WO2021261344A1 - Retardation-layer-equipped polarizing plate and image display device using same - Google Patents

Retardation-layer-equipped polarizing plate and image display device using same Download PDF

Info

Publication number
WO2021261344A1
WO2021261344A1 PCT/JP2021/022774 JP2021022774W WO2021261344A1 WO 2021261344 A1 WO2021261344 A1 WO 2021261344A1 JP 2021022774 W JP2021022774 W JP 2021022774W WO 2021261344 A1 WO2021261344 A1 WO 2021261344A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
retardation layer
retardation
resin
Prior art date
Application number
PCT/JP2021/022774
Other languages
French (fr)
Japanese (ja)
Inventor
幸佑 ▲高▼永
卓史 上条
一葵 川緑
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227044734A priority Critical patent/KR20230028728A/en
Priority to JP2022531848A priority patent/JPWO2021261344A1/ja
Priority to CN202180045429.0A priority patent/CN115804264A/en
Publication of WO2021261344A1 publication Critical patent/WO2021261344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer in which crack generation during heating is suppressed.
  • the polarizing plate with a retardation layer is polarized light including a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance and a protective layer arranged on one side of the polarizing element. It has a plate and a retardation layer.
  • This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 ⁇ m or less.
  • This polarizing element satisfies the following formula (1) when the simple substance transmittance is x% and the birefringence of the polyvinyl alcohol-based resin is y.
  • a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance and a protective layer arranged on one side of the polarizing element are provided. It has a polarizing plate including the polarizing plate and a retardation layer.
  • This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 ⁇ m or less.
  • This polarizing element satisfies the following formula (2) when the simple substance transmittance is x% and the in-plane retardation of the polyvinyl alcohol-based resin film is znm.
  • the polarizing plate with a retardation layer includes a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on one side of the polarizing element. It has a polarizing plate containing the above and a retardation layer.
  • This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 ⁇ m or less.
  • This polarizing element satisfies the following formula (3) when its simple transmittance is x% and the orientation function of the polyvinyl alcohol-based resin is f.
  • the total thickness of the polarizing plate with a retardation layer is 30 ⁇ m or less. In one embodiment, the thickness of the polarizing element is 10 ⁇ m or less. In one embodiment, the simple substance transmittance of the above-mentioned extruder is 40.0% or more, and the degree of polarization is 99.0% or more.
  • the protective layer is made from a solidified coating film of an organic solvent solution of a thermoplastic (meth) acrylic resin, a photocationic cured product of an epoxy resin, and a solidified coating film of an organic solvent solution of an epoxy resin. It is composed of at least one selected from the group.
  • the thermoplastic (meth) acrylic resin comprises at least one repeating unit selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit.
  • the protective layer is a photocationic cured product of an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton.
  • an image display device is provided. This image display device includes the above-mentioned polarizing plate with a retardation layer.
  • a polarizing element in which the single transmittance and the birefringence of polyvinyl alcohol (PVA) or the in-plane phase difference of the PVA-based resin film satisfy a predetermined relationship, a protective layer having a thickness of 10 ⁇ m or less, and a liquid crystal alignment compound.
  • a polarizing plate with a retardation layer having a retardation layer of the orientation solidification layer of the above By using such a polarizing plate with a retardation layer, the polarizing plate with a retardation layer can be made thinner and crack generation during heating can be suppressed. Further, the generation of cracks at the time of bending can be suppressed.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny” is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer of the present embodiment has a polarizing plate 10 and a retardation layer 20.
  • the polarizing plate 10 includes a polarizing element 11, a first protective layer 12 arranged on one side of the polarizing element 11, and a second protective layer 13 arranged on the other side of the polarizing element 11. ..
  • one of the first protective layer 12 and the second protective layer 13 may be omitted.
  • the retardation layer 20 can also function as a protective layer for the polarizing element 11, the second protective layer 13 may be omitted.
  • the retardation layer 20 is laminated to the polarizing element 11 or the second protective layer 13 via any suitable adhesive layer or adhesive layer (not shown).
  • the polarizing element 11 is made of a polyvinyl alcohol-based resin film containing a dichroic substance, the single transmittance is x%, and the birefringence of the polyvinyl alcohol-based resin is y. Satisfies the following equation (1).
  • the polarizing element 11 is made of a polyvinyl alcohol-based resin film containing a dichroic substance, and the single transmittance is x%, and the in-plane of the polyvinyl alcohol-based resin film is set.
  • the phase difference is znm
  • the polarizing element 10 satisfies the following formula (3) when the simple substance transmittance is x% and the orientation function of the polyvinyl alcohol-based resin constituting the polarizing element is f. y ⁇ -0.011x + 0.525 (1) z ⁇ -60x + 2875 (2) f ⁇ -0.018x + 1.11 (3)
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention.
  • another retardation layer 50 and / or a conductive layer or an isotropic base material 60 with a conductive layer may be provided in the polarizing plate 101 with a retardation layer according to another embodiment.
  • Another retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically provided on the outside of the retardation layer 20 (opposite to the polarizing plate 10).
  • retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically provided in this order from the retardation layer 20 side.
  • the other retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically arbitrary layers provided as needed, and one or both of them may be omitted.
  • the retardation layer 20 may be referred to as a first retardation layer
  • another retardation layer 50 may be referred to as a second retardation layer.
  • the polarizing plate with a retardation layer is a so-called inner in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
  • FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to still another embodiment of the present invention.
  • the first retardation layer 20 is an orientation-solidifying layer of a liquid crystal compound.
  • the first retardation layer 20 may be a single layer of the orientation solidification layer as shown in FIGS. 1 and 2, and the first alignment solidification layer 21 and the second orientation solidification layer 22 as shown in FIG. It may have a laminated structure with.
  • the polarizing plate 102 with a retardation layer in FIG. 3 may be further provided with a second retardation layer 50 and / or an isotropic base material 60 with a conductive layer or a conductive layer.
  • the configuration in which the isotropic base material 60 with a conductive layer is provided on the outside of the second retardation layer 50 is replaced with an optically equivalent configuration (for example, a laminate of the second retardation layer and the conductive layer). You may.
  • the polarizing plate with a retardation layer according to the embodiment of the present invention may further include another retardation layer.
  • the optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer of the present invention may be single-wafered or elongated.
  • the term "long” means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. include.
  • the long polarizing plate with a retardation layer can be wound in a roll shape.
  • an adhesive layer (not shown) is provided on the opposite side of the polarizing plate of the retardation layer, and the polarizing plate with the retardation layer can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used. Temporary attachment of the release film protects the pressure-sensitive adhesive layer and enables roll formation.
  • the total thickness of the polarizing plate with a retardation layer is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the total thickness can be, for example, 10 ⁇ m or more.
  • the generation of cracks during heating can be suppressed.
  • Such a polarizing plate with a retardation layer can have extremely excellent flexibility and bending durability.
  • Such a polarizing plate with a retardation layer may be particularly preferably applied to a curved image display device and / or a bendable or bendable image display device.
  • the total thickness of the polarizing plate with a retardation layer is the total thickness of all the layers constituting the polarizing plate with a retardation layer, except for the pressure-sensitive adhesive layer for bringing the polarizing plate into close contact with an external adherend such as a panel or glass.
  • the total thickness (that is, the total thickness of the polarizing plate with a retardation layer is the peeling that can be temporarily attached to the pressure-sensitive adhesive layer for attaching the polarizing plate with a retardation layer to an adjacent member such as an image display cell and its surface. Does not include film thickness).
  • the unit weight of the polarizing plate with a retardation layer according to the embodiment of the present invention is, for example, 6.5 mg / cm 2 or less, preferably 2.0 mg / cm 2 to 6.0 mg / cm 2 , and more preferably 3. It is 0.0 mg / cm 2 to 5.5 mg / cm 2 , more preferably 3.5 mg / cm 2 to 5.0 mg / cm 2 .
  • the weight of the polarizing plate with a retardation layer may cause the panel to be slightly deformed, resulting in display defects. According to a polarizing plate with a retardation layer having a unit weight of 6.5 mg / cm 2 or less, such deformation of the panel can be prevented. Further, the polarizing plate with a retardation layer having the above unit weight has good handleability even when it is thinned, and can exhibit extremely excellent flexibility and bending durability.
  • the polarizing film according to one embodiment of the present invention is composed of a PVA-based resin film containing a dichroic substance, and when the single transmittance is x% and the double refraction of the PVA-based resin is y. The following equation (1) is satisfied. Further, the polarizing film according to another embodiment of the present invention is composed of a PVA-based resin film containing a dichroic substance, has a single transmittance of x%, and has an in-plane retardation of the PVA-based resin film of znm. In this case, the following equation (2) is satisfied.
  • the polarizing element satisfies the following formula (3) when the simple substance transmittance is x% and the orientation function of the polyvinyl alcohol-based resin constituting the polarizing element is f. y ⁇ -0.011x + 0.525 (1) z ⁇ -60x + 2875 (2) f ⁇ -0.018x + 1.11 (3)
  • Double refraction of PVA-based resin (hereinafter referred to as PVA double refraction or PVA ⁇ n) and in-plane phase difference of PVA-based resin film (hereinafter referred to as “PVA in-plane phase difference”) in the above-mentioned extruder.
  • PVA double refraction or PVA ⁇ n PVA double refraction
  • PVA in-plane phase difference PVA in-plane phase difference
  • a polarizing element having very excellent flexibility (as a result, a polarizing plate) can be obtained.
  • Such a polarizing element (as a result, a polarizing plate) may be applied to a preferably curved image display device, more preferably a foldable image display device, and even more preferably a foldable image display device.
  • acceptable optical characteristics typically, simple substance transmittance and degree of polarization
  • the satisfying polarizing element can achieve both a lower degree of orientation of the PVA-based resin and an acceptable optical characteristic than before.
  • the polarizing element according to the embodiment of the present invention preferably satisfies the following formulas (1a) and / or the following formulas (2a), and more preferably the following formulas (1b) and / or the following formulas (2b).
  • the polarizing element preferably satisfies the following formulas (1a) and / or the following formula (2a), and more preferably the following formulas (1b) and / or the formula (2b).
  • the in-plane retardation value of PVA is the in-plane retardation value of the PVA-based resin film at 23 ° C. and a wavelength of 1000 nm.
  • the birefringence of PVA is a value obtained by dividing the in-plane phase difference of PVA by the thickness of the polarizing element.
  • the method for evaluating the in-plane phase difference of the PVA is also described in Japanese Patent No. 5923760, and can be referred to as necessary.
  • the birefringence ( ⁇ n) of PVA can be calculated by dividing this phase difference by the thickness.
  • Examples of commercially available devices for measuring the in-plane phase difference of PVA at a wavelength of 1000 nm include KOBRA-WR / IR series and KOBRA-31X / IR series manufactured by Oji Measurement Co., Ltd.
  • the orientation function (f) of the polyvinyl alcohol-based resin constituting the polarizing element used in the present invention preferably satisfies the following formula (3a), and more preferably the following formula (3b). If the orientation function is too small, acceptable single transmittance and / or degree of polarization may not be obtained. -0.01x + 0.50 ⁇ f ⁇ -0.018x + 1.11 (3a) -0.01x + 0.57 ⁇ f ⁇ -0.018x + 1.1 (3b)
  • the orientation function (f) is determined by total internal reflection spectroscopy (ATR) measurement using, for example, a Fourier transform infrared spectrophotometer (FT-IR) and polarized light as measurement light.
  • ATR total internal reflection spectroscopy
  • germanium is used as the crystallite to which the polarizing element is brought into close contact
  • the incident angle of the measurement light is 45 °
  • the polarized infrared light (measurement light) to be incident is the surface to which the sample of the germanium crystal is brought into close contact.
  • the intensity I as a reference peak to 3330cm -1, a value of 2941cm -1 / 3330cm -1.
  • the peak of 2941 cm -1 is considered to be absorption caused by the vibration of the main chain (-CH 2-) of PVA in the polarizing element.
  • Angle of molecular chain with respect to stretching direction
  • Angle of transition dipole moment with respect to molecular chain axis
  • I ⁇ Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are perpendicular
  • I // Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are parallel
  • the thickness of the polarizing element is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the lower limit of the thickness of the transducer can be, for example, 1 ⁇ m.
  • the thickness of the polarizing element may be 2 ⁇ m to 10 ⁇ m in one embodiment and 2 ⁇ m to 8 ⁇ m in another embodiment.
  • the polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizing element is preferably 40.0% or more, more preferably 41.0% or more.
  • the upper limit of the simple substance transmittance can be, for example, 49.0%.
  • the simple substance transmittance of the polarizing element is 40.0% to 45.0% in one embodiment.
  • the degree of polarization of the polarizing element is preferably 99.0% or more, more preferably 99.4% or more.
  • the upper limit of the degree of polarization can be, for example, 99.999%.
  • the degree of polarization of the polarizing element is 99.0% to 99.99% in one embodiment.
  • the polarizing element according to the embodiment of the present invention has a lower degree of orientation of the PVA-based resin constituting the polarizing element than the conventional one and has the above-mentioned in-plane phase difference, birefringence and / or orientation function.
  • One of the features is that such a practically acceptable single-unit transmittance and degree of polarization can be realized. It is presumed that this is due to the manufacturing method described later.
  • the single transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • the degree of polarization is typically determined by the following equation based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the puncture strength of the polarizing element is, for example, 30 gf / ⁇ m or more, preferably 35 gf / ⁇ m or more, more preferably 40 gf / ⁇ m or more, still more preferably 45 gf / ⁇ m or more, and particularly preferably 50 gf / ⁇ m or more. That is all.
  • the piercing strength can be, for example, 80 gf / ⁇ m or less.
  • the piercing strength indicates the cracking resistance of the polarizing element when the polarizing element is pierced with a predetermined strength.
  • the piercing strength can be expressed as, for example, the strength (breaking strength) at which the polarizing element is cracked when a predetermined needle is attached to a compression tester and the needle is pierced into the polarizing element at a predetermined speed.
  • the piercing strength means the piercing strength per unit thickness (1 ⁇ m) of the polarizing element.
  • the polarizing element is composed of a PVA-based resin film containing a dichroic substance.
  • the PVA-based resin constituting the PVA-based resin film (substantially, a polarizing element) contains an acetoacetyl-modified PVA-based resin.
  • a polarizing element having a desired piercing strength can be obtained.
  • the blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total amount of the PVA-based resin is 100% by weight. .. When the blending amount is in such a range, the piercing strength can be in a more suitable range.
  • the decoder can typically be made using a laminate of two or more layers.
  • Specific examples of the polarizing element obtained by using the laminated body include a polarizing element obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material.
  • the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • a PVA-based resin layer is formed on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain.
  • a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching preferably further comprises stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution.
  • the total magnification of stretching is preferably 3.0 to 4.5 times, which is significantly smaller than usual. Even at the total magnification of such stretching, a stator having acceptable optical properties can be obtained by combining the addition of a halide and the drying shrinkage treatment.
  • the stretching ratio of the aerial auxiliary stretching is preferably larger than the stretching ratio of the boric acid water stretching. With such a configuration, it is possible to obtain a polarizing element having acceptable optical characteristics even if the total magnification of stretching is small.
  • the laminate is preferably subjected to a dry shrinkage treatment of shrinking by 2% or more in the width direction by heating while transporting in the longitudinal direction.
  • the method for producing a polarizing element includes subjecting a laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
  • auxiliary stretching even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved.
  • by increasing the orientation of the PVA-based resin in advance it is possible to prevent problems such as deterioration of the orientation of the PVA-based resin and dissolution when immersed in water in the subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
  • the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment.
  • the obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. The details of the method for manufacturing the polarizing film will be described later.
  • polyvinyl alcohol containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material is used.
  • PVA-based resin layer a based resin layer
  • a drying shrinkage treatment of shrinking by 1% to 10% in the width direction and a drying shrinkage treatment are performed in this order.
  • the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C.
  • the shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment is preferably 1% to 10%.
  • the polarizing element described in the above section B-1 can be obtained.
  • a stator having excellent optical properties (typically, single transmittance and degree of polarization).
  • thermoplastic resin base material and a PVA-based resin layer any appropriate method can be adopted.
  • a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
  • the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • any appropriate method can be adopted as the application method of the coating liquid.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned.
  • the coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
  • the thickness of the PVA-based resin layer is preferably 2 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 20 ⁇ m.
  • the thermoplastic resin base material Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
  • thermoplastic resin substrate any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
  • the coating liquid contains a halide and a PVA-based resin as described above.
  • the coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable.
  • the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent.
  • the content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • Additives may be added to the coating liquid.
  • the additive include a plasticizer, a surfactant and the like.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
  • any suitable resin can be adopted as the PVA-based resin.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. ..
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the PVA-based resin By using a PVA-based resin having such a degree of saponification, a polarizing element having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the PVA-based resin preferably contains an acetoacetyl-modified PVA-based resin.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • any suitable halide can be adopted.
  • iodide and sodium chloride can be mentioned.
  • Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
  • the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing element may become cloudy.
  • the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin.
  • the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease.
  • the laminate of the thermoplastic resin and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin. The tendency of the degree of orientation to decrease is remarkable.
  • stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
  • stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
  • A-PET thermoplastic resin base material
  • auxiliary stretching before stretching it in boric acid water.
  • Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
  • the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • thermoplastic resin base material in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and boric acid water stretching is selected.
  • auxiliary stretching as in the case of two-step stretching, it is possible to stretch while suppressing the crystallization of the thermoplastic resin base material.
  • the PVA-based resin when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained.
  • the stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). .. Free-end stretching can be positively adopted in order to obtain high optical properties.
  • the aerial stretching treatment includes a heating roll stretching step of stretching the laminate by the difference in peripheral speed between the heating rolls while transporting the laminated body in the longitudinal direction thereof.
  • the aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step.
  • the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first.
  • the zone stretching step may be omitted.
  • the zone stretching step and the heating roll stretching step are performed in this order.
  • the film in the tenter stretching machine, is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio).
  • the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily.
  • it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction.
  • the aerial auxiliary stretching may be performed in one step or in multiple steps. When performed in multiple stages, the draw ratio is the product of the draw ratios in each stage.
  • the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the draw ratio in the aerial auxiliary stretching is preferably 1.0 to 4.0 times, more preferably 1.5 to 3.5 times, and further preferably 2.0 to 3.0 times. be.
  • the stretching ratio of the aerial auxiliary stretching is in such a range, the total stretching ratio can be set in a desired range when combined with the underwater stretching, and a desired orientation function can be realized. As a result, it is possible to obtain a polarizing element in which breakage along the absorption axis direction is suppressed. Further, as described above, it is preferable that the stretching ratio of the aerial auxiliary stretching is larger than the stretching ratio of the boric acid water stretching. With such a configuration, it is possible to obtain a polarizing element having acceptable optical characteristics even if the total magnification of stretching is small. More specifically, the ratio of the stretching ratio of the aerial auxiliary stretching to the stretching ratio of the underwater stretching (underwater stretching / aerial auxiliary stretching) is preferably 0.4 to 0.9, more preferably 0.5 to 0. It is 8.8.
  • the stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like.
  • the stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher.
  • the upper limit of the stretching temperature is preferably 170 ° C.
  • an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment.
  • the insolubilization treatment is typically performed by immersing a PVA-based resin layer in a boric acid aqueous solution.
  • the dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine).
  • a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
  • the cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the crosslinking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (above).
  • the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched while suppressing. As a result, it is possible to manufacture a polarizing element having excellent optical characteristics.
  • any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free-end stretching is selected.
  • the stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the total stretching ratio is the product of the stretching ratios in each stage.
  • the underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching).
  • boric acid aqueous solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer.
  • boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding.
  • the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing element having excellent optical characteristics can be produced.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is.
  • the boric acid concentration is preferably 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing element having higher characteristics can be produced.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
  • iodide is added to the above stretching bath (boric acid aqueous solution).
  • the elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
  • Specific examples of iodide are as described above.
  • the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
  • the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., there is a possibility that the thermoplastic resin base material cannot be stretched satisfactorily even if the plasticization of the thermoplastic resin base material by water is taken into consideration.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics cannot be obtained.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the stretching ratio by stretching in water is preferably 1.0 to 3.0 times, more preferably 1.0 to 2.0 times, and even more preferably 1.0 to 1.5 times. ..
  • the total stretching ratio can be set in a desired range, and a desired orientation function can be realized. As a result, it is possible to obtain a polarizing element in which breakage along the absorption axis direction is suppressed.
  • the total stretching ratio (the total stretching ratio when the aerial auxiliary stretching and the underwater stretching are combined) is, for example, 3.0 to 4.5 times the original length of the laminated body. It is preferably 3.0 times to 4.0 times, and more preferably 3.0 times to 3.5 times.
  • Dry shrinkage treatment may be performed by heating the entire zone by heating the zone, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably both are used.
  • heating roll heating roll drying method
  • the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material is increased, and the PVA-based resin layer is in a state of being able to withstand shrinkage due to drying, and curling is suppressed.
  • the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
  • the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 4 is a schematic view showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material.
  • one surface of the laminate 200 (for example, thermoplasticity) is arranged.
  • the transport rolls R1 to R6 may be arranged so as to continuously heat only the resin substrate surface).
  • Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
  • the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
  • the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
  • the number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
  • a heating furnace provided with a blowing means.
  • the temperature of hot air drying is preferably 30 ° C to 100 ° C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of the hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
  • the thickness of the protective layer is 10 ⁇ m or less.
  • the thickness of the protective layer is 10 ⁇ m or less, it can contribute to the thinning of the polarizing plate.
  • the polarizing plate with a retardation layer can prevent cracks from occurring during heating even if the thickness of the protective layer is 10 ⁇ m or less.
  • the thickness of the protective layer is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the thickness of the protective layer is, for example, 1 ⁇ m or more.
  • the protective layer can be formed of any suitable material.
  • Cellulosic resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polynorbornenes, polyolefins, (meth) acrylics
  • Transparent resins such as (meth) acrylics, urethanes, (meth) acrylic urethanes, epoxys, and silicones; thermosetting resins or ultraviolet curable resins; glassy resins such as siloxane polymers Examples include polymers.
  • the protective layer may be a film, a solidified coating film, or a cured product (for example, a photocationic cured product).
  • the protective layer is a solidified epoxy of a coating film of an organic solvent solution of a thermoplastic (meth) acrylic resin (hereinafter, the (meth) acrylic resin may be simply referred to as an acrylic resin). It is composed of at least one selected from the group consisting of a photocationically cured product of a resin and a solidified coating film of an organic solvent solution of an epoxy resin.
  • a specific description will be given.
  • the protective layer is composed of the solidification of the coating film of the organic solvent solution of the thermoplastic acrylic resin.
  • the acrylic resin has a glass transition temperature (Tg) of preferably 100 ° C. or higher.
  • Tg of the protective layer becomes 100 ° C. or higher.
  • the polarizing plate including the protective layer obtained from such a resin can be excellent in durability.
  • the Tg of the acrylic resin is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher.
  • the Tg of the acrylic resin is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the acrylic resin is in such a range, the moldability can be excellent.
  • the acrylic resin any suitable acrylic resin can be adopted as long as it has Tg as described above.
  • the acrylic resin typically contains an alkyl (meth) acrylate as a main component as a monomer unit (repeating unit).
  • (meth) acrylic means acrylic and / or methacryl.
  • alkyl (meth) acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination.
  • any suitable copolymerization monomer may be introduced into the acrylic resin by copolymerization.
  • the repeating unit derived from alkyl (meth) acrylate is typically represented by the following general formula (1):
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 is a hydrogen atom or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms which may be substituted. show.
  • the substituent include halogens and hydroxyl groups.
  • alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • R 5 is preferably a
  • Acrylic resins may also include only a single alkyl (meth) acrylate units, even if R 4 and R 5 include a plurality of different alkyl (meth) acrylate unit in the above general formula (1) good.
  • the content ratio of the alkyl (meth) acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, still more preferably 60 mol% to 98 mol%, and particularly preferably. It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol%, the effects expressed from the alkyl (meth) acrylate unit (for example, high heat resistance and high transparency) may not be sufficiently exhibited. If the content ratio is more than 98 mol%, the resin is brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be inferior.
  • the acrylic resin preferably has a repeating unit containing a ring structure.
  • the repeating unit including a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit. Only one type of the repeating unit including the ring structure may be contained in the repeating unit of the acrylic resin, or two or more types may be contained.
  • the lactone ring unit is preferably represented by the following general formula (2):
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • the acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units having different R 1 , R 2 and R 3 in the above general formula (2). ..
  • An acrylic resin having a lactone ring unit is described in, for example, Japanese Patent Application Laid-Open No. 2008-181078, and the description in this publication is incorporated herein by reference.
  • the glutarimide unit is preferably represented by the following general formula (3):
  • R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 13 is an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms.
  • the cycloalkyl group of the above, or an aryl group having 6 to 10 carbon atoms is shown.
  • R 11 and R 12 are independently hydrogen or methyl groups
  • R 13 is a hydrogen, methyl group, butyl group or cyclohexyl group, respectively. More preferably, R 11 is a methyl group, R 12 is a hydrogen, and R 13 is a methyl group.
  • the acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the above general formula (3). ..
  • Examples of the acrylic resin having a glutarimide unit include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Application Laid-Open No. 2006-337493 and Japanese Patent Application Laid-Open No. 2006-337569, and the description of this publication is incorporated herein by reference. Note that the glutaric anhydride units, nitrogen atom substituted by R 13 in the general formula (3), except that the oxygen atom, the above description is applied about the glutarimide units.
  • the structure of the maleic anhydride unit and the maleimide (N-substituted maleimide) unit is specified from the name, so specific description thereof will be omitted.
  • the content ratio of the repeating unit including the ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too small, Tg may be less than 100 ° C., and the heat resistance, solvent resistance and surface hardness of the obtained protective layer may be insufficient. If the content is too high, moldability and transparency may be insufficient.
  • the acrylic resin may contain a repeating unit other than an alkyl (meth) acrylate unit and a repeating unit including a ring structure.
  • a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit).
  • other vinyl-based monomers include acrylic acid, methacrylic acid, crotonic acid, 2- (hydroxymethyl) acrylic acid, 2- (hydroxyethyl) acrylic acid, acrylonitrile, methacrylonitrile, etacrylonitrile, and allyl.
  • Glycidyl ether maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Cyclohexylaminoethyl acid, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, ⁇ -methylstyrene, p-glycidylstyrene, p-a
  • the weight average molecular weight of the acrylic resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, still more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000.
  • the weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
  • the acrylic resin can be polymerized by any suitable polymerization method by appropriately combining the above-mentioned monomer units.
  • an acrylic resin and another resin may be used in combination. That is, the monomer component constituting the acrylic resin and the monomer component constituting the other resin may be copolymerized, and the copolymer may be used for molding the protective layer described later; the acrylic resin and the other resin.
  • the blend of may be used for forming the protective layer.
  • other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide.
  • the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film.
  • a styrene resin preferably an acrylonitrile-styrene copolymer
  • a retardation control agent preferably an acrylonitrile-styrene copolymer
  • the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. By weight%, more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
  • the protective layer is composed of a photocationic cured product of epoxy resin.
  • the composition for forming the protective layer contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator is a photosensitizer having a function of a photoacid generator, and a typical example thereof is an ionic onium salt composed of a cation portion and an anion portion.
  • the cation part absorbs light and the anion part becomes a source of acid. Ring-opening polymerization of the epoxy group proceeds by the acid generated from this photocationic polymerization initiator.
  • the protective layer which is the obtained cured photocationic product, has a high glass transition temperature, and the amount of iodine adsorbed can be reduced. Therefore, it is possible to provide a polarizing plate capable of achieving both excellent durability and excellent flexibility.
  • Epoxy resin As the epoxy resin, any suitable epoxy resin can be used. In the embodiment of the present invention, an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton can be preferably used. Examples of the aromatic skeleton include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. An epoxy resin having a biphenyl skeleton is preferably used as the aromatic skeleton. By using an epoxy resin having a biphenyl skeleton, a polarizing plate having both better durability and better flexibility can be provided.
  • an epoxy resin having a biphenyl skeleton will be described in detail.
  • the epoxy resin having a biphenyl skeleton is an epoxy resin containing the following structure. Only one type of epoxy resin having a biphenyl skeleton may be used, or two or more types may be used in combination.
  • R 14 to R 21 each independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element).
  • R 14 to R 21 independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element.
  • Examples of the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a sec-butyl group.
  • n-pentyl group isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, phenyl group, benzyl group, Examples thereof include a methylbenzyl group, a dimethylbenzyl group, a trimethylbenzyl group, a naphthylmethyl group, a pheneth
  • the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 1 to 12 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group.
  • the alkyl group of 4 is mentioned.
  • Preferred halogen elements include fluorine and bromine.
  • the epoxy resin having a biphenyl skeleton is an epoxy resin represented by the following formula. (In the equation, R 14 to R 21 are as described above, and n represents an integer of 0 to 6).
  • the epoxy resin having a biphenyl skeleton is an epoxy resin having only a biphenyl skeleton.
  • the epoxy resin having a biphenyl skeleton may contain a chemical structure other than the biphenyl skeleton.
  • the chemical structure other than the biphenyl skeleton include a bisphenol skeleton, an alicyclic structure, an aromatic ring structure and the like.
  • the proportion (molar ratio) of the chemical structure other than the biphenyl skeleton is preferably smaller than that of the biphenyl skeleton.
  • a commercially available product may be used as the epoxy resin having a biphenyl skeleton.
  • Examples of commercially available products include Mitsubishi Chemical Corporation, trade names: jER YX4000, jER YX4000H, jER YL6121, jER YL664, jER YL6677, jER YL6810, jER YL7399 and the like.
  • the epoxy resin having a biphenyl skeleton preferably has a glass transition temperature (Tg) of 90 ° C. or higher.
  • Tg glass transition temperature
  • the Tg of the epoxy resin having a biphenyl skeleton is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher.
  • the Tg of the epoxy resin having a biphenyl skeleton is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower.
  • the moldability can be excellent.
  • the epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 100 g / equivalent or more, more preferably 150 g / equivalent or more, still more preferably 200 g / equivalent or more.
  • the epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 3000 g / equivalent or less, more preferably 2500 g / equivalent or less, still more preferably 2000 g / equivalent or less.
  • an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton may be used in combination with another resin. That is, a blend of an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton and another resin may be used for molding the protective layer.
  • thermoplastic resins such as styrene resins, polyethylenes, polypropylenes, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, polyphenylene oxides, polyacetals, polyimides, and polyetherimides
  • acrylic resins examples include curable resins such as oxetane resins.
  • an acrylic resin and an oxetane resin are used.
  • the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film.
  • the styrene resin can be used in combination as a retardation control agent.
  • any suitable acrylic resin can be used.
  • the (meth) acrylic compound for example, a (meth) acrylic compound having one (meth) acryloyl group in the molecule (hereinafter, also referred to as “monofunctional (meth) acrylic compound”), intramolecular.
  • examples thereof include (meth) acrylic compounds having two or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylic compounds”).
  • These (meth) acrylic compounds may be used alone or in combination of two or more.
  • These acrylic resins are described in, for example, Japanese Patent Application Laid-Open No. 2019-168500. The entire description of the publication is incorporated herein by reference.
  • any suitable compound having one or more oxetanyl groups in the molecule is used.
  • Oxetane compound having one oxetane group in the molecule such as oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl; 3-ethyl- 3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 4,4'-bis [(3-ethyl) -3-Oxetane) methoxymethyl]
  • An oxetane compound having two or more oxetane groups in a molecule such as biphenyl; and the like. Only one kind of these oxetane resins may be used, or two or more kinds thereof may be combined.
  • the oxetane resin is preferably 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl).
  • Oxetane, 3-Ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) Methyl] methyl ⁇ oxetane and the like are used.
  • These oxetane resins are easily available and can be excellent in dilutability (low viscosity) and compatibility.
  • an oxetane resin having a molecular weight of 500 or less and liquid at room temperature (25 ° C.) is preferably used from the viewpoint of compatibility and adhesiveness. In one embodiment, it preferably contains an oxetane compound containing two or more oxetanel groups in the molecule, one oxetaneyl group and one (meth) acryloyl group or one epoxy group in the molecule.
  • Oxetane compounds are used, more preferably 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic. Acid (3-ethyloxetane-3-yl) methyl is used.
  • oxetane resin a commercially available product may be used. Specifically, Aron Oxetane OXT-101, Aron Oxetane OXT-121, Aron Oxetane OXT-212, and Aron Oxetane OXT-221 (all manufactured by Toagosei Co., Ltd.) can be used. Preferably, Aron Oxetane OXT-101 and Aron Oxetane OXT-221 can be used.
  • an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton is used in combination with another resin
  • the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton is used.
  • the content of the epoxy resin having at least one selected from the group consisting of the aromatic skeleton and the hydrogenated aromatic skeleton in the blend of the epoxy resin having at least one selected and the other resin is preferable. It is 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight, still more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizing element may not be obtained.
  • the content of the oxetane resin is preferably 1 part by weight to 50 parts by weight with respect to the total amount of 100 parts by weight of the epoxy resin having a biphenyl skeleton and the oxetane resin. , More preferably 5 parts by weight to 45 parts by weight, still more preferably 10 parts by weight to 40 parts by weight. Within the above range, the curability can be improved and the adhesion between the protective layer and the polarizing element can be improved.
  • the photocationic polymerization initiator is a photosensitive agent having a function of a photoacid generator, and a typical example thereof is an ionic onium salt composed of a cation portion and an anion portion. In this onium salt, the cation part absorbs light and the anion part becomes a source of acid. Ring-opening polymerization of the epoxy group proceeds by the acid generated from this photocationic polymerization initiator.
  • any suitable compound capable of curing an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton by irradiation with light such as ultraviolet rays. Can be used. Only one type of photocationic polymerization initiator may be used, or two or more types may be used in combination.
  • photocationic polymerization initiator examples include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, and the like.
  • a triphenylsulfonium salt-based hexafluoroantimonate type photocationic polymerization initiator and a diphenyliodonium salt-based hexafluoroantimonate type photocationic polymerization initiator are used.
  • a commercially available product may be used as the photocationic polymerization initiator.
  • Commercially available products include triphenylsulfonium salt-based hexafluoroantimonate type SP-170 (manufactured by ADEKA), CPI-101A (manufactured by San-Apro), WPAG-1056 (manufactured by Wako Pure Chemical Industries, Ltd.), and diphenyliodonium salt-based.
  • Hexafluoroantimonate type WPI-116 manufactured by Wako Pure Chemical Industries, Ltd.
  • WPI-116 manufactured by Wako Pure Chemical Industries, Ltd.
  • the content of the photocationic polymerization initiator is preferably from 0.1 part by weight with respect to 100 parts by weight of the epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton. It is 3 parts by weight, more preferably 0.25 parts by weight to 2 parts by weight. When the content of the photocationic polymerization initiator is less than 0.1 parts by weight, it may not be sufficiently cured even when irradiated with light (ultraviolet rays).
  • the protective layer is composed of the solidification of the coating film of the organic solvent solution of the epoxy resin.
  • the epoxy resin preferably has a glass transition temperature (Tg) of 90 ° C. or higher.
  • Tg glass transition temperature
  • the Tg of the protective layer becomes 90 ° C. or higher.
  • the Tg of the epoxy resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher.
  • the Tg of the epoxy resin is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower.
  • the Tg of the epoxy resin is in such a range, the moldability can be excellent.
  • the epoxy resin any suitable epoxy resin can be adopted as long as it has Tg as described above.
  • the epoxy resin typically refers to a resin having an epoxy group in its molecular structure.
  • an epoxy resin having an aromatic ring in the molecular structure is preferably used.
  • an epoxy resin having a higher Tg can be obtained.
  • the aromatic ring in the epoxy resin having an aromatic ring in the molecular structure include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. When two or more kinds of epoxy resins are used, an epoxy resin containing an aromatic ring and an epoxy resin not containing an aromatic ring may be used in combination.
  • epoxy resin having an aromatic ring in its molecular structure examples include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, and resorcin diglycidyl ether.
  • Type epoxy resin hydroquinone diglycidyl ether type epoxy resin, terephthalic acid diglycidyl ester type epoxy resin, bisphenoxyethanol full orange glycidyl ether type epoxy resin, bisphenol full orange glycidyl ether type epoxy resin, biscresol full orange glycidyl ether type epoxy resin, etc.
  • Epoxy resin having two epoxy groups novolak type epoxy resin, N, N, O-triglycidyl-P- or -m-aminophenol type epoxy resin, N, N, O-triglycidyl-4-amino-m -Or-5-Amino-o-cresol type epoxy resin, 1,1,1- (triglycidyloxyphenyl) methane type epoxy resin and other epoxy resins with three epoxy groups; glycidylamine type epoxy resin (eg, diamino) Examples thereof include epoxy resins having four epoxy groups such as diphenylmethane type, diaminodiphenylsulfone type, and metaxylene diamine type).
  • a glycidyl ester type epoxy resin such as a hexahydrophthalic anhydride type epoxy resin, a tetrahydrophthalic anhydride type epoxy resin, a dimer acid type epoxy resin, and a p-oxybenzoic acid type may be used.
  • the weight average molecular weight of the epoxy resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, still more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000.
  • the weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
  • the epoxy equivalent of the epoxy resin is preferably 1000 g / equivalent or more, more preferably 3000 g / equivalent or more, and further preferably 5000 g / equivalent or more.
  • the epoxy equivalent of the epoxy resin is preferably 30,000 g / equivalent or less, more preferably 25,000 g / equivalent or less, and further preferably 20,000 g / equivalent or less. When the epoxy equivalent is in the above range, a more stable protective layer can be obtained.
  • epoxy equivalent means "mass of epoxy resin containing 1 equivalent of epoxy group” and can be measured according to JIS K7236.
  • the epoxy resin and another resin may be used in combination. That is, a blend of the epoxy resin and another resin may be used for molding the protective layer.
  • other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide.
  • the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film.
  • the styrene resin can be used in combination as a retardation control agent.
  • the content of the epoxy resin in the blend of the epoxy resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. It is more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizing element may not be obtained.
  • the protective layer is a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, a photocationic cured product of an epoxy resin, and an organic solvent solution of an epoxy resin, as described above. It is composed of at least one selected from the group consisting of solidified coating films.
  • the thickness can be significantly reduced as compared with the extruded film.
  • the thickness of the protective layer is 10 ⁇ m or less as described above. Further, although it is not theoretically clear, such a protective layer shrinks during film molding as compared with a cured product of other thermosetting resin or active energy ray curable resin (for example, ultraviolet curable resin).
  • the Tg of the protective layer is as described for the acrylic resin and the epoxy resin, respectively.
  • the protective layer is preferably substantially optically isotropic.
  • substantially optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 20 nm to +10 nm. Say something.
  • the in-plane retardation Re (550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm.
  • the phase difference Rth (550) in the thickness direction is more preferably ⁇ 5 nm to +5 nm, further preferably -3 nm to +3 nm, and particularly preferably ⁇ 2 nm to +2 nm.
  • Re (550) and Rth (550) of the protective layer are in such a range, it is possible to prevent adverse effects on the display characteristics when the polarizing plate containing the protective layer is applied to an image display device.
  • Rth (550) is a phase difference in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction)
  • ny is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction).
  • nz is the refractive index in the thickness direction
  • d is the thickness (nm) of the film.
  • the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. If the light transmittance is in such a range, the desired transparency can be ensured.
  • the light transmittance can be measured, for example, by a method according to ASTM-D-1003.
  • the haze of the protective layer is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less.
  • the haze is 5% or less, a good clear feeling can be given to the film. Further, even when the polarizing plate on the visual recognition side of the image display device is used, the displayed contents can be visually recognized satisfactorily.
  • the YI at a thickness of 3 ⁇ m of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient.
  • the b value (a measure of hue according to the Munsell color system of the hunter) at a thickness of 3 ⁇ m of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear.
  • a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
  • the protective layer may contain any suitable additive depending on the purpose.
  • the additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like.
  • the additive may be added at the time of polymerizing the acrylic resin, or may be
  • An easy-adhesion layer may be formed on the polarizing element side of the protective layer.
  • the easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizing element can be enhanced.
  • a hard coat layer may be formed on the protective layer. When the hard coat layer is formed, the hard coat layer can be formed so that the total thickness of the protective layer (for example, the solidified coating film) and the thickness of the hard coat layer is 10 ⁇ m or less.
  • the hardcourt layer can be formed when the protective layer is used as a protective layer on the visible side of the polarizing plate on the visible side. If both the easy-adhesion layer and the hardcourt layer are formed, typically they can be formed on different sides of the protective layer, respectively.
  • the first phase difference layer 20 is an orientation-solidified layer of a liquid crystal compound as described above.
  • a liquid crystal compound By using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be significantly increased as compared with the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller. As a result, it is possible to further reduce the thickness and weight of the polarizing plate with a retardation layer.
  • the term "aligned solidified layer” refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed.
  • the "oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later.
  • the rod-shaped liquid crystal compound is typically oriented in a state of being aligned in the slow axis direction of the first retardation layer (homogeneous orientation).
  • the liquid crystal compound examples include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed.
  • the polymer is formed by polymerization, and the three-dimensional network structure is formed by crosslinking, but these are non-liquid crystal.
  • the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example.
  • the first retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystal properties differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and even more preferably 60 ° C. to 90 ° C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in Special Tables 2002-533742 WO00 / 37585
  • EP358208 US5211877
  • EP66137 US43884553
  • WO93 / 22397 EP0261712, DE19504224, DE4408171, and GB2280445
  • Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the surface of a predetermined base material is subjected to an orientation treatment, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state.
  • the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizing plate 10.
  • the substrate may be the second protective layer 13. In this case, the transfer step is omitted, and the stacking can be continuously performed by roll-to-roll from the formation of the oriented solidification layer (first retardation layer), so that the productivity is further improved.
  • any appropriate orientation treatment can be adopted.
  • Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment.
  • Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • Specific examples of the chemical alignment treatment include an orthorhombic vapor deposition method and a photoalignment treatment.
  • As the treatment conditions for various orientation treatments any appropriate conditions may be adopted depending on the purpose.
  • the orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the substrate.
  • the alignment state is fixed by cooling the liquid crystal compound oriented as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the oriented solidified layer are described in Japanese Patent Application Laid-Open No. 2006-163343. The description of this publication is incorporated herein by reference.
  • the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation.
  • the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the first retardation layer.
  • the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °.
  • a discotic liquid crystal compound generally has a cyclic mother nucleus such as benzene, 1,3,5-triazine, or calixarene at the center of a molecule, and has a linear alkyl group, an alkoxy group, or a substituted benzoyl.
  • the first retardation layer 20 is a single layer of the oriented solidification layer of the liquid crystal compound as shown in FIGS. 1 and 2.
  • the thickness thereof is preferably 0.5 ⁇ m to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and functions as a ⁇ / 4 plate when the first retardation layer is a single layer of an oriented solidification layer.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 130 nm to 160 nm.
  • the Nz coefficient of the first retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
  • the first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, and may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measured light.
  • the first retardation layer exhibits reverse dispersion wavelength characteristics.
  • Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
  • the angle ⁇ formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing element 11 is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about. It is 45 °. If the angle ⁇ is in such a range, by using the ⁇ / 4 plate as the first retardation layer as described above, very excellent circularly polarized light characteristics (as a result, very excellent antireflection characteristics). A polarizing plate with a retardation layer can be obtained.
  • the first retardation layer 20 may have a laminated structure of the first alignment solidification layer 21 and the second alignment solidification layer 22 as shown in FIG.
  • either one of the first oriented solidifying layer 21 and the second oriented solidifying layer 22 may function as a ⁇ / 4 plate, and the other may function as a ⁇ / 2 plate. Therefore, the thicknesses of the first oriented solidifying layer 21 and the second oriented solidifying layer 22 can be adjusted so as to obtain the desired in-plane phase difference of the ⁇ / 4 plate or the ⁇ / 2 plate.
  • the thickness of the first oriented solidified layer 21 is, for example, 2.0 ⁇ m or more. It is 3.0 ⁇ m, and the thickness of the second oriented solidification layer 22 is, for example, 1.0 ⁇ m to 2.0 ⁇ m.
  • the in-plane retardation Re (550) of the first oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm.
  • the in-plane retardation Re (550) of the second oriented solidified layer is as described above with respect to the single oriented solidified layer.
  • the angle formed by the slow axis of the first oriented solidification layer and the absorption axis of the polarizing element is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, still more preferably about 15 °. be.
  • the angle formed by the slow axis of the second oriented solidification layer and the absorption axis of the polarizing element is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. be.
  • liquid crystal compounds constituting the first oriented solidified layer and the second oriented solidified layer, the method for forming the first oriented solidified layer and the second oriented solidified layer, the optical properties, and the like are described above with respect to the single oriented solidified layer. As explained in.
  • the retardation Rth (550) in the thickness direction of the second retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, and particularly preferably. It is -100 nm to -180 nm.
  • the second retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and even more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the conductive layer is an arbitrary suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it.
  • suitable film forming method for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the thickness of the conductive layer is preferably 10 nm or more.
  • the conductive layer is transferred from the base material to the first retardation layer (or the second retardation layer if present) and the conductive layer alone is used as a constituent layer of the polarizing plate with the retardation layer. Often, it may be laminated on the first retardation layer (or the second retardation layer if present) as a laminate with the substrate (base material with a conductive layer).
  • the substrate is optically isotropic, and therefore the conductive layer can be used as an isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
  • any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material).
  • the material constituting the isotropic base material for example, a material having a resin having no conjugate system such as a norbornene resin or an olefin resin as a main skeleton, or an acrylic resin having a cyclic structure such as a lactone ring or a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic substrate is formed, the expression of the phase difference due to the orientation of the molecular chains can be suppressed to be small.
  • the thickness of the isotropic substrate is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the thickness of the isotropic substrate is, for example, 20 ⁇ m or more.
  • the conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive part and an insulating part can be formed. As a result, electrodes can be formed.
  • the electrode can function as a touch sensor electrode that senses contact with the touch panel.
  • any suitable method may be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • the polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer.
  • Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device).
  • the image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to E on the visual recognition side thereof.
  • the polarizing plate with a retardation layer is laminated so that the retardation layer is on the image display cell side (for example, a liquid crystal cell, an organic EL cell, an inorganic EL cell) (so that the polarizing element is on the visual recognition side).
  • the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
  • Example 1 Preparation of A Polarizer
  • a thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used.
  • One side of the resin base material was subjected to corona treatment (treatment conditions: 55 W ⁇ min / m 2 ).
  • PVA-based resin 100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410" are mixed at a ratio of 9: 1. 13 parts by weight of potassium iodide was added to the part to prepare a PVA aqueous solution (coating liquid). The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13.5 ⁇ m, and a laminate was prepared.
  • the obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • a dyeing bath having a liquid temperature of 30 ° C. an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water
  • underwater stretching treatment the stretching ratio in the underwater stretching treatment was 1.25 times.
  • the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
  • cleaning treatment while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment).
  • the shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment was 2%. In this way, a polarizing element having a thickness of 7.4 ⁇ m was formed on the resin substrate.
  • a water-based polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name: Superflex 210-R) is dissolved in a mixed solvent of pure water and isopropyl alcohol, and the obtained solution is the resin obtained above. It was applied to the surface of the polarizing element formed on the substrate. Then, it was dried at 60 ° C. to remove the solvent, and an easy-adhesion layer having a thickness of 0.15 ⁇ m was formed.
  • the obtained coating liquid was applied onto the protective layer so that the thickness after curing was 3 ⁇ m.
  • the solvent was dried, and a hard coat layer was formed by irradiating with an ultraviolet ray under a nitrogen atmosphere so that the integrated light amount was 300 mJ / cm 2 using a high-pressure mercury lamp.
  • the thickness of the hard coat layer was 3 ⁇ m.
  • the pressure-sensitive adhesive layer of the polyethylene terephthalate (PET) film with a pressure-sensitive adhesive layer was bonded to the protective layer and reinforced.
  • the resin base material is peeled off to obtain a polarizing plate having a structure of PET film with adhesive layer / protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy-adhesive layer / polarizing element. Obtained.
  • the surface of a polyethylene terephthalate (PET) film was rubbed with a rubbing cloth and subjected to an orientation treatment.
  • the direction of the alignment treatment was set to be 15 ° when viewed from the visual recognition side with respect to the direction of the absorption axis of the polarizing element when the polarizing plate was attached.
  • the liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 100 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film.
  • the PET film with the pressure-sensitive adhesive layer was peeled off.
  • the protective layer hard coat layer / acrylic resin layer (solidified coating film)
  • easy-adhesive layer / polarizing element / adhesive layer / retardation layer first oriented solidified layer / adhesive layer / first A polarizing plate with a retardation layer having the structure of 2 oriented solidified layers
  • the total thickness of the obtained polarizing plate with a retardation layer was 19 ⁇ m.
  • Protective layer hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used.
  • a polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 19 ⁇ m.
  • a polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 18 ⁇ m.
  • Example 9 Except for the fact that instead of the acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Kasei Co., Ltd., trade name: B728), an acrylic resin (lactone ring unit 30 mol%) which is a polymethyl methacrylate having a lactone ring unit was used. A polarizing plate with a retardation layer was obtained in the same manner as in Example 7. The total thickness of the obtained polarizing plate with a retardation layer was 18 ⁇ m.
  • Example 10 instead of the acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Kasei Co., Ltd., trade name: B728), an acrylic resin (glutarimide ring unit 4 mol%) which is a polymethyl methacrylate having a glutarimide ring unit was used.
  • a polarizing plate with a retardation layer was obtained in the same manner as in Example 9 except for the above. The total thickness of the obtained polarizing plate with a retardation layer was 18 ⁇ m.
  • Example 11 In Example 9, instead of the acrylic resin solution, 20 parts of an epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX6954BH30, weight average molecular weight: 36000, epoxy equivalent: 13000) was added to 80 parts of methyl ethyl ketone. The dissolved epoxy resin solution (20%) was used to form a protective layer composed of a solidified coating film. Specifically, this epoxy resin solution was applied to the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 3 minutes to form a protective layer. The thickness of the protective layer was 3 ⁇ m, and the Tg was 130 ° C.
  • an epoxy resin manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX6954BH30, weight average molecular weight: 36000, epoxy equivalent: 13000
  • the dissolved epoxy resin solution (20%) was used to form a protective layer composed of a solidified coating
  • Example 9 With a retardation layer in the same manner as in Example 9, except that the protective layer was formed, the easily adhesive layer was not formed on the polarizing element, and the hard coat layer was not formed. A polarizing plate 7 was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • Example 12 Polarized light with a retardation layer in the same manner as in Example 7 except that the protective layer was formed as follows, the easily adhesive layer was not formed on the polarizing element, and the hard coat layer was not formed. I got a board. The total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • An epoxy resin solution was obtained by dissolving 15 parts of an epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX4000) in 83.8 parts of methyl ethyl ketone.
  • a photocationic polymerization initiator manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P
  • the obtained protective layer forming composition was applied to the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 3 minutes. Then, using a high-pressure mercury lamp, ultraviolet rays were irradiated so that the integrated light amount was 600 mJ / cm 2, and a protective layer was formed. The thickness of the protective layer was 3 ⁇ m.
  • Example 13 A polarizing plate with a retardation layer is used in the same manner as in Example 12 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER® 828) is used instead of the epoxy resin having a biphenyl skeleton. Got The total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • Example 14 Polarizing with a retardation layer in the same manner as in Example 12 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. I got a board. The total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • a hydrogenated bisphenol type epoxy resin manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000
  • Example 15 15 parts of hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX8000) and 10 parts by weight of oxetane resin (manufactured by Toa Synthetic Co., Ltd., trade name: Aron Oxetane (registered trademark) OXT-221) , was dissolved in 73 parts of methyl ethyl ketone to obtain an epoxy resin solution.
  • a photocationic polymerization initiator manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P
  • a polarizing plate with a retardation layer was obtained in the same manner as in Example 12 except that the obtained protective layer forming composition was used.
  • the total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • Example 16 A polarizing plate with a retardation layer was obtained in the same manner as in Example 15 except that the thickness of the protective layer was 8 ⁇ m.
  • Example 17 A polarizing plate with a retardation layer was obtained in the same manner as in Example 15 except that the thickness of the protective layer was 10 ⁇ m.
  • Example 18 A protective layer (cured product) was formed in the same manner as in Example 12 except that an ultraviolet curable epoxy resin (manufactured by Daicel Corporation, product name “Selokiside 2021P”) was used. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro) is applied onto the easy-adhesion layer, and a high-pressure mercury lamp is applied under an air atmosphere. The cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 500 mJ / cm 2. A polarizing plate with a retardation layer was produced in the same manner as in Example 7 except that this protective layer was used. The thickness of the polarizing plate was 16 ⁇ m.
  • a polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 18 ⁇ m.
  • a polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 17.0 ⁇ m.
  • a polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 16 ⁇ m.
  • Example 5 The thickness was 5. A 5 ⁇ m polarizing element was obtained. A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that an acrylic resin film having a thickness of 40 ⁇ m was laminated on the surface of the obtained polarizing element via an ultraviolet curable adhesive to form a protective layer. The total thickness of the obtained polarizing plate with a retardation layer was 53 ⁇ m.
  • Comparative Example 6 A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that an acrylic film having a thickness of 20 ⁇ m was used as the protective layer. The total thickness of the obtained polarizing plate with a retardation layer was 33 ⁇ m.
  • Comparative Example 7 A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 11. The total thickness of the obtained polarizing plate with a retardation layer was 15 ⁇ m.
  • Comparative Example 8 A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 12. The total thickness of the obtained polarizing plate with a retardation layer was 15 ⁇ m.
  • Comparative Example 9 A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 15. The total thickness of the obtained polarizing plate with a retardation layer was 15 ⁇ m.
  • the following evaluations were performed using the polarizing plates with a retardation layer obtained in Examples and Comparative Examples. The results are shown in Table 1.
  • the thickness of the polarizing element was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
  • the calculated wavelength range used for the thickness calculation was 400 nm to 500 nm, and the refractive index was 1.53.
  • the thickness of the protective layer was measured by using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000"), and the calculated wavelength range and refractive index were appropriately selected and measured.
  • the thickness of the easy-adhesion layer was determined by observation with a scanning electron microscope (SEM). The thickness exceeding 110 ⁇ m was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
  • SEM scanning electron microscope
  • the thickness exceeding 110 ⁇ m was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
  • KC-351C digital micrometer
  • KOBRA-31X100 / IR was used to evaluate the in-plane phase difference (Rpva) of PVA at a wavelength of 1000 nm (according to the explained principle, from the total in-plane phase difference at a wavelength of 1000 nm, the in-plane phase difference of iodine. (Ri) is subtracted).
  • the absorption edge wavelength was set to 600 nm.
  • Birefringence of PVA ( ⁇ n) The birefringence ( ⁇ n) of PVA was calculated by dividing the in-plane phase difference of PVA measured in (2) above by the thickness of the substituent.
  • the spectroscopes used in the examples and comparative examples are polarized infrared rays using a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name: "Frontier”). Using light as the measurement light, total reflection spectroscopy (ATR) measurement on the surface of the extruder was performed. Germanium was used as the crystallite to which the polarizing element was brought into close contact, and the incident angle of the measured light was 45 °. The orientation function was calculated according to the following procedure.
  • FT-IR Fourier transform infrared spectrophotometer
  • the incident polarized infrared light is polarized light (s-polarized light) that vibrates parallel to the surface to which the germanium crystal sample is in close contact, and the extension direction of the substituent is perpendicular to the polarization direction of the measurement light (measurement light).
  • and the absorption spectra of each were measured in parallel (//). From the obtained absorbance spectrum was calculated and a reference to (3330cm -1 intensity) (2941cm -1 intensity) I.
  • I ⁇ is a stretching direction of the polarizer perpendicular to the polarization direction of the measuring light ( ⁇ ) obtained from the resulting absorbance spectrum when placed (2941cm -1 intensity) / (3330cm -1 strength).
  • I // is obtained from the absorbance spectrum obtained when the stretching direction of the splitter is arranged parallel (//) with respect to the polarization direction of the measurement light (2941 cm -1 intensity) / (3330 cm -1 intensity).
  • (2941cm -1 strength) is the bottom of the absorption spectrum, the absorbance of 2941cm -1 when the 2770Cm -1 and 2990cm -1 were the baseline, (3330cm -1 strength), 2990Cm - 1 and 3650 cm -1 which is the absorbance of 3330cm -1 when the baseline.
  • the peak of 2941 cm -1 is said to be absorption caused by vibration of the main chain (-CH 2-) of PVA in the polarizing element.
  • the peak of 3330 cm -1 is said to be absorbed due to the vibration of the hydroxyl group of PVA.
  • the cut-out polarizing plate with a retardation layer was attached to a glass plate (thickness 1.1 mm) via an acrylic pressure-sensitive adhesive layer having a thickness of 20 ⁇ m. After the sample attached to the glass plate was placed in an oven at 100 degrees for 120 hours, the presence or absence of cracks in the absorption axis direction (MD direction) of the polarizing element was visually confirmed. This evaluation was performed using three polarizing plates with a retardation layer, and the number of polarizing plates with a retardation layer in which cracks were generated was evaluated. (6) Bending resistance The polarizing plates with a retardation layer obtained in Examples and Comparative Examples were cut out to a size of 50 mm ⁇ 100 mm.
  • the polarizing element was cut out so that the absorption axis direction was the long side direction.
  • a bending tester manufactured by Yuasa System Co., Ltd., product name: DLDM111LH
  • the cut polarizing plate with a retardation layer was subjected to a bending test at room temperature. Specifically, the polarizing plate with a retardation layer is placed at a rotation speed of 60 rpm in the absorption axis direction so that the retardation layer side is on the inside and the protective layer or the hard coat layer formed on the protective layer is on the outside.
  • the bending diameter was set to 1 mm ⁇ (R is 0.5 mm), and the polarizing plate with a retardation layer was bent 50,000 times.
  • the bending direction is the transmission axis direction of the polarizing element.
  • the single-unit transmittance Ts measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V-7100") for the polarizing elements used in Examples and Comparative Examples.
  • the parallel transmittance Tp and the orthogonal transmittance Tc were defined as Ts, Tp and Tc of the spectrometers, respectively.
  • NDG5 needle Puncture strength
  • the breaking strength As the evaluation value, the breaking strength of 10 sample pieces was measured, and the average value thereof was used.
  • the needle used had a tip diameter of 1 mm ⁇ and 0.5R.
  • the polarizing element to be measured was fixed by sandwiching a jig having a circular opening having a diameter of about 11 mm from both sides of the polarizing element, and a needle was pierced into the center of the opening to perform a test.
  • the polarizing plates with retardation layers of Examples 1 to 26 suppressed the generation of cracks even when they were subjected to heat treatment. In addition, it was also excellent in durability at the time of bending.
  • the polarizing plate with a retardation layer of the present invention is suitably used for an image display device.
  • Polarizing plate 11 Polarizer 12
  • First protective layer 13 Second protective layer 20
  • Phase difference layer 100 Polarizing plate with retardation layer 101
  • Polarizing plate with retardation layer 102 Polarizing plate with retardation layer 102

Abstract

Provided is a retardation-layer-equipped polarizing plate in which the occurrence of cracking during heating is suppressed. The retardation-layer-equipped polarizing plate according to the present invention comprises: a polarizing plate including a polarizer made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on one side of the polarizer; and a retardation layer. This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of the protective layer is 10 μm or less. In one embodiment, the following equation (1) is satisfied when the single transmittance of the polarizer is x% and the birefringence of the polyvinyl alcohol-based resin is y. In one embodiment, the following equation (2) is satisfied when the single transmittance of the polarizer is x% and the in-plane phase difference of the polyvinyl alcohol-based resin film is z nm. In one embodiment, the following equation (3) is satisfied when the single transmittance of the polarizer is x% and the orientation function of the polyvinyl alcohol-based resin is f. y < -0.011x + 0.525 (1) z < -60x + 2875 (2) f < -0.018x + 1.11 (3)

Description

位相差層付偏光板、および、それを用いた画像表示装置A polarizing plate with a retardation layer and an image display device using it.
 本発明は、位相差層付偏光板、および、それを用いた画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。最近、画像表示装置の薄型化への要望が高まるのに伴い、位相差層付偏光板についても薄型化の要望が高まっている。また、近年、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に対する要望が高まっている。そのため、偏光板および位相差層付偏光板についても、さらなる薄型化およびさらなる柔軟化が求められている。 In recent years, image display devices represented by liquid crystal displays and electroluminescence (EL) display devices (for example, organic EL display devices and inorganic EL display devices) have rapidly become widespread. A polarizing plate and a retardation plate are typically used in an image display device. Practically, a polarizing plate with a retardation layer in which a polarizing plate and a retardation plate are integrated is widely used (for example, Patent Document 1). Recently, as the demand for thinner image display devices has increased, the demand for thinner polarizing plates with retardation layers has also increased. Further, in recent years, there has been an increasing demand for a curved image display device and / or a bendable or bendable image display device. Therefore, the polarizing plate and the polarizing plate with a retardation layer are also required to be thinner and more flexible.
 偏光板を薄型化する方法として、保護層の厚みを薄くすること、および、偏光子の片側のみに保護層を積層することが提案されている。しかしながら、これらの方法では偏光子を十分に保護することができず、耐久性に改善の余地がある。さらに、加熱処理により偏光子だけではなく、偏光板にもクラックが生じやすくなるという問題がある。 As a method of thinning the polarizing plate, it has been proposed to reduce the thickness of the protective layer and to laminate the protective layer only on one side of the polarizing element. However, these methods cannot sufficiently protect the polarizing element, and there is room for improvement in durability. Further, there is a problem that cracks are likely to occur not only in the polarizing element but also in the polarizing plate due to the heat treatment.
特開2001-343521号公報Japanese Unexamined Patent Publication No. 2001-343521
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、加熱時のクラック発生が抑制された位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer in which crack generation during heating is suppressed.
 本発明の実施形態による位相差層付偏光板は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有する。この位相差層は液晶化合物の配向固化層であり、この保護層の厚みが10μm以下である。この偏光子は単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす。
   y<-0.011x+0.525     (1)
 本発明の別の実施形態による位相差層付偏光板は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有する。この位相差層は液晶化合物の配向固化層であり、この保護層の厚みは10μm以下である。この偏光子は、単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす。
   z<-60x+2875        (2)
 本発明のさらに別の実施形態による位相差層付偏光板は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有する。この位相差層は液晶化合物の配向固化層であり、この保護層の厚みは10μm以下である。この偏光子は、その単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす。
   f<-0.018x+1.11     (3)
 1つの実施形態において、上記位相差層付偏光板の総厚みは30μm以下である。
 1つの実施形態において、上記偏光子の厚みは10μm以下である。
 1つの実施形態において、上記偏光子の単体透過率は40.0%以上であり、かつ、偏光度が99.0%以上である。
 1つの実施形態において、上記保護層は熱可塑性(メタ)アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。
 1つの実施形態において、上記熱可塑性(メタ)アクリル系樹脂は、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つの繰り返し単位を有する。
 1つの実施形態において、上記保護層は芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の光カチオン硬化物である。
 本発明の別の局面においては、画像表示装置が提供される。この画像表示装置は、上記位相差層付偏光板を含む。
The polarizing plate with a retardation layer according to the embodiment of the present invention is polarized light including a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance and a protective layer arranged on one side of the polarizing element. It has a plate and a retardation layer. This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 μm or less. This polarizing element satisfies the following formula (1) when the simple substance transmittance is x% and the birefringence of the polyvinyl alcohol-based resin is y.
y <-0.011x + 0.525 (1)
In the polarizing plate with a retardation layer according to another embodiment of the present invention, a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance and a protective layer arranged on one side of the polarizing element are provided. It has a polarizing plate including the polarizing plate and a retardation layer. This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 μm or less. This polarizing element satisfies the following formula (2) when the simple substance transmittance is x% and the in-plane retardation of the polyvinyl alcohol-based resin film is znm.
z <-60x + 2875 (2)
The polarizing plate with a retardation layer according to still another embodiment of the present invention includes a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on one side of the polarizing element. It has a polarizing plate containing the above and a retardation layer. This retardation layer is an orientation-solidified layer of a liquid crystal compound, and the thickness of this protective layer is 10 μm or less. This polarizing element satisfies the following formula (3) when its simple transmittance is x% and the orientation function of the polyvinyl alcohol-based resin is f.
f <-0.018x + 1.11 (3)
In one embodiment, the total thickness of the polarizing plate with a retardation layer is 30 μm or less.
In one embodiment, the thickness of the polarizing element is 10 μm or less.
In one embodiment, the simple substance transmittance of the above-mentioned extruder is 40.0% or more, and the degree of polarization is 99.0% or more.
In one embodiment, the protective layer is made from a solidified coating film of an organic solvent solution of a thermoplastic (meth) acrylic resin, a photocationic cured product of an epoxy resin, and a solidified coating film of an organic solvent solution of an epoxy resin. It is composed of at least one selected from the group.
In one embodiment, the thermoplastic (meth) acrylic resin comprises at least one repeating unit selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit. Have.
In one embodiment, the protective layer is a photocationic cured product of an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton.
In another aspect of the invention, an image display device is provided. This image display device includes the above-mentioned polarizing plate with a retardation layer.
 本発明によれば、単体透過率とポリビニルアルコール(PVA)の複屈折またはPVA系樹脂フィルムの面内位相差とが所定の関係を満たす偏光子と、厚み10μm以下の保護層と、液晶配向化合物の配向固化層の位相差層とを有する位相差層付偏光板が提供される。このような位相差層付偏光板とすることにより、位相差層付偏光板を薄型化し、かつ、加熱時のクラック発生が抑制され得る。さらに、折り曲げ時のクラック発生をも抑制し得る。 According to the present invention, a polarizing element in which the single transmittance and the birefringence of polyvinyl alcohol (PVA) or the in-plane phase difference of the PVA-based resin film satisfy a predetermined relationship, a protective layer having a thickness of 10 μm or less, and a liquid crystal alignment compound. Provided is a polarizing plate with a retardation layer having a retardation layer of the orientation solidification layer of the above. By using such a polarizing plate with a retardation layer, the polarizing plate with a retardation layer can be made thinner and crack generation during heating can be suppressed. Further, the generation of cracks at the time of bending can be suppressed.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate with a retardation layer by one Embodiment of this invention. 本発明の別の実施形態による位相差層付偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate with a retardation layer by another embodiment of this invention. 本発明のさらに別の実施形態による位相差層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with a retardation layer according to still another embodiment of this invention. 本発明の位相差層付偏光板に用いられる偏光子の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is a schematic diagram which shows an example of the drying shrinkage process using a heating roll in the method of manufacturing a polarizing element used for the polarizing plate with a retardation layer of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny" is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。本実施形態の位相差層付偏光板100は、偏光板10と位相差層20とを有する。偏光板10は、偏光子11と、偏光子11の一方の側に配置された第1の保護層12と、偏光子11のもう一方の側に配置された第2の保護層13とを含む。目的に応じて、第1の保護層12および第2の保護層13の一方は省略されてもよい。例えば、位相差層20が偏光子11の保護層としても機能し得る場合には、第2の保護層13は省略されてもよい。位相差層20は任意の適切な粘着剤層または接着剤層(図示せず)を介して、偏光子11または第2の保護層13に積層される。本発明の実施形態においては、偏光子11は二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす。また、本発明の1つの実施形態においては、偏光子11は二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす。1つの実施形態において、偏光子10は、単体透過率をx%とし、当該偏光子を構成するポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす。
   y<-0.011x+0.525     (1)
   z<-60x+2875         (2)
   f< -0.018x+1.11     (3)
A. Overall Configuration of Polarizing Plate with Difference Layer FIG. 1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 100 with a retardation layer of the present embodiment has a polarizing plate 10 and a retardation layer 20. The polarizing plate 10 includes a polarizing element 11, a first protective layer 12 arranged on one side of the polarizing element 11, and a second protective layer 13 arranged on the other side of the polarizing element 11. .. Depending on the purpose, one of the first protective layer 12 and the second protective layer 13 may be omitted. For example, if the retardation layer 20 can also function as a protective layer for the polarizing element 11, the second protective layer 13 may be omitted. The retardation layer 20 is laminated to the polarizing element 11 or the second protective layer 13 via any suitable adhesive layer or adhesive layer (not shown). In the embodiment of the present invention, the polarizing element 11 is made of a polyvinyl alcohol-based resin film containing a dichroic substance, the single transmittance is x%, and the birefringence of the polyvinyl alcohol-based resin is y. Satisfies the following equation (1). Further, in one embodiment of the present invention, the polarizing element 11 is made of a polyvinyl alcohol-based resin film containing a dichroic substance, and the single transmittance is x%, and the in-plane of the polyvinyl alcohol-based resin film is set. When the phase difference is znm, the following equation (2) is satisfied. In one embodiment, the polarizing element 10 satisfies the following formula (3) when the simple substance transmittance is x% and the orientation function of the polyvinyl alcohol-based resin constituting the polarizing element is f.
y <-0.011x + 0.525 (1)
z <-60x + 2875 (2)
f <-0.018x + 1.11 (3)
 図2は、本発明の別の実施形態による位相差層付偏光板の概略断面図である。図2に示すように、別の実施形態による位相差層付偏光板101においては、別の位相差層50ならびに/あるいは導電層または導電層付等方性基材60が設けられてもよい。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20の外側(偏光板10と反対側)に設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20側からこの順に設けられる。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、必要に応じて設けられる任意の層であり、いずれか一方または両方が省略されてもよい。なお、便宜上、位相差層20を第1の位相差層と称し、別の位相差層50を第2の位相差層と称する場合がある。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。 FIG. 2 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention. As shown in FIG. 2, in the polarizing plate 101 with a retardation layer according to another embodiment, another retardation layer 50 and / or a conductive layer or an isotropic base material 60 with a conductive layer may be provided. Another retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically provided on the outside of the retardation layer 20 (opposite to the polarizing plate 10). The other retardation layer typically shows a relationship in which the refractive index characteristics are nz> nx = ny. Another retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically provided in this order from the retardation layer 20 side. The other retardation layer 50 and the conductive layer or the isotropic base material 60 with the conductive layer are typically arbitrary layers provided as needed, and one or both of them may be omitted. For convenience, the retardation layer 20 may be referred to as a first retardation layer, and another retardation layer 50 may be referred to as a second retardation layer. When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer is a so-called inner in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
 図3は、本発明のさらに別の実施形態による位相差層付偏光板の概略断面図である。本発明の実施形態においては、第1の位相差層20は液晶化合物の配向固化層である。第1の位相差層20は図1および図2に示すような配向固化層の単一層であってもよく、図3に示すような第1の配向固化層21と第2の配向固化層22との積層構造を有していてもよい。 FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to still another embodiment of the present invention. In the embodiment of the present invention, the first retardation layer 20 is an orientation-solidifying layer of a liquid crystal compound. The first retardation layer 20 may be a single layer of the orientation solidification layer as shown in FIGS. 1 and 2, and the first alignment solidification layer 21 and the second orientation solidification layer 22 as shown in FIG. It may have a laminated structure with.
 上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよい。例えば、図3の位相差層付偏光板102に第2の位相差層50ならびに/あるいは導電層または導電層付等方性基材60がさらに設けられてもよい。また例えば、第2の位相差層50の外側に導電層付等方性基材60を設ける構成を、光学的に等価な構成(例えば、第2の位相差層と導電層との積層体)に置き換えてもよい。 The above embodiments may be combined as appropriate, and the components in the above embodiments may be modified in a manner obvious in the art. For example, the polarizing plate 102 with a retardation layer in FIG. 3 may be further provided with a second retardation layer 50 and / or an isotropic base material 60 with a conductive layer or a conductive layer. Further, for example, the configuration in which the isotropic base material 60 with a conductive layer is provided on the outside of the second retardation layer 50 is replaced with an optically equivalent configuration (for example, a laminate of the second retardation layer and the conductive layer). You may.
 本発明の実施形態による位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer according to the embodiment of the present invention may further include another retardation layer. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
 本発明の位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。 The polarizing plate with a retardation layer of the present invention may be single-wafered or elongated. As used herein, the term "long" means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. include. The long polarizing plate with a retardation layer can be wound in a roll shape.
 実用的には、位相差層の偏光板と反対側には粘着剤層(図示せず)が設けられ、位相差層付偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。 Practically, an adhesive layer (not shown) is provided on the opposite side of the polarizing plate of the retardation layer, and the polarizing plate with the retardation layer can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used. Temporary attachment of the release film protects the pressure-sensitive adhesive layer and enables roll formation.
 位相差層付偏光板の総厚みは、好ましくは30μm以下であり、より好ましくは25μm以下であり、さらに好ましくは20μm以下である。総厚みは、例えば10μm以上であり得る。本発明の実施形態によれば、このようにきわめて薄い位相差層付偏光板を実現することができる。さらに、加熱時のクラック発生をも抑制され得る。このような位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。このような位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に特に好適に適用され得る。なお、位相差層付偏光板の総厚みとは、偏光板をパネルやガラスなどの外部被着体と密着させるための粘着剤層を除き、位相差層付偏光板を構成するすべての層の厚みの合計をいう(すなわち、位相差層付偏光板の総厚みは、位相差層付偏光板を画像表示セル等の隣接部材に貼り付けるための粘着剤層およびその表面に仮着され得る剥離フィルムの厚みを含まない)。 The total thickness of the polarizing plate with a retardation layer is preferably 30 μm or less, more preferably 25 μm or less, and further preferably 20 μm or less. The total thickness can be, for example, 10 μm or more. According to the embodiment of the present invention, it is possible to realize such an extremely thin polarizing plate with a retardation layer. Furthermore, the generation of cracks during heating can be suppressed. Such a polarizing plate with a retardation layer can have extremely excellent flexibility and bending durability. Such a polarizing plate with a retardation layer may be particularly preferably applied to a curved image display device and / or a bendable or bendable image display device. The total thickness of the polarizing plate with a retardation layer is the total thickness of all the layers constituting the polarizing plate with a retardation layer, except for the pressure-sensitive adhesive layer for bringing the polarizing plate into close contact with an external adherend such as a panel or glass. The total thickness (that is, the total thickness of the polarizing plate with a retardation layer is the peeling that can be temporarily attached to the pressure-sensitive adhesive layer for attaching the polarizing plate with a retardation layer to an adjacent member such as an image display cell and its surface. Does not include film thickness).
 本発明の実施形態による位相差層付偏光板の単位重量は、例えば6.5mg/cm以下であり、好ましくは2.0mg/cm~6.0mg/cmであり、より好ましくは3.0mg/cm~5.5mg/cm、さらに好ましくは3.5mg/cm~5.0mg/cmである。表示パネルが薄型である場合、位相差層付偏光板の重量によってパネルが微少に変形し、表示不良が生じるおそれがある。6.5mg/cm以下の単位重量を有する位相差層付偏光板によれば、このようなパネルの変形を防止することができる。また、上記単位重量を有する位相差層付偏光板は、薄型化した場合であっても取扱性が良好であり、かつ、きわめて優れた可撓性および折り曲げ耐久性を発揮し得る。 The unit weight of the polarizing plate with a retardation layer according to the embodiment of the present invention is, for example, 6.5 mg / cm 2 or less, preferably 2.0 mg / cm 2 to 6.0 mg / cm 2 , and more preferably 3. It is 0.0 mg / cm 2 to 5.5 mg / cm 2 , more preferably 3.5 mg / cm 2 to 5.0 mg / cm 2 . If the display panel is thin, the weight of the polarizing plate with a retardation layer may cause the panel to be slightly deformed, resulting in display defects. According to a polarizing plate with a retardation layer having a unit weight of 6.5 mg / cm 2 or less, such deformation of the panel can be prevented. Further, the polarizing plate with a retardation layer having the above unit weight has good handleability even when it is thinned, and can exhibit extremely excellent flexibility and bending durability.
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 Hereinafter, the components of the polarizing plate with a retardation layer will be described in more detail.
B.偏光板
B-1.偏光子
 本発明の1つの実施形態による偏光膜は、二色性物質を含むPVA系樹脂フィルムで構成され、単体透過率をx%とし、当該PVA系樹脂の複屈折をyとした場合に、下記式(1)を満たす。また、本発明の別の実施形態による偏光膜は、二色性物質を含むPVA系樹脂フィルムで構成され、単体透過率をx%とし、当該PVA系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす。1つの実施形態において、偏光子は、単体透過率をx%とし、当該偏光子を構成するポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす。
   y<-0.011x+0.525     (1)
   z<-60x+2875         (2)
   f<-0.018x+1.11      (3)
B. Polarizing plate B-1. Polarizer The polarizing film according to one embodiment of the present invention is composed of a PVA-based resin film containing a dichroic substance, and when the single transmittance is x% and the double refraction of the PVA-based resin is y. The following equation (1) is satisfied. Further, the polarizing film according to another embodiment of the present invention is composed of a PVA-based resin film containing a dichroic substance, has a single transmittance of x%, and has an in-plane retardation of the PVA-based resin film of znm. In this case, the following equation (2) is satisfied. In one embodiment, the polarizing element satisfies the following formula (3) when the simple substance transmittance is x% and the orientation function of the polyvinyl alcohol-based resin constituting the polarizing element is f.
y <-0.011x + 0.525 (1)
z <-60x + 2875 (2)
f <-0.018x + 1.11 (3)
 上記偏光子におけるPVA系樹脂の複屈折(以下、PVAの複屈折またはPVAのΔnと表記する)およびPVA系樹脂フィルムの面内位相差(以下、「PVAの面内位相差」と表記する)はいずれも、偏光子を構成するPVA系樹脂の分子鎖の配向度と関連する値であり、配向度の上昇に伴って大きい値となり得る。上記偏光子は、PVA系樹脂の分子鎖の吸収軸方向への配向が従来の偏光子よりも緩やかであることに起因して、吸収軸方向に沿った破断が抑制される。その結果、屈曲性に非常に優れた偏光子(結果として、偏光板)が得られ得る。このような偏光子(結果として、偏光板)は、好ましくは湾曲した画像表示装置、より好ましくは折り曲げ可能な画像表示装置、さらに好ましくは折り畳み可能な画像表示装置に適用され得る。従来、配向度が低い偏光子では許容可能な光学特性(代表的には、単体透過率および偏光度)を得るのが困難であったところ、上記式(1)および/または式(2)を満たす偏光子は、従来よりも低いPVA系樹脂の配向度と許容可能な光学特性とを両立することができる。 Double refraction of PVA-based resin (hereinafter referred to as PVA double refraction or PVA Δn) and in-plane phase difference of PVA-based resin film (hereinafter referred to as “PVA in-plane phase difference”) in the above-mentioned extruder. Are all values related to the degree of orientation of the molecular chains of the PVA-based resin constituting the polarizing element, and can become large as the degree of orientation increases. Since the orientation of the molecular chain of the PVA-based resin in the absorption axis direction is gentler than that of the conventional polarizing element, the above-mentioned polarizing element suppresses breakage along the absorption axis direction. As a result, a polarizing element having very excellent flexibility (as a result, a polarizing plate) can be obtained. Such a polarizing element (as a result, a polarizing plate) may be applied to a preferably curved image display device, more preferably a foldable image display device, and even more preferably a foldable image display device. Conventionally, it has been difficult to obtain acceptable optical characteristics (typically, simple substance transmittance and degree of polarization) with a polarizing element having a low degree of orientation. The satisfying polarizing element can achieve both a lower degree of orientation of the PVA-based resin and an acceptable optical characteristic than before.
 本発明の実施形態による偏光子は、好ましくは下記式(1a)および/または式(2a)を満たし、より好ましくは下記式(1b)および/または式(2b)を満たす。
 上記偏光子は、好ましくは下記式(1a)および/または式(2a)を満たし、より好ましくは下記式(1b)および/または式(2b)を満たす。
  -0.004x+0.18< y < -0.011x+0.525   (1a)
  -0.003x+0.145< y < -0.011x+0.520   (1b)
  -40x+1800< z < -60x+2875   (2a)
  -30x+1450< z < -60x+2850   (2b)
The polarizing element according to the embodiment of the present invention preferably satisfies the following formulas (1a) and / or the following formulas (2a), and more preferably the following formulas (1b) and / or the following formulas (2b).
The polarizing element preferably satisfies the following formulas (1a) and / or the following formula (2a), and more preferably the following formulas (1b) and / or the formula (2b).
-0.004x + 0.18 <y <-0.011x + 0.525 (1a)
-0.003x + 0.145 <y <-0.011x + 0.520 (1b)
-40x + 1800 <z <-60x + 2875 (2a)
-30x + 1450 <z <-60x + 2850 (2b)
 本明細書において、上記PVAの面内位相差は、23℃、波長1000nmにおけるPVA系樹脂フィルムの面内位相差値である。近赤外領域を測定波長とすることにより、偏光子中のヨウ素の吸収の影響を排除することができ、位相差を測定することが可能となる。また、上記PVAの複屈折(面内複屈折)は、PVAの面内位相差を偏光子の厚みで割った値である。 In the present specification, the in-plane retardation value of PVA is the in-plane retardation value of the PVA-based resin film at 23 ° C. and a wavelength of 1000 nm. By setting the measurement wavelength in the near-infrared region, the influence of absorption of iodine in the polarizing element can be eliminated, and the phase difference can be measured. The birefringence of PVA (in-plane birefringence) is a value obtained by dividing the in-plane phase difference of PVA by the thickness of the polarizing element.
 PVAの面内位相差は、下記のように評価する。まず、波長850nm以上の複数の波長で位相差値を測定し、測定された位相差値:R(λ)と波長:λのプロットを行い、これを下記のセルマイヤー式に最小二乗法でフィッティングさせる。ここで、AおよびBはフィッティングパラメータであり最小二乗法により決定される係数である。
  R(λ)=A+B/(λ-600
 このとき、この位相差値R(λ)は、波長依存性のないPVAの面内位相差(Rpva)と、波長依存性の強いヨウ素の面内位相差値(Ri)とに下記のように分離することができる。
  Rpva= A
  Ri  = B/(λ-600
 この分離式に基づいて、波長λ=1000nmにおけるPVAの面内位相差(すなわちRpva)を算出することができる。なお、当該PVAの面内位相差の評価方法については、特許第5932760号公報にも記載されており、必要に応じて、参照することができる。
 また、この位相差を厚みで割ることでPVAの複屈折(Δn)を算出することができる。
The in-plane phase difference of PVA is evaluated as follows. First, the phase difference value is measured at a plurality of wavelengths having a wavelength of 850 nm or more, the measured phase difference value: R (λ) and the wavelength: λ are plotted, and this is fitted to the following Selmeyer equation by the least squares method. Let me. Here, A and B are fitting parameters and coefficients determined by the least squares method.
R (λ) = A + B / (λ 2 -600 2)
At this time, the phase difference value R (λ) is divided into the in-plane phase difference (Rpva) of PVA having no wavelength dependence and the in-plane phase difference value (Ri) of iodine having a strong wavelength dependence as follows. Can be separated.
Rpva = A
Ri = B / (λ 2 -600 2)
Based on this separation formula, the in-plane phase difference (that is, Rpva) of PVA at a wavelength of λ = 1000 nm can be calculated. The method for evaluating the in-plane phase difference of the PVA is also described in Japanese Patent No. 5923760, and can be referred to as necessary.
Further, the birefringence (Δn) of PVA can be calculated by dividing this phase difference by the thickness.
 上記波長1000nmにおけるPVAの面内位相差を測定する市販の装置としては、王子計測社製のKOBRA-WR/IRシリーズ、KOBRA-31X/IRシリーズ等があげられる。 Examples of commercially available devices for measuring the in-plane phase difference of PVA at a wavelength of 1000 nm include KOBRA-WR / IR series and KOBRA-31X / IR series manufactured by Oji Measurement Co., Ltd.
 本発明で用いられる偏光子を構成するポリビニルアルコール系樹脂の配向関数(f)は、好ましくは下記式(3a)を満たし、より好ましくは下記式(3b)を満たす。配向関数が小さすぎると、許容可能な単体透過率および/または偏光度が得られない場合がある。
  -0.01x+0.50<f<-0.018x+1.11   (3a)
  -0.01x+0.57<f<-0.018x+1.1    (3b)
The orientation function (f) of the polyvinyl alcohol-based resin constituting the polarizing element used in the present invention preferably satisfies the following formula (3a), and more preferably the following formula (3b). If the orientation function is too small, acceptable single transmittance and / or degree of polarization may not be obtained.
-0.01x + 0.50 <f <-0.018x + 1.11 (3a)
-0.01x + 0.57 <f <-0.018x + 1.1 (3b)
 配向関数(f)は、例えば、フーリエ変換赤外分光光度計(FT-IR)を用い、偏光を測定光として、全反射減衰分光(ATR:attenuated total reflection)測定により求められる。具体的には、偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とし、入射させる偏光された赤外光(測定光) は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を平行および垂直に配置した状態で測定を実施し、得られた吸光度スペクトルの2941cm-1の強度を用いて、下記式に従って算出される。ここで、強度Iは、3330cm-1を参照ピークとして、2941cm-1/3330cm-1の値である。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH-)の振動に起因する吸収であると考えられている。
          f=(3<cosθ>-1)/2
           =(1-D)/[c(2D+1)]
            =-2×(1-D)/(2D+1)
ただし、
c=(3cosβ-1)/2で、2941cm-1の振動の場合は、β=90°である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I)/(I//)(この場合、PVA分子が配向するほどDが大きくなる)
:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
The orientation function (f) is determined by total internal reflection spectroscopy (ATR) measurement using, for example, a Fourier transform infrared spectrophotometer (FT-IR) and polarized light as measurement light. Specifically, germanium is used as the crystallite to which the polarizing element is brought into close contact, the incident angle of the measurement light is 45 °, and the polarized infrared light (measurement light) to be incident is the surface to which the sample of the germanium crystal is brought into close contact. the intensity of the polarized light (s-polarized light), and with respect to the polarization direction of the measuring light, measurements were performed in a state of parallel and vertically disposed stretching direction of the polarizer, the resulting absorbance spectra 2941Cm -1 which vibrates parallel to Is calculated according to the following formula. Here, the intensity I, as a reference peak to 3330cm -1, a value of 2941cm -1 / 3330cm -1. When f = 1, it is completely oriented, and when f = 0, it is random. Further, the peak of 2941 cm -1 is considered to be absorption caused by the vibration of the main chain (-CH 2-) of PVA in the polarizing element.
f = (3 <cos 2 θ> -1) / 2
= (1-D) / [c (2D + 1)]
= -2 x (1-D) / (2D + 1)
However,
In the case of vibration of 2941 cm -1 with c = (3cos 2 β-1) / 2, β = 90 °.
θ: Angle of molecular chain with respect to stretching direction β: Angle of transition dipole moment with respect to molecular chain axis D = (I ) / (I // ) (In this case, D becomes larger as the PVA molecule is oriented)
I : Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are perpendicular I // : Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are parallel
 偏光子の厚みは、好ましくは10μm以下であり、より好ましくは8μm以下である。偏光子の厚みの下限は、例えば1μmであり得る。偏光子の厚みは、1つの実施形態においては2μm~10μm、別の実施形態においては2μm~8μmであってもよい。偏光子の厚みをこのように非常に薄くすることにより、熱収縮を非常に小さくすることができる。このような構成が、吸収軸方向の破断の抑制にも寄与し得ると推察される。 The thickness of the polarizing element is preferably 10 μm or less, more preferably 8 μm or less. The lower limit of the thickness of the transducer can be, for example, 1 μm. The thickness of the polarizing element may be 2 μm to 10 μm in one embodiment and 2 μm to 8 μm in another embodiment. By making the thickness of the stator very thin in this way, the heat shrinkage can be made very small. It is presumed that such a configuration can also contribute to suppressing breakage in the absorption axis direction.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上であり、より好ましくは41.0%以上である。単体透過率の上限は、例えば49.0%であり得る。偏光子の単体透過率は、1つの実施形態においては40.0%~45.0%である。偏光子の偏光度は、好ましくは99.0%以上であり、より好ましくは99.4%以上である。偏光度の上限は、例えば99.999%であり得る。偏光子の偏光度は、1つの実施形態においては99.0%~99.99%である。本発明の実施形態による偏光子は、当該偏光子を構成するPVA系樹脂の配向度が従来よりも低く、上記のような面内位相差、複屈折および/または配向関数を有するにもかかわらず、このような実用上許容可能な単体透過率および偏光度を実現できることを1つの特徴とする。これは、後述する製造方法に起因するものと推察される。なお、単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing element is preferably 40.0% or more, more preferably 41.0% or more. The upper limit of the simple substance transmittance can be, for example, 49.0%. The simple substance transmittance of the polarizing element is 40.0% to 45.0% in one embodiment. The degree of polarization of the polarizing element is preferably 99.0% or more, more preferably 99.4% or more. The upper limit of the degree of polarization can be, for example, 99.999%. The degree of polarization of the polarizing element is 99.0% to 99.99% in one embodiment. Despite the fact that the polarizing element according to the embodiment of the present invention has a lower degree of orientation of the PVA-based resin constituting the polarizing element than the conventional one and has the above-mentioned in-plane phase difference, birefringence and / or orientation function. One of the features is that such a practically acceptable single-unit transmittance and degree of polarization can be realized. It is presumed that this is due to the manufacturing method described later. The single transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor. The degree of polarization is typically determined by the following equation based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
 偏光子の突き刺し強度は、例えば30gf/μm以上であり、好ましくは35gf/μm以上であり、より好ましくは40gf/μm以上であり、さらに好ましくは45gf/μm以上であり、特に好ましくは50gf/μm以上である。突き刺し強度は、例えば80gf/μm以下であり得る。偏光子の突き刺し強度をこのような範囲とすることにより、偏光子が吸収軸方向に沿って裂けることを顕著に抑制することができる。その結果、屈曲性に非常に優れた偏光子(結果として、偏光板)が得られ得る。突き刺し強度は、所定の強さで偏光子を突き刺した時の偏光子の割れ耐性を示す。突き刺し強度は、例えば、圧縮試験機に所定のニードルを装着し、当該ニードルを所定速度で偏光子に突き刺したときに偏光子が割れる強度(破断強度)として表され得る。なお、単位から明らかなとおり、突き刺し強度は、偏光子の単位厚み(1μm)あたりの突き刺し強度を意味する。 The puncture strength of the polarizing element is, for example, 30 gf / μm or more, preferably 35 gf / μm or more, more preferably 40 gf / μm or more, still more preferably 45 gf / μm or more, and particularly preferably 50 gf / μm or more. That is all. The piercing strength can be, for example, 80 gf / μm or less. By setting the piercing strength of the polarizing element within such a range, it is possible to remarkably suppress the polarizing element from tearing along the absorption axis direction. As a result, a polarizing element having very excellent flexibility (as a result, a polarizing plate) can be obtained. The piercing strength indicates the cracking resistance of the polarizing element when the polarizing element is pierced with a predetermined strength. The piercing strength can be expressed as, for example, the strength (breaking strength) at which the polarizing element is cracked when a predetermined needle is attached to a compression tester and the needle is pierced into the polarizing element at a predetermined speed. As is clear from the unit, the piercing strength means the piercing strength per unit thickness (1 μm) of the polarizing element.
 偏光子は、上記のとおり、二色性物質を含むPVA系樹脂フィルムで構成される。好ましくは、PVA系樹脂フィルム(実質的には、偏光子)を構成するPVA系樹脂は、アセトアセチル変性されたPVA系樹脂を含む。このような構成であれば、所望の突き刺し強度を有する偏光子が得られ得る。アセトアセチル変性されたPVA系樹脂の配合量は、PVA系樹脂全体を100重量%としたときに、好ましくは5重量%~20重量%であり、より好ましくは8重量%~12重量%である。配合量がこのような範囲であれば、突き刺し強度をより好適な範囲とすることができる。 As described above, the polarizing element is composed of a PVA-based resin film containing a dichroic substance. Preferably, the PVA-based resin constituting the PVA-based resin film (substantially, a polarizing element) contains an acetoacetyl-modified PVA-based resin. With such a configuration, a polarizing element having a desired piercing strength can be obtained. The blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total amount of the PVA-based resin is 100% by weight. .. When the blending amount is in such a range, the piercing strength can be in a more suitable range.
 偏光子は、代表的には、二層以上の積層体を用いて作製され得る。積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、好ましくは、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含む。本発明の実施形態においては、延伸の総倍率は好ましくは3.0倍~4.5倍であり、通常に比べて顕著に小さい。このような延伸の総倍率であっても、ハロゲン化物の添加および乾燥収縮処理との組み合わせにより、許容可能な光学特性を有する偏光子を得ることができる。さらに、本発明の実施形態においては、好ましくは空中補助延伸の延伸倍率がホウ酸水中延伸の延伸倍率よりも大きい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。加えて、積層体は、好ましくは長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。1つの実施形態においては、偏光子の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解等の問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理等、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。偏光膜の製造方法の詳細については、後述する。 The decoder can typically be made using a laminate of two or more layers. Specific examples of the polarizing element obtained by using the laminated body include a polarizing element obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching preferably further comprises stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution. In the embodiment of the present invention, the total magnification of stretching is preferably 3.0 to 4.5 times, which is significantly smaller than usual. Even at the total magnification of such stretching, a stator having acceptable optical properties can be obtained by combining the addition of a halide and the drying shrinkage treatment. Further, in the embodiment of the present invention, the stretching ratio of the aerial auxiliary stretching is preferably larger than the stretching ratio of the boric acid water stretching. With such a configuration, it is possible to obtain a polarizing element having acceptable optical characteristics even if the total magnification of stretching is small. In addition, the laminate is preferably subjected to a dry shrinkage treatment of shrinking by 2% or more in the width direction by heating while transporting in the longitudinal direction. In one embodiment, the method for producing a polarizing element includes subjecting a laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing the auxiliary stretching, even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. At the same time, by increasing the orientation of the PVA-based resin in advance, it is possible to prevent problems such as deterioration of the orientation of the PVA-based resin and dissolution when immersed in water in the subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics. Further, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. The details of the method for manufacturing the polarizing film will be described later.
B-2.偏光子の製造方法
 本発明の1つの実施形態による偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に1%~10%収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%である。このような製造方法によれば、上記B-1項で説明した偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および偏光度)を有する偏光子を得ることができる。
B-2. Method for Producing a Polarizer In the method for producing a polarizing element according to one embodiment of the present invention, polyvinyl alcohol containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material is used. By forming a based resin layer (PVA-based resin layer) to form a laminated body, and by heating the laminated body while transporting it in the longitudinal direction, which is an aerial auxiliary stretching treatment, a dyeing treatment, and an underwater stretching treatment. A drying shrinkage treatment of shrinking by 1% to 10% in the width direction and a drying shrinkage treatment are performed in this order. The content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. The shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment is preferably 1% to 10%. According to such a manufacturing method, the polarizing element described in the above section B-1 can be obtained. In particular, by preparing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll. , It is possible to obtain a stator having excellent optical properties (typically, single transmittance and degree of polarization).
B-2-1.積層体の作製
 熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
B-2-1. Preparation of Laminate As a method for preparing a laminate of a thermoplastic resin base material and a PVA-based resin layer, any appropriate method can be adopted. Preferably, a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material. As described above, the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Any appropriate method can be adopted as the application method of the coating liquid. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned. The coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
 PVA系樹脂層の厚みは、好ましくは、2μm~30μm、さらに好ましくは2μm~20μmである。延伸前のPVA系樹脂層の厚みをこのように非常に薄くし、かつ、後述するように総延伸倍率を小さくすることにより、配向関数が非常に小さいにもかかわらず許容可能な単体透過率および偏光度を有する偏光子を得ることができる。 The thickness of the PVA-based resin layer is preferably 2 μm to 30 μm, more preferably 2 μm to 20 μm. By making the thickness of the PVA-based resin layer before stretching so thin and reducing the total stretching ratio as described later, the permissible single transmittance and the allowable single transmittance even though the orientation function is very small. A polarizing element having a degree of polarization can be obtained.
 PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。 Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
B-2-1-1.熱可塑性樹脂基材
 熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報および特許第6470455号に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
B-2-1-1. Thermoplastic Resin Substrate As the thermoplastic resin substrate, any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
B-2-1-2.塗布液
 塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
B-2-1-2. Coating liquid The coating liquid contains a halide and a PVA-based resin as described above. The coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin base material. The content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。 Additives may be added to the coating liquid. Examples of the additive include a plasticizer, a surfactant and the like. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
 上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。上記のとおり、PVA系樹脂は、好ましくはアセトアセチル変性されたPVA系樹脂を含む。 Any suitable resin can be adopted as the PVA-based resin. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. .. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizing element having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur. As described above, the PVA-based resin preferably contains an acetoacetyl-modified PVA-based resin.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 As the above-mentioned halide, any suitable halide can be adopted. For example, iodide and sodium chloride can be mentioned. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
 塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。 The amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing element may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。 Generally, the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease. In particular, when the laminate of the thermoplastic resin and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin. The tendency of the degree of orientation to decrease is remarkable. For example, while stretching a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water. On the other hand, by preparing a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material, and stretching the laminate in air at a high temperature (auxiliary stretching) before stretching it in boric acid water. , Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water.
B-2-2.空中補助延伸処理
 特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
B-2-2. Aerial auxiliary stretching treatment In particular, in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and boric acid water stretching is selected. By introducing auxiliary stretching as in the case of two-step stretching, it is possible to stretch while suppressing the crystallization of the thermoplastic resin base material. Furthermore, when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing auxiliary stretching, it is possible to improve the crystallinity of the PVA-based resin even when the PVA-based resin is applied on the thermoplastic resin, and it is possible to achieve high optical characteristics. Become. At the same time, by increasing the orientation of the PVA-based resin in advance, it is possible to prevent problems such as deterioration and dissolution of the orientation of the PVA-based resin when immersed in water in a subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよく、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定され得る。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). .. Free-end stretching can be positively adopted in order to obtain high optical properties. In one embodiment, the aerial stretching treatment includes a heating roll stretching step of stretching the laminate by the difference in peripheral speed between the heating rolls while transporting the laminated body in the longitudinal direction thereof. The aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the heating roll stretching step are performed in this order. Further, in another embodiment, in the tenter stretching machine, the film is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily. Preferably, it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction. In the case of free end stretching, it is calculated by shrinkage rate in the width direction = (1 / stretching magnification) 1/2.
 空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。 The aerial auxiliary stretching may be performed in one step or in multiple steps. When performed in multiple stages, the draw ratio is the product of the draw ratios in each stage. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
 空中補助延伸における延伸倍率は、好ましくは1.0倍~4.0倍であり、より好ましくは1.5倍~3.5倍であり、さらに好ましくは2.0倍~3.0倍である。空中補助延伸の延伸倍率がこのような範囲であれば、水中延伸と組み合わせた場合に延伸の総倍率を所望の範囲に設定することができ、所望の配向関数を実現することができる。その結果、吸収軸方向に沿った破断が抑制された偏光子を得ることができる。さらに、上記のとおり、空中補助延伸の延伸倍率はホウ酸水中延伸の延伸倍率よりも大きいことが好ましい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。より詳細には、空中補助延伸の延伸倍率と水中延伸の延伸倍率との比(水中延伸/空中補助延伸)は、好ましくは0.4~0.9であり、より好ましくは0.5~0.8である。 The draw ratio in the aerial auxiliary stretching is preferably 1.0 to 4.0 times, more preferably 1.5 to 3.5 times, and further preferably 2.0 to 3.0 times. be. When the stretching ratio of the aerial auxiliary stretching is in such a range, the total stretching ratio can be set in a desired range when combined with the underwater stretching, and a desired orientation function can be realized. As a result, it is possible to obtain a polarizing element in which breakage along the absorption axis direction is suppressed. Further, as described above, it is preferable that the stretching ratio of the aerial auxiliary stretching is larger than the stretching ratio of the boric acid water stretching. With such a configuration, it is possible to obtain a polarizing element having acceptable optical characteristics even if the total magnification of stretching is small. More specifically, the ratio of the stretching ratio of the aerial auxiliary stretching to the stretching ratio of the underwater stretching (underwater stretching / aerial auxiliary stretching) is preferably 0.4 to 0.9, more preferably 0.5 to 0. It is 8.8.
 空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。 The stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like. The stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin and suppress defects due to the crystallization (for example, hindering the orientation of the PVA-based resin layer due to stretching). can.
B-2-3.不溶化処理、染色処理および架橋処理
 必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報(上記)に記載されている。
B-2-3. Insolubilization treatment, dyeing treatment and cross-linking treatment If necessary, an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment. The insolubilization treatment is typically performed by immersing a PVA-based resin layer in a boric acid aqueous solution. The dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine). If necessary, a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the crosslinking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (above).
B-2-4.水中延伸処理
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら延伸することができる。その結果、優れた光学特性を有する偏光子を製造することができる。
B-2-4. Underwater stretching treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched while suppressing. As a result, it is possible to manufacture a polarizing element having excellent optical characteristics.
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸の総倍率は、各段階の延伸倍率の積である。 Any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free-end stretching is selected. The stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the total stretching ratio is the product of the stretching ratios in each stage.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光子を製造することができる。 The underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching). By using the boric acid aqueous solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer. Specifically, boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding. As a result, the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing element having excellent optical characteristics can be produced.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光子を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is. By setting the boric acid concentration to 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing element having higher characteristics can be produced. In addition to boric acid or borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 Preferably, iodide is added to the above stretching bath (boric acid aqueous solution). By blending iodide, the elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
 延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., there is a possibility that the thermoplastic resin base material cannot be stretched satisfactorily even if the plasticization of the thermoplastic resin base material by water is taken into consideration. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics cannot be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
 水中延伸による延伸倍率は、好ましくは1.0倍~3.0倍であり、より好ましくは1.0倍~2.0倍であり、さらに好ましくは1.0倍~1.5倍である。水中延伸における延伸倍率がこのような範囲であれば、延伸の総倍率を所望の範囲に設定することができ、所望の配向関数を実現することができる。その結果、吸収軸方向に沿った破断が抑制された偏光子を得ることができる。延伸の総倍率(空中補助延伸と水中延伸とを組み合わせた場合の延伸倍率の合計)は、上記のとおり、積層体の元長に対して、例えば3.0倍~4.5倍であり、好ましくは3.0倍~4.0倍であり、より好ましくは3.0倍~3.5倍である。塗布液へのハロゲン化物の添加、空中補助延伸および水中延伸の延伸倍率の調整、および乾燥収縮処理を適切に組み合わせることにより、このような延伸の総倍率であっても許容可能な光学特性を有する偏光子を得ることができる。 The stretching ratio by stretching in water is preferably 1.0 to 3.0 times, more preferably 1.0 to 2.0 times, and even more preferably 1.0 to 1.5 times. .. When the stretching ratio in underwater stretching is in such a range, the total stretching ratio can be set in a desired range, and a desired orientation function can be realized. As a result, it is possible to obtain a polarizing element in which breakage along the absorption axis direction is suppressed. As described above, the total stretching ratio (the total stretching ratio when the aerial auxiliary stretching and the underwater stretching are combined) is, for example, 3.0 to 4.5 times the original length of the laminated body. It is preferably 3.0 times to 4.0 times, and more preferably 3.0 times to 3.5 times. By appropriately combining the addition of a halide to the coating liquid, the adjustment of the stretching ratios of the aerial auxiliary stretching and the underwater stretching, and the drying shrinkage treatment, even the total magnification of such stretching has acceptable optical properties. A modulator can be obtained.
B-2-5.乾燥収縮処理
 上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。
B-2-5. Dry shrinkage treatment The dry shrinkage treatment may be performed by heating the entire zone by heating the zone, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably both are used. By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminated body and produce a polarizing element having an excellent appearance. Specifically, by drying the laminated body along the heating roll, the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material is increased, and the PVA-based resin layer is in a state of being able to withstand shrinkage due to drying, and curling is suppressed. Further, by using the heating roll, the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
 図4は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 4 is a schematic view showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material. For example, one surface of the laminate 200 (for example, thermoplasticity) is arranged. The transport rolls R1 to R6 may be arranged so as to continuously heat only the resin substrate surface).
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like. The temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C. The crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using both the drying with the heating roll and the hot air drying together, it is possible to suppress a steep temperature change between the heating rolls, and it is possible to easily control the shrinkage in the width direction. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of the hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
B-2-6.その他の処理
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
B-2-6. Other Treatments Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
B-3.保護層
 本発明の実施形態においては、保護層の厚みは10μm以下である。保護層の厚みが10μm以下であることにより、偏光板の薄型化にも寄与し得る。上記位相差層付偏光板は保護層の厚みが10μm以下であっても、加熱時のクラック発生が防止され得る。保護層の厚みは、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。保護層の厚みは、例えば1μm以上である。
B-3. Protective layer In the embodiment of the present invention, the thickness of the protective layer is 10 μm or less. When the thickness of the protective layer is 10 μm or less, it can contribute to the thinning of the polarizing plate. The polarizing plate with a retardation layer can prevent cracks from occurring during heating even if the thickness of the protective layer is 10 μm or less. The thickness of the protective layer is preferably 7 μm or less, more preferably 5 μm or less, and further preferably 3 μm or less. The thickness of the protective layer is, for example, 1 μm or more.
 保護層は任意の適切な材料で形成され得る。トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂;(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂;シロキサン系ポリマー等のガラス質系ポリマーが挙げられる。 The protective layer can be formed of any suitable material. Cellulosic resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polynorbornenes, polyolefins, (meth) acrylics Transparent resins such as (meth) acrylics, urethanes, (meth) acrylic urethanes, epoxys, and silicones; thermosetting resins or ultraviolet curable resins; glassy resins such as siloxane polymers Examples include polymers.
 保護層はフィルムであってもよく、塗布膜の固化物であってもよく、硬化物(例えば、光カチオン硬化物)であってもよい。1つの実施形態において、保護層は、熱可塑性(メタ)アクリル系樹脂(以下、(メタ)アクリル系樹脂を単にアクリル系樹脂と称する場合がある)の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。以下、具体的に説明する。 The protective layer may be a film, a solidified coating film, or a cured product (for example, a photocationic cured product). In one embodiment, the protective layer is a solidified epoxy of a coating film of an organic solvent solution of a thermoplastic (meth) acrylic resin (hereinafter, the (meth) acrylic resin may be simply referred to as an acrylic resin). It is composed of at least one selected from the group consisting of a photocationically cured product of a resin and a solidified coating film of an organic solvent solution of an epoxy resin. Hereinafter, a specific description will be given.
B-3-1.熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物
 1つの実施形態においては、保護層は熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。
B-3-1. Solidification of the coating film of the organic solvent solution of the thermoplastic acrylic resin In one embodiment, the protective layer is composed of the solidification of the coating film of the organic solvent solution of the thermoplastic acrylic resin.
B-3-1-1.アクリル系樹脂
 アクリル系樹脂は、ガラス転移温度(Tg)が好ましくは100℃以上である。その結果、保護層のTgが100℃以上となる。アクリル系樹脂のTgが100℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、耐久性に優れたものとなり得る。アクリル系樹脂のTgは、好ましくは110℃以上、より好ましくは115℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、アクリル系樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。アクリル系樹脂のTgがこのような範囲であれば、成形性に優れ得る。
B-3-1-1. Acrylic resin The acrylic resin has a glass transition temperature (Tg) of preferably 100 ° C. or higher. As a result, the Tg of the protective layer becomes 100 ° C. or higher. When the Tg of the acrylic resin is 100 ° C. or higher, the polarizing plate including the protective layer obtained from such a resin can be excellent in durability. The Tg of the acrylic resin is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. On the other hand, the Tg of the acrylic resin is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the acrylic resin is in such a range, the moldability can be excellent.
 アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレート由来の繰り返し単位は、代表的には、下記一般式(1)で表される: As the acrylic resin, any suitable acrylic resin can be adopted as long as it has Tg as described above. The acrylic resin typically contains an alkyl (meth) acrylate as a main component as a monomer unit (repeating unit). As used herein, the term "(meth) acrylic" means acrylic and / or methacryl. Examples of the alkyl (meth) acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. Further, any suitable copolymerization monomer may be introduced into the acrylic resin by copolymerization. The repeating unit derived from alkyl (meth) acrylate is typically represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、Rは、水素原子またはメチル基を示し、Rは、水素原子、あるいは、置換されていてもよい炭素数1~6の脂肪族または脂環式炭化水素基を示す。置換基としては、例えば、ハロゲン、水酸基が挙げられる。アルキル(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシエチル)アクリル酸メチルが挙げられる。一般式(1)において、Rは、好ましくは、水素原子またはメチル基である。したがって、特に好ましいアルキル(メタ)アクリレートは、アクリル酸メチルまたはメタクリル酸メチルである。 In the general formula (1), R 4 represents a hydrogen atom or a methyl group, and R 5 is a hydrogen atom or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms which may be substituted. show. Examples of the substituent include halogens and hydroxyl groups. Specific examples of alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate. Butyl, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, (meth) acrylic Dicyclopentanyl acid, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2, (meth) acrylate 2, 3,4,5,6-pentahydroxyhexyl, (meth) acrylate 2,3,4,5-tetrahydroxypentyl, 2- (hydroxymethyl) methyl acrylate, 2- (hydroxymethyl) ethyl acrylate, 2 -(Hydroxyethyl) Methyl acrylate can be mentioned. In the general formula (1), R 5 is preferably a hydrogen atom or a methyl group. Therefore, a particularly preferred alkyl (meth) acrylate is methyl acrylate or methyl methacrylate.
 アクリル系樹脂は、単一のアルキル(メタ)アクリレート単位のみを含んでいてもよいし、上記一般式(1)におけるRおよびRが異なる複数のアルキル(メタ)アクリレート単位を含んでいてもよい。 Acrylic resins may also include only a single alkyl (meth) acrylate units, even if R 4 and R 5 include a plurality of different alkyl (meth) acrylate unit in the above general formula (1) good.
 アクリル系樹脂におけるアルキル(メタ)アクリレート単位の含有割合は、好ましくは50モル%~98モル%、より好ましくは55モル%~98モル%、さらに好ましくは60モル%~98モル%、特に好ましくは65モル%~98モル%、最も好ましくは70モル%~97モル%である。含有割合が50モル%より少ないと、アルキル(メタ)アクリレート単位に由来して発現される効果(例えば、高い耐熱性、高い透明性)が十分に発揮されないおそれがある。上記含有割合が98モル%よりも多いと、樹脂が脆くて割れやすくなり、高い機械的強度が十分に発揮できず、生産性に劣るおそれがある。 The content ratio of the alkyl (meth) acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, still more preferably 60 mol% to 98 mol%, and particularly preferably. It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol%, the effects expressed from the alkyl (meth) acrylate unit (for example, high heat resistance and high transparency) may not be sufficiently exhibited. If the content ratio is more than 98 mol%, the resin is brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be inferior.
 アクリル系樹脂は、好ましくは、環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。 The acrylic resin preferably has a repeating unit containing a ring structure. Examples of the repeating unit including a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit. Only one type of the repeating unit including the ring structure may be contained in the repeating unit of the acrylic resin, or two or more types may be contained.
 ラクトン環単位は、好ましくは、下記一般式(2)で表される: The lactone ring unit is preferably represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000002
一般式(2)において、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR、RおよびRが異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
Figure JPOXMLDOC01-appb-C000002
In the general formula (2), R 1 , R 2 and R 3 independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom. The acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units having different R 1 , R 2 and R 3 in the above general formula (2). .. An acrylic resin having a lactone ring unit is described in, for example, Japanese Patent Application Laid-Open No. 2008-181078, and the description in this publication is incorporated herein by reference.
 グルタルイミド単位は、好ましくは、下記一般式(3)で表される: The glutarimide unit is preferably represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。 In the general formula (3), R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 13 is an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. The cycloalkyl group of the above, or an aryl group having 6 to 10 carbon atoms is shown. In the general formula (3), preferably R 11 and R 12 are independently hydrogen or methyl groups, and R 13 is a hydrogen, methyl group, butyl group or cyclohexyl group, respectively. More preferably, R 11 is a methyl group, R 12 is a hydrogen, and R 13 is a methyl group. The acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the above general formula (3). .. Examples of the acrylic resin having a glutarimide unit include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Application Laid-Open No. 2006-337493 and Japanese Patent Application Laid-Open No. 2006-337569, and the description of this publication is incorporated herein by reference. Note that the glutaric anhydride units, nitrogen atom substituted by R 13 in the general formula (3), except that the oxygen atom, the above description is applied about the glutarimide units.
 無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。 The structure of the maleic anhydride unit and the maleimide (N-substituted maleimide) unit is specified from the name, so specific description thereof will be omitted.
 アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが100℃未満となる場合があり、得られる保護層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。 The content ratio of the repeating unit including the ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too small, Tg may be less than 100 ° C., and the heat resistance, solvent resistance and surface hardness of the obtained protective layer may be insufficient. If the content is too high, moldability and transparency may be insufficient.
 アクリル系樹脂は、アルキル(メタ)アクリレート単位および環構造を含む繰り返し単位以外の繰り返し単位を含んでいてもよい。そのような繰り返し単位としては、上記の単位を構成する単量体と共重合可能なビニル系単量体由来の繰り返し単位(他のビニル系単量体単位)が挙げられる。他のビニル系単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、N-フェニルマレイミド、メタクリル酸フェニルアミノエチル、スチレン、α-メチルスチレン、p-グリシジルスチレン、p-アミノスチレン、2-スチリル-オキサゾリンなどが挙げられる。これらは、単独で用いてもよく併用してもよい。他のビニル系単量体単位の種類、数、組み合わせ、含有割合等は、目的に応じて適切に設定され得る。 The acrylic resin may contain a repeating unit other than an alkyl (meth) acrylate unit and a repeating unit including a ring structure. Examples of such a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit). Examples of other vinyl-based monomers include acrylic acid, methacrylic acid, crotonic acid, 2- (hydroxymethyl) acrylic acid, 2- (hydroxyethyl) acrylic acid, acrylonitrile, methacrylonitrile, etacrylonitrile, and allyl. Glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Cyclohexylaminoethyl acid, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, α-methylstyrene, p-glycidylstyrene, p-aminostyrene, 2-styryl-oxazoline and the like. These may be used alone or in combination. The type, number, combination, content ratio, etc. of other vinyl-based monomer units can be appropriately set according to the purpose.
 アクリル系樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。 The weight average molecular weight of the acrylic resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, still more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000. The weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
 アクリル系樹脂は、上記の単量体単位を適切に組み合わせて用いて、任意の適切な重合方法により重合され得る。 The acrylic resin can be polymerized by any suitable polymerization method by appropriately combining the above-mentioned monomer units.
 本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する保護層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。 In the embodiment of the present invention, an acrylic resin and another resin may be used in combination. That is, the monomer component constituting the acrylic resin and the monomer component constituting the other resin may be copolymerized, and the copolymer may be used for molding the protective layer described later; the acrylic resin and the other resin. The blend of may be used for forming the protective layer. Examples of other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide. The type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film. For example, a styrene resin (preferably an acrylonitrile-styrene copolymer) can be used in combination as a retardation control agent.
 アクリル系樹脂と他の樹脂とを併用する場合、アクリル系樹脂と他の樹脂とのブレンドにおけるアクリル系樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、アクリル系樹脂が本来有する高い耐熱性、高い透明性が十分に反映できないおそれがある。 When the acrylic resin is used in combination with another resin, the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. By weight%, more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
B-3-2.エポキシ樹脂の光カチオン硬化物
 1つの実施形態においては、保護層は、エポキシ樹脂の光カチオン硬化物で構成される。このような保護層を用いることにより、優れた耐久性と優れた屈曲性とを両立した偏光板および位相差層付偏光板を提供することができる。上記のとおり、保護層が光カチオン硬化物であるため、保護層形成用組成物は光カチオン重合開始剤を含む。光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。得られる光カチオン硬化物である保護層はガラス転移温度が高く、ヨウ素吸着量が低減され得る。そのため、優れた耐久性と優れた屈曲性とを両立し得る偏光板を提供することができる。
B-3-2. Photocationic cured product of epoxy resin In one embodiment, the protective layer is composed of a photocationic cured product of epoxy resin. By using such a protective layer, it is possible to provide a polarizing plate having both excellent durability and excellent flexibility, and a polarizing plate with a retardation layer. As described above, since the protective layer is a photocationic cured product, the composition for forming the protective layer contains a photocationic polymerization initiator. The photocationic polymerization initiator is a photosensitizer having a function of a photoacid generator, and a typical example thereof is an ionic onium salt composed of a cation portion and an anion portion. In this onium salt, the cation part absorbs light and the anion part becomes a source of acid. Ring-opening polymerization of the epoxy group proceeds by the acid generated from this photocationic polymerization initiator. The protective layer, which is the obtained cured photocationic product, has a high glass transition temperature, and the amount of iodine adsorbed can be reduced. Therefore, it is possible to provide a polarizing plate capable of achieving both excellent durability and excellent flexibility.
B-3-2-1.エポキシ樹脂
 エポキシ樹脂としては、任意の適切なエポキシ樹脂を用いることができる。本発明の実施形態においては、好ましくは芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を用いることができる。芳香族骨格としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。好ましくは芳香族骨格としてビフェニル骨格を有するエポキシ樹脂が用いられる。ビフェニル骨格を有するエポキシ樹脂を用いることにより、より優れた耐久性とより優れた屈曲性とを両立する偏光板が提供され得る。以下、代表例として、ビフェニル骨格を有するエポキシ樹脂について詳細に説明する。
B-3-2-1. Epoxy resin As the epoxy resin, any suitable epoxy resin can be used. In the embodiment of the present invention, an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton can be preferably used. Examples of the aromatic skeleton include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. An epoxy resin having a biphenyl skeleton is preferably used as the aromatic skeleton. By using an epoxy resin having a biphenyl skeleton, a polarizing plate having both better durability and better flexibility can be provided. Hereinafter, as a representative example, an epoxy resin having a biphenyl skeleton will be described in detail.
 1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂は、以下の構造を含むエポキシ樹脂である。ビフェニル骨格を有するエポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
(式中、R14~R21は、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す)。
In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin containing the following structure. Only one type of epoxy resin having a biphenyl skeleton may be used, or two or more types may be used in combination.
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 14 to R 21 each independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element).
 R14~R21は、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す。炭素数1~12の直鎖状または分岐状の置換または非置換の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、フェニル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等が挙げられる。炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基としては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等の炭素数1~4のアルキル基が挙げられる。ハロゲン元素としては、好ましくはフッ素および臭素が挙げられる。 R 14 to R 21 independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element. Examples of the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a sec-butyl group. tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, phenyl group, benzyl group, Examples thereof include a methylbenzyl group, a dimethylbenzyl group, a trimethylbenzyl group, a naphthylmethyl group, a phenethyl group, a 2-phenylisopropyl group and the like. The linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 1 to 12 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group. The alkyl group of 4 is mentioned. Preferred halogen elements include fluorine and bromine.
 1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂は下記式で表されるエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000005
(式中、R14~R21は上記の通りであり、nは0~6の整数を表す)。
In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
(In the equation, R 14 to R 21 are as described above, and n represents an integer of 0 to 6).
 1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格のみを有するエポキシ樹脂である。ビフェニル骨格のみを有するエポキシ樹脂を用いることにより、得られる保護層の耐久性がさらに向上し得る。 In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin having only a biphenyl skeleton. By using an epoxy resin having only a biphenyl skeleton, the durability of the obtained protective layer can be further improved.
 1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格以外の化学構造を含んでいてもよい。ビフェニル骨格以外の化学構造としては、例えば、ビスフェノール骨格、脂環式構造、芳香族環構造等が挙げられる。この実施形態においては、ビフェニル骨格以外の化学構造の割合(モル比)はビフェニル骨格よりも少ないことが好ましい。 In one embodiment, the epoxy resin having a biphenyl skeleton may contain a chemical structure other than the biphenyl skeleton. Examples of the chemical structure other than the biphenyl skeleton include a bisphenol skeleton, an alicyclic structure, an aromatic ring structure and the like. In this embodiment, the proportion (molar ratio) of the chemical structure other than the biphenyl skeleton is preferably smaller than that of the biphenyl skeleton.
 ビフェニル骨格を有するエポキシ樹脂としては市販品を用いてもよい。市販品としては、例えば、三菱ケミカル社製、商品名:jER YX4000、jER YX4000H、jER YL6121、jER YL664、jER YL6677、jER YL6810、jER YL7399等が挙げられる。 A commercially available product may be used as the epoxy resin having a biphenyl skeleton. Examples of commercially available products include Mitsubishi Chemical Corporation, trade names: jER YX4000, jER YX4000H, jER YL6121, jER YL664, jER YL6677, jER YL6810, jER YL7399 and the like.
 ビフェニル骨格を有するエポキシ樹脂は、好ましくはガラス転移温度(Tg)が90℃以上である。その結果、保護層のTgが90℃以上となる。ビフェニル骨格を有するエポキシ樹脂のTgが90℃以上であれば、得られる保護層を含む偏光板は、耐久性に優れたものとなりやすい。ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。ビフェニル骨格を有するエポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。 The epoxy resin having a biphenyl skeleton preferably has a glass transition temperature (Tg) of 90 ° C. or higher. As a result, the Tg of the protective layer becomes 90 ° C. or higher. When the Tg of the epoxy resin having a biphenyl skeleton is 90 ° C. or higher, the obtained polarizing plate including the protective layer tends to have excellent durability. The Tg of the epoxy resin having a biphenyl skeleton is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. On the other hand, the Tg of the epoxy resin having a biphenyl skeleton is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the epoxy resin having a biphenyl skeleton is in such a range, the moldability can be excellent.
 ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは100g/当量以上であり、より好ましくは150g/当量以上、さらに好ましくは200g/当量以上である。また、ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは3000g/当量以下であり、より好ましくは2500g/当量以下、さらに好ましくは2000g/当量以下である。ビフェニル骨格を有するエポキシ樹脂のエポキシ当量が上記範囲であることにより、より安定した保護層(残存モノマーが少なく、十分に硬化した保護層)が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K7236に準じて測定することができる。 The epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 100 g / equivalent or more, more preferably 150 g / equivalent or more, still more preferably 200 g / equivalent or more. The epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 3000 g / equivalent or less, more preferably 2500 g / equivalent or less, still more preferably 2000 g / equivalent or less. When the epoxy equivalent of the epoxy resin having a biphenyl skeleton is in the above range, a more stable protective layer (a protective layer having less residual monomer and sufficiently cured) can be obtained. In the present specification, "epoxy equivalent" means "mass of epoxy resin containing 1 equivalent of epoxy group" and can be measured according to JIS K7236.
 本発明の実施形態においては、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とを併用してもよい。すなわち、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド等の熱可塑性樹脂、アクリル系樹脂およびオキセタン系樹脂等の硬化型樹脂が挙げられる。好ましくは、アクリル系樹脂およびオキセタン系樹脂が用いられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂は、位相差制御剤として併用され得る。 In the embodiment of the present invention, an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton may be used in combination with another resin. That is, a blend of an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton and another resin may be used for molding the protective layer. Examples of other resins include thermoplastic resins such as styrene resins, polyethylenes, polypropylenes, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, polyphenylene oxides, polyacetals, polyimides, and polyetherimides, acrylic resins and Examples thereof include curable resins such as oxetane resins. Preferably, an acrylic resin and an oxetane resin are used. The type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film. For example, the styrene resin can be used in combination as a retardation control agent.
 アクリル系樹脂としては、任意の適切なアクリル系樹脂を用いることができる。例えば、(メタ)アクリル系化合物としては、例えば、分子内に一個の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「単官能(メタ)アクリル系化合物」ともいう)、分子内に二個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「多官能(メタ)アクリル系化合物」ともいう)が挙げられる。これらの(メタ)アクリル系化合物は、単独で用いてもよく、2種類以上組み合わせて用いてもよい。これらのアクリル系樹脂については、例えば特開2019-168500号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As the acrylic resin, any suitable acrylic resin can be used. For example, as the (meth) acrylic compound, for example, a (meth) acrylic compound having one (meth) acryloyl group in the molecule (hereinafter, also referred to as “monofunctional (meth) acrylic compound”), intramolecular. Examples thereof include (meth) acrylic compounds having two or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylic compounds”). These (meth) acrylic compounds may be used alone or in combination of two or more. These acrylic resins are described in, for example, Japanese Patent Application Laid-Open No. 2019-168500. The entire description of the publication is incorporated herein by reference.
 オキセタン樹脂としては、分子内にオキセタニル基を1個以上有する任意の適切な化合物が用いられる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル等の分子内にオキセタニル基を1個有するオキセタン化合物;3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル等の分子内にオキセタニル基を2個以上有するオキセタン化合物;等が挙げられる。これらオキセタン樹脂は1種のみを用いてもよく、2種以上を組み合わせてもよい。 As the oxetane resin, any suitable compound having one or more oxetanyl groups in the molecule is used. For example, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl). Oxetane compound having one oxetane group in the molecule such as oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl; 3-ethyl- 3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 4,4'-bis [(3-ethyl) -3-Oxetane) methoxymethyl] An oxetane compound having two or more oxetane groups in a molecule such as biphenyl; and the like. Only one kind of these oxetane resins may be used, or two or more kinds thereof may be combined.
 オキセタン樹脂としては、好ましくは3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が用いられる。これらのオキセタン樹脂は、容易に入手可能であり、希釈性(低粘度)、相溶性に優れ得る。 The oxetane resin is preferably 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl). Oxetane, 3-Ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl, 3-ethyl-3 {[(3-ethyloxetane-3-yl) Methyl] methyl} oxetane and the like are used. These oxetane resins are easily available and can be excellent in dilutability (low viscosity) and compatibility.
 1つの実施形態においては、相溶性や接着性の点から、好ましくは分子量500以下であり、室温(25℃)で液状のオキセタン樹脂が用いられる。1つの実施形態においては、好ましくは分子内に2個以上のオキセタニル基を含有するオキセタン化合物、分子内に1個のオキセタニル基と1個の(メタ)アクリロイル基または1個のエポキシ基を含有するオキセタン化合物が用いられ、より好ましくは3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチルが用いられる。これらのオキセタン樹脂を用いることにより、保護層の硬化性および耐久性が向上し得る。 In one embodiment, an oxetane resin having a molecular weight of 500 or less and liquid at room temperature (25 ° C.) is preferably used from the viewpoint of compatibility and adhesiveness. In one embodiment, it preferably contains an oxetane compound containing two or more oxetanel groups in the molecule, one oxetaneyl group and one (meth) acryloyl group or one epoxy group in the molecule. Oxetane compounds are used, more preferably 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic. Acid (3-ethyloxetane-3-yl) methyl is used. By using these oxetane resins, the curability and durability of the protective layer can be improved.
 オキセタン樹脂としては、市販品を用いてもよい。具体的には、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-212、アロンオキセタンOXT-221(いずれも東亞合成社製)を用いることができる。好ましくはアロンオキセタンOXT-101およびアロンオキセタンOXT-221を用いることができる。 As the oxetane resin, a commercially available product may be used. Specifically, Aron Oxetane OXT-101, Aron Oxetane OXT-121, Aron Oxetane OXT-212, and Aron Oxetane OXT-221 (all manufactured by Toagosei Co., Ltd.) can be used. Preferably, Aron Oxetane OXT-101 and Aron Oxetane OXT-221 can be used.
 芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とを併用する場合、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とのブレンドにおける芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、保護層の耐熱性および偏光子との十分な密着性とが得られないおそれがある。 When an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton is used in combination with another resin, the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton is used. The content of the epoxy resin having at least one selected from the group consisting of the aromatic skeleton and the hydrogenated aromatic skeleton in the blend of the epoxy resin having at least one selected and the other resin is preferable. It is 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight, still more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizing element may not be obtained.
 ビフェニル骨格を有するエポキシ樹脂とオキセタン樹脂とを併用する場合、ビフェニル骨格を有するエポキシ系樹脂とオキセタン樹脂の合計量100重量部に対して、オキセタン樹脂の含有量は好ましくは1重量部~50重量部、より好ましくは5重量部~45重量部、さらに好ましくは10重量部~40重量部である。上記範囲とすることにより、硬化性が向上し、保護層と偏光子との密着性も向上し得る。 When the epoxy resin having a biphenyl skeleton and the oxetane resin are used in combination, the content of the oxetane resin is preferably 1 part by weight to 50 parts by weight with respect to the total amount of 100 parts by weight of the epoxy resin having a biphenyl skeleton and the oxetane resin. , More preferably 5 parts by weight to 45 parts by weight, still more preferably 10 parts by weight to 40 parts by weight. Within the above range, the curability can be improved and the adhesion between the protective layer and the polarizing element can be improved.
B-3-2-2.光カチオン重合開始剤
 光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。光カチオン重合開始剤としては、紫外線等の光照射により芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を硬化させることができる任意の適切な化合物を用いることができる。光カチオン重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
B-3-2-2. Photocationic polymerization initiator The photocationic polymerization initiator is a photosensitive agent having a function of a photoacid generator, and a typical example thereof is an ionic onium salt composed of a cation portion and an anion portion. In this onium salt, the cation part absorbs light and the anion part becomes a source of acid. Ring-opening polymerization of the epoxy group proceeds by the acid generated from this photocationic polymerization initiator. As the photocationic polymerization initiator, any suitable compound capable of curing an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton by irradiation with light such as ultraviolet rays. Can be used. Only one type of photocationic polymerization initiator may be used, or two or more types may be used in combination.
 光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe-ヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等が挙げられる。好ましくは、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤が用いられる。 Examples of the photocationic polymerization initiator include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, and the like. 4-Chlorphenyl diphenyl sulfonium hexafluorophosphate, 4-chlorphenyl diphenyl sulfonium hexafluoroantimonate, bis [4- (diphenyl sulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenyl sulfonio) phenyl ] Sulfoxybishexafluoroantimonate, (2,4-cyclopentadiene-1-yl) [(1-methylethyl) benzene] -Fe-hexafluorophosphate, diphenyliodonium hexafluoroantimonate and the like. Preferably, a triphenylsulfonium salt-based hexafluoroantimonate type photocationic polymerization initiator and a diphenyliodonium salt-based hexafluoroantimonate type photocationic polymerization initiator are used.
 光カチオン重合開始剤としては市販品を用いてもよい。市販品としては、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプのSP-170(ADEKA社製)、CPI-101A(サンアプロ社製)、WPAG-1056(和光純薬工業社製)、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプのWPI-116(和光純薬工業社製)等が挙げられる。 A commercially available product may be used as the photocationic polymerization initiator. Commercially available products include triphenylsulfonium salt-based hexafluoroantimonate type SP-170 (manufactured by ADEKA), CPI-101A (manufactured by San-Apro), WPAG-1056 (manufactured by Wako Pure Chemical Industries, Ltd.), and diphenyliodonium salt-based. Hexafluoroantimonate type WPI-116 (manufactured by Wako Pure Chemical Industries, Ltd.) and the like can be mentioned.
 光カチオン重合開始剤の含有量は、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂100重量部に対して、好ましくは0.1重量部~3重量部であり、より好ましくは0.25重量部~2重量部である。光カチオン重合開始剤の含有量が0.1重量部未満の場合、光(紫外線)を照射しても十分に硬化しない場合がある。 The content of the photocationic polymerization initiator is preferably from 0.1 part by weight with respect to 100 parts by weight of the epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton. It is 3 parts by weight, more preferably 0.25 parts by weight to 2 parts by weight. When the content of the photocationic polymerization initiator is less than 0.1 parts by weight, it may not be sufficiently cured even when irradiated with light (ultraviolet rays).
B-3-3.エポキシ樹脂の有機溶媒溶液の塗布膜の固化物
 1つの実施形態においては、保護層はエポキシ樹脂の有機溶媒溶液の塗布膜の固化物で構成される。
B-3-3. Solidification of the coating film of the organic solvent solution of the epoxy resin In one embodiment, the protective layer is composed of the solidification of the coating film of the organic solvent solution of the epoxy resin.
B-3-3-1.エポキシ樹脂
 この実施形態において、エポキシ樹脂は、好ましくはガラス転移温度(Tg)が90℃以上である。その結果、保護層のTgが90℃以上となる。エポキシ樹脂のTgが90℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、耐久性に優れたものとなりやすい。エポキシ樹脂のTgは、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、エポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。エポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。
B-3-3-1. Epoxy resin In this embodiment, the epoxy resin preferably has a glass transition temperature (Tg) of 90 ° C. or higher. As a result, the Tg of the protective layer becomes 90 ° C. or higher. When the Tg of the epoxy resin is 90 ° C. or higher, the polarizing plate containing the protective layer obtained from such a resin tends to have excellent durability. The Tg of the epoxy resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. On the other hand, the Tg of the epoxy resin is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the epoxy resin is in such a range, the moldability can be excellent.
 エポキシ樹脂としては、上記のようなTgを有する限りにおいて任意の適切なエポキシ樹脂が採用され得る。エポキシ樹脂は、代表的には、分子構造内にエポキシ基を有する樹脂をいう。エポキシ樹脂としては、好ましくは分子構造内に芳香族環を有するエポキシ樹脂が用いられる。芳香族環を有するエポキシ樹脂を用いることにより、より高いTgを有するエポキシ樹脂が得られ得る。分子構造内に芳香族環を有するエポキシ樹脂における芳香族環としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。2種以上のエポキシ樹脂を用いる場合、芳香族環を含むエポキシ樹脂と、芳香族環を含まないエポキシ樹脂を組み合わせて用いてもよい。 As the epoxy resin, any suitable epoxy resin can be adopted as long as it has Tg as described above. The epoxy resin typically refers to a resin having an epoxy group in its molecular structure. As the epoxy resin, an epoxy resin having an aromatic ring in the molecular structure is preferably used. By using an epoxy resin having an aromatic ring, an epoxy resin having a higher Tg can be obtained. Examples of the aromatic ring in the epoxy resin having an aromatic ring in the molecular structure include a benzene ring, a naphthalene ring, a fluorene ring and the like. Only one type of epoxy resin may be used, or two or more types may be used in combination. When two or more kinds of epoxy resins are used, an epoxy resin containing an aromatic ring and an epoxy resin not containing an aromatic ring may be used in combination.
 分子構造内に芳香族環を有するエポキシ樹脂としては、具体的には、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、レゾルシンジグリシジルエーテル型エポキシ樹脂、ヒドロキノンジグリシジルエーテル型エポキシ樹脂、テレフタル酸ジグリシジルエステル型エポキシ樹脂、ビスフェノキシエタノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスフェノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスクレゾールフルオレンジグリシジルエーテル型エポキシ樹脂等の2つのエポキシ基を有するエポキシ樹脂;ノボラック型エポキシ樹脂、N,N,O-トリグリシジル-P-又は-m-アミノフェノール型エポキシ樹脂、N,N,O-トリグリシジル-4-アミノ-m-又は-5-アミノ-o-クレゾール型エポキシ樹脂、1,1,1-(トリグリシジルオキシフェニル)メタン型エポキシ樹脂等の3つのエポキシ基を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂(例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、メタキシレンジアミン型)等の4つのエポキシ基を有するエポキシ樹脂等が挙げられる。また、ヘキサヒドロ無水フタル酸型エポキシ樹脂、テトラヒドロ無水フタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、p-オキシ安息香酸型等のグリシジルエステル型エポキシ樹脂を用いてもよい。 Specific examples of the epoxy resin having an aromatic ring in its molecular structure include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, and resorcin diglycidyl ether. Type epoxy resin, hydroquinone diglycidyl ether type epoxy resin, terephthalic acid diglycidyl ester type epoxy resin, bisphenoxyethanol full orange glycidyl ether type epoxy resin, bisphenol full orange glycidyl ether type epoxy resin, biscresol full orange glycidyl ether type epoxy resin, etc. Epoxy resin having two epoxy groups; novolak type epoxy resin, N, N, O-triglycidyl-P- or -m-aminophenol type epoxy resin, N, N, O-triglycidyl-4-amino-m -Or-5-Amino-o-cresol type epoxy resin, 1,1,1- (triglycidyloxyphenyl) methane type epoxy resin and other epoxy resins with three epoxy groups; glycidylamine type epoxy resin (eg, diamino) Examples thereof include epoxy resins having four epoxy groups such as diphenylmethane type, diaminodiphenylsulfone type, and metaxylene diamine type). Further, a glycidyl ester type epoxy resin such as a hexahydrophthalic anhydride type epoxy resin, a tetrahydrophthalic anhydride type epoxy resin, a dimer acid type epoxy resin, and a p-oxybenzoic acid type may be used.
 エポキシ樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。 The weight average molecular weight of the epoxy resin is preferably 1,000,000 to 2000000, more preferably 5000 to 1,000,000, still more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000. The weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh). Tetrahydrofuran can be used as the solvent.
 エポキシ樹脂のエポキシ当量は、好ましくは1000g/当量以上であり、より好ましくは3000g/当量以上、さらに好ましくは5000g/当量以上である。また、エポキシ樹脂のエポキシ当量は、好ましくは30000g/当量以下であり、より好ましくは25000g/当量以下、さらに好ましくは20000g/当量以下である。エポキシ当量が上記範囲であることにより、より安定した保護層が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K7236に準じて測定することができる。 The epoxy equivalent of the epoxy resin is preferably 1000 g / equivalent or more, more preferably 3000 g / equivalent or more, and further preferably 5000 g / equivalent or more. The epoxy equivalent of the epoxy resin is preferably 30,000 g / equivalent or less, more preferably 25,000 g / equivalent or less, and further preferably 20,000 g / equivalent or less. When the epoxy equivalent is in the above range, a more stable protective layer can be obtained. In the present specification, "epoxy equivalent" means "mass of epoxy resin containing 1 equivalent of epoxy group" and can be measured according to JIS K7236.
 本発明の実施形態においては、エポキシ樹脂と他の樹脂とを併用してもよい。すなわち、エポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド等の熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂は、位相差制御剤として併用され得る。 In the embodiment of the present invention, the epoxy resin and another resin may be used in combination. That is, a blend of the epoxy resin and another resin may be used for molding the protective layer. Examples of other resins include thermoplastic resins such as styrene resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide. The type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired characteristics of the obtained film. For example, the styrene resin can be used in combination as a retardation control agent.
 エポキシ樹脂と他の樹脂とを併用する場合、エポキシ樹脂と他の樹脂とのブレンドにおけるエポキシ樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、保護層の耐熱性および偏光子との十分な密着性とが得られないおそれがある。 When the epoxy resin is used in combination with another resin, the content of the epoxy resin in the blend of the epoxy resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. It is more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizing element may not be obtained.
B-3-4.保護層の構成および特性
 1つの実施形態において、保護層は、上記のとおり、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。このような保護層であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。保護層の厚みは、上記のとおり10μm以下である。また、理論的には明らかではないが、このような保護層は、他の熱硬化性樹脂または活性エネルギー線硬化性樹脂(例えば、紫外線硬化性樹脂)の硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができるという利点を有する。さらに、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板を実現することができる。
B-3-4. Configuration and Characteristics of Protective Layer In one embodiment, the protective layer is a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, a photocationic cured product of an epoxy resin, and an organic solvent solution of an epoxy resin, as described above. It is composed of at least one selected from the group consisting of solidified coating films. With such a protective layer, the thickness can be significantly reduced as compared with the extruded film. The thickness of the protective layer is 10 μm or less as described above. Further, although it is not theoretically clear, such a protective layer shrinks during film molding as compared with a cured product of other thermosetting resin or active energy ray curable resin (for example, ultraviolet curable resin). It has the advantage that deterioration of the film itself can be suppressed and adverse effects on the polarizing plate (polarizer) caused by the residual monomer or the like can be suppressed because the film itself is small and does not contain the residual monomer or the like. Further, it has an advantage that it is excellent in humidification durability because it has a smaller hygroscopicity and moisture permeability than a solidified water-based coating film such as an aqueous solution or an aqueous dispersion. As a result, it is possible to realize a polarizing plate having excellent durability, which can maintain optical characteristics even in a heated and humidified environment.
 保護層のTgは、アクリル系樹脂およびエポキシ樹脂についてそれぞれ説明したとおりである。 The Tg of the protective layer is as described for the acrylic resin and the epoxy resin, respectively.
 保護層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmであることをいう。面内位相差Re(550)は、より好ましくは0nm~5nmであり、さらに好ましくは0nm~3nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。保護層のRe(550)およびRth(550)がこのような範囲であれば、当該保護層を含む偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。なお、Re(550)は、23℃における波長550nmの光で測定したフィルムの面内位相差である。Re(550)は、式:Re(550)=(nx-ny)×dによって求められる。Rth(550)は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。Rth(550)は、式:Rth(550)=(nx-nz)×dによって求められる。ここで、nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、nzは厚み方向の屈折率であり、dはフィルムの厚み(nm)である。 The protective layer is preferably substantially optically isotropic. As used herein, "substantially optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −20 nm to +10 nm. Say something. The in-plane retardation Re (550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm. The phase difference Rth (550) in the thickness direction is more preferably −5 nm to +5 nm, further preferably -3 nm to +3 nm, and particularly preferably −2 nm to +2 nm. When Re (550) and Rth (550) of the protective layer are in such a range, it is possible to prevent adverse effects on the display characteristics when the polarizing plate containing the protective layer is applied to an image display device. Re (550) is an in-plane phase difference of the film measured with light having a wavelength of 550 nm at 23 ° C. Re (550) is obtained by the formula: Re (550) = (nx-ny) × d. Rth (550) is a phase difference in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C. Rth (550) is obtained by the formula: Rth (550) = (nx-nz) × d. Here, nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and ny is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction). It is the refractive index, nz is the refractive index in the thickness direction, and d is the thickness (nm) of the film.
 保護層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。 The higher the light transmittance at 380 nm when the thickness of the protective layer is 3 μm, the more preferable. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. If the light transmittance is in such a range, the desired transparency can be ensured. The light transmittance can be measured, for example, by a method according to ASTM-D-1003.
 保護層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側偏光板に使用する場合でも、表示内容が良好に視認できる。 The lower the haze of the protective layer, the more preferable. Specifically, the haze is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less. When the haze is 5% or less, a good clear feeling can be given to the film. Further, even when the polarizing plate on the visual recognition side of the image display device is used, the displayed contents can be visually recognized satisfactorily.
 保護層の厚み3μmにおけるYIは、好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.23以下、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
   YI=[(1.28X-1.06Z)/Y]×100
The YI at a thickness of 3 μm of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient. The YI is obtained from, for example, the tristimulus values (X, Y, Z) of the color obtained by measurement using a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory). , Can be calculated by the following equation.
YI = [(1.28X-1.06Z) / Y] × 100
 保護層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、保護層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。 The b value (a measure of hue according to the Munsell color system of the hunter) at a thickness of 3 μm of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear. For the b value, for example, a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
 保護層(例えば、塗布膜の固化物または光カチオン硬化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤はアクリル系樹脂の重合時に添加されてもよく、フィルム形成時に溶液に添加されてもよい。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。 The protective layer (for example, a solidified product of a coating film or a cured photocationic product) may contain any suitable additive depending on the purpose. Specific examples of the additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like. The additive may be added at the time of polymerizing the acrylic resin, or may be added to the solution at the time of film formation. The type, number, combination, amount of additive, etc. of the additive can be appropriately set according to the purpose.
 保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、保護層と偏光子との密着性を高めることができる。また、保護層には、ハードコート層が形成されていてもよい。なお、ハードコート層が形成される場合、保護層(例えば、塗布膜の固化物)の厚みとハードコート層の厚みとの合計が10μm以下となるようハードコート層が形成され得る。ハードコート層は、保護層が視認側偏光板の視認側の保護層として用いられる場合に形成され得る。易接着層およびハードコート層の両方が形成される場合、代表的には、これらはそれぞれ保護層の異なる側に形成され得る。 An easy-adhesion layer may be formed on the polarizing element side of the protective layer. The easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizing element can be enhanced. Further, a hard coat layer may be formed on the protective layer. When the hard coat layer is formed, the hard coat layer can be formed so that the total thickness of the protective layer (for example, the solidified coating film) and the thickness of the hard coat layer is 10 μm or less. The hardcourt layer can be formed when the protective layer is used as a protective layer on the visible side of the polarizing plate on the visible side. If both the easy-adhesion layer and the hardcourt layer are formed, typically they can be formed on different sides of the protective layer, respectively.
C.第1の位相差層
 第1の位相差層20は、上記のとおり、液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化および軽量化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が第1の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
C. First Phase Difference Layer The first phase difference layer 20 is an orientation-solidified layer of a liquid crystal compound as described above. By using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be significantly increased as compared with the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller. As a result, it is possible to further reduce the thickness and weight of the polarizing plate with a retardation layer. As used herein, the term "aligned solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, the rod-shaped liquid crystal compound is typically oriented in a state of being aligned in the slow axis direction of the first retardation layer (homogeneous orientation).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by crosslinking, but these are non-liquid crystal. Therefore, the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the first retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、より好ましくは50℃~100℃であり、さらに好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystal properties differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and even more preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US5211877), EP66137 (US43884553), WO93 / 22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光板10の表面に転写され得る。別の実施形態においては、基材は第2の保護層13であり得る。この場合には転写工程が省略され、配向固化層(第1の位相差層)の形成から連続してロールトゥロールにより積層が行われ得るので、生産性がさらに向上する。 Orientation of liquid crystal compound In the solidified layer, the surface of a predetermined base material is subjected to an orientation treatment, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state. In one embodiment, the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizing plate 10. In another embodiment, the substrate may be the second protective layer 13. In this case, the transfer step is omitted, and the stacking can be continuously performed by roll-to-roll from the formation of the oriented solidification layer (first retardation layer), so that the productivity is further improved.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 As the alignment treatment, any appropriate orientation treatment can be adopted. Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an orthorhombic vapor deposition method and a photoalignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the substrate.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound oriented as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the oriented solidified layer are described in Japanese Patent Application Laid-Open No. 2006-163343. The description of this publication is incorporated herein by reference.
 配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が第1の位相差層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。 Another example of the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation. In the discotic liquid crystal compound, typically, the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the first retardation layer. When the discotic liquid crystal compound is substantially vertical, the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °. A discotic liquid crystal compound generally has a cyclic mother nucleus such as benzene, 1,3,5-triazine, or calixarene at the center of a molecule, and has a linear alkyl group, an alkoxy group, or a substituted benzoyl. A liquid crystal compound having a disk-shaped molecular structure in which an oxy group or the like is radially substituted as its side chain. As a typical example of a discotic liquid crystal, C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivative, triphenylene derivative, tolucene derivative, phthalocyanine derivative and B.I. Research report by Kohne et al., Angew. Chem. Cyclohexane derivatives described in Vol. 96, p. 70 (1984), and J. Mol. M. Research report by Lehn et al., J. Mol. Chem. Soc. Chem. Commun. , 1794 (1985), J. Mol. Research report by Zhang et al., J. Mol. Am. Chem. Soc. Examples thereof include the aza-crown-based and phenylacetylene-based macrocycles described in Vol. 116, p. 2655 (1994). Further specific examples of the discotic liquid crystal compound include the compounds described in JP-A-2006-133652, JP-A-2007-108732, and JP-A-2010-244038. The above documents and publications are incorporated herein by reference.
 1つの実施形態においては、第1の位相差層20は、図1および図2に示すように液晶化合物の配向固化層の単一層である。第1の位相差層20が液晶化合物の配向固化層の単一層で構成される場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 In one embodiment, the first retardation layer 20 is a single layer of the oriented solidification layer of the liquid crystal compound as shown in FIGS. 1 and 2. When the first retardation layer 20 is composed of a single layer of the oriented solidification layer of the liquid crystal compound, the thickness thereof is preferably 0.5 μm to 7 μm, more preferably 1 μm to 5 μm. By using the liquid crystal compound, it is possible to realize an in-plane phase difference equivalent to that of the resin film with a thickness much thinner than that of the resin film.
 第1の位相差層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、第1の位相差層が配向固化層の単一層である場合にはλ/4板として機能し得る。この場合、第1の位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 The first retardation layer typically shows a relationship in which the refractive index characteristic is nx> ny = nz. The first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and functions as a λ / 4 plate when the first retardation layer is a single layer of an oriented solidification layer. Can be. In this case, the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 130 nm to 160 nm. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effect of the present invention.
 第1の位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the first retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
 第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, and may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measured light. In one embodiment, the first retardation layer exhibits reverse dispersion wavelength characteristics. In this case, Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
 第1の位相差層20の遅相軸と偏光子11の吸収軸とのなす角度θは、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、上記のように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。 The angle θ formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing element 11 is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about. It is 45 °. If the angle θ is in such a range, by using the λ / 4 plate as the first retardation layer as described above, very excellent circularly polarized light characteristics (as a result, very excellent antireflection characteristics). A polarizing plate with a retardation layer can be obtained.
 別の実施形態においては、第1の位相差層20は、図3に示すように第1の配向固化層21と第2の配向固化層22との積層構造を有し得る。この場合、第1の配向固化層21および第2の配向固化層22のいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。したがって、第1の配向固化層21および第2の配向固化層22の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、第1の配向固化層21がλ/2板として機能し、第2の配向固化層22がλ/4板として機能する場合、第1の配向固化層21の厚みは例えば2.0μm~3.0μmであり、第2の配向固化層22の厚みは例えば1.0μm~2.0μmである。この場合、第1の配向固化層の面内位相差Re(550)は、好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。第2の配向固化層の面内位相差Re(550)は、単一層の配向固化層に関して上記で説明したとおりである。第1の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。第2の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。第1の配向固化層および第2の配向固化層を構成する液晶化合物、第1の配向固化層および第2の配向固化層の形成方法、光学特性等については、単一層の配向固化層に関して上記で説明したとおりである。 In another embodiment, the first retardation layer 20 may have a laminated structure of the first alignment solidification layer 21 and the second alignment solidification layer 22 as shown in FIG. In this case, either one of the first oriented solidifying layer 21 and the second oriented solidifying layer 22 may function as a λ / 4 plate, and the other may function as a λ / 2 plate. Therefore, the thicknesses of the first oriented solidifying layer 21 and the second oriented solidifying layer 22 can be adjusted so as to obtain the desired in-plane phase difference of the λ / 4 plate or the λ / 2 plate. For example, when the first oriented solidified layer 21 functions as a λ / 2 plate and the second oriented solidified layer 22 functions as a λ / 4 plate, the thickness of the first oriented solidified layer 21 is, for example, 2.0 μm or more. It is 3.0 μm, and the thickness of the second oriented solidification layer 22 is, for example, 1.0 μm to 2.0 μm. In this case, the in-plane retardation Re (550) of the first oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm. The in-plane retardation Re (550) of the second oriented solidified layer is as described above with respect to the single oriented solidified layer. The angle formed by the slow axis of the first oriented solidification layer and the absorption axis of the polarizing element is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, still more preferably about 15 °. be. The angle formed by the slow axis of the second oriented solidification layer and the absorption axis of the polarizing element is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. be. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics. The liquid crystal compounds constituting the first oriented solidified layer and the second oriented solidified layer, the method for forming the first oriented solidified layer and the second oriented solidified layer, the optical properties, and the like are described above with respect to the single oriented solidified layer. As explained in.
D.第2の位相差層
 第2の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
D. Second Phase Difference Layer The second phase difference layer may be a so-called positive C plate having a refractive index characteristic of nz> nz = ny as described above. By using the positive C plate as the second retardation layer, it is possible to satisfactorily prevent reflection in the oblique direction, and it is possible to widen the viewing angle of the antireflection function. In this case, the retardation Rth (550) in the thickness direction of the second retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, still more preferably −90 nm to −200 nm, and particularly preferably. It is -100 nm to -180 nm. Here, "nx = ny" includes not only the case where nx and ny are exactly equal to each other, but also the case where nx and ny are substantially equal to each other. That is, the in-plane retardation Re (550) of the second retardation layer can be less than 10 nm.
 nz>nx=nyの屈折率特性を有する第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 The second retardation layer having a refractive index characteristic of nz> nx = ny can be formed of any suitable material. The second retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642. In this case, the thickness of the second retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, and even more preferably 0.5 μm to 5 μm.
E.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
E. Conductive layer or isotropic base material with conductive layer The conductive layer is an arbitrary suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みは、好ましくは10nm以上である。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The thickness of the conductive layer is preferably 10 nm or more.
 導電層は、上記基材から第1の位相差層(または、存在する場合には第2の位相差層)に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として第1の位相差層(または、存在する場合には第2の位相差層)に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。 Even if the conductive layer is transferred from the base material to the first retardation layer (or the second retardation layer if present) and the conductive layer alone is used as a constituent layer of the polarizing plate with the retardation layer. Often, it may be laminated on the first retardation layer (or the second retardation layer if present) as a laminate with the substrate (base material with a conductive layer). Preferably, the substrate is optically isotropic, and therefore the conductive layer can be used as an isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みは、例えば20μm以上である。 Any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material). As the material constituting the isotropic base material, for example, a material having a resin having no conjugate system such as a norbornene resin or an olefin resin as a main skeleton, or an acrylic resin having a cyclic structure such as a lactone ring or a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic substrate is formed, the expression of the phase difference due to the orientation of the molecular chains can be suppressed to be small. The thickness of the isotropic substrate is preferably 50 μm or less, more preferably 35 μm or less. The thickness of the isotropic substrate is, for example, 20 μm or more.
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive part and an insulating part can be formed. As a result, electrodes can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. As the patterning method, any suitable method may be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
F.画像表示装置
 上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。1つの実施形態においては、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。このような画像表示装置においては、本発明の位相差層付偏光板の効果が顕著となる。
F. Image display device The polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer. Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). The image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to E on the visual recognition side thereof. The polarizing plate with a retardation layer is laminated so that the retardation layer is on the image display cell side (for example, a liquid crystal cell, an organic EL cell, an inorganic EL cell) (so that the polarizing element is on the visual recognition side). In one embodiment, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理(処理条件:55W・min/m)を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13.5μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が40.5%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が3.0倍となるように一軸延伸を行った(水中延伸処理:水中延伸処理における延伸倍率は1.25倍)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
 このようにして、樹脂基材上に厚み7.4μmの偏光子を形成した。
[Example 1]
1. 1. Preparation of A Polarizer As a thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used. One side of the resin base material was subjected to corona treatment (treatment conditions: 55 W · min / m 2 ).
100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. 13 parts by weight of potassium iodide was added to the part to prepare a PVA aqueous solution (coating liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13.5 μm, and a laminate was prepared.
The obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizing element finally obtained is charged. It was immersed for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 40.5% (staining treatment).
Then, it was immersed in a cross-linked bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) having a liquid temperature of 62 ° C., the rolls having different peripheral speeds are subjected to the longitudinal direction (longitudinal direction). ) Was uniaxially stretched so that the total stretch ratio was 3.0 times (underwater stretching treatment: the stretching ratio in the underwater stretching treatment was 1.25 times).
Then, the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment). The shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment was 2%.
In this way, a polarizing element having a thickness of 7.4 μm was formed on the resin substrate.
2.偏光板の作製
 水系ポリウレタン樹脂(第一工業製薬社製、商品名:スーパーフレックス210-R)を、純水およびイソプロピルアルコールの混合溶媒に溶解させ、得られた溶解液を上記で得られた樹脂基材上に形成された偏光子の表面に塗布した。次いで、60℃で乾燥させて溶媒を除去し、厚み0.15μmの易接着層を形成した。メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)20部をメチルエチルケトン80部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、易接着層にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成されるアクリル系樹脂層を形成した。アクリル系樹脂層の厚みは2μmであり、Tgは116℃であった。次いで、ジメチロール-トリシクロデカンジアクリレート(共栄社化学製、商品名:ライトアクリレートDCP-A)70重量部、イソボルニルアクリレート(共栄社化学製、商品名:ライトアクリレートIB-XA)20重量部、1,9-ノナンジオールジアクリレート(共栄社化学製、商品名:ライトアクリレート1.9NA-A)10重量部、および、光重合開始剤(BASF社製、商品名:イルガキュア907)3重量部を、溶媒中で混合し、塗工液を得た。得られた塗工液を、硬化後の厚みが3μmになるように上記保護層上に塗布した。次いで、溶媒を乾燥させ、高圧水銀ランプを用いて積算光量300mJ/cmとなるよう紫外線を窒素雰囲気下にて照射して、ハードコート層を形成した。ハードコート層の厚みは3μmであった。次いで、後の位相差層との貼り合わせ作業を安定して行うため、粘着剤層付ポリエチレンテレフタレート(PET)フィルムの粘着剤層を保護層に貼り合わせ、補強した。その後、樹脂基材を剥離して、粘着剤層付PETフィルム/保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子の構成を有する偏光板を得た。
2. 2. Preparation of Polarizing Plate A water-based polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name: Superflex 210-R) is dissolved in a mixed solvent of pure water and isopropyl alcohol, and the obtained solution is the resin obtained above. It was applied to the surface of the polarizing element formed on the substrate. Then, it was dried at 60 ° C. to remove the solvent, and an easy-adhesion layer having a thickness of 0.15 μm was formed. 20 parts of an acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Kasei Co., Ltd., trade name: B728) was dissolved in 80 parts of methyl ethyl ketone to obtain an acrylic resin solution (20%). This acrylic resin solution was applied to the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 5 minutes to form an acrylic resin layer formed as a solidified product of the coating film. The thickness of the acrylic resin layer was 2 μm, and the Tg was 116 ° C. Next, 70 parts by weight of dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate DCP-A), 20 parts by weight of isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate IB-XA), 1 , 9-Nonandiol diacrylate (Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate 1.9NA-A) 10 parts by weight, and photopolymerization initiator (BASF Co., Ltd., trade name: Irgacure 907) 3 parts by weight as a solvent. It was mixed in and a coating liquid was obtained. The obtained coating liquid was applied onto the protective layer so that the thickness after curing was 3 μm. Next, the solvent was dried, and a hard coat layer was formed by irradiating with an ultraviolet ray under a nitrogen atmosphere so that the integrated light amount was 300 mJ / cm 2 using a high-pressure mercury lamp. The thickness of the hard coat layer was 3 μm. Next, in order to stably perform the later bonding work with the retardation layer, the pressure-sensitive adhesive layer of the polyethylene terephthalate (PET) film with a pressure-sensitive adhesive layer was bonded to the protective layer and reinforced. After that, the resin base material is peeled off to obtain a polarizing plate having a structure of PET film with adhesive layer / protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy-adhesive layer / polarizing element. Obtained.
3.位相差層を構成する第1の配向固化層および第2の配向固化層の作製
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000006
ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて100mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率分布を有していた。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率分布を有していた。
3. 3. Preparation of First Oriented Solidified Layer and Second Aligned Solidified Layer Constituting the Phase Difference Layer With 10 g of polymerizable liquid crystal (manufactured by BASF: trade name "Pariocolor LC242", represented by the following formula) showing a nematic liquid crystal phase. , 3 g of a photopolymerization initiator (manufactured by BASF: trade name "Irgacure 907") for the polymerizable liquid crystal compound was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating liquid).
Figure JPOXMLDOC01-appb-C000006
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The direction of the alignment treatment was set to be 15 ° when viewed from the visual recognition side with respect to the direction of the absorption axis of the polarizing element when the polarizing plate was attached. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 100 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film. The thickness of the liquid crystal oriented solidified layer A was 2.5 μm, and the in-plane retardation Re (550) was 270 nm. Further, the liquid crystal oriented solidified layer A had a refractive index distribution of nx> ny = nz.
On the PET film in the same manner as above, except that the coating thickness was changed and the orientation processing direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis. The liquid crystal oriented solidified layer B was formed. The thickness of the liquid crystal oriented solidified layer B was 1.5 μm, and the in-plane retardation Re (550) was 140 nm. Further, the liquid crystal oriented solidified layer B had a refractive index distribution of nx> ny = nz.
4.位相差層付偏光板の作製
 上記2.で得られた偏光板の偏光子表面に、上記3.で得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、上記2.で用いた紫外線硬化型接着剤(厚み1.0μm)を介して行った。次いで、粘着剤層付PETフィルムを剥離した。このようにして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは19μmであった。
4. Fabrication of polarizing plate with retardation layer 2. On the polarizing element surface of the polarizing plate obtained in 3. above. The liquid crystal oriented solidified layer A and the liquid crystal oriented solidified layer B obtained in 1 above were transferred in this order. At this time, the angle between the absorption axis of the polarizing element and the slow axis of the oriented solidification layer A is 15 °, and the angle between the absorption axis of the polarizing element and the slow axis of the oriented solidification layer B is 75 °. Transferred (bonded). In addition, each transfer (bonding) is performed in the above 2. This was done via the ultraviolet curable adhesive (thickness 1.0 μm) used in. Then, the PET film with the pressure-sensitive adhesive layer was peeled off. In this way, the protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy-adhesive layer / polarizing element / adhesive layer / retardation layer (first oriented solidified layer / adhesive layer / first A polarizing plate with a retardation layer having the structure of 2 oriented solidified layers) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 19 μm.
[実施例2~4]
 ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に厚み7.4μmの偏光子を形成した。
 得られた偏光子/樹脂基材の構成を有する積層体を用いたこと以外は実施例1と同様にして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは19μmであった。
[Examples 2 to 4]
A polarizing element having a thickness of 7.4 μm was formed on the resin substrate in the same manner as in Example 1 except that dyeing baths having different iodine concentrations (weight ratio of iodine to potassium iodide = 1: 7) were used.
Protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used. A polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 19 μm.
[実施例5~8]
 水中延伸処理の延伸倍率を1.46倍として総延伸倍率を3.5倍としたこと、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に厚み6.7μmの偏光子を形成した。
 得られた偏光子/樹脂基材の構成を有する積層体を用いたこと以外は実施例1と同様にして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは18μmであった。
[Examples 5 to 8]
The stretching ratio of the underwater stretching treatment was 1.46 times, the total stretching ratio was 3.5 times, and dyeing baths with different iodine concentrations (weight ratio of iodine and potassium iodide = 1: 7) were used. Except for the above, in the same manner as in Example 1, a polarizing element having a thickness of 6.7 μm was formed on the resin substrate.
Protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used. A polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 18 μm.
[実施例9]
 メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)に代えて、ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂(ラクトン環単位30モル%)を用いたこと以外は実施例7と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは18μmであった。
[Example 9]
Except for the fact that instead of the acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Kasei Co., Ltd., trade name: B728), an acrylic resin (lactone ring unit 30 mol%) which is a polymethyl methacrylate having a lactone ring unit was used. A polarizing plate with a retardation layer was obtained in the same manner as in Example 7. The total thickness of the obtained polarizing plate with a retardation layer was 18 μm.
[実施例10]
 メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)に代えて、グルタルイミド環単位を有するポリメチルメタクリレートであるアクリル系樹脂(グルタルイミド環単位4モル%)を用いたこと以外は実施例9と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは18μmであった。
[Example 10]
Instead of the acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Kasei Co., Ltd., trade name: B728), an acrylic resin (glutarimide ring unit 4 mol%) which is a polymethyl methacrylate having a glutarimide ring unit was used. A polarizing plate with a retardation layer was obtained in the same manner as in Example 9 except for the above. The total thickness of the obtained polarizing plate with a retardation layer was 18 μm.
[実施例11]
 実施例9において、アクリル系樹脂溶液に代えて、エポキシ樹脂(三菱ケミカル株式会社製、商品名:jER(登録商標) YX6954BH30、重量平均分子量:36000、エポキシ当量:13000)20部をメチルエチルケトン80部に溶解した、エポキシ樹脂溶液(20%)を用いて、塗布膜の固化物として構成される保護層を形成した。具体的には、このエポキシ樹脂溶液を易接着層にワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥して、保護層を形成した。保護層の厚みは3μmであり、Tgは130℃であった。このようにして、保護層を形成したこと、偏光子に易接着層を形成しなかったこと、および、ハードコート層を形成しなかったこと以外は実施例9と同様にして、位相差層付偏光板7を得た。得られた位相差層付偏光板の総厚みは16μmであった。
[Example 11]
In Example 9, instead of the acrylic resin solution, 20 parts of an epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX6954BH30, weight average molecular weight: 36000, epoxy equivalent: 13000) was added to 80 parts of methyl ethyl ketone. The dissolved epoxy resin solution (20%) was used to form a protective layer composed of a solidified coating film. Specifically, this epoxy resin solution was applied to the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 3 minutes to form a protective layer. The thickness of the protective layer was 3 μm, and the Tg was 130 ° C. With a retardation layer in the same manner as in Example 9, except that the protective layer was formed, the easily adhesive layer was not formed on the polarizing element, and the hard coat layer was not formed. A polarizing plate 7 was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
[実施例12]
 以下のようにして保護層を形成したこと、偏光子に易接着層を形成しなかったこと、および、ハードコート層を形成しなかったこと以外は実施例7と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは16μmであった。
 ビフェニル骨格を有するエポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX4000)15部をメチルエチルケトン83.8部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)1.2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を、易接着層にワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥した。次いで、高圧水銀ランプを用いて積算光量が600mJ/cmとなるよう紫外線を照射し、保護層を形成した。保護層の厚みは3μmであった。
[Example 12]
Polarized light with a retardation layer in the same manner as in Example 7 except that the protective layer was formed as follows, the easily adhesive layer was not formed on the polarizing element, and the hard coat layer was not formed. I got a board. The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
An epoxy resin solution was obtained by dissolving 15 parts of an epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX4000) in 83.8 parts of methyl ethyl ketone. To the obtained epoxy resin solution, 1.2 parts of a photocationic polymerization initiator (manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P) was added to obtain a protective layer forming composition. The obtained protective layer forming composition was applied to the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 3 minutes. Then, using a high-pressure mercury lamp, ultraviolet rays were irradiated so that the integrated light amount was 600 mJ / cm 2, and a protective layer was formed. The thickness of the protective layer was 3 μm.
[実施例13]
 ビフェニル骨格を有するエポキシ樹脂に代えて、ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) 828)を用いたこと以外は実施例12と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは16μmであった。
[Example 13]
A polarizing plate with a retardation layer is used in the same manner as in Example 12 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER® 828) is used instead of the epoxy resin having a biphenyl skeleton. Got The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
[実施例14]
 ビフェニル骨格を有するエポキシ樹脂に代えて水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)を用いたこと以外は実施例12と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは16μmであった。
[Example 14]
Polarizing with a retardation layer in the same manner as in Example 12 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. I got a board. The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
[実施例15]
 水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)15部とオキセタン樹脂(東亞合成社製、商品名:アロンオキセタン(登録商標) OXT-221)10重量部と、をメチルエチルケトン73部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を用いた以外は実施例12と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは16μmであった。
[Example 15]
15 parts of hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX8000) and 10 parts by weight of oxetane resin (manufactured by Toa Synthetic Co., Ltd., trade name: Aron Oxetane (registered trademark) OXT-221) , Was dissolved in 73 parts of methyl ethyl ketone to obtain an epoxy resin solution. To the obtained epoxy resin solution, two parts of a photocationic polymerization initiator (manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P) was added to obtain a protective layer forming composition. A polarizing plate with a retardation layer was obtained in the same manner as in Example 12 except that the obtained protective layer forming composition was used. The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
[実施例16]
 保護層の厚みを8μmとした以外は実施例15と同様にして位相差層付偏光板を得た。
[Example 16]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 15 except that the thickness of the protective layer was 8 μm.
[実施例17]
 保護層の厚みを10μmとした以外は実施例15と同様にして位相差層付偏光板を得た。
[Example 17]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 15 except that the thickness of the protective layer was 10 μm.
[実施例18]
 紫外線硬化型エポキシ系樹脂(ダイセル社製、製品名「セロキサイド2021P」)を用いたこと以外は実施例12と同様にして保護層(硬化物)を形成した。具体的には、当該エポキシ系樹脂95重量%および光重合開始剤(CPI-100P、サンアプロ社製)5重量%を配合した組成物を易接着層上に塗布し、空気雰囲気下で高圧水銀ランプを用いて積算光量500mJ/cmで紫外線を照射し、硬化層(保護層)を形成した。この保護層を用いたこと以外は実施例7と同様にして位相差層付偏光板を作製した。偏光板の厚みは16μmであった。
[Example 18]
A protective layer (cured product) was formed in the same manner as in Example 12 except that an ultraviolet curable epoxy resin (manufactured by Daicel Corporation, product name “Selokiside 2021P”) was used. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro) is applied onto the easy-adhesion layer, and a high-pressure mercury lamp is applied under an air atmosphere. The cured layer (protective layer) was formed by irradiating ultraviolet rays with an integrated light amount of 500 mJ / cm 2. A polarizing plate with a retardation layer was produced in the same manner as in Example 7 except that this protective layer was used. The thickness of the polarizing plate was 16 μm.
[実施例19~22]
 水中延伸の延伸倍率を1.67倍としたこと(結果として、延伸の総倍率を4.0倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に厚み6.2μmの偏光子を形成した。
 得られた偏光子/樹脂基材の構成を有する積層体を用いたこと以外は実施例1と同様にして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは18μmであった。
[Examples 19 to 22]
The stretch ratio of stretching in water was 1.67 times (as a result, the total ratio of stretching was 4.0 times), and the dyeing baths with different iodine concentrations (weight ratio of iodine and potassium iodide = 1). : A decoder having a thickness of 6.2 μm was formed on the resin substrate in the same manner as in Example 1 except that 7) was used.
Protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used. A polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 18 μm.
[実施例23~26]
 水中延伸の延伸倍率を1.88倍とし、総延伸倍率を4.5倍としたこと、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に厚み6.0μmの偏光子を形成した。
 得られた偏光子/樹脂基材の構成を有する積層体を用いたこと以外は実施例1と同様にして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは17.0μmであった。
[Examples 23 to 26]
The stretching ratio for stretching in water was 1.88 times, the total stretching ratio was 4.5 times, and dyeing baths with different iodine concentrations (weight ratio of iodine and potassium iodide = 1: 7) were used. Except for the above, a polarizing element having a thickness of 6.0 μm was formed on the resin substrate in the same manner as in Example 1.
Protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used. A polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 17.0 μm.
(比較例1~4)
 水中延伸の延伸倍率を2.29倍とし、総延伸倍率を5.5倍としたこと、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に厚み5.5μmの偏光子を形成した。
 得られた偏光子/樹脂基材の構成を有する積層体を用いたこと以外は実施例1と同様にして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは16μmであった。
(Comparative Examples 1 to 4)
The stretching ratio for stretching in water was 2.29 times, the total stretching ratio was 5.5 times, and dyeing baths with different iodine concentrations (weight ratio of iodine and potassium iodide = 1: 7) were used. Except for the above, a polarizing element having a thickness of 5.5 μm was formed on the resin substrate in the same manner as in Example 1.
Protective layer (hard coat layer / acrylic resin layer (solidified coating film)) / easy in the same manner as in Example 1 except that the obtained laminate having the structure of the polarizing element / resin base material was used. A polarizing plate with a retardation layer having a structure of an adhesive layer / a polarizing element / an adhesive layer / a retardation layer (a first alignment solidification layer / an adhesion layer / a second alignment solidification layer) was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 16 μm.
(比較例5)
 水中延伸処理の延伸倍率を2.29倍として総延伸倍率を5.5倍としたこと、および、延伸浴の液温を70℃としたこと以外は実施例1と同様にして、厚み5.5μmの偏光子を得た。得られた偏光子の表面に厚み40μmのアクリル系樹脂フィルムを紫外線硬化型接着剤を介して積層して保護層とした以外は実施例1と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは53μmであった。
(Comparative Example 5)
The thickness was 5. A 5 μm polarizing element was obtained. A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that an acrylic resin film having a thickness of 40 μm was laminated on the surface of the obtained polarizing element via an ultraviolet curable adhesive to form a protective layer. The total thickness of the obtained polarizing plate with a retardation layer was 53 μm.
(比較例6)
 保護層として、厚さ20μmのアクリル系フィルムを用いた以外は、比較例2と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは33μmであった。
(Comparative Example 6)
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that an acrylic film having a thickness of 20 μm was used as the protective layer. The total thickness of the obtained polarizing plate with a retardation layer was 33 μm.
(比較例7)
 実施例11と同様にして保護層を形成したこと以外は比較例2と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは15μmであった。
(Comparative Example 7)
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 11. The total thickness of the obtained polarizing plate with a retardation layer was 15 μm.
(比較例8)
 実施例12と同様にして保護層を形成したこと以外は比較例2と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは15μmであった。
(Comparative Example 8)
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 12. The total thickness of the obtained polarizing plate with a retardation layer was 15 μm.
(比較例9)
 実施例15と同様にして保護層を形成したこと以外は比較例2と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは15μmであった。
(Comparative Example 9)
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 2 except that the protective layer was formed in the same manner as in Example 15. The total thickness of the obtained polarizing plate with a retardation layer was 15 μm.
[評価]
 実施例および比較例で得られた位相差層付偏光板を用いて以下の評価を行った。結果を表1に示す。
(1)厚み
 偏光子の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。厚み算出に用いた計算波長範囲は400nm~500nmで、屈折率は1.53とした。また、保護層の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用い、計算波長範囲および屈折率は適宜選択して測定した。易接着層の厚みは、走査型電子顕微鏡(SEM)観察から求めた。110μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)PVAの面内位相差(Re)
 実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、位相差測定装置(王子計測機器社製 製品名「KOBRA-31X100/IR」)を用いて、波長1000nmにおけるPVAの面内位相差(Rpva)を評価した(説明した原理にしたがい、波長1000nmにおけるトータルの面内位相差から、ヨウ素の面内位相差(Ri)を引いた数値である)。吸収端波長は600nmとした。
(3)PVAの複屈折(Δn)
 上記(2)で測定したPVAの面内位相差を、偏光子の厚みで割ることによりPVAの複屈折(Δn)を算出した。
(4)配向関数
 実施例および比較例に用いた偏光子について、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名:「Frontier」)を用い、偏光された赤外光を測定光として、偏光子表面の全反射減衰分光(ATR:attenuated total reflection)測定を行った。偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とした。配向関数の算出は以下の手順で行った。入射させる偏光された赤外光(測定光)は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を垂直(⊥)および平行(//)に配置した状態で各々の吸光度スペクトルを測定した。得られた吸光度スペクトルから、(3330cm-1強度)を参照とした(2941cm-1強度)Iを算出した。Iは、測定光の偏光方向に対し偏光子の延伸方向を垂直(⊥)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。また、I//は、測定光の偏光方向に対し偏光子の延伸方向を平行(//)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。ここで、(2941cm-1強度)は、吸光度スペクトルのボトムである、2770cm-1と2990cm-1をベースラインとしたときの2941cm-1の吸光度であり、(3330cm-1強度)は、2990cm-1と3650cm-1をベースラインとしたときの3330cm-1の吸光度である。得られたIおよびI// を用い、式1に従って配向関数fを算出した。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH-)の振動起因の吸収といわれている。また、3330cm-1のピークは、PVAの水酸基の振動起因の吸収といわれている。
   (式1)f=(3<cosθ>-1)/2
        =(1-D)/[c(2D+1)]
但し
c=(3cosβ-1)/2
で、上記のように2941cm-1を用いた場合、β=90°⇒f=-2×(1-D)/(2D+1)である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I)/(I//
:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
(5)クラック発生率
 実施例および比較例で得られた位相差層付偏光板を10mm×10mmサイズに切り出した。切り出した位相差層付偏光板を厚み20μmのアクリル系粘着剤層を介してガラス板(厚み1.1mm)に貼り付けた。ガラス板に貼り付けたサンプルを100度のオーブン内に120時間置いた後、目視にて偏光子の吸収軸方向(MD方向)のクラック発生の有無を目視で確認した。この評価を3枚の位相差層付偏光板を用いて行い、クラックの発生した位相差層付偏光板の数を評価した。
(6)耐折り曲げ性
 実施例および比較例で得られた位相差層付偏光板を50mm×100mmサイズに切り出した。このとき、偏光子の吸収軸方向が長辺方向となるように切り出した。屈曲試験機(ユアサシステム社製、製品名:DLDM111LH)を用いて、室温で、切り出した位相差層付偏光板を折り曲げ試験に供した。具体的には、位相差層付偏光板を、位相差層側が内側、保護層または保護層上に形成されたハードコート層が外側となるように、吸収軸方向に、回転数60rpmの条件で屈曲径を1mmφ(Rが0.5mm)に設定し、5万回位相差層付偏光板を折り曲げた。次いで、試験後の位相差層付偏光板のクラックの有無を目視で確認し、クラックが確認できなかったものを良好、クラックか確認されたものを不可とした。なお、折り曲げ方向が偏光子の透過軸方向である。
(7)単体透過率および偏光度
 実施例および比較例に用いた偏光子について、紫外可視分光光度計(日本分光社製、製品名「V-7100」)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光子のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
 得られたTpおよびTcから、下記式により偏光度Pを求めた。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
(8)突き刺し強度
 実施例および比較例に用いた偏光子/熱可塑性樹脂基材の積層体から偏光子を剥離し、ニードルを装着した圧縮試験機(カトーテック社製、製品名「NDG5」ニードル貫通力測定仕様)に載置し、室温(23℃±3℃)環境下、突き刺し速度0.33cm/秒で突き刺し、偏光子が割れたときの強度を破断強度(突き刺し強度)とした。評価値は試料片10個の破断強度を測定し、その平均値を用いた。なお、ニードルは、先端径1mmφ、0.5Rのものを用いた。測定する偏光子については、直径約11mmの円形の開口部を有する治具を偏光子の両面から挟んで固定し、開口部の中央にニードルを突き刺して試験を行った。
[evaluation]
The following evaluations were performed using the polarizing plates with a retardation layer obtained in Examples and Comparative Examples. The results are shown in Table 1.
(1) Thickness The thickness of the polarizing element was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000"). The calculated wavelength range used for the thickness calculation was 400 nm to 500 nm, and the refractive index was 1.53. The thickness of the protective layer was measured by using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000"), and the calculated wavelength range and refractive index were appropriately selected and measured. The thickness of the easy-adhesion layer was determined by observation with a scanning electron microscope (SEM). The thickness exceeding 110 μm was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) In-plane phase difference (Re) of PVA
A phase difference measuring device (product name manufactured by Oji Measuring Instruments Co., Ltd.) is used for the polarizing element (polarizer unit) obtained by peeling and removing the resin base material from the laminate of the polarizing element / thermoplastic resin base material obtained in Examples and Comparative Examples. KOBRA-31X100 / IR ”) was used to evaluate the in-plane phase difference (Rpva) of PVA at a wavelength of 1000 nm (according to the explained principle, from the total in-plane phase difference at a wavelength of 1000 nm, the in-plane phase difference of iodine. (Ri) is subtracted). The absorption edge wavelength was set to 600 nm.
(3) Birefringence of PVA (Δn)
The birefringence (Δn) of PVA was calculated by dividing the in-plane phase difference of PVA measured in (2) above by the thickness of the substituent.
(4) Orientation function The spectroscopes used in the examples and comparative examples are polarized infrared rays using a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name: "Frontier"). Using light as the measurement light, total reflection spectroscopy (ATR) measurement on the surface of the extruder was performed. Germanium was used as the crystallite to which the polarizing element was brought into close contact, and the incident angle of the measured light was 45 °. The orientation function was calculated according to the following procedure. The incident polarized infrared light (measurement light) is polarized light (s-polarized light) that vibrates parallel to the surface to which the germanium crystal sample is in close contact, and the extension direction of the substituent is perpendicular to the polarization direction of the measurement light (measurement light). ⊥) and the absorption spectra of each were measured in parallel (//). From the obtained absorbance spectrum was calculated and a reference to (3330cm -1 intensity) (2941cm -1 intensity) I. I is a stretching direction of the polarizer perpendicular to the polarization direction of the measuring light (⊥) obtained from the resulting absorbance spectrum when placed (2941cm -1 intensity) / (3330cm -1 strength). Further, I // is obtained from the absorbance spectrum obtained when the stretching direction of the splitter is arranged parallel (//) with respect to the polarization direction of the measurement light (2941 cm -1 intensity) / (3330 cm -1 intensity). Is. Here, (2941cm -1 strength) is the bottom of the absorption spectrum, the absorbance of 2941cm -1 when the 2770Cm -1 and 2990cm -1 were the baseline, (3330cm -1 strength), 2990Cm - 1 and 3650 cm -1 which is the absorbance of 3330cm -1 when the baseline. Using the obtained I and I // , the orientation function f was calculated according to Equation 1. When f = 1, it is completely oriented, and when f = 0, it is random. Further, the peak of 2941 cm -1 is said to be absorption caused by vibration of the main chain (-CH 2-) of PVA in the polarizing element. The peak of 3330 cm -1 is said to be absorbed due to the vibration of the hydroxyl group of PVA.
(Equation 1) f = (3 <cos 2 θ> -1) / 2
= (1-D) / [c (2D + 1)]
However, c = (3cos 2 β-1) / 2
Then, when 2941 cm -1 is used as described above, β = 90 ° ⇒ f = -2 × (1-D) / (2D + 1).
θ: Angle of molecular chain with respect to stretching direction β: Angle of transition dipole moment with respect to molecular chain axis D = (I ) / (I // )
I : Absorption intensity when the polarization direction of the measurement light is perpendicular to the stretching direction of the polarizing element I // : Absorption intensity when the polarization direction of the measurement light and the stretching direction of the polarizing element are parallel (5) Crack occurrence rate The polarizing plates with a retardation layer obtained in Examples and Comparative Examples were cut out to a size of 10 mm × 10 mm. The cut-out polarizing plate with a retardation layer was attached to a glass plate (thickness 1.1 mm) via an acrylic pressure-sensitive adhesive layer having a thickness of 20 μm. After the sample attached to the glass plate was placed in an oven at 100 degrees for 120 hours, the presence or absence of cracks in the absorption axis direction (MD direction) of the polarizing element was visually confirmed. This evaluation was performed using three polarizing plates with a retardation layer, and the number of polarizing plates with a retardation layer in which cracks were generated was evaluated.
(6) Bending resistance The polarizing plates with a retardation layer obtained in Examples and Comparative Examples were cut out to a size of 50 mm × 100 mm. At this time, the polarizing element was cut out so that the absorption axis direction was the long side direction. Using a bending tester (manufactured by Yuasa System Co., Ltd., product name: DLDM111LH), the cut polarizing plate with a retardation layer was subjected to a bending test at room temperature. Specifically, the polarizing plate with a retardation layer is placed at a rotation speed of 60 rpm in the absorption axis direction so that the retardation layer side is on the inside and the protective layer or the hard coat layer formed on the protective layer is on the outside. The bending diameter was set to 1 mmφ (R is 0.5 mm), and the polarizing plate with a retardation layer was bent 50,000 times. Next, the presence or absence of cracks in the polarizing plate with a retardation layer after the test was visually confirmed, and those in which no cracks could be confirmed were regarded as good, and those in which cracks were confirmed were regarded as unacceptable. The bending direction is the transmission axis direction of the polarizing element.
(7) Single-unit transmittance and polarization degree The single-unit transmittance Ts, measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V-7100") for the polarizing elements used in Examples and Comparative Examples. The parallel transmittance Tp and the orthogonal transmittance Tc were defined as Ts, Tp and Tc of the spectrometers, respectively. These Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor.
From the obtained Tp and Tc, the degree of polarization P was determined by the following formula.
Polarization degree P (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
(8) Puncture strength A compression tester (manufactured by Kato Tech Co., Ltd., product name "NDG5" needle) in which the stator is peeled off from the laminate of the stator / thermoplastic resin base material used in the examples and comparative examples, and a needle is attached. It was placed on the penetrating force measurement specification) and pierced at a piercing speed of 0.33 cm / sec under a room temperature (23 ° C ± 3 ° C) environment, and the strength when the polarizing element was broken was defined as the breaking strength (piercing strength). As the evaluation value, the breaking strength of 10 sample pieces was measured, and the average value thereof was used. The needle used had a tip diameter of 1 mmφ and 0.5R. The polarizing element to be measured was fixed by sandwiching a jig having a circular opening having a diameter of about 11 mm from both sides of the polarizing element, and a needle was pierced into the center of the opening to perform a test.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなように、実施例1~26の位相差層付偏光板は加熱処理に供された場合であってもクラックの発生が抑制されていた。また、折り曲げ時の耐久性にも優れるものであった。 As is clear from Table 1, the polarizing plates with retardation layers of Examples 1 to 26 suppressed the generation of cracks even when they were subjected to heat treatment. In addition, it was also excellent in durability at the time of bending.
 本発明の位相差層付偏光板は、画像表示装置に好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used for an image display device.
 10   偏光板
 11   偏光子
 12   第1の保護層
 13   第2の保護層
 20   位相差層
100   位相差層付偏光板
101   位相差層付偏光板
102   位相差層付偏光板
10 Polarizing plate 11 Polarizer 12 First protective layer 13 Second protective layer 20 Phase difference layer 100 Polarizing plate with retardation layer 101 Polarizing plate with retardation layer 102 Polarizing plate with retardation layer 102

Claims (10)

  1.  二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有し、
     該位相差層が液晶化合物の配向固化層であり、
     該保護層の厚みが10μm以下であり、
     該偏光子が単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす、位相差層付偏光板。
       y<-0.011x+0.525     (1)
    It has a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, a polarizing plate including a protective layer arranged on one side of the polarizing element, and a retardation layer.
    The retardation layer is an orientation-solidified layer of a liquid crystal compound, and is
    The thickness of the protective layer is 10 μm or less.
    A polarizing plate with a retardation layer that satisfies the following formula (1) when the polarizing element has a single transmittance of x% and the birefringence of the polyvinyl alcohol-based resin is y.
    y <-0.011x + 0.525 (1)
  2.  二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有し、
     該位相差層が液晶化合物の配向固化層であり、
     該保護層の厚みが10μm以下であり、
     該偏光子が単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす、位相差層付偏光板。
       z<-60x+2875        (2)
    It has a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, a polarizing plate including a protective layer arranged on one side of the polarizing element, and a retardation layer.
    The retardation layer is an orientation-solidified layer of a liquid crystal compound, and is
    The thickness of the protective layer is 10 μm or less.
    A polarizing plate with a retardation layer that satisfies the following formula (2) when the polarizing element has a single transmittance of x% and the in-plane retardation of the polyvinyl alcohol-based resin film is znm.
    z <-60x + 2875 (2)
  3.  二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有し、
     該位相差層が液晶化合物の配向固化層であり、
     該保護層の厚みが10μm以下であり、
     該偏光子が、その単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす、位相差層付偏光板。
       f<-0.018x+1.11     (3)
    It has a polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, a polarizing plate including a protective layer arranged on one side of the polarizing element, and a retardation layer.
    The retardation layer is an orientation-solidified layer of a liquid crystal compound, and is
    The thickness of the protective layer is 10 μm or less.
    A polarizing plate with a retardation layer that satisfies the following formula (3) when the single-unit transmittance of the polarizing element is x% and the orientation function of the polyvinyl alcohol-based resin is f.
    f <-0.018x + 1.11 (3)
  4.  総厚みが30μm以下である、請求項1から3のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 3, wherein the total thickness is 30 μm or less.
  5.  前記偏光子の厚みが10μm以下である、請求項1から4のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 4, wherein the polarizing element has a thickness of 10 μm or less.
  6.  前記偏光子の単体透過率が40.0%以上であり、かつ、偏光度が99.0%以上である、請求項1から5のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 5, wherein the polarizing element has a single transmittance of 40.0% or more and a degree of polarization of 99.0% or more.
  7.  前記保護層が熱可塑性(メタ)アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている、請求項1から6のいずれかに記載の位相差層付偏光板。 The protective layer is selected from the group consisting of a solidified coating film of an organic solvent solution of a thermoplastic (meth) acrylic resin, a photocationically cured product of an epoxy resin, and a solidified coating film of an organic solvent solution of an epoxy resin. The polarizing plate with a retardation layer according to any one of claims 1 to 6, which is composed of at least one type.
  8.  前記熱可塑性(メタ)アクリル系樹脂が、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つの繰り返し単位を有する、請求項7に記載の位相差層付偏光板。 7. The thermoplastic (meth) acrylic resin has at least one repeating unit selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit. The above-mentioned polarizing plate with a retardation layer.
  9.  前記保護層が芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の光カチオン硬化物である、請求項7に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 7, wherein the protective layer is a photocationically cured product of an epoxy resin having at least one selected from the group consisting of an aromatic skeleton and a hydrogenated aromatic skeleton.
  10.  請求項1から9のいずれかに記載の位相差層付偏光板を含む、画像表示装置。 An image display device including the polarizing plate with a retardation layer according to any one of claims 1 to 9.
PCT/JP2021/022774 2020-06-26 2021-06-16 Retardation-layer-equipped polarizing plate and image display device using same WO2021261344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227044734A KR20230028728A (en) 2020-06-26 2021-06-16 Polarizing plate with retardation layer and image display device using the same
JP2022531848A JPWO2021261344A1 (en) 2020-06-26 2021-06-16
CN202180045429.0A CN115804264A (en) 2020-06-26 2021-06-16 Polarizing plate with phase difference layer and image display device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-110628 2020-06-26
JP2020110628 2020-06-26
JP2020-133459 2020-08-06
JP2020133459 2020-08-06

Publications (1)

Publication Number Publication Date
WO2021261344A1 true WO2021261344A1 (en) 2021-12-30

Family

ID=79281280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022774 WO2021261344A1 (en) 2020-06-26 2021-06-16 Retardation-layer-equipped polarizing plate and image display device using same

Country Status (5)

Country Link
JP (1) JPWO2021261344A1 (en)
KR (1) KR20230028728A (en)
CN (1) CN115804264A (en)
TW (1) TW202204945A (en)
WO (1) WO2021261344A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798019B (en) * 2022-03-09 2023-04-01 友達光電股份有限公司 Display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291173A (en) * 2005-03-16 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film and manufacturing method thereof
JP2016071350A (en) * 2014-09-30 2016-05-09 住友化学株式会社 Method of measuring strength of polarizing film, and polarizing plate
WO2016093277A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for producing polarizing film, and polarizing film
JP2017003954A (en) * 2015-06-12 2017-01-05 住友化学株式会社 Polarizing film and polarizing plate including the same
WO2017010218A1 (en) * 2015-07-16 2017-01-19 東海精密工業株式会社 Polarizable molded body
JP2017062517A (en) * 2017-01-12 2017-03-30 日東電工株式会社 Polarizing film with retardation layer, and image display device
JP2017182017A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Polarizing plate, method for producing polarizing film, and method for producing polarizing plate
JP2017187731A (en) * 2016-03-30 2017-10-12 住友化学株式会社 Manufacturing methods for stretched film and polarizing film
WO2018180649A1 (en) * 2017-03-28 2018-10-04 日本ゼオン株式会社 Phase difference plate, multilayer phase difference plate, polarizing plate, image display device and polymerizable compound
WO2018235630A1 (en) * 2017-06-22 2018-12-27 日東電工株式会社 Laminate, and method for producing laminate
WO2019160033A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Image display device and photosensitive adhesive-attached circularly polarizing plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291173A (en) * 2005-03-16 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film and manufacturing method thereof
JP2016071350A (en) * 2014-09-30 2016-05-09 住友化学株式会社 Method of measuring strength of polarizing film, and polarizing plate
WO2016093277A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for producing polarizing film, and polarizing film
JP2017003954A (en) * 2015-06-12 2017-01-05 住友化学株式会社 Polarizing film and polarizing plate including the same
WO2017010218A1 (en) * 2015-07-16 2017-01-19 東海精密工業株式会社 Polarizable molded body
JP2017187731A (en) * 2016-03-30 2017-10-12 住友化学株式会社 Manufacturing methods for stretched film and polarizing film
JP2017182017A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Polarizing plate, method for producing polarizing film, and method for producing polarizing plate
JP2017062517A (en) * 2017-01-12 2017-03-30 日東電工株式会社 Polarizing film with retardation layer, and image display device
WO2018180649A1 (en) * 2017-03-28 2018-10-04 日本ゼオン株式会社 Phase difference plate, multilayer phase difference plate, polarizing plate, image display device and polymerizable compound
WO2018235630A1 (en) * 2017-06-22 2018-12-27 日東電工株式会社 Laminate, and method for producing laminate
WO2019160033A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Image display device and photosensitive adhesive-attached circularly polarizing plate

Also Published As

Publication number Publication date
JPWO2021261344A1 (en) 2021-12-30
CN115804264A (en) 2023-03-14
TW202204945A (en) 2022-02-01
KR20230028728A (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2021220729A1 (en) Polarizing plate and polarizing plate with optical functional layer
CN112840245A (en) Polarizing plate with phase difference layer and image display device using same
TW202017989A (en) Polarizing plate with phase difference layer and image display device using the same wherein the polarizing plate is thin, excellent in handling ability, and excellent in optical characteristics
WO2021261344A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
WO2021065107A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
TW202017988A (en) Polarizing plate with phase difference layer and image display device using the same wherein the polarizing plate is thin, excellent in handling capability, and excellent in optical characteristics
TW202018340A (en) Polarizing plate with phase difference layers and image display device using the same capable of thinning the protective layer of the polarizer
JP2019066882A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
CN111045129B (en) Polarizing plate with retardation layer and image display device using the same
CN112840251B (en) Polarizing plate with phase difference layer and image display device using same
JP2021177230A (en) Polarizing plate and polarizing plate with retardation layer
JP2021177229A (en) Polarizing plate and polarizing plate with optical function layer
WO2021261276A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
WO2021220741A1 (en) Polarizing plate and polarizing plate with retardation layer
WO2021261277A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
CN111045130A (en) Polarizing plate with retardation layer and image display device using the same
WO2021220740A1 (en) Polarizing plate and polarizing plate with optical functional layer
WO2020166505A1 (en) Polarizing plate, manufacturing method thereof, and image display device using said polarizing plate
WO2022034774A1 (en) Retardation layer-equipped polarizing plate and image display device using same
KR20230145479A (en) Polarizer with retardation layer and method for manufacturing the same, and image display device using the polarizer with retardation layer
KR20230152586A (en) Laminate and image display device using the same
JP2020115225A (en) Polarizing plate with retardation layer, and image display device using the same
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828727

Country of ref document: EP

Kind code of ref document: A1