WO2017135239A1 - Optical laminate and image display device in which said optical laminate is used - Google Patents

Optical laminate and image display device in which said optical laminate is used Download PDF

Info

Publication number
WO2017135239A1
WO2017135239A1 PCT/JP2017/003377 JP2017003377W WO2017135239A1 WO 2017135239 A1 WO2017135239 A1 WO 2017135239A1 JP 2017003377 W JP2017003377 W JP 2017003377W WO 2017135239 A1 WO2017135239 A1 WO 2017135239A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical laminate
polarizer
retardation
retardation layer
Prior art date
Application number
PCT/JP2017/003377
Other languages
French (fr)
Japanese (ja)
Inventor
浩 角村
清水 享
慎悟 並木
優一 平見
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017014146A external-priority patent/JP7044468B2/en
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201780009590.6A priority Critical patent/CN108603970B/en
Priority to US16/072,771 priority patent/US20190079231A1/en
Priority to KR1020187022497A priority patent/KR102577635B1/en
Priority to SG11201806359WA priority patent/SG11201806359WA/en
Publication of WO2017135239A1 publication Critical patent/WO2017135239A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate and an image display apparatus using the optical laminate.
  • a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate has been put into practical use.
  • a transparent conductive layer functioning as a touch panel electrode is introduced by being laminated on a retardation film (typically a ⁇ / 4 plate) as a conductive layer with an isotropic substrate. ing.
  • the transparent conductive layer directly on the retardation film.
  • the optical properties of the retardation film are desired in a high-temperature environment during sputtering and subsequent treatment when forming the transparent conductive layer. This is because the base material for sputtering must be used because it is greatly deviated from the characteristics.
  • a technique that can directly form a transparent conductive layer on a retardation film is strongly desired.
  • a circularly polarizing plate that does not impair display characteristics even when applied to a bent portion of a display.
  • the present invention has been made to solve the above-described conventional problems, and the object of the present invention is that the conductive layer is formed directly on the retardation layer, and is very thin and has an excellent antireflection function. It is another object of the present invention to provide an optical laminate that can realize excellent display characteristics even when applied to a bent portion of an image display device.
  • the optical layered body of the present invention includes a polarizer, a retardation layer, and a conductive layer directly formed on the retardation layer, and the retardation layer has an in-plane retardation Re (550) of 100 nm to 100 nm. 180 nm, the relationship of Re (450) ⁇ Re (550) ⁇ Re (650) is satisfied, the glass transition temperature (Tg) is 150 ° C. or higher, and the absolute value of the photoelastic coefficient is 20 ⁇ 10 6. ⁇ 12 (m 2 / N) or less, and the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is 35 ° to 55 °.
  • an image display device is provided. This image display device includes the optical layered body described above on the viewing side, and the polarizer of the optical layered body is disposed on the viewing side.
  • a retardation film having a predetermined in-plane retardation, wavelength dependence of reverse dispersion, and having a predetermined glass transition temperature and photoelastic coefficient is used as a retardation layer.
  • the conductive layer can be formed directly on the surface of the retardation layer, and desired optical characteristics of the retardation layer can be maintained despite the formation of such a conductive layer.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is the in-plane retardation of the film measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (450) is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction of the film measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (450) is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical layered body 100 of the present embodiment includes a polarizer 10, a retardation layer 20, and a conductive layer 30 that is directly formed on the retardation layer 20.
  • the optical laminate 100 may further include a protective layer 40 bonded to the opposite side of the retardation layer 20 of the polarizer 10 as in the illustrated example. Further, a protective layer (not shown) may be further provided between the polarizer 10 and the retardation layer 20.
  • the optical laminate can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizer. .
  • a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizer.
  • each layer is bonded through any appropriate adhesive layer (typically, an adhesive layer or a pressure-sensitive adhesive layer).
  • the conductive layer 30 is directly formed on the retardation layer 20 as described above. In this specification, “directly formed” means that the layers are laminated without interposing an adhesive layer.
  • the conductive layer 30 can be formed on the surface of the retardation layer 20 by sputtering. In the illustrated example, the conductive layer 30 is formed on the opposite side of the retardation layer 20 from the polarizer 10 (lower side of the retardation layer), but between the retardation layer 20 and the polarizer 10 (of the retardation layer). (Upper side).
  • an index matching (IM) layer and / or a hard coat (HC) layer may be formed between the retardation layer and the conductive layer depending on the purpose (both not shown).
  • the conductive layer is formed directly on the IM layer or HC layer by sputtering. Such forms are also encompassed by "directly formed” forms.
  • IM layer and the HC layer configurations commonly used in the industry can be adopted, and thus detailed description thereof is omitted.
  • the retardation layer 20 is typically composed of a retardation film. Therefore, the retardation layer can also function as a protective layer (inner protective layer) for the polarizer. As a result, it can contribute to thinning of the optical laminate (as a result, an image display device).
  • an inner side protective layer inner side protective film
  • the retardation layer has an in-plane retardation Re (550) of 100 nm to 180 nm and satisfies a relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • the retardation layer has a glass transition temperature (Tg) of 150 ° C. or higher and an absolute value of a photoelastic coefficient of 20 ⁇ 10 ⁇ 12 (m 2 / N) or lower.
  • Tg glass transition temperature
  • the conductive layer can be directly formed on the surface of the retardation layer by sputtering.
  • the production efficiency is remarkably improved, and the adhesive layer for bonding the substrate for sputtering and the laminate of the conductive layer / substrate can be omitted, so that the optical laminate (as a result, This can contribute to further thinning of the image display device).
  • such an optical laminated body can realize excellent display characteristics even when applied to a bent portion of an image display device. More specifically, it is possible to suppress a change in color between the bent portion and the flat portion.
  • the angle formed between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 10 is typically 35 ° to 55 °. If the angle is in such a range, by setting the in-plane retardation of the retardation layer in the above range, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics) can be obtained.
  • the optical laminated body which has can be obtained.
  • an anti-blocking (AB) layer may be provided on the side of the conductive layer 30 opposite to the retardation layer 20 (outermost side of the optical laminate).
  • the haze value of the AB layer is preferably 0.2% to 4%.
  • the total thickness of the optical laminate (for example, the total thickness of the protective layer / adhesive layer / polarizer / adhesive layer / protective layer / adhesive layer / retardation layer / conductive layer) is preferably 50 ⁇ m to 200 ⁇ m, more preferably 80 ⁇ m to 170 ⁇ m.
  • the conductive layer can be directly formed on the surface of the retardation layer, and the sputtering base material can be omitted, so that a remarkable reduction in thickness can be realized.
  • the optical layered body of the present invention is elongated.
  • the long optical laminate can be stored and / or transported, for example, wound in a roll.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
  • the thickness of the polarizer is in such a range, it can contribute to the thinning of the optical laminate (as a result, the organic EL display device).
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the in-plane retardation Re (550) of the retardation layer 20 is 100 nm to 180 nm as described above, preferably 120 nm to 160 nm, and more preferably 135 nm to 155 nm. That is, the retardation layer can function as a so-called ⁇ / 4 plate.
  • the retardation layer satisfies the relationship of Re (450) ⁇ Re (550) ⁇ Re (650). That is, the retardation layer shows the wavelength dependence of reverse dispersion in which the retardation value increases with the wavelength of the measurement light.
  • Re (450) / Re (550) of the retardation layer is preferably 0.7 or more and less than 1.0, more preferably 0.8 or more and less than 1.0, and further preferably 0.8 or more and 0. .95, particularly preferably 0.8 or more and less than 0.9.
  • Re (550) / Re (650) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.97.
  • the retardation layer typically has a relationship of refractive index nx> ny and has a slow axis.
  • the angle formed between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 10 is 35 ° to 55 ° as described above, more preferably 38 ° to 52 °, and still more preferably 42 ° to 48. °, particularly preferably about 45 °. If the angle is in such a range, an optical laminate having very excellent circular polarization characteristics (as a result, very good antireflection characteristics) can be obtained by making the retardation layer a ⁇ / 4 plate. Can be.
  • the retardation layer exhibits any suitable refractive index ellipsoid (refractive index characteristic) as long as it has a relationship of nx> ny.
  • the refractive index ellipsoid of the retardation layer exhibits a relationship of nx> ny ⁇ nz or nx> nz> ny.
  • the Nz coefficient of the retardation layer is preferably 0.2 to 2.0, more preferably 0.2 to 1.5, and still more preferably 0.2 to 1.0. By satisfying such a relationship, a very excellent reflection hue can be achieved when the optical layered body is used in an image display device.
  • the retardation layer has a glass transition temperature (Tg) of 150 ° C. or higher as described above.
  • the lower limit of the glass transition temperature is more preferably 155 ° C or higher, further preferably 157 ° C or higher, still more preferably 160 ° C or higher, and particularly preferably 163 ° C or higher.
  • the upper limit of the glass transition temperature is preferably 180 ° C. or lower, more preferably 175 ° C. or lower, and particularly preferably 170 ° C. or lower. If the glass transition temperature is too low, undesired changes in optical properties may occur in the high temperature environment of sputtering and the subsequent post-treatment. If the glass transition temperature is too high, the molding stability at the time of forming the retardation layer may deteriorate, and the transparency of the retardation layer may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • the retardation layer has an absolute value of the photoelastic coefficient of 20 ⁇ 10 ⁇ 12 (m 2 / N) or less as described above, and preferably 1.0 ⁇ 10 ⁇ 12 (m 2 / N) to 15 ⁇ 10. ⁇ 12 (m 2 / N), more preferably 2.0 ⁇ 10 ⁇ 12 (m 2 / N) to 12 ⁇ 10 ⁇ 12 (m 2 / N).
  • the absolute value of the photoelastic coefficient is within such a range, a change in color before and after sputtering can be suppressed.
  • excellent display characteristics can be realized also in the bent portion.
  • the thickness of the retardation layer can be set so as to function most appropriately as a ⁇ / 4 plate. In other words, the thickness can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 10 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, still more preferably 20 ⁇ m to 65 ⁇ m, particularly preferably 20 ⁇ m to 60 ⁇ m, and most preferably 20 ⁇ m to 50 ⁇ m. is there.
  • the retardation layer is composed of a retardation film containing any appropriate resin that can satisfy the above-described characteristics.
  • the resin forming the retardation film include polycarbonate resins, polyvinyl acetal resins, cycloolefin resins, acrylic resins, and cellulose ester resins.
  • Polycarbonate resin is preferable. Polycarbonate resin is relatively easy to synthesize a copolymer using a plurality of types of monomers, and molecular design for adjusting various physical property balances is possible. Moreover, heat resistance, stretchability, mechanical properties, etc. are relatively good.
  • the polycarbonate resin is a generic term for resins having a carbonate bond in a structural unit, and includes, for example, a polyester carbonate resin.
  • the polyester carbonate resin refers to a resin having a carbonate bond and an ester bond as structural units constituting the resin.
  • the polycarbonate resin used in the present invention preferably contains at least a structural unit represented by the following formula (1) or (2).
  • R 1 to R 3 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent
  • R 4 to R 9 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent.
  • R 4 ⁇ R 9 are identical to one another or different, may form a ring with each other at least two neighboring groups of the R 4 ⁇ R 9.
  • the above structural unit can efficiently exhibit reverse wavelength dispersion even if the content in the resin is small.
  • the resin containing the structural unit has good heat resistance and high birefringence can be obtained by stretching. Therefore, the resin has characteristics suitable for the retardation layer used in the present invention.
  • the content of the structural unit represented by the formula (1) or (2) in the resin is such that all the structural units constituting the polycarbonate resin and the connection are obtained in order to obtain the optimum wavelength dispersion characteristic as a retardation film.
  • the content is preferably 1% by weight or more and 50% by weight or less, more preferably 3% by weight or more and 40% by weight or less, and more preferably 5% by weight or more and 30% by weight. % Or less is particularly preferable.
  • preferred structures include structures having a skeleton specifically exemplified in the following [A] group.
  • the performance of the diester structural units (A1) and (A2) is high, and (A1) is particularly preferable.
  • the specific diester structural unit is better in thermal stability than the structural unit derived from the dihydroxy compound represented by the formula (1), and good in optical characteristics such as reverse wavelength dispersion and photoelastic coefficient. Tend to show unique characteristics.
  • the polycarbonate resin which concerns on this invention contains the structural unit of a diester, such resin is called polyester carbonate resin.
  • the polycarbonate resin used in the present invention contains various structural units together with the structural unit represented by the above formula (1) or (2), so that various requirements are required for the retardation layer used in the present invention. Resins satisfying these physical properties can be designed. In order to impart high heat resistance, which is a particularly important physical property, it is preferable to contain a structural unit represented by the following formula (3).
  • R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • the structural unit represented by the formula (3) is a component having a high glass transition temperature, and furthermore, despite the aromatic structure, it has a relatively low photoelastic coefficient and is required for the retardation layer used in the present invention. Satisfying the characteristics
  • the content of the structural unit represented by the formula (3) in the resin is 1% by weight or more when the total weight of all the structural units constituting the polycarbonate resin and the weight of the linking group is 100% by weight. 30 wt% or less, preferably 2 wt% or more and 20 wt% or less, more preferably 3 wt% or more and 15 wt% or less. Within this range, a resin excellent in processability can be obtained without imparting sufficient heat resistance while the resin does not become excessively brittle.
  • the structural unit represented by the formula (3) can be introduced into the resin by polymerizing a dihydroxy compound containing the structural unit.
  • a dihydroxy compound containing the structural unit 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane is used from the viewpoint of good physical properties and easy availability. It is particularly preferred.
  • the polycarbonate resin used in the present invention preferably further contains a structural unit represented by the following formula (4).
  • the structural unit represented by the above formula (4) has high birefringence when the resin is stretched and has a low photoelastic coefficient.
  • Examples of the dihydroxy compound into which the structural unit represented by the formula (4) can be introduced include isosorbide (ISB), isomannide, and isoidet, which are in a stereoisomeric relationship, and among these, availability and polymerization reactivity In view of the above, it is most preferable to use ISB.
  • the polycarbonate resin used in the present invention may contain other structural units in addition to the structural units described above, depending on the required physical properties.
  • monomers containing other structural units include aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing acetal rings, oxyalkylene glycols, dihydroxy compounds containing aromatic components, diester compounds, and the like. Can be mentioned. From the viewpoint of good balance of various physical properties and availability, 1,4-cyclohexanedimethanol (hereinafter sometimes abbreviated as CHDM), tricyclodecane dimethanol (hereinafter referred to as TCDDM).
  • a dihydroxy compound such as spiroglycol (hereinafter sometimes abbreviated as SPG) is preferably used.
  • a heat stabilizer In the polycarbonate resin used in the present invention, a heat stabilizer, an antioxidant, a catalyst deactivator, an ultraviolet absorber, a light stabilizer, a release agent, a dye, Impact modifiers, antistatic agents, lubricants, lubricants, plasticizers, compatibilizers, nucleating agents, flame retardants, inorganic fillers, foaming agents and the like may be included.
  • the polycarbonate resin used in the present invention is an aromatic polycarbonate, aliphatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic, amorphous for the purpose of modifying properties such as mechanical properties and solvent resistance. It is good also as a polymer alloy formed by kneading
  • the additives and modifiers may be added to the resin used in the present invention simultaneously or in any order by a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder. Although it can manufacture by mixing, it is preferable to knead
  • a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder.
  • the molecular weight of the polycarbonate resin used in the present invention can be represented by a reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscometer tube at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely preparing a polycarbonate resin concentration of 0.6 g / dL.
  • the lower limit of the reduced viscosity is usually preferably 0.25 dL / g or more, more preferably 0.30 dL / g or more, and particularly preferably 0.32 dL / g or more.
  • the upper limit of the reduced viscosity is usually preferably 0.50 dL / g or less, more preferably 0.45 dL / g or less, and particularly preferably 0.40 dL / g or less. If the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
  • the polycarbonate resin used in the present invention preferably has a melt viscosity of 1000 Pa ⁇ s or more and 9000 Pa ⁇ s or less at a measurement temperature of 240 ° C. and a shear rate of 91.2 sec ⁇ 1 .
  • the lower limit of the melt viscosity is more preferably 2000 Pa ⁇ s or more, further preferably 2500 Pa ⁇ s or more, and particularly preferably 3000 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is more preferably 8000 Pa ⁇ s or less, further preferably 7000 Pa ⁇ s or less, still more preferably 6500 Pa ⁇ s or less, and particularly preferably 6000 Pa ⁇ s or less.
  • the retardation layer used in the present invention is required to have high heat resistance.
  • the higher the heat resistance (glass transition temperature) the more the resin becomes brittle, but the above-described melt viscosity range is used.
  • the resin can be melt processed while maintaining the minimum mechanical properties required during the processing of the resin.
  • the polycarbonate resin used in the present invention preferably has a refractive index of 1.49 or more and 1.56 or less at the sodium d line (589 nm). More preferably, the refractive index is 1.50 or more and 1.55 or less.
  • an aromatic structure increases the refractive index and causes a decrease in the transmittance of the retardation layer.
  • an aromatic structure has a high photoelastic coefficient, and generally deteriorates optical characteristics.
  • the retardation layer used in the present invention is obtained by forming a film from the above polycarbonate resin and further stretching the film.
  • Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate resin.
  • Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law.
  • an extrusion molding method or a cast coating method capable of increasing the smoothness of the obtained film and obtaining good optical uniformity is preferable.
  • the extrusion method particularly the melt extrusion method using a T-die is particularly preferable from the viewpoint of film productivity and ease of subsequent stretching treatment.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like.
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the obtained retardation film, the desired optical properties, the stretching conditions described later, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • Any appropriate stretching method and stretching conditions may be employed for the stretching.
  • various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
  • a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
  • the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction.
  • the draw ratio is preferably 1.1 to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film is obtained.
  • a polarizer Roll-to-roll is possible at the time of lamination, and the manufacturing process can be simplified.
  • manufacturing efficiency can be remarkably improved by a synergistic effect that the conductive layer can be directly formed on the retardation layer (retardation film).
  • the predetermined angle may be an angle formed between the absorption axis of the polarizer and the slow axis of the retardation layer in the optical layered body. As described above, the angle is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 42 ° to 48 °, and particularly preferably about 45 °.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • a retardation film having a desired in-plane retardation and having a slow axis in the desired direction (substantially long film) Shaped retardation film) can be obtained.
  • Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
  • the stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation film, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, a retardation film having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
  • the conductive layer 30 is typically transparent (that is, the conductive layer is a transparent conductive layer).
  • the optical laminate is a so-called touch sensor in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and the polarizer. It can be applied to an inner touch panel type input display device.
  • the conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. As a result, an electrode can be formed.
  • the electrode can function as a touch sensor electrode that senses contact with the touch panel.
  • the pattern shape is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP2011-511357A, JP2010-164938A, JP2008-310550A, JP2003-511799A, and JP2010-541109A. It is done.
  • the total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the density of the conductive layer is preferably 1.0 g / cm 3 to 10.5 g / cm 3 , more preferably 1.3 g / cm 3 to 3.0 g / cm 3 .
  • the surface resistance value of the conductive layer is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 500 ⁇ / ⁇ , and further preferably 1 ⁇ / ⁇ to 250 ⁇ / ⁇ .
  • a typical example of the conductive layer is a conductive layer containing a metal oxide.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 0.01 ⁇ m to 0.05 ⁇ m (10 nm to 50 nm), more preferably 0.01 ⁇ m to 0.03 ⁇ m (10 nm to 30 nm). If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
  • the protective layer 40 is formed of any suitable film that can be used as a protective layer for a polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the protective layer 40 is typically disposed on the viewing side. Therefore, the protective layer 40 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and antiglare treatment as necessary. Further / or, if necessary, the protective layer 40 may be treated to improve visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied). By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
  • polarized sunglasses typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied.
  • the thickness of the protective layer is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m, and still more preferably 35 ⁇ m to 95 ⁇ m.
  • the inner protective layer is preferably optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the material and thickness of the inner protective layer are as described above for the protective layer 40.
  • the anti-blocking layer typically has an uneven surface.
  • the uneven surface may be a fine uneven surface or a surface having a flat portion and a raised portion.
  • the anti-blocking layer has an arithmetic average roughness Ra of the surface of preferably 50 nm or more.
  • the uneven surface can be formed, for example, by allowing the resin composition forming the anti-blocking layer to contain fine particles and / or phase-separating the resin composition forming the anti-blocking layer.
  • the resin used in the resin composition examples include a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, an electron beam curable resin, and a two-component mixed resin.
  • An ultraviolet curable resin is preferred. This is because the anti-blocking layer can be efficiently formed by a simple processing operation.
  • the ultraviolet curable resin includes an ultraviolet curable monomer, oligomer, and polymer.
  • urethane (meth) acrylate can be suitably used as the ultraviolet curable resin.
  • urethane (meth) acrylate those containing (meth) acrylic acid, (meth) acrylic acid ester, polyol and diisocyanate as constituent components may be used.
  • a hydroxy (meth) acrylate having at least one hydroxyl group is prepared using at least one monomer of (meth) acrylic acid and (meth) acrylic acid ester and a polyol, and the hydroxy (meth) acrylate is reacted with a diisocyanate.
  • urethane (meth) acrylate can be manufactured.
  • Urethane (meth) acrylate may be used individually by 1 type, and may use 2 or more types together.
  • any appropriate fine particles can be used.
  • the fine particles preferably have transparency.
  • the material constituting such fine particles include metal oxide, glass, and resin.
  • specific examples include inorganic fine particles such as silica, alumina, titania, zirconia, and calcium oxide, and organic fine particles such as polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
  • silicone-based particles The fine particles may be used alone or in combination of two or more.
  • Organic fine particles are preferable, and acrylic resin fine particles are more preferable. This is because the refractive index is appropriate.
  • the mode particle diameter of the fine particles can be appropriately set according to the anti-blocking property and haze of the anti-blocking layer.
  • the mode particle diameter of the fine particles is within a range of ⁇ 50% of the thickness of the anti-blocking layer, for example.
  • “mode particle size” refers to a particle size showing a maximum value of particle distribution, and using a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex), It is obtained by measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count).
  • a dispersion liquid in which particles are diluted to 1.0% by weight with ethyl acetate and uniformly dispersed using an ultrasonic cleaner may be used.
  • the content of the fine particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight with respect to 100 parts by weight of the solid content of the resin composition. More preferably 0.1 to 0.2 parts by weight.
  • antiblocking property may become inadequate.
  • the haze of an antiblocking layer will become high and the visibility of an optical laminated body (eventually image display apparatus) may become inadequate.
  • the resin composition may further contain any appropriate additive depending on the purpose.
  • the additive include a reactive diluent, a plasticizer, a surfactant, an antioxidant, an ultraviolet absorber, a leveling agent, a thixotropic agent, and an antistatic agent.
  • the number, type, combination, addition amount, and the like of the additives can be appropriately set according to the purpose.
  • the anti-blocking layer can be typically formed by applying a resin composition to the surface of the substrate 30 and curing it. Any appropriate method can be adopted as a coating method. Specific examples of the coating method include a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method, and an extrusion coating method.
  • the curing method can be appropriately selected according to the type of resin contained in the resin composition.
  • the resin composition is appropriately cured by irradiating ultraviolet rays at an exposure amount of, for example, 150 mJ / cm 2 or more, preferably 200 mJ / cm 2 to 1000 mJ / cm 2.
  • a blocking layer can be formed.
  • the thickness of the anti-blocking layer is preferably 0.5 ⁇ m to 2.0 ⁇ m, more preferably 0.8 ⁇ m to 1.5 ⁇ m. With such a thickness, good antiblocking properties can be secured without adversely affecting the optical properties desired for the optical laminate.
  • the haze value of the anti-blocking layer is preferably 0.2% to 4%, more preferably 0.5% to 3%. If a haze value is such a range, it has the advantage that the blocking of films can be prevented, without losing visibility.
  • the optical layered body described in the items A to F can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device.
  • An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to F on the viewing side. The optical layered body is disposed so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (the polarizer is on the viewing side).
  • the image display device is bendable (bendable) in one embodiment, and foldable (foldable) in another embodiment.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the measuring method of each characteristic is as follows.
  • the conductive layer was measured by an interference film thickness measurement method using MCPD2000 manufactured by Otsuka Electronics.
  • the other films were measured using a digital micrometer (KC-351C manufactured by Anritsu).
  • Retardation value of retardation layer Refractive indexes nx, ny and nz of retardation layers (retardation films) used in Examples and Comparative Examples are automatically determined from an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic It was measured with a birefringence meter KOBRA-WPR.
  • the measurement wavelength of the in-plane retardation Re was 450 nm and 550 nm
  • the measurement wavelength of the thickness direction retardation Rth was 550 nm
  • the measurement temperature was 23 ° C.
  • the glass transition temperature was measured using a differential scanning calorimeter DSC 6220 manufactured by SII Nanotechnology. About 10 mg of a resin sample was put in an aluminum pan manufactured by the same company and sealed, and the temperature was raised from 30 ° C. to 220 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C. for 3 minutes, and the temperature was increased again to 220 ° C. at a rate of 20 ° C./min.
  • melt viscosity The pellet-shaped resin sample was vacuum-dried at 90 ° C for 5 hours or more. Measurement was performed using a capillary rheometer manufactured by Toyo Seiki Seisakusho, using the dried pellets. The measurement temperature was 240 ° C., the melt viscosity was measured at a shear rate of 9.12 to 1824 sec ⁇ 1 , and the value of the melt viscosity at 91.2 sec ⁇ 1 was used. An orifice having a die diameter of ⁇ 1 mm ⁇ 10 mmL was used.
  • Refractive index A rectangular test piece having a length of 40 mm and a width of 8 mm was cut out from an unstretched film produced in Examples and Comparative Examples described later to obtain a measurement sample.
  • the refractive index n D was measured with a multi-wavelength Abbe refractometer DR-M4 / 1550 manufactured by Atago Co., Ltd. using an interference filter of 589 nm (D line). The measurement was performed at 20 ° C. using monobromonaphthalene as the interfacial liquid.
  • Example 1 (Production of retardation layer) SBI 6.04 parts by weight (0.020 mol), ISB 59.58 parts by weight (0.408 mol), BPFM 34.96 parts by weight (0.055 mol), DPC 79.39 parts by weight (0.371 mol), and catalyst As a result, 7.53 ⁇ 10 ⁇ 4 parts by weight (4.27 ⁇ 10 ⁇ 6 mol) of calcium acetate monohydrate was charged into the reaction vessel, and the inside of the reaction apparatus was purged with nitrogen under reduced pressure. In a nitrogen atmosphere, the raw materials were dissolved while stirring at 150 ° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220 ° C.
  • the reaction was performed at normal pressure for 60 minutes.
  • the pressure was reduced from normal pressure to 13.3 kPa over 90 minutes, maintained at 13.3 kPa for 30 minutes, and the generated phenol was extracted out of the reaction system.
  • the temperature of the heating medium was raised to 245 ° C. over 15 minutes, while the pressure was reduced to 0.10 kPa or less over 15 minutes, and the generated phenol was extracted out of the reaction system.
  • the reaction was stopped by restoring the pressure to normal pressure with nitrogen, the produced polyester carbonate resin was extruded into water, and the strand was cut to obtain pellets.
  • the resulting resin had a reduced viscosity of 0.375 dL / g, a glass transition temperature of 165 ° C., a melt viscosity of 5070 Pa ⁇ s, a refractive index of 1.5454, and a photoelastic coefficient of 15 ⁇ 10 ⁇ 12 m 2 / N. It was.
  • Resin pellets that had been vacuum-dried at 100 ° C. for 5 hours or longer were used with a single die extruder (screw diameter 25 mm, cylinder set temperature: 255 ° C.) manufactured by Isuzu Chemical Industries, Ltd., and T-die (width 200 mm, set temperature: 250 ° C).
  • the extruded film was rolled by a winder while being cooled by a chill roll (set temperature: 155 ° C.), and an unstretched film having a thickness of 100 ⁇ m was produced.
  • the polycarbonate resin film obtained as described above was cut into a rectangular test piece of 120 mm ⁇ 150 mm with a safety razor, and stretched at a stretching temperature of 171 ° C. in the longitudinal direction with a batch-type biaxial stretching apparatus (Brookner) and a stretching speed. Uniaxial stretching was performed 1 ⁇ 2.4 times at 5 mm / sec.
  • a retardation film (thickness 64 ⁇ m) was obtained.
  • Re (450) / Re (550) of the obtained retardation film was 0.81.
  • the slow axis direction of the retardation film was 0 ° with respect to the longitudinal direction.
  • polarizer (Production of polarizer)
  • a long roll of polyvinyl alcohol (PVA) resin film (product name “PE3000”, manufactured by Kuraray Co., Ltd.) having a thickness of 30 ⁇ m is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine.
  • Swelling, dyeing, crosslinking, and washing treatment were performed, and finally a drying treatment was performed to produce a polarizer having a thickness of 12 ⁇ m.
  • the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C.
  • the dyeing treatment is performed in an aqueous solution at 30 ° C.
  • the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%.
  • the film was stretched 1.4 times.
  • the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
  • the boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
  • the boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C.
  • the potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight.
  • the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer.
  • An alternative to the organic EL display device was produced as follows.
  • An aluminum vapor-deposited film (trade name “DMS vapor-deposited X-42”, thickness 50 ⁇ m) manufactured by Toray Film Processing Co., Ltd. was bonded to a glass plate with an adhesive to make an alternative to an organic EL display device.
  • a pressure-sensitive adhesive layer is formed with an acrylic pressure-sensitive adhesive on the conductive layer side of the obtained optical laminate, cut into a size of 50 mm ⁇ 50 mm, and mounted on a substitute for an organic EL display device. It measured in the procedure of.
  • the retardation film (retardation layer) was cut so that the slow axis and the absorption axis of the polarizer form an angle of 45 degrees.
  • the optical layered body was disposed so that the slow axis of the retardation layer and the direction in which the bent portion extends were orthogonal to each other. The color of the bent part and the flat part in the mounted product was visually observed and evaluated according to the above criteria (3-2).
  • Example 2 SBI 15.10 parts by weight (0.049 mol), ISB 42.27 parts by weight (0.289 mol), SPG 15.10 parts by weight (0.050 mol), BPFM 26.22 parts by weight (0.041 mol), DPC 75
  • Example 14 except that .14 parts by weight (0.351 mol) and calcium acetate monohydrate 2.05 ⁇ 10 ⁇ 3 parts by weight (1.16 ⁇ 10 ⁇ 5 mol) were used as the catalyst. Thus, a polyester carbonate resin was obtained.
  • the resulting resin had a reduced viscosity of 0.334 dL / g, a glass transition temperature of 157 ° C., a melt viscosity of 3020 Pa ⁇ s, a refractive index of 1.5360, and a photoelastic coefficient of 12 ⁇ 10 ⁇ 12 m 2 / N. It was.
  • the slow axis direction of the retardation film was 0 ° with respect to the longitudinal direction.
  • Example 1 An optical laminate and an organic EL display device substitute were prepared in the same manner as in Example 1 except that a commercially available polycarbonate resin film (trade name “Pure Ace WR” manufactured by Teijin Limited) was used as the retardation layer. The obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the obtained resin has a reduced viscosity of 0.499 dL / g, a glass transition temperature of 135 ° C., a melt viscosity of 2940 Pa ⁇ s, a refractive index of 1.5334, and a photoelastic coefficient of 13 ⁇ 10 ⁇ 12 m. 2 / N.
  • An optical laminate and an organic EL display device substitute were produced in the same manner as in Example 1 except that a film formed from this polycarbonate resin was used.
  • the obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The optical laminate and the organic EL display device were the same as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by ZEON Corporation, trade name “ZEONOR”, in-plane retardation 147 nm) was used as the retardation layer. An alternative was made. The obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 4 The retardation layer used in Comparative Example 1 was bonded to the polarizing plate used in Example 1 to obtain a circularly polarizing plate having a configuration of protective layer / polarizer / retardation layer.
  • a commercially available cycloolefin resin film manufactured by Zeon Corporation, trade name “ZEONOR”, in-plane retardation 3 nm
  • ZONOR in-plane retardation 3 nm
  • a transparent conductive layer made of a complex oxide was formed by sputtering.
  • An organic EL display device was produced in the same manner as in Example 1 except that this optical laminate was used. The obtained organic EL display device was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 4 In Comparative Example 4 in which the conductive layer was formed on the base material and the base material / conductive layer laminate was bonded, the thickness of the base material and the pressure-sensitive adhesive layer for bonding was increased. Furthermore, in Comparative Example 4, the color unevenness of the bent portion is defective.
  • the optical layered body of the present invention can be suitably used for an image display device (typically, a liquid crystal display device or an organic EL display device).
  • an image display device typically, a liquid crystal display device or an organic EL display device.

Abstract

Provided is an optical laminate in which an electrically conductive layer is formed directly on a phase difference layer, the optical laminate being very thin, having an exceptional reflection-preventing function, and furthermore being capable of exhibiting exceptional display characteristics even when applied to a curved part of an image display device. This optical laminate is provided with a polarizer, a phase difference layer bonded to the polarizer, and an electrically conductive layer formed directly on the phase difference layer. The phase difference layer has an in-plane phase difference Re(550) of 100-180 nm, and satisfies the relationship Re(450)<Re(550)<Re(650), the glass transition temperature (Tg) being 150°C or higher, and the absolute value of the photo-elastic coefficient being 20×10-12(m2/N) or lower. The angle formed by the slow axis of the phase difference layer and the absorption axis of the polarizer is 35-55°.

Description

光学積層体および該光学積層体を用いた画像表示装置OPTICAL LAMINATE AND IMAGE DISPLAY DEVICE USING THE OPTICAL LAMINATE
 本発明は、光学積層体および該光学積層体を用いた画像表示装置に関する。 The present invention relates to an optical laminate and an image display apparatus using the optical laminate.
 近年、スマートフォンに代表されるスマートデバイス、またデジタルサイネージやウィンドウディスプレイなどの表示装置が強い外光の下使用される機会が増加している。それに伴い、表示装置自体または表示装置に用いられるタッチパネル部やガラス基板、金属配線等の反射体による外光反射や背景の映り込み等の問題が生じている。特に、近年実用化されてきている有機エレクトロルミネッセンス(EL)表示装置は、反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、位相差フィルム(代表的にはλ/4板)を有する円偏光板を視認側に反射防止フィルムとして設けることにより、これらの問題を防ぐことが知られている。 In recent years, smart devices typified by smartphones and display devices such as digital signage and window displays have been increasingly used under strong external light. Along with this, problems such as reflection of external light and reflection of the background due to the display device itself or a reflector such as a touch panel unit, a glass substrate, and metal wiring used in the display device have arisen. In particular, since organic electroluminescence (EL) display devices that have been put into practical use in recent years have a highly reflective metal layer, problems such as external light reflection and background reflection tend to occur. Therefore, it is known to prevent these problems by providing a circularly polarizing plate having a retardation film (typically a λ / 4 plate) on the viewing side as an antireflection film.
 さらに、近年、スマートフォンに代表されるように、画像表示装置がタッチパネル型入力装置を兼ねるタッチパネル型入力表示装置が急増している。特に、表示セル(例えば、液晶セル、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置が実用化されている。このようなインナータッチパネル型入力表示装置においては、タッチパネル電極として機能する透明導電層は、等方性基材付導電層として位相差フィルム(代表的にはλ/4板)に積層されることにより導入されている。表示装置の薄型化の観点からは透明導電層を位相差フィルムに直接形成することが望ましいが、透明導電層を形成する際のスパッタリングおよびその後処理における高温環境で位相差フィルムの光学特性が所望の特性から大きくずれてしまうので、スパッタリング用の基材を用いざるを得ないからである。このように、透明導電層を位相差フィルムに直接形成できる技術が強く望まれている。また、フレキシブルディスプレイに対応していくために、ディスプレイの屈曲部に適用しても表示特性を損なわない円偏光板が求められている。 Furthermore, in recent years, as represented by smartphones, the number of touch panel type input display devices in which an image display device also serves as a touch panel type input device is rapidly increasing. In particular, a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate has been put into practical use. In such an inner touch panel type input display device, a transparent conductive layer functioning as a touch panel electrode is introduced by being laminated on a retardation film (typically a λ / 4 plate) as a conductive layer with an isotropic substrate. ing. From the viewpoint of reducing the thickness of the display device, it is desirable to form the transparent conductive layer directly on the retardation film. However, the optical properties of the retardation film are desired in a high-temperature environment during sputtering and subsequent treatment when forming the transparent conductive layer. This is because the base material for sputtering must be used because it is greatly deviated from the characteristics. Thus, a technique that can directly form a transparent conductive layer on a retardation film is strongly desired. Further, in order to cope with a flexible display, there is a demand for a circularly polarizing plate that does not impair display characteristics even when applied to a bent portion of a display.
特開2015-69158号公報Japanese Patent Laying-Open No. 2015-69158
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、導電層が位相差層に直接形成されており、非常に薄く、かつ、優れた反射防止機能を有し、さらに、画像表示装置の屈曲部に適用しても優れた表示特性を実現し得る光学積層体を提供することにある。 The present invention has been made to solve the above-described conventional problems, and the object of the present invention is that the conductive layer is formed directly on the retardation layer, and is very thin and has an excellent antireflection function. It is another object of the present invention to provide an optical laminate that can realize excellent display characteristics even when applied to a bent portion of an image display device.
 本発明の光学積層体は、偏光子と、位相差層と、該位相差層に直接形成された導電層と、を備え、該位相差層は、面内位相差Re(550)が100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たし、ならびに、ガラス転移温度(Tg)が150℃以上であり、光弾性係数の絶対値が20×10-12(m/N)以下であり、該位相差層の遅相軸と該偏光子の吸収軸とのなす角度が35°~55°である。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の光学積層体を視認側に備え、該光学積層体の偏光子が視認側に配置されている。
The optical layered body of the present invention includes a polarizer, a retardation layer, and a conductive layer directly formed on the retardation layer, and the retardation layer has an in-plane retardation Re (550) of 100 nm to 100 nm. 180 nm, the relationship of Re (450) <Re (550) <Re (650) is satisfied, the glass transition temperature (Tg) is 150 ° C. or higher, and the absolute value of the photoelastic coefficient is 20 × 10 6. −12 (m 2 / N) or less, and the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is 35 ° to 55 °.
According to another aspect of the present invention, an image display device is provided. This image display device includes the optical layered body described above on the viewing side, and the polarizer of the optical layered body is disposed on the viewing side.
 本発明の実施形態によれば、所定の面内位相差を有し、逆分散の波長依存性を示し、かつ、所定のガラス転移温度および光弾性係数を有する位相差フィルムを位相差層として用いることにより、導電層を位相差層表面に直接形成することができ、かつ、このような導電層の形成にもかかわらず位相差層の所望の光学特性を維持することができる。結果として、非常に薄く、かつ、優れた反射防止機能を有する光学積層体を実現することができる。さらに、このような光学積層体は、画像表示装置の屈曲部に適用しても優れた表示特性を実現し得る。 According to the embodiment of the present invention, a retardation film having a predetermined in-plane retardation, wavelength dependence of reverse dispersion, and having a predetermined glass transition temperature and photoelastic coefficient is used as a retardation layer. Thus, the conductive layer can be formed directly on the surface of the retardation layer, and desired optical characteristics of the retardation layer can be maintained despite the formation of such a conductive layer. As a result, it is possible to realize an optical laminate that is very thin and has an excellent antireflection function. Further, such an optical laminated body can realize excellent display characteristics even when applied to a bent portion of an image display device.
本発明の1つの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention.
 以下、本発明の代表的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, representative embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定したフィルムの面内位相差である。例えば、「Re(450)」は、23℃における波長450nmの光で測定したフィルムの面内位相差である。Re(λ)は、フィルムの厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定したフィルムの厚み方向の位相差である。例えば、「Rth(450)」は、23℃における波長450nmの光で測定したフィルムの厚み方向の位相差である。Rth(λ)は、フィルムの厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is the in-plane retardation of the film measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (450)” is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C. Re (λ) is determined by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the film.
(3) Thickness direction retardation (Rth)
“Rth (λ)” is a retardation in the thickness direction of the film measured with light having a wavelength of λ nm at 23 ° C. For example, “Rth (450)” is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C. Rth (λ) is determined by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the film.
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle in this specification, unless otherwise specified, the angle includes angles in both clockwise and counterclockwise directions.
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。本実施形態の光学積層体100は、偏光子10と、位相差層20と、位相差層20に直接形成された導電層30と、を備える。光学積層体100は、実用的には図示例のように、偏光子10の位相差層20と反対側に貼り合わされた保護層40をさらに備えていてもよい。また、偏光子10と位相差層20との間に保護層(図示せず)をさらに備えていてもよい。このような構成によれば、光学積層体は、表示セル(例えば、液晶セル、有機ELセル)と偏光子との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。
A. FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical layered body 100 of the present embodiment includes a polarizer 10, a retardation layer 20, and a conductive layer 30 that is directly formed on the retardation layer 20. In practice, the optical laminate 100 may further include a protective layer 40 bonded to the opposite side of the retardation layer 20 of the polarizer 10 as in the illustrated example. Further, a protective layer (not shown) may be further provided between the polarizer 10 and the retardation layer 20. According to such a configuration, the optical laminate can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizer. .
 各層(各光学フィルム)は、任意の適切な接着層(代表的には、接着剤層、粘着剤層)を介して貼り合わせられている。一方、導電層30は、上記のとおり位相差層20に直接形成されている。本明細書において「直接形成される」とは、接着層を介在させることなく積層されていることをいう。代表的には、導電層30は、位相差層20の表面にスパッタリングにより形成され得る。図示例では、導電層30は位相差層20の偏光子10と反対側(位相差層の下側)に形成されているが、位相差層20と偏光子10との間(位相差層の上側)に形成されてもよい。なお、位相差層と導電層との間に目的に応じてインデックスマッチング(IM)層および/またはハードコート(HC)層が形成される場合があるところ(いずれも図示せず)、このような場合には、導電層はIM層またはHC層にスパッタリングにより直接形成される。このような形態も、「直接形成される」形態に包含される。IM層およびHC層は、当業界で通常用いられる構成が採用され得るので、詳細な説明は省略する。 Each layer (each optical film) is bonded through any appropriate adhesive layer (typically, an adhesive layer or a pressure-sensitive adhesive layer). On the other hand, the conductive layer 30 is directly formed on the retardation layer 20 as described above. In this specification, “directly formed” means that the layers are laminated without interposing an adhesive layer. Typically, the conductive layer 30 can be formed on the surface of the retardation layer 20 by sputtering. In the illustrated example, the conductive layer 30 is formed on the opposite side of the retardation layer 20 from the polarizer 10 (lower side of the retardation layer), but between the retardation layer 20 and the polarizer 10 (of the retardation layer). (Upper side). Note that an index matching (IM) layer and / or a hard coat (HC) layer may be formed between the retardation layer and the conductive layer depending on the purpose (both not shown). In some cases, the conductive layer is formed directly on the IM layer or HC layer by sputtering. Such forms are also encompassed by "directly formed" forms. As the IM layer and the HC layer, configurations commonly used in the industry can be adopted, and thus detailed description thereof is omitted.
 本発明の実施形態においては、位相差層20は、代表的には位相差フィルムで構成されている。したがって、位相差層は、偏光子の保護層(内側保護層)としても機能し得る。その結果、光学積層体(結果として、画像表示装置)の薄型化に貢献し得る。なお、上記のとおり、必要に応じて、偏光子と位相差層との間に内側保護層(内側保護フィルム)が配置されてもよい。位相差層は、その面内位相差Re(550)が100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たす。さらに、位相差層は、そのガラス転移温度(Tg)が150℃以上であり、光弾性係数の絶対値が20×10-12(m/N)以下である。このような位相差層であれば、スパッタリングおよびそれに付随する後処理における高温環境においても所望の光学特性を維持することができる。したがって、位相差層表面に、導電層をスパッタリングにより直接形成することができる。その結果、製造効率が格段に向上し、かつ、スパッタリング用の基材および導電層/基材の積層体を貼り合わせるための粘着剤層を省略することができるので、光学積層体(結果として、画像表示装置)のさらなる薄型化に貢献し得る。さらに、このような光学積層体は、画像表示装置の屈曲部に適用しても優れた表示特性を実現し得る。より詳細には、屈曲部と平面部との色味の変化を抑制することができる。 In the embodiment of the present invention, the retardation layer 20 is typically composed of a retardation film. Therefore, the retardation layer can also function as a protective layer (inner protective layer) for the polarizer. As a result, it can contribute to thinning of the optical laminate (as a result, an image display device). In addition, as above-mentioned, an inner side protective layer (inner side protective film) may be arrange | positioned between a polarizer and retardation layer as needed. The retardation layer has an in-plane retardation Re (550) of 100 nm to 180 nm and satisfies a relationship of Re (450) <Re (550) <Re (650). Further, the retardation layer has a glass transition temperature (Tg) of 150 ° C. or higher and an absolute value of a photoelastic coefficient of 20 × 10 −12 (m 2 / N) or lower. With such a retardation layer, desired optical characteristics can be maintained even in a high-temperature environment in sputtering and post-processing accompanying it. Therefore, the conductive layer can be directly formed on the surface of the retardation layer by sputtering. As a result, the production efficiency is remarkably improved, and the adhesive layer for bonding the substrate for sputtering and the laminate of the conductive layer / substrate can be omitted, so that the optical laminate (as a result, This can contribute to further thinning of the image display device). Further, such an optical laminated body can realize excellent display characteristics even when applied to a bent portion of an image display device. More specifically, it is possible to suppress a change in color between the bent portion and the flat portion.
 位相差層20の遅相軸と偏光子10の吸収軸とのなす角度は、代表的には35°~55°である。当該角度がこのような範囲であれば、位相差層の面内位相差を上記のような範囲とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する光学積層体が得られ得る。 The angle formed between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 10 is typically 35 ° to 55 °. If the angle is in such a range, by setting the in-plane retardation of the retardation layer in the above range, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics) can be obtained. The optical laminated body which has can be obtained.
 必要に応じて、導電層30の位相差層20と反対側(光学積層体の最外側)にアンチブロッキング(AB)層を設けてもよい。AB層のヘイズ値は、好ましくは0.2%~4%である。 If necessary, an anti-blocking (AB) layer may be provided on the side of the conductive layer 30 opposite to the retardation layer 20 (outermost side of the optical laminate). The haze value of the AB layer is preferably 0.2% to 4%.
 光学積層体の総厚み(例えば、保護層/接着層/偏光子/接着層/保護層/接着層/位相差層/導電層の合計厚み)は、好ましくは50μm~200μmであり、より好ましくは80μm~170μmである。本発明の実施形態によれば、導電層を位相差層表面に直接形成することができ、スパッタリング用の基材を省略することができるので、顕著な薄型化を実現することができる。 The total thickness of the optical laminate (for example, the total thickness of the protective layer / adhesive layer / polarizer / adhesive layer / protective layer / adhesive layer / retardation layer / conductive layer) is preferably 50 μm to 200 μm, more preferably 80 μm to 170 μm. According to the embodiment of the present invention, the conductive layer can be directly formed on the surface of the retardation layer, and the sputtering base material can be omitted, so that a remarkable reduction in thickness can be realized.
 1つの実施形態においては、本発明の光学積層体は長尺状である。長尺状の光学積層体は、例えば、ロール状に巻回されて保管および/または運搬され得る。 In one embodiment, the optical layered body of the present invention is elongated. The long optical laminate can be stored and / or transported, for example, wound in a roll.
 上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよく、上記の実施形態における構成を光学的に等価な構成に置き換えてもよい。 The above embodiments may be combined as appropriate, the components in the above embodiments may be modified in a manner obvious in the art, and the configuration in the above embodiment may be replaced with an optically equivalent configuration.
 以下、光学積層体の構成要素について説明する。 Hereinafter, components of the optical laminate will be described.
B.偏光子
 偏光子10としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizer Any appropriate polarizer may be adopted as the polarizer 10. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。さらに、偏光子の厚みがこのような範囲であれば、光学積層体(結果として、有機EL表示装置)の薄型化に貢献し得る。 The thickness of the polarizer is preferably 15 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained. Furthermore, if the thickness of the polarizer is in such a range, it can contribute to the thinning of the optical laminate (as a result, the organic EL display device).
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは43.0%~46.0%であり、より好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
C.位相差層
 位相差層20の面内位相差Re(550)は、上記のとおり100nm~180nmであり、好ましくは120nm~160nmであり、より好ましくは135nm~155nmである。すなわち、位相差層は、いわゆるλ/4板として機能し得る。
C. Retardation Layer The in-plane retardation Re (550) of the retardation layer 20 is 100 nm to 180 nm as described above, preferably 120 nm to 160 nm, and more preferably 135 nm to 155 nm. That is, the retardation layer can function as a so-called λ / 4 plate.
 位相差層は、上述のとおり、Re(450)<Re(550)<Re(650)の関係を満たす。すなわち、位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散の波長依存性を示す。位相差層のRe(450)/Re(550)は、好ましくは0.7以上1.0未満であり、より好ましくは0.8以上1.0未満であり、さらに好ましくは0.8以上0.95未満であり、特に好ましくは0.8以上0.9未満である。Re(550)/Re(650)は、好ましくは0.8以上1.0未満であり、より好ましくは0.8~0.97である。 As described above, the retardation layer satisfies the relationship of Re (450) <Re (550) <Re (650). That is, the retardation layer shows the wavelength dependence of reverse dispersion in which the retardation value increases with the wavelength of the measurement light. Re (450) / Re (550) of the retardation layer is preferably 0.7 or more and less than 1.0, more preferably 0.8 or more and less than 1.0, and further preferably 0.8 or more and 0. .95, particularly preferably 0.8 or more and less than 0.9. Re (550) / Re (650) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.97.
 位相差層は、代表的には屈折率特性がnx>nyの関係を示し、遅相軸を有する。位相差層20の遅相軸と偏光子10の吸収軸とのなす角度は、上記のとおり35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは42°~48°であり、特に好ましくは約45°である。当該角度がこのような範囲であれば、位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する光学積層体が得られ得る。 The retardation layer typically has a relationship of refractive index nx> ny and has a slow axis. The angle formed between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 10 is 35 ° to 55 ° as described above, more preferably 38 ° to 52 °, and still more preferably 42 ° to 48. °, particularly preferably about 45 °. If the angle is in such a range, an optical laminate having very excellent circular polarization characteristics (as a result, very good antireflection characteristics) can be obtained by making the retardation layer a λ / 4 plate. Can be.
 位相差層は、nx>nyの関係を有する限り、任意の適切な屈折率楕円体(屈折率特性)を示す。好ましくは、位相差層の屈折率楕円体は、nx>ny≧nzまたはnx>nz>nyの関係を示す。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。位相差層のNz係数は、好ましくは0.2~2.0であり、より好ましくは0.2~1.5であり、さらに好ましくは0.2~1.0である。このような関係を満たすことにより、光学積層体を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The retardation layer exhibits any suitable refractive index ellipsoid (refractive index characteristic) as long as it has a relationship of nx> ny. Preferably, the refractive index ellipsoid of the retardation layer exhibits a relationship of nx> ny ≧ nz or nx> nz> ny. Here, “ny = nz” includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effects of the present invention are not impaired. The Nz coefficient of the retardation layer is preferably 0.2 to 2.0, more preferably 0.2 to 1.5, and still more preferably 0.2 to 1.0. By satisfying such a relationship, a very excellent reflection hue can be achieved when the optical layered body is used in an image display device.
 位相差層は、そのガラス転移温度(Tg)が上記のとおり150℃以上である。ガラス転移温度の下限は155℃以上がより好ましく、157℃以上がさらに好ましく、160℃以上がよりさらに好ましく、163℃以上が特に好ましい。一方、ガラス転移温度の上限は180℃以下が好ましく、175℃以下がさらに好ましく、170℃以下が特に好ましい。ガラス転移温度が低すぎると、スパッタリングおよびそれに付随する後処理の高温環境において光学特性に所望でない変化が生じる場合がある。ガラス転移温度が高すぎると、位相差層形成時の成形安定性が悪くなる場合があり、また、位相差層の透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The retardation layer has a glass transition temperature (Tg) of 150 ° C. or higher as described above. The lower limit of the glass transition temperature is more preferably 155 ° C or higher, further preferably 157 ° C or higher, still more preferably 160 ° C or higher, and particularly preferably 163 ° C or higher. On the other hand, the upper limit of the glass transition temperature is preferably 180 ° C. or lower, more preferably 175 ° C. or lower, and particularly preferably 170 ° C. or lower. If the glass transition temperature is too low, undesired changes in optical properties may occur in the high temperature environment of sputtering and the subsequent post-treatment. If the glass transition temperature is too high, the molding stability at the time of forming the retardation layer may deteriorate, and the transparency of the retardation layer may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).
 位相差層は、その光弾性係数の絶対値が上記のとおり20×10-12(m/N)以下であり、好ましくは1.0×10-12(m/N)~15×10-12(m/N)であり、より好ましくは2.0×10-12(m/N)~12×10-12(m/N)である。光弾性係数の絶対値がこのような範囲であれば、スパッタリング前後の色味の変化を抑制することができる。さらに、光学積層体を画像表示装置の屈曲部に適用した場合に、当該屈曲部においても優れた表示特性を実現し得る。 The retardation layer has an absolute value of the photoelastic coefficient of 20 × 10 −12 (m 2 / N) or less as described above, and preferably 1.0 × 10 −12 (m 2 / N) to 15 × 10. −12 (m 2 / N), more preferably 2.0 × 10 −12 (m 2 / N) to 12 × 10 −12 (m 2 / N). When the absolute value of the photoelastic coefficient is within such a range, a change in color before and after sputtering can be suppressed. Furthermore, when the optical laminate is applied to a bent portion of an image display device, excellent display characteristics can be realized also in the bent portion.
 位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは10μm~80μmであり、より好ましくは10μm~70μmであり、さらに好ましくは20μm~65μmであり、特に好ましくは20μm~60μmであり、最も好ましくは20μm~50μmである。 The thickness of the retardation layer can be set so as to function most appropriately as a λ / 4 plate. In other words, the thickness can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 10 μm to 80 μm, more preferably 10 μm to 70 μm, still more preferably 20 μm to 65 μm, particularly preferably 20 μm to 60 μm, and most preferably 20 μm to 50 μm. is there.
 位相差層は、上記のような特性を満足し得る任意の適切な樹脂を含む位相差フィルムで構成される。位相差フィルムを形成する樹脂としては、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン系樹脂、アクリル系樹脂、セルロースエステル系樹脂等が挙げられる。好ましくは、ポリカーボネート樹脂である。ポリカーボネート樹脂は、複数種のモノマーを用いて共重合体を合成することが比較的容易であり、種々の物性バランスを調整するための分子設計が可能である。また、耐熱性や延伸性、機械物性なども比較的良好である。尚、本発明においてポリカーボネート樹脂とは、構造単位にカーボネート結合を有する樹脂のことを総称し、例えば、ポリエステルカーボネート樹脂を含む。ポリエステルカーボネート樹脂とは、当該樹脂を構成する構造単位としてカーボネート結合およびエステル結合を有する樹脂のことを言う。 The retardation layer is composed of a retardation film containing any appropriate resin that can satisfy the above-described characteristics. Examples of the resin forming the retardation film include polycarbonate resins, polyvinyl acetal resins, cycloolefin resins, acrylic resins, and cellulose ester resins. Polycarbonate resin is preferable. Polycarbonate resin is relatively easy to synthesize a copolymer using a plurality of types of monomers, and molecular design for adjusting various physical property balances is possible. Moreover, heat resistance, stretchability, mechanical properties, etc. are relatively good. In the present invention, the polycarbonate resin is a generic term for resins having a carbonate bond in a structural unit, and includes, for example, a polyester carbonate resin. The polyester carbonate resin refers to a resin having a carbonate bond and an ester bond as structural units constituting the resin.
 本発明に用いられるポリカーボネート樹脂は、下記式(1)又は(2)で表される構造単位を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式(1)及び(2)中、R~Rは、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R~Rは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
The polycarbonate resin used in the present invention preferably contains at least a structural unit represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(In the formulas (1) and (2), R 1 to R 3 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent, and R 4 to R 9 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent. An optionally substituted acyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, an optionally substituted aryloxy group having 1 to 10 carbon atoms, An amino group which may have a substituent, a vinyl group having 1 to 10 carbon atoms which may have a substituent, an ethynyl group having 1 to 10 carbon atoms which may have a substituent, a substituent; A sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group. , R 4 ~ R 9 are identical to one another or different, may form a ring with each other at least two neighboring groups of the R 4 ~ R 9.)
 上記構造単位は樹脂中の含有量が少量でも効率良く逆波長分散性を発現させることができる。また、上記構造単位を含有する樹脂は耐熱性も良好で、延伸することによって高い複屈折が得られるため、本発明に用いられる位相差層に適した特性を有している。 The above structural unit can efficiently exhibit reverse wavelength dispersion even if the content in the resin is small. In addition, the resin containing the structural unit has good heat resistance and high birefringence can be obtained by stretching. Therefore, the resin has characteristics suitable for the retardation layer used in the present invention.
 前記式(1)又は(2)で表される構造単位の樹脂中の含有量は、位相差フィルムとして最適な波長分散特性を得るためには、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、1重量%以上、50重量%以下含有することが好ましく、3重量%以上、40重量%以下がより好ましく、5重量%以上、30重量%以下が特に好ましい。 The content of the structural unit represented by the formula (1) or (2) in the resin is such that all the structural units constituting the polycarbonate resin and the connection are obtained in order to obtain the optimum wavelength dispersion characteristic as a retardation film. When the total weight of the group is 100% by weight, the content is preferably 1% by weight or more and 50% by weight or less, more preferably 3% by weight or more and 40% by weight or less, and more preferably 5% by weight or more and 30% by weight. % Or less is particularly preferable.
 前記式(1)及び(2)で表される構造単位のうち、好ましい構造としては具体的に下記[A]群に例示される骨格を有する構造が挙げられる。
[A]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Among the structural units represented by the formulas (1) and (2), preferred structures include structures having a skeleton specifically exemplified in the following [A] group.
[A]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記[A]群の中でも、(A1)及び(A2)のジエステル構造単位の性能が高く、(A1)が特に好ましい。前記特定のジエステル構造単位は、前記式(1)で表されるジヒドロキシ化合物由来の構造単位よりも熱安定性が良好であり、逆波長分散の発現性や光弾性係数などの光学特性についても良好な特性を示す傾向がある。尚、本発明に係るポリカーボネート樹脂がジエステルの構造単位を含有する場合、そのような樹脂をポリエステルカーボネート樹脂と称する。 Among the above [A] groups, the performance of the diester structural units (A1) and (A2) is high, and (A1) is particularly preferable. The specific diester structural unit is better in thermal stability than the structural unit derived from the dihydroxy compound represented by the formula (1), and good in optical characteristics such as reverse wavelength dispersion and photoelastic coefficient. Tend to show unique characteristics. In addition, when the polycarbonate resin which concerns on this invention contains the structural unit of a diester, such resin is called polyester carbonate resin.
 本発明に用いられるポリカーボネート樹脂は、前記式(1)又は(2)で表される構造単位とともに、他の構造単位を共に含有することで、本発明に用いられる位相差層に要求される種々の物性を満足する樹脂を設計することができる。特に重要な物性である高い耐熱性を付与するためには、下記式(3)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(3)中、R10~R15はそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
The polycarbonate resin used in the present invention contains various structural units together with the structural unit represented by the above formula (1) or (2), so that various requirements are required for the retardation layer used in the present invention. Resins satisfying these physical properties can be designed. In order to impart high heat resistance, which is a particularly important physical property, it is preferable to contain a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000013
(In formula (3), R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.)
 前記式(3)で表される構造単位は高いガラス転移温度を有する成分であり、さらに、芳香族構造にも関わらず、光弾性係数が比較的低く、本発明に用いられる位相差層に求められる特性を満足している。 The structural unit represented by the formula (3) is a component having a high glass transition temperature, and furthermore, despite the aromatic structure, it has a relatively low photoelastic coefficient and is required for the retardation layer used in the present invention. Satisfying the characteristics
 前記式(3)で表される構造単位の樹脂中の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、1重量%以上、30重量%以下含有することが好ましく、2重量%以上、20重量%以下がより好ましく、3重量%以上、15重量%以下が特に好ましい。この範囲であれば、十分な耐熱性を付与しつつ、樹脂が過度に脆くならず、加工性に優れた樹脂を得ることができる。 The content of the structural unit represented by the formula (3) in the resin is 1% by weight or more when the total weight of all the structural units constituting the polycarbonate resin and the weight of the linking group is 100% by weight. 30 wt% or less, preferably 2 wt% or more and 20 wt% or less, more preferably 3 wt% or more and 15 wt% or less. Within this range, a resin excellent in processability can be obtained without imparting sufficient heat resistance while the resin does not become excessively brittle.
 前記式(3)で表される構造単位は、該構造単位を含有するジヒドロキシ化合物を重合することで樹脂中に導入することができる。該ジヒドロキシ化合物としては、物性が良好であり、入手のしやすさの観点からも、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンを用いることが特に好ましい。 The structural unit represented by the formula (3) can be introduced into the resin by polymerizing a dihydroxy compound containing the structural unit. As the dihydroxy compound, 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane is used from the viewpoint of good physical properties and easy availability. It is particularly preferred.
 本発明に用いられるポリカーボネート樹脂は、下記式(4)で表される構造単位をさらに含有することが好ましい。
Figure JPOXMLDOC01-appb-C000014
The polycarbonate resin used in the present invention preferably further contains a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000014
 前記式(4)で表される構造単位は、樹脂を延伸した時の複屈折の発現性が高く、光弾性係数も低い特性を有している。前記式(4)で表される構造単位を導入可能なジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、イソイデットが挙げられるが、これらの中でも、入手及び重合反応性の観点からISBを用いるのが最も好ましい。 The structural unit represented by the above formula (4) has high birefringence when the resin is stretched and has a low photoelastic coefficient. Examples of the dihydroxy compound into which the structural unit represented by the formula (4) can be introduced include isosorbide (ISB), isomannide, and isoidet, which are in a stereoisomeric relationship, and among these, availability and polymerization reactivity In view of the above, it is most preferable to use ISB.
 本発明に用いられるポリカーボネート樹脂は、要求される物性を応じて、前述した構造単位以外に、その他の構造単位を含んでいてもよい。その他の構造単位を含有するモノマーとしては、例えば、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物等が挙げられる。種々の物性のバランスが良好であることや、入手のしやすさの観点から、1,4-シクロヘキサンジメタノール(以下、CHDMと略記することがある)、トリシクロデカンジメタノール(以下、TCDDMと略記することがある)、スピログリコール(以下、SPGと略記することがある)等のジヒドロキシ化合物が好ましく用いられる。 The polycarbonate resin used in the present invention may contain other structural units in addition to the structural units described above, depending on the required physical properties. Examples of monomers containing other structural units include aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing acetal rings, oxyalkylene glycols, dihydroxy compounds containing aromatic components, diester compounds, and the like. Can be mentioned. From the viewpoint of good balance of various physical properties and availability, 1,4-cyclohexanedimethanol (hereinafter sometimes abbreviated as CHDM), tricyclodecane dimethanol (hereinafter referred to as TCDDM). A dihydroxy compound such as spiroglycol (hereinafter sometimes abbreviated as SPG) is preferably used.
 本発明に用いられるポリカーボネート樹脂には本発明の目的を損なわない範囲で、通常用いられる熱安定剤、酸化防止剤、触媒失活剤、紫外線吸収剤、光安定剤、離型剤、染顔料、衝撃改良剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、核剤、難燃剤、無機充填剤、発泡剤等が含まれても差し支えない。 In the polycarbonate resin used in the present invention, a heat stabilizer, an antioxidant, a catalyst deactivator, an ultraviolet absorber, a light stabilizer, a release agent, a dye, Impact modifiers, antistatic agents, lubricants, lubricants, plasticizers, compatibilizers, nucleating agents, flame retardants, inorganic fillers, foaming agents and the like may be included.
 本発明に用いられるポリカーボネート樹脂は、機械特性や耐溶剤性等の特性を改質する目的で、芳香族ポリカーボネート、脂肪族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、AS、ポリ乳酸、ポリブチレンスクシネート等の合成樹脂やゴム等の1種又は2種以上と混練してなるポリマーアロイとしてもよい。 The polycarbonate resin used in the present invention is an aromatic polycarbonate, aliphatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic, amorphous for the purpose of modifying properties such as mechanical properties and solvent resistance. It is good also as a polymer alloy formed by kneading | mixing with 1 type (s) or 2 or more types, such as synthetic resins, such as polyolefin, ABS, AS, polylactic acid, and polybutylene succinate, and rubber.
 前記の添加剤や改質剤は、本発明に用いられる樹脂に前記成分を同時に、又は任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。 The additives and modifiers may be added to the resin used in the present invention simultaneously or in any order by a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder. Although it can manufacture by mixing, it is preferable to knead | mix by an extruder, especially a twin-screw extruder especially from a viewpoint of a dispersibility improvement.
 本発明に用いられるポリカーボネート樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.25dL/g以上が好ましく、0.30dL/g以上がより好ましく、0.32dL/g以上が特に好ましい。還元粘度の上限は、通常0.50dL/g以下が好ましく、0.45dL/g以下がより好ましく、0.40dL/g以下が特に好ましい。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the polycarbonate resin used in the present invention can be represented by a reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscometer tube at a temperature of 20.0 ° C. ± 0.1 ° C., using methylene chloride as a solvent, precisely preparing a polycarbonate resin concentration of 0.6 g / dL. The lower limit of the reduced viscosity is usually preferably 0.25 dL / g or more, more preferably 0.30 dL / g or more, and particularly preferably 0.32 dL / g or more. The upper limit of the reduced viscosity is usually preferably 0.50 dL / g or less, more preferably 0.45 dL / g or less, and particularly preferably 0.40 dL / g or less. If the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
 本発明に用いられるポリカーボネート樹脂は、測定温度240℃、剪断速度91.2sec-1における溶融粘度が、1000Pa・s以上、9000Pa・s以下であることが好ましい。溶融粘度の下限は2000Pa・s以上がより好ましく、2500Pa・s以上がさらに好ましく、3000Pa・s以上が特に好ましい。溶融粘度の上限は8000Pa・s以下がより好ましく、7000Pa・s以下がさらに好ましく、6500Pa・s以下がよりさらに好ましく、6000Pa・s以下が特に好ましい。 The polycarbonate resin used in the present invention preferably has a melt viscosity of 1000 Pa · s or more and 9000 Pa · s or less at a measurement temperature of 240 ° C. and a shear rate of 91.2 sec −1 . The lower limit of the melt viscosity is more preferably 2000 Pa · s or more, further preferably 2500 Pa · s or more, and particularly preferably 3000 Pa · s or more. The upper limit of the melt viscosity is more preferably 8000 Pa · s or less, further preferably 7000 Pa · s or less, still more preferably 6500 Pa · s or less, and particularly preferably 6000 Pa · s or less.
 本発明に用いられる位相差層は高い耐熱性が求められており、通常、耐熱性(ガラス転移温度)を高くするほど樹脂は脆くなる方向であるが、上記のような溶融粘度範囲とすることで、樹脂の加工時に最低限必要な機械物性を保持しつつ、樹脂を溶融加工することも可能となる。 The retardation layer used in the present invention is required to have high heat resistance. Usually, the higher the heat resistance (glass transition temperature), the more the resin becomes brittle, but the above-described melt viscosity range is used. Thus, the resin can be melt processed while maintaining the minimum mechanical properties required during the processing of the resin.
 本発明に用いられるポリカーボネート樹脂は、ナトリウムd線(589nm)における屈折率が、1.49以上、1.56以下であることが好ましい。さらに好ましくは、屈折率は1.50以上、1.55以下である。 The polycarbonate resin used in the present invention preferably has a refractive index of 1.49 or more and 1.56 or less at the sodium d line (589 nm). More preferably, the refractive index is 1.50 or more and 1.55 or less.
 本発明に用いられる位相差層に求められる光学特性を付与するためには、樹脂中に芳香族構造を導入する必要がある。しかし、芳香族構造は屈折率を高めることで位相差層の透過率の低下を招く。また、一般的に芳香族構造は高い光弾性係数を有しており、光学特性を全般的に低下させる。本発明に用いられるポリカーボネート樹脂には、求められる特性を効率良く発現する構造単位を選択し、樹脂中の芳香族構造の含有量を最小限に抑えることが好ましい。 In order to impart optical characteristics required for the retardation layer used in the present invention, it is necessary to introduce an aromatic structure into the resin. However, the aromatic structure increases the refractive index and causes a decrease in the transmittance of the retardation layer. In general, an aromatic structure has a high photoelastic coefficient, and generally deteriorates optical characteristics. For the polycarbonate resin used in the present invention, it is preferable to select a structural unit that efficiently expresses the required characteristics, and to minimize the content of the aromatic structure in the resin.
 本発明に用いられる位相差層は、上記ポリカーボネート樹脂からフィルムを形成し、さらにそのフィルムを延伸することにより得られる。ポリカーボネート樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。中でも得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができる押出成形法、又はキャスト塗工法が好ましい。キャスト塗工法では残存溶媒による問題が生じるおそれがあるため、特に好ましくは押出成形法、中でもTダイを用いた溶融押出成形法がフィルムの生産性や、後の延伸処理のし易さの観点から好ましい。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。 The retardation layer used in the present invention is obtained by forming a film from the above polycarbonate resin and further stretching the film. Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Among them, an extrusion molding method or a cast coating method capable of increasing the smoothness of the obtained film and obtaining good optical uniformity is preferable. Since the cast coating method may cause a problem due to the residual solvent, the extrusion method, particularly the melt extrusion method using a T-die is particularly preferable from the viewpoint of film productivity and ease of subsequent stretching treatment. preferable. The molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like.
 樹脂フィルム(未延伸フィルム)の厚みは、得られる位相差フィルムの所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the obtained retardation film, the desired optical properties, the stretching conditions described later, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 A retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. As a specific example of the fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して所定の角度の方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して所定の角度の配向角(所定の角度の方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。さらに、導電層が位相差層(位相差フィルム)に直接形成できることとの相乗的な効果により、製造効率が格段に向上し得る。なお、上記所定の角度は、光学積層体において偏光子の吸収軸と位相差層の遅相軸とがなす角度であり得る。当該角度は、上記のとおり、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは42°~48°であり、特に好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the predetermined angle) is obtained. For example, with a polarizer Roll-to-roll is possible at the time of lamination, and the manufacturing process can be simplified. Furthermore, manufacturing efficiency can be remarkably improved by a synergistic effect that the conductive layer can be directly formed on the retardation layer (retardation film). The predetermined angle may be an angle formed between the absorption axis of the polarizer and the slow axis of the retardation layer in the optical layered body. As described above, the angle is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 42 ° to 48 °, and particularly preferably about 45 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差フィルム(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right velocities in the stretching machine, a retardation film having a desired in-plane retardation and having a slow axis in the desired direction (substantially long film) Shaped retardation film) can be obtained.
 斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報等に記載の方法が挙げられる。 Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
 上記フィルムの延伸温度は、位相差フィルムに所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差フィルムが得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation film, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, a retardation film having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
D.導電層
 導電層30は、代表的には透明である(すなわち、導電層は透明導電層である)。位相差層の偏光子と反対側に導電層を形成することにより、光学積層体は、表示セル(例えば、液晶セル、有機ELセル)と偏光子との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。
D. Conductive Layer The conductive layer 30 is typically transparent (that is, the conductive layer is a transparent conductive layer). By forming a conductive layer on the opposite side of the retardation layer from the polarizer, the optical laminate is a so-called touch sensor in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and the polarizer. It can be applied to an inner touch panel type input display device.
 導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましい。具体例としては、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 The conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. As a result, an electrode can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. The pattern shape is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP2011-511357A, JP2010-164938A, JP2008-310550A, JP2003-511799A, and JP2010-541109A. It is done.
 導電層の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。 The total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
 導電層の密度は、好ましくは1.0g/cm~10.5g/cmであり、より好ましくは1.3g/cm~3.0g/cmである。 The density of the conductive layer is preferably 1.0 g / cm 3 to 10.5 g / cm 3 , more preferably 1.3 g / cm 3 to 3.0 g / cm 3 .
 導電層の表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~500Ω/□であり、さらに好ましくは1Ω/□~250Ω/□である。 The surface resistance value of the conductive layer is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 500Ω / □, and further preferably 1Ω / □ to 250Ω / □.
 導電層の代表例としては、金属酸化物を含む導電層が挙げられる。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。 A typical example of the conductive layer is a conductive layer containing a metal oxide. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電層の厚みは、好ましくは0.01μm~0.05μm(10nm~50nm)であり、より好ましくは0.01μm~0.03μm(10nm~30nm)である。このような範囲であれば、導電性および光透過性に優れる導電層を得ることができる。 The thickness of the conductive layer is preferably 0.01 μm to 0.05 μm (10 nm to 50 nm), more preferably 0.01 μm to 0.03 μm (10 nm to 30 nm). If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
E.保護層
 保護層40は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
E. Protective Layer The protective layer 40 is formed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 本発明の光学積層体は、後述するように代表的には画像表示装置の視認側に配置され、保護層40は、代表的にはその視認側に配置される。したがって、保護層40には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層40には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学積層体は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 As will be described later, the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the protective layer 40 is typically disposed on the viewing side. Therefore, the protective layer 40 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and antiglare treatment as necessary. Further / or, if necessary, the protective layer 40 may be treated to improve visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied). By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
 保護層の厚みは、好ましくは20μm~200μm、より好ましくは30μm~100μm、さらに好ましくは35μm~95μmである。 The thickness of the protective layer is preferably 20 μm to 200 μm, more preferably 30 μm to 100 μm, and still more preferably 35 μm to 95 μm.
 内側保護層を設ける場合には、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。 When an inner protective layer is provided, the inner protective layer is preferably optically isotropic. In this specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say.
 内側保護層の材料および厚み等は、保護層40に関して上記で説明したとおりである。 The material and thickness of the inner protective layer are as described above for the protective layer 40.
F.アンチブロッキング層
 アンチブロッキング層は、代表的には凹凸表面を有する。凹凸表面は、微細な凹凸表面であってもよく、平坦部と隆起部とを有する表面であってもよい。1つの実施形態においては、アンチブロッキング層は、その表面の算術平均粗さRaが好ましくは50nm以上である。凹凸表面は、例えば、アンチブロッキング層を形成する樹脂組成物に微粒子を含有させること、および/または、アンチブロッキング層を形成する樹脂組成物を相分離させることにより形成され得る。
F. Anti-blocking layer The anti-blocking layer typically has an uneven surface. The uneven surface may be a fine uneven surface or a surface having a flat portion and a raised portion. In one embodiment, the anti-blocking layer has an arithmetic average roughness Ra of the surface of preferably 50 nm or more. The uneven surface can be formed, for example, by allowing the resin composition forming the anti-blocking layer to contain fine particles and / or phase-separating the resin composition forming the anti-blocking layer.
 樹脂組成物に用いられる樹脂としては、例えば、熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂が挙げられる。紫外線硬化型樹脂が好ましい。簡単な加工操作にて効率よくアンチブロッキング層を形成することができるからである。 Examples of the resin used in the resin composition include a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, an electron beam curable resin, and a two-component mixed resin. An ultraviolet curable resin is preferred. This is because the anti-blocking layer can be efficiently formed by a simple processing operation.
 紫外線硬化型樹脂としては、任意の適切な樹脂を用いることができる。具体例としては、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アミド系樹脂、シリコーン系樹脂、エポキシ系樹脂が挙げられる。紫外線硬化型樹脂は、紫外線硬化型のモノマー、オリゴマー、ポリマーを包含する。本発明の実施形態においては、紫外線硬化型樹脂としてウレタン(メタ)アクリレートが好適に用いられ得る。 Any appropriate resin can be used as the ultraviolet curable resin. Specific examples include polyester resins, acrylic resins, urethane resins, amide resins, silicone resins, and epoxy resins. The ultraviolet curable resin includes an ultraviolet curable monomer, oligomer, and polymer. In the embodiment of the present invention, urethane (meth) acrylate can be suitably used as the ultraviolet curable resin.
 ウレタン(メタ)アクリレートとしては、(メタ)アクリル酸、(メタ)アクリル酸エステル、ポリオールおよびジイソシアネートを構成成分として含有するものが用いられ得る。例えば、(メタ)アクリル酸および(メタ)アクリル酸エステルの少なくとも一方のモノマーとポリオールとを用いて水酸基を1個以上有するヒドロキシ(メタ)アクリレートを作製し、当該ヒドロキシ(メタ)アクリレートをジイソシアネートと反応させることによりウレタン(メタ)アクリレートを製造することができる。ウレタン(メタ)アクリレートは、一種類を単独で使用でもよく、二種類以上を併用してもよい。 As the urethane (meth) acrylate, those containing (meth) acrylic acid, (meth) acrylic acid ester, polyol and diisocyanate as constituent components may be used. For example, a hydroxy (meth) acrylate having at least one hydroxyl group is prepared using at least one monomer of (meth) acrylic acid and (meth) acrylic acid ester and a polyol, and the hydroxy (meth) acrylate is reacted with a diisocyanate. By making it, urethane (meth) acrylate can be manufactured. Urethane (meth) acrylate may be used individually by 1 type, and may use 2 or more types together.
 微粒子としては、任意の適切な微粒子を用いることができる。微粒子は、好ましくは透明性を有する。このような微粒子を構成する材料としては、金属酸化物、ガラス、樹脂が挙げられる。具体例としては、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の有機系微粒子、シリコーン系粒子などが挙げられる。微粒子は、1種類を単独で用いてもよく、2種以上を併用してもよい。好ましくは有機系微粒子であり、より好ましくはアクリル系樹脂の微粒子である。屈折率が適切だからである。 As the fine particles, any appropriate fine particles can be used. The fine particles preferably have transparency. Examples of the material constituting such fine particles include metal oxide, glass, and resin. Specific examples include inorganic fine particles such as silica, alumina, titania, zirconia, and calcium oxide, and organic fine particles such as polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate. And silicone-based particles. The fine particles may be used alone or in combination of two or more. Organic fine particles are preferable, and acrylic resin fine particles are more preferable. This is because the refractive index is appropriate.
 微粒子の最頻粒子径は、アンチブロッキング層のアンチブロッキング性、ヘイズ等に応じて適切に設定することができる。微粒子の最頻粒子径は、例えば、アンチブロッキング層の厚さの±50%の範囲内である。なお、本明細書において「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA-3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料としては、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させた分散液が用いられ得る。 The mode particle diameter of the fine particles can be appropriately set according to the anti-blocking property and haze of the anti-blocking layer. The mode particle diameter of the fine particles is within a range of ± 50% of the thickness of the anti-blocking layer, for example. In the present specification, “mode particle size” refers to a particle size showing a maximum value of particle distribution, and using a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex), It is obtained by measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). As a measurement sample, a dispersion liquid in which particles are diluted to 1.0% by weight with ethyl acetate and uniformly dispersed using an ultrasonic cleaner may be used.
 微粒子の含有量は、樹脂組成物の固形分100重量部に対して、好ましくは0.05重量部~1.0重量部であり、より好ましくは0.1重量部~0.5重量部であり、さらに好ましくは0.1重量部~0.2重量部である。微粒子の含有量が少なすぎると、アンチブロッキング性が不十分となる場合がある。微粒子の含有量が多すぎると、アンチブロッキング層のヘイズが高くなり、光学積層体(最終的には画像表示装置)の視認性が不十分となる場合がある。 The content of the fine particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight with respect to 100 parts by weight of the solid content of the resin composition. More preferably 0.1 to 0.2 parts by weight. When there is too little content of microparticles | fine-particles, antiblocking property may become inadequate. When there is too much content of microparticles | fine-particles, the haze of an antiblocking layer will become high and the visibility of an optical laminated body (eventually image display apparatus) may become inadequate.
 樹脂組成物は、目的に応じて任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、反応性希釈剤、可塑剤、界面活性剤、酸化防止剤、紫外線吸収剤、レベリング剤、チクソトロピー剤、帯電防止剤が挙げられる。添加剤の数、種類、組み合わせ、添加量等は目的に応じて適切に設定され得る。 The resin composition may further contain any appropriate additive depending on the purpose. Specific examples of the additive include a reactive diluent, a plasticizer, a surfactant, an antioxidant, an ultraviolet absorber, a leveling agent, a thixotropic agent, and an antistatic agent. The number, type, combination, addition amount, and the like of the additives can be appropriately set according to the purpose.
 アンチブロッキング層は、代表的には、樹脂組成物を基材30の表面に塗布し、硬化させることにより形成され得る。塗布方法としては、任意の適切な方法を採用することができる。塗布方法の具体例としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法、押出コート法が挙げられる。 The anti-blocking layer can be typically formed by applying a resin composition to the surface of the substrate 30 and curing it. Any appropriate method can be adopted as a coating method. Specific examples of the coating method include a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method, and an extrusion coating method.
 硬化方法は、樹脂組成物に含まれる樹脂の種類に応じて適切に選択され得る。例えば、紫外線硬化樹脂を用いる場合には、例えば150mJ/cm以上、好ましくは200mJ/cm~1000mJ/cmの露光量で紫外線を照射することにより、樹脂組成物を適切に硬化させてアンチブロッキング層を形成することができる。 The curing method can be appropriately selected according to the type of resin contained in the resin composition. For example, when an ultraviolet curable resin is used, the resin composition is appropriately cured by irradiating ultraviolet rays at an exposure amount of, for example, 150 mJ / cm 2 or more, preferably 200 mJ / cm 2 to 1000 mJ / cm 2. A blocking layer can be formed.
 アンチブロッキング層の厚みは、好ましくは0.5μm~2.0μmであり、より好ましくは0.8μm~1.5μmである。このような厚みであれば、光学積層体に所望される光学特性に悪影響を与えることなく、良好なアンチブロッキング性を確保することができる。 The thickness of the anti-blocking layer is preferably 0.5 μm to 2.0 μm, more preferably 0.8 μm to 1.5 μm. With such a thickness, good antiblocking properties can be secured without adversely affecting the optical properties desired for the optical laminate.
 アンチブロッキング層のヘイズ値は、上記のとおり好ましくは0.2%~4%であり、より好ましくは0.5%~3%である。ヘイズ値がこのような範囲であれば、視認性を失うことなくフィルム同士のブロッキングを防止できるという利点を有する。 As described above, the haze value of the anti-blocking layer is preferably 0.2% to 4%, more preferably 0.5% to 3%. If a haze value is such a range, it has the advantage that the blocking of films can be prevented, without losing visibility.
 アンチブロッキング層の構成、材料、形成方法等の詳細は、例えば、特開2015-115171号公報、特開2015-141674号公報、特開2015-120870号公報、特開2015-005272号公報に記載されている。これらの記載は、本明細書に参考として援用される。 Details of the configuration, material, and forming method of the anti-blocking layer are described in, for example, JP-A-2015-115171, JP-A-2015-141684, JP-A-2015-120870, JP-A-2015-005272. Has been. These descriptions are incorporated herein by reference.
G.画像表示装置
 上記A項からF項に記載の光学積層体は、画像表示装置に適用され得る。したがって、本発明は、そのような光学積層体を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、有機EL表示装置が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からF項に記載の光学積層体を備える。光学積層体は、導電層が表示セル(例えば、液晶セル、有機ELセル)側となるように(偏光子が視認側となるように)配置されている。画像表示装置は、1つの実施形態においては屈曲可能(ベンダブル)であり、別の実施形態においては折り畳み可能(フォルダブル)である。
G. Image Display Device The optical layered body described in the items A to F can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device. An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to F on the viewing side. The optical layered body is disposed so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (the polarizer is on the viewing side). The image display device is bendable (bendable) in one embodiment, and foldable (foldable) in another embodiment.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic is as follows.
(1)厚み
 導電層については、大塚電子製MCPD2000を用いて干渉膜厚測定法によって測定した。その他のフィルムについては、デジタルマイクロメーター(アンリツ社製KC-351C)を用いて測定した。
(1) Thickness The conductive layer was measured by an interference film thickness measurement method using MCPD2000 manufactured by Otsuka Electronics. The other films were measured using a digital micrometer (KC-351C manufactured by Anritsu).
(2)位相差層の位相差値
 実施例および比較例で用いた位相差層(位相差フィルム)の屈折率nx、nyおよびnzを、自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA-WPR)により計測した。面内位相差Reの測定波長は450nmおよび550nmであり、厚み方向位相差Rthの測定波長は550nmであり、測定温度は23℃であった。
(2) Retardation value of retardation layer Refractive indexes nx, ny and nz of retardation layers (retardation films) used in Examples and Comparative Examples are automatically determined from an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic It was measured with a birefringence meter KOBRA-WPR. The measurement wavelength of the in-plane retardation Re was 450 nm and 550 nm, the measurement wavelength of the thickness direction retardation Rth was 550 nm, and the measurement temperature was 23 ° C.
(3-1)反射色相
 得られた有機EL表示装置代替品に光学積層体を実装し、コニカミノルタ社製の分光測色器CM-2600dを用いて反射色相を測定した。a、bともに絶対値が10以下かつ反射率Yが30%以下である場合は「○」、a、bおよび反射率の少なくとも1つがその範囲を超えた場合は「×」とした。
(3-2)屈曲部色ムラ評価
 得られた曲面表示装置代替品に実装した光学積層体の色味を目視により観察し、屈曲部と平面部との色変化が小さいものを「○」、色変化が大きいものを「×」とした。
(3-1) Reflected hue The optical laminate was mounted on the obtained organic EL display device substitute, and the reflected hue was measured using a spectrocolorimeter CM-2600d manufactured by Konica Minolta. If both a * and b * have an absolute value of 10 or less and the reflectance Y is 30% or less, “o”, and if at least one of a * , b * and the reflectance exceeds the range, “x”. did.
(3-2) Evaluation of bending portion color unevenness The color of the optical laminate mounted on the obtained curved surface display device substitute was visually observed, and “◯” indicates that the color change between the bending portion and the flat portion was small. A thing with a large color change was set to "x".
(4)光弾性係数
 実施例および比較例で用いた位相差フィルムを、20mm×100mmのサイズに切り出して試料を作製した。この試料をエリプソメーター(日本分光社製、M-150)により波長550nmの光で測定し、光弾性係数を得た。
(4) Photoelastic coefficient The retardation films used in Examples and Comparative Examples were cut into a size of 20 mm × 100 mm to prepare a sample. This sample was measured with an ellipsometer (manufactured by JASCO Corporation, M-150) with light having a wavelength of 550 nm to obtain a photoelastic coefficient.
(5)還元粘度
 樹脂試料を塩化メチレンに溶解させ、精密に0.6g/dLの濃度の樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t、及び溶液の通過時間tを測定した。得られたt及びtの値を用いて次式(i)により相対粘度ηrelを求め、さらに、得られた相対粘度ηrelを用いて次式(ii)により比粘度ηspを求めた。
  ηrel=t/t  (i)
  ηsp=(η-η)/η=ηrel-1  (ii)
その後、得られた比粘度ηspを濃度c[g/dL]で割って、還元粘度ηsp/cを求めた。
(5) Reduced viscosity A resin sample was dissolved in methylene chloride to prepare a resin solution having a concentration of 0.6 g / dL precisely. Measurement was performed at a temperature of 20.0 ° C. ± 0.1 ° C. using an Ubbelohde viscometer manufactured by Moriyu Rika Kogyo Co., Ltd., and a solvent passage time t 0 and a solution passage time t were measured. The relative viscosity η rel was obtained from the following equation (i) using the obtained values t 0 and t, and the specific viscosity η sp was obtained from the following equation (ii) using the obtained relative viscosity η rel . .
η rel = t / t 0 (i)
η sp = (η−η 0 ) / η 0 = η rel −1 (ii)
Thereafter, the reduced viscosity η sp / c was determined by dividing the obtained specific viscosity η sp by the concentration c [g / dL].
(6)ガラス転移温度
 エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂試料を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から220℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び220℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(6) Glass transition temperature The glass transition temperature was measured using a differential scanning calorimeter DSC 6220 manufactured by SII Nanotechnology. About 10 mg of a resin sample was put in an aluminum pan manufactured by the same company and sealed, and the temperature was raised from 30 ° C. to 220 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C. for 3 minutes, and the temperature was increased again to 220 ° C. at a rate of 20 ° C./min. From the DSC data obtained at the second temperature increase, a straight line obtained by extending the base line on the low temperature side to the high temperature side, and a tangent line drawn at a point where the slope of the step change portion of the glass transition becomes maximum The extrapolated glass transition start temperature, which is the temperature of the intersection point, was determined and used as the glass transition temperature.
(7)溶融粘度
 ペレット状の樹脂試料を90℃で5時間以上、真空乾燥させた。乾燥したペレットを用いて、(株)東洋精機製作所製キャピラリーレオメーターで測定を行った。測定温度は240℃とし、剪断速度9.12~1824sec-1間で溶融粘度を測定し、91.2sec-1における溶融粘度の値を用いた。尚、オリフィスには、ダイス径がφ1mm×10mmLのものを用いた。
(7) Melt viscosity The pellet-shaped resin sample was vacuum-dried at 90 ° C for 5 hours or more. Measurement was performed using a capillary rheometer manufactured by Toyo Seiki Seisakusho, using the dried pellets. The measurement temperature was 240 ° C., the melt viscosity was measured at a shear rate of 9.12 to 1824 sec −1 , and the value of the melt viscosity at 91.2 sec −1 was used. An orifice having a die diameter of φ1 mm × 10 mmL was used.
(8)屈折率
 後述の実施例と比較例において作製した未延伸フィルムから、長さ40mm、幅8mmの長方形の試験片を切り出して測定試料とした。589nm(D線)の干渉フィルターを用いて、(株)アタゴ製多波長アッベ屈折率計DR-M4/1550により屈折率nを測定した。測定は界面液としてモノブロモナフタレンを用い、20℃で行った。
(8) Refractive index A rectangular test piece having a length of 40 mm and a width of 8 mm was cut out from an unstretched film produced in Examples and Comparative Examples described later to obtain a measurement sample. The refractive index n D was measured with a multi-wavelength Abbe refractometer DR-M4 / 1550 manufactured by Atago Co., Ltd. using an interference filter of 589 nm (D line). The measurement was performed at 20 ° C. using monobromonaphthalene as the interfacial liquid.
(9)全光線透過率
 上記の未延伸フィルムを測定試料に用いて、日本電色工業(株)製濁度計COH400を用いて全光線透過率を測定した。
(9) Total light transmittance Using the above unstretched film as a measurement sample, the total light transmittance was measured using a turbidimeter COH400 manufactured by Nippon Denshoku Industries Co., Ltd.
(モノマーの合成例)
[合成例1]ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(BPFM)の合成
 特開2015-25111に記載の方法で合成した。
[合成例2]6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン(SBI)の合成
 特開2014-114281に記載の方法で合成した。
(Example of monomer synthesis)
[Synthesis Example 1] Synthesis of bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (BPFM) The compound was synthesized by the method described in JP-A-2015-25111.
[Synthesis Example 2] Synthesis of 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane (SBI) The compound was synthesized by the method described in JP-A-2014-114281.
[ポリカーボネート樹脂の合成例、及び特性評価]
以下の実施例、及び比較例で用いた化合物の略号等は以下の通りである。
・BPFM:ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン
・BCF:9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(大阪ガスケミカル(株)製)
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル(株)製)
・ISB:イソソルビド(ロケットフルーレ社製、商品名:POLYSORB)
・SBI:6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン
・SPG:スピログリコール(三菱ガス化学(株)製)
・PEG:ポリエチレングリコール 数平均分子量:1000(三洋化成(株)製)
・DPC:ジフェニルカーボネート(三菱化学(株)製)
[Synthesis example and characteristic evaluation of polycarbonate resin]
Abbreviations and the like of compounds used in the following examples and comparative examples are as follows.
BPFM: bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane BCF: 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd.)
BHEPF: 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (manufactured by Osaka Gas Chemical Co., Ltd.)
ISB: Isosorbide (Rocket Fleure, trade name: POLYSORB)
SBI: 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane SPG: Spiroglycol (manufactured by Mitsubishi Gas Chemical Co., Inc.)
・ PEG: Polyethylene glycol Number average molecular weight: 1000 (manufactured by Sanyo Chemical Co., Ltd.)
・ DPC: Diphenyl carbonate (Mitsubishi Chemical Corporation)
[実施例1]
(位相差層の作製)
 SBI 6.04重量部(0.020mol)、ISB 59.58重量部(0.408mol)、BPFM 34.96重量部(0.055mol)、DPC 79.39重量部(0.371mol)、及び触媒として酢酸カルシウム1水和物7.53×10-4重量部(4.27×10-6mol)を反応容器に投入し、反応装置内を減圧窒素置換した。窒素雰囲気下、150℃で約10分間、攪拌しながら原料を溶解させた。反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し、発生するフェノールを反応系外へ抜き出した。次いで反応2段目の工程として熱媒温度を15分かけて245℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応系外へ抜き出した。所定の撹拌トルクに到達後、窒素で常圧まで復圧して反応を停止し、生成したポリエステルカーボネート樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。得られた樹脂の還元粘度は0.375dL/g、ガラス転移温度は165℃、溶融粘度は5070Pa・s、屈折率は1.5454、光弾性係数は15×10-12/Nであった。
 100℃で5時間以上、真空乾燥をした樹脂ペレットを、いすず化工機(株)製単軸押出機(スクリュー径25mm、シリンダー設定温度:255℃)を用い、Tダイ(幅200mm、設定温度:250℃)から押し出した。押し出したフィルムを、チルロール(設定温度:155℃)により冷却しつつ巻取機でロール状にし、未延伸フィルムを100μm厚のフィルムを作製した。上記のようにして得られたポリカーボネート樹脂フィルムを、120mm×150mmの長方形の試験片を安全カミソリで切り出し、バッチ式二軸延伸装置(ブルックナー社製)で、長手方向に延伸温度171℃、延伸速度5mm/secで1×2.4倍の一軸延伸を行った。
[Example 1]
(Production of retardation layer)
SBI 6.04 parts by weight (0.020 mol), ISB 59.58 parts by weight (0.408 mol), BPFM 34.96 parts by weight (0.055 mol), DPC 79.39 parts by weight (0.371 mol), and catalyst As a result, 7.53 × 10 −4 parts by weight (4.27 × 10 −6 mol) of calcium acetate monohydrate was charged into the reaction vessel, and the inside of the reaction apparatus was purged with nitrogen under reduced pressure. In a nitrogen atmosphere, the raw materials were dissolved while stirring at 150 ° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220 ° C. over 30 minutes, and the reaction was performed at normal pressure for 60 minutes. Next, the pressure was reduced from normal pressure to 13.3 kPa over 90 minutes, maintained at 13.3 kPa for 30 minutes, and the generated phenol was extracted out of the reaction system. Next, as the second step of the reaction, the temperature of the heating medium was raised to 245 ° C. over 15 minutes, while the pressure was reduced to 0.10 kPa or less over 15 minutes, and the generated phenol was extracted out of the reaction system. After reaching a predetermined stirring torque, the reaction was stopped by restoring the pressure to normal pressure with nitrogen, the produced polyester carbonate resin was extruded into water, and the strand was cut to obtain pellets. The resulting resin had a reduced viscosity of 0.375 dL / g, a glass transition temperature of 165 ° C., a melt viscosity of 5070 Pa · s, a refractive index of 1.5454, and a photoelastic coefficient of 15 × 10 −12 m 2 / N. It was.
Resin pellets that had been vacuum-dried at 100 ° C. for 5 hours or longer were used with a single die extruder (screw diameter 25 mm, cylinder set temperature: 255 ° C.) manufactured by Isuzu Chemical Industries, Ltd., and T-die (width 200 mm, set temperature: 250 ° C). The extruded film was rolled by a winder while being cooled by a chill roll (set temperature: 155 ° C.), and an unstretched film having a thickness of 100 μm was produced. The polycarbonate resin film obtained as described above was cut into a rectangular test piece of 120 mm × 150 mm with a safety razor, and stretched at a stretching temperature of 171 ° C. in the longitudinal direction with a batch-type biaxial stretching apparatus (Brookner) and a stretching speed. Uniaxial stretching was performed 1 × 2.4 times at 5 mm / sec.
 以上のようにして、位相差フィルム(厚み64μm)を得た。得られた位相差フィルムのRe(550)は147nm、Rth(550)は147nmであり、nx>ny=nzの屈折率特性を示した。また、得られた位相差フィルムのRe(450)/Re(550)は0.81であった。位相差フィルムの遅相軸方向は、長手方向に対して0°であった。 As described above, a retardation film (thickness 64 μm) was obtained. The obtained retardation film had Re (550) of 147 nm and Rth (550) of 147 nm, and exhibited refractive index characteristics of nx> ny = nz. Moreover, Re (450) / Re (550) of the obtained retardation film was 0.81. The slow axis direction of the retardation film was 0 ° with respect to the longitudinal direction.
(位相差層/導電層の積層体の作製)
 上記位相差フィルム(位相差層)表面に、インジウム-スズ複合酸化物からなる透明導電層(厚み20nm)をスパッタリングにより形成し、位相差層/導電層の積層体を作製した。具体的な手順は以下のとおりである:ArおよびO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて、フィルム温度を130℃とし、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)を用いた。得られた透明導電層を150℃温風オーブンにて加熱して結晶転化処理を行った。
(Production of retardation layer / conductive layer laminate)
A transparent conductive layer (thickness 20 nm) made of an indium-tin composite oxide was formed on the surface of the retardation film (retardation layer) by sputtering to produce a retardation layer / conductive layer laminate. The specific procedure is as follows: 10% by weight oxidation in a vacuum atmosphere (0.40 Pa) with Ar and O 2 (flow ratio Ar: O 2 = 99.9: 0.1) introduced RF superimposed DC magnetron sputtering method (discharge voltage 150 V, RF frequency 13.56 MHz, DC, using a sintered body of tin and 90 wt% indium oxide as a target, setting the film temperature to 130 ° C., and setting the horizontal magnetic field to 100 mT. The ratio of RF power to power (RF power / DC power) was 0.8). The obtained transparent conductive layer was heated in a 150 ° C. hot air oven to perform a crystal conversion treatment.
(偏光子の作製)
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
(Production of polarizer)
At the same time, a long roll of polyvinyl alcohol (PVA) resin film (product name “PE3000”, manufactured by Kuraray Co., Ltd.) having a thickness of 30 μm is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. Swelling, dyeing, crosslinking, and washing treatment were performed, and finally a drying treatment was performed to produce a polarizer having a thickness of 12 μm.
Specifically, the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C. Next, the dyeing treatment is performed in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%. The film was stretched 1.4 times. Furthermore, the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. In addition, the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight. Finally, the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer.
(偏光板の作製)
 上記偏光子の片側に、ポリビニルアルコール系接着剤を介して、TACフィルムを貼り合わせ、保護層/偏光子の構成を有する偏光板を得た。
(Preparation of polarizing plate)
A TAC film was bonded to one side of the polarizer via a polyvinyl alcohol adhesive to obtain a polarizing plate having a protective layer / polarizer configuration.
(光学積層体の作製)
 上記で得られた偏光板の偏光子面と上記で得られた位相差層/導電層の積層体の位相差層面とを、アクリル系粘着剤を介して貼り合わせた。なお、位相差フィルムは、貼り合せた際に、その遅相軸と偏光子の吸収軸が45度の角度をなすように切り出した。また偏光子の吸収軸は長手方向に平行となるように配置した。このようにして、保護層/偏光子/位相差層/導電層の構成を有する光学積層体を得た。
(Production of optical laminate)
The polarizer surface of the polarizing plate obtained above and the retardation layer surface of the retardation layer / conductive layer laminate obtained above were bonded together via an acrylic pressure-sensitive adhesive. The retardation film was cut out so that the slow axis and the absorption axis of the polarizer form an angle of 45 degrees when bonded. The absorption axis of the polarizer was arranged so as to be parallel to the longitudinal direction. Thus, an optical layered body having a configuration of protective layer / polarizer / retardation layer / conductive layer was obtained.
(画像表示装置代替品の作製)
 有機EL表示装置の代替品を以下のようにして作製した。ガラス板に、アルミ蒸着フィルム(東レフィルム加工社製、商品名「DMS蒸着X-42」、厚み50μm)を粘着剤で貼り合せ、有機EL表示装置の代替品とした。得られた光学積層体の導電層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出し、有機EL表示装置代替品に実装し、その反射色相を上記(3-1)の手順で測定した。その際、コントロールとして、導電層を形成しなかったこと以外は上記と同様にして作製した保護層/偏光子/位相差層の構成を有する光学積層体を用いた実装品についても同様に、その反射色相を上記(3-1)の手順で測定した。
(Production of image display device replacement)
An alternative to the organic EL display device was produced as follows. An aluminum vapor-deposited film (trade name “DMS vapor-deposited X-42”, thickness 50 μm) manufactured by Toray Film Processing Co., Ltd. was bonded to a glass plate with an adhesive to make an alternative to an organic EL display device. A pressure-sensitive adhesive layer is formed with an acrylic pressure-sensitive adhesive on the conductive layer side of the obtained optical laminate, cut into a size of 50 mm × 50 mm, and mounted on a substitute for an organic EL display device. It measured in the procedure of. At that time, as a control, the same applies to the mounted product using the optical laminate having the structure of the protective layer / polarizer / retardation layer produced in the same manner as above except that the conductive layer was not formed. The reflected hue was measured by the above procedure (3-1).
(曲面表示装置代替品の作製)
 曲面表示装置の代替品を以下のように作製した。卓上ネームプレート(プラス社製、L型カード立て、幅寸法×奥行き寸法×高さ寸法が120mm×29mm×60mm)に、上記アルミ蒸着フィルム「DMS蒸着X-42」を粘着剤で貼り合せ、曲面表示装置の代替品とした。導電層を形成しなかったこと以外は上記と同様にして作製した保護層/偏光子/位相差層の構成を有する光学積層体を、当該代替品にアクリル系粘着剤を介して貼り合わせて実装品を得た。なお、光学積層体において、位相差フィルム(位相差層)は、その遅相軸と偏光子の吸収軸が45度の角度をなすように切り出した。また、光学積層体は、位相差層の遅相軸と屈曲部が延びる方向が直交するように配置した。実装品における屈曲部および平面部の色味を目視により観察し、上記(3-2)の基準で評価した。
(Production of a curved surface display device replacement)
An alternative to the curved display device was produced as follows. The above-mentioned aluminum vapor deposition film “DMS vapor deposition X-42” is pasted with an adhesive on a tabletop name plate (made by Plus, L-shaped card stand, width dimension × depth dimension × height dimension 120 mm × 29 mm × 60 mm). It was replaced with a display device. An optical laminate having the structure of protective layer / polarizer / retardation layer produced in the same manner as above except that the conductive layer was not formed is bonded to the substitute with an acrylic adhesive and mounted. I got a product. In the optical laminate, the retardation film (retardation layer) was cut so that the slow axis and the absorption axis of the polarizer form an angle of 45 degrees. In addition, the optical layered body was disposed so that the slow axis of the retardation layer and the direction in which the bent portion extends were orthogonal to each other. The color of the bent part and the flat part in the mounted product was visually observed and evaluated according to the above criteria (3-2).
 画像表示装置代替品および屈曲表示装置代替品における上記(3-1)および(3-2)の評価指標から、スパッタを直接形成する円偏光板の実力指標とした。結果を表1に示す。 From the evaluation indicators (3-1) and (3-2) in the image display device substitute product and the bent display device substitute product, the ability index of the circularly polarizing plate that directly forms the spatter was used. The results are shown in Table 1.
[実施例2]
 SBI 15.10重量部(0.049mol)、ISB 42.27重量部(0.289mol)、SPG 15.10重量部(0.050mol)、BPFM 26.22重量部(0.041mol)、DPC 75.14重量部(0.351mol)、及び触媒として酢酸カルシウム1水和物2.05×10-3重量部(1.16×10-5mol)を用いたこと以外は実施例1と同様にして、ポリエステルカーボネート樹脂を得た。得られた樹脂の還元粘度は0.334dL/g、ガラス転移温度は157℃、溶融粘度は3020Pa・s、屈折率は1.5360、光弾性係数は12×10-12/Nであった。
[Example 2]
SBI 15.10 parts by weight (0.049 mol), ISB 42.27 parts by weight (0.289 mol), SPG 15.10 parts by weight (0.050 mol), BPFM 26.22 parts by weight (0.041 mol), DPC 75 Example 14 except that .14 parts by weight (0.351 mol) and calcium acetate monohydrate 2.05 × 10 −3 parts by weight (1.16 × 10 −5 mol) were used as the catalyst. Thus, a polyester carbonate resin was obtained. The resulting resin had a reduced viscosity of 0.334 dL / g, a glass transition temperature of 157 ° C., a melt viscosity of 3020 Pa · s, a refractive index of 1.5360, and a photoelastic coefficient of 12 × 10 −12 m 2 / N. It was.
 上記のポリエステルカーボネート樹脂を用い、および、長手方向に延伸温度162℃、延伸速度5mm/secで1×2.4倍の一軸延伸を行ったこと以外は実施例1と同様にして、位相差フィルム(厚み65μm)を得た。得られた位相差フィルムのRe(550)は140nm、Rth(550)は140nmであり、nx>ny=nzの屈折率特性を示した。また、得られた位相差フィルムのRe(450)/Re(550)は0.86であった。位相差フィルムの遅相軸方向は、長手方向に対して0°であった。 A retardation film in the same manner as in Example 1 except that the above polyester carbonate resin was used and uniaxial stretching was performed 1 × 2.4 times at a stretching temperature of 162 ° C. and a stretching speed of 5 mm / sec in the longitudinal direction. (Thickness 65 μm) was obtained. The obtained retardation film had Re (550) of 140 nm and Rth (550) of 140 nm, and exhibited refractive index characteristics of nx> ny = nz. Further, Re (450) / Re (550) of the obtained retardation film was 0.86. The slow axis direction of the retardation film was 0 ° with respect to the longitudinal direction.
[比較例1]
 位相差層として市販のポリカーボネート樹脂フィルム(帝人社製、商品名「ピュアエースWR」)を用いたこと以外は実施例1と同様にして光学積層体および有機EL表示装置代替品を作製した。得られた有機EL表示装置代替品を実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 1]
An optical laminate and an organic EL display device substitute were prepared in the same manner as in Example 1 except that a commercially available polycarbonate resin film (trade name “Pure Ace WR” manufactured by Teijin Limited) was used as the retardation layer. The obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例2]
 SPG 60.43重量部(0.199mol)、BCF 32.20重量部(0.085mol)、DPC 64.40重量部(0.301mol)、及び触媒として酢酸カルシウム1水和物2.50×10-3重量部(1.42×10-5mol)を用い、最終重合温度を260℃とした以外は実施例1と同様に行い、ポリカーボネート樹脂を得た。得られた樹脂の得られた樹脂の還元粘度は0.499dL/g、ガラス転移温度は135℃、溶融粘度は2940Pa・s、屈折率は1.5334、光弾性係数は13×10-12/Nであった。このポリカーボネート樹脂から形成したフィルムを用いたこと以外は実施例1と同様にして光学積層体および有機EL表示装置代替品を作製した。得られた有機EL表示装置代替品を実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 2]
60.43 parts by weight (0.199 mol) of SPG, 32.20 parts by weight (0.085 mol) of BCF, 64.40 parts by weight (0.301 mol) of DPC, and 2.50 × 10 calcium acetate monohydrate as a catalyst A polycarbonate resin was obtained in the same manner as in Example 1 except that −3 parts by weight (1.42 × 10 −5 mol) was used and the final polymerization temperature was 260 ° C. The obtained resin has a reduced viscosity of 0.499 dL / g, a glass transition temperature of 135 ° C., a melt viscosity of 2940 Pa · s, a refractive index of 1.5334, and a photoelastic coefficient of 13 × 10 −12 m. 2 / N. An optical laminate and an organic EL display device substitute were produced in the same manner as in Example 1 except that a film formed from this polycarbonate resin was used. The obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例3]
 位相差層として市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ZEONOR」、面内位相差147nm)を用いたこと以外は実施例1と同様にして光学積層体および有機EL表示装置代替品を作製した。得られた有機EL表示装置代替品を実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 3]
The optical laminate and the organic EL display device were the same as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by ZEON Corporation, trade name “ZEONOR”, in-plane retardation 147 nm) was used as the retardation layer. An alternative was made. The obtained organic EL display device substitute was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例4]
 比較例1で用いた位相差層を実施例1で用いた偏光板に貼り合わせ、保護層/偏光子/位相差層の構成を有する円偏光板を得た。一方、市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ZEONOR」、面内位相差3nm)を基材として用い、当該基材の表面に、実施例1と同様にしてインジウム-スズ複合酸化物からなる透明導電層をスパッタリングにより形成した。円偏光板の位相差層面と基材/導電層の積層体の導電層面とをアクリル系粘着剤で貼り合わせ、保護層/偏光子/位相差層/導電層/基材の構成を有する光学積層体を得た。この光学積層体を用いたこと以外は実施例1と同様にして有機EL表示装置を作製した。得られた有機EL表示装置を実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 4]
The retardation layer used in Comparative Example 1 was bonded to the polarizing plate used in Example 1 to obtain a circularly polarizing plate having a configuration of protective layer / polarizer / retardation layer. On the other hand, a commercially available cycloolefin resin film (manufactured by Zeon Corporation, trade name “ZEONOR”, in-plane retardation 3 nm) was used as a base material, and indium-tin was used on the surface of the base material in the same manner as in Example 1. A transparent conductive layer made of a complex oxide was formed by sputtering. An optical laminate having a constitution of protective layer / polarizer / retardation layer / conductive layer / base material, wherein the retardation layer surface of the circularly polarizing plate and the conductive layer surface of the laminate of the base material / conductive layer are bonded together with an acrylic adhesive. Got the body. An organic EL display device was produced in the same manner as in Example 1 except that this optical laminate was used. The obtained organic EL display device was evaluated in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[評価]
 表1から明らかなように、位相差層のTg、光弾性係数および波長依存性を組み合わせて所定の範囲に設定することにより、スパッタリングで導電層を表面に直接形成しても、所望の光学特性を維持できることがわかる。光弾性係数が大きい位相差層を用いた比較例1では、屈曲部の色ムラが不良である。Tgが低い位相差層を用いた比較例2では、導電層の形成(スパッタリング)により反射色相が不良となっている。フラットな波長分散特性を有する位相差層を用いた比較例3では、導電層(スパッタリング)の有無にかかわらず反射色相が不良となっている。基材に導電層を形成し基材/導電層の積層体を貼り合わせた比較例4では、基材および貼り合わせのための粘着剤層の厚み分が分厚くなっている。さらに、比較例4では、屈曲部の色ムラが不良となっている。
[Evaluation]
As is clear from Table 1, by setting the Tg, photoelastic coefficient, and wavelength dependency of the retardation layer within a predetermined range, the desired optical characteristics can be obtained even when the conductive layer is directly formed on the surface by sputtering. Can be maintained. In Comparative Example 1 using the retardation layer having a large photoelastic coefficient, the color unevenness of the bent portion is poor. In Comparative Example 2 using a retardation layer having a low Tg, the reflection hue is poor due to the formation (sputtering) of the conductive layer. In Comparative Example 3 using a retardation layer having flat wavelength dispersion characteristics, the reflection hue is poor regardless of the presence or absence of a conductive layer (sputtering). In Comparative Example 4 in which the conductive layer was formed on the base material and the base material / conductive layer laminate was bonded, the thickness of the base material and the pressure-sensitive adhesive layer for bonding was increased. Furthermore, in Comparative Example 4, the color unevenness of the bent portion is defective.
 本発明の光学積層体は画像表示装置(代表的には、液晶表示装置、有機EL表示装置)に好適に用いられ得る。 The optical layered body of the present invention can be suitably used for an image display device (typically, a liquid crystal display device or an organic EL display device).
 10   偏光子
 20   位相差層(位相差フィルム)
 30   導電層
 40   保護層
100   光学積層体
 
10 Polarizer 20 Retardation layer (retardation film)
30 conductive layer 40 protective layer 100 optical laminate

Claims (9)

  1.  偏光子と、位相差層と、該位相差層に直接形成された導電層と、を備え、
     該位相差層は、面内位相差Re(550)が100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たし、ならびに、ガラス転移温度(Tg)が150℃以上であり、光弾性係数の絶対値が20×10-12(m/N)以下であり、
     該位相差層の遅相軸と該偏光子の吸収軸とのなす角度が35°~55°である、
     光学積層体。
    A polarizer, a retardation layer, and a conductive layer formed directly on the retardation layer,
    The retardation layer has an in-plane retardation Re (550) of 100 nm to 180 nm, satisfies a relationship of Re (450) <Re (550) <Re (650), and has a glass transition temperature (Tg). Is 150 ° C. or more, and the absolute value of the photoelastic coefficient is 20 × 10 −12 (m 2 / N) or less,
    The angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is 35 ° to 55 °.
    Optical laminate.
  2.  前記位相差層が、下記式(1)または(2)で表される構造単位を少なくとも含有するポリカーボネート樹脂で構成されている、請求項1に記載の光学積層体:
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)及び(2)中、R~Rは、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R~Rは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
    The optical laminate according to claim 1, wherein the retardation layer is composed of a polycarbonate resin containing at least a structural unit represented by the following formula (1) or (2):
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (1) and (2), R 1 to R 3 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent, and R 4 to R 9 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent. An optionally substituted acyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, an optionally substituted aryloxy group having 1 to 10 carbon atoms, An amino group which may have a substituent, a vinyl group having 1 to 10 carbon atoms which may have a substituent, an ethynyl group having 1 to 10 carbon atoms which may have a substituent, a substituent; A sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group. , R 4 ~ R 9 are identical to one another or different, may form a ring with each other at least two neighboring groups of the R 4 ~ R 9.)
  3.  前記位相差層が、下記式(3)で表される構造単位を少なくとも含有するポリカーボネート樹脂で構成されている、請求項1または2に記載の光学積層体:
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R10~R15はそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
    The optical layered body according to claim 1 or 2, wherein the retardation layer is composed of a polycarbonate resin containing at least a structural unit represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.)
  4.  前記位相差層が、下記式(4)で表される構造単位を少なくとも含有するポリカーボネート樹脂で構成されている、請求項1から3のいずれかに記載の光学積層体:
    Figure JPOXMLDOC01-appb-C000004
    The optical laminate according to any one of claims 1 to 3, wherein the retardation layer is composed of a polycarbonate resin containing at least a structural unit represented by the following formula (4):
    Figure JPOXMLDOC01-appb-C000004
  5.  前記ポリカーボネート樹脂の、測定温度240℃、剪断速度91.2sec-1における溶融粘度が、3000Pa・s以上、7000Pa・s以下である、請求項2から4のいずれか一項に記載の光学積層体。 5. The optical laminate according to claim 2, wherein the polycarbonate resin has a melt viscosity at a measurement temperature of 240 ° C. and a shear rate of 91.2 sec −1 of 3000 Pa · s or more and 7000 Pa · s or less. .
  6.  前記ポリカーボネート樹脂の、ナトリウムd線(589nm)における屈折率が、1.49以上、1.56以下である、請求項2から5のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 2 to 5, wherein the polycarbonate resin has a refractive index of 1.49 or more and 1.56 or less at a sodium d line (589 nm).
  7.  前記偏光子の前記位相差層と反対側に貼り合わされた保護層をさらに備える、請求項1から6のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, further comprising a protective layer bonded to the opposite side of the polarizer from the retardation layer.
  8.  前記偏光子と前記位相差層との間に保護層をさらに備える、請求項1から7のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 7, further comprising a protective layer between the polarizer and the retardation layer.
  9.  請求項1から8のいずれかに記載の光学積層体を視認側に備え、該光学積層体の偏光子が視認側に配置されている、画像表示装置。
     
     
    An image display device comprising the optical laminate according to any one of claims 1 to 8 on the viewing side, wherein the polarizer of the optical laminate is disposed on the viewing side.

PCT/JP2017/003377 2016-02-05 2017-01-31 Optical laminate and image display device in which said optical laminate is used WO2017135239A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780009590.6A CN108603970B (en) 2016-02-05 2017-01-31 Optical laminate and image display device using same
US16/072,771 US20190079231A1 (en) 2016-02-05 2017-01-31 Optical laminate and image display device in which said optical laminate is used
KR1020187022497A KR102577635B1 (en) 2016-02-05 2017-01-31 Optical laminate and image display device using the optical laminate
SG11201806359WA SG11201806359WA (en) 2016-02-05 2017-01-31 Optical laminate and image display device in which said optical laminate is used

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-021299 2016-02-05
JP2016021299 2016-02-05
JP2017-014146 2017-01-30
JP2017014146A JP7044468B2 (en) 2016-02-05 2017-01-30 An optical laminate and an image display device using the optical laminate

Publications (1)

Publication Number Publication Date
WO2017135239A1 true WO2017135239A1 (en) 2017-08-10

Family

ID=59499846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003377 WO2017135239A1 (en) 2016-02-05 2017-01-31 Optical laminate and image display device in which said optical laminate is used

Country Status (1)

Country Link
WO (1) WO2017135239A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873916A (en) * 2018-08-29 2020-03-10 日东电工株式会社 Retardation film, polarizing plate with retardation layer, and method for producing retardation film
CN113544552A (en) * 2019-10-21 2021-10-22 日东电工株式会社 Retardation film, method for producing same, and circularly polarizing plate and image display device each using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057381A1 (en) * 2002-12-20 2004-07-08 Teijin Limited Transparent conductive laminate, touch panel and liquid crystal display unit with touch panel
JP2006131789A (en) * 2004-11-08 2006-05-25 Teijin Chem Ltd Polycarbonate copolymer for retardation film
JP2015212818A (en) * 2014-04-16 2015-11-26 三菱化学株式会社 Retardation film, circularly polarizing plate, and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057381A1 (en) * 2002-12-20 2004-07-08 Teijin Limited Transparent conductive laminate, touch panel and liquid crystal display unit with touch panel
JP2006131789A (en) * 2004-11-08 2006-05-25 Teijin Chem Ltd Polycarbonate copolymer for retardation film
JP2015212818A (en) * 2014-04-16 2015-11-26 三菱化学株式会社 Retardation film, circularly polarizing plate, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873916A (en) * 2018-08-29 2020-03-10 日东电工株式会社 Retardation film, polarizing plate with retardation layer, and method for producing retardation film
CN113544552A (en) * 2019-10-21 2021-10-22 日东电工株式会社 Retardation film, method for producing same, and circularly polarizing plate and image display device each using same

Similar Documents

Publication Publication Date Title
JP6453746B2 (en) Elongated optical laminate and image display device
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
JP7044468B2 (en) An optical laminate and an image display device using the optical laminate
WO2017038416A1 (en) Longitudinally oriented optical compensation layer-equipped polarizing plate and organic el panel using same
WO2017098970A1 (en) Circular polarizing plate and flexible image display device using same
TW202018339A (en) Polarizing plate with phase difference layers and image display device using the same capable of thinning the protective layer of the polarizer
CN112840245B (en) Polarizing plate with phase difference layer and image display device using same
JP6709637B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
WO2017038415A1 (en) Polarizing plate having optical compensation layer, and organic el panel using same
JP2020064277A (en) Polarizing plate with phase difference layer and image display device using the same
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2020064279A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064280A (en) Polarizing plate with phase difference layer and image display device using the same
TWI827658B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2020115227A (en) Polarizing plate with retardation layer and image display using the same
TW202104390A (en) Polarizing plate having phase difference layer and image display device using same
JP2020064298A (en) Polarizing plate with phase difference layer and image display device using the same
CN115236785B (en) Polarizing plate with phase difference layer and image display device using same
TWI827659B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
TWI832889B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2023073124A (en) Polarizer with phase difference layer and image display device with the same
JP2020064297A (en) Polarizing plate with phase difference layer and image display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201806359W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747395

Country of ref document: EP

Kind code of ref document: A1