WO2020138368A1 - Polarizing plate provided with phase difference layer - Google Patents

Polarizing plate provided with phase difference layer Download PDF

Info

Publication number
WO2020138368A1
WO2020138368A1 PCT/JP2019/051304 JP2019051304W WO2020138368A1 WO 2020138368 A1 WO2020138368 A1 WO 2020138368A1 JP 2019051304 W JP2019051304 W JP 2019051304W WO 2020138368 A1 WO2020138368 A1 WO 2020138368A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
retardation layer
retardation
polarizer
Prior art date
Application number
PCT/JP2019/051304
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 三輪
卓史 上条
大介 濱本
ひかる 鈴木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980086368.5A priority Critical patent/CN113227854A/en
Priority to JP2020562460A priority patent/JPWO2020138368A1/en
Priority to KR1020217019739A priority patent/KR20210107016A/en
Publication of WO2020138368A1 publication Critical patent/WO2020138368A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present invention relates to a polarizing plate with a retardation layer.
  • a polarizing plate is often arranged on at least one side of the display cell due to the image forming method. Further, practically, a retardation plate is often used together with a polarizing plate, and a polarizing plate with a retardation layer in which the polarizing plate and the retardation plate are integrated is widely used (for example, Patent Document 1). ).
  • image display devices have become thinner and more flexible, and along with this, there has been a strong demand for a thinner polarizing plate with a retardation layer.
  • the thinner the polarizing plate with the retardation layer the more serious the problem of durability that the optical characteristics in the heating and humidifying environment deteriorate.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main object is to provide a polarizing plate with a retardation layer, which is extremely thin but has excellent durability.
  • the polarizing plate with a retardation layer of the present invention includes a polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a retardation layer disposed on the opposite side of the protective layer of the polarizing plate. And a layer.
  • the protective layer is composed of a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95°C or higher.
  • the retardation layer is a single layer, Re(550) of the retardation layer is 100 nm to 190 nm, and the retardation axis of the retardation layer and the absorption axis of the polarizer are The angle formed is 40° to 50°.
  • the retardation layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
  • the retardation layer has a laminated structure of a first layer and a second layer; Re(550) of the first layer is 200 nm to 300 nm, and its slow axis and the polarized light are The angle between the absorption axis of the polarizer and the absorption axis of the second layer is 10° to 20°; the Re(550) of the second layer is 100 nm to 190 nm, and the angle between the slow axis of the second layer and the absorption axis of the polarizer is 70°. It is between ° and 80°.
  • each of the first layer and the second layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
  • the protective layer has a thickness of 10 ⁇ m or less. In one embodiment, the amount of iodine adsorbed on the protective layer is 4.0% by weight or less.
  • the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit.
  • the polarizing plate with a retardation layer is arranged on the visible side of the image display device, and the protective layer is arranged on the visible side.
  • the protective layer is constituted by a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin, and its glass transition temperature is set to a predetermined value or higher, thereby It is possible to obtain a polarizing plate with a retardation layer, which is excellent in durability despite being thin.
  • FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention. It is a schematic diagram showing an example of dry shrinkage processing using a heating roll in a manufacturing method of a polarizing plate which can be used for a polarizing plate with a phase contrast layer by one embodiment of the present invention.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and “ny” is the direction in the plane that is orthogonal to the slow axis (that is, the fast axis direction).
  • nz is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23° C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23° C.
  • Phase difference (Rth) in the thickness direction “Rth( ⁇ )” is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23° C.
  • “Rth(550)” is the phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23° C.
  • FIG. 1 is a schematic sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer of the illustrated example includes a polarizer 10, a protective layer 20 arranged on one side of the polarizer 10, and a retardation layer 40 arranged on the other side of the polarizer 10.
  • the polarizer 10 and the protective layer 20 form a polarizing plate. Therefore, a polarizing plate with a retardation layer is a polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a retardation layer disposed on the opposite side of the protective layer of the polarizing plate. And.
  • the polarizing plate may further include another protective layer (not shown) on the side of the polarizer 10 opposite to the protective layer 20.
  • the polarizing plate 100 with a retardation layer may further include another protective layer (not shown) between the polarizer 10 and the retardation layer 40.
  • the thickness of the polarizer 10 is preferably 8 ⁇ m or less.
  • the retardation layer 40 is a single layer.
  • Re(550) of the retardation layer 40 is, for example, 100 nm to 190 nm
  • the angle formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40° to 50°.
  • another retardation layer (not shown) is preferably provided outside the retardation layer 40 (on the side opposite to the polarizer 10).
  • the retardation layer 40 has a laminated structure of a first layer 41 and a second layer 42.
  • Re(550) of the first layer 41 is, for example, 200 nm to 300 nm, and the angle formed by the slow axis of the first layer 41 and the absorption axis of the polarizer 10 is, for example, 10° to 20°;
  • the Re(550) of the second layer 42 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the second layer 42 and the absorption axis of the polarizer 10 is, for example, 70° to 80°.
  • the retardation layer 40 may be a resin film or an alignment solidified layer of a liquid crystal compound.
  • the first layer 41 and the second layer 42 are each a resin film or an alignment solidification layer of a liquid crystal compound.
  • the protective layer 20 is composed of a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin.
  • the protective layer can be made extremely thin (for example, 10 ⁇ m or less).
  • the protective layer can be formed directly on the polarizer (that is, without interposing the adhesive layer or the pressure-sensitive adhesive layer).
  • the polarizer and the protective layer are very thin as described above, and since the adhesive layer or the pressure-sensitive adhesive layer can be omitted, the total thickness of the polarizing plate with a retardation layer is extremely small. Can be thinned.
  • the total thickness of the polarizing plate with a retardation layer is, for example, 80 ⁇ m or less, preferably 70 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the lower limit of the total thickness of the polarizing plate with a retardation layer may be, for example, 30 ⁇ m.
  • the total thickness of the polarizing plate with the retardation layer is, for example, 25 ⁇ m or less, preferably 22 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the lower limit of the total thickness of the polarizing plate with a retardation layer may be, for example, 10 ⁇ m.
  • the glass transition temperature (Tg) of the protective layer 20 is 95° C. or higher, preferably 100° C. or higher, more preferably 105° C. or higher, further preferably 110° C. or higher. And particularly preferably 115° C. or higher.
  • Tg of the protective layer is in such a range, it is very thin due to a synergistic effect with the effect of forming the protective layer from the solidified material of the coating film of the organic solvent solution of the thermoplastic acrylic resin. Nevertheless, a polarizing plate with excellent durability (as a result, a polarizing plate with a retardation layer) can be realized.
  • the Tg of the protective layer is preferably 300°C or lower, more preferably 250°C or lower, further preferably 200°C or lower, and particularly preferably 160°C or lower.
  • the moldability can be excellent.
  • a polarizing plate (as a result, a polarizing plate with a retardation layer) in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment.
  • a polarizing plate (as a result, a polarizing plate with a retardation layer) has a variation ⁇ Ts in the single transmittance Ts and a variation ⁇ P in the polarization degree P after being left for 48 hours in an environment of 85° C. and 85% RH. But each is very small.
  • the simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name “V7100”).
  • the polarization degree P is calculated by the following formula from the simple substance transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
  • Polarization degree (P)(%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • Ts, Tp, and Tc are Y values measured by a 2 degree visual field (C light source) of JIS Z 8701 and subjected to luminosity correction. Further, Ts and P are substantially characteristics of the polarizer.
  • ⁇ Ts and ⁇ P are respectively calculated by the following equations.
  • Ts 0 is the unit transmittance before standing (initial)
  • Ts 48 is the unit transmittance after standing
  • P 0 is the polarization degree before standing (initial)
  • P 48 is the group after standing. It is the degree of polarization.
  • ⁇ Ts is preferably 3.0% or less, more preferably 2.7% or less, and further preferably 2.4% or less.
  • ⁇ P is preferably ⁇ 0.05% to 0%, more preferably ⁇ 0.03% to 0%, and further preferably ⁇ 0.01% to 0%.
  • the polarizing plate with a retardation layer of the present invention may further include a retardation layer other than the above.
  • the optical characteristics eg, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, etc. of such a retardation layer can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer of the present invention may further include a conductive layer or an isotropic substrate with a conductive layer (neither is shown).
  • the conductive layer or the isotropic substrate with a conductive layer is typically provided outside the retardation layer 40 (on the side opposite to the polarizer 10 ).
  • the polarizing plate with a retardation layer is a so-called inner layer in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
  • the polarizing plate with a retardation layer may have a long shape or a sheet shape.
  • the polarizing plate with a retardation layer is long, it is preferably wound into a roll to form a polarizing plate with a retardation layer.
  • the polarizing plate with a retardation layer has an adhesive layer as the outermost layer on one side (typically, the retardation layer 40 side), and is supposed to be bonded to a display cell.
  • a surface protective film and/or a carrier film may be detachably temporarily attached to the polarizing plate with a retardation layer to reinforce and/or support the polarizing plate with a retardation layer.
  • a separator is detachably temporarily attached to the surface of the pressure-sensitive adhesive layer to protect the pressure-sensitive adhesive layer until actual use, and also the polarizing plate with a retardation layer. It is possible to roll.
  • the polarizing plate with a retardation layer of the present invention is very thin as described above, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and/or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate with a retardation layer of the present invention from being applied to a normal image display device.
  • EL electroluminescence
  • Polarizing plate B-1 Polarizer Any appropriate polarizer can be adopted as the polarizer.
  • the polarizer can be typically manufactured by using a laminate of two or more layers. The method for producing the polarizer will be described later in the section D as a method for producing the polarizing plate.
  • the thickness of the polarizer is preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and further preferably 2 ⁇ m to 5 ⁇ m.
  • the boric acid content of the polarizer is preferably 10% by weight or more, and more preferably 13% by weight to 25% by weight.
  • the boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight from the neutralization method using the following formula.
  • the iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight.
  • the iodine content of the polarizer is in such a range, the curl at the time of laminating is favorably maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while suppressing the above.
  • the “iodine content” means the total amount of iodine contained in the polarizer (PVA-based resin film).
  • iodine is present in the polarizer in the form of iodine ion (I ⁇ ), iodine molecule (I 2 ), polyiodine ion (I 3 ⁇ , I 5 ⁇ ), etc.
  • the iodine content means the amount of iodine including all of these forms.
  • the iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ion is present in the polarizer in a state of forming a PVA-iodine complex. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light.
  • the complex of PVA and triiodide ion (PVA ⁇ I 3 ⁇ ) has an absorption peak near 470 nm, and the complex of PVA and pentaiodide ion (PVA ⁇ I 5 ⁇ ) is around 600 nm. Has an absorption peak at.
  • polyiodine ions can absorb light in a wide range of visible light, depending on their morphology.
  • iodine ion (I ⁇ ) has an absorption peak around 230 nm and does not substantially participate in absorption of visible light. Therefore, the polyiodine ion existing in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%.
  • the polarization degree P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the protective layer is composed of a solidified product of a coating film of a solution of a thermoplastic acrylic resin (hereinafter simply referred to as an acrylic resin) in an organic solvent.
  • an acrylic resin a thermoplastic acrylic resin
  • the constituents of the protective layer will be specifically described below, and then the characteristics of the protective layer will be described.
  • the acrylic resin any appropriate acrylic resin can be adopted as long as it has the Tg as described above.
  • the acrylic resin typically contains an alkyl (meth)acrylate as a main component as a monomer unit (repeating unit).
  • (meth)acrylic means acrylic and/or methacrylic.
  • alkyl (meth)acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination.
  • any appropriate copolymerization monomer may be introduced into the acrylic resin by copolymerization.
  • the repeating unit derived from an alkyl (meth)acrylate is typically represented by the following general formula (1):
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom or an optionally substituted aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms. Show.
  • the substituent include halogen and hydroxyl group.
  • Specific examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, and t-(meth)acrylate.
  • R 5 is preferably a hydrogen atom or a methyl group.
  • the acrylic resin may include only a single alkyl (meth)acrylate unit, or may include a plurality of alkyl (meth)acrylate units having different R 4 and R 5 in the general formula (1). Good.
  • the content ratio of the alkyl (meth)acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, further preferably 60 mol% to 98 mol%, and particularly preferably It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol %, the effects (for example, high heat resistance and high transparency) derived from the alkyl (meth)acrylate unit may not be sufficiently exhibited. When the content ratio is more than 98 mol%, the resin becomes brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be deteriorated.
  • the acrylic resin preferably has a repeating unit containing a ring structure.
  • the repeating unit containing a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit.
  • the repeating unit containing a ring structure only one kind may be contained in the repeating unit of the acrylic resin, or two or more kinds may be contained.
  • the lactone ring unit is preferably represented by the following general formula (2):
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • the acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units having different R 1 , R 2 and R 3 in the general formula (2). ..
  • the acrylic resin having a lactone ring unit is described in, for example, JP-A-2008-181078, and the description in that publication is incorporated herein by reference.
  • the glutarimide unit is preferably represented by the following general formula (3):
  • R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 13 is an alkyl group having 1 to 18 carbon atoms or 3 to 12 carbon atoms. Is a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.
  • R 11 and R 12 are each independently hydrogen or a methyl group
  • R 13 is hydrogen, a methyl group, a butyl group or a cyclohexyl group. More preferably, R 11 is a methyl group, R 12 is hydrogen and R 13 is a methyl group.
  • the acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the general formula (3). ..
  • the acrylic resin having a glutarimide unit is disclosed in, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Laid-Open No. 2006-337493 and Japanese Patent Laid-Open No. 2006-337569, the description of which is incorporated herein by reference.
  • the glutaric anhydride unit the above description regarding the glutarimide unit is applied, except that the nitrogen atom substituted with R 13 in the general formula (3) becomes an oxygen atom.
  • maleic anhydride unit and the maleimide (N-substituted maleimide) unit are specified by their names, so a detailed description will be omitted.
  • the content ratio of the repeating unit containing a ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too low, Tg may be less than 110° C., and the resulting protective layer may have insufficient heat resistance, solvent resistance, and surface hardness. If the content ratio is too large, moldability and transparency may be insufficient.
  • the acrylic resin may contain a repeating unit other than the repeating unit containing an alkyl (meth)acrylate unit and a ring structure.
  • a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit).
  • other vinyl monomers include acrylic acid, methacrylic acid, crotonic acid, 2-(hydroxymethyl)acrylic acid, 2-(hydroxyethyl)acrylic acid, acrylonitrile, methacrylonitrile, ethacrylonitrile and allyl.
  • Glycidyl ether maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Acid cyclohexylaminoethyl, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, ⁇ -methylstyrene, p-glycidylstyrene, p-
  • the weight average molecular weight of the acrylic resin is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, further preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000.
  • the weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh Corporation). Tetrahydrofuran may be used as the solvent.
  • the acrylic resin can be polymerized by any suitable polymerization method using the above monomer units in an appropriate combination. Two or more types of acrylic resins having different monomer units may be blended.
  • an acrylic resin and another resin may be used together. That is, you may copolymerize the monomer component which comprises an acrylic resin, and the monomer component which comprises another resin, and you may use this copolymer for shaping
  • the blend may be used for forming the protective layer.
  • the other resin include thermoplastic resins such as styrene resins, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide.
  • the kind and blending amount of the resin used in combination can be appropriately set depending on the purpose and desired properties of the obtained film.
  • a styrene resin preferably an acrylonitrile-styrene copolymer
  • a retardation control agent preferably an acrylonitrile-styrene copolymer
  • the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. %, more preferably 70 to 100% by weight, particularly preferably 80 to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
  • the protective layer is composed of a solidified product of a coating film of an organic solvent solution of an acrylic resin. With such a solidified product of the coating film, the thickness can be remarkably reduced as compared with the extruded film.
  • the thickness of the protective layer is 10 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the lower limit of the thickness of the protective layer may be, for example, 1 ⁇ m.
  • such a solidified product of the coating film is more difficult to form during film formation than a cured product of a thermosetting resin or an active energy ray curable resin (for example, an ultraviolet curable resin). Since the shrinkage is small and the residual monomer and the like are not included, the deterioration of the film itself is suppressed, and an adverse effect on the polarizing plate (polarizer) due to the residual monomer and the like can be suppressed. Furthermore, since it has lower hygroscopicity and moisture permeability than a solidified product of an aqueous coating film such as an aqueous solution or an aqueous dispersion, it has an advantage that it is excellent in humidification durability. As a result, it is possible to realize a polarizing plate having excellent durability (as a result, a polarizing plate with a retardation layer) capable of maintaining optical characteristics even under a heating and humidifying environment.
  • a polarizing plate having excellent durability as a result, a polarizing plate with a retardation
  • the Tg of the protective layer is as described in Section A above.
  • the iodine adsorption amount of the protective layer is preferably 4.0% by weight or less, more preferably 3.0% by weight or less, further preferably 2.0% by weight or less, and particularly preferably 1.0% by weight. % Or less, particularly preferably 0.5% by weight or less.
  • a polarizing plate having more excellent durability (as a result, a polarizing plate with a retardation layer) can be obtained.
  • the iodine adsorption amount can be measured by the method described in Examples below.
  • the protective layer preferably has substantially optical isotropy.
  • “having substantially optical isotropy” means that the in-plane retardation Re(550) is 0 nm to 10 nm and the thickness direction retardation Rth(550) is ⁇ 20 nm to +10 nm. There is something.
  • the in-plane retardation Re(550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm.
  • the retardation Rth(550) in the thickness direction is more preferably ⁇ 5 nm to +5 nm, further preferably ⁇ 3 nm to +3 nm, and particularly preferably ⁇ 2 nm to +2 nm.
  • Re(550) and Rth(550) of the protective layer are in such ranges, it is possible to prevent adverse effects on display characteristics when the polarizing plate with a retardation layer including the protective layer is applied to an image display device. it can.
  • the light transmittance is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. When the light transmittance is in such a range, desired transparency can be secured.
  • the light transmittance can be measured, for example, by a method according to ASTM-D-1003.
  • the haze is preferably 5% or less, more preferably 3% or less, further preferably 1.5% or less, particularly preferably 1% or less.
  • the haze is 5% or less, a good clear feeling can be given to the film.
  • the polarizing plate with a retardation layer is used on the viewing side of the image display device, the displayed content can be viewed well.
  • the YI in the protective layer having a thickness of 3 ⁇ m is preferably 1.27 or less, more preferably 1.25 or less, further preferably 1.23 or less, and particularly preferably 1.20 or less.
  • YI is, for example, from tristimulus values (X, Y, Z) of color obtained by measurement using a high-speed integrating sphere type spectral transmittance measuring device (trade name DOT-3C: manufactured by Murakami Color Research Laboratory). , Can be obtained by the following formula.
  • YI [(1.28X-1.06Z)/Y] ⁇ 100
  • the b value (scale of hue according to Hunter's color system) when the thickness of the protective layer is 3 ⁇ m is preferably less than 1.5, and more preferably 1.0 or less. When the b value is 1.5 or more, an undesired tint may appear.
  • the b value is obtained by, for example, cutting a sample of the film forming the protective layer into 3 cm squares, and using a high-speed integrating sphere type spectral transmittance measuring instrument (trade name DOT-3C: manufactured by Murakami Color Research Laboratory). Is measured and the hue is evaluated according to Hunter's color system.
  • the protective layer may contain any appropriate additive depending on the purpose.
  • the additives include ultraviolet absorbers, leveling agents, hindered phenol-based, phosphorus-based, sulfur-based, and other antioxidants; light stabilizers, weather stabilizers, heat stabilizers, and other stabilizers; glass fibers; Reinforcing materials such as carbon fibers; near infrared absorbers; flame retardants such as tris(dibromopropyl)phosphate, triallyl phosphate, antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; inorganic pigments Colorants such as organic pigments and dyes, organic fillers or inorganic fillers, resin modifiers, organic fillers and inorganic fillers, plasticizers, lubricants, antistatic agents, flame retardants, and the like.
  • the additive may be added during the polymerization of the acrylic resin or may be added to the solution during the film formation. The kind, number, combination, addition amount and the like of the additive
  • An easy-adhesion layer may be formed on the polarizer side of the protective layer.
  • the easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based crosslinking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be enhanced.
  • a hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as a protective layer on the viewing side of the viewing side polarizing plate. When both the easy adhesion layer and the hard coat layer are formed, typically, they can be formed on different sides of the protective layer, respectively.
  • the method for producing a polarizer according to the above item B-1 is a polyvinyl alcohol containing a halide and a polyvinyl alcohol resin (PVA resin) on one side of a long thermoplastic resin substrate.
  • PVA resin polyvinyl alcohol resin
  • the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60° C. to 120° C. According to such a manufacturing method, the above polarizer can be obtained.
  • a polarizer having excellent optical characteristics (typically, single transmittance and degree of polarization) and suppressing variations in optical characteristics.
  • the drying shrinkage treatment step by using a heating roll in the drying shrinkage treatment step, it is possible to uniformly shrink the entire laminate while transporting the laminate. As a result, not only can the optical characteristics of the obtained polarizer be enhanced, but also polarizers with excellent optical characteristics can be stably produced, and variations in optical characteristics of the polarizer (particularly, single transmittance) can be suppressed. can do.
  • the halide and the drying shrinkage treatment will be described below. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire disclosure of this publication is incorporated herein by reference.
  • a PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin on a thermoplastic resin substrate and drying the coating film.
  • the coating liquid is typically a solution prepared by dissolving the halide and the PVA resin in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Of these, water is preferable.
  • the concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin substrate.
  • any suitable halide may be adopted as the halide.
  • examples include iodide and sodium chloride.
  • examples of iodides include potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
  • the amount of the halide in the coating liquid is preferably 5 to 20 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the resulting polarizer may become cloudy.
  • the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased.
  • the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules The orientation may be disturbed and the orientation may be deteriorated.
  • the laminate can be stretched in boric acid water at a relatively high temperature to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the above-mentioned tendency of decreasing the degree of orientation is remarkable.
  • stretching of a PVA film alone in boric acid water is generally performed at 60° C.
  • stretching of a laminate of A-PET (thermoplastic resin substrate) and PVA-based resin layer is performed. It is carried out at a high temperature of around 70° C.
  • the orientation of PVA in the initial stage of stretching may be lowered in a stage before being raised by underwater stretching.
  • by producing a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin substrate and stretching the laminate at high temperature in air (auxiliary stretching) before stretching in boric acid water.
  • the crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after the auxiliary stretching can be promoted.
  • the PVA-based resin layer is immersed in a liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid such as a dyeing treatment and an underwater stretching treatment, can be improved.
  • the drying shrinkage treatment may be performed by zone heating performed by heating the entire zone, or may be performed by heating the transport roll (using a so-called heating roll) (heating roll drying method). Both are preferably used.
  • a heating roll By drying using a heating roll, it is possible to efficiently suppress the curling of the laminate by heating and to manufacture a polarizer having an excellent appearance.
  • the crystallization of the thermoplastic resin substrate can be efficiently promoted to increase the crystallinity, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
  • the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA/iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 3 is a schematic diagram showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin substrate.
  • one surface of the laminate 200 for example, thermoplastic resin
  • the transport rolls R1 to R6 may be arranged so that only the resin substrate surface) is continuously heated.
  • the drying conditions can be controlled by adjusting the heating temperature of the transfer rolls (temperature of the heating rolls), the number of heating rolls, the contact time with the heating rolls, and the like.
  • the temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, and particularly preferably 70°C to 80°C. It is possible to satisfactorily increase the crystallinity of the thermoplastic resin, satisfactorily suppress curling, and manufacture an optical laminate having extremely excellent durability.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are multiple transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or may be provided in a normal production line (under room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
  • a heating furnace provided with a blowing means.
  • the temperature of hot air drying is preferably 30°C to 100°C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of the hot air is preferably about 10 m/s to 30 m/s.
  • the wind velocity is the wind velocity in the heating furnace, and can be measured by a mini vane type digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
  • thermoplastic resin substrate/polarizer a laminate of the thermoplastic resin substrate/polarizer.
  • a protective film is formed by applying a solution of an acrylic resin in an organic solvent to form a coating film on the surface of the laminate obtained in the above section B-3-1 and solidifying the coating film. To be done.
  • any suitable organic solvent that can dissolve or uniformly disperse the acrylic resin can be used.
  • the organic solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
  • the concentration of the acrylic resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the polarizer.
  • the solution may be applied to any appropriate base material or may be applied to the polarizer.
  • the solidified product of the coating film formed on the base material is transferred to the polarizer.
  • the protective layer is directly formed on the polarizer by drying (solidifying) the coating film.
  • the solution is applied to the polarizer and the protective layer is directly formed on the polarizer.
  • the adhesive layer or the pressure-sensitive adhesive layer required for the transfer can be omitted, so that the polarizing plate with the retardation layer can be further thinned.
  • Any appropriate method can be adopted as a method for applying the solution. Specific examples thereof include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, knife coating (comma coating, etc.).
  • a protective layer can be formed by drying (solidifying) the coating film of the solution.
  • the drying temperature is preferably 100°C or lower, more preferably 50°C to 70°C. When the drying temperature is in such a range, it is possible to prevent the polarizer from being adversely affected.
  • the drying time can vary depending on the drying temperature. The drying time can be, for example, 1 minute to 10 minutes.
  • a protective layer is formed as described above, and as a result, a laminate of a thermoplastic resin substrate/polarizer/protective layer can be obtained.
  • a polarizing plate having the polarizer 10 and the protective layer 20 as shown in FIGS. 1 and 2 can be obtained.
  • the retardation layer-attached polarizing plate can be obtained by forming the retardation layer 40 on the polarizer surface of such a polarizing plate.
  • a resin film forming a retardation layer is attached to the surface of the polarizer of the thermoplastic resin substrate/polarizer laminate, and then the thermoplastic resin substrate is peeled off to form a protective layer on the peeled surface. Good.
  • the polarizing plate with a retardation layer can be obtained with high production efficiency. Since a method well known in the industry is used for forming the retardation layer, detailed description thereof will be omitted, and a brief description will be given in Section C below.
  • Retardation layer C-1 Retardation Layer Comprising a Single Layer
  • Re(550) of the retardation layer is, for example, 100 nm to 190 nm as described above, and the retardation layer 40 has a slow phase.
  • the angle between the axis and the absorption axis of the polarizer 10 is, for example, 40° to 50°.
  • the retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and can function as a ⁇ /4 plate in one embodiment.
  • the retardation layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
  • the retardation layer preferably has a refractive index characteristic of nx>ny ⁇ nz.
  • the in-plane retardation Re(550) of the retardation layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm, as described above.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9. ⁇ 1.3.
  • the angle ⁇ formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40° to 50°, preferably 42° to 48°, and more preferably about 45° as described above. Is.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may well exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes even with the wavelength of the measurement light.
  • the retardation layer exhibits an inverse dispersion wavelength characteristic.
  • Re(450)/Re(550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, it is possible to realize extremely excellent antireflection characteristics.
  • the absolute value of photoelastic coefficient of preferably 2 ⁇ 10 -11 m 2 / N or less, more preferably 2.0 ⁇ 10 -13 m 2 /N ⁇ 1.5 ⁇ 10 -11 m 2 / N, more preferably includes a resin of 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N.
  • the retardation layer is a resin film
  • the resin film is typically a stretched film.
  • the thickness of the retardation layer is preferably 60 ⁇ m or less, more preferably 30 ⁇ m to 55 ⁇ m. When the thickness of the retardation layer is in such a range, curling at the time of heating can be favorably suppressed and curl at the time of bonding can be favorably adjusted.
  • the retardation layer may be composed of any appropriate resin film that can satisfy the above characteristics.
  • resins include polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, polyamide resins. , A polyimide resin, a polyether resin, a polystyrene resin, and an acrylic resin. These resins may be used alone or in combination (for example, blending or copolymerization).
  • a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) can be preferably used.
  • the polycarbonate resin any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained.
  • the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene.
  • the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol and/or di, tri or polyethylene glycol. And a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from a di-, tri-, or polyethylene glycol. ..
  • the polycarbonate-based resin may include a structural unit derived from another dihydroxy compound, if necessary.
  • the glass transition temperature of the polycarbonate resin is preferably 110° C. or higher and 150° C. or lower, and more preferably 120° C. or higher and 140° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to be poor, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired.
  • the glass transition temperature is calculated according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate resin can be represented by reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscosity tube at a temperature of 20.0° C. ⁇ 0.1° C. by precisely adjusting the polycarbonate concentration to 0.6 g/dL using methylene chloride as a solvent.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL/g, more preferably 0.35 dL/g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL/g, more preferably 1.00 dL/g, further preferably 0.80 dL/g.
  • the reduced viscosity is less than the lower limit, there may occur a problem that the mechanical strength of the molded product becomes small.
  • the reduced viscosity is higher than the upper limit value, the fluidity at the time of molding may be lowered, and the productivity and the moldability may be lowered.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include Teijin's product names “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M”, and Nitto Denko's product name “NRF”.
  • the retardation layer 40 is obtained, for example, by stretching a film formed from the polycarbonate resin.
  • Any appropriate molding method can be adopted as a method for forming a film from a polycarbonate resin. Specific examples include compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method, cast coating method (for example, casting method), calender molding method, heat press. Law etc. are mentioned.
  • An extrusion molding method or a cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate-based resin are commercially available, the commercially available film may be directly subjected to the stretching treatment.
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the retardation layer, desired optical characteristics, stretching conditions described below, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • any appropriate stretching method and stretching conditions for example, stretching temperature, stretching ratio, stretching direction
  • various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as the length direction, the width direction, the thickness direction, and the oblique direction.
  • the stretching temperature is preferably Tg-30°C to Tg+60°C, more preferably Tg-10°C to Tg+50°C, with respect to the glass transition temperature (Tg) of the resin film.
  • the retardation film is produced by uniaxially stretching or fixed-end uniaxially stretching a resin film.
  • a specific example of the fixed-end uniaxial stretching is a method in which the resin film is stretched in the width direction (transverse direction) while running in the longitudinal direction.
  • the stretching ratio is preferably 1.1 times to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film in the direction of the angle ⁇ with respect to the longitudinal direction.
  • a long stretched film having an orientation angle ⁇ (slow axis in the direction of angle ⁇ ) with respect to the longitudinal direction of the film can be obtained, and for example, when laminated with a polarizer.
  • Roll-to-roll is possible, and the manufacturing process can be simplified.
  • the angle ⁇ may be an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer.
  • the angle ⁇ is, as described above, preferably 40° to 50°, more preferably 42° to 48°, and even more preferably about 45°.
  • a stretching machine used for oblique stretching for example, a tenter type stretching machine capable of adding a feeding force or a pulling force or a pulling force at different speeds in the lateral and/or longitudinal directions can be mentioned.
  • the tenter type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine. Any appropriate stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • the retardation layer having the desired in-plane retardation and having a slow axis in the desired direction (substantially long Phase retardation film) can be obtained.
  • the stretching temperature of the film may vary depending on the desired in-plane retardation value and thickness of the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30°C to Tg+30°C, more preferably Tg-15°C to Tg+15°C, and most preferably Tg-10°C to Tg+10°C. By stretching at such a temperature, a retardation layer having suitable properties in the present invention can be obtained.
  • Tg is a glass transition temperature of the constituent material of the film.
  • the retardation layer is an alignment solidification layer of a liquid crystal compound
  • the difference between nx and ny of the obtained retardation layer is remarkably larger than that of a non-liquid crystal material. Therefore, the thickness of the retardation layer for obtaining a desired in-plane retardation can be significantly reduced. As a result, it is possible to realize a thinner polarizing plate with a retardation layer.
  • the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed.
  • the “alignment solidified layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
  • rod-shaped liquid crystal compounds are aligned in a state of being aligned in the slow axis direction of the retardation layer (homogeneous alignment).
  • the liquid crystal compound includes, for example, a liquid crystal compound in which the liquid crystal phase is a nematic phase (nematic liquid crystal).
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the mechanism of the liquid crystallinity of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer.
  • the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (that is, curing) the liquid crystal monomer.
  • the alignment state can be fixed.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline. Therefore, in the formed retardation layer, for example, the transition to the liquid crystal phase, the glass phase, or the crystal phase due to the temperature change peculiar to the liquid crystal compound does not occur. As a result, the retardation layer becomes an extremely stable retardation layer which is not affected by temperature change.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity varies depending on its type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in JP-B-2002-533742 WO00/37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93/22397 EP0261712, DE19504224, DE4404081, and GB2280445
  • Specific examples of such a polymerizable mesogen compound include trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the alignment-fixed layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined base material, and a coating liquid containing a liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the orientation state.
  • the substrate is any suitable resin film, and the alignment-fixed layer formed on the substrate can be transferred to the surface of the polarizer 10.
  • the substrate can be another protective layer. In this case, the transfer step is omitted, and the roll-to-roll lamination can be performed continuously from the formation of the alignment solidified layer (retardation layer), so that the productivity is further improved.
  • orientation treatment can be adopted as the orientation treatment.
  • mechanical orientation treatment include rubbing treatment and stretching treatment.
  • physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • chemical alignment treatment include an oblique vapor deposition method and a photo-alignment treatment. Any appropriate conditions can be adopted as the processing conditions of various alignment processes depending on the purpose.
  • Alignment of the liquid crystal compound is performed by processing at a temperature at which the liquid crystal compound exhibits a liquid crystal phase. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is aligned according to the alignment treatment direction of the substrate surface.
  • the fixing of the alignment state is performed by cooling the liquid crystal compound aligned as described above in one embodiment.
  • the alignment state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
  • the alignment solidified layer is a form in which the discotic liquid crystal compound is aligned in any of vertical alignment, hybrid alignment and tilt alignment.
  • the disc surface of the discotic liquid crystal compound is aligned substantially perpendicular to the film surface of the retardation layer.
  • the average value of the angles formed by the film surface and the disc surface of the discotic liquid crystal compound is preferably 70° to 90°, more preferably 80° to 90°. , And more preferably 85° to 90°.
  • the discotic liquid crystal compound generally has a cyclic mother nucleus such as benzene, 1,3,5-triazine, and calixarene arranged at the center of the molecule, and has a linear alkyl group, an alkoxy group or a substituted benzoyl group. It refers to a liquid crystal compound having a disk-shaped molecular structure in which an oxy group or the like is radially substituted as a side chain.
  • Typical examples of discotic liquid crystals include C.I. Report of Destrade et al., Mol. Cryst. Liq. Cryst.
  • the retardation layer is an alignment-fixed layer of a liquid crystal compound
  • its thickness is preferably 0.5 ⁇ m to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • Another retardation layer As described above, when the retardation layer 40 is composed of a single layer, another retardation layer is preferably provided.
  • the retardation Rth(550) in the thickness direction of another retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, further preferably ⁇ 90 nm to ⁇ 200 nm, and particularly preferably ⁇ It is 100 nm to -180 nm.
  • Another retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) capable of homeotropic alignment may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method of forming the liquid crystal compound and the retardation layer include the methods of forming the liquid crystal compound and the retardation layer described in JP-A-2002-333642, [0020] to [0028].
  • the thickness of the other retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m.
  • the retardation layer 40 has a laminated structure of a first layer 41 and a second layer 42
  • one of the first layer 41 and the second layer 42 Can function as a ⁇ /4 plate, and the other can function as a ⁇ /2 plate.
  • the in-plane retardation Re(550) of the first layer is, for example, 200 nm to 300 nm as described above. Is preferably 230 nm to 290 nm, and more preferably 250 nm to 280 nm.
  • the in-plane retardation Re(550) of the second layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm, as described above.
  • the angle formed by the slow axis of the first layer and the absorption axis of the polarizer is, for example, 10° to 20°, preferably 12° to 18°, and more preferably about 15°, as described above.
  • the angle between the slow axis of the second layer and the absorption axis of the polarizer is, for example, 70° to 80°, preferably 72° to 78°, and more preferably about 75°, as described above.
  • first layer 41 and the second layer 42 may be a resin film and the other may be an alignment solidified layer of a liquid crystal compound, or both may be a resin film, and both may be alignment solidified layers of a liquid crystal compound. May be.
  • both the first layer 41 and the second layer 42 are resin films or alignment-solidified layers of a liquid crystal compound.
  • the thicknesses of the first layer 41 and the second layer 42 can be adjusted so as to obtain the desired in-plane retardation of the ⁇ /4 plate or the ⁇ /2 plate.
  • the first layer 41 functions as a ⁇ /2 plate
  • the second layer 42 functions as a ⁇ /4 plate
  • the first layer 41 and the second layer 42 are resin films
  • the first layer 41 Has a thickness of, for example, 40 ⁇ m to 75 ⁇ m
  • the second layer 42 has a thickness of, for example, 30 ⁇ m to 55 ⁇ m.
  • the thickness of the first layer 41 is, for example, 2.0 ⁇ m to 3.0 ⁇ m
  • the thickness of the second layer 42 is, for example, 1.0 ⁇ m to It is 2.0 ⁇ m.
  • the resin film forming the first layer and the second layer, the liquid crystal compound, the method for forming the first layer and the second layer, the optical characteristics, and the like are as described above for the single layer.
  • the conductive layer is formed by any appropriate film formation method (eg, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It may be formed by depositing a metal oxide film thereon.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide. Among them, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the conductive layer may be transferred from the above-mentioned base material to the retardation layer to form the polarizing plate with the retardation layer by itself as the constituent layer of the polarizing plate. It may be laminated in layers.
  • the above-mentioned substrate is optically isotropic, and therefore the conductive layer can be used as the isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
  • any suitable isotropic substrate can be adopted.
  • the material forming the isotropic base material include, for example, a material having a resin having no conjugated system such as norbornene-based resin or olefin-based resin as a main skeleton, and a cyclic structure such as a lactone ring or a glutarimide ring of acrylic resin Materials included in the main chain are included. When such a material is used, it is possible to suppress the development of retardation due to the orientation of the molecular chains when the isotropic substrate is formed.
  • the thickness of the isotropic substrate is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the thickness of the isotropic substrate is, for example, 20 ⁇ m.
  • the conductive layer and/or the conductive layer of the isotropic substrate with the conductive layer may be patterned as required. By patterning, conductive parts and insulating parts can be formed. As a result, electrodes can be formed.
  • the electrodes may function as touch sensor electrodes that sense a touch on the touch panel. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • the obtained coating film was peeled from the substrate and cut into 1 cm ⁇ 1 cm (1 cm 2 ) to obtain a measurement sample.
  • the measurement sample was subjected to the combustion IC method, and the amount of iodine in the sample was quantitatively analyzed. Specifically, it is as follows.
  • the measurement sample was collected and weighed in a headspace vial (20 mL capacity).
  • a vial (2 mL capacity) containing 1 mL of an iodine solution iodine concentration 1% by weight, potassium iodide concentration 7% by weight
  • this headspace vial is heated in a dryer at 65°C for 6 hours, and a sample after heating is collected in a ceramic port and burned using an automatic combustion device, and the generated gas is collected in an absorption liquid and then quantified. Analysis was performed to determine the weight percent of adsorbed iodine.
  • the equipment used was as follows. ⁇ Automatic sample combustor: "AQF-2100H” manufactured by Mitsubishi Chemical Analytical Co., Ltd.
  • IC anion: "ICS-3000" manufactured by Thermo Fisher Scientific (3) Color Loss From the polarizing plate with a retardation layer obtained in Examples and Comparative Examples, a test piece (50 mm ⁇ 50 mm) having two sides facing in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction respectively. ) was cut out. The test piece is attached to a non-alkali glass plate with an adhesive so that the protective layer is on the outside to give a test sample, and the test sample is left to stand in an oven at 85° C. and 85% RH for 48 hours to be heated and humidified.
  • the discolored state of the polarizing plate with a retardation layer after humidification when arranged in a crossed Nicol state with the polarizing plate was visually inspected and evaluated according to the following criteria. No problem: No color loss was observed Partial loss: Color loss was observed at the edges Total loss: Color loss was noticeable over the entire polarizing plate (4) Single transmittance and degree of polarization Example and comparison From the polarizing plate with a retardation layer obtained in the example, a test piece (50 mm ⁇ 50 mm) having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction was cut out.
  • a test piece is attached to an alkali-free glass plate with an adhesive so that the protective layer is on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") is used for the test sample. Then, the simple substance transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) were measured, and the polarization degree (P) was calculated by the following equation. At this time, the measurement light was made incident from the protective layer side.
  • Polarization degree (P)(%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • Ts, Tp, and Tc are Y values measured by a 2 degree visual field (C light source) of JIS Z 8701 and subjected to luminosity correction. Further, Ts and P are substantially characteristics of the polarizer.
  • the polarizing plate with a retardation layer was left to stand in an oven at 85° C. and 85% RH for 48 hours to be heated and humidified (heating test), and a single transmittance Ts 0 before the heating test and a single transmittance after the heating test. From Ts 48 , the simple substance transmittance change amount ⁇ Ts was calculated using the following formula.
  • ⁇ Ts (%) Ts 48 ⁇ Ts 0
  • the polarization degree change amount ⁇ P was determined from the polarization degree P 0 before the heating test and the polarization degree P 48 after the heating test using the following formula.
  • ⁇ P(%) P 48 ⁇ P 0
  • the heating test was conducted by preparing a test sample in the same manner as in the case of color loss. (5) Frontal reflectance From the polarizing plate with a retardation layer obtained in each of the examples and comparative examples, a test piece (50 mm ⁇ 50 mm) having a direction orthogonal to the absorption axis direction of the polarizer and two sides facing the absorption axis direction, respectively. 50 mm) was cut out.
  • the test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outer side to obtain a test sample.
  • This test sample was subjected to a humidity test at 85° C. and 85% RH for 48 hours.
  • the test sample after the above humidification test was placed on a reflection plate (trade name “DMS-X42” manufactured by Toray Film Co., Ltd.; reflectance of 86%) so that the glass and the reflection plate face each other (that is, the protective layer is on the outside). It was arranged).
  • the spectrocolorimeter CM-2600d manufactured by Konica Minolta
  • Example 1> Production of Laminate of Polarizer/Resin Base Material Amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption rate of 0.75% and a Tg of about 75° C. as a resin base material. Was used. Corona treatment was applied to one side of the resin substrate.
  • Polyvinyl alcohol (polymerization degree: 4200, saponification degree: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosephimmer Z410" in a ratio of 9:1 100 weight of PVA-based resin
  • 13 parts by weight of potassium iodide was added to prepare a PVA aqueous solution (coating solution).
  • the PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
  • the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) having a liquid temperature of 40° C. for 30 seconds (insolubilization treatment).
  • a dyeing bath having a liquid temperature of 30° C. an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 with respect to 100 parts by weight of water
  • retardation film constituting retardation layer 2-1 Polymerization of Polyester Carbonate Resin Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled to 100°C.
  • an acrylic resin (30 mol% of lactone ring unit), which is polymethylmethacrylate having a lactone ring unit, was dissolved in 80 parts of methyl ethyl ketone to obtain an acrylic resin solution (20%).
  • This acrylic resin solution is applied to the surface of the polarizer of the polarizing plate obtained above using a wire bar, the coating film is dried at 60° C. for 5 minutes, and the protective layer is formed as a solidified product of the coating film. Formed.
  • the protective layer had a thickness of 3 ⁇ m, a Tg of 119° C., and an iodine adsorption amount of 0.25% by weight.
  • Example 2 Same as Example 1 except that an acrylic resin (maleic anhydride unit: 7 mol %), which is a polymethylmethacrylate having a maleic anhydride unit, is used in place of the acrylic resin, which is a polymethylmethacrylate having a lactone ring unit.
  • the protective layer had a thickness of 3 ⁇ m and a Tg of 115° C.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • Example 3 Example 1 except that 100% polymethylmethacrylate acrylic resin (Kusumoto Kasei Co., product name "B-728") was used instead of polymethylmethacrylate acrylic resin having lactone ring unit.
  • a protective layer was formed in the same manner. The protective layer had a thickness of 3 ⁇ m, a Tg of 116° C., and an iodine adsorption amount of 0.34% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • Example 4 Same as Example 1 except that an acrylic resin that is a polymethylmethacrylate having a glutarimide ring unit (4 mol% of a glutarimide ring unit) is used instead of an acrylic resin that is a polymethylmethacrylate having a lactone ring unit.
  • To form a protective layer The thickness of the protective layer was 3 ⁇ m, the Tg was 103° C., and the iodine adsorption amount was 2.3% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • Example 5 A protective layer was formed in the same manner as in Example 1 except that an acrylic resin (lactone ring unit: 20 mol%), which was a different polymethylmethacrylate having a lactone ring unit, was used.
  • the protective layer had a thickness of 3 ⁇ m, a Tg of 104° C., and an iodine adsorption amount of 2.8% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • Example 6> In the same manner as in Example 1 except that an acrylic resin which is a copolymer of methyl methacrylate/butyl methacrylate (molar ratio 80/20) was used in place of the acrylic resin which was polymethylmethacrylate having a lactone ring unit. A protective layer was formed. The thickness of the protective layer was 3 ⁇ m, Tg was 95° C., and the iodine adsorption amount was 3.8% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • Example 7 Preparation of Polarizer/Resin Base Material Laminate A polarizer/resin base material laminate was prepared in the same manner as in Example 1.
  • First Alignment Solidification Layer and Second Alignment Solidification Layer Constituting Retardation Layer 10 g of a polymerizable liquid crystal showing a nematic liquid crystal phase (manufactured by BASF: trade name “Paliocolor LC242”, represented by the following formula)
  • a liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a photopolymerization initiator (manufactured by BASF: trade name “Irgacure 907”) for the polymerizable liquid crystal compound in 40 g of toluene.
  • the surface of the polyethylene terephthalate (PET) film was rubbed with a rubbing cloth for orientation treatment.
  • the direction of the orientation treatment was set to be 15° with respect to the direction of the absorption axis of the polarizer when it was attached to the polarizing plate, as viewed from the viewing side.
  • the liquid crystal coating liquid was applied to the surface of this alignment treatment with a bar coater, and the liquid crystal compound was aligned by heating and drying at 90° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 1 mJ/cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment solidified layer A on the PET film.
  • the thickness of the liquid crystal alignment fixed layer A was 2.5 ⁇ m, and the in-plane retardation Re(550) was 270 nm.
  • the coating thickness was changed and the alignment treatment direction was set to be the direction of 75° with respect to the absorption axis direction of the polarizer when viewed from the viewing side.
  • a liquid crystal alignment fixed layer B was formed.
  • the thickness of the liquid crystal alignment fixed layer B was 1.5 ⁇ m, and the in-plane retardation Re(550) was 140 nm.
  • a base material with an adhesive was attached to the surface of the orientation solidified layer B for reinforcement.
  • the resin base material is peeled off, and a retardation layer having a constitution of polarizer/adhesive layer/retardation layer (first orientation solidified layer/adhesion layer/second orientation solidified layer)/adhesive-attached substrate An attached polarizing plate was obtained.
  • Example 3 a protective layer was formed on the polarizer surface of the polarizing plate with a retardation layer. Finally, the substrate with the pressure-sensitive adhesive layer was peeled off to obtain a polarizing plate with a retardation layer having a structure of protective layer (solidified product of coating film)/polarizer/retardation layer. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • a protective layer (cured product) was prepared in the same manner as in Example 1 except that an ultraviolet curable acrylic resin (manufactured by Kyoeisha Chemical Co., Ltd., product name “Light acrylate HPP-A”, hydroxypivalate neopentyl glycol acrylic acid adduct) was used. ) was formed. Specifically, a composition containing 97% by weight of the acrylic resin and 3% by weight of a photopolymerization initiator (Irgacure 907, manufactured by BASF) is coated on a polarizer, and a high pressure mercury lamp is used in a nitrogen atmosphere.
  • an ultraviolet curable acrylic resin manufactured by Kyoeisha Chemical Co., Ltd., product name “Light acrylate HPP-A”, hydroxypivalate neopentyl glycol acrylic acid adduct
  • a photopolymerization initiator Irgacure 907, manufactured by BASF
  • the protective layer had a thickness of 3 ⁇ m, a Tg of 83° C., and an iodine adsorption amount of 6.6% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • a protective layer (cured product) was formed in the same manner as in Example 1 except that an ultraviolet curable epoxy resin (manufactured by Daicel, product name “Ceroxide 2021P”) was used. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro Co., Ltd.) is applied onto a polarizer, and a high pressure mercury lamp is applied in an air atmosphere. It was irradiated with ultraviolet rays at an integrated light amount of 500 mJ/cm 2 to form a cured layer (protective layer).
  • CPI-100P photopolymerization initiator
  • the protective layer had a thickness of 3 ⁇ m, a Tg of 95° C., and an iodine adsorption amount of 9% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
  • a protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyester resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Polyester WR905") was used.
  • the thickness of the protective layer was 3 ⁇ m, and the iodine adsorption amount was 12% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
  • a protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Superflex SF210") was used.
  • the thickness of the protective layer was 3 ⁇ m
  • the Tg was 107° C.
  • the iodine adsorption amount was 19% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
  • Example 8 A protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyurethane resin (manufactured by Unitika Ltd., product name “Arrow Base SE1200”) was used. The thickness of the protective layer was 3 ⁇ m, and the iodine adsorption amount was 15% by weight.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
  • the polarizing plate with retardation layer of the example of the present invention is excellent in durability even though it is very thin, even though it is heated and humidified. At the same time, it is a polarizing plate with a retardation layer that does not shrink after the formation of the protective layer and can be practically used. Furthermore, the polarizing plate with a retardation layer of the example of the present invention had a very small front reflectance after a humidification test, and showed good antireflection characteristics. This indicates that when applied to an image display device having a metal layer such as an organic EL display device, it has an effect of preventing reflection of external light by the metal layer.
  • the polarizing plate with a retardation layer of the present invention is suitably used for an image display device.
  • the image display device include portable devices such as personal digital assistants (PDAs), smartphones, mobile phones, watches, digital cameras, and portable game consoles; office automation devices such as personal computer monitors, notebook computers, and copy machines; video cameras, televisions. , Household electric appliances such as microwave ovens; back monitors, car navigation system monitors, car audio and other in-vehicle equipment; digital signage, commercial store information monitors and other display equipment; surveillance monitors and other security equipment; nursing care Nursing care/medical devices such as medical monitors and medical monitors.
  • PDAs personal digital assistants
  • office automation devices such as personal computer monitors, notebook computers, and copy machines
  • video cameras televisions.
  • Household electric appliances such as microwave ovens
  • digital signage commercial store information monitors and other display equipment
  • surveillance monitors and other security equipment nursing care Nursing care/medical devices
  • Polarizer 20 Protective Layer 40 Retardation Layer 41 First Layer 42 Second Layer 100 Polarizing Plate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a polarizing plate provided with a phase difference layer, having excellent durability despite being extremely thin. This polarizing plate provided with a phase difference layer has a polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a phase difference layer disposed on the reverse side of the polarizing plate from the protective layer. The protective layer is constituted from a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95°C or higher. In one embodiment, the thickness of the protective layer is 10 µm or less.

Description

位相差層付偏光板Polarizing plate with retardation layer
 本発明は、位相差層付偏光板に関する。 The present invention relates to a polarizing plate with a retardation layer.
 画像表示装置(例えば、液晶表示装置、有機EL表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。さらに、実用的には、位相差板が偏光板と併用される場合が多く、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。近年、画像表示装置の薄型化およびフレキシブル化が進んでおり、これに伴い、位相差層付偏光板の薄型化も強く要望されている。しかし、位相差層付偏光板を薄くすればするほど、加熱加湿環境下での光学特性が低下するという耐久性の問題が顕著となる。 In image display devices (for example, liquid crystal display devices and organic EL display devices), a polarizing plate is often arranged on at least one side of the display cell due to the image forming method. Further, practically, a retardation plate is often used together with a polarizing plate, and a polarizing plate with a retardation layer in which the polarizing plate and the retardation plate are integrated is widely used (for example, Patent Document 1). ). In recent years, image display devices have become thinner and more flexible, and along with this, there has been a strong demand for a thinner polarizing plate with a retardation layer. However, the thinner the polarizing plate with the retardation layer, the more serious the problem of durability that the optical characteristics in the heating and humidifying environment deteriorate.
特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、非常に薄いにもかかわらず、耐久性に優れた位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main object is to provide a polarizing plate with a retardation layer, which is extremely thin but has excellent durability.
 本発明の位相差層付偏光板は、偏光子と該偏光子の一方の側に配置された保護層とを含む偏光板と、該偏光板の該保護層と反対側に配置された位相差層と、を有する。該保護層は、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該保護層のガラス転移温度は95℃以上である。
 1つの実施形態においては、上記位相差層は単一層であり、該位相差層のRe(550)は100nm~190nmであり、該位相差層の遅相軸と上記偏光子の吸収軸とのなす角度は40°~50°である。この場合、上記位相差層は、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。
 別の実施形態においては、上記位相差層は第1層と第2層との積層構造を有し;該第1層のRe(550)は200nm~300nmであり、その遅相軸と上記偏光子の吸収軸とのなす角度は10°~20°であり;該第2層のRe(550)は100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度は70°~80°である。この場合、上記第1層および第2層はそれぞれ、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。
 1つの実施形態においては、上記保護層の厚みは10μm以下である。
 1つの実施形態においては、上記保護層のヨウ素吸着量は4.0重量%以下である。
 1つの実施形態においては、上記熱可塑性アクリル系樹脂は、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つを有する。
 1つの実施形態においては、上記位相差層付偏光板は、画像表示装置の視認側に配置され、かつ、上記保護層は視認側に配置される。
The polarizing plate with a retardation layer of the present invention includes a polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a retardation layer disposed on the opposite side of the protective layer of the polarizing plate. And a layer. The protective layer is composed of a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95°C or higher.
In one embodiment, the retardation layer is a single layer, Re(550) of the retardation layer is 100 nm to 190 nm, and the retardation axis of the retardation layer and the absorption axis of the polarizer are The angle formed is 40° to 50°. In this case, the retardation layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
In another embodiment, the retardation layer has a laminated structure of a first layer and a second layer; Re(550) of the first layer is 200 nm to 300 nm, and its slow axis and the polarized light are The angle between the absorption axis of the polarizer and the absorption axis of the second layer is 10° to 20°; the Re(550) of the second layer is 100 nm to 190 nm, and the angle between the slow axis of the second layer and the absorption axis of the polarizer is 70°. It is between ° and 80°. In this case, each of the first layer and the second layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
In one embodiment, the protective layer has a thickness of 10 μm or less.
In one embodiment, the amount of iodine adsorbed on the protective layer is 4.0% by weight or less.
In one embodiment, the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit.
In one embodiment, the polarizing plate with a retardation layer is arranged on the visible side of the image display device, and the protective layer is arranged on the visible side.
 本発明によれば、位相差層付偏光板において保護層を熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成し、そのガラス転移温度を所定値以上とすることにより、非常に薄いにもかかわらず、耐久性に優れた位相差層付偏光板を得ることができる。 According to the present invention, in the polarizing plate with a retardation layer, the protective layer is constituted by a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin, and its glass transition temperature is set to a predetermined value or higher, thereby It is possible to obtain a polarizing plate with a retardation layer, which is excellent in durability despite being thin.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention. 本発明の別の実施形態による位相差層付偏光板の概略断面図である。FIG. 6 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention. 本発明の1つの実施形態による位相差層付偏光板に用いられ得る偏光板の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is a schematic diagram showing an example of dry shrinkage processing using a heating roll in a manufacturing method of a polarizing plate which can be used for a polarizing plate with a phase contrast layer by one embodiment of the present invention.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
The definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and “ny” is the direction in the plane that is orthogonal to the slow axis (that is, the fast axis direction). , And “nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re(λ)” is an in-plane retardation measured with light having a wavelength of λ nm at 23° C. For example, “Re(550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23° C. Re(λ) is calculated by the formula: Re(λ)=(nx−ny)×d, where d(nm) is the thickness of the layer (film).
(3) Phase difference (Rth) in the thickness direction
“Rth(λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23° C. For example, “Rth(550)” is the phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23° C. Rth(λ) is calculated by the formula: Rth(λ)=(nx−nz)×d when the thickness of the layer (film) is d (nm).
(4) Nz coefficient The Nz coefficient is calculated by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise rotations with respect to the reference direction. Therefore, for example, “45°” means ±45°.
A.位相差層付偏光板の概略
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、偏光子10と、偏光子10の一方の側に配置された保護層20と、偏光子10のもう一方の側に配置された位相差層40と、を有する。偏光子10と保護層20とは偏光板を構成する。したがって、位相差層付偏光板は、偏光子と該偏光子の一方の側に配置された保護層とを含む偏光板と、該偏光板の該保護層と反対側に配置された位相差層と、を有する。必要に応じて、偏光板は、偏光子10の保護層20とは反対側に別の保護層(図示せず)をさらに含んでいてもよい。言い換えれば、位相差層付偏光板100は、偏光子10と位相差層40との間に別の保護層(図示せず)をさらに含んでいてもよい。位相差層付偏光板において、偏光子10の厚みは、好ましくは8μm以下である。
A. Outline of Polarizing Plate with Retardation Layer FIG. 1 is a schematic sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 100 with a retardation layer of the illustrated example includes a polarizer 10, a protective layer 20 arranged on one side of the polarizer 10, and a retardation layer 40 arranged on the other side of the polarizer 10. With. The polarizer 10 and the protective layer 20 form a polarizing plate. Therefore, a polarizing plate with a retardation layer is a polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a retardation layer disposed on the opposite side of the protective layer of the polarizing plate. And. If necessary, the polarizing plate may further include another protective layer (not shown) on the side of the polarizer 10 opposite to the protective layer 20. In other words, the polarizing plate 100 with a retardation layer may further include another protective layer (not shown) between the polarizer 10 and the retardation layer 40. In the polarizing plate with a retardation layer, the thickness of the polarizer 10 is preferably 8 μm or less.
 図1に示す実施形態においては、位相差層40は単一層である。この場合、位相差層40のRe(550)は例えば100nm~190nmであり、位相差層40の遅相軸と偏光子10の吸収軸とのなす角度は例えば40°~50°である。この場合、好ましくは、位相差層40の外側(偏光子10と反対側)に別の位相差層(図示せず)が設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。あるいは、図2に示すように、別の実施形態による位相差層付偏光板101においては、位相差層40は、第1層41と第2層42との積層構造を有する。この場合、第1層41のRe(550)は例えば200nm~300nmであり、第1層41の遅相軸と偏光子10の吸収軸とのなす角度は例えば10°~20°であり;第2層42のRe(550)は例えば100nm~190nmであり、第2層42の遅相軸と偏光子10の吸収軸とのなす角度は例えば70°~80°である。いずれの実施形態においても、位相差層40は、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。位相差層40が積層構造を有する場合、代表的には、第1層41および第2層42はそれぞれ、樹脂フィルムまたは液晶化合物の配向固化層である。 In the embodiment shown in FIG. 1, the retardation layer 40 is a single layer. In this case, Re(550) of the retardation layer 40 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40° to 50°. In this case, another retardation layer (not shown) is preferably provided outside the retardation layer 40 (on the side opposite to the polarizer 10). Another retardation layer typically has a refractive index characteristic of nz>nx=ny. Alternatively, as shown in FIG. 2, in a polarizing plate 101 with a retardation layer according to another embodiment, the retardation layer 40 has a laminated structure of a first layer 41 and a second layer 42. In this case, Re(550) of the first layer 41 is, for example, 200 nm to 300 nm, and the angle formed by the slow axis of the first layer 41 and the absorption axis of the polarizer 10 is, for example, 10° to 20°; The Re(550) of the second layer 42 is, for example, 100 nm to 190 nm, and the angle formed by the slow axis of the second layer 42 and the absorption axis of the polarizer 10 is, for example, 70° to 80°. In any of the embodiments, the retardation layer 40 may be a resin film or an alignment solidified layer of a liquid crystal compound. When the retardation layer 40 has a laminated structure, typically, the first layer 41 and the second layer 42 are each a resin film or an alignment solidification layer of a liquid crystal compound.
 本発明の実施形態においては、保護層20は、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。このような構成であれば、保護層を非常に薄く(例えば、10μm以下に)することができる。さらに、保護層を偏光子に直接(すなわち、接着剤層または粘着剤層を介することなく)形成することができる。本発明の実施形態によれば、上記のとおり偏光子および保護層が非常に薄く、かつ、接着剤層または粘着剤層を省略することができるので、位相差層付偏光板の総厚みをきわめて薄くすることができる。位相差層が樹脂フィルムで構成される場合には、位相差層付偏光板の総厚みは、例えば80μm以下であり、好ましくは70μm以下であり、より好ましくは60μm以下である。位相差層付偏光板の総厚みの下限は、例えば30μmであり得る。位相差層が液晶化合物の配向固化層で構成される場合には、位相差層付偏光板の総厚みは、例えば25μm以下であり、好ましくは22μm以下であり、より好ましくは20μm以下である。位相差層付偏光板の総厚みの下限は、例えば10μmであり得る。 In the embodiment of the present invention, the protective layer 20 is composed of a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin. With such a configuration, the protective layer can be made extremely thin (for example, 10 μm or less). Further, the protective layer can be formed directly on the polarizer (that is, without interposing the adhesive layer or the pressure-sensitive adhesive layer). According to the embodiment of the present invention, the polarizer and the protective layer are very thin as described above, and since the adhesive layer or the pressure-sensitive adhesive layer can be omitted, the total thickness of the polarizing plate with a retardation layer is extremely small. Can be thinned. When the retardation layer is made of a resin film, the total thickness of the polarizing plate with a retardation layer is, for example, 80 μm or less, preferably 70 μm or less, and more preferably 60 μm or less. The lower limit of the total thickness of the polarizing plate with a retardation layer may be, for example, 30 μm. When the retardation layer is composed of an alignment-solidified layer of a liquid crystal compound, the total thickness of the polarizing plate with the retardation layer is, for example, 25 μm or less, preferably 22 μm or less, and more preferably 20 μm or less. The lower limit of the total thickness of the polarizing plate with a retardation layer may be, for example, 10 μm.
 さらに、本発明の実施形態においては、保護層20のガラス転移温度(Tg)は95℃以上であり、好ましくは100℃以上であり、より好ましくは105℃以上であり、さらに好ましくは110℃以上であり、特に好ましくは115℃以上である。保護層のTgがこのような範囲であれば、保護層を熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成することによる効果との相乗的な効果により、非常に薄いにもかかわらず、耐久性に優れた偏光板(結果として、位相差層付偏光板)を実現することができる。具体的には、加熱加湿環境下においても光学特性の低下が抑制された偏光板(結果として、位相差層付偏光板)を実現することができる。一方、保護層のTgは、好ましくは300℃以下であり、より好ましくは250℃以下であり、さらに好ましくは200℃以下であり、特に好ましくは160℃以下である。保護層のTgがこのような範囲であれば、成形性に優れ得る。 Further, in the embodiment of the present invention, the glass transition temperature (Tg) of the protective layer 20 is 95° C. or higher, preferably 100° C. or higher, more preferably 105° C. or higher, further preferably 110° C. or higher. And particularly preferably 115° C. or higher. When the Tg of the protective layer is in such a range, it is very thin due to a synergistic effect with the effect of forming the protective layer from the solidified material of the coating film of the organic solvent solution of the thermoplastic acrylic resin. Nevertheless, a polarizing plate with excellent durability (as a result, a polarizing plate with a retardation layer) can be realized. Specifically, it is possible to realize a polarizing plate (as a result, a polarizing plate with a retardation layer) in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment. On the other hand, the Tg of the protective layer is preferably 300°C or lower, more preferably 250°C or lower, further preferably 200°C or lower, and particularly preferably 160°C or lower. When the Tg of the protective layer is within such a range, the moldability can be excellent.
 上記のとおり、本発明の実施形態によれば、加熱加湿環境下においても光学特性の低下が抑制された偏光板(結果として、位相差層付偏光板)を実現することができる。このような偏光板(結果として、位相差層付偏光板)は、85℃および85%RHの環境下で48時間放置した後の単体透過率Tsの変化量ΔTsおよび偏光度Pの変化量ΔPが、それぞれ非常に小さい。単体透過率Tsは、例えば紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定され得る。偏光度Pは、紫外可視分光光度計を用いて測定される単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)から、次式により算出される。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。ΔTsおよびΔPは、それぞれ下記式により求められる。
    ΔTs(%)=Ts48-Ts
    ΔP(%)=P48-P
ここで、Tsは放置前(初期)の単体透過率であり、Ts48は放置後の単体透過率であり、Pは放置前(初期)の偏光度であり、P48は放置後の偏光度である。ΔTsは、好ましくは3.0%以下であり、より好ましくは2.7%以下であり、さらに好ましくは2.4%以下である。ΔPは、好ましくは-0.05%~0%であり、より好ましくは-0.03%~0%であり、さらに好ましくは-0.01%~0%である。
As described above, according to the embodiment of the present invention, it is possible to realize a polarizing plate (as a result, a polarizing plate with a retardation layer) in which deterioration of optical characteristics is suppressed even in a heating and humidifying environment. Such a polarizing plate (as a result, a polarizing plate with a retardation layer) has a variation ΔTs in the single transmittance Ts and a variation ΔP in the polarization degree P after being left for 48 hours in an environment of 85° C. and 85% RH. But each is very small. The simple substance transmittance Ts can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name “V7100”). The polarization degree P is calculated by the following formula from the simple substance transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) measured using an ultraviolet-visible spectrophotometer.
Polarization degree (P)(%)={(Tp-Tc)/(Tp+Tc)} 1/2 ×100
The above Ts, Tp, and Tc are Y values measured by a 2 degree visual field (C light source) of JIS Z 8701 and subjected to luminosity correction. Further, Ts and P are substantially characteristics of the polarizer. ΔTs and ΔP are respectively calculated by the following equations.
ΔTs (%)=Ts 48 −Ts 0
ΔP(%)=P 48 −P 0
Here, Ts 0 is the unit transmittance before standing (initial), Ts 48 is the unit transmittance after standing, P 0 is the polarization degree before standing (initial), and P 48 is the group after standing. It is the degree of polarization. ΔTs is preferably 3.0% or less, more preferably 2.7% or less, and further preferably 2.4% or less. ΔP is preferably −0.05% to 0%, more preferably −0.03% to 0%, and further preferably −0.01% to 0%.
 本発明の位相差層付偏光板は、上記以外の位相差層をさらに含んでいてもよい。そのような位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer of the present invention may further include a retardation layer other than the above. The optical characteristics (eg, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. of such a retardation layer can be appropriately set according to the purpose.
 本発明の位相差層付偏光板は、導電層または導電層付等方性基材(いずれも図示せず)をさらに含んでいてもよい。導電層または導電層付等方性基材は、代表的には、位相差層40の外側(偏光子10と反対側)に設けられる。導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、表示セル(例えば、液晶セル、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。 The polarizing plate with a retardation layer of the present invention may further include a conductive layer or an isotropic substrate with a conductive layer (neither is shown). The conductive layer or the isotropic substrate with a conductive layer is typically provided outside the retardation layer 40 (on the side opposite to the polarizer 10 ). When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer is a so-called inner layer in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
 位相差層付偏光板は、長尺状であってもよいし、枚葉状であってもよい。位相差層付偏光板が長尺状である場合、好ましくは、ロール状に巻回されて位相差層付偏光板ロールとされる。 The polarizing plate with a retardation layer may have a long shape or a sheet shape. When the polarizing plate with a retardation layer is long, it is preferably wound into a roll to form a polarizing plate with a retardation layer.
 代表的には、位相差層付偏光板は、一方の側(代表的には、位相差層40側)の最外層として粘着剤層を有し、表示セルへの貼り合わせが可能とされている。必要に応じて、位相差層付偏光板には表面保護フィルムおよび/またはキャリアフィルムが剥離可能に仮着され、位相差層付偏光板を補強および/または支持し得る。位相差層付偏光板が粘着剤層を含む場合には、粘着剤層表面にはセパレーターが剥離可能に仮着され、実使用までの間粘着剤層を保護するとともに、位相差層付偏光板のロール化を可能としている。 Typically, the polarizing plate with a retardation layer has an adhesive layer as the outermost layer on one side (typically, the retardation layer 40 side), and is supposed to be bonded to a display cell. There is. If necessary, a surface protective film and/or a carrier film may be detachably temporarily attached to the polarizing plate with a retardation layer to reinforce and/or support the polarizing plate with a retardation layer. When the polarizing plate with a retardation layer includes a pressure-sensitive adhesive layer, a separator is detachably temporarily attached to the surface of the pressure-sensitive adhesive layer to protect the pressure-sensitive adhesive layer until actual use, and also the polarizing plate with a retardation layer. It is possible to roll.
 本発明の位相差層付偏光板は上記のとおり非常に薄いので、フレキシブルな画像表示装置に好適に適用され得る。より好ましくは、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。画像表示装置の具体例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。言うまでもなく、上記の説明は、本発明の位相差層付偏光板が通常の画像表示装置に適用されることを妨げるものではない。 Since the polarizing plate with a retardation layer of the present invention is very thin as described above, it can be suitably applied to a flexible image display device. More preferably, the image display device has a curved shape (substantially a curved display screen) and/or is bendable or bendable. Specific examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). Needless to say, the above description does not prevent the polarizing plate with a retardation layer of the present invention from being applied to a normal image display device.
 以下、位相差層付偏光板の構成要素について詳細に説明する。 The components of the polarizing plate with retardation layer will be described in detail below.
B.偏光板
B-1.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。偏光子は、代表的には、二層以上の積層体を用いて作製され得る。偏光子の製造方法については、偏光板の製造方法としてD項で後述する。
B. Polarizing plate B-1. Polarizer Any appropriate polarizer can be adopted as the polarizer. The polarizer can be typically manufactured by using a laminate of two or more layers. The method for producing the polarizer will be described later in the section D as a method for producing the polarizing plate.
 偏光子の厚みは、好ましくは1μm~8μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。 The thickness of the polarizer is preferably 1 μm to 8 μm, more preferably 1 μm to 7 μm, and further preferably 2 μm to 5 μm.
 偏光子のホウ酸含有量は、好ましくは10重量%以上であり、より好ましくは13重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 10% by weight or more, and more preferably 13% by weight to 25% by weight. When the content of boric acid in the polarizer is in such a range, the curl at the time of bonding can be favorably maintained due to a synergistic effect with the content of iodine described later, and the curl at the time of heating can be maintained. It is possible to improve the appearance durability at the time of heating while suppressing the above. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight from the neutralization method using the following formula.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight. When the iodine content of the polarizer is in such a range, the curl at the time of laminating is favorably maintained due to the synergistic effect with the above boric acid content, and the curl at the time of heating is maintained. It is possible to improve the appearance durability at the time of heating while suppressing the above. In the present specification, the “iodine content” means the total amount of iodine contained in the polarizer (PVA-based resin film). More specifically, iodine is present in the polarizer in the form of iodine ion (I ), iodine molecule (I 2 ), polyiodine ion (I 3 , I 5 ), etc. The iodine content means the amount of iodine including all of these forms. The iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis. The polyiodine ion is present in the polarizer in a state of forming a PVA-iodine complex. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light. Specifically, the complex of PVA and triiodide ion (PVA·I 3 ) has an absorption peak near 470 nm, and the complex of PVA and pentaiodide ion (PVA·I 5 ) is around 600 nm. Has an absorption peak at. As a result, polyiodine ions can absorb light in a wide range of visible light, depending on their morphology. On the other hand, iodine ion (I ) has an absorption peak around 230 nm and does not substantially participate in absorption of visible light. Therefore, the polyiodine ion existing in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%. The polarization degree P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.保護層
 保護層は、上記のとおり、熱可塑性アクリル系樹脂(以下、単にアクリル系樹脂と称する)の有機溶媒溶液の塗布膜の固化物で構成されている。以下、保護層の構成成分について具体的に説明し、次いで、保護層の特性を説明する。
B-2. Protective Layer As described above, the protective layer is composed of a solidified product of a coating film of a solution of a thermoplastic acrylic resin (hereinafter simply referred to as an acrylic resin) in an organic solvent. The constituents of the protective layer will be specifically described below, and then the characteristics of the protective layer will be described.
B-2-1.アクリル系樹脂
 アクリル系樹脂(後述のように、2種以上のアクリル系樹脂のブレンドおよびアクリル系樹脂と他の樹脂とのブレンドを含む)のTgは、保護層に関して上記A項で説明したとおりである。
B-2-1. Acrylic resin The Tg of the acrylic resin (including a blend of two or more kinds of acrylic resins and a blend of the acrylic resin and another resin as described later) is as described in the section A regarding the protective layer. is there.
 アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレート由来の繰り返し単位は、代表的には、下記一般式(1)で表される: As the acrylic resin, any appropriate acrylic resin can be adopted as long as it has the Tg as described above. The acrylic resin typically contains an alkyl (meth)acrylate as a main component as a monomer unit (repeating unit). As used herein, the term “(meth)acrylic” means acrylic and/or methacrylic. Examples of the alkyl (meth)acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. Further, any appropriate copolymerization monomer may be introduced into the acrylic resin by copolymerization. The repeating unit derived from an alkyl (meth)acrylate is typically represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)において、Rは、水素原子またはメチル基を示し、Rは、水素原子、あるいは、置換されていてもよい炭素数1~6の脂肪族または脂環式炭化水素基を示す。置換基としては、例えば、ハロゲン、水酸基が挙げられる。アルキル(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシエチル)アクリル酸メチルが挙げられる。一般式(1)において、Rは、好ましくは、水素原子またはメチル基である。したがって、特に好ましいアルキル(メタ)アクリレートは、アクリル酸メチルまたはメタクリル酸メチルである。 In the general formula (1), R 4 represents a hydrogen atom or a methyl group, and R 5 represents a hydrogen atom or an optionally substituted aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms. Show. Examples of the substituent include halogen and hydroxyl group. Specific examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, and t-(meth)acrylate. Butyl, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, (meth)acrylic Acid dicyclopentanyl, chloromethyl (meth)acrylate, 2-chloroethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth)acrylic acid 2, 3,4,5,6-Pentahydroxyhexyl, 2,3,4,5-tetrahydroxypentyl (meth)acrylate, methyl 2-(hydroxymethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, 2 -(Hydroxyethyl)methyl acrylate may be mentioned. In the general formula (1), R 5 is preferably a hydrogen atom or a methyl group. Thus, a particularly preferred alkyl (meth)acrylate is methyl acrylate or methyl methacrylate.
 アクリル系樹脂は、単一のアルキル(メタ)アクリレート単位のみを含んでいてもよいし、上記一般式(1)におけるRおよびRが異なる複数のアルキル(メタ)アクリレート単位を含んでいてもよい。 The acrylic resin may include only a single alkyl (meth)acrylate unit, or may include a plurality of alkyl (meth)acrylate units having different R 4 and R 5 in the general formula (1). Good.
 アクリル系樹脂におけるアルキル(メタ)アクリレート単位の含有割合は、好ましくは50モル%~98モル%、より好ましくは55モル%~98モル%、さらに好ましくは60モル%~98モル%、特に好ましくは65モル%~98モル%、最も好ましくは70モル%~97モル%である。含有割合が50モル%より少ないと、アルキル(メタ)アクリレート単位に由来して発現される効果(例えば、高い耐熱性、高い透明性)が十分に発揮されないおそれがある。上記含有割合が98モル%よりも多いと、樹脂が脆くて割れやすくなり、高い機械的強度が十分に発揮できず、生産性に劣るおそれがある。 The content ratio of the alkyl (meth)acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, further preferably 60 mol% to 98 mol%, and particularly preferably It is 65 mol% to 98 mol%, most preferably 70 mol% to 97 mol%. If the content ratio is less than 50 mol %, the effects (for example, high heat resistance and high transparency) derived from the alkyl (meth)acrylate unit may not be sufficiently exhibited. When the content ratio is more than 98 mol%, the resin becomes brittle and easily cracked, high mechanical strength cannot be sufficiently exhibited, and productivity may be deteriorated.
 アクリル系樹脂は、好ましくは、環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。 The acrylic resin preferably has a repeating unit containing a ring structure. Examples of the repeating unit containing a ring structure include a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit, and a maleimide (N-substituted maleimide) unit. As for the repeating unit containing a ring structure, only one kind may be contained in the repeating unit of the acrylic resin, or two or more kinds may be contained.
 ラクトン環単位は、好ましくは、下記一般式(2)で表される: The lactone ring unit is preferably represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000003
一般式(2)において、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR、RおよびRが異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
Figure JPOXMLDOC01-appb-C000003
In the general formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom. The acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units having different R 1 , R 2 and R 3 in the general formula (2). .. The acrylic resin having a lactone ring unit is described in, for example, JP-A-2008-181078, and the description in that publication is incorporated herein by reference.
 グルタルイミド単位は、好ましくは、下記一般式(3)で表される: The glutarimide unit is preferably represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。 In the general formula (3), R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 13 is an alkyl group having 1 to 18 carbon atoms or 3 to 12 carbon atoms. Is a cycloalkyl group or an aryl group having 6 to 10 carbon atoms. In the general formula (3), preferably R 11 and R 12 are each independently hydrogen or a methyl group, and R 13 is hydrogen, a methyl group, a butyl group or a cyclohexyl group. More preferably, R 11 is a methyl group, R 12 is hydrogen and R 13 is a methyl group. The acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units having different R 11 , R 12 and R 13 in the general formula (3). .. The acrylic resin having a glutarimide unit is disclosed in, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006-337492. It is described in Japanese Patent Laid-Open No. 2006-337493 and Japanese Patent Laid-Open No. 2006-337569, the description of which is incorporated herein by reference. Regarding the glutaric anhydride unit, the above description regarding the glutarimide unit is applied, except that the nitrogen atom substituted with R 13 in the general formula (3) becomes an oxygen atom.
 無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。 The structures of the maleic anhydride unit and the maleimide (N-substituted maleimide) unit are specified by their names, so a detailed description will be omitted.
 アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが110℃未満となる場合があり、得られる保護層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。 The content ratio of the repeating unit containing a ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and further preferably 20 mol% to 30 mol%. If the content ratio is too low, Tg may be less than 110° C., and the resulting protective layer may have insufficient heat resistance, solvent resistance, and surface hardness. If the content ratio is too large, moldability and transparency may be insufficient.
 アクリル系樹脂は、アルキル(メタ)アクリレート単位および環構造を含む繰り返し単位以外の繰り返し単位を含んでいてもよい。そのような繰り返し単位としては、上記の単位を構成する単量体と共重合可能なビニル系単量体由来の繰り返し単位(他のビニル系単量体単位)が挙げられる。他のビニル系単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、N-フェニルマレイミド、メタクリル酸フェニルアミノエチル、スチレン、α-メチルスチレン、p-グリシジルスチレン、p-アミノスチレン、2-スチリル-オキサゾリンなどがあげられる。これらは、単独で用いてもよく併用してもよい。他のビニル系単量体単位の種類、数、組み合わせ、含有割合等は、目的に応じて適切に設定され得る。 The acrylic resin may contain a repeating unit other than the repeating unit containing an alkyl (meth)acrylate unit and a ring structure. Examples of such a repeating unit include a repeating unit derived from a vinyl-based monomer copolymerizable with the monomer constituting the above unit (another vinyl-based monomer unit). Examples of other vinyl monomers include acrylic acid, methacrylic acid, crotonic acid, 2-(hydroxymethyl)acrylic acid, 2-(hydroxyethyl)acrylic acid, acrylonitrile, methacrylonitrile, ethacrylonitrile and allyl. Glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, methacryl Acid cyclohexylaminoethyl, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, Examples thereof include phenylaminoethyl methacrylate, styrene, α-methylstyrene, p-glycidylstyrene, p-aminostyrene, 2-styryl-oxazoline and the like. These may be used alone or in combination. The type, number, combination, content ratio and the like of the other vinyl-based monomer units can be appropriately set according to the purpose.
 アクリル系樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。 The weight average molecular weight of the acrylic resin is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, further preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000. The weight average molecular weight can be determined by polystyrene conversion using, for example, a gel permeation chromatograph (GPC system, manufactured by Tosoh Corporation). Tetrahydrofuran may be used as the solvent.
 アクリル系樹脂は、上記の単量体単位を適切に組み合わせて用いて、任意の適切な重合方法により重合され得る。異なる単量体単位を有する2種以上のアクリル系樹脂をブレンドしてもよい。 The acrylic resin can be polymerized by any suitable polymerization method using the above monomer units in an appropriate combination. Two or more types of acrylic resins having different monomer units may be blended.
 本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する保護層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。 In the embodiment of the present invention, an acrylic resin and another resin may be used together. That is, you may copolymerize the monomer component which comprises an acrylic resin, and the monomer component which comprises another resin, and you may use this copolymer for shaping|molding of the protective layer mentioned later; with an acrylic resin and another resin. The blend may be used for forming the protective layer. Examples of the other resin include thermoplastic resins such as styrene resins, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide. The kind and blending amount of the resin used in combination can be appropriately set depending on the purpose and desired properties of the obtained film. For example, a styrene resin (preferably an acrylonitrile-styrene copolymer) can be used together as a retardation control agent.
 アクリル系樹脂と他の樹脂とを併用する場合、アクリル系樹脂と他の樹脂とのブレンドにおけるアクリル系樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、アクリル系樹脂が本来有する高い耐熱性、高い透明性が十分に反映できないおそれがある。 When the acrylic resin and the other resin are used in combination, the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight. %, more preferably 70 to 100% by weight, particularly preferably 80 to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
B-2-2.保護層の構成および特性
 保護層は、上記のとおり、アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。このような塗布膜の固化物であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。保護層の厚みは、上記のとおり10μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。保護層の厚みの下限は、例えば1μmであり得る。また、理論的には明らかではないが、このような塗布膜の固化物は、熱硬化性樹脂または活性エネルギー線硬化性樹脂(例えば、紫外線硬化性樹脂)の硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができるという利点を有する。さらに、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板(結果として、位相差層付偏光板)を実現することができる。
B-2-2. Structure and Properties of Protective Layer As described above, the protective layer is composed of a solidified product of a coating film of an organic solvent solution of an acrylic resin. With such a solidified product of the coating film, the thickness can be remarkably reduced as compared with the extruded film. As described above, the thickness of the protective layer is 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less, and further preferably 3 μm or less. The lower limit of the thickness of the protective layer may be, for example, 1 μm. Further, although it is not theoretically clear, such a solidified product of the coating film is more difficult to form during film formation than a cured product of a thermosetting resin or an active energy ray curable resin (for example, an ultraviolet curable resin). Since the shrinkage is small and the residual monomer and the like are not included, the deterioration of the film itself is suppressed, and an adverse effect on the polarizing plate (polarizer) due to the residual monomer and the like can be suppressed. Furthermore, since it has lower hygroscopicity and moisture permeability than a solidified product of an aqueous coating film such as an aqueous solution or an aqueous dispersion, it has an advantage that it is excellent in humidification durability. As a result, it is possible to realize a polarizing plate having excellent durability (as a result, a polarizing plate with a retardation layer) capable of maintaining optical characteristics even under a heating and humidifying environment.
 保護層のTgは、上記A項で説明したとおりである。 The Tg of the protective layer is as described in Section A above.
 保護層のヨウ素吸着量は、好ましくは4.0重量%以下であり、より好ましくは3.0重量%以下であり、さらに好ましくは2.0重量%以下であり、特に好ましくは1.0重量%以下であり、とりわけ好ましくは0.5重量%以下である。ヨウ素吸着量は小さいほど好ましく、その下限は例えば0.1重量%であり得る。ヨウ素吸着量がこのような範囲であれば、さらに優れた耐久性を有する偏光板(結果として、位相差層付偏光板)が得られ得る。ヨウ素吸着量は、後述の実施例に記載の方法で測定され得る。 The iodine adsorption amount of the protective layer is preferably 4.0% by weight or less, more preferably 3.0% by weight or less, further preferably 2.0% by weight or less, and particularly preferably 1.0% by weight. % Or less, particularly preferably 0.5% by weight or less. The smaller the iodine adsorption amount, the more preferable, and the lower limit thereof may be 0.1% by weight, for example. When the iodine adsorption amount is in such a range, a polarizing plate having more excellent durability (as a result, a polarizing plate with a retardation layer) can be obtained. The iodine adsorption amount can be measured by the method described in Examples below.
 保護層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmであることをいう。面内位相差Re(550)は、より好ましくは0nm~5nmであり、さらに好ましくは0nm~3nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。保護層のRe(550)およびRth(550)がこのような範囲であれば、当該保護層を含む位相差層付偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。 The protective layer preferably has substantially optical isotropy. In the present specification, “having substantially optical isotropy” means that the in-plane retardation Re(550) is 0 nm to 10 nm and the thickness direction retardation Rth(550) is −20 nm to +10 nm. There is something. The in-plane retardation Re(550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm. The retardation Rth(550) in the thickness direction is more preferably −5 nm to +5 nm, further preferably −3 nm to +3 nm, and particularly preferably −2 nm to +2 nm. When Re(550) and Rth(550) of the protective layer are in such ranges, it is possible to prevent adverse effects on display characteristics when the polarizing plate with a retardation layer including the protective layer is applied to an image display device. it can.
 保護層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。 The higher the light transmittance at 380 nm when the thickness of the protective layer is 3 μm, the more preferable. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. When the light transmittance is in such a range, desired transparency can be secured. The light transmittance can be measured, for example, by a method according to ASTM-D-1003.
 保護層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側に位相差層付偏光板を使用する場合でも、表示内容が良好に視認できる。 The lower the haze of the protective layer, the better. Specifically, the haze is preferably 5% or less, more preferably 3% or less, further preferably 1.5% or less, particularly preferably 1% or less. When the haze is 5% or less, a good clear feeling can be given to the film. Furthermore, even when the polarizing plate with a retardation layer is used on the viewing side of the image display device, the displayed content can be viewed well.
 保護層の厚み3μmにおけるYIは、好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.23以下、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
   YI=[(1.28X-1.06Z)/Y]×100
The YI in the protective layer having a thickness of 3 μm is preferably 1.27 or less, more preferably 1.25 or less, further preferably 1.23 or less, and particularly preferably 1.20 or less. When YI exceeds 1.3, optical transparency may be insufficient. In addition, YI is, for example, from tristimulus values (X, Y, Z) of color obtained by measurement using a high-speed integrating sphere type spectral transmittance measuring device (trade name DOT-3C: manufactured by Murakami Color Research Laboratory). , Can be obtained by the following formula.
YI=[(1.28X-1.06Z)/Y]×100
  保護層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、保護層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。 The b value (scale of hue according to Hunter's color system) when the thickness of the protective layer is 3 μm is preferably less than 1.5, and more preferably 1.0 or less. When the b value is 1.5 or more, an undesired tint may appear. The b value is obtained by, for example, cutting a sample of the film forming the protective layer into 3 cm squares, and using a high-speed integrating sphere type spectral transmittance measuring instrument (trade name DOT-3C: manufactured by Murakami Color Research Laboratory). Is measured and the hue is evaluated according to Hunter's color system.
 保護層(塗布膜の固化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤はアクリル系樹脂の重合時に添加されてもよく、フィルム形成時に溶液に添加されてもよい。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。 The protective layer (solidified product of coating film) may contain any appropriate additive depending on the purpose. Specific examples of the additives include ultraviolet absorbers, leveling agents, hindered phenol-based, phosphorus-based, sulfur-based, and other antioxidants; light stabilizers, weather stabilizers, heat stabilizers, and other stabilizers; glass fibers; Reinforcing materials such as carbon fibers; near infrared absorbers; flame retardants such as tris(dibromopropyl)phosphate, triallyl phosphate, antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; inorganic pigments Colorants such as organic pigments and dyes, organic fillers or inorganic fillers, resin modifiers, organic fillers and inorganic fillers, plasticizers, lubricants, antistatic agents, flame retardants, and the like. The additive may be added during the polymerization of the acrylic resin or may be added to the solution during the film formation. The kind, number, combination, addition amount and the like of the additives can be appropriately set according to the purpose.
 保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、保護層と偏光子との密着性を高めることができる。また、保護層には、ハードコート層が形成されていてもよい。ハードコート層は、保護層が視認側偏光板の視認側の保護層として用いられる場合に形成され得る。易接着層およびハードコート層の両方が形成される場合、代表的には、これらはそれぞれ保護層の異なる側に形成され得る。 An easy-adhesion layer may be formed on the polarizer side of the protective layer. The easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based crosslinking agent. By forming such an easy-adhesion layer, the adhesion between the protective layer and the polarizer can be enhanced. A hard coat layer may be formed on the protective layer. The hard coat layer can be formed when the protective layer is used as a protective layer on the viewing side of the viewing side polarizing plate. When both the easy adhesion layer and the hard coat layer are formed, typically, they can be formed on different sides of the protective layer, respectively.
B-3.偏光板の製造方法
B-3-1.偏光子の製造方法
 上記B-1項に記載の偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。このような製造方法によれば、上記のような偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および偏光度)を有するとともに、光学特性のバラつきが抑制された偏光子を得ることができる。具体的には、乾燥収縮処理工程において加熱ロールを用いることにより、積層体を搬送しながら、積層体全体に亘って均一に収縮することができる。これにより、得られる偏光子の光学特性を高めることができるだけでなく、光学特性に優れる偏光子を安定して生産することができ、偏光子の光学特性(特に、単体透過率)のバラつきを抑制することができる。以下、ハロゲン化物および乾燥収縮処理について説明する。これら以外の製造方法の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
B-3. Method of manufacturing polarizing plate B-3-1. Method for Producing Polarizer The method for producing a polarizer according to the above item B-1, is a polyvinyl alcohol containing a halide and a polyvinyl alcohol resin (PVA resin) on one side of a long thermoplastic resin substrate. By forming a system resin layer (PVA system resin layer) to form a laminate, and by subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and heating while conveying in the longitudinal direction. And a drying shrinkage treatment for shrinking the widthwise direction by 2% or more. The content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60° C. to 120° C. According to such a manufacturing method, the above polarizer can be obtained. In particular, by producing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate by multi-stage stretching including in-air auxiliary stretching and underwater stretching, and heating the laminated body with a heating roll. It is possible to obtain a polarizer having excellent optical characteristics (typically, single transmittance and degree of polarization) and suppressing variations in optical characteristics. Specifically, by using a heating roll in the drying shrinkage treatment step, it is possible to uniformly shrink the entire laminate while transporting the laminate. As a result, not only can the optical characteristics of the obtained polarizer be enhanced, but also polarizers with excellent optical characteristics can be stably produced, and variations in optical characteristics of the polarizer (particularly, single transmittance) can be suppressed. can do. The halide and the drying shrinkage treatment will be described below. Details of manufacturing methods other than these are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire disclosure of this publication is incorporated herein by reference.
B-3-1-1.ハロゲン化物
 ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層は、ハロゲン化物とPVA系樹脂とを含む塗布液を熱可塑性樹脂基材上に塗布し、塗布膜を乾燥することにより形成され得る。塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。
B-3-1-1. Halide A PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin on a thermoplastic resin substrate and drying the coating film. The coating liquid is typically a solution prepared by dissolving the halide and the PVA resin in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Of these, water is preferable. The concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin substrate.
 ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 Any suitable halide may be adopted as the halide. Examples include iodide and sodium chloride. Examples of iodides include potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
 塗布液におけるハロゲン化物の量は、PVA系樹脂100重量部に対して好ましくは5重量部~20重量部であり、より好ましくは10重量部~15重量部である。ハロゲン化物の量が多すぎると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。 The amount of the halide in the coating liquid is preferably 5 to 20 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the PVA-based resin. If the amount of the halide is too large, the halide may bleed out and the resulting polarizer may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性が向上し得る。 Generally, when the PVA-based resin layer is stretched, the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules The orientation may be disturbed and the orientation may be deteriorated. In particular, when a laminate of a thermoplastic resin base material and a PVA-based resin layer is stretched in boric acid water, the laminate can be stretched in boric acid water at a relatively high temperature to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the above-mentioned tendency of decreasing the degree of orientation is remarkable. For example, while stretching of a PVA film alone in boric acid water is generally performed at 60° C., stretching of a laminate of A-PET (thermoplastic resin substrate) and PVA-based resin layer is performed. It is carried out at a high temperature of around 70° C. In this case, the orientation of PVA in the initial stage of stretching may be lowered in a stage before being raised by underwater stretching. On the other hand, by producing a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin substrate, and stretching the laminate at high temperature in air (auxiliary stretching) before stretching in boric acid water. The crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. As a result, the optical characteristics of the polarizer obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and an underwater stretching treatment, can be improved.
B-3-1-2.乾燥収縮処理
 乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行ってもよいし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
B-3-1-2. Drying Shrinkage Treatment The drying shrinkage treatment may be performed by zone heating performed by heating the entire zone, or may be performed by heating the transport roll (using a so-called heating roll) (heating roll drying method). Both are preferably used. By drying using a heating roll, it is possible to efficiently suppress the curling of the laminate by heating and to manufacture a polarizer having an excellent appearance. Specifically, by drying the laminate along the heating roll, the crystallization of the thermoplastic resin substrate can be efficiently promoted to increase the crystallinity, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. Further, by using the heating roll, the laminate can be dried while being kept flat, so that not only curling but also generation of wrinkles can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA/iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%. By using the heating roll, the laminate can be continuously contracted in the width direction while being conveyed, and high productivity can be realized.
 図3は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 3 is a schematic diagram showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin substrate. However, for example, one surface of the laminate 200 (for example, thermoplastic resin) may be used. The transport rolls R1 to R6 may be arranged so that only the resin substrate surface) is continuously heated.
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 The drying conditions can be controlled by adjusting the heating temperature of the transfer rolls (temperature of the heating rolls), the number of heating rolls, the contact time with the heating rolls, and the like. The temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, and particularly preferably 70°C to 80°C. It is possible to satisfactorily increase the crystallinity of the thermoplastic resin, satisfactorily suppress curling, and manufacture an optical laminate having extremely excellent durability. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are multiple transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or may be provided in a normal production line (under room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using the drying with the heating roll and the hot air drying together, a sharp temperature change between the heating rolls can be suppressed, and the shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30°C to 100°C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of the hot air is preferably about 10 m/s to 30 m/s. The wind velocity is the wind velocity in the heating furnace, and can be measured by a mini vane type digital anemometer.
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。 Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
 このようにして、熱可塑性樹脂基材/偏光子の積層体を得ることができる。 In this way, a laminate of the thermoplastic resin substrate/polarizer can be obtained.
B-3-2.偏光板の製造方法
 上記B-3-1項で得られた積層体表面に、アクリル系樹脂の有機溶媒溶液を塗布して塗布膜を形成し、当該塗布膜を固化させることにより保護層が形成される。
B-3-2. Method for Manufacturing Polarizing Plate A protective film is formed by applying a solution of an acrylic resin in an organic solvent to form a coating film on the surface of the laminate obtained in the above section B-3-1 and solidifying the coating film. To be done.
 アクリル系樹脂については、上記B-2-1項で説明したとおりである。 Regarding acrylic resin, it is as explained in section B-2-1 above.
 有機溶媒としては、アクリル系樹脂を溶解または均一に分散し得る任意の適切な有機溶媒を用いることができる。有機溶媒の具体例としては、酢酸エチル、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。 As the organic solvent, any suitable organic solvent that can dissolve or uniformly disperse the acrylic resin can be used. Specific examples of the organic solvent include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
 溶液のアクリル系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。 The concentration of the acrylic resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the polarizer.
 溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。溶液を基材に塗布する場合には、基材上に形成された塗布膜の固化物が偏光子に転写される。溶液を偏光子に塗布する場合には、塗布膜を乾燥(固化)させることにより、偏光子上に保護層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、位相差層付偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。 The solution may be applied to any appropriate base material or may be applied to the polarizer. When the solution is applied to the base material, the solidified product of the coating film formed on the base material is transferred to the polarizer. When the solution is applied to the polarizer, the protective layer is directly formed on the polarizer by drying (solidifying) the coating film. Preferably, the solution is applied to the polarizer and the protective layer is directly formed on the polarizer. With such a configuration, the adhesive layer or the pressure-sensitive adhesive layer required for the transfer can be omitted, so that the polarizing plate with the retardation layer can be further thinned. Any appropriate method can be adopted as a method for applying the solution. Specific examples thereof include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, knife coating (comma coating, etc.).
 溶液の塗布膜を乾燥(固化)させることにより、保護層が形成され得る。乾燥温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。乾燥温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。乾燥時間は、乾燥温度に応じて変化し得る。乾燥時間は、例えば1分~10分であり得る。 A protective layer can be formed by drying (solidifying) the coating film of the solution. The drying temperature is preferably 100°C or lower, more preferably 50°C to 70°C. When the drying temperature is in such a range, it is possible to prevent the polarizer from being adversely affected. The drying time can vary depending on the drying temperature. The drying time can be, for example, 1 minute to 10 minutes.
 以上のようにして、保護層が形成され、結果として、熱可塑性樹脂基材/偏光子/保護層の積層体を得ることができる。この積層体から熱可塑性樹脂基材を剥離することにより、図1および図2に示すような偏光子10と保護層20とを有する偏光板を得ることができる。このような偏光板の偏光子表面に位相差層40を形成することにより、位相差層付偏光板を得ることができる。あるいは、熱可塑性樹脂基材/偏光子の積層体の偏光子表面に位相差層を構成する樹脂フィルムを貼り合わせ、次いで熱可塑性樹脂基材を剥離し、当該剥離面に保護層を形成してもよい。この場合には、高い製造効率で位相差層付偏光板を得ることができる。なお、位相差層の形成については業界で周知の方法が採用されるので、詳細な説明は省略し、後述のC項で簡単に説明する。 A protective layer is formed as described above, and as a result, a laminate of a thermoplastic resin substrate/polarizer/protective layer can be obtained. By peeling the thermoplastic resin substrate from this laminate, a polarizing plate having the polarizer 10 and the protective layer 20 as shown in FIGS. 1 and 2 can be obtained. The retardation layer-attached polarizing plate can be obtained by forming the retardation layer 40 on the polarizer surface of such a polarizing plate. Alternatively, a resin film forming a retardation layer is attached to the surface of the polarizer of the thermoplastic resin substrate/polarizer laminate, and then the thermoplastic resin substrate is peeled off to form a protective layer on the peeled surface. Good. In this case, the polarizing plate with a retardation layer can be obtained with high production efficiency. Since a method well known in the industry is used for forming the retardation layer, detailed description thereof will be omitted, and a brief description will be given in Section C below.
C.位相差層
C-1.単一層で構成される位相差層
 位相差層が単一層で構成される場合、当該位相差層は、上記のとおり、Re(550)が例えば100nm~190nmであり、位相差層40の遅相軸と偏光子10の吸収軸とのなす角度が例えば40°~50°である。位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。位相差層は、上記のとおり、樹脂フィルムであってもよく液晶化合物の配向固化層であってもよい。
C. Retardation layer C-1. Retardation Layer Comprising a Single Layer When the retardation layer is composed of a single layer, Re(550) of the retardation layer is, for example, 100 nm to 190 nm as described above, and the retardation layer 40 has a slow phase. The angle between the axis and the absorption axis of the polarizer 10 is, for example, 40° to 50°. The retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and can function as a λ/4 plate in one embodiment. As described above, the retardation layer may be a resin film or an alignment solidified layer of a liquid crystal compound.
 位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。位相差層の面内位相差Re(550)は、上記のとおり例えば100nm~190nmであり、好ましくは110nm~170nmであり、より好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。 The retardation layer preferably has a refractive index characteristic of nx>ny≧nz. The in-plane retardation Re(550) of the retardation layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm, as described above. Here, “ny=nz” includes not only the case where ny and nz are completely equal but also the case where they are substantially equal. Therefore, ny<nz may be satisfied as long as the effect of the present invention is not impaired.
 位相差層のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9. ~1.3. By satisfying such a relationship, when the obtained polarizing plate with a retardation layer is used in an image display device, a very excellent reflective hue can be achieved.
 位相差層40の遅相軸と偏光子10の吸収軸とのなす角度θは、上記のとおり例えば40°~50°であり、好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。 The angle θ formed by the slow axis of the retardation layer 40 and the absorption axis of the polarizer 10 is, for example, 40° to 50°, preferably 42° to 48°, and more preferably about 45° as described above. Is. When the angle θ is in such a range, a polarizing plate with a retardation layer having very excellent circular polarization properties (as a result, very excellent antireflection properties) by using a λ/4 plate as the retardation layer. Plates can be obtained.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may well exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes even with the wavelength of the measurement light. In one embodiment, the retardation layer exhibits an inverse dispersion wavelength characteristic. In this case, Re(450)/Re(550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, it is possible to realize extremely excellent antireflection characteristics.
 位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。 Retardation layer, the absolute value of photoelastic coefficient of preferably 2 × 10 -11 m 2 / N or less, more preferably 2.0 × 10 -13 m 2 /N~1.5×10 -11 m 2 / N, more preferably includes a resin of 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N. When the absolute value of the photoelastic coefficient is in such a range, it is difficult for the phase difference to change when shrinkage stress occurs during heating. As a result, heat unevenness of the obtained image display device can be favorably prevented.
C-1-1.樹脂フィルム
 位相差層が樹脂フィルムである場合、当該樹脂フィルムは代表的には延伸フィルムである。この場合、位相差層の厚みは、好ましくは60μm以下であり、より好ましくは30μm~55μmである。位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。
C-1-1. Resin film When the retardation layer is a resin film, the resin film is typically a stretched film. In this case, the thickness of the retardation layer is preferably 60 μm or less, more preferably 30 μm to 55 μm. When the thickness of the retardation layer is in such a range, curling at the time of heating can be favorably suppressed and curl at the time of bonding can be favorably adjusted.
 位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて(例えば、ブレンド、共重合)用いてもよい。位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が好適に用いられ得る。 The retardation layer may be composed of any appropriate resin film that can satisfy the above characteristics. Typical examples of such resins include polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, polyamide resins. , A polyimide resin, a polyether resin, a polystyrene resin, and an acrylic resin. These resins may be used alone or in combination (for example, blending or copolymerization). When the retardation layer is composed of a resin film exhibiting reverse dispersion wavelength characteristics, a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) can be preferably used.
 上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート系樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、当該記載は本明細書に参考として援用される。 As the polycarbonate resin, any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained. For example, the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. A structural unit derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols. Preferably, the polycarbonate resin is a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol and/or di, tri or polyethylene glycol. And a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from a di-, tri-, or polyethylene glycol. .. The polycarbonate-based resin may include a structural unit derived from another dihydroxy compound, if necessary. The details of the polycarbonate-based resin that can be suitably used in the present invention are described in, for example, JP-A-2014-10291, 2014-26266, JP-A-2015-212816, and JP-A-2015-212817. , Japanese Patent Application Laid-Open No. 2015-212818, which description is incorporated herein by reference.
 前記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110° C. or higher and 150° C. or lower, and more preferably 120° C. or higher and 140° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to be poor, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is calculated according to JIS K 7121 (1987).
 前記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the polycarbonate resin can be represented by reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscosity tube at a temperature of 20.0° C.±0.1° C. by precisely adjusting the polycarbonate concentration to 0.6 g/dL using methylene chloride as a solvent. The lower limit of the reduced viscosity is usually preferably 0.30 dL/g, more preferably 0.35 dL/g or more. The upper limit of the reduced viscosity is usually preferably 1.20 dL/g, more preferably 1.00 dL/g, further preferably 0.80 dL/g. If the reduced viscosity is less than the lower limit, there may occur a problem that the mechanical strength of the molded product becomes small. On the other hand, when the reduced viscosity is higher than the upper limit value, the fluidity at the time of molding may be lowered, and the productivity and the moldability may be lowered.
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。 A commercially available film may be used as the polycarbonate resin film. Specific examples of commercially available products include Teijin's product names “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M”, and Nitto Denko's product name “NRF”. To be
 位相差層40は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。 The retardation layer 40 is obtained, for example, by stretching a film formed from the polycarbonate resin. Any appropriate molding method can be adopted as a method for forming a film from a polycarbonate resin. Specific examples include compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method, cast coating method (for example, casting method), calender molding method, heat press. Law etc. are mentioned. An extrusion molding method or a cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate-based resin are commercially available, the commercially available film may be directly subjected to the stretching treatment.
 樹脂フィルム(未延伸フィルム)の厚みは、位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the retardation layer, desired optical characteristics, stretching conditions described below, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。 For the above stretching, any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) can be adopted. Specifically, various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as the length direction, the width direction, the thickness direction, and the oblique direction. The stretching temperature is preferably Tg-30°C to Tg+60°C, more preferably Tg-10°C to Tg+50°C, with respect to the glass transition temperature (Tg) of the resin film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 By appropriately selecting the stretching method and stretching conditions, it is possible to obtain a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient).
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching or fixed-end uniaxially stretching a resin film. A specific example of the fixed-end uniaxial stretching is a method in which the resin film is stretched in the width direction (transverse direction) while running in the longitudinal direction. The stretching ratio is preferably 1.1 times to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光子の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film in the direction of the angle θ with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle θ (slow axis in the direction of angle θ) with respect to the longitudinal direction of the film can be obtained, and for example, when laminated with a polarizer. Roll-to-roll is possible, and the manufacturing process can be simplified. The angle θ may be an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer. The angle θ is, as described above, preferably 40° to 50°, more preferably 42° to 48°, and even more preferably about 45°.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 As a stretching machine used for oblique stretching, for example, a tenter type stretching machine capable of adding a feeding force or a pulling force or a pulling force at different speeds in the lateral and/or longitudinal directions can be mentioned. Examples of the tenter type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine. Any appropriate stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right speeds in the stretching machine, respectively, the retardation layer having the desired in-plane retardation and having a slow axis in the desired direction (substantially long Phase retardation film) can be obtained.
 上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film may vary depending on the desired in-plane retardation value and thickness of the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30°C to Tg+30°C, more preferably Tg-15°C to Tg+15°C, and most preferably Tg-10°C to Tg+10°C. By stretching at such a temperature, a retardation layer having suitable properties in the present invention can be obtained. In addition, Tg is a glass transition temperature of the constituent material of the film.
C-1-2.液晶化合物の配向固化層
 位相差層が液晶化合物の配向固化層である場合、液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
C-1-2. Alignment solidification layer of liquid crystal compound When the retardation layer is an alignment solidification layer of a liquid crystal compound, by using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer is remarkably larger than that of a non-liquid crystal material. Therefore, the thickness of the retardation layer for obtaining a desired in-plane retardation can be significantly reduced. As a result, it is possible to realize a thinner polarizing plate with a retardation layer. In the present specification, the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed. The “alignment solidified layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later. In this embodiment, typically, rod-shaped liquid crystal compounds are aligned in a state of being aligned in the slow axis direction of the retardation layer (homogeneous alignment).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 The liquid crystal compound includes, for example, a liquid crystal compound in which the liquid crystal phase is a nematic phase (nematic liquid crystal). As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The mechanism of the liquid crystallinity of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, by polymerizing or cross-linking the liquid crystal monomers, the alignment state can be fixed. Here, a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline. Therefore, in the formed retardation layer, for example, the transition to the liquid crystal phase, the glass phase, or the crystal phase due to the temperature change peculiar to the liquid crystal compound does not occur. As a result, the retardation layer becomes an extremely stable retardation layer which is not affected by temperature change.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity varies depending on its type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in JP-B-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4404081, and GB2280445 can be used. Specific examples of such a polymerizable mesogen compound include trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光子10の表面に転写され得る。別の実施形態においては、基材は別の保護層であり得る。この場合には転写工程が省略され、配向固化層(位相差層)の形成から連続してロールトゥロールにより積層が行われ得るので、生産性がさらに向上する。 The alignment-fixed layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined base material, and a coating liquid containing a liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the orientation state. In one embodiment, the substrate is any suitable resin film, and the alignment-fixed layer formed on the substrate can be transferred to the surface of the polarizer 10. In another embodiment, the substrate can be another protective layer. In this case, the transfer step is omitted, and the roll-to-roll lamination can be performed continuously from the formation of the alignment solidified layer (retardation layer), so that the productivity is further improved.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 Any appropriate orientation treatment can be adopted as the orientation treatment. Specifically, mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment are mentioned. Specific examples of the mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an oblique vapor deposition method and a photo-alignment treatment. Any appropriate conditions can be adopted as the processing conditions of various alignment processes depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 Alignment of the liquid crystal compound is performed by processing at a temperature at which the liquid crystal compound exhibits a liquid crystal phase. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is aligned according to the alignment treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 The fixing of the alignment state is performed by cooling the liquid crystal compound aligned as described above in one embodiment. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the alignment state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
 配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が位相差層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。 Another example of the alignment solidified layer is a form in which the discotic liquid crystal compound is aligned in any of vertical alignment, hybrid alignment and tilt alignment. In the discotic liquid crystal compound, typically, the disc surface of the discotic liquid crystal compound is aligned substantially perpendicular to the film surface of the retardation layer. When the discotic liquid crystal compound is substantially vertical, the average value of the angles formed by the film surface and the disc surface of the discotic liquid crystal compound is preferably 70° to 90°, more preferably 80° to 90°. , And more preferably 85° to 90°. The discotic liquid crystal compound generally has a cyclic mother nucleus such as benzene, 1,3,5-triazine, and calixarene arranged at the center of the molecule, and has a linear alkyl group, an alkoxy group or a substituted benzoyl group. It refers to a liquid crystal compound having a disk-shaped molecular structure in which an oxy group or the like is radially substituted as a side chain. Typical examples of discotic liquid crystals include C.I. Report of Destrade et al., Mol. Cryst. Liq. Cryst. 71, 111 (1981), benzene derivatives, triphenylene derivatives, truxene derivatives, phthalocyanine derivatives and B.I. Kohne et al., Angew. Chem. 96, p. 70 (1984), and cyclohexane derivatives described in J. M. Lehn et al., J. Chem. Soc. Chem. Commun. , 1794 (1985), J. Zhang et al., J. Am. Chem. Soc. 116, 2655 (1994) and azacrown-based and phenylacetylene-based macrocycles. Further specific examples of the discotic liquid crystal compound include compounds described in JP-A-2006-133652, JP-A-2007-108732, and JP-A-2010-244038. The descriptions in the above documents and publications are incorporated herein by reference.
 位相差層が液晶化合物の配向固化層である場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 When the retardation layer is an alignment-fixed layer of a liquid crystal compound, its thickness is preferably 0.5 μm to 7 μm, more preferably 1 μm to 5 μm. By using the liquid crystal compound, an in-plane retardation equivalent to that of the resin film can be realized with a thickness significantly smaller than that of the resin film.
C-1-3.別の位相差層
 上記のとおり、位相差層40が単一層で構成される場合には、好ましくは別の位相差層が設けられる。別の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。別の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、別の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、別の位相差層の面内位相差Re(550)は10nm未満であり得る。
C-1-3. Another retardation layer As described above, when the retardation layer 40 is composed of a single layer, another retardation layer is preferably provided. Another retardation layer may be a so-called positive C plate whose refractive index characteristic exhibits a relationship of nz>nx=ny, as described above. By using a positive C plate as another retardation layer, it is possible to favorably prevent reflection in an oblique direction, and it is possible to widen the viewing angle of the antireflection function. In this case, the retardation Rth(550) in the thickness direction of another retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, further preferably −90 nm to −200 nm, and particularly preferably − It is 100 nm to -180 nm. Here, “nx=ny” includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re(550) of another retardation layer may be less than 10 nm.
 nz>nx=nyの屈折率特性を有する別の位相差層は、任意の適切な材料で形成され得る。別の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および位相差層の形成方法が挙げられる。この場合、別の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 Another retardation layer having a refractive index characteristic of nz>nx=ny may be formed of any appropriate material. Another retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment. The liquid crystal material (liquid crystal compound) capable of homeotropic alignment may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method of forming the liquid crystal compound and the retardation layer include the methods of forming the liquid crystal compound and the retardation layer described in JP-A-2002-333642, [0020] to [0028]. In this case, the thickness of the other retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, and further preferably 0.5 μm to 5 μm.
C-2.2層構造の位相差層
 位相差層40が位相差層は第1層41と第2層42との積層構造を有する場合、第1層41および第2層42のいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。例えば、第1層41がλ/2板として機能し、第2層42がλ/4板として機能する場合、第1層の面内位相差Re(550)は、上記のとおり例えば200nm~300nmであり、好ましくは230nm~290nmであり、より好ましくは250nm~280nmである。第2層の面内位相差Re(550)は、上記のとおり例えば100nm~190nmであり、好ましくは110nm~170nmであり、より好ましくは130nm~160nmである。第1層の遅相軸と偏光子の吸収軸とのなす角度は、上記のとおり例えば10°~20°であり、好ましくは12°~18°であり、より好ましくは約15°である。第2層の遅相軸と偏光子の吸収軸とのなす角度は、上記のとおり例えば70°~80°であり、好ましくは72°~78°であり、より好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。
C-2.2 Retardation Layer of Two-Layer Structure When the retardation layer 40 has a laminated structure of a first layer 41 and a second layer 42, one of the first layer 41 and the second layer 42 Can function as a λ/4 plate, and the other can function as a λ/2 plate. For example, when the first layer 41 functions as a λ/2 plate and the second layer 42 functions as a λ/4 plate, the in-plane retardation Re(550) of the first layer is, for example, 200 nm to 300 nm as described above. Is preferably 230 nm to 290 nm, and more preferably 250 nm to 280 nm. The in-plane retardation Re(550) of the second layer is, for example, 100 nm to 190 nm, preferably 110 nm to 170 nm, and more preferably 130 nm to 160 nm, as described above. The angle formed by the slow axis of the first layer and the absorption axis of the polarizer is, for example, 10° to 20°, preferably 12° to 18°, and more preferably about 15°, as described above. The angle between the slow axis of the second layer and the absorption axis of the polarizer is, for example, 70° to 80°, preferably 72° to 78°, and more preferably about 75°, as described above. With such a configuration, it is possible to obtain a characteristic close to an ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize a very excellent antireflection characteristic.
 第1層41および第2層42は、一方が樹脂フィルムで他方が液晶化合物の配向固化層であってもよく、両方が樹脂フィルムであってもよく、両方が液晶化合物の配向固化層であってもよい。好ましくは、第1層41および第2層42は、両方が樹脂フィルムまたは液晶化合物の配向固化層である。 One of the first layer 41 and the second layer 42 may be a resin film and the other may be an alignment solidified layer of a liquid crystal compound, or both may be a resin film, and both may be alignment solidified layers of a liquid crystal compound. May be. Preferably, both the first layer 41 and the second layer 42 are resin films or alignment-solidified layers of a liquid crystal compound.
 第1層41および第2層42の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、第1層41がλ/2板として機能し、第2層42がλ/4板として機能し、かつ、第1層41および第2層42が樹脂フィルムである場合、第1層41の厚みは例えば40μm~75μmであり、第2層42の厚みは例えば30μm~55μmである。第1層41および第2層42が液晶化合物の配向固化層である場合、第1層41の厚みは例えば2.0μm~3.0μmであり、第2層42の厚みは例えば1.0μm~2.0μmである。 The thicknesses of the first layer 41 and the second layer 42 can be adjusted so as to obtain the desired in-plane retardation of the λ/4 plate or the λ/2 plate. For example, when the first layer 41 functions as a λ/2 plate, the second layer 42 functions as a λ/4 plate, and the first layer 41 and the second layer 42 are resin films, the first layer 41 Has a thickness of, for example, 40 μm to 75 μm, and the second layer 42 has a thickness of, for example, 30 μm to 55 μm. When the first layer 41 and the second layer 42 are alignment-fixed layers of a liquid crystal compound, the thickness of the first layer 41 is, for example, 2.0 μm to 3.0 μm, and the thickness of the second layer 42 is, for example, 1.0 μm to It is 2.0 μm.
 第1層および第2層を構成する樹脂フィルム、液晶化合物、第1層および第2層の形成方法、光学特性等については、単一層に関して上記で説明したとおりである。 The resin film forming the first layer and the second layer, the liquid crystal compound, the method for forming the first layer and the second layer, the optical characteristics, and the like are as described above for the single layer.
D.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
D. Conductive Layer or Isotropic Substrate with Conductive Layer The conductive layer is formed by any appropriate film formation method (eg, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It may be formed by depositing a metal oxide film thereon. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide. Among them, indium-tin composite oxide (ITO) is preferable.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層は、上記基材から位相差層に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として位相差層に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。 The conductive layer may be transferred from the above-mentioned base material to the retardation layer to form the polarizing plate with the retardation layer by itself as the constituent layer of the polarizing plate. It may be laminated in layers. Preferably, the above-mentioned substrate is optically isotropic, and therefore the conductive layer can be used as the isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みの下限は、例えば20μmである。 As the optically isotropic substrate (isotropic substrate), any suitable isotropic substrate can be adopted. Examples of the material forming the isotropic base material include, for example, a material having a resin having no conjugated system such as norbornene-based resin or olefin-based resin as a main skeleton, and a cyclic structure such as a lactone ring or a glutarimide ring of acrylic resin Materials included in the main chain are included. When such a material is used, it is possible to suppress the development of retardation due to the orientation of the molecular chains when the isotropic substrate is formed. The thickness of the isotropic substrate is preferably 50 μm or less, more preferably 35 μm or less. The lower limit of the thickness of the isotropic substrate is, for example, 20 μm.
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer and/or the conductive layer of the isotropic substrate with the conductive layer may be patterned as required. By patterning, conductive parts and insulating parts can be formed. As a result, electrodes can be formed. The electrodes may function as touch sensor electrodes that sense a touch on the touch panel. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The measuring method of each characteristic is as follows. In the examples, “parts” and “%” are based on weight unless otherwise specified.
(1)ガラス転移温度Tg
 実施例および比較例で用いた保護層を構成する材料を所定の溶媒に溶解した溶液を、アプリケーターにより基材(PETフィルム)に塗布し、60℃で乾燥して塗膜(厚み40μm)を形成した。得られた塗膜を基材から剥離し、短冊状に切り出して測定試料とした。当該測定試料をDMA測定に供し、Tgを測定した。測定装置および測定条件は以下のとおりであった。
(測定装置)
 SIIナノテクノロジー社製、「DMS6100」
(測定条件)
 ・測定温度範囲 :-80℃~150℃
 ・昇降温速度  :2℃/分
 ・測定試料幅  :10mm
 ・チャック間距離:20mm
 ・測定周波数  :1Hz
 ・歪振幅    :10μm
 ・測定雰囲気  :N(250mL/分)
(2)ヨウ素吸着量
 実施例および比較例で用いた保護層を構成する材料を所定の溶媒に溶解した溶液を、アプリケーターにより基材(PETフィルム)に塗布し、60℃で乾燥して塗膜(厚み40μm)を形成した。得られた塗膜を基材から剥離し、1cm×1cm(1cm)に切り出して測定試料とした。当該測定試料を燃焼IC法に供し、試料中のヨウ素量を定量分析した。具体的には以下のとおりである。測定試料をヘッドスペースバイアル(20mL容量)に採取および秤量した。次に、ヨウ素溶液(ヨウ素濃度1重量%、ヨウ化カリウム濃度7重量%)1mLを入れたバイアル瓶(2mL容量)を、このヘッドスペースバイアルに入れ、密栓した。その後、このヘッドスペースバイアルを乾燥機で65℃・6時間加熱し、加熱後の試料をセラミックポートに採取して自動燃焼装置を用いて燃焼させ、発生したガスを吸収液に捕集後、定量分析を行い、吸着されたヨウ素の重量%を求めた。なお、使用した装置は以下のとおりであった。
 ・自動試料燃焼装置:三菱化学アナリティック社製、「AQF-2100H」
 ・IC(アニオン):Thermo Fisher Scientific社製、「ICS-3000」
(3)色抜け
 実施例および比較例で得られた位相差層付偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとし、当該試験サンプルを85℃および85%RHのオーブン内で48時間放置して加熱加湿し、標準偏光板とクロスニコルの状態に配置した時の、加湿後の位相差層付偏光板の色抜け状態を目視により調べ、以下の基準で評価した。
   問題なし:色抜けは認められなかった
   一部抜け:端部において色抜けが認められた
   全抜け :偏光板全体にわたって色抜けが顕著であった
(4)単体透過率および偏光度
 実施例および比較例で得られた位相差層付偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとし、当該試験サンプルについて、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて、単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)を測定し、偏光度(P)を次式により求めた。この時、測定光は保護層側より入射させた。
   偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。
 次に、位相差層付偏光板を85℃および85%RHのオーブン内で48時間放置して加熱加湿し(加熱試験)、加熱試験前の単体透過率Tsおよび加熱試験後の単体透過率Ts48から、下記式を用いて単体透過率変化量ΔTsを求めた。
    ΔTs(%)=Ts48-Ts
同様に、加熱試験前の偏光度Pおよび加熱試験後の偏光度P48から、下記式を用いて偏光度変化量ΔPを求めた。
    ΔP(%)=P48-P
なお、加熱試験は、上記の色抜けの場合と同様にして試験サンプルを作製して行った。
(5)正面反射率
 実施例および比較例で得られた位相差層付偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。保護層が外側となるようにして粘着剤で試験片を無アルカリガラス板に貼り合わせ試験サンプルとした。この試験サンプルを、85℃、85%RHで48時間の加湿試験に供した。反射板(東レフィルム社製、商品名「DMS-X42」;反射率86%)の上に、上記加湿試験後の試験サンプルを、ガラスと反射板が対向するように (すなわち保護層が外側になるように) 配置した。続いて、分光測色計(コニカミノルタ製のCM-2600d)を用いて、SCI方式で正面反射率を測定した。
(1) Glass transition temperature Tg
A solution prepared by dissolving the material constituting the protective layer used in Examples and Comparative Examples in a predetermined solvent is applied to a substrate (PET film) by an applicator and dried at 60°C to form a coating film (thickness 40 µm). did. The obtained coating film was peeled from the base material and cut into strips to obtain a measurement sample. The measurement sample was subjected to DMA measurement to measure Tg. The measuring device and measuring conditions were as follows.
(measuring device)
"DMS6100" manufactured by SII Nano Technology Co., Ltd.
(Measurement condition)
・Measurement temperature range: -80℃ to 150℃
・Raising and lowering temperature: 2℃/min ・Measurement sample width: 10mm
・Distance between chucks: 20 mm
・Measurement frequency: 1 Hz
・Strain amplitude: 10 μm
・Measurement atmosphere: N 2 (250 mL/min)
(2) Iodine adsorption amount A solution prepared by dissolving the material constituting the protective layer used in Examples and Comparative Examples in a predetermined solvent was applied to a substrate (PET film) by an applicator and dried at 60°C to form a coating film. (Thickness 40 μm) was formed. The obtained coating film was peeled from the substrate and cut into 1 cm×1 cm (1 cm 2 ) to obtain a measurement sample. The measurement sample was subjected to the combustion IC method, and the amount of iodine in the sample was quantitatively analyzed. Specifically, it is as follows. The measurement sample was collected and weighed in a headspace vial (20 mL capacity). Next, a vial (2 mL capacity) containing 1 mL of an iodine solution (iodine concentration 1% by weight, potassium iodide concentration 7% by weight) was placed in this headspace vial and sealed. Then, this headspace vial is heated in a dryer at 65°C for 6 hours, and a sample after heating is collected in a ceramic port and burned using an automatic combustion device, and the generated gas is collected in an absorption liquid and then quantified. Analysis was performed to determine the weight percent of adsorbed iodine. The equipment used was as follows.
・Automatic sample combustor: "AQF-2100H" manufactured by Mitsubishi Chemical Analytical Co., Ltd.
IC (anion): "ICS-3000" manufactured by Thermo Fisher Scientific
(3) Color Loss From the polarizing plate with a retardation layer obtained in Examples and Comparative Examples, a test piece (50 mm×50 mm) having two sides facing in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction respectively. ) Was cut out. The test piece is attached to a non-alkali glass plate with an adhesive so that the protective layer is on the outside to give a test sample, and the test sample is left to stand in an oven at 85° C. and 85% RH for 48 hours to be heated and humidified. The discolored state of the polarizing plate with a retardation layer after humidification when arranged in a crossed Nicol state with the polarizing plate was visually inspected and evaluated according to the following criteria.
No problem: No color loss was observed Partial loss: Color loss was observed at the edges Total loss: Color loss was noticeable over the entire polarizing plate (4) Single transmittance and degree of polarization Example and comparison From the polarizing plate with a retardation layer obtained in the example, a test piece (50 mm×50 mm) having two sides facing each other in the direction orthogonal to the absorption axis direction of the polarizer and the absorption axis direction was cut out. A test piece is attached to an alkali-free glass plate with an adhesive so that the protective layer is on the outside to form a test sample, and an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100") is used for the test sample. Then, the simple substance transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) were measured, and the polarization degree (P) was calculated by the following equation. At this time, the measurement light was made incident from the protective layer side.
Polarization degree (P)(%)={(Tp-Tc)/(Tp+Tc)} 1/2 ×100
The above Ts, Tp, and Tc are Y values measured by a 2 degree visual field (C light source) of JIS Z 8701 and subjected to luminosity correction. Further, Ts and P are substantially characteristics of the polarizer.
Next, the polarizing plate with a retardation layer was left to stand in an oven at 85° C. and 85% RH for 48 hours to be heated and humidified (heating test), and a single transmittance Ts 0 before the heating test and a single transmittance after the heating test. From Ts 48 , the simple substance transmittance change amount ΔTs was calculated using the following formula.
ΔTs (%)=Ts 48 −Ts 0
Similarly, the polarization degree change amount ΔP was determined from the polarization degree P 0 before the heating test and the polarization degree P 48 after the heating test using the following formula.
ΔP(%)=P 48 −P 0
The heating test was conducted by preparing a test sample in the same manner as in the case of color loss.
(5) Frontal reflectance From the polarizing plate with a retardation layer obtained in each of the examples and comparative examples, a test piece (50 mm × 50 mm) having a direction orthogonal to the absorption axis direction of the polarizer and two sides facing the absorption axis direction, respectively. 50 mm) was cut out. The test piece was attached to a non-alkali glass plate with an adhesive so that the protective layer was on the outer side to obtain a test sample. This test sample was subjected to a humidity test at 85° C. and 85% RH for 48 hours. The test sample after the above humidification test was placed on a reflection plate (trade name “DMS-X42” manufactured by Toray Film Co., Ltd.; reflectance of 86%) so that the glass and the reflection plate face each other (that is, the protective layer is on the outside). It was arranged). Then, the spectrocolorimeter (CM-2600d manufactured by Konica Minolta) was used to measure the front reflectance by the SCI method.
<実施例1>
1.偏光子/樹脂基材の積層体の作製
 樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が41.5%±0.1%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成し、偏光子/樹脂基材の積層体を作製した。偏光子の単体透過率(初期単体透過率)Tsは41.5であり、偏光度(初期偏光度)Pは99.996%であった。
<Example 1>
1. Production of Laminate of Polarizer/Resin Base Material Amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a long shape, a water absorption rate of 0.75% and a Tg of about 75° C. as a resin base material. Was used. Corona treatment was applied to one side of the resin substrate.
Polyvinyl alcohol (polymerization degree: 4200, saponification degree: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosephimmer Z410") in a ratio of 9:1 100 weight of PVA-based resin To 13 parts by weight, 13 parts by weight of potassium iodide was added to prepare a PVA aqueous solution (coating solution).
The PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, and a laminate was prepared.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) having a liquid temperature of 40° C. for 30 seconds (insolubilization treatment).
Then, a dyeing bath having a liquid temperature of 30° C. (an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 with respect to 100 parts by weight of water) was used to prepare the finally obtained polarizer. Immersion was performed for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 41.5%±0.1% (dyeing treatment).
Then, it was immersed for 30 seconds in a crosslinking bath at a liquid temperature of 40° C. (an aqueous boric acid solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with 100 parts by weight of water). (Crosslinking treatment).
Then, while the laminated body was immersed in a boric acid aqueous solution (boric acid concentration 4.0% by weight) having a liquid temperature of 70° C., the total draw ratio was 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so as to double the length (underwater stretching treatment).
After that, the laminate was immersed in a cleaning bath having a liquid temperature of 20° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while being dried in an oven kept at 90° C., it was contacted with a heating roll made of SUS whose surface temperature was kept at 75° C. for about 2 seconds (dry shrinkage treatment). The shrinkage ratio in the width direction of the laminate due to the dry shrinkage treatment was 5.2%.
In this way, a polarizer having a thickness of 5 μm was formed on the resin base material to prepare a polarizer/resin base material laminate. The single transmittance (initial single transmittance) Ts 0 of the polarizer was 41.5, and the polarization degree (initial polarization degree) P 0 was 99.996%.
2.位相差層を構成する位相差フィルムの作製
2-1.ポリエステルカーボネート系樹脂の重合
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
2. Preparation of retardation film constituting retardation layer 2-1. Polymerization of Polyester Carbonate Resin Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled to 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by mass (0.298 mol), and calcium acetate monohydrate as a catalyst 1.19×10-2 parts by mass (6.78×10−). 5 mol) was charged. After replacing the inside of the reactor with nitrogen under reduced pressure, heating was performed with a heating medium, and stirring was started when the internal temperature reached 100°C. After 40 minutes from the start of temperature increase, the internal temperature was made to reach 220° C., the temperature was controlled so as to be kept at the same time, and the depressurization was started at the same time. Phenol vapor produced as a by-product with the polymerization reaction was introduced into a reflux condenser at 100° C., a monomer component slightly contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was introduced into a condenser at 45° C. and recovered. After introducing nitrogen into the first reactor to once restore the pressure to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Then, the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until a predetermined stirring power was obtained. When the predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
2-2.位相差フィルムの作製
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度133℃、延伸倍率2.8倍で延伸し、厚み48μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.82であり、Nz係数は1.12であった。
2-2. Preparation of Retardation Film The obtained polyester carbonate resin (pellet) was vacuum dried at 80° C. for 5 hours, and then a single screw extruder (Toshiba Machine Co., Ltd., cylinder setting temperature: 250° C.), T die (width 200 mm). , Set temperature: 250° C.), a chill roll (set temperature: 120 to 130° C.) and a film forming apparatus equipped with a winder were used to produce a long resin film having a thickness of 135 μm. The obtained long resin film was stretched in the width direction at a stretching temperature of 133° C. and a stretching ratio of 2.8 times to obtain a retardation film having a thickness of 48 μm. The Re(550) of the obtained retardation film was 141 nm, Re(450)/Re(550) was 0.82, and the Nz coefficient was 1.12.
3.位相差層付偏光板の作製
 上記1.で得られた積層体の偏光子表面に、上記3.で得られた位相差フィルムを、アクリル系粘着剤(厚み5μm)を介して貼り合わせた。このとき、偏光子の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。樹脂基材を剥離して位相差層/偏光子の構成を有する位相差層付偏光板を得た。
3. Preparation of Polarizing Plate with Retardation Layer 1. On the surface of the polarizer of the laminate obtained in step 3, above. The retardation film obtained in (1) was attached via an acrylic pressure-sensitive adhesive (thickness 5 μm). At this time, they were laminated so that the absorption axis of the polarizer and the slow axis of the retardation film formed an angle of 45°. The resin base material was peeled off to obtain a retardation layer-attached polarizing plate having a constitution of retardation layer/polarizer.
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂(ラクトン環単位30モル%)20部をメチルエチルケトン80部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、上記で得られた偏光板の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは3μmであり、Tgは119℃であり、ヨウ素吸着量は0.25重量%であった。このようにして、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を上記(3)~(5)の評価に供した。さらに、保護層形成後の収縮の有無を目視により観察した。結果を表1に示す。 20 parts of an acrylic resin (30 mol% of lactone ring unit), which is polymethylmethacrylate having a lactone ring unit, was dissolved in 80 parts of methyl ethyl ketone to obtain an acrylic resin solution (20%). This acrylic resin solution is applied to the surface of the polarizer of the polarizing plate obtained above using a wire bar, the coating film is dried at 60° C. for 5 minutes, and the protective layer is formed as a solidified product of the coating film. Formed. The protective layer had a thickness of 3 μm, a Tg of 119° C., and an iodine adsorption amount of 0.25% by weight. In this way, a polarizing plate with a retardation layer having a constitution of protective layer (solidified product of coating film)/polarizer/retardation layer was obtained. The obtained polarizing plate with a retardation layer was subjected to the above evaluations (3) to (5). Furthermore, the presence or absence of shrinkage after forming the protective layer was visually observed. The results are shown in Table 1.
<実施例2>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりに無水マレイン酸単位を有するポリメチルメタクリレートであるアクリル系樹脂(無水マレイン酸単位7モル%)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは115℃であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 2>
Same as Example 1 except that an acrylic resin (maleic anhydride unit: 7 mol %), which is a polymethylmethacrylate having a maleic anhydride unit, is used in place of the acrylic resin, which is a polymethylmethacrylate having a lactone ring unit. To form a protective layer. The protective layer had a thickness of 3 μm and a Tg of 115° C. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<実施例3>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりに100%ポリメチルメタクリレートであるアクリル系樹脂(楠本化成社製、製品名「B-728」)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは116℃であり、ヨウ素吸着量は0.34重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 3>
Example 1 except that 100% polymethylmethacrylate acrylic resin (Kusumoto Kasei Co., product name "B-728") was used instead of polymethylmethacrylate acrylic resin having lactone ring unit. A protective layer was formed in the same manner. The protective layer had a thickness of 3 μm, a Tg of 116° C., and an iodine adsorption amount of 0.34% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<実施例4>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりにグルタルイミド環単位を有するポリメチルメタクリレートであるアクリル系樹脂(グルタルイミド環単位4モル%)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは103℃であり、ヨウ素吸着量は2.3重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 4>
Same as Example 1 except that an acrylic resin that is a polymethylmethacrylate having a glutarimide ring unit (4 mol% of a glutarimide ring unit) is used instead of an acrylic resin that is a polymethylmethacrylate having a lactone ring unit. To form a protective layer. The thickness of the protective layer was 3 μm, the Tg was 103° C., and the iodine adsorption amount was 2.3% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<実施例5>
 ラクトン環単位を有する異なるポリメチルメタクリレートであるアクリル系樹脂(ラクトン環単位20モル%)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは104℃であり、ヨウ素吸着量は2.8重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 5>
A protective layer was formed in the same manner as in Example 1 except that an acrylic resin (lactone ring unit: 20 mol%), which was a different polymethylmethacrylate having a lactone ring unit, was used. The protective layer had a thickness of 3 μm, a Tg of 104° C., and an iodine adsorption amount of 2.8% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<実施例6>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりにメチルメタクリレート/ブチルメタクリレート(モル比80/20)の共重合体であるアクリル系樹脂を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは95℃であり、ヨウ素吸着量は3.8重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 6>
In the same manner as in Example 1 except that an acrylic resin which is a copolymer of methyl methacrylate/butyl methacrylate (molar ratio 80/20) was used in place of the acrylic resin which was polymethylmethacrylate having a lactone ring unit. A protective layer was formed. The thickness of the protective layer was 3 μm, Tg was 95° C., and the iodine adsorption amount was 3.8% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<実施例7>
1.偏光子/樹脂基材の積層体の作製
 実施例1と同様にして偏光子/樹脂基材の積層体を作製した。
<Example 7>
1. Preparation of Polarizer/Resin Base Material Laminate A polarizer/resin base material laminate was prepared in the same manner as in Example 1.
2.位相差層を構成する第1の配向固化層および第2の配向固化層の作製
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000005
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率特性を示した。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率特性を示した。
2. Preparation of First Alignment Solidification Layer and Second Alignment Solidification Layer Constituting Retardation Layer 10 g of a polymerizable liquid crystal showing a nematic liquid crystal phase (manufactured by BASF: trade name “Paliocolor LC242”, represented by the following formula) A liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a photopolymerization initiator (manufactured by BASF: trade name “Irgacure 907”) for the polymerizable liquid crystal compound in 40 g of toluene.
Figure JPOXMLDOC01-appb-C000005
The surface of the polyethylene terephthalate (PET) film (thickness: 38 μm) was rubbed with a rubbing cloth for orientation treatment. The direction of the orientation treatment was set to be 15° with respect to the direction of the absorption axis of the polarizer when it was attached to the polarizing plate, as viewed from the viewing side. The liquid crystal coating liquid was applied to the surface of this alignment treatment with a bar coater, and the liquid crystal compound was aligned by heating and drying at 90° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ/cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment solidified layer A on the PET film. The thickness of the liquid crystal alignment fixed layer A was 2.5 μm, and the in-plane retardation Re(550) was 270 nm. Furthermore, the liquid crystal alignment fixed layer A showed the refractive index characteristic of nx>ny=nz.
On the PET film in the same manner as above, except that the coating thickness was changed and the alignment treatment direction was set to be the direction of 75° with respect to the absorption axis direction of the polarizer when viewed from the viewing side. A liquid crystal alignment fixed layer B was formed. The thickness of the liquid crystal alignment fixed layer B was 1.5 μm, and the in-plane retardation Re(550) was 140 nm. Furthermore, the liquid crystal alignment fixed layer B showed the refractive index characteristic of nx>ny=nz.
3.位相差層付偏光板の作製
 上記1.で得られた偏光子/樹脂基材の積層体の偏光子表面に、上記2.で得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。続いて、補強のために粘着剤付き基材を配向固化層Bの表面に貼り合わせた。続いて、樹脂基材を剥離し、偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)/粘着剤付き基材の構成を有する位相差層付偏光板を得た。
3. Preparation of Polarizing Plate with Retardation Layer 1. On the surface of the polarizer of the laminate of the polarizer/resin base material obtained in step 2, The liquid crystal alignment solidified layer A and the liquid crystal alignment solidified layer B obtained in 1. were transferred in this order. At this time, the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer A is 15°, and the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer B is 75°. Transfer (bonding) was performed. Each transfer (bonding) was performed via an ultraviolet curable adhesive (thickness 1.0 μm). Subsequently, a base material with an adhesive was attached to the surface of the orientation solidified layer B for reinforcement. Subsequently, the resin base material is peeled off, and a retardation layer having a constitution of polarizer/adhesive layer/retardation layer (first orientation solidified layer/adhesion layer/second orientation solidified layer)/adhesive-attached substrate An attached polarizing plate was obtained.
 次いで、実施例3と同様にして、位相差層付偏光板の偏光子表面に保護層を形成した。最後に、粘着剤層付き基材を剥離し、保護層(塗布膜の固化物)/偏光子/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。 Next, in the same manner as in Example 3, a protective layer was formed on the polarizer surface of the polarizing plate with a retardation layer. Finally, the substrate with the pressure-sensitive adhesive layer was peeled off to obtain a polarizing plate with a retardation layer having a structure of protective layer (solidified product of coating film)/polarizer/retardation layer. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<比較例1>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりにメチルメタクリレート/エチルアクリレート(モル比55/45)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-722」)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは39℃であり、ヨウ素吸着量は1.7重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を色抜けの評価に供したところ不良(「全抜け」)であったので、単体透過率および偏光度の評価は行わなかった。結果を表1に示す。
<Comparative Example 1>
Instead of acrylic resin which is polymethylmethacrylate having lactone ring unit, acrylic resin which is a copolymer of methylmethacrylate/ethylacrylate (molar ratio 55/45) (Kusumoto Kasei Co., product name "B-722" A protective layer was formed in the same manner as in Example 1 except that (4) was used. The protective layer had a thickness of 3 μm, a Tg of 39° C., and an iodine adsorption amount of 1.7% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
<比較例2>
 ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂の代わりにメチルメタクリレート/ブチルメタクリレート(モル比35/65)の共重合体であるアクリル系樹脂(楠本化成社製、製品名「B-734」)を用いたこと以外は実施例1と同様にして保護層を形成した。保護層の厚みは3μmであり、Tgは71℃であり、ヨウ素吸着量は12重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を色抜けの評価に供したところ不良(「全抜け」)であったので、単体透過率および偏光度の評価は行わなかった。結果を表1に示す。
<Comparative example 2>
Instead of the acrylic resin which is polymethylmethacrylate having a lactone ring unit, an acrylic resin which is a copolymer of methylmethacrylate/butylmethacrylate (molar ratio 35/65) (Kusumoto Kasei Co., product name "B-734") A protective layer was formed in the same manner as in Example 1 except that (4) was used. The protective layer had a thickness of 3 μm, a Tg of 71° C., and an iodine adsorption amount of 12% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
<比較例3>
 紫外線硬化型アクリル系樹脂(共栄社化学製、製品名「ライトアクリレートHPP-A」、ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物)を用いたこと以外は実施例1と同様にして保護層(硬化物)を形成した。具体的には、当該アクリル系樹脂97重量%および光重合開始剤(イルガキュア907、BASF社製)3重量%を配合した組成物を偏光子上に塗布し、窒素雰囲気下で高圧水銀ランプを用いて積算光量300mJ/cmで紫外線を照射し、硬化層(保護層)を形成した。保護層の厚みは3μmであり、Tgは83℃であり、ヨウ素吸着量は6.6重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 3>
A protective layer (cured product) was prepared in the same manner as in Example 1 except that an ultraviolet curable acrylic resin (manufactured by Kyoeisha Chemical Co., Ltd., product name “Light acrylate HPP-A”, hydroxypivalate neopentyl glycol acrylic acid adduct) was used. ) Was formed. Specifically, a composition containing 97% by weight of the acrylic resin and 3% by weight of a photopolymerization initiator (Irgacure 907, manufactured by BASF) is coated on a polarizer, and a high pressure mercury lamp is used in a nitrogen atmosphere. Then, ultraviolet rays were irradiated at an integrated light amount of 300 mJ/cm 2 to form a cured layer (protective layer). The protective layer had a thickness of 3 μm, a Tg of 83° C., and an iodine adsorption amount of 6.6% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<比較例4>
 紫外線硬化型アクリル系樹脂(東亜合成社製、製品名「アロニックスM-402」、ジペンタエリスリトールペンタおよびヘキサアクリレート(ペンタアクリレートが30%~40%))を用いたこと以外は実施例1と同様にして保護層(硬化物)を形成した。保護層の形成方法は比較例3と同様であった。保護層の厚みは3μmであった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 4>
Same as Example 1 except that UV curable acrylic resin (manufactured by Toagosei Co., Ltd., product name “Aronix M-402”, dipentaerythritol penta and hexaacrylate (pentaacrylate 30% to 40%)) was used. To form a protective layer (cured product). The method for forming the protective layer was the same as in Comparative Example 3. The thickness of the protective layer was 3 μm. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<比較例5>
 紫外線硬化型エポキシ系樹脂(ダイセル社製、製品名「セロキサイド2021P」)を用いたこと以外は実施例1と同様にして保護層(硬化物)を形成した。具体的には、当該エポキシ系樹脂95重量%および光重合開始剤(CPI-100P、サンアプロ社製)5重量%を配合した組成物を偏光子上に塗布し、空気雰囲気下で高圧水銀ランプを用いて積算光量500mJ/cmで紫外線を照射し、硬化層(保護層)を形成した。保護層の厚みは3μmであり、Tgは95℃であり、ヨウ素吸着量は9重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 5>
A protective layer (cured product) was formed in the same manner as in Example 1 except that an ultraviolet curable epoxy resin (manufactured by Daicel, product name “Ceroxide 2021P”) was used. Specifically, a composition containing 95% by weight of the epoxy resin and 5% by weight of a photopolymerization initiator (CPI-100P, manufactured by San-Apro Co., Ltd.) is applied onto a polarizer, and a high pressure mercury lamp is applied in an air atmosphere. It was irradiated with ultraviolet rays at an integrated light amount of 500 mJ/cm 2 to form a cured layer (protective layer). The protective layer had a thickness of 3 μm, a Tg of 95° C., and an iodine adsorption amount of 9% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 1. The results are shown in Table 1.
<比較例6>
 水系ポリエステル系樹脂(日本合成化学社製、製品名「ポリエスターWR905」)を用いたこと以外は実施例1と同様にして保護層(塗布膜の固化物)を形成した。保護層の厚みは3μmであり、ヨウ素吸着量は12重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を色抜けの評価に供したところ不良(「全抜け」)であったので、単体透過率および偏光度の評価は行わなかった。結果を表1に示す。
<Comparative example 6>
A protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyester resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Polyester WR905") was used. The thickness of the protective layer was 3 μm, and the iodine adsorption amount was 12% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
<比較例7>
 水系ポリウレタン系樹脂(第一工業製薬社製、製品名「スーパーフレックスSF210」)を用いたこと以外は実施例1と同様にして保護層(塗布膜の固化物)を形成した。保護層の厚みは3μmであり、Tgは107℃であり、ヨウ素吸着量は19重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を色抜けの評価に供したところ不良(「全抜け」)であったので、単体透過率および偏光度の評価は行わなかった。結果を表1に示す。
<Comparative Example 7>
A protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyurethane resin (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Superflex SF210") was used. The thickness of the protective layer was 3 μm, the Tg was 107° C., and the iodine adsorption amount was 19% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
<比較例8>
 水系ポリウレタン系樹脂(ユニチカ社製、製品名「アローベースSE1200」)を用いたこと以外は実施例1と同様にして保護層(塗布膜の固化物)を形成した。保護層の厚みは3μmであり、ヨウ素吸着量は15重量%であった。この保護層を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を色抜けの評価に供したところ不良(「全抜け」)であったので、単体透過率および偏光度の評価は行わなかった。結果を表1に示す。
<Comparative Example 8>
A protective layer (solidified product of the coating film) was formed in the same manner as in Example 1 except that an aqueous polyurethane resin (manufactured by Unitika Ltd., product name “Arrow Base SE1200”) was used. The thickness of the protective layer was 3 μm, and the iodine adsorption amount was 15% by weight. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this protective layer was used. When the obtained polarizing plate with a retardation layer was subjected to the evaluation of color loss, it was found to be defective (“total loss”). Therefore, the single-element transmittance and the degree of polarization were not evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<評価>
 表1から明らかなように、本発明の実施例の位相差層付偏光板は、非常に薄いにもかかわらず、加熱加湿環境下においても光学特性の低下が抑制され、耐久性に優れているとともに、保護層形成後の収縮が起こらず、実用に耐え得る位相差層付偏光板である。さらに、本発明の実施例の位相差層付偏光板は、加湿試験後の正面反射率が非常に小さく、良好な反射防止特性を示した。これは、例えば有機EL表示装置のような金属層を有する画像表示装置に適用した場合に当該金属層による外光の映り込みを防止する効果があることを示している。
<Evaluation>
As is clear from Table 1, the polarizing plate with retardation layer of the example of the present invention is excellent in durability even though it is very thin, even though it is heated and humidified. At the same time, it is a polarizing plate with a retardation layer that does not shrink after the formation of the protective layer and can be practically used. Furthermore, the polarizing plate with a retardation layer of the example of the present invention had a very small front reflectance after a humidification test, and showed good antireflection characteristics. This indicates that when applied to an image display device having a metal layer such as an organic EL display device, it has an effect of preventing reflection of external light by the metal layer.
 本発明の位相差層付偏光板は、画像表示装置に好適に用いられる。画像表示装置としては、例えば、携帯情報端末(PDA)、スマートフォン、携帯電話、時計、デジタルカメラ、携帯ゲーム機などの携帯機器;パソコンモニター,ノートパソコン,コピー機などのOA機器;ビデオカメラ、テレビ、電子レンジなどの家庭用電気機器;バックモニター、カーナビゲーションシステム用モニター、カーオーディオなどの車載用機器;デジタルサイネージ、商業店舗用インフォメーション用モニターなどの展示機器;監視用モニターなどの警備機器;介護用モニター、医療用モニターなどの介護・医療機器;が挙げられる。 The polarizing plate with a retardation layer of the present invention is suitably used for an image display device. Examples of the image display device include portable devices such as personal digital assistants (PDAs), smartphones, mobile phones, watches, digital cameras, and portable game consoles; office automation devices such as personal computer monitors, notebook computers, and copy machines; video cameras, televisions. , Household electric appliances such as microwave ovens; back monitors, car navigation system monitors, car audio and other in-vehicle equipment; digital signage, commercial store information monitors and other display equipment; surveillance monitors and other security equipment; nursing care Nursing care/medical devices such as medical monitors and medical monitors.
 10   偏光子
 20   保護層
 40   位相差層
 41   第1層
 42   第2層
100   偏光板
10 Polarizer 20 Protective Layer 40 Retardation Layer 41 First Layer 42 Second Layer 100 Polarizing Plate

Claims (11)

  1.  偏光子と該偏光子の一方の側に配置された保護層とを含む偏光板と、該偏光板の該保護層と反対側に配置された位相差層と、を有し、
     該保護層が、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該保護層のガラス転移温度が95℃以上である、
     位相差層付偏光板。
    A polarizing plate including a polarizer and a protective layer disposed on one side of the polarizer, and a retardation layer disposed on the opposite side of the polarizing layer to the protective layer,
    The protective layer is composed of a solidified product of a coating film of an organic solvent solution of a thermoplastic acrylic resin, and the glass transition temperature of the protective layer is 95° C. or higher.
    Polarizing plate with retardation layer.
  2.  前記位相差層が単一層であり、
     該位相差層のRe(550)が100nm~190nmであり、
     該位相差層の遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、
     請求項1に記載の位相差層付偏光板。
    The retardation layer is a single layer,
    Re(550) of the retardation layer is 100 nm to 190 nm,
    The angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is 40° to 50°,
    The polarizing plate with a retardation layer according to claim 1.
  3.  前記位相差層が樹脂フィルムである、請求項2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 2, wherein the retardation layer is a resin film.
  4.  前記位相差層が液晶化合物の配向固化層である、請求項2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 2, wherein the retardation layer is an alignment-solidified layer of a liquid crystal compound.
  5.  前記位相差層が、第1層と第2層との積層構造を有し、
     該第1層のRe(550)が200nm~300nmであり、その遅相軸と前記偏光子の吸収軸とのなす角度が10°~20°であり、
     該第2層のRe(550)が100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度が70°~80°である、
     請求項1に記載の位相差層付偏光板。
    The retardation layer has a laminated structure of a first layer and a second layer,
    Re(550) of the first layer is 200 nm to 300 nm, and an angle formed by the slow axis thereof and the absorption axis of the polarizer is 10° to 20°,
    Re(550) of the second layer is 100 nm to 190 nm, and an angle formed by the slow axis thereof and the absorption axis of the polarizer is 70° to 80°.
    The polarizing plate with a retardation layer according to claim 1.
  6.  前記第1層および第2層が、それぞれ樹脂フィルムである、請求項5に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 5, wherein each of the first layer and the second layer is a resin film.
  7.  前記第1層および第2層が、それぞれ液晶化合物の配向固化層である、請求項5に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 5, wherein each of the first layer and the second layer is an alignment-fixed layer of a liquid crystal compound.
  8.  前記保護層の厚みが10μm以下である、請求項1から7のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the protective layer has a thickness of 10 μm or less.
  9.  前記保護層のヨウ素吸着量が4.0重量%以下である、請求項1から8のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 8, wherein the protective layer has an iodine adsorption amount of 4.0% by weight or less.
  10.  前記熱可塑性アクリル系樹脂が、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つを有する、請求項1から9のいずれかに記載の位相差層付偏光板。 10. The thermoplastic acrylic resin according to claim 1, wherein the thermoplastic acrylic resin has at least one selected from the group consisting of a lactone ring unit, a glutaric anhydride unit, a glutarimide unit, a maleic anhydride unit and a maleimide unit. A polarizing plate with a retardation layer as described above.
  11.  画像表示装置の視認側に配置され、かつ、前記保護層が視認側に配置される、請求項1から10のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 10, wherein the polarizing plate with a retardation layer is disposed on the viewing side of the image display device, and the protective layer is disposed on the viewing side.
PCT/JP2019/051304 2018-12-27 2019-12-26 Polarizing plate provided with phase difference layer WO2020138368A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086368.5A CN113227854A (en) 2018-12-27 2019-12-26 Polarizing plate with phase difference layer
JP2020562460A JPWO2020138368A1 (en) 2018-12-27 2019-12-26 Polarizing plate with retardation layer
KR1020217019739A KR20210107016A (en) 2018-12-27 2019-12-26 Polarizing plate with retardation layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244815 2018-12-27
JP2018-244815 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138368A1 true WO2020138368A1 (en) 2020-07-02

Family

ID=71128816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051304 WO2020138368A1 (en) 2018-12-27 2019-12-26 Polarizing plate provided with phase difference layer

Country Status (4)

Country Link
JP (1) JPWO2020138368A1 (en)
KR (1) KR20210107016A (en)
CN (1) CN113227854A (en)
WO (1) WO2020138368A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035263A1 (en) * 2000-10-24 2002-05-02 Fuji Photo Film Co., Ltd. Polarizing plate comprising polymer film and polarizing membrane
JP2010095567A (en) * 2008-10-14 2010-04-30 Kaneka Corp Resin composition, film, and polarizing plate
JP2015110757A (en) * 2013-10-31 2015-06-18 住友化学株式会社 (meth)acrylic resin composition and (meth)acrylic resin film using the same
JP2015230386A (en) * 2014-06-05 2015-12-21 大日本印刷株式会社 Antireflection film and image display device
JP2017500593A (en) * 2013-09-30 2017-01-05 エルジー・ケム・リミテッド Polarizer
WO2017057255A1 (en) * 2015-09-30 2017-04-06 富士フイルム株式会社 Polarizing plate protective film, method for manufacturing same, polarizing plate, and image display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316828C (en) 1998-10-30 2010-02-23 Teijin Limited Retardation film and optical device employing it
JP3838508B2 (en) * 2002-02-19 2006-10-25 日東電工株式会社 Manufacturing method of laminated retardation plate
JP4260538B2 (en) * 2002-05-15 2009-04-30 日東電工株式会社 Laminated retardation plate, laminated polarizing plate using the same, and image display device
JP2004042653A (en) * 2002-07-12 2004-02-12 Nitto Denko Corp Hard coat film
WO2005085918A1 (en) * 2004-03-09 2005-09-15 Kuraray Co., Ltd. Optical device
TWM294654U (en) * 2006-01-24 2006-07-21 Optimax Tech Corp Polarizer structure
JP4974971B2 (en) * 2007-06-14 2012-07-11 株式会社日本触媒 Thermoplastic resin composition, resin molded article and polarizer protective film using the same, and method for producing resin molded article
JP5913648B1 (en) * 2015-01-23 2016-04-27 日東電工株式会社 Polarizing plate with retardation layer and image display device
JP6508961B2 (en) * 2015-02-12 2019-05-08 株式会社日本触媒 Thermoplastic resin composition and optical film using the same
JP2016157081A (en) * 2015-02-26 2016-09-01 日東電工株式会社 Polarizing film with retardation layer, and image display device
TWI691577B (en) * 2015-03-27 2020-04-21 日商琳得科股份有限公司 Optical film with adhesive layer
JPWO2017170527A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035263A1 (en) * 2000-10-24 2002-05-02 Fuji Photo Film Co., Ltd. Polarizing plate comprising polymer film and polarizing membrane
JP2010095567A (en) * 2008-10-14 2010-04-30 Kaneka Corp Resin composition, film, and polarizing plate
JP2017500593A (en) * 2013-09-30 2017-01-05 エルジー・ケム・リミテッド Polarizer
JP2015110757A (en) * 2013-10-31 2015-06-18 住友化学株式会社 (meth)acrylic resin composition and (meth)acrylic resin film using the same
JP2015230386A (en) * 2014-06-05 2015-12-21 大日本印刷株式会社 Antireflection film and image display device
WO2017057255A1 (en) * 2015-09-30 2017-04-06 富士フイルム株式会社 Polarizing plate protective film, method for manufacturing same, polarizing plate, and image display device

Also Published As

Publication number Publication date
JPWO2020138368A1 (en) 2021-10-14
TW202033370A (en) 2020-09-16
CN113227854A (en) 2021-08-06
KR20210107016A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
TWI613470B (en) Polarizing plate with a retardation layer and image display apparatus
JP7044468B2 (en) An optical laminate and an image display device using the optical laminate
WO2021220729A1 (en) Polarizing plate and polarizing plate with optical functional layer
WO2017038415A1 (en) Polarizing plate having optical compensation layer, and organic el panel using same
WO2020138368A1 (en) Polarizing plate provided with phase difference layer
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
WO2020209224A1 (en) Polarizing plate
JP2021177230A (en) Polarizing plate and polarizing plate with retardation layer
WO2020138358A1 (en) Polarizing plate and polarizing plate roll
TWI839433B (en) Polarizing plate with phase difference layer
JP2021177229A (en) Polarizing plate and polarizing plate with optical function layer
WO2021220741A1 (en) Polarizing plate and polarizing plate with retardation layer
WO2020209222A1 (en) Laminate for polarizer protection, and polarizing plate using said laminate
WO2021220740A1 (en) Polarizing plate and polarizing plate with optical functional layer
WO2020138329A1 (en) Polarizing plate and polarizing plate roll
CN114746781A (en) Polarizing plate and polarizing plate roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902011

Country of ref document: EP

Kind code of ref document: A1