1試薬とは異なる第2試薬を混合させる必要がある場合がある。
 この場合、まず、第1試薬を保持する試験紙を液体試料中に浸漬させて液体試料と第1試薬との化学反応物を生成する。次に、当該化学反応物が生成された試験紙を第2試薬中に浸漬または添加させて上記化学反応物と第2試薬との化学反応を発生させ、液体試料の成分濃度に応じて所定の色を呈する反応生成物を生成する。この反応生成物が生成された試験紙に対して光学測定(分光測定など)を行うことで、液体試料中の成分濃度が測定される。
 しかしながら、上記のような測定方法においては、試験紙を液体試料と第2試薬とに2回浸漬または添加させる必要があり、測定に時間がかかる。また、複数の液体(液体試料、第2試薬)を取り扱うので、各液体の取り扱い(例えば、外部への漏出防止)や廃棄の手間もかかる。さらに、各液体を保持する容器も液体の数だけ必要であり、管理も複雑になる。
 そこで、本発明は、短時間かつ簡便に液体試料中の成分を測定することができる成分測定方法および成分測定用ストリップを提供することを課題としている。
 上記課題を解決するために、本発明に係る成分測定方法の一態様は、第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが基材シート上に設けられたストリップを準備する第1工程と、前記ストリップに液体試料を接触させる第2工程と、前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とを混合させて呈色反応を発生させる第3工程と、前記呈色反応が発生した呈色領域の色を比色する第4工程と、を含む。
 このように、第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが1つの基材シート上に設けられたストリップを液体試料に1回接触させるだけで、適切に呈色反応を発生させることができる。そのため、第1試薬と第2試薬とを用いて呈色反応を発生させる必要がある場合であっても、短時間で測定を行うことができる。また、第1試薬および第2試薬が、それぞれ試薬パッドに保持されているため、両試薬の取り扱い(例えば、外部への漏出防止)や廃棄の手間、両試薬を保持する容器が不要となる。よって、試薬管理が容易となる。
 また、上記の成分測定方法において、前記第3工程は、前記液体試料と前記第1試薬との第1反応を発生させる工程と、前記第1反応により生成される反応物と前記第2試薬との第2反応を発生させる工程と、を含み、前記第2反応の結果が前記呈色反応の結果であってもよい。
 この場合、液体試料中の成分濃度に応じて、適切に呈色反応の結果を得ることができる。
 さらに、上記の成分測定方法において、前記第1工程では、前記第1試薬パッドと前記第2試薬パッドとが前記基材シート上に隣接して設けられた前記ストリップを準備するようにしてもよい。この場合、第2工程において、液体試料、第1試薬および第2試薬が混合されやすくすることができる。
 また、上記の成分測定方法において、前記第1工程では、前記第1試薬パッドと前記第2試薬パッドとが前記基材シート上に重ねて設けられた前記ストリップを準備するようにしてもよい。この場合、第2工程において、液体試料、第1試薬および第2試薬をより適切に混合させることができる。
 さらに、上記の成分測定方法において、前記第2試薬は、酸試薬およびアルカリ試薬のいずれか一方であってもよい。この場合、第2試薬を混合させることで酸性度やアルカリ度といったpHを調整することができるので、第3工程において、pHに依存する呈色反応を適切に発生させることができる。
 また、上記の成分測定方法において、前記第2試薬は、不揮発性酸であってもよい。この場合、第2試薬が揮発されることなく試薬パッドに定着されたストリップを用いて、適切に成分測定を行うことができる。
 さらに、上記の成分測定方法において、前記第1試薬または第2試薬は、酸化剤および還元剤のいずれか一方であってもよい。この場合、第3工程において、酸化、還元作用を適切に発生させることができる。
 また、上記の成分測定方法において、前記第1試薬は、塩素化試薬であってもよい。ここで第1試薬が酸化剤の場合、前記酸化剤は水溶液中では不安定な場合が多いが、塩素化試薬は比較的安定であるので、分解されることなく試薬パットに定着されたストリップを用いて、適切に成分測定を行うことができる。
 さらに、本発明に係る成分測定用ストリップの一態様は、基材シート上に設けられた、第1試薬を保持する第1試薬パッドと、前記基材シート上に前記第1試薬パッドに隣接して設けられた、第2試薬を保持する第2試薬パッドと、を備え、前記第1試薬パッドと前記第2試薬パッドとは、液体試料を接触させた場合に、前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生するように配置されている。
 このように、第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが1つの基材シート上に隣接して設けられた構成を有するので、当該成分測定用ストリップを液体試料に1回接触させるだけで適切に呈色反応を発生させることができる。したがって、短時間かつ簡便に液体試料中の成分測定が可能なストリップとすることができる。
 また、上記の成分測定用ストリップにおいて、前記第1試薬パッドおよび前記第2試薬パッドは、試験紙により構成されていてもよい。この場合、適切に試薬を保持することができる。
 さらに、上記の成分測定用ストリップにおいて、前記第1試薬パッドと前記第2試薬パッドとは、前記液体試料を接触させた場合に、まず前記液体試料と前記第1試薬との第1反応が発生し、次に、前記第1反応により生成される反応物と前記第2試薬との第2反応が発生するように配置されていてもよい。この場合、液体試料中の成分濃度に応じて、適切に呈色反応を発生させることができる。
 また、上記の成分測定用ストリップにおいて、前記第1試薬パッドと前記第2試薬パッドとは、前記基材シート上に重ねて設けられていてもよい。この場合、液体試料に接触させた際に、液体試料、第1試薬および第2試薬を適切に混合させることができる。
 さらにまた、上記の成分測定用ストリップにおいて、前記第1試薬パッドと前記第2試薬パッドとは、前記基材シート上に、前記第2試薬パッド、前記第1試薬パッドの順に重ねて設けられていてもよい。この場合、呈色領域が現れる第1試薬パッドが最表面に配置されることになる。そのため、呈色領域の色を比色しやすくなる。
 また、上記の成分測定用ストリップにおいて、前記第1試薬パッドと前記第2試薬パッドとは、互いに接触して前記基材シートの同一面上に並べて設けられていてもよい。この場合、液体試料に接触させた際に、液体試料、第1試薬および第2試薬を適切に混合させることができる。
 さらに、上記の成分測定用ストリップにおいて、各々相違する前記第1試薬を保持する複数の前記第1試薬パッドを有し、前記複数の第1試薬パッドの各々と前記第2試薬パッドとは、互いに接触して前記基材シート上に設けられていてもよい。この場合、複数の異なる成分を一度に測定することが可能となる。また、第2試薬パッドを共用とするので、その分のコストを削減することができる。
 また、上記の成分測定用ストリップにおいて、前記第2試薬は、酸試薬およびアルカリ試薬のいずれか一方であってもよい。この場合、pHに依存する呈色反応を適切に発生させることができる。
 さらにまた、上記の成分測定用ストリップにおいて、前記第2試薬は、不揮発性酸であってもよい。この場合、第2試薬が揮発されることなく試薬パッドに定着されたストリップとすることができる。
 また、上記の成分測定用ストリップにおいて、前記第1試薬または第2試薬は、酸化剤および還元剤のいずれか一方であってもよい。この場合、第3工程において、酸化あるいは還元作用を適切に発生させることができる。
 さらにまた、上記の成分測定用ストリップにおいて、前記第1試薬は、塩素化試薬であってもよい。第1試薬が酸化剤の場合、前記酸化剤は水溶液中では不安定な場合が多いが、塩素化試薬は比較的安定であるので、分解されることなく試薬パットに定着されたストリップを用いて、適切に成分測定を行うことができる。
 また、本発明に係る成分測定用ストリップの製造方法の一態様は、第1試薬を保持する第1試薬パッドを作製する第1工程と、第2試薬を保持する第2試薬パッドを作製する第2工程と、前記第1試薬パッドと前記第2試薬パッドとを基材シート上に隣接して設置する第3工程と、を含み、前記第3工程では、液体試料を接触させた場合に、前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生するように、前記第1試薬パッドと前記第2試薬パッドとを設置する。
 これにより、短時間かつ簡便に液体試料中の成分測定が可能なストリップを製造することができる。
 さらに、上記の成分測定用ストリップの製造方法において、前記第2工程は、前記第2試薬パッドの本体に前記第2試薬の溶液を含浸させる工程と、前記第2試薬の溶液を含浸させた前記第2試薬パッドを乾燥させる工程と、を含み、前記第2試薬は、不揮発性酸であってもよい。
 この場合、第2試薬パッドを作製する第2工程において、乾燥工程を経ても第2試薬を適切に試薬パッドに定着させることができる。
 また、本発明に係る成分測定装置の一態様は、第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが基材シート上に設けられたストリップを保持するストリップ保持部と、前記液体試料と、前記ストリップの前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生した呈色領域の色を比色し、前記液体試料中の成分の濃度を測定する測定部と、を備える。
 これにより、液体試料中の成分濃度を適切に測定することができる。
 本発明では、短時間かつ簡便に液体試料中の成分を測定することができる。
本実施形態における成分測定用ストリップの一例を示す上面図である。 本実施形態における成分測定用ストリップの一例を示す正面図である。 成分測定用ストリップの製造工程例を示す図である。 成分測定方法における接触工程を示す図である。 成分測定方法における接触工程を示す図である。 成分測定方法における比色工程の別の例を示す図である。 成分測定用ストリップの別の例を示す上面図である。 成分測定用ストリップの別の例を示す正面図である。 成分測定用ストリップの別の例を示す上面図である。 成分測定用ストリップの別の例を示す正面図である。 成分測定用ストリップの別の例を示す上面図である。 成分測定用ストリップの別の例を示す正面図である。 成分測定用ストリップの別の例を示す上面図である。 成分測定用ストリップの別の例を示す正面図である。 成分分析システムの基本構成例を説明するための図である。 従来の成分測定用ストリップの一例を示す上面図である。 従来の成分測定用ストリップの一例を示す正面図である。 従来の成分測定方法における第1の接触工程を示す図である。 従来の成分測定方法における第1の接触工程を示す図である。 従来の成分測定方法における第2の接触工程を示す図である。 従来の成分測定方法における第2の接触工程を示す図である。 従来の成分測定方法における比色工程を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 本実施形態では、呈色試薬と液体試料との呈色反応を用いて液体試料中の成分を測定する成分測定装置について説明する。
 この成分測定装置は、例えば、植物工場において植物(野菜等の作物)に必要な養分を水に溶かした養液の成分分析を行う液体分析システムに用いられる。
 図9は、植物工場における液体分析システムの例を示す図である。
 一般に、植物工場においては、植物(野菜等の作物)に必要な養分を水に溶かした養液による養液栽培が行われる。図9では、養液栽培として、養液91を循環させる循環式の水耕栽培の例を示している。
 この図9に示すように、作物92が育成される栽培槽93に供給される養液91は、送液ポンプ94により、循環流路95を介して循環する。循環する養液91の一部は、循環流路95の一部から分岐した液体試料採取流路96を介して、例えば自動的に採取され、採取された養液91は液体分析装置97により成分分析される。
 循環式の水耕栽培の場合、養液が循環するにつれ栽培槽に保持される養液の組成が変化する。植物の生育は養液成分に影響されるので、養液分析の結果に基づき、必要に応じて適宜、養液の調整が行われる。
 液体分析装置97は、例えば、養液91の分析に高速液体クロマトグラフィー(HPLC)を採用した成分測定析装置とすることができる。この場合、液体分析装置97は、養液91中の多項目の成分を精度良く分析することができるが、測定に時間がかかるとともに、装置自体も大がかりとなる。
 そこで、比較的短時間に養液91中の成分を測定したい場合には、呈色試薬と養液91との呈色反応を用いて、養液91中の成分を測定する方法が用いられる。
 以下、従来の呈色反応を用いた液体試料の成分測定方法について説明する。
 まず、試薬が保持されたストリップ(試験片)を準備する。
 ストリップの構造例を図10Aおよび図10Bに示す。図10Aおよび図10Bに示すように、ストリップ10´は、短冊形状の基材シート13の片側表面であって当該基材シート13の一端近傍に、試薬を保持する試薬パッド11が設けられた構造を有する。
 そして、図11Aに示すように、サンプル容器31aに保持された液体試料31(例えば、図9に示す水耕栽培用の養液91)を準備する。そして、その液体試料31中に、図10Aおよび図10Bに示すストリップ10´を浸漬する(接触工程)。このとき、試薬パッド11の少なくとも一部は、必ず液体試料31中に浸漬されるようにする。なお、試薬パッド11は、すべて液体試料31中に浸漬される方が好ましい。
 なお、この接触工程においては、図11Bに示すように、図10Aおよび図10Bに示すストリップ10´を試薬パッド11が上面側に位置するように配置し、ピペット等を用いて液体試料31を試薬パッド11部分に滴下するようにしてもよい。
 本工程により、試薬パッド11上にて、液体試料31と試薬とが反応し、液体試料31中の成分の濃度に応じた呈色反応が発生する。そのため、試薬パッド11の色の度合をもとに、液体試料31中の成分の濃度を測定することができる。
 ところが、植物工場の肥料成分の中には、上記のように1種類の試薬との反応だけでは呈色反応が発生しないものがある。
 このような肥料成分を測定するためには、まず、液体試料と第1試薬とを反応させ、次に、液体試料と第1試薬との化学反応物を、第1試薬とは異なる第2試薬と反応させて、呈色反応を発生させる。
 この場合の液体試料の成分測定は、以下の手順で行われる。
 まず、第1試薬が保持された試薬パッド11を備えるストリップ10´を準備する。そして、上述した図11Aまたは図11Bに示すように、液体試料31中にストリップ10´を浸漬させる(第1の接触工程)。これにより、液体試料31と第1試薬とを反応させる。
 次に、図12Aに示すように、第2試薬容器22aに保持された第2試薬22を準備する。そして、図11Aまたは図11Bに示す工程を経たストリップ10´を乾燥させ、第2試薬22中に、乾燥済のストリップ10´を浸漬する(第2の接触工程)。このとき、試薬パッド11の少なくとも一部は、必ず第2試薬22中に浸漬されるようにする。なお、試薬パッド11は、すべて第2試薬22中に浸漬される方が好ましい。
 なお、この第2の接触工程においては、図12Bに示すように、ストリップ10´を試薬パッド11が上面側に位置するように配置し、ピペット等を用いて第2試薬22を試薬パッド11部分に滴下するようにしてもよい。
 本工程により、液体試料31と第1試薬との化学反応物と第2試薬22との化学反応が発生し、反応生成物が生成される。生成された反応生成物は、液体試料31の成分濃度に応じて、所定の色を呈する。
 このように、液体試料、第1試薬、第2試薬を混合させることにより、呈色反応を発生させることができる。ここで、第1試薬または第2試薬としては、酸試薬もしくはアルカリ試薬といったpH調整剤や、酸化還元剤などを用いることができる。
 呈色反応が得られたストリップ10´は、図13に示すように成分測定装置100´にセットされ、液体試料31中の成分濃度が測定される(比色工程)。成分測定装置100´は、例えば光学測定器(分光測色計)である。成分測定装置100´は、ストリップ10´の試薬パッド11における呈色領域の色を比色することで、液体試料31中の成分濃度を測定することができる。なお、呈色領域の色を比色する場合には、目視により呈色領域を観測し、例えば比色表などを参照して液体試料31中の成分濃度を推定してもよい。
 このように、上記従来の成分測定方法においては、ストリップ10´に液体試料31と第2試薬22とを2回接触させる必要がある。そのため、測定に時間がかかる。また、複数の液体(液体試料31、第2試薬22)を取り扱うので、各液体の取り扱い(例えば、外部への漏出防止)や廃棄の手間もかかる。さらには、各液体を保持する容器も液体の数だけ必要であり、管理も複雑になる。
 本実施形態は、液体の複雑な管理等を必要とすることなく、短時間かつ簡便に液体試料31中の成分を測定するものである。
 実施形態における成分測定方法においては、例えば短冊形状の1枚の基材シートに第1試薬を保持する第1試薬パッド(本実施形態では、試験紙)と、第2試薬を保持する第2試薬パッド(本実施形態では、試験紙)とが設けられたストリップを使用する。
 図1Aおよび図1Bは、本実施形態における成分測定用のストリップ10の構成例を示す図である。
 この図1Aおよび図1Bに示すように、ストリップ10は、短冊形状の基材シート13の片側表面であって当該基材シート13の一端近傍に、第1試薬を保持する第1試験紙(第1試薬パッド)11と第2試薬を保持する第2試験紙(第2試薬パッド)12が隣接して設けられた構造を有する。本実施形態では、第1試験紙11と第2試験紙12とは、基材シート13上に、下から第2試験紙12、第1試験紙11の順に重ねて設けられている。
 基材シート13は、例えばポリエステルにより構成することができる。
 第1試験紙11の本体および第2試験紙12の本体となるパッド本体は、吸湿性シート(吸湿性小片シート)により構成することができる。吸湿性シートとしては、例えばセルロース、セルロースナノファイバー(CNF)やガラス繊維などからなる濾紙や多孔性膜などが用いられる。
 次に、ストリップ10の製造工程例について、図2を参照しながら説明する。
 図2に示す製造工程は、[A]第1試験紙11の作製工程(第1工程)、[B]第2試験紙12の作製工程(第2工程)、および[C]第1試験紙11および第2試験紙12の設置工程(第3工程)を含む。
[A]第1試験紙11の作製工程
 第1試験紙11は、以下の工程を経て作製される。
 まず、吸湿性小片シートからなる試験紙本体11aを、第1試薬容器21aに保持された第1試薬21の溶液中に浸漬させることにより、当該試験紙本体11aに第1試薬21の溶液を含浸させる(含浸工程)。なお、この含浸工程においては、試験紙本体11aに第1試薬21の溶液を滴下して、試験紙本体11aに第1試薬21の溶液を含浸させてもよい。
 次に、第1試薬21の溶液が含浸された試験紙11bを乾燥させ、溶媒21bを除去する(乾燥工程)。ここで、乾燥方式としては、例えば加熱乾燥方式を採用することができる。なお、乾燥は常温で行ってもよい。また、乾燥方式は上記に限定されるものではなく、例えば、凍結乾燥や真空乾燥、ドライエアを吹き付ける送風乾燥などを採用することもできる。
 このように、含浸工程と乾燥工程とを経て、第1試薬21が保持された第1試験紙11が作製される。
[B]第2試験紙12の製造工程
 第2試験紙12は、以下の工程を経て作製される。
 まず、吸湿性小片シートからなる試験紙本体12aを、第2試薬容器22aに保持された第2試薬22の溶液中に浸漬させることにより、当該試験紙本体12aに第2試薬22の溶液を含浸させる(含浸工程)。なお、この含浸工程においては、試験紙本体12aに第2試薬22の溶液を滴下して、試験紙本体12aに第2試薬22の溶液を含浸させてもよい。
 次に、第2試薬22の溶液が含浸された試験紙12bを乾燥させ、溶媒22bを除去する(乾燥工程)。ここで、乾燥方式としては、例えば加熱乾燥方式を採用することができる。なお、乾燥は常温で行ってもよい。また、乾燥方式は上記に限定されるものではなく、例えば、凍結乾燥や真空乾燥、ドライエアを吹き付ける送風乾燥などを採用することもできる。
 このように、含浸工程と乾燥工程とを経て、第2試薬22が保持された第2試験紙12が作製される。
[C]設置工程
 工程[A]において得られた第1試験紙11と、工程[B]において得られた第2試験紙12とを基材シート13の片面側に隣接して設置する。具体的には、基材シート13の片側表面であって当該基材シート13の一端近傍に、下から第2試験紙12、第1試験紙11の順に積層されるように設置する。
 第1試験紙11、第2試験紙12は、例えば、接着剤により基材シート13に固定される。接着剤としては、液体試料31と第1試薬21との反応や、液体試料31と第1試薬21との化学反応物と第2試薬22との反応に影響を及ぼさないものであればよく、種類は問わない。
 例えば、液体試料31が水耕栽培用の養液である場合、測定対象となる成分は、カリウム(K)、リン(P)、アンモニウム(NH)、硝酸塩(NO)、カルシウム(Ca)、マグネシウム(Mg)、ホウ素(B)、鉄(Fe)などとすることができる。
 例えば、液体試料31が水耕栽培用の養液であって、当該養液中のカリウムを測定する場合は、第1試験紙11が保持する第1試薬21としては、ジピクリルアミンナトリウム(Dipicrylamine Sodium Salt)および水酸化ナトリウム(sodium hydroxide:NaOH)が用いられる。また、第2試験紙12が保持する第2試薬22としては、トリクロロ酢酸(Trichloroacetic Acid:CClCOOH)などの不揮発性の酸が用いられる。
 なお、ここでいう「不揮発性の酸」とは、沸点が100℃以上である酸を意味する。
 酸試薬の中には揮発性のものもあるが、第2試薬22として揮発性の酸試薬を用いた場合、図2に示す第2試験紙12の作製工程(工程[B])における乾燥工程において、溶媒22b以外に第2試薬22自体が揮発してしまう。その結果、第2試験紙12にて保持される第2試薬22の量が減少、もしくは無くなってしまう。
 そのため、本実施形態では、第2試薬22として酸試薬を用いる場合は、不揮発性の酸を用いる。なお、第1試薬21についても、同様の理由により、不揮発性の試薬を用いることが好ましい。
 不揮発性の酸の例としては、上記のトリクロロ酢酸の他に、ホウ酸、メタケイ酸、リン酸、硫酸、チオ硫酸、過塩素酸、塩素酸、クロム酸、二クロム酸、ヒ酸、亜ヒ酸、臭素酸、ヨウ素酸、ヘキサクロリド白金(IV)酸、テトラクロリド(III)酸などが挙げられる。
 ここで、安全性やコスト、取り扱い安さ(室温では粉末)などを考慮すると、トリクロロ酢酸、ホウ酸、メタケイ酸、リン酸、チオ硫酸、臭素酸、ヨウ素酸を用いることが好ましい。
 また、液体試料31が水耕栽培用の養液である場合は、養液分析に影響しない(養液中の成分と重複しない)ように、トリクロロ酢酸、メタケイ酸、チオ硫酸、臭素酸、ヨウ素酸が好適である。
 このように、第2試薬22としては、酸性度を調整するpH調整剤を用いることができる。
 また、例えば、液体試料31が水耕栽培用の養液であって、当該養液中のリンを測定する場合は、第1試験紙11が保持する第1試薬21としては、七モリブデン酸六アンモニウム(英語化学名: Ammonium molybdate tetrahydrate :(NHMo24・4HO)およびトリクロロ酢酸が用いられる。また、第2試験紙12が保持する第2試薬22としては、塩化スズ(II)(STANNOUS CHLORIDE:SnCl)、硫酸ヒドラジン、アスコルビン酸、テトラメチルベンジジン、ヒドロキノン、亜硫酸ナトリウムなどの還元剤が用いられる。
 また、例えば、液体試料31が水耕栽培用の養液であって、当該養液中のアンモニアを測定する場合は、第1試験紙11が保持する第1試薬21としては、ジクロロイソシアヌル酸ナトリウム(Sodium dichloroisocyanurate:CClNaO)やトリクロロイソシアヌル酸(Trichloroisocyanuric acid:CCl)などの酸化剤である塩素化試薬が用いられる。また、第2試験紙12が保持する第2試薬22としては、サリチル酸ナトリウム(Sodium salicylate:CNaO)、フェノール(Phenol:COH)、ナフトール(Naphthol:C10O)が用いられる。
 なお、第1試薬21および第2試薬22は、測定対象となる成分に応じて適宜選択することができる。例えば、測定対象の成分がカリウムである場合、第2試薬22として酸試薬を用いる場合について説明したが、測定対象となる成分によっては、アルカリ試薬を用いてもよい。
 以下、本実施形態におけるストリップ10を用いた成分測定方法について説明する。
[第1工程]
 図1Aおよび図1Bに示すストリップ10を準備する。
[第2工程]
 図3Aに示すように、サンプル容器31aに保持された液体試料31中にストリップ10を浸漬し、ストリップ10に液体試料31を接触させる。このとき、第1試験紙11の少なくとも一部と、第2試験紙12の少なくとも一部は、必ず液体試料31中に浸漬されるようにする。なお、第1試験紙および第2試験紙12は、すべて液体試料31中に浸漬される方が好ましい。
 なお、この第2工程においては、図3Bに示すように、図1Aおよび図1Bに示すストリップ10を第1試験紙11および第2試験紙12が上面側に位置するように配置し、ピペット等を用いて液体試料31を第1試験紙11および第2試験紙12部分に滴下するようにしてもよい。具体的には、図1Aおよび図1Bに示すストリップ10の場合、最表面側の試験紙である第1試験紙11に液体試料31を滴下する。
[第3工程]
 積層された第1試験紙11および第2試験紙12にて、液体試料31と第1試薬21と第2試薬22とを混合させて化学反応を発生させ、呈色反応を発生させる。
 具体的には、まず液体試料31と第1試薬21との化学反応(第1反応)を発生させ、次に、この化学反応(第1反応)により生成された化学反応物と第2試薬22との化学反応(第2反応)を発生させる。この化学反応(第2反応)により生成される反応生成物は、液体試料31中の成分の濃度に応じて、所定の色を呈する。
 このように、ストリップ10に設けられた試験紙に液体試料31を接触させる一工程(第2工程)を経るだけで、液体試料31、第1試薬21および第2試薬22を混合させ、呈色反応を発生させることができる。
 ここで、呈色反応の一例として、測定対象が養液中のカリウムである場合について説明する。
 この場合、上述したように、第1試薬21としてはジピクリルアミンナトリウム、第2試薬22としてはトリクロロ酢酸が用いられる。
 ここで、ジピクリルアミンナトリウム自体は赤色の試薬であり、カリウムと反応して生成される反応物も赤色である。つまり、ジピクリルアミンナトリウムとカリウムとが反応しただけでは、色の変化はない。しかしながら、そこに第2試薬22であるトリクロロ酢酸が混合されると、色の変化が現れる。具体的には、赤色から黄色~橙色に変化する。このとき、ジピクリルアミンナトリウムとカリウムとの反応の度合に応じて、変化後の色が決定される。
 例えば、養液中にカリウムが存在しない場合には、ジピクリルアミンナトリウムとトリクロロ酢酸を混合させた結果、赤色から黄色に変化する。一方、養液中にカリウムが存在する場合には、トリクロロ酢酸を混合させることで赤色から橙色に変化する。そして、その橙色の濃淡は、カリウムとジピクリルアミンナトリウムとの反応度合、つまり、カリウムの濃度に応じて決まる。
[STEP4]
 STEP3の後、図4に示すように、ストリップ10を成分測定装置100にセットする。成分測定装置100は、ストリップ10を保持する保持部101と、保持部101に保持されたストリップ10に対する光学測定を行い、液体試料31中の濃度を測定する測定部102と、を備える。測定部102は、光学測定器を備える。光学測定器としては、RGBカメラや分光測色計を用いることができる。測定部102は、光学測定器によりストリップ10の第1試験紙11にて呈色された呈色領域の色を測定し、比色法により液体試料31の濃度を測定する。
 STEP3において呈色反応が発生された場合、その呈色領域は第1試験紙11に現れる。そのため、ストリップ10は、第1試験紙11および第2試験紙12が上面側に位置するように保持部101に保持され、測定部102は、第1試験紙11側から呈色領域の色を測定する。
 なお、呈色領域の色を比色する場合には、目視により呈色領域を観測し、例えば比色表などを参照して液体試料31中の成分濃度を推定してもよい。
 以上説明したように、本実施形態における成分測定方法は、ストリップ10を準備する第1工程と、ストリップ10に液体試料31を接触させる第2工程と、液体試料31と、第1試験紙11が保持する第1試薬21と、第2試験紙12が保持する第2試薬22とを混合させて呈色反応を発生させる第3工程と、呈色反応が発生した呈色領域の色を比色する第4工程と、を含む。ここで、上記第2工程における「接触」とは、ストリップ10を液体試料31に浸漬させる動作と、ストリップ10に液体試料31を滴下する動作との少なくとも一方を含む。
 このように、本実施形態では、第1試薬21を保持する第1試験紙11と、第2試薬22を保持する第2試験紙12とが片側表面に設けられたストリップ10を液体試料31中の成分の測定に用いる。そのため、ストリップ10に液体試料31を接触させる一工程を経るだけで、まず液体試料31と第1試薬21との第1反応を発生させ、次に、第1反応により生成される反応物と第2試薬22との第2反応を発生させることができる。そして、第2反応の結果を呈色反応の結果として得ることができる。
 例えば、測定対象が養液中のリンである場合、上述したように、第1試薬21としてはモリブデン酸アンモニウム、第2試薬22としては塩化スズが用いられる。この第1試薬21に含まれるモリブデン酸アンモニウムは、リンと反応する前に塩化スズと混合されると先に還元されてしまうため、モリブデン酸アンモニウムと塩化スズとは、予め混合させておくことはできない。
 本実施形態におけるストリップ10は、液体試料31を接触させる前は、第1試験紙11と第2試験紙12とによって、第1試薬21と第2試薬22とがそれぞれ混合されないように保持されており、ストリップ10に液体試料31を接触させることで初めて各試料21、22と液体試料31とが混合されるように構成されている。そのため、適切に呈色反応を発生させることができる。
 このように、本実施形態では、呈色反応を発生させるための試薬として、予め混合させておくことができない第1試薬21と第2試薬22とが必要である場合であっても、図1Aおよび図1Bに示すようなストリップ10を用いることで、ストリップ10に液体試料31を1回接触させるだけで適切に呈色反応を発生させることができ、上述した図10Aおよび図10Bに示すストリップ10´を用いた測定方法と比較して、短時間で測定を行うことができる。
 また、第1試薬21および第2試薬22は、それぞれ試験紙に保持されているので、両試薬の取り扱い(例えば、外部への漏出防止)や廃棄の手間、両試薬を保持する容器が不要となる。よって、試薬管理が容易となる。
 ここで、本実施形態における成分測定に用いるストリップ10は、具体的には、第1試薬21を保持する第1試験紙11と、第2試薬22を保持する第2試験紙12とが、基材シート13上に隣接して設けられた構成を有する。つまり、ストリップ10は、液体試料31を接触させた場合に、液体試料31と、第1試薬21と、第2試薬22とが混合されて呈色反応が発生するように配置された第1試験紙11と第2試験紙12とを備える。
 第1試験紙11と第2試験紙12とは、基材シート13上に重ねて設けることができる。このように、第1試験紙11と第2試験紙12とを接触させて配置することで、液体試料31が接触された場合に、液体試料31と第1試薬21と第2試薬22とが混合されやすい。
 また、第1試験紙11と第2試験紙12とは、基材シート13上に、第2試験紙12、第1試験紙11の順に重ねて設けることができる。液体試料31が接触されて呈色反応が発生された場合、その呈色領域は第1試験紙11に現れる。そのため、第1試験紙11と第2試験紙12とを、基材シート13上に第1試験紙11が最表面となるように重ねて設けることで、呈色領域の色を比色しやすくなる。
 なお、基材シート13が透明材料からなる場合には、基材シート13上に、第1試験紙11、第2試験紙12の順に重ねて設けてもよい。この場合、基材シート13の裏面側(試験紙11、12が設けられていない面側)から呈色領域の色を比色することができる。
 ここで、ストリップ10の製造方法は、第1試薬21を保持する第1試験紙11を作製する第1工程と、第2試薬22を保持する第2試験紙12を作製する第2工程と、第1試験紙11と第2試験紙12とを基材シート13上に隣接して設置する第3工程と、を含む。そして、上記の第1試験紙11を作製する工程、および第2試験紙12を作製する工程は、試験紙本体に試薬溶液を含浸させる工程と、試薬溶液を含浸させた試験紙を乾燥させる工程と、を含む。
 このように、第1試験紙11や第2試験紙12を作製する工程は、乾燥工程を含む。そのため、揮発性の試薬を用いると、ストリップの製造過程で試薬が揮発してしまい、試験紙に定着されない。
 そこで、本実施形態では、第1試薬21、第2試薬22として、不揮発性の試薬を用いる。例えば、第2試薬22として酸試薬を用いる場合には、不揮発性の酸を用いる。これにより、適切に第2試薬22を試験紙に定着させることができ、第1試薬21を保持する第1試験紙11とともにストリップ10に保持させることができる。
 以上のように、本実施形態では、短時間かつ簡便に液体試料中の成分の測定が可能であり、かつ、試薬溶液の管理を不要とすることができる。
(変形例)
 上記実施形態においては、図1Aおよび図1Bに示す構成を有するストリップ10を液体試料31の成分測定に用いる場合について説明した。しかしながら、成分測定用ストリップは、上記の構成に限定されるものではなく、図3Aや図3Bに示す液体試料31の接触工程において、液体試料31が第1試験紙11の少なくとも一部および第2試験紙12の少なくとも一部に必ず吸収されて、呈色反応が発生可能な構成であればよい。
 例えば、図5Aおよび図5Bに示すストリップ10Aのように、短冊形状の基材シート13の片側表面であって当該基材シート13の一端近傍に、第1試験紙11と第2試験紙12とを並べて配置した構造であってもよい。この場合、図5Aおよび図5Bに示すように、第1試験紙11と第2試験紙12とは、互いに接触して基材シート13の同一面上に並べて配置することができる。なお、特に図示しないが、第1試験紙11と第2試験紙12との間には僅かな隙間が形成されていてもよい。
 図5Aおよび図5Bに示すように、第1試験紙11および第2試験紙12が基材シート13の同一面上に並べて配置されている場合で、図3Bに示すように液体試料31を滴下する場合には、第1試験紙11および第2試験紙12の双方に液体試料31が接触するように、当該液体試料を滴下する。
 さらに、図6Aおよび図6Bに示すストリップ10Bのように、短冊形状の基材シート13の片側表面であって当該基材シート13の一端近傍に、複数の第1試験紙11と第2試験紙12とを隣接させて配置した構成であってもよい。この場合、図6Aおよび図6Bに示すように、複数の第1試験紙11の間に第2試験紙12を挟むようにしてもよい。ここで、複数の第1試験紙11は、同じ第1試薬を保持していてもよいし、各々相違する第1試薬を保持していてもよい。
 測定対象の成分が複数存在する場合で、成分測定に用いる第1試薬が異なり、第2試薬が同じである場合には、各々相違する第1試薬を保持する複数の第1試験紙11と、共通の1つの第2試験紙12とが設けられたストリップ10Bを用いることで、1つのストリップで複数の成分を測定することが可能となる。
 なお、この場合にも、第1試験紙11と第2試験紙12との間には僅かな隙間が形成されていてもよい。
 また、共通の第2試験紙12を利用した構成は、上記の図6Aおよび図6Bに示す構成に限定されるものではない。
 例えば、図7Aおよび図7Bに示すストリップ10Cのように、1つの第2試験紙12の上に複数の第1試験紙11を重ねて配置するようにしてもよい。この場合、3つ以上の第1試験紙11を1つの第2試験紙12の上に配置することもできる。また、図8Aおよび図8Bに示すストリップ10Dのように、1つの第1試験紙11を第2試験紙12の上に重ねて配置し、もう1つの第1試験紙11を第2試験紙12の隣に並べて配置するようにしてもよい。この場合、隣り合う第1試験紙11と第2試験紙12との間には僅かな隙間が形成されていてもよい。
 なお、図6~図8においては、2つの第1試験紙11を用いる例を示していが、3つ以上の第1試験紙11と共通の1つの第2試験紙12とを用いることもできる。
 10…成分測定用ストリップ、11…第1試薬パッド、12…第2試薬パッド、21…第1試薬、22…第2試薬、31…液体試料、100…成分測定装置

Claims (22)

  1.  第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが基材シート上に設けられたストリップを準備する第1工程と、
     前記ストリップに液体試料を接触させる第2工程と、
     前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とを混合させて呈色反応を発生させる第3工程と、
     前記呈色反応が発生した呈色領域の色を比色する第4工程と、を含むことを特徴とする成分測定方法。
  2.  前記第3工程は、
     前記液体試料と前記第1試薬との第1反応を発生させる工程と、
     前記第1反応により生成される反応物と前記第2試薬との第2反応を発生させる工程と、を含み、
     前記第2反応の結果が前記呈色反応の結果であることを特徴とする請求項1に記載の成分測定方法。
  3.  前記第1工程では、
     前記第1試薬パッドと前記第2試薬パッドとが前記基材シート上に隣接して設けられた前記ストリップを準備することを特徴とする請求項1または2に記載の成分測定方法。
  4.  前記第1工程では、
     前記第1試薬パッドと前記第2試薬パッドとが前記基材シート上に重ねて設けられた前記ストリップを準備することを特徴とする請求項1または2に記載の成分測定方法。
  5.  前記第2試薬は、酸試薬およびアルカリ試薬のいずれか一方であることを特徴とする請求項1または2に記載の成分測定方法。
  6.  前記第2試薬は、不揮発性酸であることを特徴とする請求項5に記載の成分測定方法。
  7.  前記第1試薬または前記第2試薬は、酸化剤および還元剤のいずれか一方であることを特徴とする請求項1または2に記載の成分測定方法。
  8.  前記第1試薬は、塩素化試薬であることを特徴とする請求項7に記載の成分測定方法。
  9.  基材シート上に設けられた、第1試薬を保持する第1試薬パッドと、
     前記基材シート上に前記第1試薬パッドに隣接して設けられた、第2試薬を保持する第2試薬パッドと、を備え、
     前記第1試薬パッドと前記第2試薬パッドとは、液体試料を接触させた場合に、前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生するように配置されていることを特徴とする成分測定用ストリップ。
  10.  前記第1試薬パッドおよび前記第2試薬パッドは、試験紙により構成されていることを特徴とする請求項9に記載の成分測定用ストリップ。
  11.  前記第1試薬パッドと前記第2試薬パッドとは、
     前記液体試料を接触させた場合に、まず前記液体試料と前記第1試薬との第1反応が発生し、次に、前記第1反応により生成される反応物と前記第2試薬との第2反応が発生するように配置されていることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  12.  前記第1試薬パッドと前記第2試薬パッドとは、前記基材シート上に重ねて設けられていることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  13.  前記第1試薬パッドと前記第2試薬パッドとは、前記基材シート上に、前記第2試薬パッド、前記第1試薬パッドの順に重ねて設けられていることを特徴とする請求項12に記載の成分測定用ストリップ。
  14.  前記第1試薬パッドと前記第2試薬パッドとは、互いに接触して前記基材シートの同一面上に並べて設けられていることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  15.  各々相違する前記第1試薬を保持する複数の前記第1試薬パッドを有し、
     前記複数の第1試薬パッドの各々と前記第2試薬パッドとは、互いに接触して前記基材シート上に設けられていることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  16.  前記第2試薬は、酸試薬およびアルカリ試薬のいずれか一方であることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  17.  前記第2試薬は、不揮発性酸であることを特徴とする請求項16に記載の成分測定用ストリップ。
  18.  前記第1試薬または前記第2試薬は、酸化剤および還元剤のいずれか一方であることを特徴とする請求項9または10に記載の成分測定用ストリップ。
  19.  前記第1試薬は、塩素化試薬であることを特徴とする請求項18に記載の成分測定用ストリップ。
  20.  第1試薬を保持する第1試薬パッドを作製する第1工程と、
     第2試薬を保持する第2試薬パッドを作製する第2工程と、
     前記第1試薬パッドと前記第2試薬パッドとを基材シート上に隣接して設置する第3工程と、を含み、
     前記第3工程では、
     液体試料を接触させた場合に、前記液体試料と、前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生するように、前記第1試薬パッドと前記第2試薬パッドとを設置することを特徴とする成分測定用ストリップの製造方法。
  21.  前記第2工程は、
     前記第2試薬パッドの本体に前記第2試薬の溶液を含浸させる工程と、
     前記第2試薬の溶液を含浸させた前記第2試薬パッドを乾燥させる工程と、を含み、
     前記第2試薬は、不揮発性酸であることを特徴とする請求項20に記載の成分測定用ストリップの製造方法。
  22.  第1試薬を保持する第1試薬パッドと第2試薬を保持する第2試薬パッドとが基材シート上に設けられたストリップを保持する保持部と、
     前記液体試料と、前記ストリップの前記第1試薬パッドが保持する第1試薬と、前記第2試薬パッドが保持する第2試薬とが混合されて呈色反応が発生した呈色領域の色を比色し、前記液体試料中の成分の濃度を測定する測定部と、を備えることを特徴とする成分測定装置。
PCT/JP2021/014544 2020-04-30 2021-04-05 成分測定方法および成分測定用ストリップ WO2021220730A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080242 2020-04-30
JP2020080242 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220730A1 true WO2021220730A1 (ja) 2021-11-04

Family

ID=78332367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014544 WO2021220730A1 (ja) 2020-04-30 2021-04-05 成分測定方法および成分測定用ストリップ

Country Status (2)

Country Link
JP (1) JP7421774B2 (ja)
WO (1) WO2021220730A1 (ja)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645599B2 (ja) * 1974-03-25 1981-10-27
JPS6151737B2 (ja) * 1978-08-31 1986-11-10 Fuji Photo Film Co Ltd
JPS62103542A (ja) * 1985-07-22 1987-05-14 Fuji Photo Film Co Ltd 一体型多層分析要素
JPS62161053A (ja) * 1986-01-10 1987-07-17 Konishiroku Photo Ind Co Ltd 分析素子
JPS6388000A (ja) * 1986-09-30 1988-04-19 Fuji Photo Film Co Ltd 酸性ホスフアタ−ゼ活性分析要素
JPH0134346B2 (ja) * 1981-12-28 1989-07-19 Mirumachi Tadashi
JPH0142041Y2 (ja) * 1978-12-11 1989-12-11
JPH028269B2 (ja) * 1979-05-23 1990-02-23 Miles Inc
JPH02232551A (ja) * 1989-03-06 1990-09-14 Konica Corp 多項目分析素子
JPH0523199A (ja) * 1991-07-20 1993-02-02 Konica Corp 分析素子及び分析方法
JPH0550275B2 (ja) * 1986-08-19 1993-07-28 Fuji Photo Film Co Ltd
JPH0668488B2 (ja) * 1985-07-19 1994-08-31 マイルズ ラボラトリ−ス インコ−ポレ−テッド 多層分析試験素子及び超音波又はレ−ザ−エネルギ−を用いたその製造方法
JPH06242101A (ja) * 1993-02-10 1994-09-02 Draegerwerk Ag ガス混合物中のガス状及び/又は蒸気状成分の比色検出のための装置
JP2547664B2 (ja) * 1990-10-20 1996-10-23 富士写真フイルム株式会社 鉄イオン分析用乾式分析要素
JP2553639B2 (ja) * 1987-06-22 1996-11-13 イーストマン コダック カンパニー 第一鉄イオン分析用分析要素
JP3076361B2 (ja) * 1990-08-29 2000-08-14 株式会社京都第一科学 一体型多層分析要素
JP2004004106A (ja) * 1994-06-29 2004-01-08 Lxn Corp フラクトサミンをアッセイするための多層試験デバイスおよび方法
JP2005345259A (ja) * 2004-06-03 2005-12-15 Toshiba Mitsubishi-Electric Industrial System Corp 検体分析方法
WO2011001530A1 (ja) * 2009-07-03 2011-01-06 株式会社ティー・ティー・エム 体液成分の分析器具
JP2011514516A (ja) * 2008-02-22 2011-05-06 オリオン ディアグノスティカ オサケ ユキチュア 分析物を検出するための方法および装置
US20160077013A1 (en) * 2013-10-21 2016-03-17 Amir James Attar Laminated Detector for Detection and Quantitative Determination of Formaldehyde

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677164B2 (ja) 2000-06-01 2011-04-27 株式会社テクノメデイカ 養液栽培における植物の育成状態診断装置
KR20130117775A (ko) 2010-09-23 2013-10-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 가스 매질용 다공성 화학 지시제
JP6924976B2 (ja) 2017-02-09 2021-08-25 パウダーテック株式会社 酸素検知剤及び酸素検知剤の製造方法
TWI718504B (zh) 2019-03-22 2021-02-11 台灣奈米碳素股份有限公司 氣敏式紋身貼紙
JP6747731B1 (ja) 2019-10-28 2020-08-26 フルハシEpo株式会社 植物栽培用養液の製造方法及び植物栽培方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645599B2 (ja) * 1974-03-25 1981-10-27
JPS6151737B2 (ja) * 1978-08-31 1986-11-10 Fuji Photo Film Co Ltd
JPH0142041Y2 (ja) * 1978-12-11 1989-12-11
JPH028269B2 (ja) * 1979-05-23 1990-02-23 Miles Inc
JPH0134346B2 (ja) * 1981-12-28 1989-07-19 Mirumachi Tadashi
JPH0668488B2 (ja) * 1985-07-19 1994-08-31 マイルズ ラボラトリ−ス インコ−ポレ−テッド 多層分析試験素子及び超音波又はレ−ザ−エネルギ−を用いたその製造方法
JPS62103542A (ja) * 1985-07-22 1987-05-14 Fuji Photo Film Co Ltd 一体型多層分析要素
JPS62161053A (ja) * 1986-01-10 1987-07-17 Konishiroku Photo Ind Co Ltd 分析素子
JPH0550275B2 (ja) * 1986-08-19 1993-07-28 Fuji Photo Film Co Ltd
JPS6388000A (ja) * 1986-09-30 1988-04-19 Fuji Photo Film Co Ltd 酸性ホスフアタ−ゼ活性分析要素
JP2553639B2 (ja) * 1987-06-22 1996-11-13 イーストマン コダック カンパニー 第一鉄イオン分析用分析要素
JPH02232551A (ja) * 1989-03-06 1990-09-14 Konica Corp 多項目分析素子
JP3076361B2 (ja) * 1990-08-29 2000-08-14 株式会社京都第一科学 一体型多層分析要素
JP2547664B2 (ja) * 1990-10-20 1996-10-23 富士写真フイルム株式会社 鉄イオン分析用乾式分析要素
JPH0523199A (ja) * 1991-07-20 1993-02-02 Konica Corp 分析素子及び分析方法
JPH06242101A (ja) * 1993-02-10 1994-09-02 Draegerwerk Ag ガス混合物中のガス状及び/又は蒸気状成分の比色検出のための装置
JP2004004106A (ja) * 1994-06-29 2004-01-08 Lxn Corp フラクトサミンをアッセイするための多層試験デバイスおよび方法
JP2005345259A (ja) * 2004-06-03 2005-12-15 Toshiba Mitsubishi-Electric Industrial System Corp 検体分析方法
JP2011514516A (ja) * 2008-02-22 2011-05-06 オリオン ディアグノスティカ オサケ ユキチュア 分析物を検出するための方法および装置
WO2011001530A1 (ja) * 2009-07-03 2011-01-06 株式会社ティー・ティー・エム 体液成分の分析器具
US20160077013A1 (en) * 2013-10-21 2016-03-17 Amir James Attar Laminated Detector for Detection and Quantitative Determination of Formaldehyde

Also Published As

Publication number Publication date
JP2021177169A (ja) 2021-11-11
JP7421774B2 (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
Zeiner et al. Analytical methods for the determination of heavy metals in the textile industry
US20150160245A1 (en) Ppm quantification of iodate using paper device
JPS60249037A (ja) 化学分析装置及びその検量方法
CA2806491C (en) Simultaneous determination of multiple analytes in industrial water system
Lau et al. Solid-state ammonia sensor based on Berthelot’s reaction
US3447904A (en) Test indicator for the detection of chlorides
JPH01197653A (ja) 過酸の分析方法および分析用試薬
WO2021220730A1 (ja) 成分測定方法および成分測定用ストリップ
CN111715312A (zh) 一种用于水质检测的多参数分析的纸基微流控芯片及其制作方法
CN207816804U (zh) 一种多光路检测装置
US20090275144A1 (en) System and Method for Colorimetric Titration Measurements
CN108760731A (zh) 化学成分快速检测方法
JP2007108064A (ja) 試料形成材料および該試料形成材料からなる膜を備えた吸光分析装置
Taylor et al. The determination of vanadium (V) in the presence of vanadium (IV) using 4-(2-pyridylazo) resorcinol in a flow-injection manifold
CN115308181A (zh) 一种原位可视化检测土壤铵态氮的比率荧光纸基传感器
Momin et al. Optosensing of chlorine gas using a dry reagent strip and diffuse reflectance spectrophotometry
EP1762843A1 (en) Metal indicator
Ensafi et al. Catalytic kinetic determination of ultratrace amounts of silver with spectrophotometric detection
CN109030377B (zh) 具有改进的错误检测的色度分析仪
Tavallali et al. Developing fast and facile method for speciation analysis of vanadium (V/IV) ions with calmagite immobilization on triacetyl cellulose membrane in water samples
Mitic et al. Kinetic spectrophotometric determination of chromium (VI) by oxidation of sodium pyrogallol-5-sulphonate by hydrogen peroxide
Rastegarzadeh et al. Development of an optical redox chemical sensor for nitrite determination
Starp et al. Novel teststrip with increased accuracy
Moonrungsee et al. A SIMPLE 3D TOOLBOX-BASED SMARTPHONE COLORIMETER: THE ABILITY TO DETECT THE STOICHIOMETRIC EQUIVALENT OF A CHEMICAL REACTION
CN108020629B (zh) 高效杀菌消毒剂中有效成分的连续测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797467

Country of ref document: EP

Kind code of ref document: A1