WO2021220741A1 - Polarizing plate and polarizing plate with retardation layer - Google Patents

Polarizing plate and polarizing plate with retardation layer Download PDF

Info

Publication number
WO2021220741A1
WO2021220741A1 PCT/JP2021/014707 JP2021014707W WO2021220741A1 WO 2021220741 A1 WO2021220741 A1 WO 2021220741A1 JP 2021014707 W JP2021014707 W JP 2021014707W WO 2021220741 A1 WO2021220741 A1 WO 2021220741A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective layer
polarizing plate
polarizer
resin
Prior art date
Application number
PCT/JP2021/014707
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 三輪
卓史 上条
大介 濱本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020110540A external-priority patent/JP2021177230A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180031610.6A priority Critical patent/CN115485592A/en
Priority to KR1020227037389A priority patent/KR20230002505A/en
Publication of WO2021220741A1 publication Critical patent/WO2021220741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polarizing plate and a polarizing plate with a retardation layer.
  • a polarizing plate is often arranged on at least one side of a display cell due to the image forming method.
  • image display devices have become thinner and more flexible, and along with this, there is a strong demand for thinner polarizing plates.
  • the thinner the polarizing plate the more remarkable the problem of durability that the optical characteristics in a heating and humidifying environment deteriorate.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate having excellent durability and a polarizing plate with a retardation layer, although it is very thin. be.
  • the polarizing plate of the present invention has a polarizing element and a protective layer arranged on one side of the polarizing element.
  • This protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton.
  • the cured product is a cationically polymerized cured product.
  • the protective layer further comprises an oxetane resin.
  • the protective layer has a thickness of 10 ⁇ m or less.
  • the iodine adsorption amount of the protective layer is 10% by weight or less.
  • the softening temperature of the protective layer is 100 ° C. or higher.
  • the total thickness of the polarizing plate is 10 ⁇ m or less.
  • a polarizing plate with a retardation layer is provided. This polarizing plate with a retardation layer has a retardation layer on a surface of the polarizing plate on which the protective layer is not arranged.
  • the protective layer arranged on the polarizer by forming the protective layer arranged on the polarizer with a cured product of an epoxy resin having a biphenyl skeleton, it is possible to obtain a polarizing plate having excellent durability even though it is very thin. can.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 of the illustrated example has a polarizing element 10 and a protective layer 20 arranged on one side of the polarizing element 10.
  • the thickness of the polarizer 10 is preferably 8 ⁇ m or less.
  • another protective layer (not shown) may be provided on the opposite side of the protector 10 from the protective layer 20.
  • the polarizing plate 100 may be arranged on the viewing side of the display cell, or may be arranged on the side opposite to the viewing side (back side).
  • the protective layer 20 may be arranged on the display cell side or on the opposite side (outside) of the display cell.
  • the polarizing plate 100 is arranged on the visual side of the display cell (as a result, the image display device), and the protective layer 20 is arranged on the visual side (opposite the display cell).
  • the polarizing plate may be long or single-wafered. When the polarizing plate has a long shape, it is preferably wound into a roll to form a polarizing plate roll.
  • the polarizing plate has an adhesive layer as the outermost layer on one side (typically, the side opposite to the protective layer 20 of the polarizer 10), and can be bonded to the display cell. ing. If necessary, a surface protective film and / or a carrier film may be temporarily attached to the polarizing plate so as to reinforce and / or support the polarizing plate.
  • a separator is temporarily attached to the surface of the pressure-sensitive adhesive layer so that the pressure-sensitive adhesive layer is protected until actual use, and the polarizing plate can be rolled.
  • the protective layer 20 is composed of a cured product of an epoxy resin having a biphenyl skeleton.
  • the protective layer can be made very thin (for example, 10 ⁇ m or less).
  • the protective layer can be formed directly on the polarizer (ie, without the intervention of an adhesive layer or an adhesive layer).
  • the polarizer and the protective layer are very thin, and the adhesive layer or the adhesive layer can be omitted, so that the total thickness of the polarizing plate can be made extremely thin. can.
  • the adhesion between the polarizer and the protective layer is also excellent.
  • the total thickness of the polarizing plate is, for example, 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
  • the total thickness of the polarizing plate can be, for example, 4 ⁇ m or more.
  • the protective layer by forming the protective layer with a cured product of an epoxy resin having a biphenyl skeleton, it is possible to realize a polarizing plate having excellent durability even though it is very thin. Specifically, it is possible to realize a polarizing plate in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment.
  • the polarizing plate has very small changes in the simple substance transmittance Ts ⁇ Ts and changes in the degree of polarization P ⁇ P after being left in an environment of 85 ° C. and 85% RH for 120 hours.
  • the simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100").
  • the degree of polarization P is calculated by the following equation from the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
  • Polarization degree (P) (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor.
  • Ts and P are substantially properties of the polarizer.
  • ⁇ Ts and ⁇ P are calculated by the following formulas, respectively.
  • Ts 0 the single transmittance before leaving (initial)
  • Ts 120 the single transmittance after leaving
  • P 0 the degree of polarization before leaving (initial)
  • P 120 is after leaving.
  • ⁇ Ts is preferably 3.0% or less, more preferably 2.7% or less, still more preferably 2.4% or less.
  • ⁇ P is preferably ⁇ 0.5% to 0%, more preferably ⁇ 0.3% to 0%, and even more preferably ⁇ 0.1% to 0%.
  • the thickness of the polarizing plate can be extremely thin. Therefore, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate of the present invention from being applied to a normal image display device.
  • EL electroluminescence
  • any suitable polarizer can be adopted.
  • the polarizer can typically be made using a laminate of two or more layers. The method for manufacturing the polarizer will be described later in Section D as a method for manufacturing the polarizing plate.
  • the thickness of the polarizer is preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and further preferably 2 ⁇ m to 5 ⁇ m.
  • the boric acid content of the polarizer is preferably 10% by weight or more, more preferably 13% by weight to 25% by weight.
  • the boric acid content can be calculated as, for example, the amount of boric acid contained in the polarizer per unit weight by using the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight.
  • the iodine content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above.
  • the term "iodine content” means the amount of all iodine contained in the polarizer (PVA-based resin film).
  • Iodine content means the amount of iodine that includes all of these forms.
  • the iodine content can be calculated, for example, by the calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ion exists in a state in which a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light.
  • a complex of PVA and tri-iodide ion (PVA ⁇ I 3 -) has a light absorption peak around 470 nm
  • a complex of PVA and five iodide ion (PVA ⁇ I 5 -) is 600nm near Has an absorptive peak.
  • polyiodine ions can absorb light over a wide range of visible light, depending on their morphology.
  • iodine ion (I ⁇ ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%.
  • the degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton.
  • the protective layer is preferably a cationically polymerized cured product of an epoxy resin having a biphenyl skeleton. Since it is a cationically polymerized cured product, a polarizing plate having excellent durability can be obtained even though it is very thin.
  • the constituent components of the protective layer will be specifically described, and then the characteristics of the protective layer will be described.
  • Epoxy resin having a biphenyl skeleton is an epoxy resin containing the following structure. Only one type of epoxy resin having a biphenyl skeleton may be used, or two or more types may be used in combination. (In the formula, R 1 to R 8 independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element).
  • R 1 to R 8 independently represent a hydrogen atom, a linear or branched hydrocarbon group having 1 to 12 carbon atoms, or a halogen element.
  • Examples of the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a sec-butyl group.
  • n-pentyl group isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, phenyl group, benzyl group, Examples thereof include a methylbenzyl group, a dimethylbenzyl group, a trimethylbenzyl group, a naphthylmethyl group, a pheneth
  • the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 1 to 12 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group.
  • An alkyl group of 4 can be mentioned.
  • Preferred examples of the halogen element include fluorine and bromine.
  • the epoxy resin having a biphenyl skeleton is an epoxy resin represented by the following formula. (In the formula, R 1 to R 8 are as described above, and n represents an integer of 0 to 6).
  • the epoxy resin having a biphenyl skeleton is an epoxy resin having only a biphenyl skeleton.
  • the epoxy resin having a biphenyl skeleton may contain a chemical structure other than the biphenyl skeleton.
  • the chemical structure other than the biphenyl skeleton include a bisphenol skeleton, an alicyclic structure, an aromatic ring structure and the like.
  • the proportion (molar ratio) of the chemical structure other than the biphenyl skeleton is preferably smaller than that of the biphenyl skeleton.
  • a commercially available product may be used as the epoxy resin having a biphenyl skeleton.
  • Examples of commercially available products include, for example, Mitsubishi Chemical Corporation, trade names: jER YX4000, jER YX4000H, jER YL6121, jER YL664, jER YL6677, jER YL6810, jER YL7399 and the like.
  • the epoxy resin having a biphenyl skeleton preferably has a glass transition temperature (Tg) of 100 ° C. or higher.
  • Tg glass transition temperature
  • the softening temperature of the protective layer is also approximately 100 ° C. or higher.
  • the obtained polarizing plate containing the protective layer tends to have excellent durability.
  • the Tg of the epoxy resin having a biphenyl skeleton is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher.
  • the Tg of the epoxy resin having a biphenyl skeleton is preferably 300 ° C.
  • Tg of the epoxy resin having a biphenyl skeleton is in such a range, moldability and processability can be excellent.
  • the epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 100 g / equivalent or more, more preferably 150 g / equivalent or more, and further preferably 200 g / equivalent or more.
  • the epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 3000 g / equivalent or less, more preferably 2500 g / equivalent or less, and further preferably 2000 g / equivalent or less.
  • an epoxy resin having a biphenyl skeleton and another resin may be used in combination. That is, a blend of an epoxy resin having a biphenyl skeleton and another resin may be used for molding the protective layer.
  • Other resins include, for example, thermoplastic resins such as styrene resins, polyethylenes, polypropylenes, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, polyphenylene oxides, polyacetals, polyimides, polyetherimides, and acrylic resins. Examples thereof include curable resins such as oxetane resins. Preferably, an acrylic resin and an oxetane resin are used.
  • the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired properties of the obtained film.
  • a styrene resin can be used in combination as a retardation control agent.
  • any suitable acrylic resin can be used.
  • the (meth) acrylic compound for example, a (meth) acrylic compound having one (meth) acryloyl group in the molecule (hereinafter, also referred to as “monofunctional (meth) acrylic compound”), in the molecule.
  • examples thereof include (meth) acrylic compounds having two or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylic compounds”).
  • These (meth) acrylic compounds may be used alone or in combination of two or more.
  • These acrylic resins are described in, for example, Japanese Patent Application Laid-Open No. 2019-168500. The entire description of the publication is incorporated herein by reference.
  • any suitable compound having one or more oxetanyl groups in the molecule is used.
  • Oxetane compound having one oxetane group in the molecule such as oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl; 3-ethyl- 3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 4,4'-bis [(3-ethyl) -3-oxetanyl) methoxymethyl]
  • An oxetane compound having two or more oxetane groups in the molecule such as biphenyl; and the like. Only one kind of these oxetane resins may be used, or two or more kinds may be combined.
  • 3-ethyl-3-hydroxymethyloxetane 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl -3- (Oxylanylmethoxy) oxetane, (meth) acrylate (3-ethyloxetane-3-yl) methyl, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane Etc. are used.
  • These oxetane resins are easily available and can be excellent in dilutability (low viscosity) and compatibility.
  • an oxetane resin having a molecular weight of 500 or less and liquid at room temperature (25 ° C.) is preferably used from the viewpoint of compatibility and adhesiveness. In one embodiment, it preferably contains an oxetane compound containing two or more oxetanel groups in the molecule, one oxetaneyl group and one (meth) acryloyl group or one epoxy group in the molecule.
  • Oxetane compounds are used, more preferably 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic. Acid (3-ethyloxetane-3-yl) methyl is used.
  • oxetane resin a commercially available product may be used. Specifically, Aron Oxetane OXT-101, Aron Oxetane OXT-121, Aron Oxetane OXT-212, and Aron Oxetane OXT-221 (all manufactured by Toagosei Co., Ltd.) can be used. Preferably, Aron Oxetane OXT-101 and Aron Oxetane OXT-221 can be used.
  • the content of the epoxy resin having a biphenyl skeleton in the blend of the epoxy resin having a biphenyl skeleton and the other resin is preferably 50% by weight to 100% by weight. , More preferably 60% by weight to 100% by weight, further preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizer may not be obtained.
  • the content of the oxetane resin is preferably 1 part by weight to 50 parts by weight with respect to 100 parts by weight of the total amount of the epoxy resin having a biphenyl skeleton and the oxetane resin. , More preferably 5 parts by weight to 45 parts by weight, still more preferably 10 parts by weight to 40 parts by weight. Within the above range, the curability can be improved, and the adhesion between the protective layer and the polarizer can also be improved.
  • An epoxy resin with a biphenyl skeleton can be a hardened product when used with any suitable hardener.
  • the curing agent any suitable curing agent capable of curing the epoxy resin can be used.
  • the curing agent comprises a photocationic polymerization initiator.
  • a protective layer which is a cationic polymerization cured product can be formed.
  • the photocationic polymerization initiator any suitable compound capable of curing an epoxy resin having a biphenyl skeleton by irradiation with light such as ultraviolet rays can be used. Only one type of photocationic polymerization initiator may be used, or two or more types may be used in combination.
  • photocationic polymerization initiator examples include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, and the like.
  • a triphenylsulfonium salt-based hexafluoroantimonate type photocationic polymerization initiator and a diphenyliodonium salt-based hexafluoroantimonate type photocationic polymerization initiator are used.
  • a commercially available product may be used as the photocationic polymerization initiator.
  • Commercially available products include triphenylsulfonium salt-based hexafluoroantimonate type SP-170 (manufactured by ADEKA), CPI-101A (manufactured by San-Apro), WPAG-1056 (manufactured by Wako Pure Chemical Industries, Ltd.), and diphenyliodonium salt-based.
  • Hexafluoroantimonate type WPI-116 manufactured by Wako Pure Chemical Industries, Ltd.
  • WPI-116 manufactured by Wako Pure Chemical Industries, Ltd.
  • the content of the photocationic polymerization initiator is preferably 0.1 parts by weight to 3 parts by weight, more preferably 0.25 parts by weight to 2 parts by weight, based on 100 parts by weight of the epoxy resin having a biphenyl skeleton. be. If the content of the photocationic polymerization initiator is less than 0.1 parts by weight, it may not be sufficiently cured even when irradiated with light (ultraviolet rays).
  • the protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton. With such a cured product, the thickness can be significantly reduced as compared with the extrusion-molded film.
  • the thickness of the protective layer is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the thickness of the protective layer can be, for example, 1 ⁇ m or more.
  • a cured product of an epoxy resin having a biphenyl skeleton has an advantage of being excellent in humidification durability because it has lower hygroscopicity and moisture permeability than a solidified product of an aqueous coating film such as an aqueous solution or an aqueous dispersion.
  • the protective layer which is a cured product of an epoxy resin having a biphenyl skeleton, has excellent adhesion to a polarizer. Therefore, even with the above-mentioned thickness, the polarizer can be protected to the same extent as the protective layer using a conventional film. Further, even with the above thickness, it is possible to prevent the occurrence of problems such as color loss of the polarizer.
  • the softening temperature of the protective layer is preferably 100 ° C. or higher. When the softening temperature of the protective layer is 100 ° C. or higher, the obtained polarizing plate containing the protective layer tends to have excellent durability.
  • the softening temperature of the protective layer is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 125 ° C. or higher.
  • the softening temperature of the protective layer is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the softening point of the protective layer is within such a range, moldability and workability can be excellent.
  • the iodine adsorption amount of the protective layer is preferably 10% by weight or less, more preferably 6.0% by weight or less, further preferably 3.0% by weight or less, and particularly preferably 2.0% by weight or less. Is. The smaller the amount of iodine adsorbed, the more preferable. If the amount of iodine adsorbed is in such a range, a polarizing plate having even better durability can be obtained.
  • the amount of iodine adsorbed can be measured by the following method.
  • the composition for forming a protective layer is applied to a base material (PET film) with an applicator to form a protective layer (thickness of about 3 ⁇ m).
  • the obtained PET film with a protective layer is cut into 1 cm ⁇ 1 cm (1 cm 2 ) to be used as a sample, and collected and weighed in a headspace vial (20 mL capacity).
  • a screw tube bottle (1.5 mL capacity) containing 1 mL of an iodine solution (iodine concentration 1% by weight, potassium iodide concentration 7% by weight) is also placed in this headspace vial and sealed.
  • the headspace vial is placed in a dryer at 65 ° C. and heated for 6 hours. As a result, I 2 in the gas state is adsorbed on the sample.
  • the sample is collected in a ceramic boat and burned using an automatic sample combustion device, and the generated gas is collected in 10 mL of the absorbing liquid.
  • this absorbing solution is prepared in 15 mL with pure water, and IC quantitative analysis is performed on the undiluted solution or the appropriately diluted solution.
  • the amount of iodine adsorbed is almost 0 when the same measurement is performed only with the PET film.
  • the amount of iodine adsorbed is almost 0 when the same measurement is performed only with the PET film.
  • the amount of iodine adsorbed % by weight from the following formula. Is calculated.
  • Iodine adsorption amount Iodine weight obtained by IC quantitative analysis / Weight of protective layer alone x 100
  • the following measuring device can be used.
  • Automatic sample combustion device "AQF-2100H” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the protective layer is preferably substantially optically isotropic.
  • substantially optically isotropic means that the phase difference at a wavelength of 550 nm is ⁇ 50 nm to +50 nm.
  • the in-plane retardation Re (550) is more preferably ⁇ 30 nm to +30 nm, further preferably ⁇ 10 nm to +10 nm, and particularly preferably 0 nm to 2 nm.
  • the phase difference Rth (550) in the thickness direction is more preferably ⁇ 5 nm to + 5 nm, further preferably -3 nm to + 3 nm, and particularly preferably -2 nm to + 2 nm.
  • Re (550) is an in-plane phase difference of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and ny is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction). It is the refractive index, nz is the refractive index in the thickness direction, and d is the thickness (nm) of the film.
  • the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. When the light transmittance is in such a range, the desired transparency can be ensured.
  • the light transmittance can be measured, for example, by a method according to ASTM-D-1003.
  • the haze of the protective layer is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less.
  • the haze is 5% or less, a good clear feeling can be given to the film. Further, even when the polarizing plate on the visual side of the image display device is used, the displayed contents can be visually recognized satisfactorily.
  • the YI at a thickness of 3 ⁇ m of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient.
  • the b value (a measure of hue according to the hunter's color system) at a thickness of 3 ⁇ m of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear.
  • a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
  • the protective layer may contain any appropriate additive depending on the purpose.
  • additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based, and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers, and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like. Additives are usually added to the solution during protective layer formation. The type, number, combination, amount of additive,
  • An easy-adhesion layer may be formed on the polarizer side of the protective layer.
  • the easy-adhesion layer contains, for example, an aqueous polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be improved.
  • the easy-adhesion layer can be laminated with the polarizer by any suitable method. For example, it may be formed directly on the polarizer and may be laminated via any suitable adhesive layer or adhesive layer. Further, a hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as the visible protective layer of the visible polarizing plate. When both the easy-adhesion layer and the hard coat layer are formed, typically they can be formed on different sides of the protective layer, respectively.
  • Method for manufacturing polarizing plate D-1 Method for producing a polarizer
  • the method for producing a polarizer according to the above item B is a polyvinyl alcohol-based resin containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material.
  • a layer (PVA-based resin layer) is formed to form a laminated body, and the laminated body is heated in the width direction while being conveyed in the longitudinal direction by aerial auxiliary stretching treatment, dyeing treatment, and underwater stretching treatment.
  • a drying shrinkage treatment for shrinking by 2% or more, and a drying shrinkage treatment, which are performed in this order, are included.
  • the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. According to such a manufacturing method, the above-mentioned polarizer can be obtained.
  • a laminate containing a PVA-based resin layer containing a halide stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll.
  • a polarizer having excellent optical characteristics typically, single transmittance and degree of polarization
  • the laminated body can be uniformly shrunk over the entire laminated body while being conveyed.
  • a heating roll in the drying shrinkage treatment step the laminated body can be uniformly shrunk over the entire laminated body while being conveyed.
  • a polarizer having excellent optical characteristics can be stably produced, and the variation in the optical characteristics of the polarizer (particularly, the single transmittance) can be suppressed. can do.
  • the halide and the drying shrinkage treatment will be described. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
  • a PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin onto a thermoplastic resin base material and drying the coating film.
  • the coating liquid is typically a solution in which the above-mentioned halide and the above-mentioned PVA-based resin are dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more.
  • the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed in close contact with the thermoplastic resin base material.
  • any suitable halide can be adopted.
  • iodide and sodium chloride can be mentioned.
  • Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
  • the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the finally obtained polarizer may become cloudy.
  • the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin.
  • the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease.
  • the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material.
  • the tendency of the degree of orientation to decrease is remarkable.
  • stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
  • stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
  • a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in the air before being stretched in boric acid water.
  • Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
  • the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid such as a dyeing treatment and a stretching treatment in water, can be improved.
  • the dry shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used.
  • heating roll heating roll drying method
  • the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state of being able to withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
  • the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
  • the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 2 is a schematic view showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material.
  • one surface of the laminate 200 (for example, thermoplastic) is arranged.
  • the transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
  • Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
  • the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
  • the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
  • the number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
  • a heating furnace provided with a blowing means.
  • the temperature of hot air drying is preferably 30 ° C to 100 ° C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
  • thermoplastic resin base material / polarizer a laminate of a thermoplastic resin base material / polarizer.
  • a coating film is formed by applying a composition containing an epoxy resin having a biphenyl skeleton and a curing agent to the surface of the laminate obtained in item D-1 above (for example, the surface of a polarizer).
  • a protective layer can be formed by curing the coating film.
  • the protective layer is a cationically polymerized cured product.
  • a photocationic polymerization initiator is used as the curing agent.
  • a composition containing an epoxy resin having a biphenyl skeleton and a photocationic polymerization initiator is applied to the surface of a laminate (for example, the surface of a polarizer) to form a coating film, and the coating film is irradiated with light (for example, ultraviolet rays). By doing so, a protective layer can be formed.
  • any suitable solvent capable of dissolving or uniformly dispersing the epoxy resin having a biphenyl skeleton and the curing agent can be used.
  • the solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
  • the epoxy resin concentration of the solution is preferably 10 parts by weight to 30 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polarizer can be formed.
  • the content of the curing agent is as described in Item C above.
  • the solution may be applied to any suitable substrate or to a polarizer.
  • the cured product of the coating film formed on the substrate is transferred to the polarizer.
  • a protective layer is directly formed on the polarizer by curing the coating film by, for example, light irradiation.
  • the solution is applied to the polarizer and a protective layer is formed directly on the polarizer.
  • the adhesive layer or the pressure-sensitive adhesive layer required for transfer can be omitted, so that the polarizing plate can be further thinned.
  • Any suitable method can be adopted as the method for applying the solution. Specific examples include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, and a knife coating method (comma coating method, etc.).
  • the coating film When the coating film is cured by light irradiation, the coating film can be irradiated with light (typically ultraviolet rays) so as to have an arbitrary appropriate irradiation amount using an arbitrary appropriate light source.
  • a light source of ultraviolet rays for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an electrodeless lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, a chemical lamp, a black light, an LED lamp and the like can be used.
  • the dose of ultraviolet rays for example, 2mJ / cm 2 ⁇ 3000mJ / cm 2, preferably 10mJ / cm 2 ⁇ 2000mJ / cm 2.
  • the irradiation dose when using a high pressure mercury lamp as a light source, is usually 5mJ / cm 2 ⁇ 3000mJ / cm 2, preferably at the conditions of 50mJ / cm 2 ⁇ 2000mJ / cm 2.
  • the irradiation amount is usually 2 mJ / cm 2 to 2000 mJ / cm 2, preferably 10 mJ / cm 2 to 1000 mJ / cm 2 .
  • the irradiation time can be set to an arbitrary appropriate value according to the type of light source, the distance between the light source and the coating surface, the coating thickness, and other conditions.
  • the irradiation time is usually several seconds to several tens of seconds, and may be a fraction of a second. Irradiation of light can be performed from any suitable direction. From the viewpoint of preventing non-uniform curing, it is preferable to irradiate from the coated surface side of the protective layer forming composition.
  • the heat treatment can be carried out at any suitable temperature and time.
  • the heating temperature is, for example, 80 ° C. to 250 ° C., preferably 100 ° C. to 150 ° C.
  • the heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
  • the protective layer is formed, and as a result, a laminate of the thermoplastic resin base material / polarizer / protective layer can be obtained.
  • a polarizing plate having a polarizing element 10 and a protective layer 20 as shown in FIG. 1 can be obtained.
  • a resin film constituting another protective layer is attached to the polarizer surface of the laminate of the thermoplastic resin base material / polarizer, and then the thermoplastic resin base material is peeled off to form a protective layer on the peeled surface. You may. In this case, a polarizing plate having another protective layer can be obtained.
  • FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 110 with a retardation layer in the illustrated example includes a polarizing element 10, a protective layer 20 arranged on one side of the polarizer 10, and a retardation layer 40 arranged on the other side of the polarizer 10. , Have.
  • the polarizing plate with a retardation layer includes a polarizing plate including a polarizing element and a protective layer arranged on one side of the polarizing element, and a retardation layer arranged on the opposite side of the polarizing plate to the protective layer. And have. If necessary, the polarizing plate may further include another protective layer (not shown) on the opposite side of the polarizing element 10 from the protective layer 20. In other words, the polarizing plate 110 with a retardation layer may further include another protective layer (not shown) between the polarizer 10 and the retardation layer 40.
  • an easy-adhesion layer may be formed on the polarizer side of the protective layer.
  • the easy-adhesion layer can be laminated with the polarizer by any suitable method. For example, it may be formed directly on the polarizer and may be laminated via any suitable adhesive layer or adhesive layer.
  • the retardation layer 40 is a single layer.
  • the Re (550) of the retardation layer 40 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40 ° to 50 °.
  • another retardation layer (not shown) is provided on the outside of the retardation layer 40 (on the side opposite to the polarizer 10).
  • the retardation layer 40 has a laminated structure of the first layer 41 and the second layer 42.
  • the Re (550) of the first layer 41 is, for example, 200 nm to 300 nm, and the angle formed by the slow axis of the first layer 41 and the absorption axis of the polarizer 10 is, for example, 10 ° to 20 °;
  • the Re (550) of the second layer 42 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the second layer 42 and the absorption axis of the polarizer 10 is, for example, 70 ° to 80 °.
  • the retardation layer 40 may be a resin film or an orientation-solidified layer of a liquid crystal compound.
  • the first layer 41 and the second layer 42 are orientation-solidified layers of a resin film or a liquid crystal compound, respectively.
  • a retardation layer composed of a single layer When the retardation layer is composed of a single layer, the retardation layer has a Re (550) of, for example, 100 nm to 190 nm as described above, and the retard phase of the retardation layer 40 is slow.
  • the angle formed by the shaft and the absorption shaft of the polarizer 10 is, for example, 40 ° to 50 °.
  • the retardation layer is typically provided to impart antireflection properties to the polarizing plate and can function as a ⁇ / 4 plate in one embodiment.
  • the retardation layer may be a resin film or an orientation-solidified layer of a liquid crystal compound.
  • the retardation layer preferably shows a relationship in which the refractive index characteristic is nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm as described above.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9. ⁇ 1.3.
  • the angle ⁇ formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40 ° to 50 °, preferably 42 ° to 48 °, and more preferably about 45 ° as described above. Is. If the angle ⁇ is in such a range, by using a ⁇ / 4 plate as the retardation layer, polarized light with a retardation layer having very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics). A plate can be obtained.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the retardation layer exhibits inverse dispersion wavelength characteristics.
  • the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
  • Retardation layer is preferably the absolute value of photoelastic coefficient is 2.0 ⁇ 10 -11 m 2 / N or less, more preferably 2.0 ⁇ 10 -13 m 2 /N ⁇ 1.5 ⁇ 10 -11 m 2 / N, more preferably includes a resin of 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N.
  • the absolute value of the photoelastic coefficient is in such a range, the phase difference change is unlikely to occur when a shrinkage stress during heating occurs. As a result, thermal unevenness of the obtained image display device can be satisfactorily prevented.
  • the retardation layer is a resin film
  • the resin film is typically a stretched film.
  • the thickness of the retardation layer is preferably 60 ⁇ m or less, more preferably 30 ⁇ m to 55 ⁇ m. When the thickness of the retardation layer is within such a range, it is possible to satisfactorily adjust the curl at the time of bonding while satisfactorily suppressing the curl at the time of heating.
  • the retardation layer may be composed of any suitable resin film that can satisfy the above characteristics.
  • suitable resins are polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, and polyamide resins.
  • a polycarbonate-based resin or a polyester carbonate-based resin (hereinafter, may be simply referred to as a polycarbonate-based resin) can be preferably used.
  • the polycarbonate-based resin contains a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene.
  • a structural unit derived from a fluorene-based dihydroxy compound a structural unit derived from an isosorbide-based dihydroxy compound
  • an alicyclic diol an alicyclic dimethanol
  • di, tri or polyethylene glycol and an alkylene.
  • alkylene includes structural units derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols.
  • the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and / or di, tri or polyethylene glycol.
  • the polycarbonate-based resin may contain structural units derived from other dihydroxy compounds, if necessary.
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional changes may occur after film molding, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • the molecular weight of the above-mentioned polycarbonate resin can be expressed by the reduced viscosity.
  • the reduced viscosity is measured by using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL, and using an Ubbelohde viscous tube at a temperature of 20.0 ° C. ⁇ 0.1 ° C.
  • the reduced viscosity is usually preferably 0.30 dL / g or more, and more preferably 0.35 dL / g or more.
  • the reduced viscosity is usually preferably 1.20 dL / g or less, more preferably 1.00 dL / g or less, and further preferably 0.80 dL / g or less.
  • the reduced viscosity is less than 0.30 dL / g, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity exceeds 1.20 dL / g, there may be a problem that the fluidity at the time of molding is lowered and the productivity and the moldability are lowered.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include the product names "Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M” manufactured by Teijin Limited, and the product name "NRF” manufactured by Nitto Denko. Be done.
  • the retardation layer 40 can be obtained, for example, by stretching a film formed of the above-mentioned polycarbonate resin.
  • any suitable molding processing method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press. Law etc. can be mentioned. Extrusion molding method or cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate resin are commercially available, the commercially available film may be subjected to the stretching treatment as it is.
  • the thickness of the resin film can be set to an arbitrary appropriate value according to the desired thickness of the retardation layer, desired optical characteristics, stretching conditions described later, and the like. It is preferably 50 ⁇ m to 300 ⁇ m.
  • any appropriate stretching method and stretching conditions for example, stretching temperature, stretching ratio, stretching direction
  • various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially.
  • the stretching direction it can be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
  • the stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., relative to the glass transition temperature (Tg) of the resin film.
  • a retardation film having the desired optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient
  • the retardation film is produced by uniaxially stretching or fixed end uniaxially stretching the resin film.
  • the fixed-end uniaxial stretching include a method of stretching the resin film in the width direction (lateral direction) while running the resin film in the longitudinal direction.
  • the draw ratio is preferably 1.1 times to 3.5 times.
  • the retardation film can be produced by continuously obliquely stretching a long resin film in the direction of the above angle ⁇ with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of an angle ⁇ with respect to the longitudinal direction of the film (a slow axis in the direction of the angle ⁇ ) can be obtained.
  • Roll-to-roll is possible, and the manufacturing process can be simplified.
  • the angle ⁇ may be an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer.
  • the angle ⁇ is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
  • Examples of the stretching machine used for diagonal stretching include a tenter type stretching machine capable of applying a feeding force, a pulling force, or a pulling force at different speeds in the horizontal and / or vertical directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as the long resin film can be continuously and diagonally stretched.
  • Phase difference film By appropriately controlling the left and right velocities in the stretching machine, a retardation layer having the desired in-plane phase difference and having a slow phase axis in the desired direction (substantially long). (Phase difference film) can be obtained.
  • the stretching temperature of the film can change depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C. to Tg + 30 ° C., more preferably Tg-15 ° C. to Tg + 15 ° C., and most preferably Tg-10 ° C. to Tg + 10 ° C. By stretching at such a temperature, a retardation layer having appropriate characteristics in the present invention can be obtained.
  • Tg is the glass transition temperature of the constituent material of the film.
  • the retarded layer is the oriented solidified layer of the liquid crystal compound
  • the difference between nx and ny of the obtained retardation layer is significantly increased as compared with the non-liquid crystal material by using the liquid crystal compound. Therefore, the thickness of the retardation layer for obtaining a desired in-plane retardation can be remarkably reduced. As a result, it is possible to further reduce the thickness of the polarizing plate with a retardation layer.
  • the term "aligned solidified layer” refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed.
  • the "oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later.
  • the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow axis direction of the retardation layer (homogeneous orientation).
  • the liquid crystal compound examples include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed.
  • the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal.
  • the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example.
  • the retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in Special Tables 2002-533742 WO00 / 37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93 / 22397 EP02671712, DE19504224, DE4408171 and GB2280445
  • Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state.
  • the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizer 10.
  • the substrate can be another protective layer. In this case, the transfer step is omitted, and the stacking can be performed continuously by roll-to-roll from the formation of the orientation solidification layer (phase difference layer), so that the productivity is further improved.
  • any appropriate orientation treatment can be adopted.
  • Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment.
  • Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment.
  • As the treatment conditions for various orientation treatments any appropriate conditions can be adopted depending on the purpose.
  • the orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the base material.
  • the orientation state is fixed by cooling the liquid crystal compound oriented as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
  • the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation.
  • the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the retardation layer.
  • the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °.
  • a discotic liquid crystal compound generally has a cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and has a linear alkyl group, an alkoxy group, and a substituted benzoyl.
  • Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I.
  • the retardation layer is an orientation-solidified layer of a liquid crystal compound
  • its thickness is preferably 0.5 ⁇ m to 7 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • Another retardation layer As described above, when the retardation layer is composed of a single layer, another retardation layer is preferably provided.
  • the phase difference Rth (550) in the thickness direction of another retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, and particularly preferably ⁇ . It is 100 nm to ⁇ 180 nm.
  • Another retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the methods for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of another retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and even more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the retardation layer 40 has a laminated structure of the first layer 41 and the second layer 42
  • either one of the first layer 41 and the second layer 42 is ⁇ / 4 It can function as a plate and the other as a ⁇ / 2 plate.
  • the in-plane retardation Re (550) of the first layer is, for example, 200 nm to 300 nm as described above. It is preferably 230 nm to 290 nm, and more preferably 250 nm to 280 nm.
  • the in-plane retardation Re (550) of the second layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm as described above.
  • the angle formed by the slow axis of the first layer and the absorption axis of the polarizer is, for example, 10 ° to 20 °, preferably 12 ° to 18 °, and more preferably about 15 ° as described above.
  • the angle formed by the slow axis of the second layer and the absorption axis of the polarizer is, for example, 70 ° to 80 °, preferably 72 ° to 78 °, and more preferably about 75 ° as described above.
  • first layer 41 and the second layer 42 may be a resin film and the other may be an orientation-solidified layer of a liquid crystal compound, both may be a resin film, and both are orientation-solidified layers of a liquid crystal compound. You may.
  • both the first layer 41 and the second layer 42 are oriented solidified layers of a resin film or a liquid crystal compound.
  • the thickness of the first layer 41 and the second layer 42 can be adjusted so as to obtain a desired in-plane phase difference between the ⁇ / 4 plate or the ⁇ / 2 plate.
  • the first layer 41 functions as a ⁇ / 2 plate
  • the second layer 42 functions as a ⁇ / 4 plate
  • the first layer 41 and the second layer 42 are resin films
  • the thickness of the second layer 42 is, for example, 40 ⁇ m to 75 ⁇ m
  • the thickness of the second layer 42 is, for example, 30 ⁇ m to 55 ⁇ m.
  • the thickness of the first layer 41 is, for example, 2.0 ⁇ m to 3.0 ⁇ m
  • the thickness of the second layer 42 is, for example, 1.0 ⁇ m to 1.0 ⁇ m. It is 2.0 ⁇ m.
  • the resin film constituting the first layer and the second layer, the liquid crystal compound, the method for forming the first layer and the second layer, the optical characteristics, and the like are as described above for the single layer.
  • the test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") was used for the test sample. Then, the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) were measured, and the degree of polarization (P) was calculated by the following equation. At this time, the measurement light was incident from the protective layer side.
  • Polarization degree (P) (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer.
  • the polarizing plate was left in an oven at 85 ° C. and 85% RH for 120 hours to heat and humidify (heating test), and from the single transmittance Ts 0 before the heating test and the single transmittance Ts 120 after the heating test, The amount of change in single transmittance ⁇ Ts was determined using the following formula.
  • ⁇ Ts (%) Ts 120 -Ts 0
  • the amount of change in degree of polarization ⁇ P was determined using the following formula.
  • ⁇ P (%) P 120 ⁇ P 0
  • the heating test was carried out by preparing a test sample in the same manner as in the case of color loss described above.
  • Iodine Adsorption Amount A protective layer (thickness: about 3 ⁇ m) was formed on one side of the PET film in the same manner as in the formation of the protective layer in each Example and Comparative Example.
  • the obtained PET film with a protective layer was cut into 1 cm ⁇ 1 cm (1 cm 2 ) to be used as a sample, and collected and weighed in a headspace vial (20 mL capacity).
  • a screw tube bottle 1.5 mL capacity
  • an iodine solution iodine concentration 1% by weight, potassium iodide concentration 7% by weight
  • Iodine adsorption amount Iodine weight obtained by IC quantitative analysis / Weight of protective layer alone x 100
  • the measuring device and measuring conditions are as follows. [measuring device] Automatic sample combustion device: "AQF-2100H” manufactured by Mitsubishi Chemical Analytech Co., Ltd. IC (anion): "ICS-3000" manufactured by Thermo Fisher Scientific.
  • ⁇ P value is 0% to -4.0% Possible: The value of ⁇ P exceeds -4.0% and -10.0% Impossible: ⁇ P value exceeds -10% to -99.9% (completely decolorized)
  • Example 1 1. Fabrication of Laminate of Polarizer / Resin Base Material Amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) as a resin base material, which is long, has a water absorption rate of 0.75%, and has a Tg of about 75 ° C. Was used. One side of the resin substrate was corona-treated. Polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Co., Ltd., trade name "Gosefimer Z410”) are mixed in a ratio of 9: 1 to 100 parts by weight of PVA-based resin.
  • a PVA aqueous solution (coating liquid).
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • Polarizing Plate A cycloolefin-based film (ZEON Corporation, ZT-12, thickness 23 ⁇ m) is applied to the surface of the polarizer obtained above as a film constituting the second protective layer, and an ultraviolet curable adhesive is applied. It was pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the film side to cure the adhesive. Next, the resin base material was peeled off to obtain a polarizing plate having a second protective layer (ZT-12) / polarizer configuration.
  • ZT-12 second protective layer
  • a protective layer was formed by irradiating ultraviolet rays with a high-pressure mercury lamp so that the integrated light intensity was 600 mJ / cm 2.
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m.
  • a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was used for the evaluations (1) to (4) above.
  • Example 2 15 parts of epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX4000) and 10 parts of oxetane resin (manufactured by Toagosei Co., Ltd., trade name: Aron Oxetane (registered trademark) OXT-221) was dissolved in 73 parts of methyl ethyl ketone to obtain an epoxy resin solution.
  • epoxy resin having a biphenyl skeleton manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX4000
  • oxetane resin manufactured by Toagosei Co., Ltd., trade name: Aron Oxetane (registered trademark) OXT-221
  • a photocationic polymerization initiator manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P
  • CPI registered trademark
  • a protective layer was formed in the same manner as in Example 1 except that a protective layer forming composition was obtained using this epoxy resin solution.
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m.
  • a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained.
  • the obtained polarizing plate was used for the evaluations (1) to (4) above.
  • Example 1 A protective layer was formed in the same manner as in Example 1 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. ..
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • Example 2 A protective layer was formed in the same manner as in Example 2 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. ..
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • Example 3 A protective layer was formed in the same manner as in Example 1 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) 828) was used instead of the epoxy resin having a biphenyl skeleton.
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m.
  • a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained.
  • the obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • Example 4 A protective layer was formed in the same manner as in Example 2 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER® 828) was used instead of the epoxy resin having a biphenyl skeleton.
  • the thickness of the protective layer was 2 ⁇ m to 3 ⁇ m.
  • a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained.
  • the obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • the thickness of the protective layer was 3 ⁇ m, the softening temperature was 80.4 ° C., and the amount of iodine adsorbed was 30.4% by weight.
  • a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained.
  • the obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • Comparative Example 8 Protection in the same manner as in Comparative Example 8 except that an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-722”), which is a copolymer of methyl methacrylate / ethyl acrylate (molar ratio 55/45), was used. A layer was formed. The thickness of the protective layer was 3 ⁇ m, the softening temperature was 57.2 ° C., and the amount of iodine adsorbed was 1.3% by weight. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
  • the polarizing plate of the present invention is suitably used for an image display device.
  • image display devices include portable devices such as mobile information terminals (PDAs), smartphones, mobile phones, clocks, digital cameras, and portable game machines; OA devices such as personal computer monitors, laptop computers, and copiers; video cameras and televisions. , Home appliances such as microwave ovens; Back monitors, car navigation system monitors, car audio and other in-vehicle devices; Digital signage, commercial store information monitors and other exhibition devices; Surveillance monitors and other security devices; Nursing care Nursing care / medical equipment such as monitors for medical use and monitors for medical use;
  • Polarizer 10
  • Protective layer 40
  • Phase difference layer 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a polarizing plate having excellent durability despite being extremely thin. A polarizing plate according to the present invention has a polarizer, and a protective layer that is disposed on one side of the polarizer. The protective layer is formed from a cured product of an epoxy resin having a biphenyl skeleton. In one embodiment, the thickness of the protective layer is 10 µm or less.

Description

偏光板および位相差層付偏光板Polarizing plate and polarizing plate with retardation layer
 本発明は、偏光板および位相差層付偏光板に関する。 The present invention relates to a polarizing plate and a polarizing plate with a retardation layer.
 画像表示装置(例えば、液晶表示装置、有機EL表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。近年、画像表示装置の薄型化およびフレキシブル化が進んでおり、これに伴い、偏光板の薄型化も強く要望されている。しかし、偏光板を薄くすればするほど、加熱加湿環境下での光学特性が低下するという耐久性の問題が顕著となる。 In an image display device (for example, a liquid crystal display device or an organic EL display device), a polarizing plate is often arranged on at least one side of a display cell due to the image forming method. In recent years, image display devices have become thinner and more flexible, and along with this, there is a strong demand for thinner polarizing plates. However, the thinner the polarizing plate, the more remarkable the problem of durability that the optical characteristics in a heating and humidifying environment deteriorate.
特開2015-210474号公報JP-A-2015-210474
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、非常に薄いにもかかわらず、耐久性に優れた偏光板および位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate having excellent durability and a polarizing plate with a retardation layer, although it is very thin. be.
 本発明の偏光板は、偏光子と、該偏光子の一方の側に配置された保護層と、を有する。この保護層は、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成されている。
 1つの実施形態においては、上記硬化物はカチオン重合硬化物である。
 1つの実施形態においては、上記保護層はオキセタン樹脂をさらに含む。
 1つの実施形態においては、上記保護層の厚みは10μm以下である。
 1つの実施形態においては、上記保護層のヨウ素吸着量は10重量%以下である。
 1つの実施形態においては、上記保護層の軟化温度は100℃以上である。
 1つの実施形態においては、上記偏光板の総厚みは10μm以下である。
 本発明の別の局面においては、位相差層付偏光板が提供される。この位相差層付偏光板は、上記偏光板の上記保護層が配置されていない面に位相差層を有する。
The polarizing plate of the present invention has a polarizing element and a protective layer arranged on one side of the polarizing element. This protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton.
In one embodiment, the cured product is a cationically polymerized cured product.
In one embodiment, the protective layer further comprises an oxetane resin.
In one embodiment, the protective layer has a thickness of 10 μm or less.
In one embodiment, the iodine adsorption amount of the protective layer is 10% by weight or less.
In one embodiment, the softening temperature of the protective layer is 100 ° C. or higher.
In one embodiment, the total thickness of the polarizing plate is 10 μm or less.
In another aspect of the present invention, a polarizing plate with a retardation layer is provided. This polarizing plate with a retardation layer has a retardation layer on a surface of the polarizing plate on which the protective layer is not arranged.
 本発明によれば、偏光子に配置される保護層を、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成することにより、非常に薄いにもかかわらず、耐久性に優れた偏光板を得ることができる。 According to the present invention, by forming the protective layer arranged on the polarizer with a cured product of an epoxy resin having a biphenyl skeleton, it is possible to obtain a polarizing plate having excellent durability even though it is very thin. can.
本発明の1つの実施形態による偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate by one Embodiment of this invention. 本発明の1つの実施形態による偏光板の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is the schematic which shows an example of the drying shrinkage treatment using the heating roll in the manufacturing method of the polarizing plate by one Embodiment of this invention. 本発明の1つの実施形態による位相差層付偏光板の概略断面図である。It is a schematic cross-sectional view of the polarizing plate with a retardation layer according to one Embodiment of this invention. 本発明の別の実施形態による位相差層付偏光板の概略断面図である。It is a schematic cross-sectional view of the polarizing plate with a retardation layer according to another embodiment of this invention.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.偏光板の概略
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。図示例の偏光板100は、偏光子10と、偏光子10の一方の側に配置された保護層20と、を有する。偏光子10の厚みは、好ましくは8μm以下である。必要に応じて、偏光子10の保護層20と反対側に別の保護層(図示せず)が設けられてもよい。偏光板100は、画像表示装置に適用される場合、表示セルの視認側に配置されてもよく、視認側と反対側(背面側)に配置されてもよい。いずれの場合も、保護層20は表示セル側に配置されてもよく、表示セルと反対側(外側)に配置されてもよい。1つの実施形態においては、偏光板100は、表示セル(結果として、画像表示装置)の視認側に配置され、かつ、保護層20は視認側(表示セルと反対側)に配置される。偏光板は、長尺状であってもよいし、枚葉状であってもよい。偏光板が長尺状である場合、好ましくは、ロール状に巻回されて偏光板ロールとされる。
A. Schematic FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 100 of the illustrated example has a polarizing element 10 and a protective layer 20 arranged on one side of the polarizing element 10. The thickness of the polarizer 10 is preferably 8 μm or less. If necessary, another protective layer (not shown) may be provided on the opposite side of the protector 10 from the protective layer 20. When applied to an image display device, the polarizing plate 100 may be arranged on the viewing side of the display cell, or may be arranged on the side opposite to the viewing side (back side). In either case, the protective layer 20 may be arranged on the display cell side or on the opposite side (outside) of the display cell. In one embodiment, the polarizing plate 100 is arranged on the visual side of the display cell (as a result, the image display device), and the protective layer 20 is arranged on the visual side (opposite the display cell). The polarizing plate may be long or single-wafered. When the polarizing plate has a long shape, it is preferably wound into a roll to form a polarizing plate roll.
 代表的には、偏光板は、一方の側(代表的には、偏光子10の保護層20と反対側)の最外層として粘着剤層を有し、表示セルへの貼り合わせが可能とされている。必要に応じて、偏光板には表面保護フィルムおよび/またはキャリアフィルムが剥離可能に仮着され、偏光板を補強および/または支持し得る。偏光板が粘着剤層を含む場合には、粘着剤層表面にはセパレーターが剥離可能に仮着され、実使用までの間粘着剤層を保護するとともに、偏光板のロール化を可能としている。 Typically, the polarizing plate has an adhesive layer as the outermost layer on one side (typically, the side opposite to the protective layer 20 of the polarizer 10), and can be bonded to the display cell. ing. If necessary, a surface protective film and / or a carrier film may be temporarily attached to the polarizing plate so as to reinforce and / or support the polarizing plate. When the polarizing plate contains a pressure-sensitive adhesive layer, a separator is temporarily attached to the surface of the pressure-sensitive adhesive layer so that the pressure-sensitive adhesive layer is protected until actual use, and the polarizing plate can be rolled.
 本発明の実施形態においては、保護層20は、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成されている。このような構成であれば、保護層を非常に薄く(例えば、10μm以下に)することができる。さらに、保護層を偏光子に直接(すなわち、接着剤層または粘着剤層を介することなく)形成することができる。本発明の実施形態によれば、上記のとおり偏光子および保護層が非常に薄く、かつ、接着剤層または粘着剤層を省略することができるので、偏光板の総厚みをきわめて薄くすることができる。また、偏光子と保護層との密着性にも優れる。偏光板の総厚みは、例えば40μm以下であり、好ましくは30μm以下であり、より好ましくは20μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは7μm以下である。偏光板の総厚みは、例えば4μm以上であり得る。 In the embodiment of the present invention, the protective layer 20 is composed of a cured product of an epoxy resin having a biphenyl skeleton. With such a configuration, the protective layer can be made very thin (for example, 10 μm or less). In addition, the protective layer can be formed directly on the polarizer (ie, without the intervention of an adhesive layer or an adhesive layer). According to the embodiment of the present invention, as described above, the polarizer and the protective layer are very thin, and the adhesive layer or the adhesive layer can be omitted, so that the total thickness of the polarizing plate can be made extremely thin. can. In addition, the adhesion between the polarizer and the protective layer is also excellent. The total thickness of the polarizing plate is, for example, 40 μm or less, preferably 30 μm or less, more preferably 20 μm or less, further preferably 10 μm or less, and particularly preferably 7 μm or less. The total thickness of the polarizing plate can be, for example, 4 μm or more.
 さらに、保護層を、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成することにより、非常に薄いにもかかわらず、耐久性に優れた偏光板を実現することができる。具体的には、加熱加湿環境下においても光学特性の低下が抑制された偏光板を実現することができる。上記偏光板は、85℃および85%RHの環境下で120時間放置した後の単体透過率Tsの変化量ΔTsおよび偏光度Pの変化量ΔPが、それぞれ非常に小さい。単体透過率Tsは、例えば紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定され得る。偏光度Pは、紫外可視分光光度計を用いて測定される単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)から、次式により算出される。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。ΔTsおよびΔPは、それぞれ下記式により求められる。
    ΔTs(%)=Ts120-Ts
    ΔP(%)=P120-P
ここで、Tsは放置前(初期)の単体透過率であり、Ts120は放置後の単体透過率であり、Pは放置前(初期)の偏光度であり、P120は放置後の偏光度である。ΔTsは、好ましくは3.0%以下であり、より好ましくは2.7%以下であり、さらに好ましくは2.4%以下である。ΔPは、好ましくは-0.5%~0%であり、より好ましくは-0.3%~0%であり、さらに好ましくは-0.1%~0%である。
Further, by forming the protective layer with a cured product of an epoxy resin having a biphenyl skeleton, it is possible to realize a polarizing plate having excellent durability even though it is very thin. Specifically, it is possible to realize a polarizing plate in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment. The polarizing plate has very small changes in the simple substance transmittance Ts ΔTs and changes in the degree of polarization P ΔP after being left in an environment of 85 ° C. and 85% RH for 120 hours. The simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"). The degree of polarization P is calculated by the following equation from the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
Polarization degree (P) (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
The Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer. ΔTs and ΔP are calculated by the following formulas, respectively.
ΔTs (%) = Ts 120 -Ts 0
ΔP (%) = P 120 −P 0
Here, Ts 0 is the single transmittance before leaving (initial), Ts 120 is the single transmittance after leaving, P 0 is the degree of polarization before leaving (initial), and P 120 is after leaving. The degree of polarization. ΔTs is preferably 3.0% or less, more preferably 2.7% or less, still more preferably 2.4% or less. ΔP is preferably −0.5% to 0%, more preferably −0.3% to 0%, and even more preferably −0.1% to 0%.
 本発明の実施形態において偏光板の厚みはきわめて薄くなり得る。そのため、フレキシブルな画像表示装置に好適に適用され得る。より好ましくは、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。画像表示装置の具体例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。言うまでもなく、上記の説明は、本発明の偏光板が通常の画像表示装置に適用されることを妨げるものではない。 In the embodiment of the present invention, the thickness of the polarizing plate can be extremely thin. Therefore, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate of the present invention from being applied to a normal image display device.
 以下、偏光子および保護層について詳細に説明する。 Hereinafter, the polarizer and the protective layer will be described in detail.
B.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。偏光子は、代表的には、二層以上の積層体を用いて作製され得る。偏光子の製造方法については、偏光板の製造方法としてD項で後述する。
B. Polarizer As the polarizer, any suitable polarizer can be adopted. The polarizer can typically be made using a laminate of two or more layers. The method for manufacturing the polarizer will be described later in Section D as a method for manufacturing the polarizing plate.
 偏光子の厚みは、好ましくは1μm~8μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。 The thickness of the polarizer is preferably 1 μm to 8 μm, more preferably 1 μm to 7 μm, and further preferably 2 μm to 5 μm.
 偏光子のホウ酸含有量は、好ましくは10重量%以上であり、より好ましくは13重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 10% by weight or more, more preferably 13% by weight to 25% by weight. When the boric acid content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the iodine content described later, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above. The boric acid content can be calculated as, for example, the amount of boric acid contained in the polarizer per unit weight by using the following formula from the neutralization method.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight. When the iodine content of the polarizer is in such a range, the ease of curl adjustment at the time of bonding is well maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while satisfactorily suppressing the above. As used herein, the term "iodine content" means the amount of all iodine contained in the polarizer (PVA-based resin film). More specifically, iodine during polarizers iodide ion (I -), molecular iodine (I 2), polyiodine ion (I 3 -, I 5 - ) where present in the form of such, herein Iodine content means the amount of iodine that includes all of these forms. The iodine content can be calculated, for example, by the calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in a state in which a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light. Specifically, a complex of PVA and tri-iodide ion (PVA · I 3 -) has a light absorption peak around 470 nm, a complex of PVA and five iodide ion (PVA · I 5 -) is 600nm near Has an absorptive peak. As a result, polyiodine ions can absorb light over a wide range of visible light, depending on their morphology. On the other hand, iodine ion (I ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%. The degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
C.保護層
 保護層は、上記のとおり、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成されている。保護層がビフェニル骨格を有するエポキシ樹脂を含むことにより、保護層の耐久性がさらに向上し得る。保護層は好ましくはビフェニル骨格を有するエポキシ樹脂のカチオン重合硬化物である。カチオン重合硬化物であることにより、非常に薄いにもかかわらず、耐久性に優れた偏光板が得られ得る。以下、保護層の構成成分について具体的に説明し、次いで、保護層の特性を説明する。
C. Protective layer As described above, the protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton. By including the epoxy resin having a biphenyl skeleton in the protective layer, the durability of the protective layer can be further improved. The protective layer is preferably a cationically polymerized cured product of an epoxy resin having a biphenyl skeleton. Since it is a cationically polymerized cured product, a polarizing plate having excellent durability can be obtained even though it is very thin. Hereinafter, the constituent components of the protective layer will be specifically described, and then the characteristics of the protective layer will be described.
C-1.ビフェニル骨格を有するエポキシ樹脂
 1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂は、以下の構造を含むエポキシ樹脂である。ビフェニル骨格を有するエポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000002
(式中、R~Rは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す)。
C-1. Epoxy resin having a biphenyl skeleton In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin containing the following structure. Only one type of epoxy resin having a biphenyl skeleton may be used, or two or more types may be used in combination.
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 to R 8 independently represent a hydrogen atom, a linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a halogen element).
 R~Rは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す。炭素数1~12の直鎖状または分岐状の置換または非置換の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、フェニル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等が挙げられる。炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基としては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等の炭素数1~4のアルキル基が挙げられる。ハロゲン元素としては、好ましくはフッ素および臭素が挙げられる。 R 1 to R 8 independently represent a hydrogen atom, a linear or branched hydrocarbon group having 1 to 12 carbon atoms, or a halogen element. Examples of the linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a sec-butyl group. tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, phenyl group, benzyl group, Examples thereof include a methylbenzyl group, a dimethylbenzyl group, a trimethylbenzyl group, a naphthylmethyl group, a phenethyl group, a 2-phenylisopropyl group and the like. The linear or branched substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 1 to 12 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group. An alkyl group of 4 can be mentioned. Preferred examples of the halogen element include fluorine and bromine.
 1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂は下記式で表されるエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは上記の通りであり、nは0~6の整数を表す)。
In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 to R 8 are as described above, and n represents an integer of 0 to 6).
 1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格のみを有するエポキシ樹脂である。ビフェニル骨格のみを有するエポキシ樹脂を用いることにより、得られる保護層の耐久性がさらに向上し得る。 In one embodiment, the epoxy resin having a biphenyl skeleton is an epoxy resin having only a biphenyl skeleton. By using an epoxy resin having only a biphenyl skeleton, the durability of the obtained protective layer can be further improved.
 1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格以外の化学構造を含んでいてもよい。ビフェニル骨格以外の化学構造としては、例えば、ビスフェノール骨格、脂環式構造、芳香族環構造等が挙げられる。この実施形態においては、ビフェニル骨格以外の化学構造の割合(モル比)はビフェニル骨格よりも少ないことが好ましい。 In one embodiment, the epoxy resin having a biphenyl skeleton may contain a chemical structure other than the biphenyl skeleton. Examples of the chemical structure other than the biphenyl skeleton include a bisphenol skeleton, an alicyclic structure, an aromatic ring structure and the like. In this embodiment, the proportion (molar ratio) of the chemical structure other than the biphenyl skeleton is preferably smaller than that of the biphenyl skeleton.
 ビフェニル骨格を有するエポキシ樹脂としては市販品を用いてもよい。市販品としては、例えば、三菱ケミカル社製、商品名:jER YX4000、jER YX4000H、jER YL6121、jER YL664、jER YL6677、jER YL6810、jER YL7399等が挙げられる。 A commercially available product may be used as the epoxy resin having a biphenyl skeleton. Examples of commercially available products include, for example, Mitsubishi Chemical Corporation, trade names: jER YX4000, jER YX4000H, jER YL6121, jER YL664, jER YL6677, jER YL6810, jER YL7399 and the like.
 ビフェニル骨格を有するエポキシ樹脂は、好ましくはガラス転移温度(Tg)が100℃以上である。その結果、保護層の軟化温度もほぼ100℃以上となる。ビフェニル骨格を有するエポキシ樹脂のTgが100℃以上であれば、得られる保護層を含む偏光板は、耐久性に優れたものとなりやすい。ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは110℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上である。一方、ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。ビフェニル骨格を有するエポキシ樹脂のTgがこのような範囲であれば、成形性および加工性に優れ得る。 The epoxy resin having a biphenyl skeleton preferably has a glass transition temperature (Tg) of 100 ° C. or higher. As a result, the softening temperature of the protective layer is also approximately 100 ° C. or higher. When the Tg of the epoxy resin having a biphenyl skeleton is 100 ° C. or higher, the obtained polarizing plate containing the protective layer tends to have excellent durability. The Tg of the epoxy resin having a biphenyl skeleton is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher. On the other hand, the Tg of the epoxy resin having a biphenyl skeleton is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the Tg of the epoxy resin having a biphenyl skeleton is in such a range, moldability and processability can be excellent.
 ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは100g/当量以上であり、より好ましくは150g/当量以上、さらに好ましくは200g/当量以上である。また、ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは3000g/当量以下であり、より好ましくは2500g/当量以下、さらに好ましくは2000g/当量以下である。ビフェニル骨格を有するエポキシ当量が上記範囲であることにより、より安定した保護層(残存モノマーが少なく、十分に硬化した保護層)が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K7236に準じて測定することができる。 The epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 100 g / equivalent or more, more preferably 150 g / equivalent or more, and further preferably 200 g / equivalent or more. The epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 3000 g / equivalent or less, more preferably 2500 g / equivalent or less, and further preferably 2000 g / equivalent or less. When the epoxy equivalent having a biphenyl skeleton is in the above range, a more stable protective layer (a protective layer having less residual monomer and sufficiently cured) can be obtained. In the present specification, the "epoxy equivalent" means "the mass of an epoxy resin containing 1 equivalent of an epoxy group" and can be measured according to JIS K7236.
 本発明の実施形態においては、ビフェニル骨格を有するエポキシ樹脂と他の樹脂とを併用してもよい。すなわち、ビフェニル骨格を有するエポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド等の熱可塑性樹脂、アクリル系樹脂およびオキセタン系樹脂等の硬化型樹脂が挙げられる。好ましくは、アクリル系樹脂およびオキセタン系樹脂が用いられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂は、位相差制御剤として併用され得る。 In the embodiment of the present invention, an epoxy resin having a biphenyl skeleton and another resin may be used in combination. That is, a blend of an epoxy resin having a biphenyl skeleton and another resin may be used for molding the protective layer. Other resins include, for example, thermoplastic resins such as styrene resins, polyethylenes, polypropylenes, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, polyphenylene oxides, polyacetals, polyimides, polyetherimides, and acrylic resins. Examples thereof include curable resins such as oxetane resins. Preferably, an acrylic resin and an oxetane resin are used. The type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the desired properties of the obtained film. For example, a styrene resin can be used in combination as a retardation control agent.
 アクリル系樹脂としては、任意の適切なアクリル系樹脂を用いることができる。例えば、(メタ)アクリル系化合物としては、例えば、分子内に一個の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「単官能(メタ)アクリル系化合物」ともいう)、分子内に二個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「多官能(メタ)アクリル系化合物」ともいう)が挙げられる。これらの(メタ)アクリル系化合物は、単独で用いてもよく、2種類以上組み合わせて用いてもよい。これらのアクリル系樹脂については、例えば特開2019-168500号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As the acrylic resin, any suitable acrylic resin can be used. For example, as the (meth) acrylic compound, for example, a (meth) acrylic compound having one (meth) acryloyl group in the molecule (hereinafter, also referred to as “monofunctional (meth) acrylic compound”), in the molecule. Examples thereof include (meth) acrylic compounds having two or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylic compounds”). These (meth) acrylic compounds may be used alone or in combination of two or more. These acrylic resins are described in, for example, Japanese Patent Application Laid-Open No. 2019-168500. The entire description of the publication is incorporated herein by reference.
 オキセタン樹脂としては、分子内にオキセタニル基を1個以上有する任意の適切な化合物が用いられる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル等の分子内にオキセタニル基を1個有するオキセタン化合物;3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル等の分子内にオキセタニル基を2個以上有するオキセタン化合物;等が挙げられる。これらオキセタン樹脂は1種のみを用いてもよく、2種以上を組み合わせてもよい。 As the oxetane resin, any suitable compound having one or more oxetanyl groups in the molecule is used. For example, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl). Oxetane compound having one oxetane group in the molecule such as oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl; 3-ethyl- 3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 4,4'-bis [(3-ethyl) -3-oxetanyl) methoxymethyl] An oxetane compound having two or more oxetane groups in the molecule such as biphenyl; and the like. Only one kind of these oxetane resins may be used, or two or more kinds may be combined.
 好ましくは3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が用いられる。これらのオキセタン樹脂は、容易に入手可能であり、希釈性(低粘度)、相溶性に優れ得る。 Preferably 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl -3- (Oxylanylmethoxy) oxetane, (meth) acrylate (3-ethyloxetane-3-yl) methyl, 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane Etc. are used. These oxetane resins are easily available and can be excellent in dilutability (low viscosity) and compatibility.
 1つの実施形態においては、相溶性や接着性の点から、好ましくは分子量500以下であり、室温(25℃)で液状のオキセタン樹脂が用いられる。1つの実施形態においては、好ましくは分子内に2個以上のオキセタニル基を含有するオキセタン化合物、分子内に1個のオキセタニル基と1個の(メタ)アクリロイル基または1個のエポキシ基を含有するオキセタン化合物が用いられ、より好ましくは3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチルが用いられる。これらのオキセタン樹脂を用いることにより、保護層の硬化性および耐久性が向上し得る。 In one embodiment, an oxetane resin having a molecular weight of 500 or less and liquid at room temperature (25 ° C.) is preferably used from the viewpoint of compatibility and adhesiveness. In one embodiment, it preferably contains an oxetane compound containing two or more oxetanel groups in the molecule, one oxetaneyl group and one (meth) acryloyl group or one epoxy group in the molecule. Oxetane compounds are used, more preferably 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 3-ethyl-3- (oxylanylmethoxy) oxetane, (meth) acrylic. Acid (3-ethyloxetane-3-yl) methyl is used. By using these oxetane resins, the curability and durability of the protective layer can be improved.
 オキセタン樹脂としては、市販品を用いてもよい。具体的には、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-212、アロンオキセタンOXT-221(いずれも東亞合成社製)を用いることができる。好ましくはアロンオキセタンOXT-101およびアロンオキセタンOXT-221を用いることができる。 As the oxetane resin, a commercially available product may be used. Specifically, Aron Oxetane OXT-101, Aron Oxetane OXT-121, Aron Oxetane OXT-212, and Aron Oxetane OXT-221 (all manufactured by Toagosei Co., Ltd.) can be used. Preferably, Aron Oxetane OXT-101 and Aron Oxetane OXT-221 can be used.
 ビフェニル骨格を有するエポキシ樹脂と他の樹脂とを併用する場合、ビフェニル骨格を有するエポキシ樹脂と他の樹脂とのブレンドにおけるビフェニル骨格を有するエポキシ樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、保護層の耐熱性および偏光子との十分な密着性とが得られないおそれがある。 When the epoxy resin having a biphenyl skeleton is used in combination with another resin, the content of the epoxy resin having a biphenyl skeleton in the blend of the epoxy resin having a biphenyl skeleton and the other resin is preferably 50% by weight to 100% by weight. , More preferably 60% by weight to 100% by weight, further preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the heat resistance of the protective layer and sufficient adhesion to the polarizer may not be obtained.
 ビフェニル骨格を有するエポキシ樹脂とオキセタン樹脂とを併用する場合、ビフェニル骨格を有するエポキシ系樹脂とオキセタン樹脂の合計量100重量部に対して、オキセタン樹脂の含有量は好ましくは1重量部~50重量部、より好ましくは5重量部~45重量部、さらに好ましくは10重量部~40重量部である。上記範囲とすることにより、硬化性が向上し、保護層と偏光子との密着性も向上し得る。 When an epoxy resin having a biphenyl skeleton and an oxetane resin are used in combination, the content of the oxetane resin is preferably 1 part by weight to 50 parts by weight with respect to 100 parts by weight of the total amount of the epoxy resin having a biphenyl skeleton and the oxetane resin. , More preferably 5 parts by weight to 45 parts by weight, still more preferably 10 parts by weight to 40 parts by weight. Within the above range, the curability can be improved, and the adhesion between the protective layer and the polarizer can also be improved.
C-2.硬化剤
 ビフェニル骨格を有するエポキシ樹脂は任意の適切な硬化剤と共に用いられることにより、硬化物となり得る。硬化剤としては、エポキシ樹脂を硬化させることができる任意の適切な硬化剤を用いることができる。1つの実施形態において、硬化剤は光カチオン重合開始剤を含む。光カチオン重合開始剤を含むことにより、カチオン重合硬化物である保護層を形成することができる。光カチオン重合開始剤としては、紫外線等の光照射によりビフェニル骨格を有するエポキシ樹脂を硬化させることかできる任意の適切な化合物を用いることができる。光カチオン重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
C-2. Hardener An epoxy resin with a biphenyl skeleton can be a hardened product when used with any suitable hardener. As the curing agent, any suitable curing agent capable of curing the epoxy resin can be used. In one embodiment, the curing agent comprises a photocationic polymerization initiator. By including the photocationic polymerization initiator, a protective layer which is a cationic polymerization cured product can be formed. As the photocationic polymerization initiator, any suitable compound capable of curing an epoxy resin having a biphenyl skeleton by irradiation with light such as ultraviolet rays can be used. Only one type of photocationic polymerization initiator may be used, or two or more types may be used in combination.
 光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe-ヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等が挙げられる。好ましくは、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤が用いられる。 Examples of the photocationic polymerization initiator include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, and the like. 4-Chlorphenyl diphenyl sulfonium hexafluorophosphate, 4-chlorophenyl diphenyl sulfonium hexafluoroantimonate, bis [4- (diphenyl sulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenyl sulfonio) phenyl ] Sulfoxide bishexafluoroantimonate, (2,4-cyclopentadiene-1-yl) [(1-methylethyl) benzene] -Fe-hexafluorophosphate, diphenyliodonium hexafluoroantimonate and the like can be mentioned. Preferably, a triphenylsulfonium salt-based hexafluoroantimonate type photocationic polymerization initiator and a diphenyliodonium salt-based hexafluoroantimonate type photocationic polymerization initiator are used.
 光カチオン重合開始剤としては市販品を用いてもよい。市販品としては、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプのSP-170(ADEKA社製)、CPI-101A(サンアプロ社製)、WPAG-1056(和光純薬工業社製)、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプのWPI-116(和光純薬工業社製)等が挙げられる。 A commercially available product may be used as the photocationic polymerization initiator. Commercially available products include triphenylsulfonium salt-based hexafluoroantimonate type SP-170 (manufactured by ADEKA), CPI-101A (manufactured by San-Apro), WPAG-1056 (manufactured by Wako Pure Chemical Industries, Ltd.), and diphenyliodonium salt-based. Hexafluoroantimonate type WPI-116 (manufactured by Wako Pure Chemical Industries, Ltd.) and the like can be mentioned.
 光カチオン重合開始剤の含有量は、ビフェニル骨格を有するエポキシ樹脂100重量部に対して、好ましくは0.1重量部~3重量部であり、より好ましくは0.25重量部~2重量部である。光カチオン重合開始剤の含有量が0.1重量部未満の場合、光(紫外線)を照射しても十分に硬化しない場合がある。 The content of the photocationic polymerization initiator is preferably 0.1 parts by weight to 3 parts by weight, more preferably 0.25 parts by weight to 2 parts by weight, based on 100 parts by weight of the epoxy resin having a biphenyl skeleton. be. If the content of the photocationic polymerization initiator is less than 0.1 parts by weight, it may not be sufficiently cured even when irradiated with light (ultraviolet rays).
C-3.保護層の構成および特性
 保護層は、上記のとおり、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成されている。このような硬化物であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。保護層の厚みは、好ましくは10μm以下であり、より好ましくは7μm以下であり、さらに好ましくは5μm以下であり、特に好ましくは3μm以下である。保護層の厚みは、例えば1μm以上であり得る。ビフェニル骨格を有するエポキシ樹脂の硬化物は水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板を実現することができる。また、ビフェニル骨格を有するエポキシ樹脂の硬化物である保護層は、偏光子との密着性に優れる。そのため、上記のような厚みであっても、従来のフィルムを用いた保護層と同程度に偏光子を保護し得る。また、上記の厚みであっても偏光子の色抜け等の不具合の発生を防止し得る。
C-3. Composition and Characteristics of Protective Layer As described above, the protective layer is composed of a cured product of an epoxy resin having a biphenyl skeleton. With such a cured product, the thickness can be significantly reduced as compared with the extrusion-molded film. The thickness of the protective layer is preferably 10 μm or less, more preferably 7 μm or less, still more preferably 5 μm or less, and particularly preferably 3 μm or less. The thickness of the protective layer can be, for example, 1 μm or more. A cured product of an epoxy resin having a biphenyl skeleton has an advantage of being excellent in humidification durability because it has lower hygroscopicity and moisture permeability than a solidified product of an aqueous coating film such as an aqueous solution or an aqueous dispersion. As a result, it is possible to realize a polarizing plate having excellent durability that can maintain the optical characteristics even in a heating and humidifying environment. Further, the protective layer, which is a cured product of an epoxy resin having a biphenyl skeleton, has excellent adhesion to a polarizer. Therefore, even with the above-mentioned thickness, the polarizer can be protected to the same extent as the protective layer using a conventional film. Further, even with the above thickness, it is possible to prevent the occurrence of problems such as color loss of the polarizer.
 保護層の軟化温度は、好ましくは100℃以上である。保護層の軟化温度が100℃以上であれば、得られる保護層を含む偏光板は、耐久性に優れたものとなりやすい。保護層の軟化温度は、好ましくは110℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上である。一方、保護層の軟化温度は、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。保護層の軟化点がこのような範囲であれば、成形性および加工性に優れ得る。 The softening temperature of the protective layer is preferably 100 ° C. or higher. When the softening temperature of the protective layer is 100 ° C. or higher, the obtained polarizing plate containing the protective layer tends to have excellent durability. The softening temperature of the protective layer is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 125 ° C. or higher. On the other hand, the softening temperature of the protective layer is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower, and particularly preferably 160 ° C. or lower. When the softening point of the protective layer is within such a range, moldability and workability can be excellent.
 保護層のヨウ素吸着量は、好ましくは10重量%以下であり、より好ましくは6.0重量%以下であり、さらに好ましくは3.0重量%以下であり、特に好ましくは2.0重量%以下である。ヨウ素吸着量は小さいほど好ましい。ヨウ素吸着量がこのような範囲であれば、さらに優れた耐久性を有する偏光板が得られ得る。ヨウ素吸着量は、以下の方法で測定され得る。
 保護層形成用組成物を、アプリケーターにより基材(PETフィルム)に塗布し、保護層(厚み約3μm)を形成する。得られた保護層付PETフィルムを1cm×1cm(1cm)に切り出して試料とし、ヘッドスペースバイアル瓶(20mL容量)に採取・秤量する。次に、ヨウ素溶液1mL(ヨウ素濃度1重量%、ヨウ化カリウム濃度7重量%)を入れたスクリュー管瓶(1.5mL容量)もこのヘッドスペースバイアル瓶に入れ、密栓する。その後、ヘッドスペースバイアル瓶を65℃の乾燥機に入れ、6時間加温する。これにより、ガス状態のIを試料に吸着させる。その後、試料をセラミックボートに採取し自動試料燃焼装置を用いて燃焼させ、発生したガスを吸収液10mLに捕集する。捕集後、この吸収液を純水で15mLに調製し、原液または適宜希釈した液についてIC定量分析を行う。なお、PETフィルムのみで同様の測定を行った場合のヨウ素吸着量はほぼ0である。IC定量分析で得られたヨウ素重量と、保護層単体の重量(「保護層付PETフィルムの重量」-「PETフィルムの重量」)とに基づいて、以下の式からヨウ素吸着量(重量%)を算出する。
  ヨウ素吸着量(重量%)=IC定量分析で得られたヨウ素重量/保護層単体の重量×100
 分析には、例えば、以下の測定装置を用いることができる。
[測定装置]
  自動試料燃焼装置:三菱ケミカルアナリテック社製、「AQF-2100H」
  IC(アニオン):Thermo Fisher Scientific社製、「ICS-3000」
The iodine adsorption amount of the protective layer is preferably 10% by weight or less, more preferably 6.0% by weight or less, further preferably 3.0% by weight or less, and particularly preferably 2.0% by weight or less. Is. The smaller the amount of iodine adsorbed, the more preferable. If the amount of iodine adsorbed is in such a range, a polarizing plate having even better durability can be obtained. The amount of iodine adsorbed can be measured by the following method.
The composition for forming a protective layer is applied to a base material (PET film) with an applicator to form a protective layer (thickness of about 3 μm). The obtained PET film with a protective layer is cut into 1 cm × 1 cm (1 cm 2 ) to be used as a sample, and collected and weighed in a headspace vial (20 mL capacity). Next, a screw tube bottle (1.5 mL capacity) containing 1 mL of an iodine solution (iodine concentration 1% by weight, potassium iodide concentration 7% by weight) is also placed in this headspace vial and sealed. Then, the headspace vial is placed in a dryer at 65 ° C. and heated for 6 hours. As a result, I 2 in the gas state is adsorbed on the sample. Then, the sample is collected in a ceramic boat and burned using an automatic sample combustion device, and the generated gas is collected in 10 mL of the absorbing liquid. After collection, this absorbing solution is prepared in 15 mL with pure water, and IC quantitative analysis is performed on the undiluted solution or the appropriately diluted solution. The amount of iodine adsorbed is almost 0 when the same measurement is performed only with the PET film. Based on the iodine weight obtained by IC quantitative analysis and the weight of the protective layer alone (“weight of PET film with protective layer”-“weight of PET film”), the amount of iodine adsorbed (% by weight) from the following formula. Is calculated.
Iodine adsorption amount (% by weight) = Iodine weight obtained by IC quantitative analysis / Weight of protective layer alone x 100
For the analysis, for example, the following measuring device can be used.
[measuring device]
Automatic sample combustion device: "AQF-2100H" manufactured by Mitsubishi Chemical Analytech Co., Ltd.
IC (anion): "ICS-3000" manufactured by Thermo Fisher Scientific.
 保護層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、波長550nmにおける位相差が、-50nm~+50nmであることをいう。面内位相差Re(550)は、より好ましくは-30nm~+30nmであり、さらに好ましくは-10nm~+10nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。保護層のRe(550)およびRth(550)がこのような範囲であれば、当該保護層を含む偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。なお、Re(550)は、23℃における波長550nmの光で測定したフィルムの面内位相差である。Re(550)は、式:Re(550)=(nx-ny)×dによって求められる。Rth(550)は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。Rth(550)は、式:Rth(550)=(nx-nz)×dによって求められる。ここで、nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、nzは厚み方向の屈折率であり、dはフィルムの厚み(nm)である。 The protective layer is preferably substantially optically isotropic. As used herein, the term "substantially optically isotropic" means that the phase difference at a wavelength of 550 nm is −50 nm to +50 nm. The in-plane retardation Re (550) is more preferably −30 nm to +30 nm, further preferably −10 nm to +10 nm, and particularly preferably 0 nm to 2 nm. The phase difference Rth (550) in the thickness direction is more preferably −5 nm to + 5 nm, further preferably -3 nm to + 3 nm, and particularly preferably -2 nm to + 2 nm. When Re (550) and Rth (550) of the protective layer are in such a range, it is possible to prevent adverse effects on the display characteristics when the polarizing plate including the protective layer is applied to the image display device. Re (550) is an in-plane phase difference of the film measured with light having a wavelength of 550 nm at 23 ° C. Re (550) is calculated by the formula: Re (550) = (nx-ny) × d. Rth (550) is a phase difference in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C. Rth (550) is calculated by the formula: Rth (550) = (nx-nz) × d. Here, nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and ny is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction). It is the refractive index, nz is the refractive index in the thickness direction, and d is the thickness (nm) of the film.
 保護層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。 The higher the light transmittance at 380 nm when the thickness of the protective layer is 3 μm, the more preferable. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, still more preferably 90% or more. When the light transmittance is in such a range, the desired transparency can be ensured. The light transmittance can be measured, for example, by a method according to ASTM-D-1003.
 保護層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1.5%以下であり、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側偏光板に使用する場合でも、表示内容が良好に視認できる。 The lower the haze of the protective layer, the more preferable. Specifically, the haze is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less. When the haze is 5% or less, a good clear feeling can be given to the film. Further, even when the polarizing plate on the visual side of the image display device is used, the displayed contents can be visually recognized satisfactorily.
 保護層の厚み3μmにおけるYIは、好ましくは1.27以下であり、より好ましくは1.25以下であり、さらに好ましくは1.23以下であり、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
   YI=[(1.28X-1.06Z)/Y]×100
The YI at a thickness of 3 μm of the protective layer is preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient. YI is obtained from, for example, the tristimulus values (X, Y, Z) of the color obtained by measurement using a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory). , Can be calculated by the following equation.
YI = [(1.28X-1.06Z) / Y] x 100
 保護層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満であり、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、保護層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。 The b value (a measure of hue according to the hunter's color system) at a thickness of 3 μm of the protective layer is preferably less than 1.5, more preferably 1.0 or less. When the b value is 1.5 or more, an undesired color may appear. For the b value, for example, a sample of the film constituting the protective layer is cut into 3 cm squares, and a high-speed integrating sphere type spectral transmittance measuring machine (trade name: DOT-3C: manufactured by Murakami Color Technology Laboratory) is used to determine the hue. Can be obtained by measuring and evaluating the hue according to the color system of the hunter.
 保護層(ビフェニル骨格を有するエポキシ樹脂の硬化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤は、通常、保護層形成時に溶液に添加される。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。 The protective layer (cured product of epoxy resin having a biphenyl skeleton) may contain any appropriate additive depending on the purpose. Specific examples of additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol-based, phosphorus-based, and sulfur-based; stabilizers such as light-resistant stabilizers, weather-resistant stabilizers, and heat-stabilizing agents; glass fibers, Reinforcing materials such as carbon fibers; Near infrared absorbers; Flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agents such as anionic, cationic and nonionic surfactants; Inorganic pigments , Organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like. Additives are usually added to the solution during protective layer formation. The type, number, combination, amount of additive, etc. of the additive can be appropriately set according to the purpose.
 保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、保護層と偏光子との密着性を高めることができる。易接着層は、任意の適切な方法により偏光子と積層され得る。例えば、偏光子に直接形成してもよく、任意の適切な粘着剤層または接着剤層を介して積層され得る。また、保護層には、ハードコート層が形成されていてもよい。ハードコート層は、保護層が視認側偏光板の視認側の保護層として用いられる場合に形成され得る。易接着層およびハードコート層の両方が形成される場合、代表的には、これらはそれぞれ保護層の異なる側に形成され得る。 An easy-adhesion layer may be formed on the polarizer side of the protective layer. The easy-adhesion layer contains, for example, an aqueous polyurethane and an oxazoline-based cross-linking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be improved. The easy-adhesion layer can be laminated with the polarizer by any suitable method. For example, it may be formed directly on the polarizer and may be laminated via any suitable adhesive layer or adhesive layer. Further, a hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as the visible protective layer of the visible polarizing plate. When both the easy-adhesion layer and the hard coat layer are formed, typically they can be formed on different sides of the protective layer, respectively.
D.偏光板の製造方法
D-1.偏光子の製造方法
 上記B項に記載の偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。このような製造方法によれば、上記のような偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および偏光度)を有するとともに、光学特性のバラつきが抑制された偏光子を得ることができる。具体的には、乾燥収縮処理工程において加熱ロールを用いることにより、積層体を搬送しながら、積層体全体に亘って均一に収縮することができる。これにより、得られる偏光子の光学特性を高めることができるだけでなく、光学特性に優れる偏光子を安定して生産することができ、偏光子の光学特性(特に、単体透過率)のバラつきを抑制することができる。以下、ハロゲン化物および乾燥収縮処理について説明する。これら以外の製造方法の詳細については、例えば特開2012-73580号公報および特許第6470455号に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
D. Method for manufacturing polarizing plate D-1. Method for producing a polarizer The method for producing a polarizer according to the above item B is a polyvinyl alcohol-based resin containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material. A layer (PVA-based resin layer) is formed to form a laminated body, and the laminated body is heated in the width direction while being conveyed in the longitudinal direction by aerial auxiliary stretching treatment, dyeing treatment, and underwater stretching treatment. A drying shrinkage treatment for shrinking by 2% or more, and a drying shrinkage treatment, which are performed in this order, are included. The content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. According to such a manufacturing method, the above-mentioned polarizer can be obtained. In particular, by preparing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll. It is possible to obtain a polarizer having excellent optical characteristics (typically, single transmittance and degree of polarization) and suppressing variation in optical characteristics. Specifically, by using a heating roll in the drying shrinkage treatment step, the laminated body can be uniformly shrunk over the entire laminated body while being conveyed. As a result, not only the optical characteristics of the obtained polarizer can be improved, but also a polarizer having excellent optical characteristics can be stably produced, and the variation in the optical characteristics of the polarizer (particularly, the single transmittance) can be suppressed. can do. Hereinafter, the halide and the drying shrinkage treatment will be described. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
D-1-1.ハロゲン化物
 ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層は、ハロゲン化物とPVA系樹脂とを含む塗布液を熱可塑性樹脂基材上に塗布し、塗布膜を乾燥することにより形成され得る。塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。
D-1-1. Halide A PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin onto a thermoplastic resin base material and drying the coating film. The coating liquid is typically a solution in which the above-mentioned halide and the above-mentioned PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Of these, water is preferred. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed in close contact with the thermoplastic resin base material.
 ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 As the halide, any suitable halide can be adopted. For example, iodide and sodium chloride can be mentioned. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
 塗布液におけるハロゲン化物の量は、PVA系樹脂100重量部に対して好ましくは5重量部~20重量部であり、より好ましくは10重量部~15重量部である。ハロゲン化物の量が多すぎると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。 The amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the finally obtained polarizer may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性が向上し得る。 Generally, the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease. In particular, when the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. When stretched, the tendency of the degree of orientation to decrease is remarkable. For example, while stretching a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water. On the other hand, a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in the air before being stretched in boric acid water. , Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. As a result, the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water, can be improved.
D-1-2.乾燥収縮処理
 乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行ってもよいし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
D-1-2. Dry shrinkage treatment The dry shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used. By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizer having an excellent appearance. Specifically, by drying the laminate along the heating roll, the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state of being able to withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. Further, by using the heating roll, the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%. By using the heating roll, the laminated body can be continuously contracted in the width direction while being conveyed, and high productivity can be realized.
 図2は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 2 is a schematic view showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material. For example, one surface of the laminate 200 (for example, thermoplastic) is arranged. The transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like. The temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C. The crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using both drying with a heating roll and hot air drying together, a steep temperature change between the heating rolls can be suppressed, and shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。 Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
 このようにして、熱可塑性樹脂基材/偏光子の積層体を得ることができる。 In this way, a laminate of a thermoplastic resin base material / polarizer can be obtained.
D-2.偏光板の製造方法
 上記D-1項で得られた積層体表面(例えば、偏光子表面)に、ビフェニル骨格を有するエポキシ樹脂、および、硬化剤を含む組成物を塗布して塗膜を形成し、該塗膜を硬化させることにより保護層が形成され得る。1つの実施形態において、保護層はカチオン重合硬化物である。この実施形態においては、硬化剤として光カチオン重合開始剤が用いられる。ビフェニル骨格を有するエポキシ樹脂と光カチオン重合開始剤とを含む組成物を積層体表面(例えば、偏光子表面)に塗布して塗膜を形成し、該塗膜に光(例えば、紫外線)を照射することにより保護層を形成することができる。
D-2. Method for Producing Polarizing Plate A coating film is formed by applying a composition containing an epoxy resin having a biphenyl skeleton and a curing agent to the surface of the laminate obtained in item D-1 above (for example, the surface of a polarizer). A protective layer can be formed by curing the coating film. In one embodiment, the protective layer is a cationically polymerized cured product. In this embodiment, a photocationic polymerization initiator is used as the curing agent. A composition containing an epoxy resin having a biphenyl skeleton and a photocationic polymerization initiator is applied to the surface of a laminate (for example, the surface of a polarizer) to form a coating film, and the coating film is irradiated with light (for example, ultraviolet rays). By doing so, a protective layer can be formed.
 上記組成物に含まれる溶媒としては、ビフェニル骨格を有するエポキシ樹脂および硬化剤を溶解または均一に分散し得る任意の適切な溶媒を用いることができる。溶媒の具体例としては、酢酸エチル、トルエン、メチリエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。 As the solvent contained in the above composition, any suitable solvent capable of dissolving or uniformly dispersing the epoxy resin having a biphenyl skeleton and the curing agent can be used. Specific examples of the solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
 溶液のエポキシ樹脂濃度は、溶媒100重量部に対して、好ましくは10重量部~30重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。また、硬化剤の含有量は上記C項の通りである。 The epoxy resin concentration of the solution is preferably 10 parts by weight to 30 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polarizer can be formed. The content of the curing agent is as described in Item C above.
 溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。溶液を基材に塗布する場合には、基材上に形成された塗布膜の硬化物が偏光子に転写される。溶液を偏光子に塗布する場合には、塗布膜を例えば光照射により硬化させることにより、偏光子上に保護層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。 The solution may be applied to any suitable substrate or to a polarizer. When the solution is applied to the substrate, the cured product of the coating film formed on the substrate is transferred to the polarizer. When the solution is applied to the polarizer, a protective layer is directly formed on the polarizer by curing the coating film by, for example, light irradiation. Preferably, the solution is applied to the polarizer and a protective layer is formed directly on the polarizer. With such a configuration, the adhesive layer or the pressure-sensitive adhesive layer required for transfer can be omitted, so that the polarizing plate can be further thinned. Any suitable method can be adopted as the method for applying the solution. Specific examples include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, and a knife coating method (comma coating method, etc.).
 光照射により塗布膜を硬化させる場合、任意の適切な光源を用いて任意の適切な照射量となるよう塗布膜に光(代表的には紫外線)が照射され得る。紫外線の光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、無電極ランプ、カーボンアーク灯、キセノン灯、メタルハライドランプ、ケミカルランプ、ブラックライト、LEDランプ等を用いることができる。紫外線の照射量は、例えば、2mJ/cm~3000mJ/cm、好ましくは10mJ/cm~2000mJ/cmである。具体的には、光源として高圧水銀灯を用いる場合、照射量は通常5mJ/cm~3000mJ/cm、好ましくは50mJ/cm~2000mJ/cmの条件で行われる。光源として無電極ランプを用いる場合、照射量は、通常2mJ/cm~2000mJ/cm、好ましくは10mJ/cm~1000mJ/cmの条件で行われる。 When the coating film is cured by light irradiation, the coating film can be irradiated with light (typically ultraviolet rays) so as to have an arbitrary appropriate irradiation amount using an arbitrary appropriate light source. As the light source of ultraviolet rays, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an electrodeless lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, a chemical lamp, a black light, an LED lamp and the like can be used. The dose of ultraviolet rays, for example, 2mJ / cm 2 ~ 3000mJ / cm 2, preferably 10mJ / cm 2 ~ 2000mJ / cm 2. Specifically, when using a high pressure mercury lamp as a light source, the irradiation dose is usually 5mJ / cm 2 ~ 3000mJ / cm 2, preferably at the conditions of 50mJ / cm 2 ~ 2000mJ / cm 2. When an electrodeless lamp is used as the light source, the irradiation amount is usually 2 mJ / cm 2 to 2000 mJ / cm 2, preferably 10 mJ / cm 2 to 1000 mJ / cm 2 .
 照射時間は、光源の種類、光源と塗布面との距離、塗布厚、その他の条件に応じて、任意の適切な値に設定され得る。照射時間は、通常は、数秒~数十秒であり、数分の1秒でもよい。光の照射は、任意の適切な方向から照射することができる。不均一な硬化を防ぐ点で、保護層形成用組成物の塗工面側から照射することが好ましい。 The irradiation time can be set to an arbitrary appropriate value according to the type of light source, the distance between the light source and the coating surface, the coating thickness, and other conditions. The irradiation time is usually several seconds to several tens of seconds, and may be a fraction of a second. Irradiation of light can be performed from any suitable direction. From the viewpoint of preventing non-uniform curing, it is preferable to irradiate from the coated surface side of the protective layer forming composition.
 紫外線照射等の光照射による露光後、光反応による硬化を完結させるために加熱処理をさらに施してもよい。加熱処理は任意の適切な温度および時間で行われ得る。加熱温度は、例えば、80℃~250℃であり、好ましくは100℃~150℃である。加熱時間は、例えば、10秒~2時間であり、好ましくは5分~1時間である。 After exposure by light irradiation such as ultraviolet irradiation, further heat treatment may be performed in order to complete curing by light reaction. The heat treatment can be carried out at any suitable temperature and time. The heating temperature is, for example, 80 ° C. to 250 ° C., preferably 100 ° C. to 150 ° C. The heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
 以上のようにして、保護層が形成され、結果として、熱可塑性樹脂基材/偏光子/保護層の積層体を得ることができる。この積層体から熱可塑性樹脂基材を剥離することにより、図1に示すような偏光子10と保護層20とを有する偏光板を得ることができる。あるいは、熱可塑性樹脂基材/偏光子の積層体の偏光子表面に別の保護層を構成する樹脂フィルムを貼り合わせ、次いで熱可塑性樹脂基材を剥離し、当該剥離面に保護層を形成してもよい。この場合には、別の保護層をさらに有する偏光板を得ることができる。 As described above, the protective layer is formed, and as a result, a laminate of the thermoplastic resin base material / polarizer / protective layer can be obtained. By peeling the thermoplastic resin base material from this laminate, a polarizing plate having a polarizing element 10 and a protective layer 20 as shown in FIG. 1 can be obtained. Alternatively, a resin film constituting another protective layer is attached to the polarizer surface of the laminate of the thermoplastic resin base material / polarizer, and then the thermoplastic resin base material is peeled off to form a protective layer on the peeled surface. You may. In this case, a polarizing plate having another protective layer can be obtained.
E.位相差層付偏光板
E-1.位相差層付偏光板の概要
 本発明の1つの実施形態においては、位相差層付偏光板が提供され得る。この位相差層付偏光板は、上記偏光板の保護層が配置されていない面に位相差層をさらに有する。図3は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板110は、偏光子10と、偏光子10の一方の側に配置された保護層20と、偏光子10のもう一方の側に配置された位相差層40と、を有する。偏光子10と保護層20とは上記偏光板を構成する。したがって、位相差層付偏光板は、偏光子と該偏光子の一方の側に配置された保護層とを含む偏光板と、該偏光板の該保護層と反対側に配置された位相差層と、を有する。必要に応じて、偏光板は、偏光子10の保護層20とは反対側に別の保護層(図示せず)をさらに含んでいてもよい。言い換えれば、位相差層付偏光板110は、偏光子10と位相差層40との間に別の保護層(図示せず)をさらに含んでいてもよい。上記のとおり、保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、任意の適切な方法により偏光子と積層され得る。例えば、偏光子に直接形成してもよく、任意の適切な粘着剤層または接着剤層を介して積層され得る。
E. Polarizing plate with retardation layer E-1. Outline of Polarizing Plate with Differential Layer In one embodiment of the present invention, a polarizing plate with a retardation layer can be provided. This polarizing plate with a retardation layer further has a retardation layer on a surface on which the protective layer of the polarizing plate is not arranged. FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 110 with a retardation layer in the illustrated example includes a polarizing element 10, a protective layer 20 arranged on one side of the polarizer 10, and a retardation layer 40 arranged on the other side of the polarizer 10. , Have. The polarizer 10 and the protective layer 20 form the above-mentioned polarizing plate. Therefore, the polarizing plate with a retardation layer includes a polarizing plate including a polarizing element and a protective layer arranged on one side of the polarizing element, and a retardation layer arranged on the opposite side of the polarizing plate to the protective layer. And have. If necessary, the polarizing plate may further include another protective layer (not shown) on the opposite side of the polarizing element 10 from the protective layer 20. In other words, the polarizing plate 110 with a retardation layer may further include another protective layer (not shown) between the polarizer 10 and the retardation layer 40. As described above, an easy-adhesion layer may be formed on the polarizer side of the protective layer. The easy-adhesion layer can be laminated with the polarizer by any suitable method. For example, it may be formed directly on the polarizer and may be laminated via any suitable adhesive layer or adhesive layer.
 図3に示す実施形態においては、位相差層40は単一層である。この場合、位相差層40のRe(550)は例えば100nm~190nmであり、位相差層40の遅相軸と偏光子10の吸収軸とのなす角度は例えば40°~50°である。この場合、好ましくは、位相差層40の外側(偏光子10と反対側)に別の位相差層(図示せず)が設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。あるいは、図4に示すように、別の実施形態による位相差層付偏光板111においては、位相差層40は、第1層41と第2層42との積層構造を有する。この場合、第1層41のRe(550)は例えば200nm~300nmであり、第1層41の遅相軸と偏光子10の吸収軸とのなす角度は例えば10°~20°であり;第2層42のRe(550)は例えば100nm~190nmであり、第2層42の遅相軸と偏光子10の吸収軸とのなす角度は例えば70°~80°である。いずれの実施形態においても、位相差層40は、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。位相差層40が積層構造を有する場合、代表的には、第1層41および第2層42はそれぞれ、樹脂フィルムまたは液晶化合物の配向固化層である。 In the embodiment shown in FIG. 3, the retardation layer 40 is a single layer. In this case, the Re (550) of the retardation layer 40 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40 ° to 50 °. In this case, preferably, another retardation layer (not shown) is provided on the outside of the retardation layer 40 (on the side opposite to the polarizer 10). Another retardation layer typically exhibits a relationship in which the refractive index characteristic is nz> nz = ny. Alternatively, as shown in FIG. 4, in the polarizing plate with a retardation layer 111 according to another embodiment, the retardation layer 40 has a laminated structure of the first layer 41 and the second layer 42. In this case, the Re (550) of the first layer 41 is, for example, 200 nm to 300 nm, and the angle formed by the slow axis of the first layer 41 and the absorption axis of the polarizer 10 is, for example, 10 ° to 20 °; The Re (550) of the second layer 42 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the second layer 42 and the absorption axis of the polarizer 10 is, for example, 70 ° to 80 °. In any of the embodiments, the retardation layer 40 may be a resin film or an orientation-solidified layer of a liquid crystal compound. When the retardation layer 40 has a laminated structure, typically, the first layer 41 and the second layer 42 are orientation-solidified layers of a resin film or a liquid crystal compound, respectively.
E-2.単一層で構成される位相差層
 位相差層が単一層で構成される場合、当該位相差層は、上記のとおり、Re(550)が例えば100nm~190nmであり、位相差層40の遅相軸と偏光子10の吸収軸とのなす角度が例えば40°~50°である。位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。位相差層は、上記のとおり、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。
E-2. A retardation layer composed of a single layer When the retardation layer is composed of a single layer, the retardation layer has a Re (550) of, for example, 100 nm to 190 nm as described above, and the retard phase of the retardation layer 40 is slow. The angle formed by the shaft and the absorption shaft of the polarizer 10 is, for example, 40 ° to 50 °. The retardation layer is typically provided to impart antireflection properties to the polarizing plate and can function as a λ / 4 plate in one embodiment. As described above, the retardation layer may be a resin film or an orientation-solidified layer of a liquid crystal compound.
 位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。位相差層の面内位相差Re(550)は、上記のとおり例えば100nm~190nmであり、好ましくは110nm~170nmであり、より好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。 The retardation layer preferably shows a relationship in which the refractive index characteristic is nx> ny ≧ nz. The in-plane retardation Re (550) of the retardation layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm as described above. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effect of the present invention is not impaired.
 位相差層のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9. ~ 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
 位相差層40の遅相軸と偏光子10の吸収軸とのなす角度θは、上記のとおり例えば40°~50°であり、好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。 The angle θ formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40 ° to 50 °, preferably 42 ° to 48 °, and more preferably about 45 ° as described above. Is. If the angle θ is in such a range, by using a λ / 4 plate as the retardation layer, polarized light with a retardation layer having very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics). A plate can be obtained.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light. In one embodiment, the retardation layer exhibits inverse dispersion wavelength characteristics. In this case, the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
 位相差層は、光弾性係数の絶対値が好ましくは2.0×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。 Retardation layer is preferably the absolute value of photoelastic coefficient is 2.0 × 10 -11 m 2 / N or less, more preferably 2.0 × 10 -13 m 2 /N~1.5×10 -11 m 2 / N, more preferably includes a resin of 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N. When the absolute value of the photoelastic coefficient is in such a range, the phase difference change is unlikely to occur when a shrinkage stress during heating occurs. As a result, thermal unevenness of the obtained image display device can be satisfactorily prevented.
E-2-1.樹脂フィルム
 位相差層が樹脂フィルムである場合、当該樹脂フィルムは代表的には延伸フィルムである。この場合、位相差層の厚みは、好ましくは60μm以下であり、より好ましくは30μm~55μmである。位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。
E-2-1. Resin film When the retardation layer is a resin film, the resin film is typically a stretched film. In this case, the thickness of the retardation layer is preferably 60 μm or less, more preferably 30 μm to 55 μm. When the thickness of the retardation layer is within such a range, it is possible to satisfactorily adjust the curl at the time of bonding while satisfactorily suppressing the curl at the time of heating.
 位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて(例えば、ブレンド、共重合)用いてもよい。位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が好適に用いられ得る。 The retardation layer may be composed of any suitable resin film that can satisfy the above characteristics. Typical examples of such resins are polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, and polyamide resins. , Polyethylene resin, polyether resin, polystyrene resin, acrylic resin and the like. These resins may be used alone or in combination (eg, blending, copolymerizing). When the retardation layer is composed of a resin film exhibiting inverse dispersion wavelength characteristics, a polycarbonate-based resin or a polyester carbonate-based resin (hereinafter, may be simply referred to as a polycarbonate-based resin) can be preferably used.
 上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート系樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、当該記載は本明細書に参考として援用される。 As the above-mentioned polycarbonate-based resin, any suitable polycarbonate-based resin can be used as long as the effects of the present invention can be obtained. For example, the polycarbonate-based resin contains a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. Includes structural units derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols. Preferably, the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and / or di, tri or polyethylene glycol. Includes structural units derived from; more preferably structural units derived from fluorene dihydroxy compounds, structural units derived from isosorbide dihydroxy compounds, and structural units derived from di, tri or polyethylene glycol. .. The polycarbonate-based resin may contain structural units derived from other dihydroxy compounds, if necessary. Details of the polycarbonate resin that can be suitably used in the present invention are, for example, JP-A-2014-10291, JP-A-2014-226666, JP-A-2015-212816, JP-A-2015-212817. , 2015-21218, and the description is incorporated herein by reference.
 上記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional changes may occur after film molding, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).
 上記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度は、通常好ましくは0.30dL/g以上であり、より好ましくは0.35dL/g以上である。また、還元粘度は、通常好ましくは1.20dL/g以下であり、より好ましくは1.00dL/g以下、さらに好ましくは0.80dL/g以下である。還元粘度が0.30dL/g未満であると成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が1.20dL/gを超えると、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the above-mentioned polycarbonate resin can be expressed by the reduced viscosity. The reduced viscosity is measured by using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL, and using an Ubbelohde viscous tube at a temperature of 20.0 ° C. ± 0.1 ° C. The reduced viscosity is usually preferably 0.30 dL / g or more, and more preferably 0.35 dL / g or more. The reduced viscosity is usually preferably 1.20 dL / g or less, more preferably 1.00 dL / g or less, and further preferably 0.80 dL / g or less. If the reduced viscosity is less than 0.30 dL / g, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity exceeds 1.20 dL / g, there may be a problem that the fluidity at the time of molding is lowered and the productivity and the moldability are lowered.
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。 A commercially available film may be used as the polycarbonate resin film. Specific examples of commercially available products include the product names "Pure Ace WR-S", "Pure Ace WR-W", "Pure Ace WR-M" manufactured by Teijin Limited, and the product name "NRF" manufactured by Nitto Denko. Be done.
 位相差層40は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。 The retardation layer 40 can be obtained, for example, by stretching a film formed of the above-mentioned polycarbonate resin. As a method for forming a film from a polycarbonate-based resin, any suitable molding processing method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press. Law etc. can be mentioned. Extrusion molding method or cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate resin are commercially available, the commercially available film may be subjected to the stretching treatment as it is.
 樹脂フィルム(未延伸フィルム)の厚みは、位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to an arbitrary appropriate value according to the desired thickness of the retardation layer, desired optical characteristics, stretching conditions described later, and the like. It is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。 For the above stretching, any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) can be adopted. Specifically, various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially. As for the stretching direction, it can be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction. The stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., relative to the glass transition temperature (Tg) of the resin film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 By appropriately selecting the stretching method and stretching conditions, a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained.
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching or fixed end uniaxially stretching the resin film. Specific examples of the fixed-end uniaxial stretching include a method of stretching the resin film in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 times to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光子の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously obliquely stretching a long resin film in the direction of the above angle θ with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of an angle θ with respect to the longitudinal direction of the film (a slow axis in the direction of the angle θ) can be obtained. Roll-to-roll is possible, and the manufacturing process can be simplified. The angle θ may be an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer. As described above, the angle θ is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for diagonal stretching include a tenter type stretching machine capable of applying a feeding force, a pulling force, or a pulling force at different speeds in the horizontal and / or vertical directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as the long resin film can be continuously and diagonally stretched.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right velocities in the stretching machine, a retardation layer having the desired in-plane phase difference and having a slow phase axis in the desired direction (substantially long). (Phase difference film) can be obtained.
 上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film can change depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C. to Tg + 30 ° C., more preferably Tg-15 ° C. to Tg + 15 ° C., and most preferably Tg-10 ° C. to Tg + 10 ° C. By stretching at such a temperature, a retardation layer having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
E-2-2.液晶化合物の配向固化層
 位相差層が液晶化合物の配向固化層である場合、液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
E-2-2. Oriented solidified layer of liquid crystal compound When the retarded layer is the oriented solidified layer of the liquid crystal compound, the difference between nx and ny of the obtained retardation layer is significantly increased as compared with the non-liquid crystal material by using the liquid crystal compound. Therefore, the thickness of the retardation layer for obtaining a desired in-plane retardation can be remarkably reduced. As a result, it is possible to further reduce the thickness of the polarizing plate with a retardation layer. As used herein, the term "aligned solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow axis direction of the retardation layer (homogeneous orientation).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US5211877), EP66137 (US4388453), WO93 / 22397, EP02671712, DE19504224, DE4408171 and GB2280445 can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光子10の表面に転写され得る。別の実施形態においては、基材は別の保護層であり得る。この場合には転写工程が省略され、配向固化層(位相差層)の形成から連続してロールトゥロールにより積層が行われ得るので、生産性がさらに向上する。 Orientation of liquid crystal compound The solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing the liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state. In one embodiment, the substrate is any suitable resin film and the oriented solidified layer formed on the substrate can be transferred to the surface of the polarizer 10. In another embodiment, the substrate can be another protective layer. In this case, the transfer step is omitted, and the stacking can be performed continuously by roll-to-roll from the formation of the orientation solidification layer (phase difference layer), so that the productivity is further improved.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 As the orientation treatment, any appropriate orientation treatment can be adopted. Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions can be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the surface of the base material.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the orientation state is fixed by cooling the liquid crystal compound oriented as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
 配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が位相差層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。 Another example of the oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation. In the discotic liquid crystal compound, typically, the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the retardation layer. When the discotic liquid crystal compound is substantially vertical, the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °. A discotic liquid crystal compound generally has a cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and has a linear alkyl group, an alkoxy group, and a substituted benzoyl. A liquid crystal compound having a disk-like molecular structure in which an oxy group or the like is radially substituted as its side chain. Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I. Research report by Kohne et al., Angew. Chem. Cyclohexane derivatives described in Volume 96, p. 70 (1984), and J. Mol. M. Research report by Lehn et al., J. Mol. Chem. Soc. Chem. Commun. , 1794 (1985), J. Mol. Research report by Zhang et al., J. Mol. Am. Chem. Soc. Examples thereof include the aza-crown-based and phenylacetylene-based macrocycles described in Volume 116, p. 2655 (1994). Further specific examples of the discotic liquid crystal compound include the compounds described in JP-A-2006-133652, JP-A-2007-108732, and JP-A-2010-244038. The above references and publications are incorporated herein by reference.
 位相差層が液晶化合物の配向固化層である場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 When the retardation layer is an orientation-solidified layer of a liquid crystal compound, its thickness is preferably 0.5 μm to 7 μm, and more preferably 1 μm to 5 μm. By using the liquid crystal compound, it is possible to realize an in-plane phase difference equivalent to that of the resin film with a thickness much thinner than that of the resin film.
E-2-3.別の位相差層
 上記のとおり、位相差層が単一層で構成される場合には、好ましくは別の位相差層が設けられる。別の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。別の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、別の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、別の位相差層の面内位相差Re(550)は10nm未満であり得る。
E-2-3. Another retardation layer As described above, when the retardation layer is composed of a single layer, another retardation layer is preferably provided. Another retardation layer can be a so-called positive C plate, as described above, in which the refractive index characteristics show a relationship of nz> nx = ny. By using the positive C plate as another retardation layer, it is possible to satisfactorily prevent reflection in the oblique direction, and it is possible to widen the viewing angle of the antireflection function. In this case, the phase difference Rth (550) in the thickness direction of another retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, still more preferably −90 nm to −200 nm, and particularly preferably −. It is 100 nm to −180 nm. Here, "nx = ny" includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re (550) of another retardation layer can be less than 10 nm.
 nz>nx=nyの屈折率特性を有する別の位相差層は、任意の適切な材料で形成され得る。別の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および位相差層の形成方法が挙げられる。この場合、別の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 Another retardation layer with a refractive index characteristic of nz> nx = ny can be formed of any suitable material. Another retardation layer preferably consists of a film containing a liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer include the methods for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A-2002-333642. In this case, the thickness of another retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, and even more preferably 0.5 μm to 5 μm.
E-3.2層構造の位相差層
 位相差層40が第1層41と第2層42との積層構造を有する場合、第1層41および第2層42のいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。例えば、第1層41がλ/2板として機能し、第2層42がλ/4板として機能する場合、第1層の面内位相差Re(550)は、上記のとおり例えば200nm~300nmであり、好ましくは230nm~290nmであり、より好ましくは250nm~280nmである。第2層の面内位相差Re(550)は、上記のとおり例えば100nm~190nmであり、好ましくは110nm~170nmであり、より好ましくは130nm~160nmである。第1層の遅相軸と偏光子の吸収軸とのなす角度は、上記のとおり例えば10°~20°であり、好ましくは12°~18°であり、より好ましくは約15°である。第2層の遅相軸と偏光子の吸収軸とのなす角度は、上記のとおり例えば70°~80°であり、好ましくは72°~78°であり、より好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。
E-3.2 Layer difference layer When the retardation layer 40 has a laminated structure of the first layer 41 and the second layer 42, either one of the first layer 41 and the second layer 42 is λ / 4 It can function as a plate and the other as a λ / 2 plate. For example, when the first layer 41 functions as a λ / 2 plate and the second layer 42 functions as a λ / 4 plate, the in-plane retardation Re (550) of the first layer is, for example, 200 nm to 300 nm as described above. It is preferably 230 nm to 290 nm, and more preferably 250 nm to 280 nm. The in-plane retardation Re (550) of the second layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm as described above. The angle formed by the slow axis of the first layer and the absorption axis of the polarizer is, for example, 10 ° to 20 °, preferably 12 ° to 18 °, and more preferably about 15 ° as described above. The angle formed by the slow axis of the second layer and the absorption axis of the polarizer is, for example, 70 ° to 80 °, preferably 72 ° to 78 °, and more preferably about 75 ° as described above. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics.
 第1層41および第2層42は、一方が樹脂フィルムで他方が液晶化合物の配向固化層であってもよく、両方が樹脂フィルムであってもよく、両方が液晶化合物の配向固化層であってもよい。好ましくは、第1層41および第2層42は、両方が樹脂フィルムまたは液晶化合物の配向固化層である。 One of the first layer 41 and the second layer 42 may be a resin film and the other may be an orientation-solidified layer of a liquid crystal compound, both may be a resin film, and both are orientation-solidified layers of a liquid crystal compound. You may. Preferably, both the first layer 41 and the second layer 42 are oriented solidified layers of a resin film or a liquid crystal compound.
 第1層41および第2層42の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、第1層41がλ/2板として機能し、第2層42がλ/4板として機能し、かつ、第1層41および第2層42が樹脂フィルムである場合、第1層41の厚みは例えば40μm~75μmであり、第2層42の厚みは例えば30μm~55μmである。第1層41および第2層42が液晶化合物の配向固化層である場合、第1層41の厚みは例えば2.0μm~3.0μmであり、第2層42の厚みは例えば1.0μm~2.0μmである。 The thickness of the first layer 41 and the second layer 42 can be adjusted so as to obtain a desired in-plane phase difference between the λ / 4 plate or the λ / 2 plate. For example, when the first layer 41 functions as a λ / 2 plate, the second layer 42 functions as a λ / 4 plate, and the first layer 41 and the second layer 42 are resin films, the first layer 41 The thickness of the second layer 42 is, for example, 40 μm to 75 μm, and the thickness of the second layer 42 is, for example, 30 μm to 55 μm. When the first layer 41 and the second layer 42 are orientation-solidified layers of liquid crystal compounds, the thickness of the first layer 41 is, for example, 2.0 μm to 3.0 μm, and the thickness of the second layer 42 is, for example, 1.0 μm to 1.0 μm. It is 2.0 μm.
 第1層および第2層を構成する樹脂フィルム、液晶化合物、第1層および第2層の形成方法、光学特性等については、単一層に関して上記で説明したとおりである。 The resin film constituting the first layer and the second layer, the liquid crystal compound, the method for forming the first layer and the second layer, the optical characteristics, and the like are as described above for the single layer.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in the examples are based on weight.
(1)色抜けおよび保護層の収縮
 実施例および比較例で得られた偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が内側となるようにして粘着剤で試験片をガラス板に貼り合わせ試験サンプルとし、当該試験サンプルを85℃および85%RHのオーブン内で120時間放置して加熱加湿し、標準偏光板とクロスニコルの状態に配置した時の、加湿後の偏光板の色抜け状態を目視により調べ、以下の基準で評価した。また、加熱加湿後の保護層の収縮の有無についても目視で確認した。
   問題なし:色抜けは認められなかった
   一部抜け:端部において色抜けが認められた
   全抜け:偏光板全体にわたって色抜けが顕著であった
(2)単体透過率および偏光度
 色抜け評価が全抜けでなかったものについては、単体透過率および偏光度を測定した。実施例および比較例で得られた偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとし、当該試験サンプルについて、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて、単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)を測定し、偏光度(P)を次式により求めた。この時、測定光は保護層側より入射させた。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。
 次に、偏光板を85℃および85%RHのオーブン内で120時間放置して加熱加湿し(加熱試験)、加熱試験前の単体透過率Tsおよび加熱試験後の単体透過率Ts120から、下記式を用いて単体透過率変化量ΔTsを求めた。
    ΔTs(%)=Ts120-Ts
同様に、加熱試験前の偏光度Pおよび加熱試験後の偏光度P120から、下記式を用いて偏光度変化量ΔPを求めた。
    ΔP(%)=P120-P
なお、加熱試験は、上記の色抜けの場合と同様にして試験サンプルを作製して行った。
(1) Color loss and shrinkage of protective layer From the polarizing plates obtained in Examples and Comparative Examples, a test piece (50 mm ×) having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction. 50 mm) was cut out. The test piece was attached to a glass plate with an adhesive so that the protective layer was on the inside to form a test sample, and the test sample was left in an oven at 85 ° C. and 85% RH for 120 hours to be heated and humidified, and a standard polarizing plate was used. The state of color loss of the polarizing plate after humidification was visually inspected when the polarizing plate was placed in the state of cross-nicol, and evaluated according to the following criteria. In addition, the presence or absence of shrinkage of the protective layer after heating and humidification was also visually confirmed.
No problem: No color loss was observed Partial loss: Color loss was observed at the edges Total loss: Color loss was remarkable throughout the polarizing plate (2) Single transmittance and degree of polarization Color loss evaluation For those that were not completely missing, the single transmittance and the degree of polarization were measured. From the polarizing plates obtained in Examples and Comparative Examples, test pieces (50 mm × 50 mm) having two sides opposite to each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction were cut out. The test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") was used for the test sample. Then, the single transmittance (Ts), the parallel transmittance (Tp) and the orthogonal transmittance (Tc) were measured, and the degree of polarization (P) was calculated by the following equation. At this time, the measurement light was incident from the protective layer side.
Polarization degree (P) (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
The Ts, Tp, and Tc are Y values measured by the JIS Z 8701 2 degree field of view (C light source) and corrected for luminosity factor. Also, Ts and P are substantially properties of the polarizer.
Next, the polarizing plate was left in an oven at 85 ° C. and 85% RH for 120 hours to heat and humidify (heating test), and from the single transmittance Ts 0 before the heating test and the single transmittance Ts 120 after the heating test, The amount of change in single transmittance ΔTs was determined using the following formula.
ΔTs (%) = Ts 120 -Ts 0
Similarly, from the degree of polarization P 0 before the heating test and the degree of polarization P 120 after the heating test, the amount of change in degree of polarization ΔP was determined using the following formula.
ΔP (%) = P 120 −P 0
The heating test was carried out by preparing a test sample in the same manner as in the case of color loss described above.
(3)ヨウ素吸着量
 各実施例および比較例における保護層の形成と同様にして、PETフィルムの片面に保護層(厚み:約3μm)を形成した。得られた保護層付PETフィルムを1cm×1cm(1cm)に切り出して試料とし、ヘッドスペースバイアル瓶(20mL容量)に採取・秤量した。次に、ヨウ素溶液1mL(ヨウ素濃度1重量%、ヨウ化カリウム濃度7重量%)を入れたスクリュー管瓶(1.5mL容量)もこのヘッドスペースバイアル瓶に入れ、密栓した。その後、ヘッドスペースバイアル瓶を65℃の乾燥機に入れ、6時間加温した(これにより、ガス状態のIが試料に吸着する)。その後、試料をセラミックボートに採取し自動試料燃焼装置を用いて燃焼させ、発生したガスを吸収液10mLに捕集した。捕集後、この吸収液を純水で15mLに調製し、原液または適宜希釈した液についてIC定量分析を行った。なお、PETフィルムのみで同様の測定を行った場合のヨウ素吸着量がほぼ0であったため、IC定量分析で得られたヨウ素重量と、保護層単体の重量(「保護層付PETフィルムの重量」-「PETフィルムの重量」)とに基づいて、以下の式からヨウ素吸着量(重量%)を算出した。
  ヨウ素吸着量(重量%)=IC定量分析で得られたヨウ素重量/保護層単体の重量×100
 また、測定装置および測定条件は、以下の通りである。
[測定装置]
  自動試料燃焼装置:三菱ケミカルアナリテック社製、「AQF-2100H」
  IC(アニオン):Thermo Fisher Scientific社製、「ICS-3000」
(3) Iodine Adsorption Amount A protective layer (thickness: about 3 μm) was formed on one side of the PET film in the same manner as in the formation of the protective layer in each Example and Comparative Example. The obtained PET film with a protective layer was cut into 1 cm × 1 cm (1 cm 2 ) to be used as a sample, and collected and weighed in a headspace vial (20 mL capacity). Next, a screw tube bottle (1.5 mL capacity) containing 1 mL of an iodine solution (iodine concentration 1% by weight, potassium iodide concentration 7% by weight) was also placed in this headspace vial and sealed. Then, the headspace vial was placed in a dryer at 65 ° C. and heated for 6 hours (this causes I 2 in the gas state to be adsorbed on the sample). Then, the sample was collected in a ceramic boat and burned using an automatic sample combustion device, and the generated gas was collected in 10 mL of the absorbing liquid. After collection, this absorbed solution was prepared in 15 mL with pure water, and IC quantitative analysis was performed on the undiluted solution or the appropriately diluted solution. Since the amount of iodine adsorbed when the same measurement was performed only with the PET film was almost 0, the iodine weight obtained by the IC quantitative analysis and the weight of the protective layer alone (“weight of the PET film with the protective layer””. -The iodine adsorption amount (% by weight) was calculated from the following formula based on "weight of PET film").
Iodine adsorption amount (% by weight) = Iodine weight obtained by IC quantitative analysis / Weight of protective layer alone x 100
The measuring device and measuring conditions are as follows.
[measuring device]
Automatic sample combustion device: "AQF-2100H" manufactured by Mitsubishi Chemical Analytech Co., Ltd.
IC (anion): "ICS-3000" manufactured by Thermo Fisher Scientific.
(4)保護層の軟化温度
 実施例および比較例で得られた偏光板の保護層表面に関して、局所熱分析(ナノTA測定)を行い、保護層の軟化温度を算出した。測定装置および測定条件は、以下の通りである。
  測定装置:日立ハイテクサイエンス社製、製品名「AFM5300E//Nano-TA2」
  測定モード:コンタクトモード
  探針:AN2-200
  測定面積:8μm□スキャン
  測定雰囲気:大気圧
(4) Softening temperature of protective layer Local thermal analysis (nano TA measurement) was performed on the protective layer surface of the polarizing plate obtained in Examples and Comparative Examples, and the softening temperature of the protective layer was calculated. The measuring device and measuring conditions are as follows.
Measuring device: Hitachi High-Tech Science Corporation, product name "AFM5300E // Nano-TA2"
Measurement mode: Contact mode Probe: AN2-200
Measurement area: 8 μm □ Scan Measurement atmosphere: Atmospheric pressure
(5)判定
 得られた偏光板について、以下の基準で判定した。
良好:ΔPの値が0%から-4.0%
可:ΔPの値が-4.0%を超えて-10.0%
不可:ΔPの値が-10%を超えて-99.9%(完全に脱色)
(5) Judgment The obtained polarizing plate was judged according to the following criteria.
Good: ΔP value is 0% to -4.0%
Possible: The value of ΔP exceeds -4.0% and -10.0%
Impossible: ΔP value exceeds -10% to -99.9% (completely decolorized)
<実施例1>
1.偏光子/樹脂基材の積層体の作製
 樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が41.5%±0.1%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成し、偏光子/樹脂基材の積層体を作製した。偏光子の単体透過率(初期単体透過率)Ts0は42.0%であり、偏光度(初期偏光度)P0は99.996%であった。
<Example 1>
1. 1. Fabrication of Laminate of Polarizer / Resin Base Material Amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) as a resin base material, which is long, has a water absorption rate of 0.75%, and has a Tg of about 75 ° C. Was used. One side of the resin substrate was corona-treated.
Polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Co., Ltd., trade name "Gosefimer Z410") are mixed in a ratio of 9: 1 to 100 parts by weight of PVA-based resin. , 13 parts by weight of potassium iodide was added to prepare a PVA aqueous solution (coating liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 41.5% ± 0.1% (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5% by weight) at a liquid temperature of 70 ° C., in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment). The shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment was 5.2%.
In this way, a polarizer having a thickness of 5 μm was formed on the resin substrate to prepare a laminate of the polarizer / resin substrate. The simple substance transmittance (initial simple substance transmittance) Ts0 of the polarizer was 42.0%, and the degree of polarization (initial degree of polarization) P0 was 99.996%.
2.偏光板の作製
 上記で得られた偏光子の表面に、第2の保護層を構成するフィルムとしてシクロオレフィン系フィルム(日本ゼオン社製、ZT-12、厚み23μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をフィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離して第2の保護層(ZT-12)/偏光子の構成を有する偏光板を得た。
2. Fabrication of Polarizing Plate A cycloolefin-based film (ZEON Corporation, ZT-12, thickness 23 μm) is applied to the surface of the polarizer obtained above as a film constituting the second protective layer, and an ultraviolet curable adhesive is applied. It was pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the film side to cure the adhesive. Next, the resin base material was peeled off to obtain a polarizing plate having a second protective layer (ZT-12) / polarizer configuration.
3.保護層の作製
 ビフェニル骨格を有するエポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX4000)15部をメチルエチルケトン83.8部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)1.2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を、上記で得られた偏光板の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥した。次いで、高圧水銀ランプを用いて積算光量が600mJ/cmとなるよう紫外線を照射し、保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を上記(1)~(4)の評価に供した。
3. 3. Preparation of Protective Layer 15 parts of an epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX4000) was dissolved in 83.8 parts of methyl ethyl ketone to obtain an epoxy resin solution. To the obtained epoxy resin solution, 1.2 parts of a photocationic polymerization initiator (manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P) was added to obtain a protective layer forming composition. The obtained protective layer forming composition was applied to the polarizer surface of the polarizing plate obtained above using a wire bar, and the coating film was dried at 60 ° C. for 3 minutes. Next, a protective layer was formed by irradiating ultraviolet rays with a high-pressure mercury lamp so that the integrated light intensity was 600 mJ / cm 2. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was used for the evaluations (1) to (4) above.
<実施例2>
 ビフェニル骨格を有するエポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX4000)15部とオキセタン樹脂(東亞合成社製、商品名:アロンオキセタン(登録商標) OXT-221)10部と、をメチルエチルケトン73部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)2部を添加し、保護層形成組成物を得た。このエポキシ樹脂溶液を用いて保護層形成組成物を得たこと以外は実施例1と同様にして、保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を上記(1)~(4)の評価に供した。
<Example 2>
15 parts of epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) YX4000) and 10 parts of oxetane resin (manufactured by Toagosei Co., Ltd., trade name: Aron Oxetane (registered trademark) OXT-221) Was dissolved in 73 parts of methyl ethyl ketone to obtain an epoxy resin solution. To the obtained epoxy resin solution, two parts of a photocationic polymerization initiator (manufactured by San-Apro Co., Ltd., trade name: CPI (registered trademark) -100P) was added to obtain a protective layer forming composition. A protective layer was formed in the same manner as in Example 1 except that a protective layer forming composition was obtained using this epoxy resin solution. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was used for the evaluations (1) to (4) above.
(比較例1)
 ビフェニル骨格を有するエポキシ樹脂に代えて、水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 1)
A protective layer was formed in the same manner as in Example 1 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. .. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例2)
 ビフェニル骨格を有するエポキシ樹脂に代えて、水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)を用いたこと以外は実施例2と同様にして保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 2)
A protective layer was formed in the same manner as in Example 2 except that a hydrogenated bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) YX8000) was used instead of the epoxy resin having a biphenyl skeleton. .. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例3)
 ビフェニル骨格を有するエポキシ樹脂に代えて、ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) 828)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 3)
A protective layer was formed in the same manner as in Example 1 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER (registered trademark) 828) was used instead of the epoxy resin having a biphenyl skeleton. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例4)
 ビフェニル骨格を有するエポキシ樹脂に代えて、ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) 828)を用いたこと以外は実施例2と同様にして保護層を形成した。保護層の厚みは2μm~3μmであった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 4)
A protective layer was formed in the same manner as in Example 2 except that a bisphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER® 828) was used instead of the epoxy resin having a biphenyl skeleton. The thickness of the protective layer was 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例5)
 ポリエステル系樹脂(日本合成化学工業社製、商品名:ニチゴーポリエスター WR905)20部を純水80部に溶解し、塗工用樹脂溶液(20%)を得た。この塗工用樹脂溶液を、実施例で用いた偏光板の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは2μm~3μmである。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 5)
20 parts of a polyester resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Nichigo Polyester WR905) was dissolved in 80 parts of pure water to obtain a coating resin solution (20%). This coating resin solution is applied to the surface of the polarizer of the polarizing plate used in the examples using a wire bar, and the coating film is dried at 60 ° C. for 5 minutes to protect the coating film as a solidified product. A layer was formed. The thickness of the protective layer is 2 μm to 3 μm. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例6)
 ポリエステル系樹脂に代えて、ウレタン系樹脂(第一工業製薬社製、商品名:スーパーフレックス 210)を用いた以外は比較例5と同様にして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 6)
Protective layer / polarizer / another protective layer (ZT) in the same manner as in Comparative Example 5 except that a urethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name: Superflex 210) was used instead of the polyester resin. A polarizing plate having the constitution of -12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例7)
 第2の保護層(ZT-12)/偏光子の構成を有する偏光板の偏光子面に、易接着層としてポリウレタン系の水系分散樹脂(第一工業製薬社製、製品名:スーパーフレックスSF210)を厚みが0.1μmになるように塗布し、易接着層を形成した。別途、メチルメタクリレート/ブチルメタクリレート(モル比35/65)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-734」)20部をメチルエチルケトン80部に溶解し、アクリル系樹脂溶液(20%)を得た。次いで、易接着層上にこのアクリル系樹脂溶液を、ワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは3μmであり、軟化温度は80.4℃であり、ヨウ素吸着量は30.4重量%であった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 7)
A polyurethane-based water-based dispersion resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name: Superflex SF210) as an easy-adhesion layer on the polarizing element surface of a polarizing plate having a second protective layer (ZT-12) / polarizer configuration. Was applied so as to have a thickness of 0.1 μm to form an easy-adhesion layer. Separately, 20 parts of an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-734"), which is a copolymer of methyl methacrylate / butyl methacrylate (molar ratio 35/65), is dissolved in 80 parts of methyl ethyl ketone to dissolve the acrylic resin. A solution (20%) was obtained. Next, this acrylic resin solution was applied onto the easy-adhesion layer using a wire bar, and the coating film was dried at 60 ° C. for 5 minutes to form a protective layer formed as a solidified product of the coating film. The thickness of the protective layer was 3 μm, the softening temperature was 80.4 ° C., and the amount of iodine adsorbed was 30.4% by weight. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
(比較例8)
 メチルメタクリレート/エチルアクリレート(モル比55/45)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-722」)を用いたこと以外は比較例8と同様にして、保護層を形成した。保護層の厚みは3μmであり、軟化温度は57.2℃であり、ヨウ素吸着量は1.3重量%であった。このようにして、保護層/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を実施例と同様の評価に供した。結果を表1に示す。
(Comparative Example 8)
Protection in the same manner as in Comparative Example 8 except that an acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-722"), which is a copolymer of methyl methacrylate / ethyl acrylate (molar ratio 55/45), was used. A layer was formed. The thickness of the protective layer was 3 μm, the softening temperature was 57.2 ° C., and the amount of iodine adsorbed was 1.3% by weight. In this way, a polarizing plate having a structure of a protective layer / a polarizer / another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the same evaluation as in Examples. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<評価>
 表1から明らかなように、実施例で得られた偏光板は、非常に薄いにもかかわらず、加熱加湿環境下においても光学特性の低下が抑制され、耐久性に優れるものであった。
<Evaluation>
As is clear from Table 1, although the polarizing plate obtained in the examples was very thin, the deterioration of the optical characteristics was suppressed even in a heating and humidifying environment, and the polarizing plate was excellent in durability.
 本発明の偏光板は、画像表示装置に好適に用いられる。画像表示装置としては、例えば、携帯情報端末(PDA)、スマートフォン、携帯電話、時計、デジタルカメラ、携帯ゲーム機などの携帯機器;パソコンモニター、ノートパソコン、コピー機などのOA機器;ビデオカメラ、テレビ、電子レンジなどの家庭用電気機器;バックモニター、カーナビゲーションシステム用モニター、カーオーディオなどの車載用機器;デジタルサイネージ、商業店舗用インフォメーション用モニターなどの展示機器;監視用モニターなどの警備機器;介護用モニター、医療用モニターなどの介護・医療機器;が挙げられる。 The polarizing plate of the present invention is suitably used for an image display device. Examples of image display devices include portable devices such as mobile information terminals (PDAs), smartphones, mobile phones, clocks, digital cameras, and portable game machines; OA devices such as personal computer monitors, laptop computers, and copiers; video cameras and televisions. , Home appliances such as microwave ovens; Back monitors, car navigation system monitors, car audio and other in-vehicle devices; Digital signage, commercial store information monitors and other exhibition devices; Surveillance monitors and other security devices; Nursing care Nursing care / medical equipment such as monitors for medical use and monitors for medical use;
 10       偏光子
 20       保護層
 40       位相差層
100       偏光板
110,111   位相差層付偏光板
10 Polarizer 20 Protective layer 40 Phase difference layer 100 Polarizing plate 110, 111 Polarizing plate with retardation layer

Claims (8)

  1.  偏光子と、該偏光子の一方の側に配置された保護層と、を有し、
     該保護層が、ビフェニル骨格を有するエポキシ樹脂の硬化物で構成されている、偏光板。
    It has a polarizer and a protective layer arranged on one side of the polarizer.
    A polarizing plate in which the protective layer is made of a cured product of an epoxy resin having a biphenyl skeleton.
  2.  前記硬化物がカチオン重合硬化物である、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the cured product is a cationically polymerized cured product.
  3.  前記保護層がオキセタン樹脂をさらに含む、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the protective layer further contains an oxetane resin.
  4.  前記保護層の厚みが10μm以下である、請求項1から3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the protective layer has a thickness of 10 μm or less.
  5.  前記保護層のヨウ素吸着量が10重量%以下である、請求項1から4のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein the amount of iodine adsorbed in the protective layer is 10% by weight or less.
  6.  前記保護層の軟化温度が100℃以上である、請求項1から5のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 5, wherein the softening temperature of the protective layer is 100 ° C. or higher.
  7.  総厚みが10μm以下である、請求項1から6のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, wherein the total thickness is 10 μm or less.
  8.  請求項1から7のいずれかに記載の偏光板の前記保護層が配置されていない面に位相差層を有する、位相差層付偏光板。 A polarizing plate with a retardation layer, which has a retardation layer on a surface of the polarizing plate according to any one of claims 1 to 7 on which the protective layer is not arranged.
PCT/JP2021/014707 2020-04-30 2021-04-07 Polarizing plate and polarizing plate with retardation layer WO2021220741A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180031610.6A CN115485592A (en) 2020-04-30 2021-04-07 Polarizing plate and polarizing plate with phase difference layer
KR1020227037389A KR20230002505A (en) 2020-04-30 2021-04-07 Polarizing plate and polarizing plate with retardation layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-080489 2020-04-30
JP2020080489 2020-04-30
JP2020-110540 2020-06-26
JP2020110540A JP2021177230A (en) 2020-04-30 2020-06-26 Polarizing plate and polarizing plate with retardation layer

Publications (1)

Publication Number Publication Date
WO2021220741A1 true WO2021220741A1 (en) 2021-11-04

Family

ID=78331518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014707 WO2021220741A1 (en) 2020-04-30 2021-04-07 Polarizing plate and polarizing plate with retardation layer

Country Status (4)

Country Link
KR (1) KR20230002505A (en)
CN (1) CN115485592A (en)
TW (1) TW202144818A (en)
WO (1) WO2021220741A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297604A (en) * 2006-04-03 2007-11-15 Showa Denko Kk Thermosetting resin composition
JP2009069428A (en) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd Manufacturing method of optical laminate, optical laminate, polarizing plate, and image display device
JP2011140637A (en) * 2009-12-07 2011-07-21 Dic Corp Cellulose ester resin composition, optical film using the same and polarizing plate for liquid crystal display device
JP2019053212A (en) * 2017-09-15 2019-04-04 日東電工株式会社 Manufacturing method of polarization film
WO2020066830A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Optical laminate, polarizing plate composite, and image display device
JP2020095264A (en) * 2018-11-29 2020-06-18 日東電工株式会社 Polarizing film with adhesive layer, and image display device
JP2020095262A (en) * 2018-11-29 2020-06-18 日東電工株式会社 Liquid crystal panel with touch sensing capability, liquid crystal display device, and polarizing film with adhesive layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210474A (en) 2014-04-30 2015-11-24 株式会社カネカ Polarizer protection film and polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297604A (en) * 2006-04-03 2007-11-15 Showa Denko Kk Thermosetting resin composition
JP2009069428A (en) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd Manufacturing method of optical laminate, optical laminate, polarizing plate, and image display device
JP2011140637A (en) * 2009-12-07 2011-07-21 Dic Corp Cellulose ester resin composition, optical film using the same and polarizing plate for liquid crystal display device
JP2019053212A (en) * 2017-09-15 2019-04-04 日東電工株式会社 Manufacturing method of polarization film
WO2020066830A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Optical laminate, polarizing plate composite, and image display device
JP2020095264A (en) * 2018-11-29 2020-06-18 日東電工株式会社 Polarizing film with adhesive layer, and image display device
JP2020095262A (en) * 2018-11-29 2020-06-18 日東電工株式会社 Liquid crystal panel with touch sensing capability, liquid crystal display device, and polarizing film with adhesive layer

Also Published As

Publication number Publication date
TW202144818A (en) 2021-12-01
KR20230002505A (en) 2023-01-05
CN115485592A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2021220729A1 (en) Polarizing plate and polarizing plate with optical functional layer
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP2021177230A (en) Polarizing plate and polarizing plate with retardation layer
WO2021261344A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
JP7242884B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2021220741A1 (en) Polarizing plate and polarizing plate with retardation layer
JP2021177229A (en) Polarizing plate and polarizing plate with optical function layer
JP4274842B2 (en) Polarizing plate with optical compensation function for VA mode liquid crystal display device, and VA mode liquid crystal display device using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
WO2021220740A1 (en) Polarizing plate and polarizing plate with optical functional layer
JPWO2020138358A1 (en) Polarizing plate and polarizing plate roll
KR20210148166A (en) Polarizer
TWI839433B (en) Polarizing plate with phase difference layer
WO2021100632A1 (en) Polarizing plate and polarizing plate roll
WO2021261276A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
WO2020138368A1 (en) Polarizing plate provided with phase difference layer
WO2021100633A1 (en) Polarizing plate and polarizing plate roll
TWI842922B (en) Polarizing plate with phase difference layer and image display device using the same
JPWO2020138329A1 (en) Polarizing plate and polarizing plate roll
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797047

Country of ref document: EP

Kind code of ref document: A1