WO2021220729A1 - Polarizing plate and polarizing plate with optical functional layer - Google Patents

Polarizing plate and polarizing plate with optical functional layer Download PDF

Info

Publication number
WO2021220729A1
WO2021220729A1 PCT/JP2021/014526 JP2021014526W WO2021220729A1 WO 2021220729 A1 WO2021220729 A1 WO 2021220729A1 JP 2021014526 W JP2021014526 W JP 2021014526W WO 2021220729 A1 WO2021220729 A1 WO 2021220729A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
protective layer
polarizer
optical functional
Prior art date
Application number
PCT/JP2021/014526
Other languages
French (fr)
Japanese (ja)
Inventor
卓史 上条
和哉 三輪
大介 濱本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180031410.0A priority Critical patent/CN115461660A/en
Priority to KR1020227037883A priority patent/KR20230002535A/en
Publication of WO2021220729A1 publication Critical patent/WO2021220729A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate and a polarizing plate with an optical functional layer.
  • a polarizing plate is often arranged on at least one side of a display cell due to the image forming method.
  • image display devices have become thinner and more flexible, and along with this, there is a strong demand for thinner polarizing plates.
  • the thinner the polarizing plate the more remarkable the problem of durability that the optical characteristics in a heating and humidifying environment deteriorate.
  • polarizing plates are also excellent in mechanical properties. It is required that the optical characteristics do not change due to flexibility and bending. However, a polarizing plate satisfying such characteristics (as a result, a polarizing plate with an optical functional layer) has room for study for practical use. Further, when the bending resistance is improved, there is a problem that the strength of the polarizing plate is lowered and the physical durability is lowered.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is a polarizing plate and an optical functional layer that achieve both excellent durability and excellent flexibility despite being extremely thin.
  • the purpose is to provide a polarizing plate.
  • the polarizing plate of the present invention includes a polarizing element and a protective layer arranged on one side of the polarizing element.
  • This protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95 ° C. or higher.
  • the total thickness of this polarizing plate is 20 ⁇ m or less.
  • the protective layer has a thickness of 10 ⁇ m or less. In one embodiment, the thickness of the polarizer is 10 ⁇ m or less.
  • the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit.
  • a polarizing plate with an optical functional layer includes the polarizing plate and an optical functional layer arranged on the opposite side of the protective layer of the polarizer, and has a total thickness of 25 ⁇ m or less.
  • the optical functional layer functions as a protective layer separate from the protective layer.
  • the optical functional layer is a retardation layer having a circularly polarized light function or an elliptically polarized light function.
  • the protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature thereof is set to a predetermined value or higher. Therefore, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility and a polarizing plate with an optical functional layer.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 of the illustrated example has a polarizing element 10 and a protective layer 20 arranged on one side of the polarizing element 10.
  • the total thickness of the polarizing plate 100 is 20 ⁇ m or less.
  • the protective layer 20 is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and its glass transition temperature is 95 ° C. or higher. By having such a protective layer on the polarizing plate 100, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility in spite of a very thin thickness.
  • the thickness of the polarizer 10 is preferably 10 ⁇ m or less.
  • the thickness of the protective layer 20 is preferably 10 ⁇ m or less.
  • the total thickness of the polarizing plate 100 is 20 ⁇ m or less, preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. According to the present invention, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility even when the total thickness of the polarizing plate is within the above range.
  • the total thickness of the polarizing plate is, for example, 5 ⁇ m or more.
  • the glass transition temperature (Tg) of the protective layer 20 is 95 ° C. or higher, preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher. It is particularly preferably 115 ° C. or higher. If the Tg of the protective layer is in such a range, it may be very thin due to the synergistic effect of the protective layer being composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin. Regardless of this, a polarizing plate having excellent durability (as a result, a polarizing plate with an optical functional layer) can be realized.
  • the Tg of the protective layer is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower.
  • the Tg of the protective layer is in such a range, the moldability can be excellent.
  • Each layer or optical film constituting the polarizing plate is typically bonded via an adhesive layer.
  • the adhesive layer include an adhesive layer and an adhesive layer.
  • the adhesive layer can be preferably adopted. With such a configuration, the polarizing plate can be further thinned.
  • Typical examples of the adhesive constituting the adhesive layer include an active energy ray-curable adhesive (for example, an ultraviolet curable adhesive).
  • the thickness of the polarizing plate can be extremely thin. Therefore, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate of the present invention from being applied to a normal image display device.
  • EL electroluminescence
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate with an optical functional layer according to one embodiment of the present invention.
  • the polarizing plate 110 with an optical functional layer of the illustrated example includes a polarizing element 10, a protective layer 20 arranged on one side of the polarizer, and an optical functional layer 30 arranged on the other side of the polarizer. ..
  • the total thickness of the polarizing plate with an optical functional layer is 25 ⁇ m or less.
  • the polarizing plate 10 and the polarizing plate 100 are used as the protective layer 20.
  • the total thickness of the polarizing plate 110 with an optical functional layer is 25 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less. According to the present invention, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility even when the total thickness of the polarizing plate is within the above range.
  • the total thickness of the polarizing plate with an optical functional layer is, for example, 10 ⁇ m or more.
  • the optical functional layer functions as a protective layer separate from the protective layer 20.
  • a protective layer can also function as a retardation layer having predetermined retardation and optical characteristics.
  • the optical functional layer is a retardation layer having a circularly polarized light function or an elliptically polarized light function.
  • Such a retardation layer can also function as a protective layer for the polarizer.
  • the retardation layer is an orientation-solidified layer of a liquid crystal compound.
  • the retardation layer may be a single layer of the orientation solidification layer, or may have a laminated structure of the first orientation solidification layer and the second orientation solidification layer.
  • a polarizing plate in which the optical functional layer is a retardation layer may be referred to as a polarizing plate with a retardation layer.
  • Each layer or optical film constituting the polarizing plate with an optical functional layer is typically bonded via an adhesive layer.
  • the adhesive layer include an adhesive layer and an adhesive layer.
  • the adhesive layer can be preferably adopted. With such a configuration, the polarizing plate with an optical functional layer can be further thinned.
  • Typical examples of the adhesive constituting the adhesive layer include an active energy ray-curable adhesive (for example, an ultraviolet curable adhesive).
  • a polarizing plate provided with an optical functional layer that functions as a retardation layer may be further provided with another retardation layer.
  • Another retardation layer is typically provided on the outside (opposite side of the polarizer 10) of the optical functional layer (phase difference layer) 30.
  • Such another retardation layer is preferably provided when the retardation layer is a single layer of an oriented solidification layer.
  • the optical functional layer (phase difference layer) 30 may be referred to as a first retardation layer, and another retardation layer may be referred to as a second retardation layer.
  • the polarizing plate with an optical functional layer may further include other retardation layers.
  • the optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
  • the polarizing plate with an optical functional layer may be provided with a conductive layer or an isotropic base material with a conductive layer.
  • the conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the optical functional layer 30 (opposite to the polarizer 10).
  • the polarizing plate is a polarizing plate with a retardation layer having a retardation layer and another retardation layer, the other retardation layer and the conductive layer or the isotropic base material with the conductive layer are typically positioned. It is provided in this order from the phase difference layer (optical functional layer) 30 side.
  • the polarizing plate or the polarizing plate with a retardation layer has a so-called touch sensor incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to an inner touch panel type input display device.
  • an image display cell for example, an organic EL cell
  • the protective layer is composed of a solidified coating film of a thermoplastic acrylic resin in an organic solvent solution, and the glass transition temperature is set to 95 ° C. or higher, so that the protective layer is durable even though it is very thin. It is possible to realize an excellent polarizing plate. Specifically, it is possible to realize a polarizing plate in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment.
  • the polarizing plate has very small changes in the simple substance transmittance Ts ⁇ Ts and changes in the degree of polarization P ⁇ P after being left in an environment of 85 ° C. and 85% RH for 48 hours.
  • the simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100").
  • the degree of polarization P is calculated by the following equation from the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
  • Polarization degree (P) (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor.
  • Ts and P are substantially properties of the polarizer.
  • ⁇ Ts and ⁇ P are calculated by the following formulas, respectively.
  • Ts 0 is the single transmittance before leaving (initial)
  • Ts 48 is the single transmittance after leaving
  • P 0 is the degree of polarization before leaving (initial)
  • P 48 is after leaving.
  • ⁇ Ts is preferably 3.0% or less, more preferably 2.7% or less, still more preferably 2.4% or less.
  • ⁇ P is preferably ⁇ 1.0% to 0%, more preferably ⁇ 0.5% to 0%, and even more preferably ⁇ 0.3% to 0%.
  • an adhesive layer (not shown) is provided on the opposite side of the optical functional layer from the polarizer, and the polarizing plate can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and rolls can be formed.
  • the polarizing plate and the polarizing plate with an optical functional layer of the present invention may be single-wafered or elongated.
  • the term "long” means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. include.
  • the elongated polarizing plate can be wound in a roll shape.
  • Polarizer As the polarizer, any suitable polarizer can be adopted.
  • the polarizer can typically be made using a laminate of two or more layers. The method for manufacturing the polarizer will be described later in Section F as a method for manufacturing the polarizing plate.
  • the thickness of the polarizer is preferably 10 ⁇ m or less, more preferably 1 ⁇ m to 8 ⁇ m, further preferably 1 ⁇ m to 7 ⁇ m, and particularly preferably 2 ⁇ m to 5 ⁇ m.
  • the boric acid content of the polarizer is preferably 10% by weight or more, more preferably 13% by weight to 25% by weight.
  • the boric acid content can be calculated as, for example, the amount of boric acid contained in the polarizer per unit weight by using the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight.
  • the iodine content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above.
  • the term "iodine content” means the amount of all iodine contained in the polarizer (PVA-based resin film).
  • Iodine content means the amount of iodine that includes all of these forms.
  • the iodine content can be calculated, for example, by the calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ion exists in a state in which a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light.
  • a complex of PVA and tri-iodide ion (PVA ⁇ I 3 -) has a light absorption peak around 470 nm
  • a complex of PVA and five iodide ion (PVA ⁇ I 5 -) is 600nm near Has an absorptive peak.
  • polyiodine ions can absorb light over a wide range of visible light, depending on their morphology.
  • iodine ion (I ⁇ ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%.
  • the degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin (hereinafter, simply referred to as an acrylic resin).
  • an acrylic resin a thermoplastic acrylic resin
  • Acrylic resin The Tg of an acrylic resin (including a blend of two or more kinds of acrylic resins and a blend of an acrylic resin and another resin as described later) is as described in Section A above regarding the protective layer. be.
  • any suitable acrylic resin can be adopted as long as it has Tg as described above.
  • Acrylic resins typically contain an alkyl (meth) acrylate as a main component as a monomer unit (repeating unit).
  • (meth) acrylic means acrylic and / or methacryl.
  • alkyl (meth) acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination.
  • any suitable copolymerization monomer may be introduced into the acrylic resin by copolymerization.
  • the repeating unit derived from alkyl (meth) acrylate is typically represented by the following general formula (1):
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms which may be substituted. show.
  • the substituent include halogens and hydroxyl groups.
  • alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • R 5 is preferably a hydrogen
  • Acrylic resins may also include only a single alkyl (meth) acrylate units, even if R 4 and R 5 include a plurality of different alkyl (meth) acrylate unit in the above general formula (1) good.
  • the content ratio of the alkyl (meth) acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, still more preferably 60 mol% to 98 mol%, and particularly preferably. It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol%, the effects expressed from the alkyl (meth) acrylate unit (for example, high heat resistance and high transparency) may not be sufficiently exhibited. If the content ratio is more than 98 mol%, the resin is brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be inferior.
  • the acrylic resin preferably has a repeating unit containing a ring structure.
  • the repeating unit including a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit. Only one type of the repeating unit including the ring structure may be contained in the repeating unit of the acrylic resin, or two or more types may be contained.
  • the lactone ring unit is preferably represented by the following general formula (2):
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • the acrylic resin may be contained only a single lactone ring units may be R 1, R 2 and R 3 in the general formula (2) is contains different lactone ring unit ..
  • An acrylic resin having a lactone ring unit is described in, for example, Japanese Patent Application Laid-Open No. 2008-181078, and the description in this publication is incorporated herein by reference.
  • the glutarimide unit is preferably represented by the following general formula (3):
  • R 11 and R 12 independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 13 is an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms.
  • the cycloalkyl group of the above, or an aryl group having 6 to 10 carbon atoms is shown.
  • R 11 and R 12 are independently hydrogen or methyl groups
  • R 13 is a hydrogen, methyl group, butyl group or cyclohexyl group, respectively. More preferably, R 11 is a methyl group, R 12 is hydrogen, and R 13 is a methyl group.
  • the acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the above general formula (3). ..
  • Examples of the acrylic resin having a glutarimide unit include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Application Laid-Open No. 2006-337493 and Japanese Patent Application Laid-Open No. 2006-337569, and the description of this publication is incorporated herein by reference. Note that the glutaric anhydride units, nitrogen atom substituted by R 13 in the general formula (3), except that the oxygen atom, the above description is applied about the glutarimide units.
  • the structure of the maleic anhydride unit and the maleimide (N-substituted maleimide) unit is specified from the name, so specific description thereof will be omitted.
  • the content ratio of the repeating unit including the ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too small, Tg may be less than 110 ° C., and the heat resistance, solvent resistance and surface hardness of the obtained protective layer may be insufficient. If the content is too high, moldability and transparency may be insufficient.
  • the acrylic resin may contain a repeating unit other than the alkyl (meth) acrylate unit and the repeating unit including the ring structure.
  • a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit).
  • other vinyl-based monomers include acrylic acid, methacrylic acid, crotonic acid, 2- (hydroxymethyl) acrylic acid, 2- (hydroxyethyl) acrylic acid, acrylonitrile, methacrylonitrile, etacrylonitrile, and allyl.
  • Glycidyl ether maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Cyclohexylaminoethyl acid, N-vinyldiethylamine, N-acetylvinylamine, allylamine, metaallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, ⁇ -methylstyrene, p-glycidylstyrene, p-amin
  • the weight average molecular weight of the acrylic resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, further preferably 10000 to 500000, particularly preferably 50,000 to 500000, and most preferably 60000 to 150,000.
  • the weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
  • the acrylic resin can be polymerized by any suitable polymerization method by using the above-mentioned monomer units in an appropriate combination. Two or more kinds of acrylic resins having different monomer units may be blended.
  • an acrylic resin and another resin may be used in combination. That is, the monomer component constituting the acrylic resin and the monomer component constituting the other resin may be copolymerized, and the copolymer may be used for molding the protective layer described later; the acrylic resin and the other resin.
  • the blend of may be used for forming the protective layer.
  • other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide.
  • the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired properties of the obtained film.
  • a styrene resin preferably an acrylonitrile-styrene copolymer
  • a retardation control agent preferably an acrylonitrile-styrene copolymer
  • the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. By weight%, more preferably 70% by weight to 100% by weight, particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
  • the protective layer is composed of a solidified coating film of an organic solvent solution of an acrylic resin. With such a solidified coating film, the thickness can be significantly reduced as compared with the extrusion-molded film.
  • the thickness of the protective layer is 10 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the lower limit of the thickness of the protective layer can be, for example, 1 ⁇ m.
  • such a solidified coating film is compared with a cured product of a thermosetting resin or an active energy ray-curable resin (for example, an ultraviolet curable resin) at the time of film molding. Since the shrinkage is small and the residual monomer or the like is not contained, deterioration of the film itself can be suppressed, and the adverse effect on the polarizing plate (polarizer) caused by the residual monomer or the like can be suppressed. Further, it has an advantage that it is excellent in humidification durability because it has low hygroscopicity and moisture permeability as compared with a solidified water-based coating film such as an aqueous solution or an aqueous dispersion. As a result, it is possible to realize a polarizing plate having excellent durability (as a result, a polarizing plate with a retardation layer) that can maintain optical characteristics even in a heating and humidifying environment.
  • a polarizing plate having excellent durability (as a result, a polarizing plate with a retardation
  • the Tg of the protective layer is as described in Section A above.
  • the amount of iodine adsorbed in the protective layer is preferably 4.0% by weight or less, more preferably 3.0% by weight or less, still more preferably 2.0% by weight or less, and particularly preferably 1.0% by weight. % Or less, particularly preferably 0.5% by weight or less.
  • a polarizing plate having even better durability (as a result, a polarizing plate with a retardation layer) can be obtained.
  • the iodine adsorption amount can be measured by the method described in Examples described later.
  • the protective layer is preferably substantially optically isotropic.
  • substantially optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 20 nm to +10 nm. Say something.
  • the in-plane retardation Re (550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm.
  • the phase difference Rth (550) in the thickness direction is more preferably ⁇ 5 nm to + 5 nm, further preferably -3 nm to + 3 nm, and particularly preferably -2 nm to + 2 nm.
  • Re (550) and Rth (550) of the protective layer are in such a range, it is possible to prevent adverse effects on the display characteristics when a polarizing plate with a retardation layer including the protective layer is applied to an image display device. can.
  • the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. When the light transmittance is in such a range, the desired transparency can be ensured.
  • the light transmittance can be measured, for example, by a method according to ASTM-D-1003.
  • the haze of the protective layer is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less.
  • the haze is 5% or less, a good clear feeling can be given to the film. Further, even when a polarizing plate with a retardation layer is used on the visual side of the image display device, the displayed contents can be visually recognized satisfactorily.
  • the YI at a thickness of 3 ⁇ m of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient.
  • the b value (a measure of hue according to the hunter's color system) at a thickness of 3 ⁇ m of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear.
  • a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
  • the protective layer may contain any suitable additive depending on the purpose.
  • additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based, and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers, and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like.
  • the additive may be added at the time of polymerization of the acrylic resin, or may be added to the solution at the time of film formation. The type, number,
  • An easy-adhesion layer may be formed on the polarizer side of the protective layer.
  • the easy-adhesion layer contains, for example, an aqueous polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be improved.
  • a hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as the visible protective layer of the visible polarizing plate. When both the easy-adhesion layer and the hard coat layer are formed, typically they can be formed on different sides of the protective layer, respectively.
  • Optical functional layer D-1 Optical functional layer which is a protective layer
  • the protective layer is preferably a thin protective layer having a thickness of 20 ⁇ m or less.
  • the thickness of the protective layer is more preferably 18 ⁇ m or less, further preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the thickness of the protective layer can be, for example, 1 ⁇ m or more.
  • the protective layer may be made of a resin film or a solidified coating film.
  • the resin constituting the resin film include cycloolefin-based resin and acrylic-based resin.
  • the solidified coating film may be, for example, a solidified coating film of a predetermined acrylic resin in an organic solvent solution, or a solidified coating film in an organic solvent solution of an epoxy resin.
  • any suitable epoxy resin can be used as the epoxy resin.
  • An epoxy resin having a glass transition temperature of 90 ° C. or higher is preferably used.
  • an epoxy resin having an aromatic ring in the molecular structure is preferably used.
  • an epoxy resin having a higher Tg can be obtained.
  • the aromatic ring in the epoxy resin having an aromatic ring in the molecular structure include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. When two or more kinds of epoxy resins are used, an epoxy resin containing an aromatic ring and an epoxy resin not containing an aromatic ring may be used in combination.
  • the protective layer (optical functional layer) is typically arranged on the image display cell side when the polarizing plate is applied to the image display device.
  • the protective layer is preferably optically isotropic.
  • optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say.
  • the protective layer may be a retardation layer having any suitable retardation value.
  • the in-plane retardation Re (550) of the protective layer (phase difference layer) is, for example, 110 nm to 150 nm.
  • the retardation layer is a stretched film of a resin film. It may be an oriented solidified layer of a liquid crystal compound. It is preferably an oriented solidified layer of the liquid crystal compound.
  • the oriented solidified layer of the liquid crystal compound will be described in detail.
  • the retardation layer made of a stretched film of a resin film is described in, for example, JP-A-2017-54093 and JP-A-2018-60014. The description of these publications is incorporated herein by reference.
  • the "aligned solidified layer” means a layer in which the liquid crystal compound is oriented in a predetermined direction in the layer and the oriented state is fixed.
  • the “oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later.
  • the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow-phase axial direction of the first retardation layer (homogeneous orientation).
  • the liquid crystal compound examples include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed.
  • the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal.
  • the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example.
  • the first retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in Special Tables 2002-533742 WO00 / 37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93 / 22397 EP02671712, DE19504224, DE4408171, GB2280445 and the like
  • Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state.
  • the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizer 10.
  • any appropriate orientation treatment can be adopted.
  • Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment.
  • Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment.
  • As the treatment conditions for various orientation treatments any appropriate conditions can be adopted depending on the purpose.
  • the orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the base material.
  • the orientation state is fixed by cooling the liquid crystal compound oriented as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
  • the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation.
  • the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the first retardation layer.
  • the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °.
  • a discotic liquid crystal compound generally has a cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and has a linear alkyl group, an alkoxy group, and a substituted benzoyl.
  • Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I.
  • the retardation layer (optical functional layer) 30 is a single layer of the orientation-solidified layer of the liquid crystal compound.
  • the retardation layer hereinafter, may be referred to as the first retardation layer as described above
  • the thickness thereof is preferably 0.5 ⁇ m to 7 ⁇ m. , More preferably 1 ⁇ m to 5 ⁇ m.
  • the first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and functions as a ⁇ / 4 plate when the first retardation layer is a single layer of an orientation solidification layer. Can be done.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 130 nm to 160 nm.
  • the Nz coefficient of the first retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
  • the first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measurement light.
  • the first retardation layer exhibits inverse dispersion wavelength characteristics.
  • the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
  • the angle ⁇ formed by the slow axis of the first retardation layer and the absorption axis of the polarizer 10 is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °. °. If the angle ⁇ is in such a range, by using the ⁇ / 4 plate as the first retardation layer as described above, very excellent circularly polarized light characteristics (as a result, very excellent antireflection characteristics). A polarizing plate with a retardation layer having the above can be obtained.
  • the first retardation layer may have a laminated structure of a first oriented solidified layer and a second oriented solidified layer.
  • either one of the first oriented solidified layer and the second oriented solidified layer may function as a ⁇ / 4 plate, and the other may function as a ⁇ / 2 plate. Therefore, the thicknesses of the first oriented solidified layer and the second oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference between the ⁇ / 4 plate or the ⁇ / 2 plate.
  • the thickness of the first oriented solidified layer is, for example, 2.0 ⁇ m to 3.0 ⁇ m.
  • the thickness of the second oriented solidified layer is, for example, 1.0 ⁇ m to 2.0 ⁇ m.
  • the in-plane retardation Re (550) of the first oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm.
  • the in-plane retardation Re (550) of the second oriented solidified layer is as described above with respect to the single oriented solidified layer.
  • the angle formed by the slow axis of the first oriented solidification layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °. be.
  • the angle formed by the slow axis of the second oriented solidification layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. be.
  • liquid crystal compounds constituting the first oriented solidified layer and the second oriented solidified layer are described above with respect to the single oriented solidified layer. As explained in.
  • the positive C plate as the second retardation layer, it is possible to satisfactorily prevent reflection in the oblique direction, and it is possible to widen the viewing angle of the antireflection function.
  • the second retardation layer is preferably provided when the first retardation layer is a single layer of the orientation solidification layer.
  • the retardation Rth (550) in the thickness direction of the second retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, and particularly preferably ⁇ 100 nm to. -180 nm.
  • the second retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compounds described in [0020] to [0028] of JP-A-2002-333642 and the method for forming the retardation layer.
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and even more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the conductive layer is made of any suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it.
  • suitable film forming method for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the conductive layer may be transferred from the base material to an optical functional layer (or a second retardation layer if present), and the conductive layer alone may be used as a constituent layer of a polarizing plate with a retardation layer. It may be laminated on the optical functional layer (or the second retardation layer if present) as a laminate with the material (base material with a conductive layer).
  • the substrate is optically isotropic, and therefore the conductive layer can be used in the polarizing plate as an isotropic substrate with a conductive layer.
  • any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material).
  • the material constituting the isotropic base material include a material having a resin having no conjugate system such as a norbornene resin and an olefin resin as a main skeleton, and an acrylic resin having a cyclic structure such as a lactone ring and a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic base material is formed, the occurrence of the phase difference due to the orientation of the molecular chains can be suppressed to be small.
  • the thickness of the isotropic base material is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the thickness of the isotropic base material is, for example, 20 ⁇ m or more.
  • the conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed.
  • the electrode can function as a touch sensor electrode that senses contact with the touch panel.
  • any suitable method can be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • Method for manufacturing polarizing plate F-1 Method for producing a polarizer
  • the method for producing a polarizer according to the above item B is a polyvinyl alcohol-based resin containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material.
  • a layer (PVA-based resin layer) is formed to form a laminated body, and the laminated body is heated in the width direction while being conveyed in the longitudinal direction by aerial auxiliary stretching treatment, dyeing treatment, and underwater stretching treatment.
  • a drying shrinkage treatment for shrinking by 2% or more, and a drying shrinkage treatment, which are performed in this order, are included.
  • the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. According to such a manufacturing method, the above-mentioned polarizer can be obtained.
  • a laminate containing a PVA-based resin layer containing a halide stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll.
  • a polarizer having excellent optical characteristics typically, single transmittance and degree of polarization
  • the laminated body can be uniformly shrunk over the entire laminated body while being conveyed.
  • a heating roll in the drying shrinkage treatment step the laminated body can be uniformly shrunk over the entire laminated body while being conveyed.
  • a polarizer having excellent optical characteristics can be stably produced, and the variation in the optical characteristics of the polarizer (particularly, the single transmittance) can be suppressed. can do.
  • the halide and the drying shrinkage treatment will be described. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
  • a PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin onto a thermoplastic resin base material and drying the coating film.
  • the coating liquid is typically a solution in which the above-mentioned halide and the above-mentioned PVA-based resin are dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more.
  • the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed in close contact with the thermoplastic resin base material.
  • any suitable halide can be adopted.
  • iodide and sodium chloride can be mentioned.
  • Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
  • the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the finally obtained polarizer may become cloudy.
  • the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin.
  • the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease.
  • the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material.
  • the tendency of the degree of orientation to decrease is remarkable.
  • stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
  • stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
  • a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in the air before being stretched in boric acid water.
  • Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
  • the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid such as a dyeing treatment and a stretching treatment in water, can be improved.
  • the dry shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used.
  • heating roll heating roll drying method
  • the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state of being able to withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
  • the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
  • the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 3 is a schematic view showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material.
  • one surface of the laminate 200 (for example, thermoplastic) is arranged.
  • the transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
  • Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
  • the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
  • the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
  • the number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
  • a heating furnace provided with a blowing means.
  • the temperature of hot air drying is preferably 30 ° C to 100 ° C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
  • thermoplastic resin base material / polarizer a laminate of a thermoplastic resin base material / polarizer.
  • a protective layer is formed by applying an organic solvent solution of an acrylic resin to the surface on the polarizer side of the laminate obtained in the above section F-1 to form a coating film, and solidifying the coating film. Is formed.
  • the acrylic resin is as described in Section C-1 above.
  • any suitable organic solvent capable of dissolving or uniformly dispersing the acrylic resin can be used.
  • the organic solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
  • the concentration of the acrylic resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polarizer can be formed.
  • the solution may be applied to any suitable substrate or to a polarizer.
  • the solidified material of the coating film formed on the substrate is transferred to the polarizer.
  • the protective layer is directly formed on the polarizer by drying (solidifying) the coating film.
  • the solution is applied to the polarizer and a protective layer is formed directly on the polarizer.
  • the adhesive layer or the pressure-sensitive adhesive layer required for transfer can be omitted, so that the polarizing plate with a retardation layer can be further thinned.
  • Any suitable method can be adopted as the method for applying the solution. Specific examples include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, and a knife coating method (comma coating method, etc.).
  • a protective layer can be formed by drying (solidifying) the coating film of the solution.
  • the drying temperature is preferably 100 ° C. or lower, more preferably 50 ° C. to 70 ° C. When the drying temperature is in such a range, it is possible to prevent an adverse effect on the polarizer.
  • the drying time can vary depending on the drying temperature. The drying time can be, for example, 1 minute to 10 minutes.
  • the protective layer is formed, and as a result, a laminate of the thermoplastic resin base material / polarizer / protective layer can be obtained.
  • a polarizing plate having a polarizing element 10 and a protective layer 20 as shown in FIG. 1 can be obtained.
  • a resin film constituting another protective layer is attached to the polarizer surface of the laminate of the thermoplastic resin base material / polarizer, and then the thermoplastic resin base material is peeled off to form a protective layer on the peeled surface. You may. In this case, a polarizing plate having another protective layer can be obtained.
  • a polarizing plate with an optical functional layer can be manufactured by any suitable method. For example, it can be produced by producing a polarizing plate by the method described in the above item F, and laminating or transferring an arbitrary appropriate optical functional layer on the polarizer side of the polarizing plate.
  • the optical functional layer may be laminated on the polarizer via any suitable adhesive layer, or may be formed directly on the polarizer.
  • the obtained coating film was peeled off from the base material and cut into 1 cm ⁇ 1 cm (1 cm 2 ) to prepare a measurement sample.
  • the measurement sample was subjected to a combustion IC method, and the amount of iodine in the sample was quantitatively analyzed. Specifically, it is as follows.
  • the measurement sample was collected and weighed in a headspace vial (20 mL volume).
  • a vial (2 mL volume) containing 1 mL of an iodine aqueous solution iodine concentration 1% by weight, potassium iodide concentration 7% by weight
  • this headspace vial is heated in a dryer at 65 ° C.
  • test piece (50 mm ⁇ 50 mm) was cut out.
  • the test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") was used for the test sample.
  • an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation, product name "V7100"
  • Ts single transmittance
  • Tp parallel transmittance
  • Tc orthogonal transmittance
  • P degree of polarization
  • Polarization degree (P) (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer.
  • the polarizing plate with an optical functional layer was left in an oven at 85 ° C. and 85% RH for 48 hours to heat and humidify (heating test), and the single transmittance Ts 0 before the heating test and the single transmittance after the heating test were obtained. From Ts 48 , the amount of change in single transmittance ⁇ Ts was determined using the following formula.
  • ⁇ Ts (%) Ts 48 -Ts 0
  • ⁇ P (%) P 48 ⁇ P 0
  • a test piece (50 mm ⁇ ) having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction. 50 mm) was cut out, and the test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to prepare a test sample.
  • This measurement sample was subjected to a continuous bending test using a continuous bending test device (manufactured by Yuasa System Equipment Co., Ltd., product name "DLDMLLH-FS") in a no-load U-shaped expansion / contraction mode.
  • the bending speed was 60 rpm
  • the bending amplitude was 20 mm
  • the bending radius of curvature was 0.5 mm
  • the number of bendings was 50,000.
  • the bending was performed so that the optical functional layer or the retardation layer of the measurement sample was on the inside by sliding the gripping portion while gripping the longitudinal end portion of the measurement sample. It was evaluated according to the following criteria.
  • Example 1 Fabrication of Laminate of Polarizer / Resin Base Material
  • Amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) as a resin base material, which is long, has a water absorption rate of 0.75%, and has a Tg of about 75 ° C. was used.
  • One side of the resin substrate was corona-treated.
  • Polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Co., Ltd., trade name "Gosefimer Z410”) are mixed in a ratio of 9: 1 to 100 parts by weight of PVA-based resin.
  • a PVA aqueous solution (coating liquid).
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • the surface of a polyethylene terephthalate (PET) film was rubbed with a rubbing cloth and subjected to an orientation treatment.
  • the direction of the orientation treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached.
  • the liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 100 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film.
  • a base material with an adhesive was attached to the surface of the oriented solidification layer B for reinforcement.
  • the resin base material is peeled off, and a retardation layer having a structure of a polarizer / an adhesive layer / a retardation layer (first orientation solidification layer / adhesion layer / second orientation solidification layer) / a base material with an adhesive is used.
  • a polarizing plate with a polarizing plate was obtained.
  • a polyurethane-based water-based dispersion resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name: Superflex SF210) is applied as an easy-adhesion layer on the polarizing plate of the obtained polarizing plate with a retardation layer to a thickness of 0. It was applied so as to have a thickness of 1 ⁇ m to form an easy-adhesion layer.
  • a polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained.
  • the obtained polarizing plate with a retardation layer was subjected to the above evaluation.
  • Example 2 Polarizing plate with retardation layer as in Example 1 except that the protective layer thickness is 2 ⁇ m and a hard coat layer (thickness 3 ⁇ m) is further formed on the surface opposite to the easy-adhesion layer of the protective layer.
  • the hard coat layer is 70 parts by weight of dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate DCP-A) and isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate IB-XA).
  • Example 3 A polarizing plate (protective layer (solidification of coating film)) was used in the same manner as in Example 1 except that a cycloolefin resin (COP) film (thickness 13 ⁇ m) was used as another protective layer instead of the retardation layer as the optical functional layer. Layer) / Polarizer / Protective layer (COP film)) was prepared. The total thickness of the polarizing plate was 22 ⁇ m. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • COP cycloolefin resin
  • Example 4 Above 1. Polarizing plate (protective layer (solidified layer of coating film) / polarizing element in the same manner as in Example 1 except that the protective layer forming composition was applied to the polarizing element of the laminate of the polarizing element / resin base material obtained in 1. ) was prepared. The total thickness of the polarizing plate was 8 ⁇ m. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 5 Protection in the same manner as in Example 1 except that an acrylic resin (lactone ring unit: 30 mol%) which is a polymethyl methacrylate having a lactone ring unit was used instead of the acrylic resin which is 100% polymethyl methacrylate.
  • a polarizing plate with a retardation layer having a structure of a layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
  • Example 6 The same as in Example 1 except that an acrylic resin (glutarimide ring unit 4 mol%) which is a polymethyl methacrylate having a glutarimide ring unit was used instead of the acrylic resin which is 100% polymethyl methacrylate. , A polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
  • an acrylic resin (glutarimide ring unit 4 mol%) which is a polymethyl methacrylate having a glutarimide ring unit was used instead of the acrylic resin which is 100% polymethyl methacrylate.
  • Example 7 Protection in the same manner as in Example 1 except that an acrylic resin which is a copolymer of methyl methacrylate / butyl methacrylate (molar ratio 80/20) was used instead of the acrylic resin which is 100% polymethyl methacrylate.
  • a polarizing plate with a retardation layer having a structure of a layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
  • Comparative Example 2 instead of the 100% polymethylmethacrylate acrylic resin, an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-734"), which is a copolymer of methyl methacrylate / butyl methacrylate (molar ratio 35/65), is used.
  • a polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained in the same manner as in Example 1 except that it was used. When the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmittance and the degree of polarization were not evaluated.
  • a composition containing 97% by weight of the acrylic resin and 3% by weight of a photopolymerization initiator (Irgacure 907, manufactured by BASF) is applied onto a polarizer, and a high-pressure mercury lamp is used in a nitrogen atmosphere.
  • a cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 300 mJ / cm 2.
  • Example 4 Except for the fact that the easy-adhesion layer was not formed (that is, the protective layer was formed directly on the polarizing element) and that the protective layer was formed using an ultraviolet curable epoxy resin (manufactured by Daicel Corporation, product name "Selokiside 2021P"). Formed a protective layer (cured product) in the same manner as in Example 1 to obtain a polarizing plate with a retardation layer. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro) is applied onto a polarizer, and a high-pressure mercury lamp is used in an air atmosphere. A cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 500 mJ / cm 2.
  • CPI-100P photopolymerization initiator
  • Example 5 Example 1 except that an easy-adhesion layer was not formed (that is, a protective layer was formed directly on the polarizer) and an aqueous polyester resin (manufactured by Nippon Synthetic Chemical Co., Ltd., product name "Polyester WR905") was used.
  • a protective layer solidified coating film
  • Example 6 Comparative Example 6 except that an easy-adhesion layer was not formed (that is, a protective layer was formed directly on the polarizer) and an aqueous polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Superflex SF210") was used.
  • a protective layer solidified coating film
  • the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmission rate and the degree of polarization were not evaluated.
  • Comparative Example 7 An acrylic film (refractive index: 1.50, thickness: 20 ⁇ m) that did not form an easy-adhesion layer and had an easy-adhesion treatment on one side was directly bonded to the polarizer surface via an ultraviolet curable adhesive. .. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the side of the acrylic film to cure the adhesive. A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that the protective layers were laminated in this way.
  • Comparative Example 8 A polarizing plate with a retardation layer was produced in the same manner as in Comparative Example 7 except that the thickness of the acrylic film was changed to 40 ⁇ m. The thickness of the polarizing plate was 51 ⁇ m. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the polarizing plate of the present invention is suitably used for an image display device.
  • image display devices include portable devices such as mobile information terminals (PDAs), smartphones, mobile phones, clocks, digital cameras, and portable game machines; OA devices such as personal computer monitors, laptop computers, and copiers; video cameras and televisions. , Home appliances such as microwave ovens; Back monitors, car navigation system monitors, car audio and other in-vehicle devices; Digital signage, commercial store information monitors and other exhibition devices; Surveillance monitors and other security devices; Nursing care Nursing care / medical equipment such as monitors for medical use and monitors for medical use;
  • Polarizer 10 Polarizer 20 Protective layer 30 Phase difference layer 100 Polarizing plate 110 Polarizing plate with optical functional layer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a polarizing plate which has excellent durability and excellent bendability in spite of the extremely thin thickness. A polarizing plate according to the present invention comprises a polarizer and a protective layer that is arranged on one side of the polarizer; the protective layer is configured from a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin; the protective layer has a glass transition temperature of 95°C or more; and the total thickness is 20 μm or less.

Description

偏光板および光学機能層付偏光板Polarizing plate and polarizing plate with optical functional layer
 本発明は、偏光板および光学機能層付偏光板に関する。 The present invention relates to a polarizing plate and a polarizing plate with an optical functional layer.
 画像表示装置(例えば、液晶表示装置、有機EL表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。近年、画像表示装置の薄型化およびフレキシブル化が進んでおり、これに伴い、偏光板の薄型化も強く要望されている。しかし、偏光板を薄くすればするほど、加熱加湿環境下での光学特性が低下するという耐久性の問題が顕著となる。 In an image display device (for example, a liquid crystal display device or an organic EL display device), a polarizing plate is often arranged on at least one side of a display cell due to the image forming method. In recent years, image display devices have become thinner and more flexible, and along with this, there is a strong demand for thinner polarizing plates. However, the thinner the polarizing plate, the more remarkable the problem of durability that the optical characteristics in a heating and humidifying environment deteriorate.
 近年、湾曲した画像表示装置および/または折り曲げもしくは折り畳み可能な画像表示装置に対する要望が高まっていることに伴い、偏光板(結果として、光学機能層付偏光板)についても機械的特性としての優れた屈曲性および屈曲により光学特性が変化しないことが求められている。しかし、このような特性を満足する偏光板(結果として、光学機能層付偏光板)は、実用化に向けて検討の余地が残されている。また、耐屈曲性を向上させた場合、偏光板の強度が低下し、物理的な耐久性が低下するという問題がある。 In recent years, with the increasing demand for curved image display devices and / or foldable or foldable image display devices, polarizing plates (as a result, polarizing plates with an optical functional layer) are also excellent in mechanical properties. It is required that the optical characteristics do not change due to flexibility and bending. However, a polarizing plate satisfying such characteristics (as a result, a polarizing plate with an optical functional layer) has room for study for practical use. Further, when the bending resistance is improved, there is a problem that the strength of the polarizing plate is lowered and the physical durability is lowered.
特開2015-210474号公報JP-A-2015-210474
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、非常に薄いにもかかわらず、優れた耐久性と優れた屈曲性とを両立する偏光板および光学機能層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is a polarizing plate and an optical functional layer that achieve both excellent durability and excellent flexibility despite being extremely thin. The purpose is to provide a polarizing plate.
 本発明の偏光板は、偏光子と、該偏光子の一方の側に配置された保護層と、を含む。この保護層は、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該保護層のガラス転移温度が95℃以上である。この偏光板の総厚みは20μm以下である。
 1つの実施形態においては、上記保護層の厚みは10μm以下である。
 1つの実施形態においては、上記偏光子の厚みは10μm以下である。
 1つの実施形態においては、上記熱可塑性アクリル系樹脂は、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つを有する。
 本発明の別の局面においては、光学機能層付偏光板が提供される。この光学機能層付偏光板は、上記偏光板と、上記偏光子の上記保護層と反対側に配置された光学機能層とを含み、総厚みが25μm以下である。
 1つの実施形態においては、上記光学機能層は、上記保護層とは別の保護層として機能する。
 1つの実施形態においては、上記光学機能層は、円偏光機能または楕円偏光機能を有する位相差層である。
The polarizing plate of the present invention includes a polarizing element and a protective layer arranged on one side of the polarizing element. This protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95 ° C. or higher. The total thickness of this polarizing plate is 20 μm or less.
In one embodiment, the protective layer has a thickness of 10 μm or less.
In one embodiment, the thickness of the polarizer is 10 μm or less.
In one embodiment, the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit.
In another aspect of the present invention, a polarizing plate with an optical functional layer is provided. The polarizing plate with an optical functional layer includes the polarizing plate and an optical functional layer arranged on the opposite side of the protective layer of the polarizer, and has a total thickness of 25 μm or less.
In one embodiment, the optical functional layer functions as a protective layer separate from the protective layer.
In one embodiment, the optical functional layer is a retardation layer having a circularly polarized light function or an elliptically polarized light function.
 本発明の実施形態によれば、非常に薄いにもかかわらず、優れた耐久性と優れた屈曲性とを両立する偏光板および光学機能層付偏光板を提供することができる。本発明の実施形態では、保護層を熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成し、そのガラス転移温度を所定値以上とする。そのため、優れた耐久性と優れた屈曲性とを両立した偏光板および光学機能層付偏光板を提供することができる。 According to the embodiment of the present invention, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility even though it is very thin, and a polarizing plate with an optical functional layer. In the embodiment of the present invention, the protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature thereof is set to a predetermined value or higher. Therefore, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility and a polarizing plate with an optical functional layer.
本発明の1つの実施形態による偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate by one Embodiment of this invention. 本発明の1つの実施形態による光学機能層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with an optical functional layer according to one Embodiment of this invention. 本発明の1つの実施形態による偏光板の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is the schematic which shows an example of the drying shrinkage treatment using the heating roll in the manufacturing method of the polarizing plate by one Embodiment of this invention.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.偏光板および光学機能層付偏光板の概要
A-1.偏光板の概要
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。図示例の偏光板100は、偏光子10と、偏光子10の一方の側に配置された保護層20と、を有する。偏光板100の総厚みは20μm以下である。保護層20は、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成され、そのガラス転移温度は95℃以上である。偏光板100がこのような保護層を有することにより、非常に薄い厚みにも関わらず、優れた耐久性と優れた屈曲性とを両立する偏光板を提供することができる。1つの実施形態において、偏光子10の厚みは好ましくは10μm以下である。また、1つの実施形態において、保護層20の厚みは好ましくは10μm以下である。
A. Outline of Polarizing Plate and Polarizing Plate with Optical Functional Layer A-1. Outline of Polarizing Plate FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 100 of the illustrated example has a polarizing element 10 and a protective layer 20 arranged on one side of the polarizing element 10. The total thickness of the polarizing plate 100 is 20 μm or less. The protective layer 20 is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and its glass transition temperature is 95 ° C. or higher. By having such a protective layer on the polarizing plate 100, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility in spite of a very thin thickness. In one embodiment, the thickness of the polarizer 10 is preferably 10 μm or less. Further, in one embodiment, the thickness of the protective layer 20 is preferably 10 μm or less.
 偏光板100の総厚みは20μm以下であり、好ましくは15μm以下であり、さらに好ましくは10μm以下である。本発明によれば、偏光板の総厚みを上記範囲としても優れた耐久性と優れた屈曲性とを両立する偏光板を提供することができる。偏光板の総厚みは、例えば、5μm以上である。 The total thickness of the polarizing plate 100 is 20 μm or less, preferably 15 μm or less, and more preferably 10 μm or less. According to the present invention, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility even when the total thickness of the polarizing plate is within the above range. The total thickness of the polarizing plate is, for example, 5 μm or more.
 さらに、本発明の実施形態においては、保護層20のガラス転移温度(Tg)は95℃以上であり、好ましくは100℃以上であり、より好ましくは105℃以上であり、さらに好ましくは110℃以上であり、特に好ましくは115℃以上である。保護層のTgがこのような範囲であれば、保護層を熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成することによる効果との相乗的な効果により、非常に薄いにもかかわらず、耐久性に優れた偏光板(結果として、光学機能層付偏光板)を実現することができる。具体的には、加熱加湿環境下においても光学特性の低下が抑制された偏光板(結果として、光学機能層付偏光板)を実現することができる。一方、保護層のTgは、好ましくは300℃以下であり、より好ましくは250℃以下であり、さらに好ましくは200℃以下であり、特に好ましくは160℃以下である。保護層のTgがこのような範囲であれば、成形性に優れ得る。 Further, in the embodiment of the present invention, the glass transition temperature (Tg) of the protective layer 20 is 95 ° C. or higher, preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher. It is particularly preferably 115 ° C. or higher. If the Tg of the protective layer is in such a range, it may be very thin due to the synergistic effect of the protective layer being composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin. Regardless of this, a polarizing plate having excellent durability (as a result, a polarizing plate with an optical functional layer) can be realized. Specifically, it is possible to realize a polarizing plate in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment (as a result, a polarizing plate with an optical functional layer). On the other hand, the Tg of the protective layer is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the protective layer is in such a range, the moldability can be excellent.
 偏光板を構成する各層または光学フィルムは、代表的には接着層を介して貼り合わせられている。接着層としては、接着剤層、粘着剤層が挙げられる。本発明の実施形態においては、接着剤層が好適に採用され得る。このような構成であれば、偏光板のさらなる薄型化が可能となる。接着剤層を構成する接着剤としては、代表的には、活性エネルギー線硬化型接着剤(例えば、紫外線硬化型接着剤)が挙げられる。 Each layer or optical film constituting the polarizing plate is typically bonded via an adhesive layer. Examples of the adhesive layer include an adhesive layer and an adhesive layer. In the embodiment of the present invention, the adhesive layer can be preferably adopted. With such a configuration, the polarizing plate can be further thinned. Typical examples of the adhesive constituting the adhesive layer include an active energy ray-curable adhesive (for example, an ultraviolet curable adhesive).
 本発明の実施形態において偏光板の厚みはきわめて薄くなり得る。そのため、フレキシブルな画像表示装置に好適に適用され得る。より好ましくは、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。画像表示装置の具体例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。言うまでもなく、上記の説明は、本発明の偏光板が通常の画像表示装置に適用されることを妨げるものではない。 In the embodiment of the present invention, the thickness of the polarizing plate can be extremely thin. Therefore, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate of the present invention from being applied to a normal image display device.
A-2.光学機能層付偏光板の概要
 図2は、本発明の1つの実施形態による光学機能層付偏光板の概略断面図である。図示例の光学機能層付偏光板110は、偏光子10と、偏光子の一方の側に配置された保護層20と、偏光子のもう一方の側に配置された光学機能層30とを含む。光学機能層付偏光板の総厚みは25μm以下である。1つの実施形態において、偏光子10と、保護層20として、上記偏光板100が用いられる。
A-2. Outline of Polarizing Plate with Optical Functional Layer FIG. 2 is a schematic cross-sectional view of a polarizing plate with an optical functional layer according to one embodiment of the present invention. The polarizing plate 110 with an optical functional layer of the illustrated example includes a polarizing element 10, a protective layer 20 arranged on one side of the polarizer, and an optical functional layer 30 arranged on the other side of the polarizer. .. The total thickness of the polarizing plate with an optical functional layer is 25 μm or less. In one embodiment, the polarizing plate 10 and the polarizing plate 100 are used as the protective layer 20.
 光学機能層付偏光板110の総厚みは25μm以下であり、好ましくは20μm以下であり、さらに好ましくは15μm以下である。本発明によれば、偏光板の総厚みを上記範囲としても優れた耐久性と優れた屈曲性とを両立する偏光板を提供することができる。光学機能層付偏光板の総厚みは、例えば、10μm以上である。 The total thickness of the polarizing plate 110 with an optical functional layer is 25 μm or less, preferably 20 μm or less, and more preferably 15 μm or less. According to the present invention, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility even when the total thickness of the polarizing plate is within the above range. The total thickness of the polarizing plate with an optical functional layer is, for example, 10 μm or more.
 1つの実施形態においては、光学機能層は、保護層20とは別の保護層として機能する。このような保護層は、所定の位相差および光学特性を有する位相差層としても機能し得る。別の実施形態においては、光学機能層は、円偏光機能または楕円偏光機能を有する位相差層である。このような位相差層は、偏光子の保護層としても機能し得る。光学機能層が位相差層である場合、1つの実施形態においては、位相差層は液晶化合物の配向固化層である。位相差層は、配向固化層の単一層であってもよく、第1の配向固化層と第2の配向固化層との積層構造を有していてもよい。以下、光学機能層が位相差層である偏光板を、位相差層付偏光板と称する場合がある。 In one embodiment, the optical functional layer functions as a protective layer separate from the protective layer 20. Such a protective layer can also function as a retardation layer having predetermined retardation and optical characteristics. In another embodiment, the optical functional layer is a retardation layer having a circularly polarized light function or an elliptically polarized light function. Such a retardation layer can also function as a protective layer for the polarizer. When the optical functional layer is a retardation layer, in one embodiment, the retardation layer is an orientation-solidified layer of a liquid crystal compound. The retardation layer may be a single layer of the orientation solidification layer, or may have a laminated structure of the first orientation solidification layer and the second orientation solidification layer. Hereinafter, a polarizing plate in which the optical functional layer is a retardation layer may be referred to as a polarizing plate with a retardation layer.
 光学機能層付偏光板を構成する各層または光学フィルムは、代表的には接着層を介して貼り合わせられている。接着層としては、接着剤層、粘着剤層が挙げられる。本発明の実施形態においては、接着剤層が好適に採用され得る。このような構成であれば、光学機能層付偏光板のさらなる薄型化が可能となる。接着剤層を構成する接着剤としては、代表的には、活性エネルギー線硬化型接着剤(例えば、紫外線硬化型接着剤)が挙げられる。 Each layer or optical film constituting the polarizing plate with an optical functional layer is typically bonded via an adhesive layer. Examples of the adhesive layer include an adhesive layer and an adhesive layer. In the embodiment of the present invention, the adhesive layer can be preferably adopted. With such a configuration, the polarizing plate with an optical functional layer can be further thinned. Typical examples of the adhesive constituting the adhesive layer include an active energy ray-curable adhesive (for example, an ultraviolet curable adhesive).
 位相差層として機能する光学機能層を備えた偏光板は、別の位相差層がさらに設けられてもよい。別の位相差層は、代表的には、光学機能層(位相差層)30の外側(偏光子10と反対側)に設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。このような別の位相差層は、好ましくは、位相差層が配向固化層の単一層である場合に設けられる。なお、便宜上、光学機能層(位相差層)30を第1の位相差層と称し、別の位相差層を第2の位相差層と称する場合がある。光学機能層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 A polarizing plate provided with an optical functional layer that functions as a retardation layer may be further provided with another retardation layer. Another retardation layer is typically provided on the outside (opposite side of the polarizer 10) of the optical functional layer (phase difference layer) 30. Another retardation layer typically exhibits a relationship in which the refractive index characteristic is nz> nz = ny. Such another retardation layer is preferably provided when the retardation layer is a single layer of an oriented solidification layer. For convenience, the optical functional layer (phase difference layer) 30 may be referred to as a first retardation layer, and another retardation layer may be referred to as a second retardation layer. The polarizing plate with an optical functional layer may further include other retardation layers. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
 光学機能層付偏光板には、導電層または導電層付等方性基材が設けられてもよい。導電層または導電層付等方性基材は、代表的には、光学機能層30の外側(偏光子10と反対側)に設けられる。偏光板が位相差層と別の位相差層とを有する位相差層付偏光板である場合には、別の位相差層ならびに導電層または導電層付等方性基材は、代表的には、位相差層(光学機能層)30側からこの順に設けられる。導電層または導電層付等方性基材が設けられる場合、偏光板または位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。 The polarizing plate with an optical functional layer may be provided with a conductive layer or an isotropic base material with a conductive layer. The conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the optical functional layer 30 (opposite to the polarizer 10). When the polarizing plate is a polarizing plate with a retardation layer having a retardation layer and another retardation layer, the other retardation layer and the conductive layer or the isotropic base material with the conductive layer are typically positioned. It is provided in this order from the phase difference layer (optical functional layer) 30 side. When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate or the polarizing plate with a retardation layer has a so-called touch sensor incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to an inner touch panel type input display device.
 上記のとおり、保護層を、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成し、そのガラス転移温度を95℃以上にすることにより、非常に薄いにもかかわらず、耐久性に優れた偏光板を実現することができる。具体的には、加熱加湿環境下においても光学特性の低下が抑制された偏光板を実現することができる。上記偏光板は、85℃および85%RHの環境下で48時間放置した後の単体透過率Tsの変化量ΔTsおよび偏光度Pの変化量ΔPが、それぞれ非常に小さい。単体透過率Tsは、例えば紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定され得る。偏光度Pは、紫外可視分光光度計を用いて測定される単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)から、次式により算出される。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。ΔTsおよびΔPは、それぞれ下記式により求められる。
    ΔTs(%)=Ts48-Ts
    ΔP(%)=P48-P
ここで、Tsは放置前(初期)の単体透過率であり、Ts48は放置後の単体透過率であり、Pは放置前(初期)の偏光度であり、P48は放置後の偏光度である。ΔTsは、好ましくは3.0%以下であり、より好ましくは2.7%以下であり、さらに好ましくは2.4%以下である。ΔPは、好ましくは-1.0%~0%であり、より好ましくは-0.5%~0%であり、さらに好ましくは-0.3%~0%である。
As described above, the protective layer is composed of a solidified coating film of a thermoplastic acrylic resin in an organic solvent solution, and the glass transition temperature is set to 95 ° C. or higher, so that the protective layer is durable even though it is very thin. It is possible to realize an excellent polarizing plate. Specifically, it is possible to realize a polarizing plate in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment. The polarizing plate has very small changes in the simple substance transmittance Ts ΔTs and changes in the degree of polarization P ΔP after being left in an environment of 85 ° C. and 85% RH for 48 hours. The simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"). The degree of polarization P is calculated by the following equation from the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
Polarization degree (P) (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
The Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer. ΔTs and ΔP are calculated by the following formulas, respectively.
ΔTs (%) = Ts 48 -Ts 0
ΔP (%) = P 48 −P 0
Here, Ts 0 is the single transmittance before leaving (initial), Ts 48 is the single transmittance after leaving, P 0 is the degree of polarization before leaving (initial), and P 48 is after leaving. The degree of polarization. ΔTs is preferably 3.0% or less, more preferably 2.7% or less, still more preferably 2.4% or less. ΔP is preferably −1.0% to 0%, more preferably −0.5% to 0%, and even more preferably −0.3% to 0%.
 実用的には、光学機能層の偏光子と反対側には粘着剤層(図示せず)が設けられ、偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層の表面には、偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。 Practically, an adhesive layer (not shown) is provided on the opposite side of the optical functional layer from the polarizer, and the polarizing plate can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and rolls can be formed.
 本発明の偏光板および光学機能層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の偏光板は、ロール状に巻回可能である。 The polarizing plate and the polarizing plate with an optical functional layer of the present invention may be single-wafered or elongated. As used herein, the term "long" means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. include. The elongated polarizing plate can be wound in a roll shape.
 以下、偏光板および光学機能層付偏光板の構成要素について、より詳細に説明する。 Hereinafter, the components of the polarizing plate and the polarizing plate with the optical functional layer will be described in more detail.
B.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。偏光子は、代表的には、二層以上の積層体を用いて作製され得る。偏光子の製造方法については、偏光板の製造方法としてF項で後述する。
B. Polarizer As the polarizer, any suitable polarizer can be adopted. The polarizer can typically be made using a laminate of two or more layers. The method for manufacturing the polarizer will be described later in Section F as a method for manufacturing the polarizing plate.
 偏光子の厚みは、好ましくは10μm以下であり、より好ましくは1μm~8μmであり、さらに好ましくは1μm~7μmであり、特に好ましくは2μm~5μmである。 The thickness of the polarizer is preferably 10 μm or less, more preferably 1 μm to 8 μm, further preferably 1 μm to 7 μm, and particularly preferably 2 μm to 5 μm.
 偏光子のホウ酸含有量は、好ましくは10重量%以上であり、より好ましくは13重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 10% by weight or more, more preferably 13% by weight to 25% by weight. When the boric acid content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the iodine content described later, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above. The boric acid content can be calculated as, for example, the amount of boric acid contained in the polarizer per unit weight by using the following formula from the neutralization method.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight. When the iodine content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above. As used herein, the term "iodine content" means the amount of all iodine contained in the polarizer (PVA-based resin film). More specifically, iodine during polarizers iodide ion (I -), molecular iodine (I 2), polyiodine ion (I 3 -, I 5 - ) where present in the form of such, herein Iodine content means the amount of iodine that includes all of these forms. The iodine content can be calculated, for example, by the calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in a state in which a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light. Specifically, a complex of PVA and tri-iodide ion (PVA · I 3 -) has a light absorption peak around 470 nm, a complex of PVA and five iodide ion (PVA · I 5 -) is 600nm near Has an absorptive peak. As a result, polyiodine ions can absorb light over a wide range of visible light, depending on their morphology. On the other hand, iodine ion (I ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%. The degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
C.保護層
 保護層は、上記のとおり、熱可塑性アクリル系樹脂(以下、単にアクリル系樹脂と称する)の有機溶媒溶液の塗布膜の固化物で構成されている。以下、保護層の構成成分について具体的に説明し、次いで、保護層の特性を説明する。
C. Protective layer As described above, the protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin (hereinafter, simply referred to as an acrylic resin). Hereinafter, the constituent components of the protective layer will be specifically described, and then the characteristics of the protective layer will be described.
C-1.アクリル系樹脂
 アクリル系樹脂(後述のように、2種以上のアクリル系樹脂のブレンドおよびアクリル系樹脂と他の樹脂とのブレンドを含む)のTgは、保護層に関して上記A項で説明したとおりである。
C-1. Acrylic resin The Tg of an acrylic resin (including a blend of two or more kinds of acrylic resins and a blend of an acrylic resin and another resin as described later) is as described in Section A above regarding the protective layer. be.
 アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレート由来の繰り返し単位は、代表的には、下記一般式(1)で表される: As the acrylic resin, any suitable acrylic resin can be adopted as long as it has Tg as described above. Acrylic resins typically contain an alkyl (meth) acrylate as a main component as a monomer unit (repeating unit). As used herein, the term "(meth) acrylic" means acrylic and / or methacryl. Examples of the alkyl (meth) acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. Further, any suitable copolymerization monomer may be introduced into the acrylic resin by copolymerization. The repeating unit derived from alkyl (meth) acrylate is typically represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)において、Rは、水素原子またはメチル基を示し、Rは、水素原子、あるいは、置換されていてもよい炭素数1~6の脂肪族または脂環式炭化水素基を示す。置換基としては、例えば、ハロゲン、水酸基が挙げられる。アルキル(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシエチル)アクリル酸メチルが挙げられる。一般式(1)において、Rは、好ましくは、水素原子またはメチル基である。したがって、特に好ましいアルキル(メタ)アクリレートは、アクリル酸メチルまたはメタクリル酸メチルである。 In the general formula (1), R 4 represents a hydrogen atom or a methyl group, and R 5 represents a hydrogen atom or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms which may be substituted. show. Examples of the substituent include halogens and hydroxyl groups. Specific examples of alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate. Butyl, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, (meth) acrylic Dicyclopentanyl acid, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2, (meth) acrylate 2, 3,4,5,6-pentahydroxyhexyl, (meth) acrylate 2,3,4,5-tetrahydroxypentyl, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, 2 -(Hydroxyethyl) methyl acrylate can be mentioned. In the general formula (1), R 5 is preferably a hydrogen atom or a methyl group. Therefore, a particularly preferred alkyl (meth) acrylate is methyl acrylate or methyl methacrylate.
 アクリル系樹脂は、単一のアルキル(メタ)アクリレート単位のみを含んでいてもよいし、上記一般式(1)におけるRおよびRが異なる複数のアルキル(メタ)アクリレート単位を含んでいてもよい。 Acrylic resins may also include only a single alkyl (meth) acrylate units, even if R 4 and R 5 include a plurality of different alkyl (meth) acrylate unit in the above general formula (1) good.
 アクリル系樹脂におけるアルキル(メタ)アクリレート単位の含有割合は、好ましくは50モル%~98モル%、より好ましくは55モル%~98モル%、さらに好ましくは60モル%~98モル%、特に好ましくは65モル%~98モル%、最も好ましくは70モル%~97モル%である。含有割合が50モル%より少ないと、アルキル(メタ)アクリレート単位に由来して発現される効果(例えば、高い耐熱性、高い透明性)が十分に発揮されないおそれがある。上記含有割合が98モル%よりも多いと、樹脂が脆くて割れやすくなり、高い機械的強度が十分に発揮できず、生産性に劣るおそれがある。 The content ratio of the alkyl (meth) acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, still more preferably 60 mol% to 98 mol%, and particularly preferably. It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol%, the effects expressed from the alkyl (meth) acrylate unit (for example, high heat resistance and high transparency) may not be sufficiently exhibited. If the content ratio is more than 98 mol%, the resin is brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be inferior.
 アクリル系樹脂は、好ましくは、環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。 The acrylic resin preferably has a repeating unit containing a ring structure. Examples of the repeating unit including a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit. Only one type of the repeating unit including the ring structure may be contained in the repeating unit of the acrylic resin, or two or more types may be contained.
 ラクトン環単位は、好ましくは、下記一般式(2)で表される: The lactone ring unit is preferably represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000003
 一般式(2)において、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR、RおよびRが異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
Figure JPOXMLDOC01-appb-C000003
In the general formula (2), R 1 , R 2 and R 3 independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom. The acrylic resin may be contained only a single lactone ring units may be R 1, R 2 and R 3 in the general formula (2) is contains different lactone ring unit .. An acrylic resin having a lactone ring unit is described in, for example, Japanese Patent Application Laid-Open No. 2008-181078, and the description in this publication is incorporated herein by reference.
 グルタルイミド単位は、好ましくは、下記一般式(3)で表される: The glutarimide unit is preferably represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。 In the general formula (3), R 11 and R 12 independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 13 is an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. The cycloalkyl group of the above, or an aryl group having 6 to 10 carbon atoms is shown. In the general formula (3), preferably R 11 and R 12 are independently hydrogen or methyl groups, and R 13 is a hydrogen, methyl group, butyl group or cyclohexyl group, respectively. More preferably, R 11 is a methyl group, R 12 is hydrogen, and R 13 is a methyl group. The acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the above general formula (3). .. Examples of the acrylic resin having a glutarimide unit include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Application Laid-Open No. 2006-337493 and Japanese Patent Application Laid-Open No. 2006-337569, and the description of this publication is incorporated herein by reference. Note that the glutaric anhydride units, nitrogen atom substituted by R 13 in the general formula (3), except that the oxygen atom, the above description is applied about the glutarimide units.
 無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。 The structure of the maleic anhydride unit and the maleimide (N-substituted maleimide) unit is specified from the name, so specific description thereof will be omitted.
 アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが110℃未満となる場合があり、得られる保護層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。 The content ratio of the repeating unit including the ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too small, Tg may be less than 110 ° C., and the heat resistance, solvent resistance and surface hardness of the obtained protective layer may be insufficient. If the content is too high, moldability and transparency may be insufficient.
 アクリル系樹脂は、アルキル(メタ)アクリレート単位および環構造を含む繰り返し単位以外の繰り返し単位を含んでいてもよい。そのような繰り返し単位としては、上記の単位を構成する単量体と共重合可能なビニル系単量体由来の繰り返し単位(他のビニル系単量体単位)が挙げられる。他のビニル系単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、N-フェニルマレイミド、メタクリル酸フェニルアミノエチル、スチレン、α-メチルスチレン、p-グリシジルスチレン、p-アミノスチレン、2-スチリル-オキサゾリンなどがあげられる。これらは、単独で用いてもよく併用してもよい。他のビニル系単量体単位の種類、数、組み合わせ、含有割合等は、目的に応じて適切に設定され得る。 The acrylic resin may contain a repeating unit other than the alkyl (meth) acrylate unit and the repeating unit including the ring structure. Examples of such a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit). Examples of other vinyl-based monomers include acrylic acid, methacrylic acid, crotonic acid, 2- (hydroxymethyl) acrylic acid, 2- (hydroxyethyl) acrylic acid, acrylonitrile, methacrylonitrile, etacrylonitrile, and allyl. Glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Cyclohexylaminoethyl acid, N-vinyldiethylamine, N-acetylvinylamine, allylamine, metaallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, α-methylstyrene, p-glycidylstyrene, p-aminostyrene, and 2-styryl-oxazoline. These may be used alone or in combination. The type, number, combination, content ratio, etc. of other vinyl-based monomer units can be appropriately set according to the purpose.
 アクリル系樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。 The weight average molecular weight of the acrylic resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, further preferably 10000 to 500000, particularly preferably 50,000 to 500000, and most preferably 60000 to 150,000. The weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
 アクリル系樹脂は、上記の単量体単位を適切に組み合わせて用いて、任意の適切な重合方法により重合され得る。異なる単量体単位を有する2種以上のアクリル系樹脂をブレンドしてもよい。 The acrylic resin can be polymerized by any suitable polymerization method by using the above-mentioned monomer units in an appropriate combination. Two or more kinds of acrylic resins having different monomer units may be blended.
 本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する保護層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。 In the embodiment of the present invention, an acrylic resin and another resin may be used in combination. That is, the monomer component constituting the acrylic resin and the monomer component constituting the other resin may be copolymerized, and the copolymer may be used for molding the protective layer described later; the acrylic resin and the other resin. The blend of may be used for forming the protective layer. Examples of other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide. The type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired properties of the obtained film. For example, a styrene resin (preferably an acrylonitrile-styrene copolymer) can be used in combination as a retardation control agent.
 アクリル系樹脂と他の樹脂とを併用する場合、アクリル系樹脂と他の樹脂とのブレンドにおけるアクリル系樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、アクリル系樹脂が本来有する高い耐熱性、高い透明性が十分に反映できないおそれがある。 When the acrylic resin is used in combination with another resin, the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. By weight%, more preferably 70% by weight to 100% by weight, particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
C-2.保護層の構成および特性
 保護層は、上記のとおり、アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。このような塗布膜の固化物であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。保護層の厚みは、上記のとおり10μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。保護層の厚みの下限は、例えば1μmであり得る。また、理論的には明らかではないが、このような塗布膜の固化物は、熱硬化性樹脂または活性エネルギー線硬化性樹脂(例えば、紫外線硬化性樹脂)の硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができるという利点を有する。さらに、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板(結果として、位相差層付偏光板)を実現することができる。
C-2. Composition and Characteristics of Protective Layer As described above, the protective layer is composed of a solidified coating film of an organic solvent solution of an acrylic resin. With such a solidified coating film, the thickness can be significantly reduced as compared with the extrusion-molded film. As described above, the thickness of the protective layer is 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less, and further preferably 3 μm or less. The lower limit of the thickness of the protective layer can be, for example, 1 μm. Further, although it is not theoretically clear, such a solidified coating film is compared with a cured product of a thermosetting resin or an active energy ray-curable resin (for example, an ultraviolet curable resin) at the time of film molding. Since the shrinkage is small and the residual monomer or the like is not contained, deterioration of the film itself can be suppressed, and the adverse effect on the polarizing plate (polarizer) caused by the residual monomer or the like can be suppressed. Further, it has an advantage that it is excellent in humidification durability because it has low hygroscopicity and moisture permeability as compared with a solidified water-based coating film such as an aqueous solution or an aqueous dispersion. As a result, it is possible to realize a polarizing plate having excellent durability (as a result, a polarizing plate with a retardation layer) that can maintain optical characteristics even in a heating and humidifying environment.
 保護層のTgは、上記A項で説明したとおりである。 The Tg of the protective layer is as described in Section A above.
 保護層のヨウ素吸着量は、好ましくは4.0重量%以下であり、より好ましくは3.0重量%以下であり、さらに好ましくは2.0重量%以下であり、特に好ましくは1.0重量%以下であり、とりわけ好ましくは0.5重量%以下である。ヨウ素吸着量は小さいほど好ましく、その下限は例えば0.1重量%であり得る。ヨウ素吸着量がこのような範囲であれば、さらに優れた耐久性を有する偏光板(結果として、位相差層付偏光板)が得られ得る。ヨウ素吸着量は、後述の実施例に記載の方法で測定され得る。 The amount of iodine adsorbed in the protective layer is preferably 4.0% by weight or less, more preferably 3.0% by weight or less, still more preferably 2.0% by weight or less, and particularly preferably 1.0% by weight. % Or less, particularly preferably 0.5% by weight or less. The smaller the amount of iodine adsorbed, the more preferable, and the lower limit thereof can be, for example, 0.1% by weight. When the amount of iodine adsorbed is within such a range, a polarizing plate having even better durability (as a result, a polarizing plate with a retardation layer) can be obtained. The iodine adsorption amount can be measured by the method described in Examples described later.
 保護層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmであることをいう。面内位相差Re(550)は、より好ましくは0nm~5nmであり、さらに好ましくは0nm~3nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。保護層のRe(550)およびRth(550)がこのような範囲であれば、当該保護層を含む位相差層付偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。 The protective layer is preferably substantially optically isotropic. In the present specification, "substantially optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −20 nm to +10 nm. Say something. The in-plane retardation Re (550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm. The phase difference Rth (550) in the thickness direction is more preferably −5 nm to + 5 nm, further preferably -3 nm to + 3 nm, and particularly preferably -2 nm to + 2 nm. When Re (550) and Rth (550) of the protective layer are in such a range, it is possible to prevent adverse effects on the display characteristics when a polarizing plate with a retardation layer including the protective layer is applied to an image display device. can.
 保護層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。 The higher the light transmittance at 380 nm when the thickness of the protective layer is 3 μm, the more preferable. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. When the light transmittance is in such a range, the desired transparency can be ensured. The light transmittance can be measured, for example, by a method according to ASTM-D-1003.
 保護層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側に位相差層付偏光板を使用する場合でも、表示内容が良好に視認できる。 The lower the haze of the protective layer, the more preferable. Specifically, the haze is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less. When the haze is 5% or less, a good clear feeling can be given to the film. Further, even when a polarizing plate with a retardation layer is used on the visual side of the image display device, the displayed contents can be visually recognized satisfactorily.
 保護層の厚み3μmにおけるYIは、好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.23以下、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
   YI=[(1.28X-1.06Z)/Y]×100
The YI at a thickness of 3 μm of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient. YI is obtained from, for example, the tristimulus values (X, Y, Z) of the color obtained by measurement using a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory). , Can be calculated by the following equation.
YI = [(1.28X-1.06Z) / Y] x 100
 保護層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、保護層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。 The b value (a measure of hue according to the hunter's color system) at a thickness of 3 μm of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear. For the b value, for example, a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
 保護層(塗布膜の固化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤はアクリル系樹脂の重合時に添加されてもよく、フィルム形成時に溶液に添加されてもよい。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。 The protective layer (solidified coating film) may contain any suitable additive depending on the purpose. Specific examples of additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based, and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers, and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like. The additive may be added at the time of polymerization of the acrylic resin, or may be added to the solution at the time of film formation. The type, number, combination, amount of additive, etc. of the additive can be appropriately set according to the purpose.
 保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、保護層と偏光子との密着性を高めることができる。また、保護層には、ハードコート層が形成されていてもよい。ハードコート層は、保護層が視認側偏光板の視認側の保護層として用いられる場合に形成され得る。易接着層およびハードコート層の両方が形成される場合、代表的には、これらはそれぞれ保護層の異なる側に形成され得る。 An easy-adhesion layer may be formed on the polarizer side of the protective layer. The easy-adhesion layer contains, for example, an aqueous polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be improved. Further, a hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as the visible protective layer of the visible polarizing plate. When both the easy-adhesion layer and the hard coat layer are formed, typically they can be formed on different sides of the protective layer, respectively.
D.光学機能層
D-1.保護層である光学機能層
 光学機能層30が保護層20とは別の保護層として機能する場合、当該保護層は、好ましくは厚み20μm以下の薄型保護層である。保護層の厚みは、より好ましくは18μm以下であり、さらに好ましくは15μm以下であり、特に好ましくは10μm以下である。保護層の厚みは、例えば1μm以上であり得る。
D. Optical functional layer D-1. Optical functional layer which is a protective layer When the optical functional layer 30 functions as a protective layer different from the protective layer 20, the protective layer is preferably a thin protective layer having a thickness of 20 μm or less. The thickness of the protective layer is more preferably 18 μm or less, further preferably 15 μm or less, and particularly preferably 10 μm or less. The thickness of the protective layer can be, for example, 1 μm or more.
 保護層(光学機能層)は、樹脂フィルムで構成されていてもよく、塗布膜の固化物で構成されていてもよい。樹脂フィルムを構成する樹脂としては、例えば、シクロオレフィン系樹脂、アクリル系樹脂が挙げられる。塗布膜の固化物は、例えば、所定のアクリル系樹脂の有機溶媒溶液の塗布膜の固化物、または、エポキシ樹脂の有機溶媒溶液の塗布膜の固化物であり得る。保護層が塗布膜の固化物で構成される場合、樹脂フィルムに比べて厚みを格段と薄くすることができる。 The protective layer (optical functional layer) may be made of a resin film or a solidified coating film. Examples of the resin constituting the resin film include cycloolefin-based resin and acrylic-based resin. The solidified coating film may be, for example, a solidified coating film of a predetermined acrylic resin in an organic solvent solution, or a solidified coating film in an organic solvent solution of an epoxy resin. When the protective layer is composed of a solidified coating film, the thickness can be significantly reduced as compared with the resin film.
 塗布膜の固化物である保護層がエポキシ樹脂の有機溶媒溶液の塗布膜の固化物である場合、エポキシ樹脂としては任意の適切なエポキシ樹脂を用いることができる。好ましくはガラス転移温度が90℃以上であるエポキシ樹脂が用いられる。エポキシ樹脂としては、好ましくは分子構造内に芳香族環を有するエポキシ樹脂が用いられる。芳香族環を有するエポキシ樹脂を用いることにより、より高いTgを有するエポキシ樹脂が得られ得る。分子構造内に芳香族環を有するエポキシ樹脂における芳香族環としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。2種以上のエポキシ樹脂を用いる場合、芳香族環を含むエポキシ樹脂と、芳香族環を含まないエポキシ樹脂を組み合わせて用いてもよい。 When the protective layer, which is a solidified product of the coating film, is a solidified product of a coating film of an organic solvent solution of an epoxy resin, any suitable epoxy resin can be used as the epoxy resin. An epoxy resin having a glass transition temperature of 90 ° C. or higher is preferably used. As the epoxy resin, an epoxy resin having an aromatic ring in the molecular structure is preferably used. By using an epoxy resin having an aromatic ring, an epoxy resin having a higher Tg can be obtained. Examples of the aromatic ring in the epoxy resin having an aromatic ring in the molecular structure include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. When two or more kinds of epoxy resins are used, an epoxy resin containing an aromatic ring and an epoxy resin not containing an aromatic ring may be used in combination.
 保護層(光学機能層)は、代表的には、偏光板を画像表示装置に適用した場合に画像表示セル側に配置される。1つの実施形態においては、保護層は光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。別の実施形態においては、保護層は、任意の適切な位相差値を有する位相差層であってもよい。この場合、保護層(位相差層)の面内位相差Re(550)は、例えば110nm~150nmである。 The protective layer (optical functional layer) is typically arranged on the image display cell side when the polarizing plate is applied to the image display device. In one embodiment, the protective layer is preferably optically isotropic. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say. In another embodiment, the protective layer may be a retardation layer having any suitable retardation value. In this case, the in-plane retardation Re (550) of the protective layer (phase difference layer) is, for example, 110 nm to 150 nm.
D-2.円偏光機能または楕円偏光機能を有する位相差層である光学機能層
 光学機能層30が円偏光機能または楕円偏光機能を有する位相差層である場合、当該位相差層は、樹脂フィルムの延伸フィルムであってもよく、液晶化合物の配向固化層であってもよい。好ましくは、液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを延伸フィルムに比べて格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。さらに、きわめて優れた屈曲性を有する位相差層付偏光板を実現することができる。以下、液晶化合物の配向固化層について詳細に説明する。なお、樹脂フィルムの延伸フィルムで構成される位相差層については、例えば、特開2017-54093号公報、特開2018-60014号公報に記載されている。これらの公報の記載は、本明細書に参考として援用される。
D-2. Optical functional layer that is a retardation layer having a circularly polarized light function or an elliptically polarized function When the optical functional layer 30 is a retardation layer having a circularly polarized light function or an elliptically polarized function, the retardation layer is a stretched film of a resin film. It may be an oriented solidified layer of a liquid crystal compound. It is preferably an oriented solidified layer of the liquid crystal compound. By using the liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be made much larger than that of the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller than the stretched film. As a result, it is possible to further reduce the thickness of the polarizing plate with a retardation layer. Further, it is possible to realize a polarizing plate with a retardation layer having extremely excellent flexibility. Hereinafter, the oriented solidified layer of the liquid crystal compound will be described in detail. The retardation layer made of a stretched film of a resin film is described in, for example, JP-A-2017-54093 and JP-A-2018-60014. The description of these publications is incorporated herein by reference.
 本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が第1の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。 In the present specification, the "aligned solidified layer" means a layer in which the liquid crystal compound is oriented in a predetermined direction in the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow-phase axial direction of the first retardation layer (homogeneous orientation).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal. Therefore, the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the first retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US5211877), EP66137 (US4388453), WO93 / 22397, EP02671712, DE19504224, DE4408171, GB2280445 and the like can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光子10の表面に転写され得る。 Orientation of liquid crystal compound The solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state. In one embodiment, the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizer 10.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 As the orientation treatment, any appropriate orientation treatment can be adopted. Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions can be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the base material.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the orientation state is fixed by cooling the liquid crystal compound oriented as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
 配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が第1の位相差層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。 Another example of the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation. In the discotic liquid crystal compound, typically, the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the first retardation layer. When the discotic liquid crystal compound is substantially vertical, the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °. A discotic liquid crystal compound generally has a cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and has a linear alkyl group, an alkoxy group, and a substituted benzoyl. A liquid crystal compound having a disk-like molecular structure in which an oxy group or the like is radially substituted as its side chain. Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I. Research report by Kohne et al., Angew. Chem. Cyclohexane derivatives described in Volume 96, p. 70 (1984), and J. Mol. M. Research report by Lehn et al., J. Mol. Chem. Soc. Chem. Commun. , 1794 (1985), J. Mol. Research report by Zhang et al., J. Mol. Am. Chem. Soc. Examples thereof include the aza-crown-based and phenylacetylene-based macrocycles described in Volume 116, p. 2655 (1994). Further specific examples of the discotic liquid crystal compound include the compounds described in JP-A-2006-133652, JP-A-2007-108732, and JP-A-2010-244038. The above references and publications are incorporated herein by reference.
 1つの実施形態においては、位相差層(光学機能層)30は、液晶化合物の配向固化層の単一層である。位相差層(以下、上記のとおり第1の位相差層と称する場合がある)が液晶化合物の配向固化層の単一層で構成される場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 In one embodiment, the retardation layer (optical functional layer) 30 is a single layer of the orientation-solidified layer of the liquid crystal compound. When the retardation layer (hereinafter, may be referred to as the first retardation layer as described above) is composed of a single layer of the oriented solidification layer of the liquid crystal compound, the thickness thereof is preferably 0.5 μm to 7 μm. , More preferably 1 μm to 5 μm. By using the liquid crystal compound, it is possible to realize an in-plane phase difference equivalent to that of the resin film with a thickness much thinner than that of the resin film.
 第1の位相差層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、第1の位相差層が配向固化層の単一層である場合にはλ/4板として機能し得る。この場合、第1の位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 The first retardation layer typically shows a relationship in which the refractive index characteristic is nx> ny = nz. The first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and functions as a λ / 4 plate when the first retardation layer is a single layer of an orientation solidification layer. Can be done. In this case, the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 130 nm to 160 nm. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effects of the present invention.
 第1の位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the first retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
 第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits inverse dispersion wavelength characteristics. In this case, the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
 第1の位相差層の遅相軸と偏光子10の吸収軸とのなす角度θは、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、上記のように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。 The angle θ formed by the slow axis of the first retardation layer and the absorption axis of the polarizer 10 is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °. °. If the angle θ is in such a range, by using the λ / 4 plate as the first retardation layer as described above, very excellent circularly polarized light characteristics (as a result, very excellent antireflection characteristics). A polarizing plate with a retardation layer having the above can be obtained.
 別の実施形態においては、第1の位相差層は、第1の配向固化層と第2の配向固化層との積層構造を有し得る。この場合、第1の配向固化層および第2の配向固化層のいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。したがって、第1の配向固化層および第2の配向固化層の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、第1の配向固化層がλ/2板として機能し、第2の配向固化層がλ/4板として機能する場合、第1の配向固化層の厚みは例えば2.0μm~3.0μmであり、第2の配向固化層の厚みは例えば1.0μm~2.0μmである。この場合、第1の配向固化層の面内位相差Re(550)は、好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。第2の配向固化層の面内位相差Re(550)は、単一層の配向固化層に関して上記で説明したとおりである。第1の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。第2の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。第1の配向固化層および第2の配向固化層を構成する液晶化合物、第1の配向固化層および第2の配向固化層の形成方法、光学特性等については、単一層の配向固化層に関して上記で説明したとおりである。 In another embodiment, the first retardation layer may have a laminated structure of a first oriented solidified layer and a second oriented solidified layer. In this case, either one of the first oriented solidified layer and the second oriented solidified layer may function as a λ / 4 plate, and the other may function as a λ / 2 plate. Therefore, the thicknesses of the first oriented solidified layer and the second oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference between the λ / 4 plate or the λ / 2 plate. For example, when the first oriented solidified layer functions as a λ / 2 plate and the second oriented solidified layer functions as a λ / 4 plate, the thickness of the first oriented solidified layer is, for example, 2.0 μm to 3.0 μm. The thickness of the second oriented solidified layer is, for example, 1.0 μm to 2.0 μm. In this case, the in-plane retardation Re (550) of the first oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm. The in-plane retardation Re (550) of the second oriented solidified layer is as described above with respect to the single oriented solidified layer. The angle formed by the slow axis of the first oriented solidification layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °. be. The angle formed by the slow axis of the second oriented solidification layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. be. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics. The liquid crystal compounds constituting the first oriented solidified layer and the second oriented solidified layer, the method for forming the first oriented solidified layer and the second oriented solidified layer, the optical properties, and the like are described above with respect to the single oriented solidified layer. As explained in.
 第2の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。第2の位相差層は、好ましくは、第1の位相差層が配向固化層の単一層である場合に設けられる。第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。 As described above, the second retardation layer can be a so-called positive C plate in which the refractive index characteristic shows a relationship of nz> nx = ny. By using the positive C plate as the second retardation layer, it is possible to satisfactorily prevent reflection in the oblique direction, and it is possible to widen the viewing angle of the antireflection function. The second retardation layer is preferably provided when the first retardation layer is a single layer of the orientation solidification layer. The retardation Rth (550) in the thickness direction of the second retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, still more preferably −90 nm to −200 nm, and particularly preferably −100 nm to. -180 nm. Here, "nx = ny" includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re (550) of the second retardation layer can be less than 10 nm.
 nz>nx=nyの屈折率特性を有する第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 The second retardation layer having a refractive index characteristic of nz> nx = ny can be formed of any suitable material. The second retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compounds described in [0020] to [0028] of JP-A-2002-333642 and the method for forming the retardation layer. In this case, the thickness of the second retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, and even more preferably 0.5 μm to 5 μm.
E.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
E. Conductive layer or isotropic base material with conductive layer The conductive layer is made of any suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層は、上記基材から光学機能層(または、存在する場合には第2の位相差層)に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として光学機能層(または、存在する場合には第2の位相差層)に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として偏光板に用いられ得る。 The conductive layer may be transferred from the base material to an optical functional layer (or a second retardation layer if present), and the conductive layer alone may be used as a constituent layer of a polarizing plate with a retardation layer. It may be laminated on the optical functional layer (or the second retardation layer if present) as a laminate with the material (base material with a conductive layer). Preferably, the substrate is optically isotropic, and therefore the conductive layer can be used in the polarizing plate as an isotropic substrate with a conductive layer.
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みは、例えば20μm以上である。 Any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material). Examples of the material constituting the isotropic base material include a material having a resin having no conjugate system such as a norbornene resin and an olefin resin as a main skeleton, and an acrylic resin having a cyclic structure such as a lactone ring and a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic base material is formed, the occurrence of the phase difference due to the orientation of the molecular chains can be suppressed to be small. The thickness of the isotropic base material is preferably 50 μm or less, more preferably 35 μm or less. The thickness of the isotropic base material is, for example, 20 μm or more.
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. As the patterning method, any suitable method can be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
F.偏光板の製造方法
F-1.偏光子の製造方法
 上記B項に記載の偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。このような製造方法によれば、上記のような偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および偏光度)を有するとともに、光学特性のバラつきが抑制された偏光子を得ることができる。具体的には、乾燥収縮処理工程において加熱ロールを用いることにより、積層体を搬送しながら、積層体全体に亘って均一に収縮することができる。これにより、得られる偏光子の光学特性を高めることができるだけでなく、光学特性に優れる偏光子を安定して生産することができ、偏光子の光学特性(特に、単体透過率)のバラつきを抑制することができる。以下、ハロゲン化物および乾燥収縮処理について説明する。これら以外の製造方法の詳細については、例えば特開2012-73580号公報および特許第6470455号に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
F. Method for manufacturing polarizing plate F-1. Method for producing a polarizer The method for producing a polarizer according to the above item B is a polyvinyl alcohol-based resin containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material. A layer (PVA-based resin layer) is formed to form a laminated body, and the laminated body is heated in the width direction while being conveyed in the longitudinal direction by aerial auxiliary stretching treatment, dyeing treatment, and underwater stretching treatment. A drying shrinkage treatment for shrinking by 2% or more, and a drying shrinkage treatment, which are performed in this order, are included. The content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. According to such a manufacturing method, the above-mentioned polarizer can be obtained. In particular, by preparing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll. It is possible to obtain a polarizer having excellent optical characteristics (typically, single transmittance and degree of polarization) and suppressing variation in optical characteristics. Specifically, by using a heating roll in the drying shrinkage treatment step, the laminated body can be uniformly shrunk over the entire laminated body while being conveyed. As a result, not only the optical characteristics of the obtained polarizer can be improved, but also a polarizer having excellent optical characteristics can be stably produced, and the variation in the optical characteristics of the polarizer (particularly, the single transmittance) can be suppressed. can do. Hereinafter, the halide and the drying shrinkage treatment will be described. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
F-1-1.ハロゲン化物
 ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層は、ハロゲン化物とPVA系樹脂とを含む塗布液を熱可塑性樹脂基材上に塗布し、塗布膜を乾燥することにより形成され得る。塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。
F-1-1. Halide A PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin onto a thermoplastic resin base material and drying the coating film. The coating liquid is typically a solution in which the above-mentioned halide and the above-mentioned PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Of these, water is preferred. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed in close contact with the thermoplastic resin base material.
 ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 As the halide, any suitable halide can be adopted. For example, iodide and sodium chloride can be mentioned. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
 塗布液におけるハロゲン化物の量は、PVA系樹脂100重量部に対して好ましくは5重量部~20重量部であり、より好ましくは10重量部~15重量部である。ハロゲン化物の量が多すぎると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。 The amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the finally obtained polarizer may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性が向上し得る。 Generally, the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease. In particular, when the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. When stretched, the tendency of the degree of orientation to decrease is remarkable. For example, while stretching a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water. On the other hand, a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in the air before being stretched in boric acid water. , Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. As a result, the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water, can be improved.
F-1-2.乾燥収縮処理
 乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行ってもよいし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
F-1-2. Dry shrinkage treatment The dry shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used. By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizer having an excellent appearance. Specifically, by drying the laminate along the heating roll, the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state of being able to withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. Further, by using the heating roll, the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%. By using the heating roll, the laminated body can be continuously contracted in the width direction while being conveyed, and high productivity can be realized.
 図3は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 3 is a schematic view showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material. For example, one surface of the laminate 200 (for example, thermoplastic) is arranged. The transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like. The temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C. The crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using both drying with a heating roll and hot air drying together, a steep temperature change between the heating rolls can be suppressed, and shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。 Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
 このようにして、熱可塑性樹脂基材/偏光子の積層体を得ることができる。 In this way, a laminate of a thermoplastic resin base material / polarizer can be obtained.
F-2.偏光板の製造方法
 上記F-1項で得られた積層体の偏光子側表面に、アクリル系樹脂の有機溶媒溶液を塗布して塗布膜を形成し、当該塗布膜を固化させることにより保護層が形成される。
F-2. Method for manufacturing polarizing plate A protective layer is formed by applying an organic solvent solution of an acrylic resin to the surface on the polarizer side of the laminate obtained in the above section F-1 to form a coating film, and solidifying the coating film. Is formed.
 アクリル系樹脂については、上記C-1項で説明したとおりである。 The acrylic resin is as described in Section C-1 above.
 有機溶媒としては、アクリル系樹脂を溶解または均一に分散し得る任意の適切な有機溶媒を用いることができる。有機溶媒の具体例としては、酢酸エチル、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。 As the organic solvent, any suitable organic solvent capable of dissolving or uniformly dispersing the acrylic resin can be used. Specific examples of the organic solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
 溶液のアクリル系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。 The concentration of the acrylic resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polarizer can be formed.
 溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。溶液を基材に塗布する場合には、基材上に形成された塗布膜の固化物が偏光子に転写される。溶液を偏光子に塗布する場合には、塗布膜を乾燥(固化)させることにより、偏光子上に保護層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、位相差層付偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。 The solution may be applied to any suitable substrate or to a polarizer. When the solution is applied to the substrate, the solidified material of the coating film formed on the substrate is transferred to the polarizer. When the solution is applied to the polarizer, the protective layer is directly formed on the polarizer by drying (solidifying) the coating film. Preferably, the solution is applied to the polarizer and a protective layer is formed directly on the polarizer. With such a configuration, the adhesive layer or the pressure-sensitive adhesive layer required for transfer can be omitted, so that the polarizing plate with a retardation layer can be further thinned. Any suitable method can be adopted as the method for applying the solution. Specific examples include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, and a knife coating method (comma coating method, etc.).
 溶液の塗布膜を乾燥(固化)させることにより、保護層が形成され得る。乾燥温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。乾燥温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。乾燥時間は、乾燥温度に応じて変化し得る。乾燥時間は、例えば1分~10分であり得る。 A protective layer can be formed by drying (solidifying) the coating film of the solution. The drying temperature is preferably 100 ° C. or lower, more preferably 50 ° C. to 70 ° C. When the drying temperature is in such a range, it is possible to prevent an adverse effect on the polarizer. The drying time can vary depending on the drying temperature. The drying time can be, for example, 1 minute to 10 minutes.
 以上のようにして、保護層が形成され、結果として、熱可塑性樹脂基材/偏光子/保護層の積層体を得ることができる。この積層体から熱可塑性樹脂基材を剥離することにより、図1に示すような偏光子10と保護層20とを有する偏光板を得ることができる。あるいは、熱可塑性樹脂基材/偏光子の積層体の偏光子表面に別の保護層を構成する樹脂フィルムを貼り合わせ、次いで熱可塑性樹脂基材を剥離し、当該剥離面に保護層を形成してもよい。この場合には、別の保護層をさらに有する偏光板を得ることができる。 As described above, the protective layer is formed, and as a result, a laminate of the thermoplastic resin base material / polarizer / protective layer can be obtained. By peeling the thermoplastic resin base material from this laminate, a polarizing plate having a polarizing element 10 and a protective layer 20 as shown in FIG. 1 can be obtained. Alternatively, a resin film constituting another protective layer is attached to the polarizer surface of the laminate of the thermoplastic resin base material / polarizer, and then the thermoplastic resin base material is peeled off to form a protective layer on the peeled surface. You may. In this case, a polarizing plate having another protective layer can be obtained.
G.光学機能層付偏光板の製造方法
 光学機能層付偏光板は任意の適切な方法により、製造することができる。例えば、上記F項に記載の方法により、偏光板を作製し、該偏光板の偏光子側に任意の適切な光学機能層を積層または転写することにより作製することができる。光学機能層は偏光子に任意の適切な接着層を介して積層してもよく、偏光子に直接形成してもよい。
G. Method for manufacturing a polarizing plate with an optical functional layer A polarizing plate with an optical functional layer can be manufactured by any suitable method. For example, it can be produced by producing a polarizing plate by the method described in the above item F, and laminating or transferring an arbitrary appropriate optical functional layer on the polarizer side of the polarizing plate. The optical functional layer may be laminated on the polarizer via any suitable adhesive layer, or may be formed directly on the polarizer.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in the examples are based on weight.
(1)ガラス転移温度Tg
 実施例および比較例で用いた保護層を構成する材料を所定の溶媒に溶解した溶液を、アプリケーターにより基材(PETフィルム)に塗布し、60℃で乾燥して塗膜(厚み40μm)を形成した。得られた塗膜を基材から剥離し、短冊状に切り出して測定試料とした。当該測定試料をDMA測定に供し、Tgを測定した。測定装置および測定条件は以下のとおりであった。
(測定装置)
 SIIナノテクノロジー社製、「DMS6100」
(測定条件)
 ・測定温度範囲 :-80℃~150℃
 ・昇降温速度  :2℃/分
 ・測定試料幅  :10mm
 ・チャック間距離:20mm
 ・測定周波数  :1Hz
 ・歪振幅    :10μm
 ・測定雰囲気  :N(250mL/分)
(2)ヨウ素吸着量
 実施例および比較例で用いた保護層を構成する材料を所定の溶媒に溶解した溶液を、アプリケーターにより基材(PETフィルム)に塗布し、60℃で乾燥して塗膜(厚み40μm)を形成した。得られた塗膜を基材から剥離し、1cm×1cm(1cm)に切り出して測定試料とした。当該測定試料を燃焼IC法に供し、試料中のヨウ素量を定量分析した。具体的には以下のとおりである。測定試料をヘッドスペースバイアル(20mL容量)に採取および秤量した。次に、ヨウ素水溶液(ヨウ素濃度1重量%、ヨウ化カリウム濃度7重量%)1mLを入れたバイアル瓶(2mL容量)を、このヘッドスペースバイアルに入れ、密栓した。その後、このヘッドスペースバイアルを乾燥機で65℃・6時間加熱し、加熱後の試料をセラミックポートに採取して自動燃焼装置を用いて燃焼させ、発生したガスを吸収液に捕集後、定量分析を行い、吸着されたヨウ素の重量%を求めた。なお、使用した装置は以下のとおりであった。
 ・自動試料燃焼装置:三菱化学アナリティック社製、「AQF-2100H」
 ・IC(アニオン):Thermo Fisher Scientific社製、「ICS-3000」
(3)単体透過率および偏光度
 実施例および比較例で得られた光学機能層付偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとし、当該試験サンプルについて、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて、単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)を測定し、偏光度(P)を次式により求めた。この時、測定光は保護層側より入射させた。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。
 次に、光学機能層付偏光板を85℃および85%RHのオーブン内で48時間放置して加熱加湿し(加熱試験)、加熱試験前の単体透過率Tsおよび加熱試験後の単体透過率Ts48から、下記式を用いて単体透過率変化量ΔTsを求めた。
    ΔTs(%)=Ts48-Ts
同様に、加熱試験前の偏光度Pおよび加熱試験後の偏光度P48から、下記式を用いて偏光度変化量ΔPを求めた。
    ΔP(%)=P48-P
なお、加熱試験は、実施例および比較例で得られた光学機能層付偏光板から、偏光子の吸収軸方向に直交する方向及び吸収軸方向をそれぞれ対向するニ辺とする試験片(50mm×50mm)を切り出し、保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとした。
 得られたΔTsおよびΔPの結果から、以下の基準で評価した。
   良:ΔTs:3.0%未満、ΔP:-0.1%~0%
   可:ΔTs:3.0%以上5.0%未満、ΔP:-1.0%以上-0.1%未満
   不良:ΔTs:5%以上、ΔP:-1.0%未満、または、全体に色抜け
(4)折り曲げ試験
 実施例および比較例で得られた光学機能層付偏光板を30mm(偏光子の吸収軸方向と直交する方向)×120mm(吸収軸方向)のサイズに切り出し、測定試料とした。この測定試料について、無負荷U字伸縮モードの連続折り曲げ試験装置(ユアサシステム機器社製、製品名「DLDMLH-FS」)を用いて連続折り曲げ試験を行った。折り曲げ速度は60rpm、折り曲げの振幅は20mm、折り曲げの曲率半径は0.5mm、折り曲げ回数は50000回であった。また、折り曲げは、測定試料の長手方向端部を把持した状態で当該把持部をスライドさせることにより、測定試料の光学機能層または位相差層が内側となるようにして行った。以下の基準で評価した。
   良:50000回の折り曲げで割れが生じなかった
   不良:50000回未満の折り曲げで構成要素のいずれかに割れおよび/または折れ跡が生じた
なお、測定試料に割れが生じる場合、当該割れは吸収軸と直交する方向(測定試料の幅方向)に沿ったものであった。
(1) Glass transition temperature Tg
A solution prepared by dissolving the material constituting the protective layer used in Examples and Comparative Examples in a predetermined solvent is applied to a base material (PET film) by an applicator and dried at 60 ° C. to form a coating film (thickness 40 μm). bottom. The obtained coating film was peeled off from the base material and cut into strips to prepare a measurement sample. The measurement sample was subjected to DMA measurement, and Tg was measured. The measuring device and measuring conditions were as follows.
(measuring device)
"DMS6100" manufactured by SII Nanotechnology Inc.
(Measurement condition)
-Measurement temperature range: -80 ° C to 150 ° C
・ Elevating temperature: 2 ℃ / min ・ Measurement sample width: 10mm
・ Distance between chucks: 20 mm
・ Measurement frequency: 1Hz
・ Strain amplitude: 10 μm
・ Measurement atmosphere: N 2 (250 mL / min)
(2) Amount of Iodine Adsorption A solution prepared by dissolving the material constituting the protective layer used in Examples and Comparative Examples in a predetermined solvent is applied to a base material (PET film) by an applicator, dried at 60 ° C., and coated. (Thickness 40 μm) was formed. The obtained coating film was peeled off from the base material and cut into 1 cm × 1 cm (1 cm 2 ) to prepare a measurement sample. The measurement sample was subjected to a combustion IC method, and the amount of iodine in the sample was quantitatively analyzed. Specifically, it is as follows. The measurement sample was collected and weighed in a headspace vial (20 mL volume). Next, a vial (2 mL volume) containing 1 mL of an iodine aqueous solution (iodine concentration 1% by weight, potassium iodide concentration 7% by weight) was placed in this headspace vial and sealed. After that, this headspace vial is heated in a dryer at 65 ° C. for 6 hours, the heated sample is collected in a ceramic port and burned using an automatic combustion device, and the generated gas is collected in an absorbing liquid and then quantified. The analysis was performed to determine the weight% of the adsorbed iodine. The equipment used was as follows.
-Automatic sample combustion device: "AQF-2100H" manufactured by Mitsubishi Chemical Analytical Co., Ltd.
-IC (anion): "ICS-3000" manufactured by Thermo Fisher Scientific.
(3) Single-unit transmittance and degree of polarization From the polarizing plate with an optical functional layer obtained in Examples and Comparative Examples, a test piece having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction, respectively. (50 mm × 50 mm) was cut out. The test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") was used for the test sample. Then, the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) were measured, and the degree of polarization (P) was calculated by the following equation. At this time, the measurement light was incident from the protective layer side.
Polarization degree (P) (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
The Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer.
Next, the polarizing plate with an optical functional layer was left in an oven at 85 ° C. and 85% RH for 48 hours to heat and humidify (heating test), and the single transmittance Ts 0 before the heating test and the single transmittance after the heating test were obtained. From Ts 48 , the amount of change in single transmittance ΔTs was determined using the following formula.
ΔTs (%) = Ts 48 -Ts 0
Similarly, from the degree of polarization P 0 before the heating test and the degree of polarization P 48 after the heating test, the amount of change in degree of polarization ΔP was determined using the following formula.
ΔP (%) = P 48 −P 0
In the heating test, from the polarizing plates with an optical functional layer obtained in Examples and Comparative Examples, a test piece (50 mm ×) having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction. 50 mm) was cut out, and the test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to prepare a test sample.
From the obtained results of ΔTs and ΔP, evaluation was made according to the following criteria.
Good: ΔTs: less than 3.0%, ΔP: -0.1% to 0%
Possible: ΔTs: 3.0% or more and less than 5.0%, ΔP: -1.0% or more and less than -0.1% Defective: ΔTs: 5% or more, ΔP: less than -1.0%, or overall Color loss (4) Bending test The polarizing plate with an optical functional layer obtained in Examples and Comparative Examples was cut into a size of 30 mm (direction orthogonal to the absorption axis direction of the polarizer) × 120 mm (absorption axis direction), and a measurement sample was obtained. And said. This measurement sample was subjected to a continuous bending test using a continuous bending test device (manufactured by Yuasa System Equipment Co., Ltd., product name "DLDMLLH-FS") in a no-load U-shaped expansion / contraction mode. The bending speed was 60 rpm, the bending amplitude was 20 mm, the bending radius of curvature was 0.5 mm, and the number of bendings was 50,000. Further, the bending was performed so that the optical functional layer or the retardation layer of the measurement sample was on the inside by sliding the gripping portion while gripping the longitudinal end portion of the measurement sample. It was evaluated according to the following criteria.
Good: No cracks occurred after 50,000 bends Defective: Cracks and / or creases occurred on any of the components after less than 50,000 bends. If the measurement sample cracks, the cracks are absorbed shafts. It was along the direction orthogonal to (the width direction of the measurement sample).
[実施例1]
1.偏光子/樹脂基材の積層体の作製
 樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が41.5%±0.1%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成し、偏光子/樹脂基材の積層体を作製した。偏光子の単体透過率(初期単体透過率)Tsは41.2%であり、偏光度(初期偏光度)Pは99.996%であった。
[Example 1]
1. 1. Fabrication of Laminate of Polarizer / Resin Base Material Amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) as a resin base material, which is long, has a water absorption rate of 0.75%, and has a Tg of about 75 ° C. Was used. One side of the resin substrate was corona-treated.
Polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Co., Ltd., trade name "Gosefimer Z410") are mixed in a ratio of 9: 1 to 100 parts by weight of PVA-based resin. , 13 parts by weight of potassium iodide was added to prepare a PVA aqueous solution (coating liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 41.5% ± 0.1% (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight) at a liquid temperature of 70 ° C., the total draw ratio is 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so as to double (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment). The shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment was 5.2%.
In this way, a polarizer having a thickness of 5 μm was formed on the resin substrate to prepare a laminate of the polarizer / resin substrate. The simple substance transmittance (initial simple substance transmittance) Ts 0 of the polarizer was 41.2%, and the degree of polarization (initial polarization degree) P 0 was 99.996%.
2.位相差層を構成する第1の配向固化層および第2の配向固化層の作製
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000005
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて100mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率特性を示した。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.3μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率特性を示した。
2. Preparation of First Oriented Solidified Layer and Second Oriented Solidified Layer Constituting the Phase Difference Layer With 10 g of polymerizable liquid crystal (manufactured by BASF: trade name "Pariocolor LC242", represented by the following formula) showing a nematic liquid crystal phase. , 3 g of a photopolymerization initiator (manufactured by BASF: trade name "Irgacure 907") for the polymerizable liquid crystal compound was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating liquid).
Figure JPOXMLDOC01-appb-C000005
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The direction of the orientation treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 100 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film. The thickness of the liquid crystal oriented solidified layer A was 2.5 μm, and the in-plane retardation Re (550) was 270 nm. Further, the liquid crystal oriented solidified layer A showed a refractive index characteristic of nx> ny = nz.
On the PET film in the same manner as above, except that the coating thickness was changed and the orientation treatment direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis. A liquid crystal oriented solidified layer B was formed. The thickness of the liquid crystal oriented solidified layer B was 1.3 μm, and the in-plane retardation Re (550) was 140 nm. Further, the liquid crystal oriented solidified layer B exhibited a refractive index characteristic of nx> ny = nz.
3.位相差層付偏光板の作製
 上記1.で得られた偏光子/樹脂基材の積層体の偏光子表面に、上記2.で得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。続いて、補強のために粘着剤付き基材を配向固化層Bの表面に貼り合わせた。続いて、樹脂基材を剥離し、偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)/粘着剤付き基材の構成を有する位相差層付偏光板を得た。
3. 3. Fabrication of polarizing plate with retardation layer 1. On the polarizer surface of the laminate of the polarizer / resin base material obtained in 2. above. The liquid crystal oriented solidified layer A and the liquid crystal oriented solidified layer B obtained in the above were transferred in this order. At this time, the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer A is 15 °, and the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer B is 75 °. Transferred (bonded). Each transfer (bonding) was carried out via an ultraviolet curable adhesive (thickness 1.0 μm). Subsequently, a base material with an adhesive was attached to the surface of the oriented solidification layer B for reinforcement. Subsequently, the resin base material is peeled off, and a retardation layer having a structure of a polarizer / an adhesive layer / a retardation layer (first orientation solidification layer / adhesion layer / second orientation solidification layer) / a base material with an adhesive is used. A polarizing plate with a polarizing plate was obtained.
4.易接着層の形成
 得られた位相差層付き偏光板の偏光子面に、易接着層としてポリウレタン系の水系分散樹脂(第一工業製薬社製、製品名:スーパーフレックスSF210)を厚みが0.1μmになるように塗布し、易接着層を形成した。
4. Formation of Easy Adhesive Layer A polyurethane-based water-based dispersion resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name: Superflex SF210) is applied as an easy-adhesion layer on the polarizing plate of the obtained polarizing plate with a retardation layer to a thickness of 0. It was applied so as to have a thickness of 1 μm to form an easy-adhesion layer.
5.保護層の作製
 100%ポリメチルメタクリレートであるアクリル系樹脂(楠本化成社製、製品名:B-728)20重量部をメチルエチルケトン80重量部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、上記で得られた偏光板の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは3μmであり、Tgは116℃であり、ヨウ素吸着量は0.34重量%であった。このようにして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を上記の評価に供した。
5. Preparation of Protective Layer 20 parts by weight of an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name: B-728) which is 100% polymethylmethacrylate was dissolved in 80 parts by weight of methyl ethyl ketone to obtain an acrylic resin solution (20%). .. This acrylic resin solution is applied to the surface of the polarizer of the polarizing plate obtained above using a wire bar, and the coating film is dried at 60 ° C. for 5 minutes to form a protective layer formed as a solidified product of the coating film. Was formed. The thickness of the protective layer was 3 μm, the Tg was 116 ° C., and the iodine adsorption amount was 0.34% by weight. In this way, a polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
[実施例2]
 保護層厚みを2μmとしたこと、および、保護層の易接着層と反対の面にさらにハードコート層(厚み3μm)を形成したこと以外は、実施例1と同様にして位相差層付偏光板を得た。なお、ハードコート層は、ジメチロール-トリシクロデカンジアクリレート(共栄社化学製、商品名:ライトアクリレートDCP-A)70重量部、イソボルニルアクリレート(共栄社化学製、商品名:ライトアクリレートIB-XA)20重量部、1,9-ノナンジオールジアクリレート(共栄社化学製、商品名:ライトアクリレート1.9NA-A)10重量部、さらに、光重合開始剤(BASF社製、商品名:イルガキュア907)3重量部を、適当な溶媒を用いて混合した。得られた塗工液を、硬化後に3μmになるように保護層面上に塗布し、次いで、溶媒を乾燥させ、高圧水銀ランプを用いて積算光量300mJ/cmとなるよう紫外線を窒素雰囲気下にて照射すること形成した。得られた位相差層付偏光板を上記の評価に供した。
[Example 2]
Polarizing plate with retardation layer as in Example 1 except that the protective layer thickness is 2 μm and a hard coat layer (thickness 3 μm) is further formed on the surface opposite to the easy-adhesion layer of the protective layer. Got The hard coat layer is 70 parts by weight of dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate DCP-A) and isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate IB-XA). 20 parts by weight, 1,9-nonanediol diacrylate (Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate 1.9NA-A) 10 parts by weight, and photopolymerization initiator (BASF Co., Ltd., trade name: Irgacure 907) 3 The parts by weight were mixed with a suitable solvent. The obtained coating liquid is applied onto the protective layer surface so as to be 3 μm after curing, then the solvent is dried, and ultraviolet rays are applied to a nitrogen atmosphere using a high-pressure mercury lamp so that the integrated light amount is 300 mJ / cm 2. It was formed by irradiating. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
[実施例3]
 光学機能層として位相差層の代わりに別の保護層としてシクロオレフィン系樹脂(COP)フィルム(厚み13μm)を用いたこと以外は実施例1と同様にして偏光板(保護層(塗布膜の固化層)/偏光子/保護層(COPフィルム))を作製した。偏光板の総厚みは22μmであった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 3]
A polarizing plate (protective layer (solidification of coating film)) was used in the same manner as in Example 1 except that a cycloolefin resin (COP) film (thickness 13 μm) was used as another protective layer instead of the retardation layer as the optical functional layer. Layer) / Polarizer / Protective layer (COP film)) was prepared. The total thickness of the polarizing plate was 22 μm. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例4]
 上記1.で得られた偏光子/樹脂基材の積層体の偏光子に保護層形成組成物を塗布したこと以外は実施例1と同様にして偏光板(保護層(塗布膜の固化層)/偏光子)を作製した。偏光板の総厚みは8μmであった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 4]
Above 1. Polarizing plate (protective layer (solidified layer of coating film) / polarizing element in the same manner as in Example 1 except that the protective layer forming composition was applied to the polarizing element of the laminate of the polarizing element / resin base material obtained in 1. ) Was prepared. The total thickness of the polarizing plate was 8 μm. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例5]
 100%ポリメチルメタクリレートであるアクリル系樹脂に代えて、ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂(ラクトン環単位30モル%)を用いたこと以外は実施例1と同様にして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を上記の評価に供した。
[Example 5]
Protection in the same manner as in Example 1 except that an acrylic resin (lactone ring unit: 30 mol%) which is a polymethyl methacrylate having a lactone ring unit was used instead of the acrylic resin which is 100% polymethyl methacrylate. A polarizing plate with a retardation layer having a structure of a layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
[実施例6]
 100%ポリメチルメタクリレートであるアクリル系樹脂に代えて、グルタルイミド環単位を有するポリメチルメタクリレートであるアクリル系樹脂(グルタルイミド環単位4モル%)を用いたこと以外は実施例1と同様にして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を上記の評価に供した。
[Example 6]
The same as in Example 1 except that an acrylic resin (glutarimide ring unit 4 mol%) which is a polymethyl methacrylate having a glutarimide ring unit was used instead of the acrylic resin which is 100% polymethyl methacrylate. , A polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
[実施例7]
 100%ポリメチルメタクリレートであるアクリル系樹脂に代えて、メチルメタクリレート/ブチルメタクリレート(モル比80/20)の共重合体であるアクリル系樹脂を用いたこと以外は実施例1と同様にして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を上記の評価に供した。
[Example 7]
Protection in the same manner as in Example 1 except that an acrylic resin which is a copolymer of methyl methacrylate / butyl methacrylate (molar ratio 80/20) was used instead of the acrylic resin which is 100% polymethyl methacrylate. A polarizing plate with a retardation layer having a structure of a layer (solidified coating film) / polarizer / retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluation.
(比較例1)
 100%ポリメチルメタクリレートであるアクリル系樹脂に代えて、メチルメタクリレート/エチルアクリレート(モル比55/45)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-722」)を用いたこと以外は実施例1と同様にして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を加熱加湿環境下に置いたところ色抜けが発生したので、単体透過率および偏光度の評価は行わなかった。
(Comparative Example 1)
Instead of the 100% polymethylmethacrylate acrylic resin, an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-722"), which is a copolymer of methyl methacrylate / ethyl acrylate (molar ratio 55/45), is used. A polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained in the same manner as in Example 1 except that it was used. When the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmittance and the degree of polarization were not evaluated.
(比較例2)
 100%ポリメチルメタクリレートであるアクリル系樹脂に代えて、メチルメタクリレート/ブチルメタクリレート(モル比35/65)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-734」)を用いたこと以外は実施例1と同様にして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を加熱加湿環境下に置いたところ色抜けが発生したので、単体透過率および偏光度の評価は行わなかった。
(Comparative Example 2)
Instead of the 100% polymethylmethacrylate acrylic resin, an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-734"), which is a copolymer of methyl methacrylate / butyl methacrylate (molar ratio 35/65), is used. A polarizing plate with a retardation layer having a structure of a protective layer (solidified coating film) / polarizer / retardation layer was obtained in the same manner as in Example 1 except that it was used. When the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmittance and the degree of polarization were not evaluated.
(比較例3)
 易接着層を形成しなかった(すなわち偏光子に直接保護層を形成した)こと、紫外線硬化型アクリル系樹脂(共栄社化学製、製品名「ライトアクリレートHPP-A」、ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物)を用いて保護層を形成したこと以外は実施例1と同様にして保護層(硬化物)を形成し、位相差層付偏光板を得た。具体的には、当該アクリル系樹脂97重量%および光重合開始剤(イルガキュア907、BASF社製)3重量%を配合した組成物を偏光子上に塗布し、窒素雰囲気下で高圧水銀ランプを用いて積算光量300mJ/cmで紫外線を照射し、硬化層(保護層)を形成した。
(Comparative Example 3)
No easy-adhesion layer was formed (that is, a protective layer was formed directly on the polarizing element), UV-curable acrylic resin (manufactured by Kyoeisha Chemical Co., Ltd., product name "Light Acrylate HPP-A", neopentyl glycol acrylic hydroxypivalate). A protective layer (cured product) was formed in the same manner as in Example 1 except that a protective layer was formed using an acid adduct) to obtain a polarizing plate with a retardation layer. Specifically, a composition containing 97% by weight of the acrylic resin and 3% by weight of a photopolymerization initiator (Irgacure 907, manufactured by BASF) is applied onto a polarizer, and a high-pressure mercury lamp is used in a nitrogen atmosphere. A cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 300 mJ / cm 2.
(比較例4)
 易接着層を形成しなかった(すなわち偏光子に直接保護層を形成した)こと、紫外線硬化型エポキシ系樹脂(ダイセル社製、製品名「セロキサイド2021P」)を用いて保護層を形成したこと以外は実施例1と同様にして保護層(硬化物)を形成し、位相差層付偏光板を得た。具体的には、当該エポキシ系樹脂95重量%および光重合開始剤(CPI-100P、サンアプロ社製)5重量%を配合した組成物を偏光子上に塗布し、空気雰囲気下で高圧水銀ランプを用いて積算光量500mJ/cmで紫外線を照射し、硬化層(保護層)を形成した。
(Comparative Example 4)
Except for the fact that the easy-adhesion layer was not formed (that is, the protective layer was formed directly on the polarizing element) and that the protective layer was formed using an ultraviolet curable epoxy resin (manufactured by Daicel Corporation, product name "Selokiside 2021P"). Formed a protective layer (cured product) in the same manner as in Example 1 to obtain a polarizing plate with a retardation layer. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro) is applied onto a polarizer, and a high-pressure mercury lamp is used in an air atmosphere. A cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 500 mJ / cm 2.
(比較例5)
 易接着層を形成しなかった(すなわち偏光子に直接保護層を形成した)こと、水系ポリエステル系樹脂(日本合成化学社製、製品名「ポリエスターWR905」)を用いたこと以外は実施例1と同様にして保護層(塗布膜の固化物)を形成し、位相差層付偏光板を得た。得られた位相差層付偏光板を加熱加湿環境下に置いたところ色抜けが発生したので、単体透過率および偏光度の評価は行わなかった。
(Comparative Example 5)
Example 1 except that an easy-adhesion layer was not formed (that is, a protective layer was formed directly on the polarizer) and an aqueous polyester resin (manufactured by Nippon Synthetic Chemical Co., Ltd., product name "Polyester WR905") was used. A protective layer (solidified coating film) was formed in the same manner as in the above procedure to obtain a polarizing plate with a retardation layer. When the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmittance and the degree of polarization were not evaluated.
(比較例6)
 易接着層を形成しなかった(すなわち偏光子に直接保護層を形成した)こと、水系ポリウレタン系樹脂(第一工業製薬社製、製品名「スーパーフレックスSF210」)用いたこと以外は実施例1と同様にして保護層(塗布膜の固化物)を形成し、位相差層付偏光板を得た。得られた位相差層付偏光板を加熱加湿環境下に置いたところ色抜けが発生したので、単体透過率および偏光度の評価は行わなかった。
(Comparative Example 6)
Example 1 except that an easy-adhesion layer was not formed (that is, a protective layer was formed directly on the polarizer) and an aqueous polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Superflex SF210") was used. A protective layer (solidified coating film) was formed in the same manner as in the above procedure to obtain a polarizing plate with a retardation layer. When the obtained polarizing plate with a retardation layer was placed in a heating and humidifying environment, color loss occurred, so the single transmission rate and the degree of polarization were not evaluated.
(比較例7)
 易接着層を形成しなかったこと、片面に易接着処理をしたアクリル系フィルム(屈折率:1.50、厚さ:20μm)を、紫外線硬化接着剤を介して偏光子面に直接貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をアクリルフィルム側から照射して接着剤を硬化させた。このようにして保護層を積層した以外は実施例1と同様にして位相差層付偏光板を得た。
(Comparative Example 7)
An acrylic film (refractive index: 1.50, thickness: 20 μm) that did not form an easy-adhesion layer and had an easy-adhesion treatment on one side was directly bonded to the polarizer surface via an ultraviolet curable adhesive. .. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the side of the acrylic film to cure the adhesive. A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that the protective layers were laminated in this way.
(比較例8)
 アクリル系フィルムの厚みを40μmに変更した以外は比較例7と同様にして、位相差層付偏光板を作製した。偏光板の厚みは51μmであった。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 8)
A polarizing plate with a retardation layer was produced in the same manner as in Comparative Example 7 except that the thickness of the acrylic film was changed to 40 μm. The thickness of the polarizing plate was 51 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<評価>
 表1から明らかなように、実施例で得られた偏光板は、非常に薄いにもかかわらず、加熱加湿環境下においても光学特性の低下が抑制され、耐久性に優れるものであった。さらに、屈曲性にも優れており、優れた耐久性と優れた屈曲性とを両立し得るものであった。
<Evaluation>
As is clear from Table 1, although the polarizing plate obtained in the examples was very thin, the deterioration of the optical characteristics was suppressed even in a heating and humidifying environment, and the polarizing plate was excellent in durability. Further, it is also excellent in flexibility, and it is possible to achieve both excellent durability and excellent flexibility.
 本発明の偏光板は、画像表示装置に好適に用いられる。画像表示装置としては、例えば、携帯情報端末(PDA)、スマートフォン、携帯電話、時計、デジタルカメラ、携帯ゲーム機などの携帯機器;パソコンモニター、ノートパソコン、コピー機などのOA機器;ビデオカメラ、テレビ、電子レンジなどの家庭用電気機器;バックモニター、カーナビゲーションシステム用モニター、カーオーディオなどの車載用機器;デジタルサイネージ、商業店舗用インフォメーション用モニターなどの展示機器;監視用モニターなどの警備機器;介護用モニター、医療用モニターなどの介護・医療機器;が挙げられる。 The polarizing plate of the present invention is suitably used for an image display device. Examples of image display devices include portable devices such as mobile information terminals (PDAs), smartphones, mobile phones, clocks, digital cameras, and portable game machines; OA devices such as personal computer monitors, laptop computers, and copiers; video cameras and televisions. , Home appliances such as microwave ovens; Back monitors, car navigation system monitors, car audio and other in-vehicle devices; Digital signage, commercial store information monitors and other exhibition devices; Surveillance monitors and other security devices; Nursing care Nursing care / medical equipment such as monitors for medical use and monitors for medical use;
 10       偏光子
 20       保護層
 30       位相差層
100       偏光板
110       光学機能層付偏光板
10 Polarizer 20 Protective layer 30 Phase difference layer 100 Polarizing plate 110 Polarizing plate with optical functional layer

Claims (7)

  1.  偏光子と、該偏光子の一方の側に配置された保護層と、を含み、
     該保護層が、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該保護層のガラス転移温度が95℃以上であり、
     総厚みが20μm以下である、偏光板。
    Includes a polarizer and a protective layer located on one side of the polarizer.
    The protective layer is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95 ° C. or higher.
    A polarizing plate having a total thickness of 20 μm or less.
  2.  前記保護層の厚みが10μm以下である、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the protective layer has a thickness of 10 μm or less.
  3.  前記偏光子の厚みが10μm以下である、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the thickness of the polarizer is 10 μm or less.
  4.  前記熱可塑性アクリル系樹脂が、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つを有する、請求項1から3のいずれかに記載の偏光板。 One of claims 1 to 3, wherein the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide unit. The polarizing plate according to the description.
  5.  請求項1から4のいずれかに記載の偏光板と、前記偏光子の前記保護層と反対側に配置された光学機能層とを含み、総厚みが25μm以下である、光学機能層付偏光板。 A polarizing plate with an optical functional layer, which comprises the polarizing plate according to any one of claims 1 to 4 and an optical functional layer arranged on the opposite side of the protective layer of the polarizer and has a total thickness of 25 μm or less. ..
  6.  前記光学機能層が、前記保護層とは別の保護層として機能する、請求項5に記載の光学機能層付偏光板。 The polarizing plate with an optical functional layer according to claim 5, wherein the optical functional layer functions as a protective layer different from the protective layer.
  7.  前記光学機能層が、円偏光機能または楕円偏光機能を有する位相差層である、請求項5に記載の光学機能層付偏光板。 The polarizing plate with an optical functional layer according to claim 5, wherein the optical functional layer is a retardation layer having a circularly polarized light function or an elliptically polarized light function.
PCT/JP2021/014526 2020-04-30 2021-04-05 Polarizing plate and polarizing plate with optical functional layer WO2021220729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180031410.0A CN115461660A (en) 2020-04-30 2021-04-05 Polarizing plate and polarizing plate with optical function layer
KR1020227037883A KR20230002535A (en) 2020-04-30 2021-04-05 Polarizing plate and polarizing plate with optical function layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020080789A JP2021173982A (en) 2020-04-30 2020-04-30 Polarizing plate and polarizing plate with optical function layer
JP2020-080789 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220729A1 true WO2021220729A1 (en) 2021-11-04

Family

ID=78281760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014526 WO2021220729A1 (en) 2020-04-30 2021-04-05 Polarizing plate and polarizing plate with optical functional layer

Country Status (5)

Country Link
JP (1) JP2021173982A (en)
KR (1) KR20230002535A (en)
CN (1) CN115461660A (en)
TW (1) TW202146547A (en)
WO (1) WO2021220729A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823316B (en) * 2022-03-30 2023-11-21 占暉光學股份有限公司 Structural-reinforcing color lens device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074089A1 (en) 2021-10-25 2023-05-04 旭化成株式会社 Block copolymer, asphalt composition, and modified asphalt mixture

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064999A1 (en) * 2012-10-22 2014-05-01 コニカミノルタ株式会社 Display device with touch panel
JP2014206725A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
WO2014203637A1 (en) * 2013-06-17 2014-12-24 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
WO2015064732A1 (en) * 2013-11-01 2015-05-07 富士フイルム株式会社 Polarizer-protecting film, dope composition, method for manufacturing polarizer-protecting film, polarizer, and liquid-crystal display
JP2015132661A (en) * 2014-01-10 2015-07-23 コニカミノルタ株式会社 Polarizing plate protective film, manufacturing method of the same, polarizing plate, and liquid crystal display device
JP2016540260A (en) * 2013-09-30 2016-12-22 エルジー・ケム・リミテッド Polarizing plate and image display device including the same
JP2017120276A (en) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
WO2018190176A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Polarizing plate and image display device
WO2019059693A2 (en) * 2017-09-22 2019-03-28 주식회사 엘지화학 Solvent-free photo-curable resin composition for polarizing plate protective layer, polarizing plate comprising cured product thereof, and image display device
JP2019099714A (en) * 2017-12-05 2019-06-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition for optical film, adhesive layer, optical member, and image display device
JP2019200413A (en) * 2018-05-11 2019-11-21 住友化学株式会社 Polarizing plate and display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210474A (en) 2014-04-30 2015-11-24 株式会社カネカ Polarizer protection film and polarizing plate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064999A1 (en) * 2012-10-22 2014-05-01 コニカミノルタ株式会社 Display device with touch panel
JP2014206725A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
WO2014203637A1 (en) * 2013-06-17 2014-12-24 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
JP2016540260A (en) * 2013-09-30 2016-12-22 エルジー・ケム・リミテッド Polarizing plate and image display device including the same
WO2015064732A1 (en) * 2013-11-01 2015-05-07 富士フイルム株式会社 Polarizer-protecting film, dope composition, method for manufacturing polarizer-protecting film, polarizer, and liquid-crystal display
JP2015132661A (en) * 2014-01-10 2015-07-23 コニカミノルタ株式会社 Polarizing plate protective film, manufacturing method of the same, polarizing plate, and liquid crystal display device
JP2017120276A (en) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
WO2018190176A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Polarizing plate and image display device
WO2019059693A2 (en) * 2017-09-22 2019-03-28 주식회사 엘지화학 Solvent-free photo-curable resin composition for polarizing plate protective layer, polarizing plate comprising cured product thereof, and image display device
JP2019099714A (en) * 2017-12-05 2019-06-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition for optical film, adhesive layer, optical member, and image display device
JP2019200413A (en) * 2018-05-11 2019-11-21 住友化学株式会社 Polarizing plate and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823316B (en) * 2022-03-30 2023-11-21 占暉光學股份有限公司 Structural-reinforcing color lens device

Also Published As

Publication number Publication date
TW202146547A (en) 2021-12-16
KR20230002535A (en) 2023-01-05
CN115461660A (en) 2022-12-09
JP2021173982A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6453746B2 (en) Elongated optical laminate and image display device
TWI737807B (en) Optical laminate and image display device
WO2021220729A1 (en) Polarizing plate and polarizing plate with optical functional layer
JP2006039164A (en) Method for manufacturing optical film, optical film, polarizing plate, liquid crystal panel and liquid crystal display
WO2022185802A1 (en) Circular polarizing plate and image display device using same
WO2021261344A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
WO2021065107A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
JP2021177229A (en) Polarizing plate and polarizing plate with optical function layer
JP2021177230A (en) Polarizing plate and polarizing plate with retardation layer
WO2020209224A1 (en) Polarizing plate
JPWO2020138358A1 (en) Polarizing plate and polarizing plate roll
WO2021220740A1 (en) Polarizing plate and polarizing plate with optical functional layer
WO2021220741A1 (en) Polarizing plate and polarizing plate with retardation layer
TWI839433B (en) Polarizing plate with phase difference layer
WO2020138368A1 (en) Polarizing plate provided with phase difference layer
WO2020209222A1 (en) Laminate for polarizer protection, and polarizing plate using said laminate
WO2022044500A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
WO2021100632A1 (en) Polarizing plate and polarizing plate roll
WO2022034774A1 (en) Retardation layer-equipped polarizing plate and image display device using same
JPWO2020138329A1 (en) Polarizing plate and polarizing plate roll
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same
KR20230038790A (en) Circular polarizing plate, organic electroluminescence display device, display device
JP2023075790A (en) Polarizing plate with retardation layer, and image display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795386

Country of ref document: EP

Kind code of ref document: A1