WO2021219027A1 - 供电电路 - Google Patents

供电电路 Download PDF

Info

Publication number
WO2021219027A1
WO2021219027A1 PCT/CN2021/090677 CN2021090677W WO2021219027A1 WO 2021219027 A1 WO2021219027 A1 WO 2021219027A1 CN 2021090677 W CN2021090677 W CN 2021090677W WO 2021219027 A1 WO2021219027 A1 WO 2021219027A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
enable signal
port
power supply
Prior art date
Application number
PCT/CN2021/090677
Other languages
English (en)
French (fr)
Inventor
黄停
朱辰
冯英群
邱钰鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP21797886.5A priority Critical patent/EP4050783A4/en
Priority to US17/777,817 priority patent/US12088204B2/en
Publication of WO2021219027A1 publication Critical patent/WO2021219027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • One or more embodiments of the present application generally relate to the field of power supply circuits for electronic devices, and specifically relate to an adjustable voltage power supply circuit.
  • the power supply circuits of existing electronic devices have widely included voltage up-and-down converters (buck-boost converters).
  • buck-boost converters voltage up-and-down converters
  • a voltage up-down converter is used to provide a stable output voltage to electronic equipment.
  • the output voltage of the voltage up-down converter is generally not set higher. Therefore, in electronic equipment, it is necessary to additionally provide a boost circuit for a module that uses a higher voltage to supply power. In this way, the circuit area is occupied and the manufacturing cost is increased.
  • Some embodiments of the present application provide a power supply circuit.
  • the following describes the application from multiple aspects, and the implementations and beneficial effects of the following multiple aspects can be referred to each other.
  • the embodiments of the present application provide a power supply circuit.
  • the power supply circuit includes a voltage rise and fall adjustment circuit and a control circuit.
  • the voltage rise and fall adjustment circuit can switch between boost and buck modes. Step-up or step-down the input voltage to obtain the required output voltage; the control circuit is coupled to the voltage rise and fall adjustment circuit; wherein, the control circuit is used to control the output voltage of the voltage rise and fall adjustment circuit between the first output voltage and the second output Switch between voltages, where the first output voltage is higher than the second output voltage, the first output voltage can drive modules that require high voltage drive, and the second output voltage can drive other modules that are not driven by high voltage; specifically, control When the voltage value of the first enable signal of the voltage rise and fall adjustment circuit is greater than or equal to the first predetermined value, the circuit controls the output voltage of the voltage rise and fall adjustment circuit to be the first output voltage, and is used in the first output voltage of the voltage rise and fall adjustment circuit. When the voltage value of an enable signal is less than or equal to the second predetermined value, the output
  • the power supply circuit of the embodiment of the present application can provide high and low output voltages, thus omitting the boost circuit in the prior art. Since the prior art needs to additionally provide a boost (Boost) circuit in the electronic equipment for the module that uses a higher voltage to supply power, and the circuit structure of the boost circuit is relatively complicated and the circuit uses a relatively large number of devices, therefore, the current Existing technology not only occupies the circuit area, but also increases the manufacturing cost, and cannot meet the higher integration requirements.
  • the power supply circuit of the embodiment of the present application can also provide the input voltage required for the operation of modules such as NFC modules that require high-voltage drive without using an additional booster circuit, thereby releasing the boost for electronic devices The circuit area occupied by the circuit.
  • the control circuit includes a first switch circuit and a first resistor, wherein the first switch circuit is coupled to the first resistor; wherein, the first switch circuit can be at the voltage of the first enable signal When the value is greater than or equal to the first predetermined value, it is turned on, and when the voltage value of the first enable signal is less than or equal to the second predetermined value, it is turned off.
  • the power supply circuit further includes a feedback voltage adjustment circuit and a feedback voltage port of the voltage rise and fall adjustment circuit, and the feedback voltage adjustment circuit is used to output the voltage rise and fall adjustment circuit according to the feedback voltage output by the feedback voltage port.
  • the voltage is adjusted, and the first resistor is coupled to the feedback voltage adjustment circuit through the first switch circuit.
  • the first switch circuit When the first switch circuit is turned on, the coupling between the first resistor of the control circuit and the feedback voltage adjustment circuit will be turned on.
  • the first switch circuit is turned off, the coupling of the first resistor and the feedback voltage adjustment circuit will be turned off.
  • the first resistor of the control circuit can be used to increase the total current of the feedback voltage adjustment circuit when the voltage value of the first enable signal is greater than or equal to the first predetermined value.
  • control circuit adjusts the output voltage of the voltage up-down adjustment circuit to a high voltage by increasing the total current of the feedback voltage adjustment circuit, which is required for high-voltage drive for NFC modules, etc.
  • the module provides the input voltage required for operation.
  • the first switch circuit may include three ports, wherein the first port of the first switch circuit receives the first enable signal, and the second port is coupled to one end of the feedback voltage adjustment circuit. Ground, and the third port is coupled to one end of the first resistor, and the other end of the first resistor is coupled to the feedback voltage port.
  • the power supply circuit further includes a second switch circuit, and the second switch circuit can be used when the voltage value of the first enable signal is greater than the voltage value of the second enable signal of the voltage up-and-down adjustment circuit In the case of turning on the enable port of the first enable signal input voltage rise and fall adjustment circuit, and in the case where the voltage value of the first enable signal is less than the voltage value of the second enable signal, the second enable signal is turned off Input control circuit; and the power supply circuit further includes a third switch circuit for turning on the second enable signal when the voltage value of the second enable signal of the voltage rise and fall adjustment circuit is greater than the voltage value of the first enable signal The enable port of the voltage up-and-down adjustment circuit is input, and when the voltage value of the second enable signal is less than the voltage value of the first enable signal, the first enable signal is turned off to input the second enable signal generation module.
  • the second enable signal generation module may be a battery module and/or a power management unit or a power management circuit (Power Management Unit or Power Management Integrated Circuit, PMU or PMIC for short), the battery module and the PMU to enable port (EN)
  • the supplied second enable signal may be the same or different.
  • control circuit is also used to control when the voltage value of the first enable signal is less than or equal to the second predetermined value and the second enable signal of the voltage rise and fall adjustment circuit is greater than zero
  • the output voltage of the voltage up-and-down adjustment circuit is the second output voltage
  • the output voltage of the voltage rise and fall adjustment circuit is equal to zero. It is zero voltage.
  • the feedback voltage adjustment circuit may include a second resistor and a third resistor; wherein one end of the second resistor is coupled to the second port of the first switch circuit and is grounded, and the second resistor is connected to the ground. The other end is coupled to one end of the third resistor and coupled to the feedback voltage port, and the other end of the third resistor is coupled to the output port of the output voltage of the voltage up-and-down adjustment circuit.
  • the first switching circuit is a transistor.
  • the first switching circuit includes an insulated field effect transistor.
  • the second switch circuit is a diode, the anode of the second switch circuit receives the first enable signal, and the cathode of the second switch circuit is coupled to the enable port; and the third switch circuit is A diode, the anode of the third switch circuit receives the second enable signal, and the cathode of the third switch circuit is coupled to the enable port.
  • the first enable signal is a voltage signal from the NFC module.
  • the second enable signal is a voltage signal from the power management unit.
  • the signal of the first output voltage and/or the signal of the second output voltage is used to drive the NFC module.
  • the embodiments of the present application provide a control method for controlling the control circuit of the voltage rise and fall adjustment circuit, which can make the output voltage of the voltage rise and fall adjustment circuit be the first output voltage and the second output voltage, And the first output voltage is higher than the second output voltage
  • the method includes: when the voltage value of the first enable signal of the voltage rise and fall adjustment circuit is greater than or equal to the first predetermined value, the control circuit controls the output of the voltage rise and fall adjustment circuit The voltage is the first output voltage; and when the voltage value of the first enable signal of the voltage rise and fall adjustment circuit is less than or equal to the second predetermined value, the output voltage of the control voltage rise and fall adjustment circuit is the second output voltage or zero voltage, The first predetermined value is higher than the second predetermined value.
  • the power supply circuit of the embodiment of the present application can provide high and low output voltages, thus omitting the boost circuit in the prior art.
  • Boost boost
  • the prior art needs to additionally provide a boost (Boost) circuit in the electronic equipment for the module that uses a higher voltage to supply power, and the circuit structure of the boost circuit is relatively complicated and the circuit uses a relatively large number of devices, therefore, the current Existing technology not only occupies the circuit area, but also increases the manufacturing cost, and cannot meet the higher integration requirements.
  • the power supply circuit of the embodiment of the present application can also provide the input voltage required for the operation of the module such as the NFC module that requires high-voltage drive without using an additional booster circuit, thereby releasing the boost for electronic devices The circuit area occupied by the circuit.
  • control circuit controls when the voltage value of the first enable signal is less than or equal to the second predetermined value and the voltage value of the second enable signal of the voltage rise and fall adjustment circuit is greater than zero
  • the output voltage of the voltage up-and-down adjustment circuit is the second output voltage
  • control circuit controls the voltage when the voltage value of the first enable signal is less than or equal to the second predetermined value and the voltage value of the second enable signal of the voltage rise and fall adjustment circuit is equal to zero.
  • the output voltage of the up-and-down adjustment circuit is zero voltage.
  • the first enable signal is a voltage signal from the NFC module.
  • the second enable signal is a voltage signal from the power management unit.
  • the signal of the first output voltage and/or the signal of the second output voltage is used to drive the NFC module.
  • Figure 1a shows a simplified block diagram of a part of a power supply circuit of an electronic device in the prior art
  • Fig. 1b shows a schematic circuit diagram of the power supply circuit of the voltage up-down converter shown in Fig. 1a;
  • Fig. 2 shows a simplified schematic diagram of a part of a power supply circuit of an electronic device according to an exemplary embodiment of the present application
  • Fig. 3 shows a schematic circuit diagram of a part of the power supply circuit shown in Fig. 2;
  • FIG. 4 shows a schematic diagram of the output voltage change of the power supply circuit of the present application when the electronic device is powered on
  • Fig. 5 shows a flowchart of a method for controlling a control circuit of a part of a power supply circuit of an electronic device according to an embodiment of the present application.
  • module or unit may refer to or include an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated or group) that executes one or more software or firmware programs, and/or Memory (shared, dedicated or group), combinational logic circuit, and/or other suitable components that provide the described functions, or may be an application specific integrated circuit (ASIC), electronic circuit, executing one or more software or firmware
  • ASIC application specific integrated circuit
  • the program is part of the processor (shared, dedicated or group) and/or memory (shared, dedicated or group), combinational logic circuit, and/or other suitable components that provide the described functions.
  • Fig. 1a shows a simplified module diagram of some modules of an electronic device in the prior art. As shown in Figure 1a, the power supply provides power to the Buck-Boost Converter and Boost circuit respectively.
  • Fig. 1b shows a schematic circuit diagram of the power supply circuit of the voltage up-down converter shown in Fig. 1a.
  • the power supply when the electronic device is working, the power supply provides input voltage to the voltage up-down converter.
  • the input voltage of the power supply generally ranges from 3.4V to 4.4V, but the input voltage fluctuates greatly.
  • the input voltage provided by the power supply will have a serious drop, for example, to about 2.8V-2.9V.
  • a voltage up-and-down converter can also provide Stable output voltage.
  • the output voltage terminal VOUT of the voltage up-down converter can be set to generate an unadjustable fixed output voltage.
  • the feedback voltage adjustment circuit can be optionally coupled between the output voltage terminal of the voltage up-down converter and the feedback voltage output terminal of the voltage up-down converter, so that the voltage The up-down converter can output different output voltages accordingly.
  • voltage up-and-down converters provide power for many modules of electronic equipment.
  • the voltage up-and-down converter The output voltage can be set at about 3.4V, which can be used to drive power management units or power management circuits (Power Management Unit or Power Management Integrated Circuit, PMU or PMIC for short), linear regulators, phase detectors, transmitters Modules, power amplifiers, low-noise amplifiers, WiFi front-end modules, 5G front-end modules and many other electronic equipment modules.
  • power management units or power management circuits Power Management Unit or Power Management Integrated Circuit, PMU or PMIC for short
  • linear regulators phase detectors
  • transmitters Modules power amplifiers
  • low-noise amplifiers WiFi front-end modules
  • 5G front-end modules and many other electronic equipment modules.
  • the output voltage value of 3.4V is only used as an example.
  • the output voltage can be other voltage values allowed in the design specifications of the voltage up-down converter, which is not limited in this application.
  • the NFC module can realize Near Field Communication. This technology is also called short-range wireless communication. It is a short-distance high-frequency wireless communication technology that allows electronic devices to be within Inside) exchange data for non-contact point-to-point data transmission. NFC technology provides an extremely convenient communication method for all consumer electronic products, making electronic devices a safe, convenient and fast contactless payment and ticketing tool. It can be understood that the NFC module is only an example of a module that needs to be driven by a high voltage in some cases, and is not specifically limited.
  • the antenna of the NFC module when performing wireless communication, the antenna of the NFC module needs to use high-voltage power supply in order to send and/or receive NFC radio frequency signals.
  • a high voltage such as about 5V can be used as the NFC module. Provide electricity.
  • a boost circuit that can provide a high output voltage can be coupled between the power supply and the input voltage end of the NFC module.
  • the input voltage terminal of the boost circuit is coupled to the power supply
  • the enable port (EN) of the boost circuit is coupled to the NFC module for receiving the NFC enable signal from the NFC module
  • the output voltage terminal of the boost circuit is coupled to the NFC module
  • the enable port (EN) is the control signal input terminal, also called the enable input terminal (Enable). It can be an input pin of the chip or an input port of the circuit. Only this pin is activated, the chip or the circuit It can work, and it is effective at high level under normal circumstances.
  • the NFC module When the NFC module needs to work, the NFC module outputs an NFC enable signal.
  • the NFC enable signal can be at a high level such as 1.8V and input to the enable port of the boost circuit, so that the boost circuit works and responds to the power source. After the voltage is boosted, it outputs a high voltage, so as to provide the NFC module with a working voltage such as 5V required for its operation.
  • the NFC enable signal is a low level such as 0V, and the boost circuit is not enabled at this time, so that no voltage is provided to the NFC module.
  • a possible defect of the prior art shown in Figure 1a is that it is necessary to additionally provide a boost circuit in the electronic device for the module that uses a higher voltage to supply power. Because the circuit structure of the boost circuit is relatively complex and the circuits are A relatively large number of devices are used. Therefore, the existing solution occupies the circuit area and increases the manufacturing cost. At present, as 5G technology puts forward higher requirements for the integration level of electronic equipment, it is obvious that the existing solutions can no longer meet the higher integration requirements.
  • FIG. 2 is a simplified block diagram of a part of the power supply circuit of the electronic device 1 according to the embodiment of the present application.
  • Exemplary electronic devices 1 include, but are not limited to, laptop devices, desktop computers, handheld PCs, personal digital assistants, embedded processors, digital signal processors (Digital Signal Processor, DSP for short), video game devices, and set-top boxes , Microcontrollers, cellular phones, portable media players, handheld devices, wearable devices (for example, display glasses or goggles, head-mounted displays (HMD), watches, head-mounted devices, armbands) , Jewelry, etc.), virtual reality (Virtual Reality, VR) and/or augmented reality (Augment Reality, AR) devices, Internet of Things (IoT) devices, smart audio systems, streaming media client devices, electronics Book reading equipment, and various other electronic equipment.
  • VR Virtual Reality
  • AR Augmented reality
  • IoT Internet of Things
  • the electronic device 1 may include a power supply 10, a voltage rise and fall adjustment circuit 12, a control circuit 14 and an NFC module 16.
  • the power supply 10 may include, but is not limited to, at least one of a battery module, a power supply module such as a power management unit or a power management circuit, and the like.
  • the power supply 10 may provide one or more supply voltages, which are used to provide power to other electronic components of the electronic device 1. In the illustrated embodiment, the power supply 10 is only shown as an example to provide power to the voltage rise and fall adjustment circuit 12.
  • the voltage rise and fall adjustment circuit 12 may include a voltage rise and fall converter 122, a feedback voltage adjustment circuit 124, and a switch circuit 126a and a switch circuit 126b.
  • the letter after the reference number indicates the reference to the element with the specific reference number.
  • a reference number without subsequent letters in the text, such as "126” represents a general reference to the implementation of the element with the reference number.
  • the input port (VIN) of the voltage up-and-down converter 122 is coupled to the power supply 10.
  • the input port (VIN) can also be regarded as the input port of the voltage up-and-down adjustment circuit 12, that is, the input port (VIN) of the voltage up-and-down adjustment circuit 12, as follows Will not be emphasized again.
  • the enable port (EN) of the voltage up-and-down converter 122 is coupled to the NFC module via the switch circuit 126b for receiving the NFC enable signal from the NFC module, and is coupled to the power supply 10 via the switch circuit 126a.
  • the power supply 10 for supplying the input voltage to the enable port (EN) may be a battery module and/or a PMU.
  • the input voltage can be the same or different.
  • the battery module can be selected to supply an input voltage such as 3.6V to the enable port (EN), and in other cases, the PMU can be selected to supply the enable port (EN)
  • the input voltage, such as 1.8V, is not limited in this application.
  • the power supply 10 includes a battery module and a PMU, and after the electronic device 1 is powered on, the PMU can be used to provide an input voltage to the enable port (EN), that is, the PMU enable signal.
  • the PMU enable signal can be After the electronic device 1 is powered on, the voltage up-down converter 122 is enabled.
  • the battery module can provide an input voltage to the input port (VIN) of the voltage up-down converter 122 when the electronic device 1 is powered on or off.
  • the output voltage port (VOUT) and the feedback voltage output port (FB) of the voltage up-down converter 122 are respectively coupled to the feedback voltage adjustment circuit 124.
  • the output voltage port (VOUT) of the voltage up-and-down converter 122 can also be regarded as the output port of the voltage up-and-down adjustment circuit 12, that is, the output voltage port (VOUT) of the voltage up-and-down adjustment circuit 12, which will not be emphasized below.
  • the voltage up-down converter 122 is similar to the voltage up-down converter shown in FIG. 1a, and is used to switch between boost and buck modes based at least in part on the input voltage provided by the power supply 10 to modulate Output voltage and provide the output voltage to other modules of the electronic device.
  • FIG. 2 only exemplarily shows that the voltage rise and fall adjustment circuit 12 supplies voltage to the NFC module 16, and the other modules shown in FIG. 1a are here Omitted.
  • the voltage up-and-down adjustment circuit 12 may alternatively or replace other voltage adjustment circuits such as a boost-bypass circuit to implement part of the functions of the voltage up-and-down converter 122 in the present application.
  • the voltage up-down converter in this application is only an example, and is not a specific limitation to this application.
  • the feedback voltage adjustment circuit 124 is used to adjust the feedback voltage output by the feedback voltage output port (FB) of the voltage up-down converter 122 so that the output voltage reaches a predetermined voltage value.
  • the input port of the switch circuit 126b is coupled to the NFC enable signal and the control circuit 14, and the output port of the switch circuit 126b is coupled to the enable port (EN) of the voltage up-down converter 122.
  • the NFC enable signal shown in FIG. 2 is the same as the NFC enable signal shown in FIG. 1a, and will not be repeated here.
  • the input port of the switch circuit 126a is coupled to the PMU included in the power supply 10 to receive the PMU enable signal, and the output port of the switch circuit 126a is coupled to the enable port (EN) of the voltage up-down converter 122.
  • the switch circuit 126 is generally a protection circuit.
  • the switch circuit 126b is used to keep an open circuit when the PMU enable signal is a high level input enable port (EN) to prevent the PMU enable signal from being input.
  • the control circuit 14 and the NFC module 16 prevent the NFC enable signal from being input to the enable port (EN);
  • the switch circuit 126a is used to keep an open circuit when the NFC enable signal is at a high level to input the enable port (EN) to prevent NFC
  • the enable signal is input to the power supply 10.
  • the switch circuit 126 may be a bipolar junction transistor (BJT), an insulated gate bipolar transistor (IGBT), or similar transistors. In this case, the switch The circuit 126 may be opened or closed based on the respective voltage values of the NFC enable signal and the PMU enable signal.
  • the switch circuit 126b is used to conduct when the voltage value of the NFC enable signal is greater than the voltage value of the PMU enable signal.
  • the switch circuit 126b is also used when the voltage value of the PMU enable signal is greater than the NFC enable signal In the case of a voltage value of, it is turned off, so that the PMU enable signal cannot be input to the control circuit 14.
  • the switch circuit 126a is used to turn on when the voltage value of the PMU enable signal is greater than the voltage value of the NFC enable signal, so that the PMU enable signal is input to the enable port (EN) of the voltage up-down converter 122, thereby enabling the voltage
  • the up-down converter 122 and the switch circuit 126a are also used to turn off when the PMU enable signal is smaller than the NFC enable signal, so that the NFC enable signal cannot be input into the PMU.
  • the control circuit 14 receives the NFC enable signal and is coupled to the voltage rise and fall adjustment circuit 12.
  • the control circuit 14 is coupled to the feedback voltage output port (FB), and controls the output voltage of the output voltage port (VOUT) of the voltage rise and fall adjustment circuit 12 by adjusting the current of the branch where the control circuit 14 is located.
  • FB feedback voltage output port
  • the control circuit 14 closes the feedback voltage output port (FB) and the control circuit 14 so that the output voltage of the feedback voltage output port (FB) can be applied to
  • the branch where the control circuit 14 is located generates a branch current that flows through the control circuit 14 and flows to the ground in the branch where the control circuit 14 is located, thereby adjusting the size of the current flowing through the feedback voltage adjustment circuit 124, thereby controlling the voltage rise and fall adjustment
  • the output voltage port (VOUT) of the circuit 12 outputs a first voltage, which can meet the input voltage requirements of modules that require high-voltage driving, such as the NFC module 16, so that the NFC module 16 can perform the NFC function.
  • the NFC module 16 is similar to the NFC module shown in FIG. 1a, and will not be repeated here.
  • the NFC module 16 only exemplarily represents an example of an electronic component in the electronic device 1 that needs to be driven by a higher voltage in certain scenarios.
  • the control circuit 14 opens the feedback voltage output port (FB) and the control circuit 14 so that no flow control occurs in the branch where the control circuit 14 is located.
  • the circuit 14 parallels the branch current flowing to the ground, thereby not changing the magnitude of the current flowing through the feedback voltage adjusting circuit 124, thereby controlling the output voltage port (VOUT) of the voltage up-and-down adjusting circuit 12 to output the second voltage or zero voltage.
  • the output voltage port (VOUT) outputs the second voltage
  • the enable port (EN) of the voltage up-down converter 122 does not receive a high-level enable signal
  • the voltage up-down converter 122 does not work, and the output voltage port (VOUT) outputs Zero voltage.
  • the second voltage is lower than the first voltage, and the second voltage can be the output voltage of the voltage up-and-down converter described in Figure 1a. That is, the second voltage can be used to drive power management units or power management circuits, linear Many modules of electronic equipment such as voltage regulators, phase detectors, transmitter modules, power amplifiers, low noise amplifiers, WiFi front-end modules, and 5G front-end modules.
  • the high level and the low level are set so that one or more circuits shown in FIG. 2 perform the expected function, therefore, the high level and the low level may be preset Voltage value, for example, high level is 1.8V, low level is ground or 0V, in addition, high level can also be a voltage value equal to or higher than a predetermined threshold, and low level can be equal to or lower than a predetermined threshold
  • the predetermined threshold for the high level is greater than the predetermined threshold for the low level, for example, the predetermined threshold for the high level may be 1.5V, and the predetermined threshold for the low level may be 0.5V.
  • the power supply 10 when the electronic device 1 is powered on, the power supply 10 provides an input voltage to the voltage rise and fall adjustment circuit 12, and the PMU enable signal is at a high level to enable the voltage rise and fall converter 122, so that the voltage The lift converter 122 works.
  • the NFC module 16 does not work, for example, when the NFC module turns off the polling or listening function, that is, the NFC module neither emits electromagnetic waves to initiate NFC communication, nor does it When receiving electromagnetic waves in response to NFC communication initiated by other devices, the NFC enable signal is low, so that the control circuit 14 controls the output voltage of the output voltage port (VOUT) of the voltage up-and-down adjustment circuit 12 to be a second voltage such as 3.4V.
  • the NFC module 16 needs to work, for example, as described above, when the NFC module 16 initiates polling or is monitoring, the NFC module 16 needs to send electromagnetic waves for NFC communication or receive other devices. The electromagnetic wave used for NFC communication is sent.
  • the NFC enable signal is at a high level, so that the control circuit 14 controls the output voltage of the output voltage port (VOUT) of the voltage rise and fall adjustment circuit 12 to be the first for driving the NFC module 16.
  • the NFC module 16 After receiving the first voltage, the NFC module 16 performs the NFC function.
  • the NFC module 16 can work when the electronic device 1 is powered off. Therefore, when the electronic device 1 is powered off, the power supply 10 can provide the voltage rise and fall adjustment circuit 12 to the voltage rise and fall adjustment circuit 12 when the voltage rise and fall adjustment circuit 12 is enabled. Input voltage, but because the PMU is powered off, the voltage of the PMU enable signal is 0V, so the voltage up-and-down converter 122 does not work, and the output voltage of the output voltage port (VOUT) of the voltage up-and-down adjustment circuit 12 is 0V. Based on the above situation, in a scenario where the NFC module 16 is not working, the NFC enable signal is at a low level.
  • the voltage up-and-down converter 122 does not work, and the output voltage of the output voltage port (VOUT) of the voltage up-and-down adjustment circuit 12 is 0V. .
  • the NFC enable signal is at a high level, the voltage rise and fall converter 122 is enabled, and the control circuit 14 controls the output of the output voltage port (VOUT) of the voltage rise and fall adjustment circuit 12
  • the voltage is the first voltage used to drive the NFC module 16, and the NFC module 16 performs the NFC function after receiving the first voltage.
  • the NFC module 16 may respond to the user's request to the electronic device.
  • the NFC application performs polling operations for certain actions, and the working mode of the NFC module 16 can be to work for a certain time at regular intervals.
  • the NFC module 16 can perform a 60ms cycle on the voltage rise and fall adjustment circuit 12 every 500ms. Enabled, therefore, the power supply circuit of the present application has a small impact on the overall power consumption of the electronic device 1.
  • the boost circuit in the prior art is omitted. Therefore, without the need to use an additional boost circuit, it can also be driven by a high voltage such as an NFC module.
  • the module provides the input voltage required for the work, which in turn can release the circuit area occupied by the boost circuit for the electronic device.
  • Fig. 3 shows a schematic circuit diagram of a part of the power supply circuit shown in Fig. 1b, which can be used to implement some embodiments of the present application.
  • the power supply circuit shown in FIG. 3 is shown in a simplified form, in which many details that are not relevant to a full understanding of the present invention are omitted.
  • FIG. 3 only schematically shows part of the ports in the voltage up-and-down converter 204, and only briefly mark multiple ports with similar functions.
  • the voltage up-and-down converter 204 may include a voltage input port VIN and a voltage output port VOUT. , Inductance input port LX1, inductance output port LX2, mode port MODE, enable port EN, feedback voltage output port FB, and ground port GND.
  • the ground port GND is used for grounding.
  • the voltage up-and-down converter 204 may be any existing voltage up-and-down converter available to those skilled in the art, for example, the ISL91110 series voltage up-and-down converter of Renesas Electronics.
  • the input voltage VI201a from the power supply 10 is applied to the voltage input port VIN of the voltage up-down converter 204, and a grounded input line is coupled to the input line
  • the input capacitor 202 is used to stabilize the input voltage VI 201a applied to the voltage input port VIN of the voltage up-down converter 204.
  • An inductor 203 is coupled between the inductor input port LX1 and the inductor output port LX2 of the voltage up-down converter 204.
  • the inductor 203 is used to store energy for the voltage up-down converter 204 when the voltage up-down converter 204 is working, and to increase and decrease the voltage.
  • the converter 204 provides a relatively constant inductor current.
  • the output port VOUT of the voltage up-down converter 204 generates the output voltage VO of the voltage up-down converter 204.
  • the mode port MODE of the voltage rise and fall converter 204 is a logic input port. By inputting high and low voltage level signals to the MODE port, the voltage rise and fall converter 204 can be operated in the pulse width modulation (Pulse Width Modulation, PWM) mode, pulse frequency modulation (Pulse Width Modulation, PWM) mode, and pulse frequency modulation (Pulse Width Modulation) mode.
  • PWM pulse width modulation
  • PWM pulse frequency modulation
  • PWM pulse frequency modulation
  • Pulse Width Modulation Pulse Width Modulation
  • the enable port EN of the voltage up-down converter 204 receives the NFC enable signal 205 and the PMU enable signal PMU_VI 201b, respectively. More specifically, the port (not shown) from which the NFC module 16 outputs the NFC enable signal 205 is coupled to the anode of the diode 207, and the cathode of the diode 207 is respectively coupled to the enable port EN and the mode port MODE of the voltage up-down converter 204.
  • the port (not shown) of the PMU outputting the PMU enable signal PMU_VI 201b is coupled to the anode of the diode 206, and the cathode of the diode 206 is respectively coupled to the enable port EN and the mode port MODE of the voltage up-down converter 204.
  • the reverse breakdown voltage of the diodes 206 and 207 is greater than the voltage value that the PMU enable signal PMU_VI 201b and the NFC enable signal 205 can output, so that the diodes 206 and 207 play a role in circuit protection.
  • the feedback voltage output port FB of the voltage up-down converter 204 outputs the feedback voltage VFB.
  • the feedback voltage output port FB is respectively coupled to the control circuit 14 and the feedback voltage adjustment circuit 124.
  • the control circuit 14 includes a resistor 208 and an electronic switch 209.
  • the electronic switch 209 is shown as a variation of the N-enhancement MOS-FET, for example, reversed between the gate and the source.
  • the electronic switch 209 may include MOS (Metal-Oxide Semiconductor) or FET (Field Effect Transistor) type transistors, such as P-type MOS (PMOS) or P-type FET (PFET). Transistor, N-type MOS (NMOS) or P-type FET (PFET) transistor, or MOS-FET transistor, etc.
  • MOS Metal-Oxide Semiconductor
  • FET Field Effect Transistor
  • PMOS P-type MOS
  • PFET P-type FET
  • NMOS N-type MOS
  • PFET P-type FET
  • MOS-FET transistor MOS-FET transistor
  • Alternative power switching devices or electronically controlled switches are also expected, such as bipolar junction transistors (BJT) and the like, insulated gate bipolar transistors (IGBT) and similar transistors.
  • BJT bipolar junction transistors
  • IGBT insulated gate bipolar transistors
  • the feedback voltage output port FB is coupled to one end of the resistor 208, the other end of the resistor 208 is coupled to the drain port of the electronic switch 209, and the gate port of the electronic switch 209 is coupled to the port where the NFC module 16 outputs the NFC enable signal 205 ,
  • the source port of the electronic switch 209 and the feedback voltage adjustment circuit 124 are commonly grounded.
  • the feedback voltage adjustment circuit 124 includes a resistor 210, a resistor 211, and a capacitor 212, wherein one end of each of the resistor 210 and the capacitor 212 are commonly coupled to the output port VOUT of the voltage up-down converter 204, and the other ends of the resistor 210 and the capacitor 212 One end is commonly coupled to the feedback voltage output port FB and one end of the resistor 211, and the other end of the resistor 211 and the source port of the electronic switch 209 are commonly grounded. In other words, the resistor 210 and the capacitor 212 are connected in parallel between the output port VOUT and the feedback voltage output port FB.
  • the capacitor 212 is used to absorb the overvoltage of the peak state at both ends of the resistor 210, and the resistor 210 and the resistor 211 are coupled in parallel for feedback.
  • the voltage output port FB and the resistor 208 are connected in series with the electronic switch 209 and then connected in parallel with the resistor 211 between the feedback voltage output port FB and ground.
  • the capacitors 213 and 214 are connected in parallel between the output port VOUT and the ground, and the capacitors 213 and 214 are used to stabilize the output voltage of the feedback voltage adjustment circuit 124.
  • the power supply 10 can provide the voltage up-down converter 204 with an input voltage VI 201a of about 2.5V to 4.5V, and the PMU can provide a 1.8V PMU enable signal PMU_VI 201b,
  • the diode 206 is turned on in a forward direction, thereby enabling the voltage up-down converter 204 so that the voltage up-down converter 204 works.
  • the NFC enable signal is low, for example, zero voltage.
  • the voltage of the anode of the diode 207 is zero, and the voltage of the cathode of the diode 207 is 1.8V.
  • the diode 207 is reversely cut off, so that the PMU enable signal does not drive the electronic switch 209 through the diode 207, which protects the control circuit 14 and prevents the PMU enable signal from driving the control circuit 14.
  • the input voltage of the gate port of the electronic switch 209 is zero, the gate of the electronic switch 209 is not driven, and the electronic switch 209 is turned off, so that the feedback voltage VFB of the feedback voltage output port FB is not applied to the resistor 208.
  • the voltage value of the output voltage VO of the output port VOUT of the voltage up-down converter 204 can be determined by the feedback voltage VFB of the feedback voltage output port FB and the resistance values of the resistor 210 and the resistor 211, and Adjusting the resistance values of the resistor 210 and the resistor 211 can adjust the voltage value of the output voltage VO of the output port VOUT.
  • the resistance value of the resistor 210 is R1 and the resistance value of the resistor 211 is R2
  • the output voltage VO is:
  • the feedback output voltage VFB of the feedback voltage output port FB can generally be set to 0.8V. Therefore, by adjusting the ratio of the resistance values of the resistor 210 and the resistor 211, the required output voltage VO can be obtained.
  • the resistance value R1 of the resistor 210 is 121 kiloohms and the resistance value R2 of the resistor 211 is 37.4 kiloohms
  • the ratio of R1/R2 is 3.2
  • the approximate value of the output voltage VO is 3.38V.
  • FIG. 4 shows a schematic diagram of the output voltage change of the above-mentioned power supply circuit when the electronic device 1 is powered on.
  • the output voltage VO of the output port VOUT of the voltage up-down converter 204 is basically maintained at about 3.4V stably.
  • the NFC enable signal 205 output by the NFC module 16 is at a high level, for example, 1.8V.
  • the PMU can provide the PMU enable signal PMU_VI 201b to enable the voltage up-down converter 204, so that the voltage up-down converter 204 works.
  • the PMU enable signal has been input to the negative terminal of the diode 207 .
  • the NFC enable signal 205 is input to the anode port of the diode 207 and the gate port of the electronic switch 209 at the same time.
  • the diode 207 can be turned on or off according to the voltage value of the PMU enable signal PMU_VI 201b before the NFC enable signal is input to the cathode port of the diode 207.
  • the voltage value of PMU_VI 201b is 1.8V as described above
  • the voltage difference between the positive and negative electrodes of the diode 207 is zero, which is less than the dead zone voltage of the diode 207, so the diode 207 does not conduct in the forward direction, and the voltage up-down converter 204 is enabled by the PMU enable signal PMU_VI 201b.
  • the diode 207 is forward-conducting, and the diode 206 is reverse-cut, and the voltage up-down converter 204 is enabled by NFC Signal 205 is enabled.
  • the electronic switch 209 After the NFC enable signal is input to the gate port of the electronic switch 209, the electronic switch 209 can be driven, and the electronic switch 209 is turned on.
  • the NFC enable signal can be maintained at a high level to keep the electronic switch 209 turned on.
  • the electronic switch 209 can be regarded as an ideal switching device. Therefore, the output voltage VO of the output port VOUT of the voltage up-down converter 204 is:
  • the feedback output voltage VFB of the feedback voltage output port FB is set to 0.8V
  • the resistance value R1 of the resistor 210 is 121 kohm
  • the resistance value R2 of the resistor 211 is 37.4 kohm
  • the resistance value R3 of the resistor 208 is At 90.9 kiloohms
  • R3) is 4.5
  • the approximate value of the output voltage VO of the output port VOUT is 4.4V.
  • the output voltage VO is greater than the minimum driving voltage of the NFC module 16, so the output voltage VO can be driven
  • the NFC module 16 works.
  • the voltage value of the output voltage VO of the output port VOUT can be any other voltage value greater than the minimum driving voltage of the NFC module 16 of 4V, for example, 4.5V, 5V, etc. This application is only an example here. It does not specifically limit the output voltage VO.
  • the output voltage VO of the output port VOUT of the voltage up-down converter 204 is increased to about 4.4V, because the NFC module 16 can have a fixed period
  • the voltage rise and fall adjustment circuit 12 is enabled for a short time (for example, 60ms). Therefore, the time that the output voltage VO of the output port VOUT remains at about 4.4V is short compared to the time that the output voltage VO remains at about 3.4V.
  • the power supply circuit of the present application has a small impact on the overall power consumption of the electronic device 1.
  • the resistance values used by the above resistors 208, 210, and 211 are only an example value.
  • the respective resistances of the resistors 208, 210, and 211 can be adjusted. Value so that the ratio of R1/(R2
  • the power supply 10 can still provide the voltage up-down converter 204 with an input voltage VI 201a of about 2.5V to 4.5V, but because the PMU is powered off, the PMU enable signal The voltage of PMU_VI 201b is 0V, so the voltage up-down converter 204 does not work, and the output voltage VO of the output voltage port VOUT of the voltage up-down converter 204 is 0V.
  • the NFC module 16 does not output the NFC enable signal 205, so the enable port EN of the voltage up-down converter 204 does not have an input level, and the voltage up-down converter 204 does not work.
  • the output voltage VO of the output voltage port VOUT of the up-down converter 204 remains 0V.
  • the NFC module 16 can output a high-level NFC enable signal 205, such as 1.8V, even when the electronic device 1 is powered off.
  • the diode 207 is turned on in the forward direction, and the diode 206 is turned off in the reverse direction.
  • the NFC enable signal 205 enables the voltage up-down converter 204, and the voltage up-down converter 204 works. It can be seen from the foregoing specific description that when the NFC enable signal 205 is a high-level voltage, the output voltage VO of the voltage up-down converter 204 is 4.4V, and the output voltage VO drives the NFC module 16 to work.
  • the boost circuit in the prior art is omitted. Therefore, without the need to use an additional boost circuit, it can also provide work requirements for modules that require high-voltage drive, such as NFC modules.
  • the input voltage can in turn release the circuit area occupied by the booster circuit for the electronic device.
  • FIG. 5 shows a flowchart of a method 300 for controlling the control circuit 14 in a part of the power supply circuit of the electronic device 1 according to an embodiment of the present application.
  • the method 300 may be used to implement the transformation of the output voltage of the voltage up-and-down adjustment circuit 12 described in FIGS. 2 and 3.
  • the method 300 may be used to implement the transformation of the output voltage of the voltage up-and-down adjustment circuit 12 described in FIGS. 2 and 3.
  • control circuit 14 controls the output voltage of the voltage rise and fall adjustment circuit 12 to be the first output voltage when the voltage value of the first enable signal of the voltage rise and fall adjustment circuit 12 is greater than or equal to the first predetermined value.
  • the control circuit 14 controls the output voltage of the voltage rise and fall adjustment circuit 12 to be the second output voltage or zero voltage.
  • the above-mentioned first predetermined value is higher than the second predetermined value and the first output voltage is higher than the second output voltage.
  • control circuit 14 may also determine when the voltage value of the first enable signal is less than or equal to the second predetermined value and the second enable signal of the voltage rise and fall adjustment circuit 12 When the voltage value is greater than zero, the output voltage of the control voltage rise and fall adjustment circuit 12 is the second output voltage.
  • control circuit 14 may also set the voltage value of the first enable signal to be less than or equal to the second predetermined value and the second enable signal of the voltage up-and-down adjustment circuit 12 When the voltage value of is equal to zero, the output voltage of the control voltage rise and fall adjustment circuit is zero voltage.
  • the first enable signal is a voltage signal from the NFC module 16, and the first enable signal is also used to enable the enable port of the voltage rise and fall adjustment circuit 12.
  • the second enable signal is a voltage signal from a power management unit (PMU), and the second enable signal is used to enable the enable port of the voltage up-and-down adjustment circuit 12.
  • PMU power management unit
  • the first output voltage and/or the second output voltage are used to supply power to the NFC module 16.
  • first, second, etc. may be used herein to describe various units or data, these units or data should not be limited by these terms. These terms are used only to distinguish one feature from another.
  • first feature may be referred to as the second feature, and similarly the second feature may be referred to as the first feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种供电电路和控制电路的控制方法,该供电电路包括电压升降调整电路和控制电路,控制电路与电压升降调整电路耦连;其中,控制电路用于在电压升降调整电路的第一使能信号大于或等于第一预定值的情况下,控制电压升降调整电路的输出电压为第一输出电压,并且用于在电压升降调整电路的第一使能信号小于或等于第二预定值的情况下,控制电压升降调整电路的输出电压为第二输出电压或者零电压,其中第一预定值高于第二预定值并且第一输出电压高于第二输出电压。根据本申请的各个实施方式,在无需使用额外的升压电路的情况下,也可以为高压驱动模块提供工作所需的输入电压,进而可以为电子设备释放升压电路所占用的电路面积。

Description

供电电路
本申请要求于2020年04月29日提交中国专利局、申请号为202010356259.5、申请名称为“供电电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的一个或多个实施例通常涉及电子设备的供电电路领域,具体涉及一种可调节电压的供电电路。
背景技术
目前,在现有电子设备(手机、平板,TV,PC、音箱、手表,等)的供电电路中已广泛地包括电压升降转换器(降压升压转换器,Buck-Boost Converter)。简而言之,电压升降转换器用于向电子设备提供稳定的输出电压。通常,从既保证电子设备正常工作又兼顾降低电子设备能耗这两方面考虑,电压升降转换器的输出电压一般不会设置得较高。因此,在电子设备中,需要为采用较高电压供电的模块额外提供升压(Boost)电路。这样即占用电路面积,又提高了制造成本。
发明内容
本申请的一些实施方式提供了一种供电电路。以下从多个方面介绍本申请,以下多个方面的实施方式和有益效果可互相参考。
第一方面,本申请的实施方式提供了一种供电电路,供电电路包括电压升降调整电路和控制电路,电压升降调整电路可以在升压(boost)和降压(buck)模式之间进行切换,对输入电压进行升压或降压从而获得所需的输出电压;控制电路与电压升降调整电路耦连;其中,控制电路用于控制电压升降调整电路的输出电压在第一输出电压和第二输出电压之间切换,其中,第一输出电压高于第二输出电压,第一输出电压可以驱动需要高电压驱动的模块,第二输出电压可以驱动其他非高电压驱动的模块;具体而言,控制电路在电压升降调整电路的第一使能信号的电压值大于或等于第一预定值的情况下,控制电压升降调整电路的输出电压为第一输出电压,并且用于在电压升降调整电路的第一使能信号的电压值小于或等于第二预定值的情况下,控制电压升降调整电路的输出电压为第二输出电压或者零电压,其中第一预定值高于第二预定值。
从上述第一方面的实施方式中可以看出,本申请的实施方式的供电电路可以提供高、低输出电压,这样省略现有技术中的升压电路。由于现有技术需要在电子设备中为采用较高电压供电的模块额外地提供升压(Boost)电路,而升压电路的电路结构相对复杂且电路中所采用的器件相对较多,因此,现有技术即占用电路面积,又提高了制造成本,不能满足更高的集成化要求。本申请的实施方式的供电电路在无需使用额外的升压电路的情况下,也可以为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压, 进而可以为电子设备释放升压电路所占用的电路面积。
结合第一方面,在一些实施方式中,控制电路包括第一开关电路和第一电阻,其中第一开关电路与第一电阻耦连;其中,第一开关电路可以在第一使能信号的电压值大于或等于第一预定值的情况下导通,在第一使能信号的电压值小于或等于第二预定值的情况下截止。
结合第一方面,在一些实施方式中,供电电路还包括电压升降调整电路的反馈电压调整电路和反馈电压端口,反馈电压调整电路用于根据反馈电压端口输出的反馈电压对电压升降调整电路的输出电压进行调整,第一电阻通过第一开关电路与反馈电压调整电路耦连,其中,在第一开关电路导通的情况下,控制电路的第一电阻与反馈电压调整电路的耦接会被导通,在第一开关电路截止的情况下,第一电阻与反馈电压调整电路的耦接会被截止。
结合第一方面,在一些实施方式中,控制电路的第一电阻可以用于在第一使能信号的电压值大于或等于第一预定值的情况下,增大反馈电压调整电路的总电流。
从上述结合第一方面的实施方式中可以看出,控制电路通过增大反馈电压调整电路的总电流,从而调整电压升降调整电路的输出电压为高电压,为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压。
结合第一方面,在一些实施方式中,第一开关电路可以包括三个端口,其中第一开关电路的第一端口接收第一使能信号,第二端口与反馈电压调整电路的一端耦连并接地,并且第三端口与第一电阻的一端耦连,第一电阻的另一端与反馈电压端口耦连。
结合第一方面,在一些实施方式中,供电电路还包括第二开关电路,第二开关电路可以用于在第一使能信号的电压值大于电压升降调整电路的第二使能信号的电压值的情况下,导通第一使能信号输入电压升降调整电路的使能端口,并且在第一使能信号的电压值小于第二使能信号的电压值的情况下,截止第二使能信号输入控制电路;以及供电电路还包括第三开关电路,用于在电压升降调整电路的第二使能信号的电压值大于第一使能信号的电压值的情况下,导通第二使能信号输入电压升降调整电路的使能端口,并且在第二使能信号的电压值小于第一使能信号的电压值的情况下,截止第一使能信号输入第二使能信号的产生模块。该第二使能信号的产生模块可以是电池模块和/或电源管理单元或电源管理电路(Power Management Unit或Power Management Integrated Circuit,简称PMU或PMIC),电池模块和PMU向使能端口(EN)供应的第二使能信号可以相同或不同。
结合第一方面,在一些实施方式中,控制电路还用于在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路的第二使能信号大于零的情况下,控制电压升降调整电路的输出电压为第二输出电压。
结合第一方面,在一些实施方式中,在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路的第二使能信号等于零的情况下,电压升降调整电路的输出电压为零电压。
结合第一方面,在一些实施方式中,反馈电压调整电路可以包括第二电阻和第三电阻;其中,第二电阻的一端与第一开关电路的第二端口耦连并接地,第二电阻的另一端与第三电阻的一端耦连,并且与反馈电压端口耦连,第三电阻的另一端与电压升降调整 电路的输出电压的输出端口耦连。
结合第一方面,在一些实施方式中,第一开关电路是晶体三极管。
结合第一方面,在一些实施方式中,第一开关电路包括绝缘型场效应管。
结合第一方面,在一些实施方式中,第二开关电路为二极管,第二开关电路的正极接收第一使能信号,第二开关电路的负极与使能端口耦连;以及第三开关电路为二极管,第三开关电路的正极接收第二使能信号,第三开关电路的负极与使能端口耦连。
结合第一方面,在一些实施方式中,第一使能信号为来自于NFC模块的电压信号。
结合第一方面,在一些实施方式中,第二使能信号为来自于电源管理单元的电压信号。
结合第一方面,在一些实施方式中,第一输出电压的信号和/或第二输出电压的信号用于驱动NFC模块。
第二方面,本申请的实施方式提供了一种用于控制电压升降调整电路的控制电路的控制方法,该控制方法可以使得电压升降调整电路的输出电压为第一输出电压和第二输出电压,并且第一输出电压高于第二输出电压,该方法包括:控制电路在电压升降调整电路的第一使能信号的电压值大于或等于第一预定值的情况下,控制电压升降调整电路的输出电压为第一输出电压;并且在电压升降调整电路的第一使能信号的电压值小于或等于第二预定值的情况下,控制电压升降调整电路的输出电压为第二输出电压或者零电压,其中第一预定值高于第二预定值。
从上述第二方面的实施方式中可以看出,本申请的实施方式的供电电路可以提供高、低输出电压,这样省略现有技术中的升压电路。由于现有技术需要在电子设备中为采用较高电压供电的模块额外地提供升压(Boost)电路,而升压电路的电路结构相对复杂且电路中所采用的器件相对较多,因此,现有技术即占用电路面积,又提高了制造成本,不能满足更高的集成化要求。本申请的实施方式的供电电路在无需使用额外的升压电路的情况下,也可以为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压,进而可以为电子设备释放升压电路所占用的电路面积。
结合第二方面,在一些实施方式中,控制电路在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路的第二使能信号的电压值大于零的情况下,控制电压升降调整电路的输出电压为第二输出电压。
结合第二方面,在一些实施方式中,控制电路在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路的第二使能信号的电压值等于零的情况下,控制电压升降调整电路的输出电压为零电压。
结合第二方面,在一些实施方式中,第一使能信号为来自于NFC模块的电压信号。
结合第二方面,在一些实施方式中,第二使能信号为来自于电源管理单元的电压信号。
结合第二方面,在一些实施方式中,第一输出电压的信号和/或第二输出电压的信号用于驱动NFC模块。
附图说明
图1a示出了现有技术的电子设备的部分供电电路的简化模块图;
图1b示出了图1a所示的电压升降转换器的供电电路的简要电路示意图;
图2示出了根据本申请示意性的实施方式的电子设备的部分供电电路的简化模块示意图;
图3示出了图2所示的部分供电电路的简要电路示意图;
图4示出了在电子设备上电情况下本申请的供电电路的输出电压变化的示意图;
图5示出了根据本申请实施方式的可用于控制电子设备的部分供电电路的控制电路的方法的流程图。
具体实施方式
下面结合具体实施例和附图对本申请做进一步说明。可以理解的是,此处描述的具体实施例仅仅是为了解释本申请,而非对本申请的限定。此外,为了便于描述,附图中仅示出了与本申请相关的部分而非全部的结构或过程。
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
如本文所使用的,术语“模块或单元”可以指或者包括专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或组)和/或存储器(共享的、专用的或组)、组合逻辑电路、和/或提供所描述的功能的其他合适的组件,或者可以是专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或组)和/或存储器(共享的、专用的或组)、组合逻辑电路、和/或提供所描述的功能的其他合适的组件的一部分。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
图1a示出了现有技术中的电子设备的部分模块的简化模块图。如图1a所示,电源分别向电压升降转换器(Buck-Boost Converter)和升压(Boost)电路提供电力。图1b示出了图1a所示的电压升降转换器的供电电路的简要电路示意图。
如图1b所示,在电子设备工作时,电源向电压升降转换器提供输入电压,其中,电源的输入电压的范围一般在3.4V–4.4V左右,但是该输入电压存在波动较大的情况,例如,当电子设备在低电情况下大功率工作时,电源提供的输入电压会存在严重的跌落,例如,跌落至2.8V–2.9V左右,在这种情况下,电压升降转换器也可以提供稳定的输出 电压。在一些示例中,可以设置电压升降转换器的输出电压端VOUT生成不可调整的固定的输出电压。在另一些示例中,可以在电压升降转换器的输出电压端和电压升降转换器的反馈电压输出端之间可选地耦连反馈电压调整电路,使得根据反馈电压调整电路的不同的配置,电压升降转换器可以相应地输出不同大小的输出电压。通常,电压升降转换器会为电子设备的诸多模块提供电力,因此从既保证电子设备正常工作又兼顾降低电子设备能耗这两方面考虑,在图1所示的示例中,电压升降转换器的输出电压可以设置在3.4V左右,该电压可以用于驱动诸如,电源管理单元或电源管理电路(Power Management Unit或Power Management Integrated Circuit,简称PMU或PMIC)、线性稳压器、鉴相器、发射模块、功率放大器、低噪放大器、WiFi前端模块、5G前端模块等电子设备的诸多模块。
可以理解,3.4V的输出电压值仅作为示例,通过配置反馈电压调整电路,输出电压可以是电压升降转换器的设计规范中所允许的其他电压值,本申请对此不作限制。
但是,对于电子设备的一个或多个其他模块,它们在某些或特定场景下需要采用高于3.4V的高电压来驱动,如果直接采用电源或电压升降转换器为这些模块供电,会导致这些模块无法实现部分或全部功能,这些模块可以包括例如,图1a中所示的NFC模块。其中,NFC模块可以实现近场通信(Near Field Communication),该技术又称为近距离无线通信,是一种短距离的高频无线通信技术,允许电子设备之间在距离(例如,在十厘米内)进行非接触式点对点数据传输的交换数据。NFC技术为所有消费性电子产品提供了一个极为便利的通信方式,使电子设备成为一种安全、便捷、快速的非接触式支付和票务工具。可以理解的是,NFC模块仅是在一些情况下需要采用高电压驱动的模块中的一个示例,而非具体地限定。
对于NFC模块而言,在进行无线通信时,NFC模块的天线需要采用高压供电,以便发送和/或接收NFC射频信号,通常,如图1a所示,可以采用诸如5V左右的高电压为NFC模块提供电力。
由于电压升降转换器通常不会提供5V的电压,因此为了驱动NFC模块,如图1a所示,可以在电源和NFC模块的输入电压端之间耦连可以提供高输出电压的升压电路。升压电路的输入电压端与电源耦连,升压电路的使能端口(EN)耦连NFC模块,用于接收来自NFC模块的NFC使能信号,升压电路的输出电压端耦连NFC模块的输入电压端。通常,使能端口(EN)是控制信号输入端,又叫使能输入端(Enable),它可以是芯片的一个输入引脚,或者电路的一个输入端口,只有该引脚激活,芯片或电路才能工作,通常情况下为高电平有效。
当NFC模块需要工作时,NFC模块输出NFC使能信号,NFC使能信号可以采用诸如为1.8V的高电平,并输入升压电路的使能端口,使得升压电路工作,并对来自电源的电压进行升压后输出高电压,从而为NFC模块提供其工作所需的诸如5V的工作电压。当NFC模块不工作时,NFC使能信号为诸如0V的低电平,这时升压电路未使能,从而不会向NFC模块提供电压。
图1a中所示的现有技术的可能缺陷在于:需要在电子设备中为采用较高电压供电的模块额外地提供升压(Boost)电路,由于升压电路的电路结构相对复杂且电路中所采用的器件相对较多,因此,现有方案即占用电路面积,又提高了制造成本。当前由于5G 技术对电子设备的集成化水平提出了更高的要求,显而易见,现有方案已不能满足更高的集成化要求。
如下所述,本申请利用对现有方案的电路设计进行改进,来解决上述这些或其他相关的技术问题。
图2是根据本申请实施方式的电子设备1的部分供电电路的简化模块示意图。示例性的电子设备1包括但不局限于,膝上型设备、台式机、手持PC、个人数字助理、嵌入式处理器、数字信号处理器(Digital Signal Processor,简称DSP)、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播放器、手持设备、可穿戴设备(例如,显示眼镜或护目镜,头戴式显示器(Head-Mounted Display,简称HMD),手表,头戴设备,臂带,珠宝等),虚拟现实(Virtual Reality,简称VR)和/或增强现实(Augment Reality,简称AR)设备,物联网(Internet of Things,IoT)设备,智能音响系统,流媒体客户端设备,电子书阅读设备,以及各种其他电子设备。
如图2所示,电子设备1可以包括电源10、电压升降调整电路12、控制电路14和NFC模块16。电源10可以包括但不限于电池模块、诸如电源管理单元或电源管理电路的供电模块等中的至少一种。电源10可以提供一个或多个供应电压,该供应电压用于向电子设备1的其他电子构件提供电力。在所示实施方式中,仅示例性地示出电源10向电压升降调整电路12提供电力。
电压升降调整电路12可以包括电压升降转换器122、反馈电压调整电路124和开关电路126a和开关电路126b。其中,引用编号之后的字母,例如“126a”,表示对具有该特定引用编号的元素的引用。文本中没有后续字母的引用编号,例如“126”,表示对带有该引用编号的元素的实施方式的总体引用。
电压升降转换器122的输入端口(VIN)耦连电源10,其中输入端口(VIN)也可以看作为电压升降调整电路12的输入端口,即,电压升降调整电路12的输入端口(VIN),以下将不再强调。电压升降转换器122的使能端口(EN)经由开关电路126b与NFC模块耦连,用于接收来自NFC模块的NFC使能信号,并且经由开关电路126a与电源10耦连,在一个或多个可选示例中,向使能端口(EN)供应输入电压的电源10可以是电池模块和/或PMU,电池模块和PMU向使能端口(EN)供应的用于使能电压升降转换器122的输入电压可以相同或不同,例如,在一些情况下,可以选择电池模块向使能端口(EN)供应诸如3.6V的输入电压,在另一些情况下,可以选择PMU向使能端口(EN)供应诸如1.8V的输入电压,本申请在此不作限制。在以下描述的实施方式中,电源10包括电池模块和PMU,并且在电子设备1上电后,可以利用PMU向使能端口(EN)提供输入电压,即PMU使能信号,PMU使能信号可以在电子设备1上电后对电压升降转换器122进行使能。此外,电池模块可以在电子设备1上电或下电的情况下,向电压升降转换器122的输入端口(VIN)提供输入电压。
电压升降转换器122的输出电压端口(VOUT)和反馈电压输出端口(FB)分别耦连反馈电压调整电路124。其中,电压升降转换器122的输出电压端口(VOUT)也可以看作为电压升降调整电路12的输出端口,即,电压升降调整电路12的输出电压端口(VOUT),以下将不再强调。电压升降转换器122与图1a中所示的电压升降转换器类似,用于至少部分地基于电源10提供的输入电压,在升压(boost)和降压(buck)模 式之间进行切换以调制输出电压,并将该输出电压提供给电子设备的其他模块,为了便于说明,图2中仅示例性地示出电压升降调整电路12向NFC模块16供应电压,图1a所示的其他模块在此省略。
此外,在另一些实施方式中,电压升降调整电路12可选地或替代例如使用升压直通(Boost-Bypass)电路等其他电压调整电路来实现电压升降转换器122在本申请中的部分功能。本申请中的电压升降转换器仅是举例,而非对本申请的具体限定。
反馈电压调整电路124用于对电压升降转换器122的反馈电压输出端口(FB)输出的反馈电压进行调整,使得输出电压达到预定的电压值。
开关电路126b的输入端口耦连NFC使能信号和控制电路14,开关电路126b的输出端口耦连电压升降转换器122的使能端口(EN)。图2中示出的NFC使能信号与图1a中所示的NFC使能信号相同,在此不在赘述。开关电路126a的输入端口耦连电源10所包含的PMU,从而接收PMU使能信号,开关电路126a的输出端口耦连电压升降转换器122的使能端口(EN)。其中,开关电路126总体而言是一种保护电路,作为一个示例,开关电路126b用于在PMU使能信号为高电平输入使能端口(EN)时保持开路,以阻止PMU使能信号输入控制电路14和NFC模块16,并阻止NFC使能信号输入使能端口(EN);开关电路126a用于在NFC使能信号为高电平输入使能端口(EN)时保持开路,以阻止NFC使能信号输入电源10。在一些实施方式中,开关电路126可以是双极结型晶体管(Bipolar Junction Transistor,BJT)、绝缘栅极双极晶体管(Insulated Gate Bipolar Transistor,IGBT)或类似晶体管等,在这种情况下,开关电路126可以基于NFC使能信号和PMU使能信号各自电压值的大小来开路或闭合,例如,开关电路126b用于在NFC使能信号的电压值大于PMU使能信号的电压值的情况下导通,使得NFC使能信号输入电压升降转换器122的使能端口(EN),从而使能电压升降转换器122,并且开关电路126b还用于在PMU使能信号的电压值大于NFC使能信号的电压值的情况下截止,使得PMU使能信号无法输入控制电路14。开关电路126a用于在PMU使能信号的电压值大于NFC使能信号的电压值的情况下导通,使得PMU使能信号输入电压升降转换器122的使能端口(EN),从而使能电压升降转换器122,并且开关电路126a还用于在PMU使能信号小于NFC使能信号的情况下截止,使得NFC使能信号无法输入到PMU中。
控制电路14接收NFC使能信号,并且与电压升降调整电路12耦连。控制电路14耦连反馈电压输出端口(FB),并通过调节控制电路14自身所在支路的电流,来控制电压升降调整电路12的输出电压端口(VOUT)的输出电压。作为一个示例,在NFC使能信号为高电平的情况下,控制电路14使反馈电压输出端口(FB)与控制电路14之间闭路,使反馈电压输出端口(FB)的输出电压可以加载到控制电路14所在的支路,进而在控制电路14所在支路产生流过控制电路14并流向地的支路电流,由此调整流过反馈电压调整电路124的电流的大小,从而控制电压升降调整电路12的输出电压端口(VOUT)输出第一电压,该第一电压可以满足诸如NFC模块16的需要高电压驱动的模块的输入电压的要求,使得NFC模块16可以进行NFC功能。其中,NFC模块16与图1a中所示NFC模块类似,在此不再赘述。在所示实施方式中,NFC模块16仅示例性地代表在电子设备1中的需要在某些场景下采用较高电压驱动的电子构件的示例。
作为另一个示例,在NFC使能信号为低电平的情况下,控制电路14使反馈电压输出端口(FB)与控制电路14之间开路,使控制电路14自身所在支路不产生流过控制电路14并流向地的支路电流,由此不改变流过反馈电压调整电路124的电流的大小,从而控制电压升降调整电路12的输出电压端口(VOUT)输出第二电压或者零电压。例如,在NFC使能信号为低电平,并且PMU使能信号为高电平的情况下,输出电压端口(VOUT)输出第二电压;在NFC使能信号为低电平,并且PMU使能信号也为低电平的情况下,即,电压升降转换器122的使能端口(EN)没有接收到高电平的使能信号,电压升降转换器122不工作,输出电压端口(VOUT)输出零电压。以下将结合附图3和场景对本实施方式进一步描述。
其中,第二电压低于第一电压,第二电压可以是上述图1a中描述的电压升降转换器的输出电压,即,第二电压可以用于驱动诸如,电源管理单元或电源管理电路、线性稳压器、鉴相器、发射模块、功率放大器、低噪放大器、WiFi前端模块、5G前端模块等电子设备的诸多模块。
可以理解,在本申请的实施方式中,高电平和低电平被设定使得图2中所示的一个或多个电路执行预期功能,因此,高电平和低电平可以是预先设定的电压值,例如,高电平为1.8V,低电平为接地或0V,此外,高电平还可以是等于或高于预定阈值的电压值,低电平可以是等于或低于预定阈值的电压值,高电平的预定阈值大于低电平的预定阈值,例如,高电平的预定阈值可以是1.5V,低电平的预定阈值可以是0.5V。
根据图2所示的实施方式,在电子设备1上电的情况下,电源10向电压升降调整电路12提供输入电压,PMU使能信号为高电平进而使能电压升降转换器122,使得电压升降转换器122工作。
基于上述情况,在NFC模块16不工作的场景下,例如,在NFC模块关闭轮询(Polling)或监听(Listening)功能时,即,NFC模块既没有向外发射电磁波来发起NFC通信,也没有接收电磁波来响应其他设备发起的NFC通信时,NFC使能信号为低电平,使得控制电路14控制电压升降调整电路12的输出电压端口(VOUT)的输出电压为诸如3.4V的第二电压。相对地,在NFC模块16需要工作的场景下,例如,如上所述,在NFC模块16发起轮询或处于监听的情况下,NFC模块16需要向外发送用于NFC通信的电磁波或接收其他设备发送的用于NFC通信的电磁波,这时NFC使能信号为高电平,使得控制电路14控制电压升降调整电路12的输出电压端口(VOUT)的输出电压为用于驱动该NFC模块16的第一电压,NFC模块16接收到第一电压后进行NFC功能。
在一些实施方式中,NFC模块16可以在电子设备1下电时工作,因此在电子设备1下电的情况下,电源10可以在电压升降调整电路12被使能时向电压升降调整电路12提供输入电压,但是由于PMU下电,PMU使能信号的电压为0V,因此电压升降转换器122不工作,电压升降调整电路12的输出电压端口(VOUT)的输出电压为0V。基于上述情况,在NFC模块16不工作的场景下,NFC使能信号为低电平,因此,电压升降转换器122不工作,电压升降调整电路12的输出电压端口(VOUT)的输出电压为0V。相对地,在NFC模块16需要工作的场景下,NFC使能信号为高电平,电压升降转换器122被使能,并且控制电路14控制电压升降调整电路12的输出电压端口(VOUT)的输出电压为用于驱动该NFC模块16的第一电压,NFC模块16接收到第一电压后进 行NFC功能。
此外,由于NFC模块16的轮询操作一般仅在电子设备被用户唤醒的情况下进行,例如用户解锁电子设备的屏幕操作与NFC功能有关的应用时,NFC模块16可以是响应于用户对电子设备的NFC应用的某些动作而执行轮询操作,并且NFC模块16的工作方式可以是每隔一定时间间隔工作一定时间,例如,NFC模块16可以每隔500ms对电压升降调整电路12进行一次60ms的使能,因此,本申请的供电电路对电子设备1的整体功耗影响较小。
由此,对于参考图2所描述的实施方式,现有技术中的升压电路被省略,因此在无需使用额外的升压电路的情况下,也可以为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压,进而可以为电子设备释放升压电路所占用的电路面积。
图3示出了图1b所示的部分供电电路的简要电路示意图,其可被利用以实施本申请的一些实施方式。图3所示的供电电路以简化形式示出,其中省略了与完全理解本发明无关的许多细节。
图3中仅示意地示出电压升降转换器204中的部分端口,并且对于功能类似的多个端口仅作简要地标记,例如,电压升降转换器204可以包括电压输入端口VIN、电压输出端口VOUT、电感输入端口LX1、电感输出端口LX2、模式端口MODE、使能端口EN、反馈电压输出端口FB以及接地端口GND,该接地端口GND用于接地。电压升降转换器204可以是本领域技术人员可获得现有的任何电压升降转换器,例如,瑞萨电子的ISL91110系列电压升降转换器等。
具体来说,通过电源10和电压升降转换器204之间的输入线,来自电源10的输入电压VI201a加载到电压升降转换器204的电压输入端口VIN,并且在该输入线上耦连一接地的输入电容器202,该输入电容器202用于稳定加载到电压升降转换器204的电压输入端口VIN的输入电压VI 201a。电压升降转换器204的电感输入端口LX1和电感输出端口LX2之间耦连一电感器203,电感器203用于在电压升降转换器204工作时为电压升降转换器204储能,并向电压升降转换器204提供相对恒定的电感电流。电压升降转换器204的输出端口VOUT生成电压升降转换器204的输出电压VO。电压升降转换器204的模式端口MODE为逻辑输入端口,通过对MODE端口输入高低电压电平信号可以使电压升降转换器204工作在脉冲宽度调制(Pulse Width Modulation,PWM)模式、脉冲频率调制(Pulse Frequency Modulation,PFM)模式等不同模式,在本申请中,电压升降转换器204可以工作在任一模式下,在此不作具体的限定。
电压升降转换器204的使能端口EN分别接收NFC使能信号205和PMU使能信号PMU_VI 201b。更具体地,NFC模块16输出NFC使能信号205的端口(未示出)耦连二极管207的正极,二极管207的负极分别耦连电压升降转换器204的使能端口EN和模式端口MODE。此外,PMU输出PMU使能信号PMU_VI 201b的端口(未示出)耦连二极管206的正极,二极管206的负极分别耦连电压升降转换器204的使能端口EN和模式端口MODE。可以理解,二极管206和207的反向击穿电压大于PMU使能信号PMU_VI 201b和NFC使能信号205能够输出的电压值,使得二极管206和207起到对电路保护的作用。
电压升降转换器204的反馈电压输出端口FB输出反馈电压VFB。反馈电压输出端 口FB分别与控制电路14和反馈电压调整电路124耦连。具体而言,控制电路14包括电阻器208和电子开关209,在图3中,电子开关209被示出为N增强型MOS-FET的一种变型,例如,在栅极和源极之间反向串联两个齐纳二极管的大功率N增强型MOS-FET。可以理解,本电子开关209可以包括MOS(Metal-Oxide Semiconductor,金属-氧化物半导体)或FET(Field Effect Transistor,场效应管)类型晶体管,诸如P型MOS(PMOS)或P型FET(PFET)晶体管、N型MOS(NMOS)或P型FET(PFET)晶体管,或MOS-FET晶体管等等。还预期了替代的电力开关装置或电子控制开关,诸如双极结型晶体管(Bipolar Junction Transistor,BJT)等等、绝缘栅极双极晶体管(Insulated Gate Bipolar Transistor,IGBT)和类似晶体管等。开关电路的大小和配置被设定来执行预期功能。
反馈电压输出端口FB耦连电阻器208的一端,电阻器208的另一端耦连电子开关209的漏极端口,电子开关209的栅极端口与NFC模块16输出NFC使能信号205的端口耦连,电子开关209的源极端口与反馈电压调整电路124共同接地。反馈电压调整电路124包括电阻器210、电阻器211和电容器212,其中电阻器210和电容器212各自的一端共同地耦连电压升降转换器204的输出端口VOUT,电阻器210和电容器212各自的另一端共同地耦连反馈电压输出端口FB以及电阻器211的一端,电阻器211的另一端与电子开关209的源极端口共同地接地。换言之,电阻器210和电容器212并联在输出端口VOUT和反馈电压输出端口FB之间,电容器212用于吸收电阻器210两端尖峰状态的过电压,电阻器210和电阻器211并联地耦连反馈电压输出端口FB,以及电阻器208串联电子开关209后与电阻器211在反馈电压输出端口FB和接地之间并联。
电容器213和214在输出端口VOUT和接地之间并联,电容器213和214用于对经过反馈电压调整电路124的输出电压进行稳压。
以下结合图3所示的电路结构,详细描述本申请的技术方案。
在一些示例中,在电子设备1上电的情况下,电源10可以为电压升降转换器204提供2.5V到4.5V左右的输入电压VI 201a,PMU可以提供1.8V的PMU使能信号PMU_VI 201b,二极管206正向导通,进而使能电压升降转换器204,使得电压升降转换器204工作。
基于上述情况,在NFC模块16不工作的场景下,NFC使能信号为低电平,例如为零电压值,此时,二极管207的正极的电压为零,二极管207的负极的电压为1.8V,二极管207反向截止,使得PMU使能信号不会经过二极管207驱动电子开关209,对控制电路14起到保护作用,防止PMU使能信号驱动控制电路14。因此,电子开关209的栅极端口的输入电压为零,电子开关209的栅极未驱动,电子开关209断开,使得反馈电压输出端口FB的反馈电压VFB未施加于电阻器208。
在这种情况下,电压升降转换器204的输出端口VOUT的输出电压VO的电压值大小可以由反馈电压输出端口FB的反馈电压VFB和电阻器210和电阻器211的电阻值来确定,并且通过调节电阻器210和电阻器211的电阻值可以调节输出端口VOUT的输出电压VO的电压值大小。例如,假设电阻器210的电阻值为R1,电阻器211的电阻值为R2,则输出电压VO为:
Figure PCTCN2021090677-appb-000001
其中,反馈电压输出端口FB的反馈输出电压VFB一般可以设置为0.8V,因此,通过调整电阻器210和电阻器211的电阻值的比例,就可以获得需要的输出电压VO。作为一个示例,当电阻器210的电阻值R1为121千欧姆,电阻器211的电阻值R2为37.4千欧姆时,R1/R2的比值为3.2,输出电压VO的近似值为3.38V。
图4示出了在电子设备1上电的情况下上述供电电路的输出电压变化的示意图。如图4所示,在NFC使能信号为低电平的情况下,通过采用示波器测量,电压升降转换器204的输出端口VOUT的输出电压VO基本稳定地保持在3.4V左右。
返回图3,相对地,在NFC模块16需要工作的场景下,NFC模块16输出的NFC使能信号205为高电平,例如,1.8V。由于在电子设备1上电后PMU可以提供PMU使能信号PMU_VI 201b使能电压升降转换器204,使得电压升降转换器204工作,在这种情况下,PMU使能信号已输入二极管207的负极端口。这时,NFC使能信号205同时输入二极管207的正极端口和电子开关209的栅极端口。在NFC使能信号输入二极管207的正极端口后,根据先于NFC使能信号输入二极管207的负极端口的PMU使能信号PMU_VI 201b的电压值大小,二极管207可以导通或截止。例如,假设PMU_VI 201b的电压值如上所述为1.8V,则二极管207正负极之间的电压差为零,小于二极管207的死区电压,因此二极管207正向不导通,电压升降转换器204由PMU使能信号PMU_VI 201b使能。假设与NFC使能信号205的电压值与PMU_VI 201b的电压值之差大于二极管207的死区电压值,则二极管207正向导通,二极管206反向截止,进而电压升降转换器204由NFC使能信号205使能。
在NFC使能信号输入电子开关209的栅极端口后,可以驱动电子开关209,电子开关209导通,其中NFC使能信号可保持高电平,以保持电子开关209导通。在电子开关209导通的情况下,由于反馈电压输出端口FB的反馈输出电压VFB加载在电阻器208的一端,电子开关209的源极端口接地,电流可以从反馈电压输出端口FB流过电阻器208,然后从电子开关209的漏极端口流入,从源极端口流出到地。这时,由于电阻器208与电子开关209两者串联后并联电阻器211,流过反馈电压调整电路124的电流增大,从而提升了电压升降转换器204的输出端口VOUT的输出电压VO。
作为一个示例,在电阻器208的电阻值R3足够大的情况下,电子开关209可以视为理想状态的开关装置,由此,电压升降转换器204的输出端口VOUT的输出电压VO为:
Figure PCTCN2021090677-appb-000002
假设,反馈电压输出端口FB的反馈输出电压VFB设置为0.8V,当电阻器210的电阻值R1为121千欧姆,电阻器211的电阻值R2为37.4千欧姆,电阻器208的电阻值R3为90.9千欧姆时,R1/(R2||R3)的比值为4.5,输出端口VOUT的输出电压VO的近似值为4.4V,该输出电压VO大于NFC模块16的最小驱动电压,因此输出电压VO可以驱动NFC模块16工作。在另一些实施方式中,输出端口VOUT的输出电压VO的电压值可以是大于NFC模块16的最小驱动电压4V的其他任意电压值,例如,4.5V、 5V等,本申请在此仅是举例,而非对输出电压VO作具体限定。
参考图4,在NFC模块16输出的NFC使能信号205为高电平的情况下,电压升降转换器204的输出端口VOUT的输出电压VO提升到4.4V左右,由于NFC模块16可以以固定周期对电压升降调整电路12进行一次短暂(例如,60ms)的使能,因此输出端口VOUT的输出电压VO保持在4.4V左右的时间相对于输出电压VO保持在3.4V左右的时间是短暂的,因此,本申请的供电电路对电子设备1的整体功耗影响较小。继续参考图3,上述电阻器208、210和211所采用的电阻值仅是一种示例取值,可以理解,在一种可能的情况下,可以通过调整电阻器208、210和211各自的电阻值,使得R1/(R2||R3)的比值为4.5,以便获得4.4V的输出电压VO;在另一些可能的情况下,还可以通过调整电阻器208、210和211各自的电阻值,获得所需的特定比例值,最终获得特定的输出端口VOUT的输出电压VO。
在另一些实施方式中,在电子设备1下电的情况下,电源10仍然可以为电压升降转换器204提供2.5V到4.5V左右的输入电压VI 201a,但是由于PMU下电,PMU使能信号PMU_VI 201b的电压为0V,因此电压升降转换器204不工作,电压升降转换器204的输出电压端口VOUT的输出电压VO为0V。
基于上述情况,在NFC模块16不工作的场景下,NFC模块16不输出NFC使能信号205,因此电压升降转换器204的使能端口EN没有输入电平,电压升降转换器204不工作,电压升降转换器204的输出电压端口VOUT的输出电压VO保持0V。相对地,在NFC模块16需要工作的场景下,NFC模块16即便在电子设备1下电的情况下也能够输出高电平的NFC使能信号205,例如,1.8V。在这种情况下,由于PMU使能信号PMU_VI 201b的电压为0V,二极管207正向导通,二极管206反向截止,NFC使能信号205使能电压升降转换器204,电压升降转换器204工作,参见前述的具体描述可知,在NFC使能信号205为高电平电压的情况下,电压升降转换器204的输出电压VO为4.4V,该输出电压VO驱动NFC模块16工作。
根据本申请的各个实施方式,现有技术中的升压电路被省略,因此在无需使用额外的升压电路的情况下,也可以为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压,进而可以为电子设备释放升压电路所占用的电路面积。
图5示出根据本申请实施方式的用于控制电子设备1的部分供电电路中的控制电路14的方法300的流程图。
在一些实施方式中,方法300可用于实施图2和图3中描述的电压升降调整电路12的输出电压的转变。对于上述电路实施方式中未描述的内容,可以参见下述方法实施方式;同样地,对于方法实施方式中未描述的内容,可参见上述电路实施方式。
具体地,在302,控制电路14在电压升降调整电路12的第一使能信号的电压值大于或等于第一预定值的情况下,控制电压升降调整电路12的输出电压为第一输出电压。
在304,控制电路14在电压升降调整电路12的第一使能信号的电压值小于或等于第二预定值的情况下,控制电压升降调整电路12的输出电压为第二输出电压或者零电压。其中,上述第一预定值高于第二预定值并且第一输出电压高于第二输出电压。
在一些实施方式中,可选地或附加地,在304,控制电路14还可以在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路12的第二使能信号的电压值大于 零的情况下,控制电压升降调整电路12的输出电压为第二输出电压。
在另一些实施方式中,可选地或附件地,在304,控制电路14还可以在第一使能信号的电压值小于或等于第二预定值且电压升降调整电路12的第二使能信号的电压值等于零的情况下,控制电压升降调整电路的输出电压为零电压。
进一步地,第一使能信号为来自于NFC模块16的电压信号,并且第一使能信号还用于对电压升降调整电路12的使能端口进行使能。
进一步地,第二使能信号为来自于电源管理单元(PMU)的电压信号,并且第二使能信号用于对电压升降调整电路12的使能端口进行使能。
在一些实施方式中,第一输出电压和/或第二输出电压用于向NFC模块16供电。
根据本申请的各个实施方式,在无需使用额外的升压电路的情况下,也可以为诸如NFC模块等的需要高电压驱动的模块提供工作所需的输入电压,进而可以为电子设备释放升压电路所占用的电路面积。
除非上下文另有规定,否则术语“包含”,“具有”和“包括”是同义词。短语“A/B”表示“A或B”。短语“A和/或B”表示“(A和B)或者(A或B)”。
在附图中,以特定布置和/或顺序示出一些结构或方法特征。然而,应该理解,可以不需要这样的特定布置和/或排序。在一些实施例中,这些特征可以以不同于说明性附图中所示的方式和/或顺序来布置。另外,在特定图中包含结构或方法特征并不意味着暗示在所有实施例中都需要这样的特征,并且在一些实施例中,可以不包括这些特征或者可以与其他特征组合。
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元或是数据,但是这些单元或数据不应当受这些术语限制。使用这些术语仅仅是为了将一个特征与另一个特征进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一特征可以被称为第二特征,并且类似地第二特征可以被称为第一特征。

Claims (15)

  1. 一种供电电路,其特征在于,包括:
    电压升降调整电路,用于至少部分地根据输入电压,在升压(boost)和降压(buck)模式之间进行切换以调整输出电压;
    控制电路,所述控制电路与所述电压升降调整电路耦连;其中,所述控制电路用于在所述电压升降调整电路的第一使能信号的电压值大于或等于第一预定值的情况下,控制所述电压升降调整电路的所述输出电压为第一输出电压,并且用于在所述电压升降调整电路的所述第一使能信号的电压值小于或等于第二预定值的情况下,控制所述电压升降调整电路的所述输出电压为第二输出电压或者零电压,其中所述第一预定值高于所述第二预定值并且所述第一输出电压高于第二输出电压。
  2. 如权利要求1所述的供电电路,其特征在于,所述控制电路包括第一开关电路和第一电阻,其中所述第一开关电路与所述第一电阻耦连;其中,所述第一开关电路用于:
    在所述第一使能信号的电压值大于或等于所述第一预定值的情况下,所述第一开关电路导通;以及
    在所述第一使能信号的电压值小于或等于所述第二预定值的情况下,所述第一开关电路截止。
  3. 如权利要求2所述的供电电路,其特征在于,还包括所述电压升降调整电路的反馈电压调整电路和反馈电压端口,所述反馈电压调整电路用于根据所述反馈电压端口输出的反馈电压对所述电压升降调整电路的所述输出电压进行调整,所述控制电路的所述第一电阻通过所述第一开关电路与所述反馈电压调整电路耦连,其中
    在所述第一开关电路导通的情况下,所述第一电阻与所述反馈电压调整电路的耦连被导通,
    在所述第一开关电路截止的情况下,所述第一电阻与所述反馈电压调整电路的耦连被截止。
  4. 如权利要求3所述的供电电路,其特征在于,所述第一电阻用于在所述第一使能信号的电压值大于或等于所述第一预定值的情况下,增大所述反馈电压调整电路的总电流。
  5. 如权利要求3所述的供电电路,其特征在于,所述第一开关电路的第一端口接收所述第一使能信号,所述第一开关电路的第二端口与所述反馈电压调整电路的一端耦连并接地,并且所述第一开关电路的第三端口与所述第一电阻的一端耦连,所述第一电阻的另一端与所述反馈电压端口耦连。
  6. 如权利要求1所述的供电电路,其特征在于,还包括:
    第二开关电路,用于在所述第一使能信号的电压值大于所述电压升降调整电路的第二使能信号的电压值的情况下,导通所述第一使能信号输入所述电压升降调整电路的使能端口,并且在所述第一使能信号的电压值小于所述第二使能信号的电压值的情况下,截止所述第二使能信号输入所述控制电路;以及
    第三开关电路,用于在所述电压升降调整电路的第二使能信号的电压值大于所述第一使能信号的电压值的情况下,导通所述第二使能信号输入所述电压升降调整电路的使 能端口,并且在所述第二使能信号的电压值小于所述第一使能信号的电压值的情况下,截止所述第一使能信号输入所述第二使能信号的产生模块。
  7. 如权利要求1所述的供电电路,其特征在于,
    所述控制电路还用于在第一使能信号的电压值小于或等于所述第二预定值且所述电压升降调整电路的第二使能信号大于零的情况下,控制所述电压升降调整电路的所述输出电压为所述第二输出电压。
  8. 如权利要求1所述的供电电路,其特征在于,在第一使能信号的电压值小于或等于所述第二预定值且所述电压升降调整电路的第二使能信号等于零的情况下,所述电压升降调整电路的所述输出电压为所述零电压。
  9. 如权利要求1-8所述的供电电路,其特征在于,所述反馈电压调整电路包括第二电阻和第三电阻;
    其中,所述反馈电压调整电路的所述第二电阻的一端与所述第一开关电路的第二端口耦连并接地,所述第二电阻的另一端与所述第三电阻的一端耦连,并且与所述反馈电压端口耦连,所述第三电阻的另一端与所述电压升降调整电路的所述输出电压的输出端口耦连。
  10. 如权利要求2-9中任一项所述的供电电路,其特征在于,所述第一开关电路是晶体三极管。
  11. 如权利要求2-9中任一项所述的供电电路,其特征在于,所述第一开关电路包括绝缘型场效应管。
  12. 如权利要求6所述的供电电路,其特征在于,所述第二开关电路为二极管,
    其中,所述第二开关电路的正极接收所述第一使能信号,所述第二开关电路的负极与所述使能端口耦连;以及
    所述第三开关电路为二极管,所述第三开关电路的正极接收所述第二使能信号,所述第三开关电路的负极与所述使能端口耦连。
  13. 如权利要求1所述的供电电路,其特征在于,所述第一使能信号为来自于NFC模块的电压信号。
  14. 如权利要求6所述的供电电路,其特征在于,所述第二使能信号为来自于电源管理单元的电压信号。
  15. 如权利要求1所述的供电电路,其特征在于,所述第一输出电压的信号和/或所述第二输出电压的信号用于驱动NFC模块。
PCT/CN2021/090677 2020-04-29 2021-04-28 供电电路 WO2021219027A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21797886.5A EP4050783A4 (en) 2020-04-29 2021-04-28 POWER SUPPLY CIRCUIT
US17/777,817 US12088204B2 (en) 2020-04-29 2021-04-28 Power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010356259.5A CN111614254B (zh) 2020-04-29 2020-04-29 供电电路
CN202010356259.5 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021219027A1 true WO2021219027A1 (zh) 2021-11-04

Family

ID=72201260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090677 WO2021219027A1 (zh) 2020-04-29 2021-04-28 供电电路

Country Status (4)

Country Link
US (1) US12088204B2 (zh)
EP (1) EP4050783A4 (zh)
CN (1) CN111614254B (zh)
WO (1) WO2021219027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086562A (zh) * 2022-07-25 2022-09-20 荣耀终端有限公司 供电电路、供电控制方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614254B (zh) * 2020-04-29 2021-12-31 荣耀终端有限公司 供电电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035062A (ja) * 2003-07-17 2005-02-10 Funai Electric Co Ltd インクジェットプリンタのインク噴射量制御装置
CN201985759U (zh) * 2011-02-28 2011-09-21 广州视源电子科技有限公司 Dcdc输出电路
US20120153917A1 (en) * 2010-12-20 2012-06-21 Adell Philippe C Low-to-medium power single chip digital controlled dc-dc regulator for point-of-load applications
CN202978699U (zh) * 2012-11-20 2013-06-05 深圳市同洲电子股份有限公司 一种多电压切换装置
CN111614254A (zh) * 2020-04-29 2020-09-01 华为技术有限公司 供电电路

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773963A (en) 1996-08-29 1998-06-30 Apple Computer Inc. Method and apparatus for programmably adjusting output voltage of a battery charger
JPH11231404A (ja) * 1998-02-16 1999-08-27 Olympus Optical Co Ltd カメラの制御回路
US6343026B1 (en) 2000-11-09 2002-01-29 Artesyn Technologies, Inc. Current limit circuit for interleaved converters
JP2004088956A (ja) 2002-07-04 2004-03-18 Ricoh Co Ltd 電源回路
US20040119341A1 (en) * 2002-09-16 2004-06-24 Hickle Randall S. Battery backup method and system
US7205681B2 (en) 2004-02-06 2007-04-17 Honeywell International Inc. Generation and distribution of a dual-redundant logic supply voltage for an electrical system
US6969977B1 (en) * 2004-06-10 2005-11-29 National Semiconductor Corporation Soft-start voltage regulator circuit
TW200814498A (en) 2006-09-15 2008-03-16 Syspotek Corp Modulating voltage regulator
TW201014130A (en) 2008-09-18 2010-04-01 Richtek Technology Corp Level switch device for multilevel power converter
US8358117B1 (en) * 2009-05-14 2013-01-22 Marvell International Ltd. Hysteretic regulator with output slope detection
CN102751872B (zh) * 2011-04-21 2016-04-06 登丰微电子股份有限公司 反馈控制电路
US9276428B2 (en) * 2011-07-06 2016-03-01 Htc Corporation System power integrated circuit and architecture, management circuit, power supply arrangement, and portable apparatus
JP6004836B2 (ja) * 2012-08-22 2016-10-12 ルネサスエレクトロニクス株式会社 電源装置、半導体装置、及びワイヤレス通信装置
TWI479789B (zh) * 2012-11-06 2015-04-01 Wistron Corp 偏壓電路與電子裝置
JP5826158B2 (ja) 2012-12-26 2015-12-02 京セラドキュメントソリューションズ株式会社 電源装置及びこれを備えた画像形成装置
JP2014128142A (ja) 2012-12-27 2014-07-07 Fdk Corp 無停電電源装置
US9280164B2 (en) 2013-01-18 2016-03-08 Sanken Electric Co., Ltd. Switching power-supply device and method for manufacturing switching power-supply device
US9041372B2 (en) 2013-03-13 2015-05-26 Analog Devices Global Wide output voltage range switching power converter
CN103606884A (zh) 2013-11-25 2014-02-26 深圳市华星光电技术有限公司 过流保护电路、led背光驱动电路以及液晶显示器
US9899913B2 (en) * 2014-01-10 2018-02-20 Samsung Electronics Co., Ltd. Dual-mode switching D.C.-to-D.C. converter and method of controlling the same
KR20160001093A (ko) * 2014-06-26 2016-01-06 삼성전자주식회사 스위칭 레귤레이터를 제어하는 방법 및 전자 장치
US9660516B2 (en) 2014-12-10 2017-05-23 Monolithic Power Systems, Inc. Switching controller with reduced inductor peak-to-peak ripple current variation
CN104540293B (zh) * 2014-12-31 2017-02-22 深圳市明微电子股份有限公司 开关电源驱动芯片、烧调方法及led恒流驱动电路
KR102452492B1 (ko) 2015-05-06 2022-10-07 삼성전자주식회사 전압 컨버터 및 이를 포함하는 전력 관리 장치
JP6979973B2 (ja) 2016-06-01 2021-12-15 アセンシア・ディアベティス・ケア・ホールディングス・アーゲー 低電圧バッテリを有する電子デバイスに電力供給するためのシステム、装置、および方法
JP6904079B2 (ja) * 2017-06-14 2021-07-14 富士電機株式会社 スイッチング電源装置
US10594218B1 (en) * 2017-12-20 2020-03-17 Renesas Electronics America Inc. Hysteresis timing scheme for mode transition in a buck boost converter
CN108233711A (zh) * 2018-01-16 2018-06-29 四川安迪科技实业有限公司 一种lnb极化电源供电控制电路
JP2019170073A (ja) * 2018-03-23 2019-10-03 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
US10965212B2 (en) * 2018-04-17 2021-03-30 STMicroelectronics (Alps) SAS Switched-mode power supply with bypass mode
TWI679836B (zh) * 2018-05-23 2019-12-11 通嘉科技股份有限公司 應用於電源轉換器的二次側的同步整流器及其操作方法
CN110881158B (zh) * 2018-09-06 2021-09-28 芯洲科技(北京)有限公司 集成电路装置和音频播放装置
US11876439B2 (en) * 2021-01-14 2024-01-16 Apple Inc. Mitigation of battery output voltage ripple under pulse load

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035062A (ja) * 2003-07-17 2005-02-10 Funai Electric Co Ltd インクジェットプリンタのインク噴射量制御装置
US20120153917A1 (en) * 2010-12-20 2012-06-21 Adell Philippe C Low-to-medium power single chip digital controlled dc-dc regulator for point-of-load applications
CN201985759U (zh) * 2011-02-28 2011-09-21 广州视源电子科技有限公司 Dcdc输出电路
CN202978699U (zh) * 2012-11-20 2013-06-05 深圳市同洲电子股份有限公司 一种多电压切换装置
CN111614254A (zh) * 2020-04-29 2020-09-01 华为技术有限公司 供电电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050783A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086562A (zh) * 2022-07-25 2022-09-20 荣耀终端有限公司 供电电路、供电控制方法及电子设备
CN115086562B (zh) * 2022-07-25 2023-01-17 荣耀终端有限公司 供电电路、供电控制方法及电子设备

Also Published As

Publication number Publication date
CN111614254A (zh) 2020-09-01
EP4050783A4 (en) 2023-01-18
US20220416662A1 (en) 2022-12-29
US12088204B2 (en) 2024-09-10
EP4050783A1 (en) 2022-08-31
CN111614254B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US20160268834A1 (en) Wireless power receiver with dynamically configurable power path
US10277072B2 (en) Wireless power receiver with programmable power path
US20180041060A1 (en) Battery charging architectures
JP4685531B2 (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
EP2562920B1 (en) System power integrated circuit and architecture, management circuit, power supply arrangement, and portable apparatus
JP6262478B2 (ja) 電源回路およびその制御回路、電子機器
US20090295344A1 (en) Power-regulator circuit having two operating modes
US20140285014A1 (en) Methods and apparatus for a single inductor multiple output (simo) dc-dc converter circuit
WO2021219027A1 (zh) 供电电路
USRE49184E1 (en) DC-DC converter
US10680504B2 (en) Bandgap reference circuit and DCDC converter having the same
TWI510879B (zh) 電源供應裝置
US9577505B1 (en) Bootstrap controller for switching power supply
EP3145050A1 (en) Wireless power receiver with dynamically configurable power path
US20230120432A1 (en) Blocking and Startup Transistor Control in Voltage Converters
US20140210439A1 (en) Switching Regulator and Control Circuit Thereof
TWI408542B (zh) 用於供應電源的設備
US20180102705A1 (en) Switched capacitor dc-dc power converter circuit and voltage output method using the same
US10811972B2 (en) Buck-boost converter power supply with drive circuit
US8250388B2 (en) Power supply circuit for CPU
CN114285273B (zh) 供电电源电路及电子设备
US9692304B1 (en) Integrated power stage device with offset monitor current for sensing a switch node output current
JP6498524B2 (ja) 電源回路および電子機器
JP2007019844A (ja) パワートランジスタのオンオフを制御する制御回路およびそれを用いたスイッチングレギュレータならびに電子機器
US20180039312A1 (en) Energy regulation circuit and operation system utilizing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021797886

Country of ref document: EP

Effective date: 20220524

NENP Non-entry into the national phase

Ref country code: DE